

................................ : : . : ,,::~;;~:;:;::<~:i~;ii~;;>' :::;:::;::;;T4\@i;:;y
.:;<<:;:;:;:;:$,;?:!\,,

.:.~:::e:i':& .$
..:.*kFQ;x;+..:.

.::"#j.;i$~:"v:::. ,:.:4 $$'%$*&:&Q&:v4$!+..
..:i:b;i.;;+,;;.$::*I . . ::&iis.i;iiii)"":':

rn
.... 9.- ,:,it*.-i~o;:,a..

.;: ;::;; :%&:.;:::Q: :: ;;;;;:? %,;::,; ;;-*+:.
.........
:.::: ...Q::cQ.

SILICON COMPOSERS
...... ..
::i"'s::.cl ::*:;;:q::.- Introduces the
............. SC/FOXm Single Board Computer

(actual size)

SC/FOX (Forth Optimized expresstm) SBC:
8 and 10 MHz RTX 2000 options
32K to 512K bytes 0-wait state SRAM
64K bytes of shadow-EPROM space
Application boot loader in EPROM
F ~ o m ~ i l e r ' ~ Forth software included
Code converter for EPROM programs
RS232 serial port with handshaking
Centronic parallel-printer port
Single + 5 volt board operation
Two 50-pin application headers
Eurocard size: 100mm by 160mm
SC/FOX Coprocessor compatibility
Retail from $1,195 with software

Harris RTX 2000'~ Forth CPU Features:
1-cycle 16 x 16 = 32-bit multiply
1-cycle 14-prioritized interrupts
one non-maskable interrupt
two 256-word stack memories
three 16-bit timer/counters
&channel 16-bit I/O bus
CMOS in 85-pin pin-grid array

Optional SC/FOX SBC Products:
sc/Forthh Language in EPROM
sc/Floattm Floating Point Library
SC/SBC/PROTO'~ Prototype Board
SC/FOX/SCSI~ I/O Daughter Board

Ideal for embedded real-time control, high-speed data acquisition and reduction, image or signal
processing, or computation intense applications. For additional information, please contact us at:

Silicon Composers, Inc., 210 California Ave., Suite K, Palo Alto, CA 94306 (415) 322-8763

Forth Dimensions 2 Volume X, Number 4

F O R T H
rn

A SIMPLE SCREEN DIRECTORY - DAVID CORNELL
8

This utility allows you to assign a symbolic name to any screen, then it builds a directory of all the named screens in your
file. LOAD. LIST, and EDIT recognize the screens' names - so physical locations no longer matter - but use of con-
ventional screen numbers is not affected. Low overhead, great convenience, and no code conversion required.

STANDALONE APPLICATIONS IN F83 -JAMES F. BALL
15

This article describes the steps required to generate a self-executing application in the F83 dialect of Forth. A modified
system, containing a stripped-down F83 kernel and your application, is created via metacompilation. Not widely docu-
mented, the author found this approach used in Inside F83.

USING REGISTERS IN DATA STACKS - DON KENNEY
19

Usually, Forth systems implement a data stack in memory. But many CPUs handle register operations much more rapidly
than the analogous memory operations. There are problems with keeping the whole data stack in registers, but this paper
shows that mixed register-memory stacks can be much faster than pure memory stacks.

MENU-DRWE THE 8250 ASYNC CHIP - PAUL COOPER
22

Talk about communications for long and you're bound to run into the ubiquitous, asynchronous 8250 chip. This initiali-
zation routine lets you speak ASCII or Baudot, and allows the operator to rely on default values or to explicitly set word
length, stop bits, and parity. Originally, it was part of an RTTY program for an amateur radio station.

DESIGNING DATA STRUCTURES - MIKE ELOLA
26

The chief concern of the third installment in this series is abstraction of the host computer, in the interests of program
portability, with attention paid to a declaration syntax for portable arrays. For data structures, we often have had to write
code that relies on host peculiarities, such as bit-processing widths. But no more!

USING A STRING STACK - RON BRAITHWAITE
30

In the last issue, the author presented his string package, based on the comprehensive string operations of the MUMPS
computer language. It features a dedicated stack and a complete vocabulary, including pattern matching. Here, the remain-
der of his code is printed.

Editorial
4

Letters
5

Advertisers Index
3 7

Best of GEnie
29

FIG Chapters
38

L\

Volume X, Nwnber 4 3 Forth Dimertsiotu

years ago, as the editor of what was then
Dr. Dobb'sJournal. Some of the attendees
had been party to key developments in the
evolution of microcomputers; others were
hackers by temperament and social vision,
but not of machines. The multi-faceted
personality of the group is partly explained
by Bob Bickford's post-Hackers 2.0 defi-
nition of a hacker: "Any person who de-
rives joy from discovering ways to circum-
vent limitations." With this in mind, it is
perhaps unsurprising that a half dozen or so
of the two-hundred-plus attendees are well
known as Forth language pundits. Their
participation reinforced my suspicion that
Forth is about as close as you can get to a
computer hacker's natural medium.

It was refreshing to spend time with this
group of individuals, whose interests in
hardware specifications and datarepresen-
tation were balanced - and in some cases
fueled - by human concerns like ethics,
the environment, and personal integrity.

The most recent addition to the sched-
ule of Forth-specific events is SIGForth
'89, to be held in February at the Four
Seasons Hotel in Austin, Texas. This is a
function of a fledgling ACM SIG, and the
call for papers stresses real-time software
engineering. New Year's Day is the dead-
line for abstracts, so write to them soon for
information if you want to attend or to
speak (see advertisement).

This issue is scheduled to hit the streets
during the Forth Interest Group's Real-
Time Programming convention in Los
Angeles. Our next issue will bring full
coverage, including the winner of the
"world's fastest programmer" contest. The
next week finds the yearly FORML meet-
ing on the Monterey peninsula (topic of
emphasis: artificial intelligence). You'll be
hearing more about that meeting of the
minds, too.

--Marlin Ouverson
Editor

Forth Dimensions
Pubiished by the

Forth Interest Group
Volume X, Number 4

November/December 1988
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions welcomes editorial ma-
terial, letters to the editor, and comments from
its readers. No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth
Interest Group. P.0. Box 8231. Sari Josel
Califomla 95155. Administrative offices and
advertising sales: 408-277-0668.

C o ~ ~ i g h t O 1 9 8 8 b ~ ForthInterest Group.
Inc. The material contained in this periodical
(but not the code) is copyrighted by the indi-
vidual authors of the articles and by Forth
Interest Group, Inc.. respectively. Any repro-
duction or uu of ~ periodical ar it is
piled or the articles, except reproductions for
non-commercial purposes, without the written

EDITORIAL

permission of F& Interest Group. Inc. is a

1 was able to attend part of this
year's Hackers Conference, possibly the
last place where certain core issues about
microcomputing still receive general dis-
cussion. Do you remember earlier times,
when what we now call our business was
known as the microcomputing revolution?
Do you remember why we called it that?
Do you remember why we worked so dili-
gently to promote computer literacy, pub-
lic access with personal privacy, and inter-
active mass media? Believe me, it was for
better purposes than touting a new class of
business machines. If you take the time to
explore the influence of man's philosophy
on technology, and vice versa, you'll see
that our technology bears the fingerprints
of its creators, if not all their names.

Hackers 4.0 proved that some of the old
sparks are still burning. Arriving with
invitation firmly in hand, I encountered
people I hadn't seen since the old days at
People's Computer Company. I had pub-
lished or corresponded with some of them,

violation of the Copyright Laws. Any code

Some of these people, but especially the
values they represent, helped to shape the
machines we use today. Quietly hacking
away in their garages or offices, some of
them are still helping to shape the machines
of the future.

* * *
As for the present, it seems our last issue

got many readers' attention with its focus
on stacks. We had a hunch it was time toair
some fresh ideas about this fundamental
feature of Forth. In fact, we got such an
interesting response that we are following
up on it without delay. You will find in this
issue, along with he remainder of Ron
~ ~ ~ i t h ~ ~ i ~ ~ ~ ~ stfing-stack implementa-
tion, an analysis of the speed savings ere-
ated by implementing jus top of a data
stack in registers, and two relevant letters to
the the expands On Yngve's
idea for an extra stack. and the second
shows how 'ohansen's shadow stack
while compiling.

bearing a copyright notice, however, can be
used only with permission of the copyright
holder.
About the Forth Interest Group

The Forth Interest Group is the association
of programmers, managers, and engineers
who create practical. Forth-based solutions to
real-world needs. Many research hardware
and software designs that will advance the
general state of the art. FIG provides a climate
of intellectual exchange and benefits intended
to assist each of its members. Publications,
conferences, seminars, telecommunications,
and area chapter meetings are among its activi-

ties."~orth Dimensionr (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group. 1330 S. Bascom Ave..
Suite D, San Jose. CA 95128. Second-class
postage paid at Sm Jose, CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensions 4 Volume X , Nwnber 4

Superstacks
Dear Mr. Ouverson:

There seems to be some interest in stack
extensions, judging by the last issue of
Forth Dimensions. Victor Yngve, who has
given us synonyms and macros, has now
given us a simple way to create and ma-
nipulate stacks (FD X13). Yngve calls it a
confection, so the superstacks described
here are just a light dusting of powdered
sugar on top of a confection. The aim is to
extend the simple extra stack idea to a set of
stacks. The method we shall use is to gen-
eralize the idea behind xS TACK, which is
the fixed address of the stack pointer for a
simple stack. We will make the address of
the cell containing the stack pointer a vari-
able, and will use it to switch among the
stacks. We will redefine XSTACK so that it
will contain the address of the stack pointer
of the nth stack. The contents of the cell to
which the stack pointer points will change
with manipulation of the stack (see Figure
One).

The following word creates a data struc-
ture consisting of a set of identical stacks. It
replaces the definition of an extra stack,
which had the effect of making XSTACK a
constant.

: SUPER
CREATE #STACKS 0

DO HERE ,
XSIZE 2" ALLOT
LOOP ;

where we have first defined:
6 CONSTANT SIZE
6 CONSTANT #STACKS
0 VARIABLE XSTACK
0 VARIABLE STK#

XSTACK 4
n t h s t a c k @

e
s

@ t

Figure One. Garian's superstack pointers.

SIZE is the maximum depth of a stack,
#STACKS is the number of stacks in the
superstack, XSTACK is a variable for
switching stacks, and STK# contains the
current stack number.

Next, weactually lay down the structure
with:
SUPER STACK

We now have a 6 x 6 superstack named
STACK. Switching stacks is accomplished
by computing the address of the stack
pointer of the nth item in STACK:
: SWITCH (n --)

DUP STK# !
XSIZE 1+ * 2*
STACK + XSTACK ! ;

And, finally, we have to be sure that
XSTACK leaves the address of the current
stack pointer:
: XSTACK
XSTACK @ ;

That's it, except for some useful words
like XSWAP, XDROP, and . STACKS and

CLRALL, which operate on the entire su-
perstack:
: XSWAP
X> X> SWAP
>X >X ;

: XDROP
X> DROP ;

: .STACKS
#STACKS 0

DO I SWITCH
.X LOOP ;

: CLRALL
#STACKS 0

DO I SWITCH
XCLEAR LOOP ;

One of the advantages of this switching
technique is that the original stack manipu-
lation words work exactly the same way on
all stacks, and you can use each stack inde-
pendently, without having to provide an
index for every stack operation. As for
applications, superstacks can be used to
hold temporary anonymous values, to son

I

Volume X, Nwnber 4 5 Forth Dimensions

L

Forth Dimensions 6 Volume X, Nwnber 4

out information for various purposes (e.g.,
windows, graphics), and to rearrange the
parameter stack more easily. There are
probably many more applications out there
that will become evident as the limitations
of having only one or two stacks is re-
moved.
Robert Garian
2522-E S. Arlington Mill Dr.
Arlington, VA 22206

He Wants Proof
Dear Marlin,

I have been using Forth for five years,
making my living with it for two. Recently,
I have been in a situation that sharply
pointed up some issues about my use of
Forth. Both of us have heard these issues
again and again, and now I will bring them
up one more time: file 110 and extended-
precision, or floating-point, arithmetic.

1 am working in an environment where
there are two different microprocessors,
running different Forths and communicat-
ing. I am writing graphics software which
needs to be executed, alternatively, in ei-
ther or both environments on one or more
of each processor type. Graphics (3-D fla-
vored) eats up lots of resources and needs
high-precision calculations to make pretty
pictures, so optimizing and balancing the
loads are critical.

I find myself constantly hacking away
at my Forth source code, mainly trying to
integrate data structures and algorithms for
file I10 and arithmetic precision. Now that
I am dealing with two Forths and twoproc-
essor types, this has become a circus. Forth
(both fig-FORTH and F83) is optimized
for screen I10 and single- or double-preci-
sion integer math. I would like to challenge
anyone to provide any rigorous proof that
this is a necessary or sufficient limitation to
Fonh. If this limit cannot be rigorously
defended, I think it incumbent, in this day
of multi-megabyte hard drives and 32-bit
processors, that Forth move to deal with
these issues. Telling someone to go buy a
commercial Forth package with these op-
tions does not advance by one byte the
Forth community's ability to deal with
these issues rigorously. I bought the pack-
ages and along came the other baggage, the
worst being that the best commercial solu-
tions are optimized for a specific processor
and the source code sure-as-heck is not
portable. I can't believe the answer is to

write Forth in C to achieve a transportable
solution and have access to VO and math
wordsets that are not someone's copy-
righted property,

I would like to see FIG rejuvenate the
kind of mental energies that went into the
great CASE issues of years past. File 110 of
the VDI type, and floating-point/extended-
precision (64 - 80 bit) arithmetic wordsets
are the types of things that, although contro-
versial, can promote the kind of interest and
insight that move a little closer to scientific
puzzle-solving, and a little further away
from processor-dependent code examples
that drive me crazy. I would like to see
prizes, likeacopy of eachof the books in the
Forth Dimensions order form, a free trip to
the next overseas Forth symposium, etc.

Sincerely,
Mike McCann
P.O. Box 34 160
Omaha, NE 68134

Student's Forth
There are few good textbooks about

Forth, Starting Forth being an outstanding
example. For those looking for an alterna-
tive, I would like to recommend another fa-
vorite of mine, The Student's Forth by Glyn
Emery (Blackwell, 1985). This little book
seems to have gone unnoticed by the
(American) Forth community. It isn't even
mentioned in the latest edition of A Bibliog-
raphy of Forth References. In only 100
pages, it covers Forth prograrnmingand irn-
plementation in a well-structured and
clearly written way that makes it a good
basis for teaching Forth. This book is ex-
actly what its title suggests.

Yours,
Henning Hansen
#116, Technical Univ. of Denmark
2800 Denmark

Shadow Stacks Get Smart
Dear Marlin,

Thank you for publishing my article,
"Shadow Stacks" (FD X/3). I have taken
those ideas a little further since then.

By making ! SHADOW state smart, you
can eliminate the semi-kludgey] S word.
Now when INTERPRET converts a num-
ber, it will store the high 16 bits to the
shadow stackifthesystem isinterpreting,or

it will compile the high 16 bits as a literal
and put that onto the parameter stack when
the word is executed:
: TUCK SHADOW
SHADOW-PTR 2- ! ;

(Tuck on shadow stack.)

: < ! SHADOW> (n --)

STATE @
IF COMPILE LIT ,
COMPILE TUCK-SHADOW
ELSE !SHADOW THEN ;

(State-smart !SHADOW.)

Compile < ! SHADOW, into the defini-
tion of INTERPRET (instead of
! SHADOW as was described in the article).

As hinted at in the article, the Forth
primitive operators can be extended to
handle 32-bit numbers, then both 16- and
32-bit numbers will have the same stack
effects and can be mixed and handled by
"size-smart" words (which will use
@SHADOW). Some definitions to convert
double numbers to "shadow numbers" are
needed to set this up:
: 2 SH->D (s 1 s2 -- dl d2)

>R >R @SHADOW
R> R> ;

(Convert two shadow numbers to two
double numbers.)

: 2 ~ - > S H (dl d2 -- sl s2
>R >R !SHADOW
R> R> ! SHADOW ;

(Convert two double numbers to two
shadow numbers.)

Here are some of the redefined primi-
tives:
: DUP (sl -- sl sl)
@SHADOW DDUP 2~->SH ;

: SWAP (sl s2 -- s2 sl)
2sh->d dswap 2d->sh ;

: + (sl s2 -- sl+s2)
~SH->D D+ !SHADOW ;

: - (s 1 s2 -- s 1-s2)

2SH->D D- !SHADOW ;

: AND (s 1 s2 -- and)

ZSH->D ROT
AND >R AND >R !SHADOW ;

(Continued on page 18.)

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELlVERS ON THE PROMlSE

I POWER

HSIFORTH's compilation and execut~on speeds are
unsurpassed. Compiling at 20,000 l~nes per minute, it
compiles faster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-

I proaches anythlng useful, and have much greater
memory overhead for each definition. Our optlmizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HSIFORTH provides the best architecture, so good that
another major vendor "cloned" (rather poorly) many of
its features. Our Forth uses all available memory for
both programs and datawith almost no execution time
penalty, and very little memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or a gigabyteof virtual, and run almost as fast as in real
mode.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structuresthat
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition's local
variables.

Colon definit~ons can execute inside machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with mult~ple entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
its immense dictionary (1 600 words) would imply.

INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Linker opensthe world of
utility libraries. Link to resident routines or link & remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HSIFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG Libraries, the main difference being they
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

Volume X, Nwnber 4

FUNCTIONALITY

More important than how tast a system executes, is
whether 11 can do the job at all. Can it work w~th your
computer. Can it work with your other tools. Can 11 trans-
form your data into answers. A language should be
complete on the first two, and mlnlmize the unavoidable
effort required for the last

HSIFORTH opens your computer llke no other lan-
guage. You can execute function calls. DOS com-
mands, other programs lnteractlvely, from deflnitions.
or even from flles being loaded. DOS and BlOS function
calls are well documented HS!FORTH words, we don't
settle for glvlng you an INTCALL and saylng "have at ~ t " .
We also Include both fatal and Informative DOS error
handlers, installed by executing FATAL or INFORM.

HSIFORTH supports character or blocked, sequential
or random 110. The character stream can be received
fromisent to console, file, memory, printer or com port.
We include acommunications plus upload and down-
load ut~l~ty, and foregroundlbackground music. Display
output through BlOS for compatibility or memory
mapped for speed

Our formatting and parslng words are without equal. In-
teger, double, quad, financ~al, scaleddime, date, float-
Ing or exponent~al, all our output words have string
formatting counterparts for build~ng records. We also
provide words to parse all data types with your cholce of
field definition. HSIFORTH parses files from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write fromlto a handle (file or device) as
fast as possible. For advanced file support, HSIFORTH
easily links to BTRIEVE, etc.

HSIFORTH supports textlgraphic windows for MONO
thru VGA. Graphlc drawlngs (line rectangle ellipse) can
be absolute or scaled to current window slze and
clipped, and work with our penplot routines. Whilegreat
for plotting and line drawing, it doesn't approach the ca-
pabllit~es of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to interface to Meta-
windows. HSIFORTH with Metawindows makes an un-
beatable graph~cs system. Or Rosetta to your own
preferred graphicsdriver.

APPLICATION CREATION TECHNIQUES

HSIFORTH assembles to any segment to create stand
alone programs of any slze. The optimizer can use HSI
FORTH as a macro library, or complex macros can be
built as colon words. Full forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompller produces threaded systems from a
few hundred bytes, or Forth kernels from 2k bytes. With
~ t , you can create any threading scheme or segmenta-
tion architecture to run on disk or ROM.

You can turnkey or seal HSIFORTH for distribution, with
no royalties for turnkeyed systems. Or convert for ROM
In saved, sealed or turnkeyed form.

HSiFORTH Includes three editors, or you can quickly
shell to your favor~te program editor. The res~dent full
window editor lets you reuse former command lines and
save to or restore from aflle. It is both an indispensable
development a ~ d and agreat user interface. The macro
editor prov~des reuseable functions, cut, paste, file
merge and extract, session log, and RECOMPILE. Our
full screen Forth editor editsfile or sector mapped
blocks.

Debug tools include memorylstack dump, memory
map, decomplle, single step trace, and prompt options.
Trace scope can be lim~ted by depth or address.

HSIFORTH lacks a "modular" compilation environ-
ment. One motivation toward modular compilation is
that, with conventional compilers, recompiling an entire
application to change one subroutine is unbearably
slow. HSIFORTH compiles at 20,000 lines per minute,
faster than many languages link- let alone compile!
The second motivation is linking to other languages.
HSIFORTH llnks to fore~gn subroutinesdynamically.
HSIFORTH doesn't need the extra layer of files, or the
programs needed to manage them. With HSIFORTH
you have source code and the executable file. Period.
"Development environments" are cute, and necessary
for unnecessarily cornpl~cated languages. Simplicity is
somuch better.

HSIFORTH provides hardwarelsoftware floating point, HSIFORTH Programming Systems
including trig and transcendentals. Hardware fpcovers Lower levels include all functions not named at a higher
full r a n 6 trig, log, exponential functions plus complex
and hyperbolic counterparts, and all stack and compari-
son ops. HSIFORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machine code)
and parselformat words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizes conversion time.

Single element through 4D arrays for all data types in-
cluding complex use multiple cfa's to improve both per-
formance and compactness. Z = (X-Y) I (X + Y) would
becoded:XY-XY + lISZ(16bytes)1nsteadof:X@
Y @ - X 6 Y 6 + 12 ! (26 bytes) Arrayscan ignore 64k
boundaries. Words use SYNONYMsfor data type inde-
pendence. HSIFORTH can even prompt the user for
retry on erroneous numeric input.

The HSIFORTH machine coded string library with up to
3D arrays is without equal. Segment spannlng dynamic
string support includes insert, delete, add, flnd, replace,
exchange, save and restore string storage.

Our minimal overhead round robin and time slice multi-
taskers require a word that exits cleanly at the end of
subtask execution. The cooperative round robin multi-
tasker provides individual user stack segments as well
as user tables. Control passes to the next taskiuser
whenever deslred.

level. Some funct~ons available separately.
Documentat~on & Working Demo

(3 books, 1000+ pages. 6 Ibs) $ 95.
Student $145.
Personal optlmizer, scaled & quad integer $245.
Profess1onal80x87, assembler, turnkey. $395.

dynamic strings, multitasker
RSDL linker,
physical screens

Production ROM. Metacompiler. Metawindows
$495.

Level upgrade, price difference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynamic Linker $ 95.
Metawindows by Metagraphics (includes RSDL)

$145.
Hardware Floating Point & Complex $ 95.
Quad integer, software floating point $ 45.
Time slice and round robin multitaskers $ 75.
GigaForth (802861386 Native mode extension) $295.

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

7 Forth Dimemiom

SIMPLE SCREEN
DIRECTORY

DAVID CORNELL - HARRINGTON PARK, NEW JERSEY
w

b r t h , traditionally, uses numbered
screens for source code. Screens corre-
spond, in one way or another, to the 1024-
byte physical blocks around which exter-
nal storage is organized. All this probably
had its origin as a way to easily port sys-
tems to new hardware - once 1K units of
storage were available, the system was off
and running with no hassles about file
formats, operating systems (if any), andall
the rest. Proponents opine that this encour-
ages small, modular organization, facili-
tates incremental program development,
and allows easy manipulation of source

- -
tools, and takes too much programming
time to fit code into an inflexible format. I able merit."

inserted because it logically belongs with
block three, subsequent references to4,10,
and 16 will be wrong.

If screens are given the logical names 3
and 4, their physical locations don't mat-
ter; a new block that logically belongs with
3 can be named 3A, 3 -1, or a more mean-
ingful name. Then it can be physically
moved, or not, and LOADSCR 4 or
LOADSCR SQUARE-ROOT will still load
the same code.

code. Others point out that it is unnecessar-
ily simplistic, isolates the Forth program-
mer from available editors and editing

Everyone is right.
Screens are a fact, an artifact of the

6 6 s Cree are old
friends o f question-

Forth world. For the Forth programmer,
even when other formats are supported,
screens are old friends of questionable
merit that come with the territory and
remain much in evidence.

Dealing with screens can be improved
considerably by using meaningful names
and separating the logical screen from the
physical block. LOADSCR SQUARE-
ROOT says more than 23 LOAD, and it
doesn't matter what the block number is,
even if it changes. The latter attribute is
particularly useful in loader screens.

It iscommon to haveone screen serveas
a loader, with entries like:
3 LOAD 4 LOAD
10 LOAD 16 LOAD

If block four is deleted, or if a new block is

Having just made a case against num-
bered screens, I now must say that some-
times it's just easier and more convenient to
type 10 EDIT Or 10 LOAD instead of a
longer name. And referencing a screen by
number makes it easier to find in a listing.
Also, the requirement that all existing code
be converted to another format is an unac-
ceptable price, at least for a first pass.

So, the main specifications are:
1. Refer to screens by name for LOAD,
LIST, EDIT, etc.

2. Support a return to the old ways, when
desired.

3. Simple enough to allow additions and
modifications.

4. Minimal bulk added to the main diction-
ary.

Data Organization
The obvious starting point is to dedi-

cate one or more blocks to use as a direc-
tory. My Forths use DOS files, and a quick
check showed there is no file for which
one block would not accommodate a di-
rectory. This may not be the case if you are
accessing a 40-megabyte hard disk in 1K
physical Forth blocks.

The next decision is how to organize
the block directory. A list of records, each
record consisting of a variable-width
name field and a fixed-width parameter
field, has proved to be a particularly versa-
tile data type. It is closeenough,conceptu-
ally, to the standard Forth dictionary to
seem familiar and easy to manipulate. The
list may grow upward in memory, or
downward (stack-like), with the most
recent entry at thebeginning. In the case of
the screen directory, it really doesn't
matter which way it grows. I already had
routines to support lists that grow upward,
and I wanted to develop words for down-
ward-growing lists (for external vocabu-
laries); this was an opportunity to do so.
New entries are put at the beginning of the
existing entries, and searches are on a last-
in, first-accessed basis. The record and di-
rectory organization are shown in Figures
One and Two.

Next, a symbol or convention is
needed to identify and define the name of
a screen to be cataloged in the directory.
The only real requirement is that the
symbol be ignored at compile time, but it
would be nice if it could be reasonably
consistent with existing practice. One
Forth convention is to describe the con-
tents of a screen in a comment on the f ~ s t

I

Forth Dimemiom 8 Volume X, Number 4

I

Volume X, Nwnber 4 9

line. The backslash N is commonly used to
mean "comment to end-of-line," and a
colon (:) is associated with "define." Put-
ting these together, we end up with \ : on
the first line of a screen, to define aname for
that screen. When the blocks are cataloged
(with CAT -BLOCK or CAT-BLOCKS),
any that begins with \ : <name> will be
identified as a logical screen with the name
<name>, and an entry is made in the direc-
tory.

The symbol \ : is defined in thediction-
ary as "comment to end-of-line."

Integration
Integration with an existing Forth sys-

tem simply involves:
1. Add the word \ : to the Forth dictionary

(and \ if it isn't already present).
2. Identify the screens to be cataloged, by

placing \ : <name> on the first line of
the screen.

3. Execute CatFile to initialize the di-
rectory and to catalog the screens.

4. From now on, CAT-BLOCK or CAT-
BLOCKS will maintain the directory.

Words that manipulate blocks and
screens may be redefined to exit to CAT-
BLOCK or CAT-BLOCKS. Assuming a
screen editor named EDIT, theredefinition
would be:
: EDIT (blk# --)
DUP EDIT CAT-BLOCK ;

or, if you have a word INSERT-BLOCK
that inserts a new block, then all blocks
from the point of insertion to the end of the
file (or the block range) would be re-cata-
loged by:
: INSERT-BLOCK (blk# --
DUP INSERT-BLOCK
LastBlk CAT-BLOCKS ;

Note that \ : is the only word that needs
to be added permanently to the resident

NOW FOR IBM PC, XT, AT, PS2
AND TRS-80 MODELS 1,3,4,4P

The Gifted
Computer

1. Buy MMSFORTH before year's end.
to let your computer work harder and
faster.

2 Then MMS wtll reward ~t (and you)
wcth the MMSFORTH GAMES DISK,
a $39.95 value wh~ch we'll add on at
no additlonal charge!

MMSFORTH rs the unusually smooth
and complete Forth System with the
great support. Many programmers report
lour to ten times Oreater producttvivity
wtth t h ~ s outstanding system, and MMS
provides advanced applicallons pro-
grams In Forth for use by begcnners and
for custom mod~f~catcons. Unlcke many
Forths on the market. MMSFORTH gcves
you a rcch set of the tnstructcons, editlng
and debuggtng tools that professional
programmers want. The licensed user
gets continuing, free phone tips and a
MMSFORTH Newsletter IS avaclable.
The MMSFORTH GAMES DlSK cncludes
arcade games (BREAKFORTH, CRASH-
FORTH and, for TRS-80, FREEWAY),
board games (OTHELLO and TIC-TAC-
FORTH), and a top-notch CRYPTO-
QUOTE HELPER with a data ftle of
coded messages and the abilcty to en-
code your own. All of these come wtth
Forth source code, for a valuable and
enjoyable demonstratcon of Forth pro-
grammcng techncques.
Hurry, and the GAMES DlSK w ~ l l be our
free g ~ f t to you Our brochure IS free.
too, and our knowledgeable staff IS
ready to answer your questcons Write.
Better yet, call 617f653-6136.

screen, and displays the screen. For
example. TELLSCR DOC^ looks in the
directory for the entry ~ 0 C l and displays
the screen.

LOADSCR takes the next word in the
input stream as the name of the screen,
searches the directory, and loads the block
identified as the logical screen. For
example, LoadScr LOADER looks in the
directory for the entry LOADER and loads
the appropriate block.

Additions are made by cataloging a
block (or range of blocks). The cataloging
routines check for conflicts caused by two
blocks with the same name or by the same
block with two names. Conflicts are re-
solved by removing the earlier of the con-
flicting screens from the directory and
adding the more recent one.
CAT-BLOCK catalogs a single block.
CAT-BLOCKS catalogs a range of blocks.
Cat F i le reinitializes the directory and
catalogs the file.

Enhancements and Extensions
These routines use the Forth screen as

the logical unit. They could just as easily
catalog words, instead, by searching the
entire block for : or CODE, by establishing
another convention to define a logical
module. It would probably be necessary to
allow for more than one directory block,
adding another two bytes to the parameter
field for the offset into the block.

If your Forth runs under a file system,
then with a screen directory and a few
additional words to open and close files,
you have a library facility. This can be used
explicitly, as in
LOADSCR SQUARE-ROOT from
MATHLIB.FTH
(in which case it becomes an 'include
screen' facility), or with a list of unresolved
references. The words that maintain the
block directory can be easily adapted to
maintaining other lists.

I and a free gift! I /

dictionary. Implementation
The new words are straightforward and

Use simple. Compatibility between Forth ver-
The most commonly used words display sions is another matter altogether. To im-

the directory or a screen, load a screen, plement these screens, please read the sec-
and make additions to the directory. tions below, then check for possible prob-

TELLD IR displays the entries in lems, duplication, and equivalence in the
the directory. utility and support screens in the listing.

TELLSCR KScrName (s) > takes the The compatibility screen should be modi-
next word in the input stream as the name of fied for your system. Note that some words
the screen, searches the directory for the have been simplified for this listing.

I
-

GREAT FORTH:
MMSFORTH V2 4 Sl79.9V I 1
The one you've read about In FORTH A
TEXT B REFERENCE Avaclable for IBM

I
PCIXT~AT/PS~ etc . and TRS-80 M 1,3
and 4
GREAT MMSFORTH OPTIONS:
FORTHWRITE $99 95'
FORTHCOM 49 95
DATAHANDLER 59 95
DATAHANDLER-PLUS* 99 95 I

.... I EXPERT-2 69.95
UTILITIES 49.95 1 1
'Single-computer, single-user prlces, cor-
porate s~te Iccenses from $1.000 addtt~onal
3%" format, add $5/disk, Tandy 1000, add
$20 Add S/H. plus 5% tax on Mass orders
OH+ not avacl for TRS-80s
GREAT FORTH SUPPORT:
Free user tcps, MMSFORTH Newsletter,
consult~ng on hardware selection, staff
tratntng, and programmcng asscgnments
large or small
GREAT FORTH BOOKS:
FORTH A TEXT & REF $21.95'
THINKING FORTH 16 95
Many others In stock

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01760

(6171653-6136,9 am - 9 pm)

Forth Dimensions

A FAST m m ,
OPTIMIZED I;nR THE IBM
PERSONAL COMPUTER AND
m-ms COMPATIBLES.

1 I STANDARD FEATURES I
INCLUDE:

a79 STANDARD

@DIRECT 1/0 ACCESS

@FULL ACCESS TO MS-DOS
F I L E S AND FUNCTIONS I

@ENVIRONMENT SAVE
& IAAD I

@MULTI-SEGMENTED FOR
LARGE APPLICATIONS I

@EXTENDED ADDRESSING I
.MPIIORY ALLOCATION

CONFIGURABLE ON-LINE

@AUTO LOAD SCREEN BOOT I
@LINE & SCREEN EDITORS I
@DECOMPII;ER AND

DEBUGGING A I D S I
08088 ASSEMBLER I
G R A W I C S h SOUND I
@NGS ENHANCEMENTS I
@DETAILED MANUAL I
@INEXPENSIVE UPGRADES

aNGS USER NEWSUTTER

A COMPLETE FOKTH
DEVELOlPMFNT SYSTEM. I
PRICES START AT $70 I

NEXT GENERATION BYSTEMS
P.O.BOX 2987

CLARA, CAI 95055
(408) 241-5909

Compatibilities
WORD

In fig-FORTH and my current
versions, WORD does not return an
address. WORD is, therefore, followed
by HERE. Starting with Forth-79,
WORD always returns an address.
Check your implementation; if WORD
does return an address, delete HERE
from this listing when it follows WORD.

? IF
At one point, I seemed to be entering a
lot of ?DUP IF and ?DUP WHILE
statements in my programs, so I added
a machine language primitive
? OBRANCH and the control words ? I F
and ?WHILE. ? IF can be replaced by
?DUP IF, or a word ? IF can be de-
fined to compile them as described in
the listing. Note that ?DUP and IF must
be individually compiled into the word
with the IF ... THEN structure.

-CMOVE
If -CMOVE isn't in your system, look
for <CMOVE. These words move bytes,
starting from the end of the bytes to be
moved instead of the beginning. To
work properly with this listing,
-CMOVE should be able to handle a
move of zero bytes.

SCREENS, BLOCKS, and BUFFERS
A screen is not necessarily the same
thing as a block, nor is a buffer. It sirnpli-
fies things when they are, and many
Forth systems - including mine -
choose the simple route. If this is not the
case with your system, see the discus-
sion below of core words for help.

PICK and ROLL
These are zero-indexed in Forth-79 and
Forth-83 systems. fig-FORTH and
some others are one-indexed.

Upper- and lower-case
Forths differ in how upper- and lower-
case letters are treated. I believe use of
cases makes listings easier to read, so I
have kept this listing as it is in my
system.

Block zero
Block zero is used for the directory
block in this listing. This block will not
be available on all systems, and may

return the address of the text input
buffer (TIB). The only requirement is
that the word & D i r B l k return the
address of the area being used for the
directory. Any block or memory area
can be used. See the discussion of core
words, and the related screens.

&I
For my 32-bit 808x Forth, & I indicates
that a 32-bit address (in the form seg-
ment-offset) is to be returned. In prac-
tice, I have also found this is a conven-
ient mnemonic to differentiate ad-
dresses from data, so I have left it in the
listing.

Core Words
The words &Di rBlk , sBDE,

oBdDAT, and bdPARAMS are at the root
of all other words. By changing them, dif-
ferent-sized parameter fields, multi-block
directories, memory-resident directories,
and directories of different sizes can be ac-
commodated, and the routines can be
adapted to other applications.

&DirBlk
Returns the address of the directory.
Block zero is used as the directory. A
logical block zero may not be avail-
able; any convenient block or alloca-
tion scheme can be used. It is only
required that & D i r B l k return the
address in memory.

sDirBlk
Returns the size of the directory. Note
that a buffer and a block cannot be the
same size.

oBdDat
, The offset to blockdirectory data. This

simply reserves space for a block
, header, and is arbitrarily set to ten.

SBDE

1 The size of block-directory entry. An
entry consists of astring and a two-byte
parameter field. The size of the entry is

I simply the size of the string, plus two
bytes for the parameter field, plus one
byte for the string's length.

bdPARAMS
The block-directory parameters. It re-
turns the address of the start of the
enuies, the address of the limit of the

Forth Dimemions 10 Volume X, Number 4

0 A SquareRoot 0 8

4 1 1 -byte + 2-byte par- _,
name field meter field .

Figure One. A block-directory record has a name field (string)
and a parameter field (hard-coded as two bytes, in this applica-
tion). In this example, the screen named SquareRoot starts on
block eight.

,
Header Data a r e a . . .

<--
Padded with zeros

-->

First entry Entry Last entry

Figure Two. Block-directory format.

(Text continued on page 18.) 1

I F83 USERS

PVM83 is a complete Prolog extension to Laxen and Perry F83.
It handles the primary data structures of strings,numbers,logical constants,
loaical variables, compound predicates, and lists. PVM83 is designed to add
p~oductlvltyand flexiblllty, it is fully interactive between Prolog procedures,
and Forth code. PVM83 is acompiled Prolog featuring fast execution times.

PVM83 is fully extensible. "Standard" definitions gives the
programmer flexibility to design just those procedures needed for his
application. PVM83 code can execute Forth words. F83 can call the PVM83
backtracking and problem solving capabilities.

PVM83 code is incrementally
complled in higher memory segments 1 PVM 83
than the F83 core, leaving room in
the F83 kernal for the "standard exten-

-
sions or other F83 code that the pro- OM/ $69.95
grammer needs. . '

PVM83 is designed to keep the includes manual
Forth philosophy of being both requires
compiled, and interactive. You can type DOS 2.0 or higher 256% RAM
in procedures from the keyboard and
test them, or supply source code from
~ o r t h block files, or text files Concept 4
Intersegment memory management
source code included.

PO Box 20136
VOC Az 86341

I

Volume X, Nwnber 4 Forth Dimensions

[--- ' -------------------------------I----------------

I .j LOAD i LOAD 9 LOAD :S

I Screen Directory : Directarv Blcick
! David Cornell 08-13-1747
[lo iaplerent:
I I . Lheck cospat~bilitr~ utllltv and Core Uord screens,
1 modify a5 requlred for your srstea

(2 . LOBZ screens 3, b and
1 3. Identify screens to be cataloged with
1 \ : <name/ on the top line

I 1. evecute CatFile to initialize the dlrectorv
1 5 . after that, use Lit-Block and Cat-Blocks to

! maintain the screen directory, andtor

1 -5. ReDefine exirting words that manipulate screens

I to exit to Cat-Block or Cat-Biocks

I

,-- d

631--. Dac USE
i i l] TELLZ!R - bispia~ iliiect~r~

TELLSCR {nine, - diiplav screen wifn r,iee/

nl n2 CAT-bi6CES - Citiioq biocts r \ i r L ~ $ 2 . 450 tc
directori if ider,tifled as ibgtcai scieer' t r I

7.: 'name;" on top line

n CCiT-bL0Cb - Catalog a sifigie c.oci ,
1

I

CatFll~ - 1nitiaii:e directcry, ci-a1og a ii;e :I: r i q e I

is defined t i i to Listbib

LOADSCR ;name - loads the screen identif led b . rare
I n the dir~ctorv

! define \ i: i /00(\: iosaenting Lowent ions I
I I011

I

j
i 0 - the address cgf a counted stiifip. 1st byte is ienqtn byte ?
Skips tc end uf L ~ n e , all input fro@ ' \ . ' to end of llne is b31: - either, eg. adr : 0. = an addreis o; 0
treated is a current 1 0 4 1 ~ ~ or td - 'Blb DtrectorvVelated word I 1 lj51

This word rust be in the systen. Screens are docusented !~b!~nbedded 9' - argument is the address of a str:sg !
I with ' l h n d it is use to define "i:" telou 1 117 / eg. bdSFind, erpects a strlng address on :he s t ~ k I

1 /~%I~abedded '-" 'expects arguaentts,'. ~ s e d occasionaiit , .
I lu91 to differentiate between related *aids
1: \ CIL , IN a over no0 - ,IN + I : I ~ H E O I ~ T E 1131 eg. CAT-BLOCC CAT-BLOCFS ~ a t ~ l le

CatFile does not require an argument others do
: \: [COnPILEl : ; iHtlEGI ATE

I
I 1

5
i: DOC Conpatibilltv r-
Screen 14, -Cfiovet aove from end. Also :itlove or a % m a r t V C n v ~

that can recognize overlap. NOTE: t h ~ s word must be
i able to handle a t, length nove
/screen b . UORD HERE, This is 116 Comp~tible. other

Forths w11 i PROaABLY return an address after i win. ir~ that case. delete 'hiiiL' *her1 1s foilor. *UoRcT

'screen 15 tbdCONFLiCTi uses the truth ralue ior arithaetic
and iequiiE5 that TRUE = 1, if TRUE 1s -1 on vour

1 sister, add ABS after each of the two Conpiies
[~creenl? :2R1 2R,
j iaae15.s;~. R,R;

/lick. hill are 3 relitive. I k for ' i q j 8 3 . 116 is 1 reiatiie

-- a -.1

1: Svsten Dependent I

: LastBik \ -- nBir, returns iast bin in iiie s r :inage
I t t f * t t t t t t f : 1

: UaraJ 'I Leila -- 5 as JOR6 hut ietuias str;n*i ;ddr€i~ ,
i ** slrpiifled isr this listing t t i

. .
i if oiilv u5Ea at iompiie time, ncfib rai be ;:u:;i;;er,: !
\ t* for iorth;?:ij. H E N not reqs;re; oe;<,w tt

7EkES NOkD MERE i k Z $ 1 PAO :

: UndColstiat -- s q returns h a \ Lois i n c u r - e a t ~ : ~ p i j r *ir,~c,a
t ger,erai purpose ;eiauit 1s W I C ~ $ o f 5 i ; 5;reen
SG :

: .SCRN r nScr - - . tai-rite 5;:een ?is;.ai xait:ne,
i!ST ; 5 ceneral parsase ~ s r a u i t

- -

Forth Dimemiom 12 Volume X, Nwnber 4

I
I - I: luck ; rti n: -- n; nl nc, cpposite c ~ f ' u ~ e r '
! swap u w r ;

,--- b
I

I ! ~ ~ I ' I : U t i i i t i 2 ; i t r i n g Support I

U I I
$ 1 : OLEN -- n returns length of a counted s t r ing

i
I

ir3j i,Q ; !
i : ~ u u N ~ J ! ~ \ kdr Ler, -- Limit Index, s e t s up DO Loop i d4 I : $1 i adr, s to re s t r ing a t adr , s to res Len byte
i ~ J v E ~ 4 Swap ;

I
1~51 bver $Len t* Move I I

: $1 :COUP LONPILE i ; INMEDIATE ; see text

: ;IF \ same as ;Cup !F
YiOtIP Compile loup [CONPILEI IF : !HflEDIATE 1 see t e t t

(151: MOVE \ $ adr rcwe s t r to adr, length byte NOT roved
571 Swap Count ~ o t Swap Caove :
i18 1
$91: 1. \ $ pr ln t a Counted Str ing
1ij1 Caunt Type :
I : i i $1 2 -- t i ibs CGiQpaiE see t e l t

'121 bup $Len l* Swap -Text O= ;
I 1 , _ .. 1131: 5.. !% $1 $2 - - t i i , compare s t r ings , igr~ore case , . I!' I! SUkP ! : -- :.

I
1141 $= ; i u i l case not supported t h l s l i s t i n g I

I 1151 1

--- i!
i: NireToNunber Uords .
: O- ELK i i -- blkN~~mber

bd$Flnd i I i C O U N T + 3 ELSE O THEN ;
: :$-i$Lb.

$-.,BLf CLIP Pt l iS 1i60PT" 5creer1 not i n Directorv " ;
: 5 3 -- disp la r 5CiEEn ~ d e n t i f i e d bv S

5- BLL i iF .:Chi4 THEI! ;

: L $ -- . ioids scree^ ident if ied b v $
7s-, BLk LCAb :

: 6.: - - f i . t2rFS nex! word i s bi t iden t i f i e r .
b l wCF6f ? J - , ~ L \ ; ', e g . B i k) L ~ ~ ~ J E R

: L,;,;i,:;g . -- , z ~ t ~ ~ i d is naae cf S C T C E ~ I to load
$;i: i $A i . : . j : i-rJadSci :jcreenName?

: T E L L ~ C R bib: .fLFH : , ;SF:. TELL5LF .SrreertNicr
- -

5 ,-- 10
[;:CORE UOKDS - ;one system dependent 1001\: bd$Find I I / CONSTANT ildDAT \ o f f s e t tu data in blk director" 1011

1
!
I

: &DirBlk O BLOCK : \ address of Directory Block 1 : i d i $ -- E n t r y 1 0 1

12
TellDlH v i i -- cursor carr ied TOS, requires UndColsHax I

021: TellDir i -- . pr in t s d ~ r e n t r i e s in 16 col f i e l d
I
I

~ ~ 3 1 UndColsKax 1- bdF'arars Drop Swap \ cursor posn carr ied TO5 I
341 DO
5 Dup '\ copy current csr posn

i
I

Obi -16 A N D 18 * t l $Len + i cursor pcsn a f te r p r in t I

UndColsKat J U O G i etceeds Und Line Len 1

IFSwapDropCR i Y e s , s t a r t n e r l ~ n e I

109 1 ELSE Dup -16 AND ., No,
191 Rot - Spaces Pad to s t i r t of f i e l d I
111 T H E N 1

81 Cfiui~t UrtdColsU3x H i i i i dcn't Niao itiribw wndow 1
!

: t s i i e t h i s en t r r - I nect

,151 +LOOP livp : -- i
i
1

I: sUirBlk Bi6uf 3 ; \ s i z e uf Directory Block
1: s6dE \ LBdrNineF~eld -- SizeBlkOirEntry

$Len 3 + ;

I : -?C 1 adr n -- adr c skips leading O's, Count uf O's
Over i R N DO Count I i 1- LEAVE THEN LOOP Dup R) - ;

Volume X, Nwnber 4

041 bdParars Drop Swap
05 DO

I

07 IF Drop &I O LEAVE THEN
081 &I sBDE

I
i

091 +LOOP I F FALSE THEN ; 1
lill I

-

Forth Dimemiom

: d a r n s \ -- LEatiies Liimit cAvailEytes, 1111
tDirB1k ~BdDat t 'i S t a r t Rddress Data

I
I sDirllk oBdDat - \. nax s i z e data

I
1 iDup + .,>R

I
I
I

/ -ZL k,. Swap ; - - 2 i L N ~ ~ E S avail
I

STANDALONE
APPLICATIONS

T i s article describes how to generate
a self-executing application for any F83
program. In order to accomplish this task,
a modified Forth system containing your
application is created through the meta-
compilation process.

Background
I have no experience with other pro-

gramming languages, and am a self-taught
Forth user (Laxen and Perry's F83 on an
IBM PC). My main textbooks for learning
Forth have been Starting Forth by Leo
Brodie, Mastering Forth by Anderson and
Tracy, Inside F83 by C.H. Ting, Ph.D.,
and Forth Dimensions. I have also found
that my hard copy of the various F83
screens (including shadow screens)
proves as valuable as a written manual.

"Creating a standa-
lone application is
not so compli-
cated.. . 99

One problem I encountered as a result
of choosing Forth as my first program-
ming language, was that once I learned the
fi~ndamentals, finding F83-specific or
machine-specific guidance was difficult. I
wanted to create a self-executing applica-
tion in F83, but I was uncertain that I could
accomplish this task, based on my limited
Forth background.

Metacompilation
As it turned out, creating a self-execut-

JAMES E BALL - COLUMBUS, OHIO -

Standard System Load S c r e e n i/ 1

S c r d 1 A:EXTEND86.BLK
0 (Load Screen t o Br ing up S tandard System 07Apr84map
1) CR .(Loading sys tem e x t e n s i o n s .) CR
2 2 VIEW# (T h i s w i l l b e view f i l e # 2)
3 WARNING OFF
4
5 3 LOAD (BASICS)
6 6 LOAD (FILE-INTERFACE)
7 FROM CPU8086.BLK 1 LOAD (Machine Dependent Code)
8 FROM UTILITY.BLK 1 LOAD (S t a n d a r d System U t i l i t i e s)
9

10 WARNING ON
11 -->
12
13
14
15

Modif ied Load S c r e e n W 1

S c r i! 1 A:EXTEND86 .BLK
0 \ Load Screen t o Br ing up A p p l i c a t i o n System JFB880601
1 CR .(Loading a p p l i c a t i o n) CR
2 2 VIEW# ! (T h i s w i l l be view f i i s # 2)
3 WARNING OFF
4
5 3 LOAD (BASICS)
6 6 LOAD (FILE INTERFACE)
7 FROM CPU8086.BLK 1 LOAD (Machine Dependent Code)
8 FROM UTILITY. BLK 1 LOAD (S t a n d a r d System U t i l i t i e s)
9

10 FROM APPL.BLK 1 LOAD (Loads your a p p l i c a t i o n)
11
12 WARNING ON
13
14 --)
15

Volume X, Nwnber 4 15 Forth Dimensions

ing application wasnot socomplicated. The
solution came primarily from Inside F83.
The process of metacompilation and run-
ning the metacompiler is described in chap-
ter 25. Metacompilation is the process of

creating a new system out of the existing
system. This allows one to create a modi-
fied Forth kernel (KERNEL.COM),
which is necessary for the creation of a
standalone application.

In order to create the metacompiled
KERNEL.COM (which will later be used
to generate your application), the follow-
ing F83 files (only) should be copied onto
a working diskette:
FI33.COM
META86.BLK
KERNEU6.BLK

Next, open the META86.BLK in F83,
and load the first block as follows:
A>F83 META86.BLK
1 LOAD

This begins the metacompilation process.
After the process is complete, the
KERNEL.COM file will be created on the

S tandard System Load S c r e e n // 2

working disk (check your directory). The
12K KERNEL.COM is a striuued-down I /
version of F83 and becomes %e core of
your application.

Creating Your Application
If you aren't using the high-density,

3.5" diskettes A la PS12, you'll need to take
steps to avoid running out of space on your
disk. After you have created the
KERNEL.COM file on the working disk,
return to DOS and erase the
KERNEL86.BLK and the META86.BLK
from the working disk, in order to conserve
disk space. Then, copy EXTEND86.BLK,
CPU8086.BLK, UTILITY.BLK, and your
application (APPL.BLK) onto the work-
ing disk.

At this point, the following files should
be on the working disk:
FI33.COM
KERNEL.COM
EXTEND86.BLK
CPU8086.BLK
UTILITY.BLK
APPL.BLK (containing your F83 applica-
tion)

Next, open EXTEND86.BLK using
F83, and make the modifications shown in
Figure One to standard system load
screens 1 and 2:
A>F83 EXTEND86.BLK
1 EDIT

Your application should be written so
that it will load from the first block. By
using the FROM command (see modified
load screen 1, line lo), your application is
loaded. The technique of using FROM and
1 LOAD to load your application is mod-

Scr # 2 A:EXTEND86.BLK
0 \ Load up t h e system 0 8MAY 84HHL
1 : HELLO (S --)
2 CR ." 8086 F o r t h 8 3 Model "

3 CR ." Vers ion 2 .1 .0 Modif ied 01Jun84 "

4 START ONLY FORTH ALSO DEFINITIONS ;
5 ' HELLO IS BOOT
6 \ 13 LOAD (C o n f i g u r a t i o n : change and l o a d a s d e s i r e d .)
7
8:MARK (S - -)
9 CREATE DOES) (FORGET) FORTH DEFINITIONS ;

10 MARK EMPTY HERE FENCE !
11
12 CR . (System h a s been l o a d e d , S i z e =) HERE U .
13 SAVE-SYSTEM F83.COM
14 CR . (System saved a s F83.COM)
15

Modif ied Load S c r e e n 1 2

S c r /1 2 EXTEND86.BLK
0 \ Load up your a p p l i c a t i o n
1 : HELLO (S --)
2 START ONLY FORTH ALSO DEFINITIONS
3 RUN-APPL ; \Where RUN-APPL e x e c u t e s
4 \ a program i n APPL.BLK
5 ' HELLO IS BOOT
6
7:MARK (S - -)
8 CREATE DOES) (FORGET) FORTH DEFINITIONS ;
9 MARK EMPTY HERE FENCE !

10
11 SAVE-SYSTEM AF'PL.COM \ W h e r e AE'PL is a u n i q u e name
12 \ f o r t h e program.

I l 3
14 BYE \ E x i t F83; Type APPL t o r u n your a p p l i c a t i o n .
15

eled after the method used by Laxen and
Perry to load the utility and CPU system
extensions (see standard system load
screen 1, lines 7 - 8 in Figure One).

The next step is most crucial, to make
your application self-executing. In the
modified load screen 2, the application
word which causes your program to exe-
cute (using RUN-APPL as an example) is
added into HELLO, and a unique name (for
example, APPL.COM) is assigned with
SAVE-SYSTEM (line 13).

Finally, open the modified
EXTEND86.BLK using the newly gener-
ated KERNEL.COM, then load the first
block via the following command:
A>KERNEL EXTEND86.BLK
1 LOAD

Once the loading is complete, the appli-
cation APPL.COM will be created on the
working disk, ready to run by typing the
application's filename at the DOS prompt:

Conclusion
Your program will now run as a self-

standing, executable application. It can be
copied to another disk for distribution
without the F83 system file. The F83 ker-
nel itself (KERNEL.COM) is incorpo-
rated as part of your APPL.COM. The
kernel consumes about 25K of disk space.
However, by further editing out non-es-
sential Forth words from
EXTEND86.BLK and the related
CPU8086.BLK and UTILITY.BLK
(prior to creating theKERNEL.COM), the
application's size can be reduced. For this
reason, a customized KERNEL.COM
might be created for each application.

Finally, by creating a simple user inter-
face that prevents access to theF83 system ' (by limiting the vocabulary and providing

I appropriate error checking), one can cre-
ate a professional, standalone application.

Forth Dimensions 16 Volume X, Number 4

A p p l i c a t i o n B l o c k s (APPL.BLK)

S c r # 1
o 1 \ : TAX LOCKUP T I P S : o INTRODUCTION -2 AT ;

2 VARIABLE ROW 1 CONSTANT .LEFT 7 9 CONSTANT .RIGHT
3 : RESTORE 1 ROW ! ;
4 : SIDES ROW @ 2+ DUP ROW ! AT ;
5 : SPOT 2 1 9 EMIT SPACE ;
6 : LSIDE RESTORE 8 0 DO .LEFT SIDES SPOT LOOP ;
7 : RSIDE RESTORE 8 0 DO .RIGHT SIDES SPOT LOOP ;
8 : BAR 4 0 0 DO SPOT LOOP ;
9 : TOP 1 1 AT BAR ;

1 0 : BOTTOM 1 1 9 A T B A R ;
11 : INTRO 2 4 7 AT ." INCREDIBLE SOFTWARE PRESENTS "

1 2 2 4 9 A T . I 1 TAX T I P S 11

11 1 3 2 4 1 5 AT . IT P r o g r a m m e d i n F 8 3
1 4 2 4 1 7 AT ." BY J a m e s F . B a l l " LOCKUP ;
15 : BOX DARK TOP LSIDE RSIDE BOTTOM ; --)

S c r 2
0 \ T I P ONE: IRA DEDUCTION
1 : TITLE
2 11 3 AT .I' TAX T I P 1: I S YOUR IRA CONTRIBUTION DEDUCTIBLE?"
3 11 5 AT ." A n s w e r t h e q u e s t i o n s b e l o w b y e n t e r i n g e i t h e r : "

4 11 7 AT ." Y = Y e s I' 11 8 AT ." N = No " ;
5 : REDO DARK TITLE 11 11 AT ;
6 : UNSTACK DEPTH 0 ?DO DROP LOOP ;
7 : Y/N BEGIN KEY 9 5 AND DUP A S C I I Y = SWAP A S C I I N =
8 2DUP OR UNTIL DROP ;
9 : PLAN? REDO ." A r e y o u o r y o u r s p o u s e c o v e r e d " CR 11 SPACES

1 0 ." b y a r e t i r e m e n t p l a n a t w o r k ? " Y/N ;
11 : AMOUNT? REDO ." Is y o u r a d j u s t e d g r o s s i n c o m e " ;
1 2 : RERUN? 11 1 9 AT ." P r e s s E s c t o q u i t o r " 11 2 0 AT
1 3 ." a n y k e y t o r e p e a t . " ;
1 4 : NO-PLAN REDO
15 ." Y o u r IRA c o n t r i b u t i o n i s 1 0 0 % t a x d e d u c t i b l e " ; --)

S c r C 3
0 \ T I P ONE: IRA DEDUCTION
1 : NO-DEDUCTION . I ' Y o u r IRA c o n t r i b u t i o n i s n o t d e d u c t i b l e . " ;
2 : PARTIAL-DEDUCTION
3 ." Y o u r d e d u c t i o n i s b e t w e e n $ 2 0 0 a n d $ 1 , 9 9 0 . " ;
4 DEFER RETURN1 DEFER RETURN2 DEFER RETURN3
5 : JOINT1 ." m o r e than $ 5 0 , 0 0 0 ? " ;
6 : JOINT2 ." $ 4 0 , 0 5 0 - $ 4 9 , 9 9 9 ? " ;
7 : JOINT3 ." l ess t h a n $ 4 0 , 0 5 0 ? " ;
8 : SINGLE1 ." m o r e than $ 3 5 , 0 0 0 ? " ;
9 : SINGLE2 ." $ 2 5 , 0 5 0 - $ 3 4 , 9 9 9 ? " ;

1 0 : SINGLE3 .'I l e s s t h a n $ 2 5 , 0 5 0 " ;
11 : RESET [' I SINGLE1 I S RETURN1 [' I SINGLE2 I S RETURN2
1 2 [' I SINGLE3 I S RETURN3 ;
1 3 : RETURN? REDO ." A r e y o u f i l i n g a j o i n t r e t u r n ? " RESET
1 4 Y/N I F [' I JOINT1 I S RETURN1 [' I J O I N t 2 I S RETURN2
1 5 [' I JOINT3 I S RETURN3 THEN ; -->

(Screens continued on page 37.)
--

Volume X, Number 4 17

w.!:::::!:::::!:::*:!:!:!~::>~::::*:!>::>2::>::~:::!:!:::!>;!::>:::!:!:!:!~~
*.
2. .Z,
$:5 ..>

"BYTE .-. A

8 .-i p i -.-,
f.

:.:
...'

8

i FORTH" :.:':. i . . .5' ,5'

$
Z i . . .?i

.Z
17; .:. '...

;. &&
:.: ..:.
Z.

.:.: -.. . . ,.i:.: .:. . . W
... f$ 8 .:<

:i: :i . . r.. ,-..
I. . . .?.'

Z. .5* ,-.a

8 5. .*.* ,?.. . . .-. Z.

INTEL " A.

%.
P.' :..
2.'

. .
2.. .5.
-7.'

f.
,*.'
,?.l :.>
.5.

8031 ':

...a

8 ..:a .-.. .-.a

rz
;:5 ..:a f.
I..'

. .
.-J 5.
2.' :.- ,-..
.5' Z.
I?..

?.a

3 MICRO- :..
?.'

. .
2.l

Z.
2.l

2.
r.. gcoNTROLLER! ?.. ... 7.0

.Z
2.'

f.

8 . .
,*.a

f.
.*.*

3 ;:

.:.
.?., . .
f.,

.'.
2.-

Z. .-.* .-.- .-.- $
?.. ?.'
?.- ?.- I..

:.: ?..
.:a:

Z. 7:- 8 4
::: ...* ..:. 2 h'
k .O ...' .:.: a
,-.a

...'
:.- :.. :5 . . ?..

FEATURES :.* ,$:.- 7..

-FORTH-79 Standard Sub-Set t.:
:.>

-Access to 8031 features ... 5.

3 .. -Supports FORTH and machlne 8
,$?.- code interrupt handlers f' %.

3 -System timekeeping maintains 8
.-.a time and date with leap ?.. :.* .?.. ...*
.*.a

:.*
2.* year correction :.. :.- .-.a

--Supports ROM-based self-
L:

..:.
..: starting applrcatlons ,-.,
5.

.?.' .?.'
;$.?.' .. :-:'

:.' .. r i I..' fi 2.' 5 ::: COST :.' .-. f.' ri

130 page manual - S 30.00 8
8 .-.' ..i
A 8~ EPROM w~th manual-S 100.00 3

5. Postage pad In North Arner~ca .5' ...* .?.'
lnqulre for llcense or quantity prlclng 2: 2-

... ::a :.. . . :.* .?.. :.- .-.-...-2.5- ,..-.............-..........*...........*.*.*............. .?.* .. 8 f.
::a :.- 8
,?..

. .
:.:. A . .

Bryte Computers, Inc. ... $
3 P.O. Box 46, Augusta, ME 0 4 3 3 0 3
?.' ,?.' .-.a .-.a (207) 547-32 18
2. 2. Z. :' -...*.-.- ...-. -.- .-.-. - .-.. ""'.-.-.-.-.- .-.-. - .-.-.-.-.-.-..,... 55. 5.5.- .5.5.5.5.5.5. ..%

Forth Dimemiom

1 with LMI FORTHTM /

1 For Programming Professionals: 1
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 lnterpreterlcompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, Marina dei Rey, CA 90295

credit card orders to: (213) 3067412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch, Tit~see.Neustadt, 7651.1665
UK: System Science Ltd.. London. 01-248 0962
France. Mlcro.Sigma S.A.R.L.. Par~s. (1) 42.65 95.16
Japan: Southern Paciflc Ltd., Yokohama, 045-314-9514
Australla: Wave.onic Associates, Wilson, W.A., (09) 451-2946

(Continued from page 6.)

: OR (sl s2 -- o r)

2SH->D ROT

OR >R OR >R !SHADOW ;

: XOR (sl s2 -- xor)
2SH->D ROT

XOR >R XOR >R !SHADOW ;

The redefinition of any of the Forth
primitives can be extended in this way. In
any speed-critical application, these
should be recoded in assembly language.

Darrel Johansen
Orion Instruments
702 Marshall Street

(Continuedfrom page 1 1 .)

entries, and the number of available
bytes. The start and the limit are used
to set up DO ... LOOP searches; the
count of available bytes is used for
memory management.

Optimizing
Each time the block directory is ac-

cessed, a search is made for the first entry,
skipping over leading zeros. This is done
by the high-level word -zC. This can be
recoded in assembly language or replaced
by a variable maintained in the directory
header. I have a definite prejudice against
maintaining (i.e., trying to maintain) flags
and variables, and I prefer code that fig-
ures things out from existing information
(whenever the tradeoffs aren't too oner-
ous).

Conclusion
A lot of ideas that seem clever at the

time, end up not being used, either because
they weren't so clever after all, or because
they were too clever and confused thepro-
grammer. These Forth words have sur-
vived initial enthusiasm and have lasted
long enough - without unduly confusing
the programmer - to prove their value.

I

Forth Dimensions 18
I

Volume X, Nwnber 4

USING REGISTERS
IN DATA STACKS

DON KENNEY - SAN DIEGO, CALIFORNIA

Usua l ly , Forth systems implement a
data stack in memory. ~ecabse many
widely used microcomputer CPUs handle
register operations much more rapidly
than the analogous memory operations,
several people have suggested keeping the
data stack in registers, instead. There are
real problems with that approach. But
there is another possibility worth investi-
gating - that of keeping the top few stack
elements in registers, and the remainder in
memory. As this paper shows, such mixed
stacks can be much faster than pure mem-
ory stacks.

First, let's look at memory-based data
stacks. The problem here is that many
CPUs don't handle them efficiently. For
example, an Intel 8088 performs an inter-
register transfer in two clocks and an inter-
register ADD in three clocks. On the other
hand, POPS £torn memory require 12
clocks, and PUSHes require 15. ADDing a
register to memory requires 20 clocks.
Thus, a simple Forth + implemented as
POP, ADD-to-memoryrequires 32clocks.
If the + could somehow be done in regis-
ters, it would require many fewer clocks.

Not surprisingly, some people have
looked at keeping the data stack in regis-
ters. There are two problems with this.
First, there usually aren't enough regis-
ters. A three- or even six-register stack
isn't large enough to support complex ap-
plications, much less recursive algo-
rithms. Second, the use of any significant
number of registers in a data stack intro-
duces another inefficiency, in that data has
to be moved register-to-register through
every stack register whenever the stack
length changes, unlike a memory stack.
Even though inter-register transfers are
fast, a register-based stack of reasonable

size would require far too many of them.
Let's take a look at a third alternative -

keeping the top of the stack in registers, and
the remainder in memory. Table One tabu-
lates the number of memory and register
operations required to execute the most
common Forth run-time words, for stacks
with varying numbers of words in memory.
As close examination will show, the effect
of putting part of the stack in memory is
different for different words. For example,
DROP is almost certainly most efficient on
a pure memory stack, while ROT is almost
as certainly going to be better with several
registers atop the stack.

"Keeping the top word
in a register is prefer-
able ... 99

Table Two tells us that fast memory-
based stack operations are necessary if one
expects Forth to run fast. This leads one to
expect that a dedicated chip like the
NC4016 could substantially outperform a
general-purpose CPU with superficially
better specs when running Forth, unless the
general-purpose machine happens to be
optimized for stack handling. The single
surprise in the table is that keeping the top
stack word in a register is slightly prefer-
able to a pure memory stack even when
memory operations take no more time than
register operations.

The tabulated data shows with higher
memory:register speed ratios, more stack
words shouldbe in registers. But it also says
that one word in a register is better than (or
almost as good as) two. and is never worse

than three - even for the 8088, which has
about as large a disparity between register
and memory operations as one is likely to
encounter.

Word frequencies are based on "F83
Word Usage," by C.H. Ting (Forth Dimen-
sions VIIl4). Counts were run on seven
unspecified F83 files with 230 code
screens.

Numbers for memory and register op-
erations are based on simple algorithms
that superficially look right. They weren't
tested, or even examined very deeply.
There may be a clever (or obvious) way to
cut the number of operations. Some neces-
sary operation may have been forgotten. A
lot of analysis might change the numbers
slightly, but it's unlikely that it would alter
the conclusions.

Timing for an inter-register transfer
(e.g., Intel's MOV regjeg) is used for a
register operation. An average of PUSH
and POP times was used for a memory
operation. Some instruction sets contain
operations which allow a memory opera-
tion to be combined with a logiclmath
operation (e.g., ADD reg,mem) so a tim-
ing-optimized set of basic Forth words can
and should effectively improve the raw
access ratios computed above. Perhaps, in
practice, an 8086 memory:register speed
ratio is only 3: 1.

Examination of Table Three shows
pretty clearly that, for a machine with no
speed penalty for accessing memory, a
pure memory stack is fine, and that one
word in a register is about as good. For real,
general-purpose CPUs which often per-
form inter-register operations much more
quickly than memory accesses, it appears
to pay to carry the top stack element in a
machine register. For some CPUs, it might

I

Volume X, Nwnber 4 19 Forth Dimemiom

Word freq. pure-mem 1 register 2 registers 3 registers
mem reg mem reg mem reg mem reg

@ C @ H E R E 0.163 1
DROP 0.049 0
ROT 0.018 6
DUP 0.110 2
+ - * A N D 0.163 3
SWAP 0.069 4
CNER 0.045 3
! 0.065 3
R> >R 0.049 1
0 1 2 3 0.200 1
1+ 2+ 2* 0.064 2
Weighted sums: 1

Table One. Register and memory operations required for common Forth words.

4 registers
mem reg

pure-mem 1 register 2 registers 3 registers 4 registers

Table Two. Operation time with N registers in stack, for various memory:register operation speed ratios.

pure-mem 1 register 2 registers 3 registers 4 registers

Table Three. Operation time with N registers in stack, relative to pure memory stack, for various
memory:register speed ratios.

even pay to put the top two stack elements
in registers.

Let's look at two real-world examples.
For the Intel 808x CPUs, the stack-

manipulation time saved by using a data
stack with two words in registers, instead of
in pure memory, can be expected to be
between 25 - 35%. Since Forth spends a
good deal of its time doing non-stack-
manipulative things, like jumping around
memory and actually performing opera-
tions on data, the expected time saved by
using a combined register-and-memory
stack will be less. Depending on how inef-

1 ficient the other operations are, a 5 - 15%
overall improvement seems a reasonable

1 expectation.

On the other hand, the Motorola 6809
inter-register operations (e.g., LEA- Ojeg)
are only slightly faster than memory ac-
cesses. The 6809 also has efficient auto-
incremenddecrement memory address
modes for handling stacks during opera-
tions on data. Moreover, the 6809 does not
allow inter-register ADDS or MULs. We
probably would spend some time analyzing
before implementing a 6809 data stack with
a word in a register. We wouldn't use more
than one 6809 register, and we wouldn't
expect more than 1 - 3% overall perform-
ance improvement thereby.

If there are any surprises in the above
analysis, they are that keeping the top stack
word in a register will probably yield re-

sults which are either optimal or near op-
timal, no matter how efficient or ineffi-
cient register operations are, compared to
memory operations. To put it a little dif-
ferently, if you're writing a Forth inter-
preter from scratch and don't want to do a
detailed analysis of optimal stack struc-
tures, put the top data stack element in a
register; your stack handling will then
probably be about as efficient as it can be.

FIG members, he started off to write
his own Forth kernel. He got side-
tracked by the material presented
here, and his kernel still isn't running.

Forth Dirnensiom 20 Volume X, Number 4

SDS FORTH for t l ~ e INTEL 8051
Cut your development time with your PC using SDS Forth based environment.

Programming Environment
Use your IBM PC compatible as terminal and disk server
Trace debugger
Full screen editor

Software Features
Supports Intel 805x, 80C51FA, N80C451, Siemens 80535, Dallas 5000
Forth-83 standard compatibility
Built-in assembler
Generates headerless, self starting ROM-based applications
RAM-less target or separate data and program memory space

SDS Technical Support
100+ pages reference manual, hot line, 8051 board available now

Limited development system, including PC software and 8051 compiled software with manual, for $100.00.
(generates ROMable applications on top of the development system)

SDS Inc., 2865 Kent Avenue #401, Montreal, QC. Canada H3S 1M8 (514) 461-2332

CONSULTANTS
<IBfR, a national consulting firm,

has Forth assignments in the Denver area.
If you are looking for a change,

and the Rocky Mountians appeal to you,
please give us a call

or send your resume to:
<IBfR

Beth Kern, Recruiter
4100 E. Mississippi Ave., Suite 1810

Denver, CO 80222
(303) 691-2273

4 4

SOFTWARE ENGINEER
Join us at Advanced Energy Industries, Inc., the
technical leader in the design and manufacture of
high reliability plasma, ion and magnetron power
processors for the semi-conductor and thin film
industry.

Our phenomenal growth rate requires an experi-
enced software designer who has specific experi-
ence in microprocessor application software.

The successful candidate will have 3 years control
and instrumentation programming experience, one
year of which must include FORTH. BSEE preferred,
with minimum of AA degree +equivalent experience.

Excellent salary and comprehensive benefits. Send
resume and salary history to Human Resources
Department, 1600 Prospect Parkway, Fort Collins,

1 CO80525.

I ADVANCED ENERGY INDUSTRIES, INC.
EOE/M/F/HN - ADVANCED e ENERGY'

Volume X, Number 4 21 Forth Dimensions

MENU-DRIVING
THE 8250 ASYNC CHIP

D epending on how many serial ports
your PC will support, you can expand or
shrink this program to fit. The X-16 sup-
ports COMl, COW, COM3, and COM4,
the starting PC addresses of which are (hex)
3F8,2F8,3E8, and 2E8, respectively. Most
PC clones support only COM 1 and COM2.
You will probably, in your entire life, never
need more than two serial ports. This pro-
gram does not concern itself with any inter-
rupt status; we are running in halfduplex
mode, which is standard for on-the-air
communication on either HF or VHF ama-
teur radio bands. This initialization routine
is part of an RITY program I wrote for my
amateur radio station (K6PY).

The registers of the 8250 with which we
concern ourselves are LSR (line status
register), LCR (line control register),
DATAL (low data byte), and DATAH
(high data byte). Table One shows the rela-
tionship of addresses and serial ports.

Two bits are necessary to monitor the
line status register, to determine whether
there is incoming data or whether the trans-
mitter holding register is empty. They are,
respectively, the data-available bit (hex 01)
and the transmitter-holding-empty bit (hex
20). These two bits are monitored in the
words which query the port for data coming
in and which send a character out to the port
to be transmitted. We create two constants
for these bits, DAV and TBE. Variables are
used for the registers, and a variable B / A is
named to designate whether you want to
run Baudot or ASCII. The program auto-
matically sets Baudot at five bits, 1.5 stop
bits, and no parity. You may, however,
select any baud rate from 45.45 up to 56K
baud (but who would want to run Baudot at
that rate?). You can see these constants and

PAUL COOPER - CHATSWOZTH, CALIFORNIA
m

variables listed in screen three. One can
even run slower than 45.45, but who cares?

In screen four is the word
S ELECT-ADDR. This word p h ~ e s the
necessary register addresses in our vari-
ables, upon the selection at the keyboard.
ASCII /BAUDOT? in screen five places a
low flag in B/A for ASCII selection, or a
high (i.e., true) flag for Baudot, with auto-
matic bitwise selection of word length and
parity.

Screen six is a case word, BAUDCASE,
which leaves the hex representation of the
numerical divisors necessary to generate a
16X clock. It is assumed that your appli-
cable clock is using a 1.8432 MHz. crystal.
In the word INITCOM, which is the main
word in screen 1 1, BAUDCASE leaves two
values on the stack which are port stored in
DATAL and DATAH. These two values are
relative to baud rates and can be seen in
screen seven, which holds the word
BAUDREQUE S T. This word interactively
accepts the rate selected from the keyboard.

WORDREQUEST in screen ten allows
the operator to select any combination of
word length, stop bits, and parity (only for
ASCII). As stated earlier, this function is
automatically set when Baudot is used.
WORDCASE leaves the value on the stack
relative to word length, stop bits, and par-
ity. Then it is port stored in LCR, as shown
in screen 11, when INITCOM is running. I
did not make available a six-bit-word func-
tion, even though the 8250 has that provi-
sion. Youcan see how it isdone from West-
em Digital Corporation's excellent data
book on this chip and others that it manu-
factures. The only difference is that bits
zero and one of the hex values, as shown in
WORDCASE (screen nine), would be

changed to a value of one for bit zero, and
zero for bit one.

To use the routine, the word INIT-
COM is entered, which prompts the opera-
tor for all data. You will see the phrase 8 0
LCR @ PC ! on line four of Screen 1 1. To
begin initialization of the 8250 chip, an 80
(hex) must be written to the line control
register. This is akin to areset - it toggles
the divisor latch access, so that the chip
knows it is going to get new data. Unless
you do this first, as in the program, all will
be for naught.

I have included in screen 12 the basic
receive and transmit words associated
with my R?TY program. ? S I0 queries
the COM port selected and, if there is a
character there, it leaves a true flag; if not,
a false flag is placed on the stack. SKEY
brings the character to the stack is the flag
is true. The sequence would be:

?SIO IF SKEY THEN

If a character was brought in, an
additional EMIT or other action word
would perform a task. I merely use this to
emit the character to the Screen when re-
ceiving an out-station's data; but one
could DUP it and send it to a printer or,
possibly, to long storage. Long storage
could be polled until the count reached
1024 characters, and then the group could
be written to disk. (My hard copy comes
from the ASR-28 teletype machine.)

The word to send a character out the
port is SEMIT and its basic structure is
that of a BEGIN ... UNTIL loop. The
character to be transmitted is placed on the
stack, the transmit-buffer-empty bit is
 AND^ with the data derived from a port
fetch of the line status register; if the result

I

Forth Dimensim 22 Volume X, Number 4

S c r e e n # 2
(E T T * - 4 7 7 2 ~ ti9rc:

S c r e e n # 3
p a t !b;41 c ? i l [\ ' s b \ i PTTY - Lor,st;"t' aqd '>!ariab!ps :b:63 091!2,36 :

: : N i + Q p \ n :?:!E --- n ; a e ' . . . c r e a t e s iqde\ed a r r a / .IF 1

rqEaTE 9 ~ E P E EKE^ E~R>;E 4 ~ ~ 5 ~ :COPE 'i! C ? Y f T A Y ' DAV \ da ta a v a i l a b l e b i t
3 Y . : : h i 1 LCb ?i !?= & Y , ?! 4DD A Y , BX ODD 23 CONSTANT TBE t r a n s a ~ t h o l d ~ n g r e g i s t e r e n ~ t v hl !
PX PYSH NEXT, END-[PEE DECI44L

VAQI ABLE r2PIf lv VARIABLE %/A \ Baudot [-11 o r A s c i i LO! t u l r x mode
VARIABLE LSR \ l i n e s t a t u s r e g ~ s t e r o f 8250 c h ~ p

: (mark s tack too , t o f i l l lodexed a r r a y) SP@ $DUlflv I ; VIRIABLE LCP \ l ~ n e c o n t r o l req15ter o f 8250 c h i o
VARIABLE DATAL \ low d a t a b y t e

: ?: \ aark end o f f i l l then f ~ l ! a r r a v VARIABLE DATAH \ h i d a t a b y t e
SDIJtRY ! SPY - b - OVER + DO ! ' -2 +LOOP ; --

: DOWNPA6E 10 O DO CR LOOP ;
-- \

S c r e e n # 4
! RTTY - 8250 Address s e l e c t i o n pac 15:32 09/11/86)

irEY
: SELECT-ADDR \ s e l e c t 8250 p o r t addresses

CLS
DOWNPASE OF SPACES
.' WHICH SERIAL PORT ARE YOU 60IN6 TO USE?"CR CR OF SPACES
.' {Press A f o r COl l> ' CR OF SPACES
. " (P r e s s F f o r COH2)"R OF SPACES
.' !Press C f o r CO13)' CR OF SPACES
.' I P r e s s D f o r CO14)' KEY CASE
41 OF 3FB LCR ! 3F8 DATAL ! SF9 DATAH ! 3FD LSR ! ENDOF
42 OF ?FB LCR ! 2F8 DATAL ! 2F9 DATAH ! 2FD LSR ! ENDOF
43 OF 3EB LCR ! 3E8 DATAL ! 3E9 DATAH ! ZED LSR ! ENDOF
44 OF ?EB LCR ! 2EB DATAL ! 2E9 DATAH ! ZED LSR ! ENDOF

ENDCASE ;
DECIIAL --?

S c r e e n # 6
! RTTY - Baud r a t e Case - BIUDCASE eac 14:23 09/11/86
HEX
: BAUDCASE \ case t o s t o r e t h e baudra te s e l e c t e d

CASE
4! ?F 09 D2 ENDOF 42 OF 09 00 ENDOF 43 OF 06 B8 ENDOF
44 OF 06 00 ENDOF 45 OF 04 70 ENDOF 46 OF 04 17 ENDOF
47 OF 03 59 ENDOF 48 OF 03 00 ENDOF 49 OF 01 80 ENDOF
46 OF 03 CO E4DDF 4B Dc 00 60 ENDOF 4C OF 00 40 ENDOF
4D OF 00 S A ENDOF 4E OF 00 !? ENDOF 4F OF 00 20 ENDOF
:O OF 90 1! ENPDF 51 OF 00 10 ENDDF 5: OF 00 OC ENDOF
5' OF 00 0b ENDOF 54 OF 00 03 ENDOF 55 OF 00 02 ENDOF

ENDCASE ; \ cee 6250 da ta book f o r these va lues and
: n o t e t h a t you can p r o g r a r any I n t e r r e d l a t e

value between 9 and 5bY baud
DECIIGL
-- ,

S c r e e n # 5
(RTTY - A s c i i o r Baudot s e l e c t i o n pac 15:32 091!1/86 !
HEX
: ASCIIIEAUDOT? \ s e l e c t one o r t h e o t h e r

CLS DOWNPA6E OF SPACES
.' DO YOU WANT ASCII OR BAUDOT TRANSllSSION?"CR CR
11 SPACES
. ' <Press A f o r ASCII o r B f o r BAUDOT)'
KEY

CASE
I a s c i ~) 41 OF 0 PIA ! ENDOF
! baudot) 42 OF -1 BIA ! 04 LCR @ PC! ENDOF
(a u t o a a t i c word s e l e c t i o n o f 5 b i t s , 1.5 s t o p b i t s , 0 p a r i t y)

ENDCRSE ;
DECIMAL
--\.

S c r e e n # 7
(RTTY - Baud r a t e s e l e c t i o n - BAUDREQUEST pac 11:53 h9/12186 1
VARIABLE KEYPRESS 66 KEYPRESS !
5 INDARR RATE1 \ e s t a b l i s h 1 s t p a r t o f baud schedule
<! 50 bb 75 100 110 0 RATEl >)

12 INDARR RATE2
< < 150 300 600 1200 1800 2000 2400 3600 4809 7200 9600

19200 0 RATE? \> \ t h i s i s second p a r t of baud s c h e d u l ~
: BAUDRElUEST \ s e l e c t t h e baud r a t e d e s i r e d

CLS .' S e l e c t t h e Baud Rate you wish:' CR CR
. " A v a i l a b l e baud r a t e s are: ' CR ." Rate Press L e t t e r Y R
3 SPACES . "5.45- SPACES . ." A" CR
5 0 DO I RATE1 @ 5 .R .' .OO" b SP4CES KEYPRESS @ E I I T

1 KEYPRESS + ' CR LOOP 72 KEYPRESS !
2 SPACES . "134.50' b SPACES .' 6" CR
12 0 DO I RATE2 @ 5 .R ." .On' b SPACES KEYPRESS e EHIT

1 KEYPRES5 + ' CR LOOP --?

Volume X, Number 4 23 Forth Dimensions

S c r e e n # 8 Screen # 9

(RTTY - EAUDREOUEST, cont 'd. p a t 11:54 09/12/86 1 ! RTTY - B i t s i ze , s top b ~ t s , and c i r ~ t j par 16:Ot ' V ! ! i 3 6
. " M 4 0 0 . 0 0 " 6 SPACES ." T' CR . "56000.00 ' 6 SPACES HEX
.Vn CR : YORDCASE \ do a c t l o n 2f WOPDPEUlJESi

.' (Press kev shown t o r i g h t of baud ra te) ' 66 KEYPRESS CASE i choose b i t s ~ z e , strip 5:ts, and p3r ! tv
KEY BAUDCASE ; 41 OF 02 ENDOF -- \ 42 OF 3A ENDOF

43 OF 1A ENDOE
44 OF 06 ENDOF
45 OF 3E ENDOF
46 OF 1E ENDOF
47 OF 03 ENDOF
49 OF OP ENDOF
49 OF 1B ENDOF
4A OF 07 ENDOF
40 OF OF ENDOF
4C OF 1F ENDOF ENDCASE ; DECIlAL --i

S c r e e n # 10
(RTTY - WORDREQUEST b i t s , stops, p a r i t y pac l6:29 09/11/86
: YORDREOUEST CLS CR b SPACES .' Choose b i t length , s t op '

. " b i t s , and p a r i t y : ' CR 39 SPACES .' Press L e t t e r ' CR
2 SPACES .' 7 b i t s , 1 s top b i t , no p a r i t y A' CR
2 SPBCES .' 7 b i t s , 1 s top b i t , odd p a r i t y 0' CR
2 SPACES .' 7 b i t s , 1 s t op b i t , even p a r i t y C' CR
2 SPACES .' 7 b i t s , 2 s top b i t s , no p a r i t y D' CR
2 SPACES .' 7 b i t s , 2 s top b i t s , odd p a r i t y E V R
2 SPACES .' 7 b i t s , 2 s t op b i t s , even p a r i t y F' CR
2 SPACES .' 8 b i t s , 1 s top b i t , no p a r i t y 6' CR
2 SPACES ," 8 b i t s , 1 s t op b i t , odd p a r i t y H* CR
2 SPACES .' 8 b i t s , I s top b i t , even p a r i t y I' CR
2 SPACES .' 8 b i t s , 2 s top b i t s , no p a r i t y J " CR
2 SPACES .' B b i t s , 2 s t op b i t s , odd p a r i t y K' CR
2 SPACES ." 8 b i t s , 2 s top b i t s , even p a r i t y L ' C R
."Press key t o t h e r i g h t o f desc r i p t i on) ' KEY WORDCASE ; -->

S c r e e n # I 2
! RTTY - INITCON, i n i t i a l i z e s e r i a l p o r t p a t 12:39 Oci!2!96
HEX
: INITCOH \ i n i t i a l i z e t h e s e r i a l p o r t se l ec ted

SELECT-ADDR
80 LCR e PC! BAUDRE0UEST DATAL @ PC! DATAH @ PC!
BSCI I /BAUDOT?
BIA e O= I F WORDREQUEST LCR e PC' THEN CH CR CR
15 SPACES
.' YOUR PORT I S INITIALIZED...' CR CR ;

DECIRAL
-->

is any number other than zero, the charac-
ter is sent out.

Screen two contains some machine
language words which create an indexed
array used for setting up the baud rate
display tables. INDARR is also useful for
making look-up tables, and is used for the
Baudot conversion tables in the RTTY
program. Screen seven shows how tables
are set up. This program is written in Labo-
ratory h4icrosystems' PC1Fort.h 3.1, a ver-
sion of Forth-83. Those of you still using an
older version from LMI (or a Forth-79 im-
plementation) must use a 1 rather than a -1
for a truth flag. Please note that your COM3
and COM4 port addresses may differ from
mine; if so, just insert the correct addresses
where needed in the code.

(Screens continued on page 37.)

Table Two. Relationship of serial ports and addresses.

COMl

Forth Dimensions 24 Volume X, Nwnber 4

DATAL

3F8

DATAH

3F9

LCR

3FB

LSR

3FD

for the first annual

FORTH APPLICATIONS SYMPOSIUM
REAL TIME SOFTWARE ENGINEERING

FOUR SEASONS HOTEL Austin, TX Feb. 17-1 9,1989
The objective of this symposium is to share, discuss and disseminate recent research

on and production of real time (software and hardware) computer applications.
Attendees will hear presentations from industry experts on many topics, including:

Interrupt Driven Systems Specialized Architectures
Programming Environments Microcontroller Applications
Multitasking / Multiuser Systems Industrial Systems
Parallel Processing Computer Networks
Fault Tolerant Systems Biomedical Engineering
Forth Engines and Software Robotics & Machine Intelligence

Papers for oral and poster presentations are requested from computer professionals
and other interested parties. Facilities will be available for scientific and technical
demonstrations. Pre-publication proceedings will be made available to the
participants at the symposium. Vendors of software and/or hardware may request
exhibit space. Authors should submit an abstract of 250 words or less, typed, double
spaced by the deadline below. Contributed papers should be previously unpublished
work. You are not required to present a paper to attend the symposium.
Please send abstracts, and requests for symposium information to:
Dr. Paul Frenger o r Mr. Rick Hosel ton
Technology Information Center, Inc. TIMETABLE:
2900 Wilcrest Drive #400 Receipt of Abstract Jan. 1, 1989
Houston, TX 77042 Notification of Acceptance Jan. 15, 1989
Telephone: (713) 952-1060 Receipt of Final Manuscript Feb. 10, 1989

Sponsored by the ACM Special Interest Group on Forth
For ACM SIGForth membership information, refer to the above address.

Volume X, Nwnber 4 25 Forth Dimensions

Part Three

DESIGNING
DATA STRUCTURES

Host Abstraction
Two cascaded forms of abstraction

have been suggested to make data objects
more portable1. One of these is data ab-
straction. The other is abstraction of the
host computer. Our chief concern will be
with abstraction of the host computer in the
interest of program portability. Addition-
ally, much attention will be given to the
declaration syntax for portable arrays.

Forth already hides peculiarities of the
host computer behind its own data stack,
return stack, etc. For data structures, how-
ever, we often have no other choice but to
write code that depends upon host peculi-
arities, such as bit-processing widths. But
not any more.

By avoiding direct references to host-
specific quantities, we can write code that
can be transported to other hosts without
change. To hide more details about the host
computer from Forth data objects, the ker-
nel of every host should include certain
words. As illustrated in Figure 3-1, only
about five new words are needed. They
help translate our intended actions into
appropriate actions for particular hosts.

How to Hide the Host
One of the host peculiarities we need to

hide is its bit-processing width. Another is
the number of addresses spanned by a cell
and a double.

While we may know the size of a datum
we wish to skip over during an address
operation, we don't know how many ad-
dresses a unit of data will span on an arbi-
trary host. We can't even say how many
bytes may be allocated to a given unit, such
as a cell, although we do know that the
minimum number must be two bytes.

Two separate mappings are needed to

MIKE ELOLA - SAN JOSE, CALIFORNIA
rn

hide these host characteristics. To hide the
number of bytes per cell, a constant can be
used. To hide the number of addresses
spanned by any number of bytes, amapping
function is needed.

The routine that provides a general
mapping function is BYTE s >ADR ('bytes-
to-addresses"). Once the correct number of
bytes is known, BYTES >ADR finds thecor-
responding number of addresses. To dis-
cover how many addresses are spanned by
a byte on any host, type:
1 BYTES>ADR

'Torth already hides
peculiarities of the host
computer."

The resulting value is two for a nibble-
addressing processor; a more common re-
sult would be one.

Note that there is often a non-linear
relationship between the output and the
input of BYTES>ADR. A series of inputs
such as 1,2,3,4,5 may produce 1, 1, 1, 1,
2 as output. Only when the host is a byte-
addressing processor is there a linear rela-
tionship between the output and input of
BYTES>ADR.

Also note that the definition of
BYTES>ADR given in Figure 3-1 does not
take into account alignment requirements
of a host system. That task is left to individ-
ual readers to perform as necessary2. Spe-
cific mappings can be performed by con-
stants, such as:
BYTES /CELL (-- #bytes)

To avoid having to write BYTES/

CELL BYTES>ADR, both types of map-
pings can be consolidated as the host-de-
pendent constant ADR/, ("addresses-
per-cell-compile").

Another convenient constant is ADR/
C , ("addresses-per-character-compile"),
which replaces 1 BYTES>ADR. Simi-
larly, the constant ADR/D, ("address-
per-double-compile") can help hide de-
tails about the implementation of doubles
on a particular host. Together, these
names give rise to the following simple
glossary:

An additional constant has been in-
cluded to help with the suite's customiza-
tion for a particular host. This constant is
BITS /ADR ("bits-per-address"). All the
other constants and definitions in the suite
rely, directly or indirectly, upon this value
and the value of BYTES /CELL. These
two constants alone should adapt the suite
to anew host and, by extension, any appli-
cations that engage these routines faith-
fully. (Don't forget that host alignment
requirements may need to be taken into
account as well.)

Usage
Besides the examples shown here,

Figure 3-2 offers a portable implementa-
tion for arrays, along with many extra fea-
tures.

To skip over the count byte in a
counted string, either use

Forth Dimensions 26 Volume X, Nwnber 4

Volume X, Number 4 2 7 Forth Dimemions

[1 BYTES>ADR 1
LITERAL +

or, you can use
ADR/C, +

To create a compound data object,
consisting of a double followed by a nor-
mal variable value, the following code can
be used:

VARIABLE *SINGLE
VARIABLE *DOUBLE
: DOUBLE& s INGLE

CREATE 0 , 0 , 0 ,
DOES >

DUP *DOUBLE !
[ADR/, 2 * I
LITERAL +
*SINGLE ! ;

This example reveals the author's de-
sire to abstract the data object. Through the
use of *SINGLE and *DOUBLE, other
operations should not have to "know"
about the physical layout of the compound
object.

To create a declarator for a Forth jump
table, try:

: CASES-OF (#cases --)
CREATE 0

DO F I N D , LOOP
DOES> (idx cpfa> --)

SWAP ADR/, * +
@ EXECUTE ;

3 CASES-OF TH-QUITTER
ABORT QUIT BYE

Notice that CASES-OF uses F I N D to
leave a cell on the stack which is later
compiled by , (cell-compile). Atrun-time,
these code fields are restored to the stack
by @ (cell-fetch). Although they are being
manipulated as if they were cells, values
fetched and stored this way must still be
executable addresses.

Array Design Considerations
To correctly index an array, the ad-

dresses spanned by each of the elements in
the array must be known. To produce ar-
rays of cells, doubles, or bytes using a
single array declarator, the width of the
elements should be recorded in the in-
stanceobject itself. By recording this value
in bytes and using BYTES>ADR when in-

dexing the array, an array declarator is pro-
duced that can be transported to many dif-
ferent hosts.

Consider the following definition of
TABLE. Notice that BYTES>ADR is not
part of the indexing algorithm. Instead, this
mapping takes place only once, when the
table is declared.

: TABLE
(#elements #bytes/element --)

CREATE
BYTES>ADR DUP ,
ALLOT

DOES>
DUP @
(idx <pfm #addelement --)

ROT * (e p f ~ offset --)
+ ;

5 0 1 TABLE TH-CHAR

TABLE is not limited to producing ar-
rays of cells, doubles, and bytes. To declare
an array of ten-character suings,
1 0 1 0 TABLE TH- 1 OCSTRING

can be used. But the prefix parameters do
not tell much of the story. Likewise,
2 2 TABLE ZITEMS

conveys that the table 2 ITEMS has two
elements of two bytes each. But we don't
have enough clues to be certain what these
elements are. The array 2 ITEMS could
StOE addresses, two-byte stlings, or vari-
able values.

A different syntax can communicate
more about the array, leading to self-docu-
menting code:

Bytes, or byte-based units, should be ex-
plicitly stated as the unit of measurement
for each element.
When a number has no corresponding
units, such as a dimension in an array, a
place-holder such as BY should help clar-
ify its meaning.
An identifier such as ELEMENT also helps
make the declaration clearer.
With these enhancements, the preceding

array can be declared as:
2 BY 2 BYTE ELEMENT
ARRAY XY

Because the new syntax provides more
clues about the contents of the array, arrays
so defined are less subject to misuse.

BY can also help declare n-dimensional

matrices by counting the number of dimen-
sions as they are specified. (Although I
have not shown the definition of an n-di-
mensional matrix declarator in Figure 3-2,
it is not difficult to conceive one.)

By defining the unit identifiers CELL
and BYTE in aspecial fashion, their usecan
be required when declaring arrays. One of
these unit identifiers must precede ELE-
MENT.

ELEMENT must appear after a unit
identifier and before ARRAY. This syntax
is enforced through UNITS -CK. The pres-
ence of the dimension identifier BY is en-
forced through #BYS-CK.

Array Declaration Style
Although an enforced array syntax is a

major step towards clearer array declara-
tions, there are other ways to promote clar-
ity. A stylistically correct declaration also
clearly describes the array. For example,
there are five valid index values for the
following array of doubles (six, actually,
because zero can also be used as an index
value in this implementation):
5 BY 1 DOUBLE ELEMENT
ARRAY 5DOUBLES

The preferred style is to declare the ele-
ment as a single unit long (with a couple of
exceptions). When it is not a single unit, the
intent is obscured. What kind of elements
comprise the following array?
5 BY 2 CELL ELEMENT
ARRAY 5x2ARRAY

Because the length of each element is two
cells, the type of the data elements is un-
clear. Furthermore, the second cell of each
pair of cells cannot be addressed using any
of the possible index values. Extra address
arithmetic is required toaddress the second
cell in each pair. Nevertheless, this is an
appropriate declaration for an array of two-
cell elements to be manipulated with 2 @
and 2 ! (eliminating the need for extra
address arithmetic). This is another excep-
tion to the guideline that an element should
always be a single unit long.

Although BYTE can be used to declare
an array of doubles, it is a poor practice:
5 BY 4 BYTE ELEMENT
ARRAY ITEMS

BYTE is the preferred units identifier
only when declaring an array of byte val-

Figure 3-1. Basic suite. I
8 CONSTANT BITS/ADR
2 CONSTANT BYTES/CELL
(Correct values shown for my system;
your system may require other values)

: BYTES>ADR (#bytes - #addresses-spanned)
DUP 8 * BITS/ADR MOD >R
8 BITS/ADR */ (#addresses --)
R> IF 1+ THEN ;

BYTES/CELL BYTES>ADR CONSTANT ADR/,
1 BYTES>ADR CONSTANT ADR/C,

I I Figure 3-2. Extensions for array support

VARIABLE BASIC-LEN ADR/, AUOT
0 0 BASIC-LEN 2!
: BYTE-SCALER (<name> --)

CREATE (byteshnit --)

,
DOES> (#elements <pfa> --)

@ * DUP (#bytes #bytes --)
BASIC-LEN ! ;

BYTES/CELL BYTE-SCALER CELL
1 B Y T E - s m BYTE

: ELEMENT (#bytes - #addresses-spanned)
DUP BASIC-LEN ADR/, + !
BYTES>ADR ;

: UNIT-CK (--)
BASIC-LEN 2@ -
IF CR

." Missing ELEMENT or unit identifier"
ABORT

THEN ;

: UNIT-CLEAR (--)
0 BASIC-LEN !
-255 BASIC-LEN
ADR/, + ! ;

(T h i s unitchecking scheme employs the raw number of bytes ascalcu-
lated by the byte-scalers, such as CELL and BYTE. This value is left on
the stack for processing by ELEMENT. Since both the byte-scaler and
ELEMENT write the same value into one of the cells of BASIC-LEN.
UNIT-CK only has to c o n f i i that each of those cells is equal.)

VARIABLE #BYS 0 YBYS !
: #BYS-CK (--)
#BYS @ 0 XBYS ! (#bys --)
1- IF UNIT-CLEAR CR

." Missing or extra 'BY'"
ABORT

THEN ;

: BY
1 XBYS +! ;

: BOUNDS-CK (th-element *max --)
@ > IF

CR ." Maximum index exceeded"
SWAP .S ABORT

THEN ;

: ARRAY (#elements scaled-element-length --)
XBYS-CK UNITS-CK UNITS-CLEAR
CREATE
OVER (m a x - -) ,
DUP , SWAP 1+ * ALLOT (O/l-based indexing)
DOES> (idx <pfa> - idxth-element)
2DUP BOUNDS-CK
ADR/, + (idx *size--)
DUP ADR/, + (idx*size *lst-element - -)
SWAP @ (idx 1st-element element-length --)
R O T * + ;

ues, or an array of strings, as in the follow-
ing declarations:
75 BY 1 BYTE ELEMENT
ARRAY TH-CVALUE

5 BY 15 BYTE ELEMENT
ARRAY TH-15CSTRING

Even though their memory requirements
are the same, one has 75 valid index values
and the other has only 5 valid index values
(not counting zero as a possible index
value). The value preceding BYTE helps
clarify which is an array of byte values, and
which is an array of strings.

Conclusion
Use of host abstraction eases the porting

problems of Forth with respect to data

structures. To best realize this abstraction,
we need to habitually engage the new rou-
tines, and we need to follow the syntactical
rules and style guidelines presented for the
declaration of arrays. Besides increased
program portability, these practices pro-
vide increased program readability.

As a parting observation, consider how
we specify memory allocations with AL-
LOT. The units identifiers that have been
suggested can bring similar benefits in this
context. By not specifying an exact number
of addresses, but instead specifying a
number of "abstract" units, host-tailored
memory allocations can be made appropri-
ately. In this way, 4 CELL ALLOT (or
ALLOTMENT) would automatically allo-
cate 128 bytes on a host computer with 32-
bit memory words.

References
1. Elola, Mike. "Designing Data Struc-
tures," Forth Dimensions, Vol. X , Issue 2.
2. Tracy, Martin. "A Forth Standard Prel-
ude," Sofhvare Tools, October 1987.

I I

Forth Dimemiom 28 Volume X, Nwnber 4

October 1988

THE BEST OF
GENIE

GARY SMITH - LITTLE ROCK, ARKANSAS
m

I

Volume X, Nwnber 4 29 Forth Dimensions

docs how to rebuild the system, and (b) I
could find the part of the code for the
editor that is passing NIL instead of "" for
the names of the scroll-bars

Sorry for the delay in picking up the
mail. I have been very busy. I did post
notice on the x Coast Forth Boards, and a
Category will be set aside on GEnie.
Bandy, you have the honor of breaking the
ice on what could develop into a virtual
Network - and that's exactly what Jax
and 1 are hoping for. Look for a response
(hopefully quicker than the pick-up) in
this same area, with messages for WELL
digestion from GEnie and the xCFBs. 7:
Gary

Category 14, Topic 1, Message 2
Sat Aug 20,1988 S.W.SQUIRES [scottl
Response to MacForth+ questions:

What version is he running? Can he be
more specific about the problems? Since I
haven't experienced 'two serious bugs' in
the editor I'm not sure what he's referring
to. Some older versions had minor prob-
lems, but to my knowledge those have
been solved. The source code is included,
so he can review and change it directly, if
needed.

MacForth has been used to create ap-
plications running on 128K Macs, so the
size issue can certainly be dealt with. The
vocabularies and extensions can be
trimmed down (recommended in the
manual). Memory space that is allocated
should use heap space instead of object
space, when possible.

If he really has a problem, I suggest he
contact Creative Solutions and get his
questions answered directly. The only

1 am going to take a completely dif-
ferent tact in this issue, and discuss what
can only be described as an experiment that
may yet end in failure. Our hope is that it
will succeed beyond our dreams and result
in eventual connection with any Forth re-
source in the world. The dream is a virtual
Forth network called ForthNet.

I had the idea before we got set up on
GEnie, and with the help of Jack Woehr
(JAX), sysop on the WELL and regular on
GEnie, we began our noble experiment to
establish a virtual ForthNet by connecting
GEnie and the WELL. We have since
added thex Coast Forth Boards, and hope to
integrate much more of the Forth commu-
nity in the near future.

The biggest problem now is connectiv-
ity. ForthNet exists only because I am will-
ing to serve as a mule, porting messages
from each point in the loop. This, obvi-
ously, is not the long-term way to succeed.
We must begin letting the computers do the
porting for us. GEnie does not currently
provide any gateways, so we are immedi-
ately confronted with a stumbling block.
The solution may rest in the establishment
of another link in Denver of the x Coast
Forth Boards, which will bring them and
the WELL into a tighter loop to which I can
link via PCPursuit, limiting the problem of
porting to one junction.

The following will give you alookat the
problems and promises. I invite your par-
ticipation and suggestions.

Topic 1
Fri Aug 19,1988 GARY-S [Gary]
Sub: From the WELL:

Messages posted here are ported from a

public-domain area of the comp.lang.forth
on the WELL. Replies in this topic will be
ported back to the WELL and the xCFBs. 7
message(s) total

Category 14, Topic 1, Message 1
Topic 39: ForthNet Gateway : If you enter
a message here it is public domain.
Read #1 # 7: Ridu dum kiam vi povas,
simiulo-knabo! (bandy)
Mon, Aug 15, '88

Okay, I have a question for folks at
large:

I have two applications written in Mac-
Forth+, which tends to fall apart and make
giant-sized applications. Let's not even
mention that it blows up regularly on the
Mac 11 and that the Sibley Editor has two
serious bugs in it.

So, am I stuck with this or is there a
(semi-?) compatible language system that I
can run on the Mac+/SE/II? I have about
160K of source code to work with, and I
wouldn't mind putting in a man-week
making conversions to how it handled
windows and events.

Read #1# 8: Jack J. Woehr Cjax)
Thu, Aug 18, '88

The mailman cometh; gars (GARY-S)
ison his way towaft your question to theall-
knowing MacForth gurus of GEnie! :-) In
the meantime, if the darn editor doesn't
work, why don't you fix it? Why don't we
fix it here, all of us?

Read #1 # 9: Ridu dum kiam vi povas,
simiulo-knabo! (bandy)
Fri, Aug 19, '88

If (a) I could figure out from the silly

USING A
STRING STACK

RON BRAITHWAITE - LOS ANGELES. CALIFORNIA

Screens continued from preceding issue.

(D>$ d -- $
(Converts t h e double precision integer d t o t h e s t r i n g $ on)
(t h e s t r i ng stack.)

(d - - $)
DUP >R <# #S R> SIGN #> $CNT@ ;

($>D $ - - d n 1
(Converts t h e s t r i n g $ on t h e s t r i n g s tack t o t h e double 1
(precision in teger d, using t h e current radix, and the
(conversion count n. I f a l l characters i n t h e s t r i n g $ a r e)
(converted, t h e f l a g i s -1. I f t he s t r i n g $ i s p a r t i a l l y)

(converted, n is t h e number of characters t h a t converted.)
(I f n i s 0, t h e value of d i s undefined.

(
(The posi t ion of t h e decimal point is placed i n t h e variable)

(DPL. I f no decimal point was present, DPL w i l l contain t he)
(value -1. I f e i t h e r hardware o r software f l oa t ing point
(extensions have been loaded, t h e act ion of $>D and t h e value)

(in DPL may vary from t h i s descript ion. 1

?DO
IF
THEN

LOOP
IF
ELSE
THEN
IF
ELSE
THEN

($ - - d n)
BASE @ >R -1 DPL ! $P@ COUNT 0 TUCK
OVER C@ DUP ASCII 0 < SWAP ASCII 9 > OR
LEAVE
1+ SWAP 1+ SWAP
NIP 0 $CNT OVER =

DROP -1
DUP $LEFT
$P@ NUMBER?
ROT
ROT DROP 0
$DROP R> BASE ! ;

(Set up scan)

(O > c > F ?)

(Get out)

(Inc cnt&addr)
(Pure number?)
(Don't adjust)

(Extract num)
(Convert 1
(Off s e t 1
(D i d n ' t g o)

(Restore base)

($INDEX 1$ O$ -- o 1
(Returns t h e o f f s e t i n t o t he second s t r ing , 1$, on the s t r i n g)

(stack of t h e f i r s t posi t ion matching t h e pat tern of t h e f i r s t)
(s t r i n g O$. I f O$ is not a subset of 1$, -1 i s returned.
(
($INDEX is equivalent t o t h e LMI word STRNDX 1

/ (Conrinuedfrom previouspage.)

other real Forth for the Mac is MACH2
from Palo Alto Shipping. It has the advan-
tage of being closer to Forth-83 and sorne-
what faster. The disadvantage is not hav-
ing much in the way of true extensions
(i.e., doing it the same as all the Mac
languages - from the ground up). This
may have changed, since I haven't seen a
recent version for a year or so. Both Forths
are good, it just depends on the particular
user's needs. He should make sure the
problem really is with the system, and not
with his program or process of using it.

-Scott

Category 14, Topic 1, Message 3
Tue Aug 23,1988 GARY-S [Gary]
> PORTED FROM THE WELL ==>
Topic 39: ForthNet Gateway : If you enter
a message here it is public domain.
Read #1 # 14: Ridu dum kiarn vi povas,
simiulo-knabo! (bandy)
Mon, Aug 22, '88

The two bugs in the editor (they refuse
to belive it) are that when it is making the
controls for the horizontal and vertical
scroll bars, it passes NIL as a StringPtr (for
the control name) rather than ' " (a pointer
to an empty string). Macs no longer have a
0 at 0.

My current beef is that both my appli-
cations blow up on the Mac 11. Setting
TMON to Strict discipline reveals that, by
the time it calls the SlotManager from the
GINIT routine, the heap is quite trashed.
This doesn't happen with the smaller
TURNKEY applications, such as the En-
gine Demo, but it's happening in my pro-
gram before any of my code gets executed!

So does MACH2 basically have no
support for windows (6 la Lightspeed-eve-
rything), menus, etc.? There aren't any
weird little differences with anything fun-
damental like ROLL?

Read #1 # 15: Ridu dum kiam vi povas.
simiulo-knabo! (bandy)
Mon, Aug 22, '88

I did the obvious thing and looked up
Palo Alto Shipping in the Palo Alto phone
book, and no number ... Number please?

Category 14, Topic 1, Message 4
Wed Aug 24,1988 D.RUFFER [Dennis]

Well, the Palo Alto Shipping company

I

Forth Dimensions 30 Volume X, Nwnber 4

: $INDEX (1$ 0$ -- o)
1$ COUNT 0 TUCK

?DO DROP 0 $CNT 1 $CNT I - >
IF -1 LEAVE
THEN DUP C@ $P@ 1+ C@ =

IF DUP -1 $P@COUNTwER+SWAP
?DO DROP DUP C@ I C@ <>
IF 0 LEAVE
THEN 1+ -1

LOOP NIP
IF 1$ - D U P 1- LEAVE
THEN

THEN 1+ 0
LooP NIP $2DROP ;

(Set up loop)

(Run out?)

(Not subset)
(F i r s t c h a p ?)

(Flag, indices)
(Not equal?)
(G e t out)

(Inc p t r , f lag)
(Drop addr)

(Off s e t
()
(Try next char)
(Leave o f f se t)

($VERIFY 1$ O$ -- 0

(Returns t h e o f f s e t i n t o t h e second s t r i n g 1$ on t h e s t r i n g)
(stack of t h e f i r s t character i n t h e f i r s t s t r i n g O$ which i s)
(not found in t h e second s t r i n g <i .e . , t h e length of t h e)

(i n i t i a l substr ing of O$ which consis ts en t i r e ly of characters)
(i n I$>.
(
($VERIFY i s equivalent t o t he LMI word STRSPN

: $VERIFY (1$ 0$ -- 0)

0 SCNT DUP 0 (O$ loop)

?Do 0 1 $CNT 0 (1$ loop 1
?DO 1$ 1t I + C @ $P@ 1+ J + C @ = (Equal?)

.IF DROP-1 LEAVE THEN (Found it)

LOOP 0- (G e t out?)

IF DROP I LEAVE THEN (<> a t I pos)

LOOP $2DROP ; ()

(SPARSE 1$ O$ -- 3$ 2$
(Parses t h e s t r i n g 1$ f o r t h e s t r i n g 0$, returning the parsed)

(s t r i ng 2$, without t h e s t r i ng 0$, and t h e remaining s t r i ng)
(3$, without t h e s t r i n g O$. I f no instances of t h e s t r i n g O$)

(a re found, s t r i n g 2$ is t h e n u l l s t r i ng and s t r i n g 3$ i s O$.)

: SPARSE (1$ 0$ -- 3$ 2$)
$2DUP $INDEX DUP -1 <> (Find pos 1

IF 1- 0 $CNT $DROP $DUP OVER + (Offset t o 3$)

0 $CW SWAP - $RIGHT $SWAP $LEFT (Make 3$ & 2$)
ELSE DROP $DROP $NULL (Not found)

T H E N ;

(SSOUNDEX O$ -- 1$
(Computes t he soundex code s t r i n g 1$ of t h e s t r i n g O$ on t h e)
(s t r i ng stack. The soundex code i s i n t h e range 0 => s => 9999)

: OSNDX (c l -- c2)
64 - DUP O< OVER 27 < OR (In range?)

IF " 01230120022455012623010202" + C@ (Get code 1
(ABCDEFGHCJKLMNOPQRSTUWXYZ) (Corresponding)

ELSE DROP ASCII 0 (Not char
T H E N ;

is accessible right here on GEnie. Type
MACH2 to get to their RoundTable. And
for those who are not here yet [on GEnie],
their address is:

Palo Alto Shipping Company
P.O. Box 7430
Menlo Park, CA 94026
1 (800yl4FORTI-I
GEnie address: PASC

I I where 50,100,100, and200 specify the the
pixel coordinates of the top-left and bot-

~
Volume X, Number 4 31 Forth Dimemiom

Category 14, Topic 1, Message 5
Mon Sep 05,1988 D.MILEY

Dennis (D.RUFFER), thanks for post-
ing the information about the MACH2RT.
I'd like to add that the 1(800)44FORTH
number is for orders only; our product
support number is (415)363-1399. Also,
our GEnie address is D.MILEY (not
PASC).

My first programming language on the
Macintosh was MacForth (back in the
128K Mac days). However, about two
years ago I began using MACH2 almost
exclusively, and in November of 1987 I
started working for Palo Alto Shipping (the
parent company of MACH2). Given my
experience, I don't mind saying that CSI's
MacForth is a fine Forth-language-based
development system (but, of course, I pre-
fer MACH2).

My opinion is that there would be a
significant amount of work converting be-
tween MacForth and MACH2. The Forth-
language-based differences aren't too se-
vere, MACH2 conforms almost com-
pletely to the Forth-83 Standard while
MacForth is somewhere between Forth-79
and Forth-83. The big differences come in
the interface to the Macintosh toolbox.
MacForth supplies its own high-level in-
terface to much of the Mac toolbox, while
MACH2 uses a CALL "hook" to reference
each toolbox/trap directly (almost - we
still use "glue" to size each parameter and
move values tolfrom the system stack or
processor registers). As an example, to
draw an oval in the current grafPort, you
rely on the Mac ROM routine FrameOval.
The Pascal definition of FrameOval (as
found in Inside Macintosh) is:
PROCEDURE FrameOval (r :
R e c t) ;

From MacForth you might draw an
oval by saying:
50 100 100 200 FRAME OVAL

tom-right comers of the bounding rec-
tangle.

To draw an oval in MACH2 you might
say:
M y R e c t CALL F r a m e o v a l

where M y R e c t must return a pointer to a
rectangle record (eight bytes). Note that the
MACH2 example closely parallels the
Pascal interface. Of course, in the MACH2
case (as in Pascal), you have to initialize the
rectangle record before you use it.

This could be done as follows:
VARIABLE M y R e c t 4 VALLOT
(declare an 8-byte, global-variable record)

M y R e c t 50 100 100 200 CALL
S e t R e c t
(initialize the rectangle record)

VALLOT ~ ' ' c o u s ~ ~ " to ALLOT. VALLOT
reserves bytes in the Macintosh global-
variable space (not in the object-code space
as ALLOT does).

S e t R e c t is another Macintosh ROM
routine. Its Pascal definition is:
PROCEDURE S e t R e c t
(VAR r : R e c t ;
l e f t , t o p , r i g h t , b o t t o m :
INTEGER) ;

You should note the following from the
above example: When interfacing to the
Macintosh ROM, MacForth tries to reduce
the amount of "work" required of the pro-
grammer, while MACH2 mes to conform
directly to Inside Macintosh (Apple's tech-
nical reference to the Macintosh computer
family). I personally find MACH2'sCALL
interface to be much more powerful and
flexible, but others tend to appreciate
MacForth's simplified interface to the
Mac's toolbox. However, in some situ-
ations MacForth's toolbox approach can
cause significant difficulty (complexity). If
MacForth doesn't supply a high-level
equivalent to a particular ROM routine,
you may face some pretty ugly stack ma-
nipulations in order to interface directly to
the ROM (or you may have to resort to as-
sembly language). This shouldn't happen
in MACH2 because nearly all of the ROM
routines are supported by the same CALL
interface (nearly 900 toolbox routines are
supported by CALL).

Both MacForth and MACH2 offer a
pre-written event loop. That means events
are handled more or less automatically by

: $SOUNDEX (O$ -- 1 $
$UPPER 1 HERE C! $P@ COUNT O> (Not n u l l ?)

I F C@ (G e t c h a r
ELSE DROP ASCII 0 ()
THEN HERE 1+ C! 0 $CNT 1 > (S t o r e 1st c h r)
I F $P@ 1 + C@ C>SNDX (Last char)

$P@ COUNT OVER + SWAP 1 + (R e s t o f $)

?DO I C@ C>SNDX TUCK = (L a s t =? 1
OVER ASCII 0 = OR O= (Not =I0)

I F DUP HERE COUNT + C! HERE DUP C@ 1 + SWAP C! THEN
LOOP DROP (Run t h m O$)

THEN $DROP " 000" $@ HERE $@ $APPEND 4 $LEFT ; (4 c h a r code)

($MATCH 1 $ 0$ -- flag 1
(R e t u r n s TRUE i f t h e s t r i n g 1 $ on t h e s t r i n g s t a c k r e t c h e s t h e)
(pattern o f O$. The pattern of 0$ may c o n s i s t of the p a t t e r n)
(codes o f C, G, N, P, A, L, U, E, ', or -. If the pattern c o d e)
(i s a ' o r -, t h e f o l l o w i n g c h a r a c t e r is t a k e n as a l i teral)

(v a l u e . The p a t t e r n i s the u n i o n of t h e pattern codes i n O$.)

(1
(The s i g n i f i c a n c e o f t h e pattern c o d e s are:)

(C 33 C o n t r o l c h a r a c t e r s , i n c l u d i n g DEL)

(G 1 2 8 G r a p h i c characters above DEL)

(N 1 0 Numeric characters)

(P 33 P u n c t u a t i o n c h a r a c t e r s , i n c l u d i n g SP)

(A 5 2 Alphabetic characters)

(L 26 Lower-case a l p h a b e t i c characters 1
(U 2 6 Upper-case a l p h a b e t i c characters)

(E E v e r y t h i n g n o n - g r a p h i c)

(, The f o l l o w i n g character is p r e s e n t)

(- The f o l l o w i n g c h a r a c t e r is n o t p r e s e n t

(I m p l e m e n t a t i o n n o t e : T h i s i s a v e r y l o n g w h i c h would
(n o r m a l l y be d i v i d e d into mch smaller words . I n t h i s case,)

(however , f u r t h e r d e c o m p o s i t i o n w o u l d make it mre c lumsy .)

: $MATCH (1$ 0$ -- flag)

-1 $P@ COUNT OVER + SWAP
?Do I C@

CASE ASCII C
OF -1 l$COUNT OVER+ SWAP

?DO I C@ DUP 32 < SWAP 127 =
I F DROP 0 LEAVE

LOOP AND DUP O=
I F LEAVE

ENDOF ASCII G
OF -1 l$COUNT OVER+ SWAP

?DO I C@ 1 2 8 <
I F DROP 0 LEAVE

LOOP AND DUP O-
I F LEAVE

ENDOF ASCII N
OF -1 l$COuNT OVER+ SWAP

(F l a g , do O$
(G e t pattern
(C o n t r o l ?

(
OR NOT (

THEN (
(

THEN (
(G r a p h i c ?
(

(
THEN (

(
THEN (

(Numeric?

(

I

Forth Dimensions 32 Volume X, Nwnber 4

?DO I C@ DUP ASCI I 0 < SWAP ASCII 9 > O R (

I F DROP 0 LEAVE 'ITEN (

LOOP AND DUP 0- (
IF LEAVE THEN ()

ENDOF ASCI I P (P u n c t u a t i o n ?)
OF -1 l$COUNT OVER+ SWAP (

?Do I C@ DUP 31 > OVERASCII 0 <AND (
SWAP DUP ASCII 9 > OVERASCII A < AND (1
SWAP DUP ASCII Z > OVERASCII a <AND ()

SWAP DUP ASCII z > SWAP 1 2 7 < AND OR OR OR ()

I F DROP 0 LEAVE ()
LOOP AND DUP 0- (
I F LEAVE THEN ()

ENDOF ASCII A (Alphabetic?)

OF -1 l$COUNT OVER+ SWAP ()

?DO I C@ DUP ASCII @ > OVER ASCII [< AND (
SWAP DUP ASCII ' > SWAP ASCII { < AND OR NOT ()

I F DROP 0 LEAVE THEN (
LOOP AND DUP 03 ()

I F LEAVE THEN (
ENDOF ASCI I L (Lower case?)

OF -1 l$COUNT OVER+ SWAP ()

?DO I C @ D U P A S C I I a < S W A P A S C I I z > O R ()

I F DROP 0 LEAVE 'THEN ()

LOOP AND DUP 0- (
I F LEAVE THEN ()

ENDOF ASCI I U (U p p e r case?)

OF -1 l$COUNT OVER+ SWAP
?DO I C@ DUP ASCI I A < SWAP ASCII Z > OR

I F DROP 0 LEAVE THEN
LOOP AND DUP O=
IF LEAVE THEN

ENDOF ASCI I E
OF -1 l$COUNT OVER+ SWAP

?DO I C@ 1 2 7 >
I F DROP 0 LEAVE THEN

LOOP AND DUP O-
IF LEAVE THEN

ENDOF ASCI I '
OF 0 l $ C O u N T OVER+ SWAP

?DO I C@ J 1 + C@ =

IF DROP -1 LEAVE THEN
LOOP AND DUP O-
IF LEAVE THEN

ENDOF ASCI I -
OF -1 l$COUNT OVER+ SWAP

?DO I C@ J 1 + C@ =

I F DROP 0 LEAVE THEN
LOOP AND DUP O=
I F LEAVE THEN

ENDOF

()

(
(

()

()
(N o t graphic?)

()

()

()

()

(
(L i t e r a l ?

(1
(
(

(
(
(L i t e r a l NOT?)

(

(
(

()

(
(

(
(leave flag)

both products. Both products do multi-
tasking, both allow interactive creation of
windows, controls, menus, etc. Both pro-
vide assemblers, although the MACH2
assembler isn't RPN (MACH2 uses a
"standard" Motorola-syntax assembler).
MacForth supplies source code to their
editor, assembler, and extensions
(MACH2 does not, a disadvantage to
some). Byte-for-byte. MacForth will usu-
ally produce more compact code (smaller
size); however, MACH2 will run about
two to three times as fast as MacForth (this
difference in speed usually isn't meaning-
ful unless you're doing heavy memory
access, looping, or number crunching).
MACH2 is subroutine threaded, MacForth
is token threaded.

Well, that's my not-too-brief summary.
MACH2 and MacForth do have significant
differences, and I think both are good prod-
ucts. I was a bit surprised to see such a
critical attack on MacForth. Frankly (from
my experience), I don't think they deserve
such treatment.
-Waymen

Category 14, Topic 1, Message 6
Mon Sep 05,1988 D.RUFFER [Dennis]

Thanks, Waymen, for giving us the
correct scoop on contacting Palo Alto, and
for the excellent (although slanted) opinion
of both Forths for the Mac. Glad to see
someone from there is monitoring over
here.

Now, maybe Ward will give us the
"other" side of the story? <grin> DaR

Category 14, Topic 1, Message 7
Sat Sep 10,1988 GARY-S [Gary]
> PORTED FROM THE WELL ==>
(Comment on new xCFB in Denver by Jax)
Topic 39: ForthNet Gateway : If you enter
a message here it is public domain.
Read#l # 23: Jack J. Woehr (jax) Thu, Sep
8, '88

Looks like the name of the new board
will be the Realtime Control & Forth
Board. It will be PCPursuitable, free, dedi-
cated to discussions and files about embed-
ded systems and Forth.
-Your Sysop, G. Who

Volume X. Nwnber 4 33 Forth Dimensions

(>$YYYYMMDD y m d - $)
(C o n v e r t s the standard date f o m t i n t e g e r s y md t o a date)

Topic 2
Fri Aug 19,1988 GARY-S [Gary]

(s t r i n g i n the f o r m a t yyyymndd. Sub: From the xCFBs/ForthNet

This topic will be devoted to subjects
raised and replies to ForthNet questions
generated on the x Coast Forth Boards.

Category 14, Topic 2, Message 1
Fri Aug 19,1988 GARY-S [Gary]
Date: 08-13-88
To: Gary Smith
From: Sysop
Subj: ForthNet

You must have a lot of free time on
your hands! <grin>

All the Forth Conferences on the
NCFB, ECFB, and the BCFB contain the
same messages. This should save some
calling between boards to get everything.
As a matter of fact, if your messages were
posted in one of the eight networked con-
ferences, you wouldn't have to make an-
other long distance call to post them on
the other boards.

I'm also assuming that GEnie isn't
going to claim any legal rights to any of
the transplanted messages; otherwise, I'll
have to insist that permission is received
from the message's author.

Date: 08-16-88
To: Gary Smith
From: Sysop
Subj: ForthNet

Gary, have you used the ProDoor
ARCM command? In just a couple of
minutes, you can capture all the new mes-
sages into an ARCed fie for your off-line
use. An added benefit of this strategy is
that the messages won't have any added
garbage characters except those inserted
by the original author when entering the
message.

Don, we have made it clear from the
beginning that GEnieForth RT is an open
public-domain forum. The messages in
the WELL are not normally such. So I set
up a topic on the WELL, devoted to this
virtual ForthNet, that is clearly identified
as being public domain. The first such
messages were posted on GEnie Cate-
gory 14 (ForthNet) tonight. Your mes-
sages will also be posted on GEnie to-
night. Let me know how to upload ASCII
text to NCFB and I ... will close the loop
as long as I can -or can someone pick up
Cat. 14 for posting here?
--Gary

Category 14, Topic 2, Message 2

: >$YYYYMMDD (y md -- $)

SWAP 0 <# # # # # # > H E R E 1+ SWAP CMOVE
2 5 6 /MOD 0 <# # # #> HERE 5 + SWAP CMOVE

0 <# # # #> HERE 7 + SWAP CMOVE
HERE 8 OVER C! $@ ;

($YYYYMMDD> $ -- y m d)

(Converts the date s t r i n g i n t he format yyyymdd t o t h e)
(standard date format integers y md.)

: $YYYYMMDD> ($ -- y md)

$DUP 4 $LEFT $P@ NUMBER? N I P O= (y y y ~ ?)

I F DROP 0 (0 year 1
THEN $DROP $DUP 4 2 $MID $P@ NUMBER? N I P O= (nnn? 1
IF DROP 0 (0 month)

THEN 2 5 6 * $DROP 2 $RIGHT $P@ NUMBER? N I P O= (dd? 1
IF DROP 0 (0 day)

THEN $DROP + ;

(>$MM/DD/YY y md -- $ 1
(Converts the standard da te format integers y d t o a date)

(s t r ing i n the f o m t nnn/dd/yy. 1

: >$MM/DD/YY (y m d - - $)
2 5 6 /MOD 0 <# A S C I I / HOLD # # #> HERE 1+ SWAP CMOVE

0 <# A S C I I / HOLD # # #> HERE 4 + SWAP CMOVE
1 9 0 0 - O < # # # # > HERE 7 + SWAP CMOVE
HERE 8 OVER C! $@ ;

($MM/DD/YY> $ -- y md)

(Converts the date s t r i ng i n t he f o m t nun/dd/yy t o the 1
(standard date integers y md.)

: $MM/DD/YY> ($ -- y md)
$DUP 2 $RIGHT $P@ NUMBER? N I P O= (YY? 1

IF - 1 9 0 0 (0 year)

THEN 1 9 0 0 + (This century)
$DROP $DUP 2 $LEFT $P@ NUMBER? N I P O= (nun?)

IF 0 (0 m n t h)

THEN 2 5 6 * (Shi f t l e f t 8b)
$DROP 3 2 $MID $P@ NUMBER? N I P O= (dd? 1

IF 0 (0 day)

THEN $DROP + ; (1

Forth Dimensions 34 Volume X, Nwnber 4

(>$JULIAN y m d - - $)

(Converts t h e s tandard d a t e format in tegers y mcl t o t h e ju l i an)
(day of t h e s t r i n g $. The ju l i an day i s t h e day o f f s e t from)

(t h e s t a r t of t h e cur ren t year . The ju l i an d a t e i s the number)

(of days s ince t h e l a s t conjunction of t h e 28 year s o l a r cycle)
(and 19 year lunar cycle , ca lcu la ted t o be January 1, 4713 BC.)
(On December 31, 1986, t h e ju l i an date was 2,446,796.)

: >$JULIAN (y m d - - $)
SWAP 4 MOD 0- (Leap year?)

IF 1. ELSE 0. (Compensate?)

THEN ROT 256 /MOD >R S>D D+ R> (day month)

CASE 1 OF 0 ENDOF (January 31)
2 OF 31 ENDOF (February 28)
3 OF 59 ENDW (March 31
4 OF 90 ENDOF (Apri l 30)

5 OF 120 ENDOF (May 31)

6 OF 151 ENDOF (June 30)

7 OF 181 ENDOF (July 31)

8 OF 212 ENDOF (August 31)

9 OF 243 ENDOF (September 30)

10 OF 273 ENDOF (October 31)

11 OF 304 ENDOF (November 30)

12 OF 334 ENDOF ABORT'' I l l e g a l month" (December 31)

ENDCASE S>D D+ D>$; (y d j u l i a n)

($JULIAN> $ - - y m d)

(Converts t h e j u l i a n day of t h e s t r i n g $ t o t h e s tandard d a t e)

(format i n t e g e r s y md. The ju l i an day is t h e day o f f s e t from)
(t h e s t a r t of t h e cur ren t year . The ju l i an date i s t h e number)

(of days s ince t h e l a s t conjunction of t h e 28 year s o l a r cycle)
(and 19 y e a r lunar cycle , ca lcu la ted t o be January 1, 4713 BC.)
(On December 31, 1986, t h e ju l i an d a t e was 2,446,796. 1

: $ ~ I A N > ($ - - y m d)
@DATE DROP DUP 4 MOD O=

IF 1 ELSE 0
THEN >R $>D 2DROP DUP 32 <
IF R> DROP 256 + EXIT
THEN DUP 60 R@ + <
IF R> DROP 31 - 512 + EXIT
THEN R> - DUP 91 <
IF 59 - 768 + EXIT
THEN DUP 121 <
IF 90 - 1024 + EXIT
THEN DUP 152 <
IF 120 - 1280 + EXIT
THEN DUP 182 <
IF 151 - 1536 + EXIT
THEN DUP 213 <
IF 181 - 1792 + EXIT
THEN DUP 244 <

(Leap year?
(Compensate?
(January?
(
(February?

(
(March?
(
(Apri l?
(
(May?
(
(June?
(
(July?
(
(August?

Sat Aug 20,1988 S.W.SQUIRES [scott]
Gary, Some of the previous messages

make it a little difficult to figure out who is
sending the message, especially the one
from sysop. I assume that is Don Madison
from the North Coast Forth Board?
-Scott

Category 14, Topic 2, Message 3
Sat Aug 20,1988 GARY-S [Gary]

Yes, Scott- it was Don. Thank you for
bringing the ambiguity to my attention. I
see this may take some editing for some of
the messages to be more coherent.
--Gary

Category 14, Topic 2, Message 4
Sat Sep 10,1988 GARY-S [Gary]
> PORTED FROM xCFBs ==>
Date: 09-07-88 (2350)
To: Gary Smith
From: Lee Brotzman
Subj: ForthNet

Gary, as far as BITNET and FIGI-L
goes, if you connect to Usenet's
comp.lang.forth, you are automagically
connected to BITNET. We have a fully
operational, two-way gateway between the
groups. All the mail they send, we receive;
and vice versa.

This sounds like a wonderful idea to
me.

Also on the FIGI-L front: In July, I
changed the format from sending compiled
periodic digests of the mail traffic, to send-
ing each mail message immediately out to
the group. This has been working quite
well. However, some of my subscribers
actually preferred the digests. So, in the
interest of fairness, I have started a "sister"
list to FIGI-L that consists of digests of all
the FIGI-L mail traffic. I now distribute
this periodically to about 14 people that
want it.

I hope to get a chance to upload archives
of the FIGI-L digests to both the ECFB and
GEnie sometime. I just have to get down to
Goddard some evening in order to use my
AT there to do the archiving/uploading.
My little Apple here at home just isn't up to
the task.

Date: 09-08-88
To: RJ Brown
From: Mahlon Kelly
Subj: Unix Forth

V o l m X, Number 4 35 Forth Dimemiom

Advertisers Index

ACM -
Advanced Energy -
Bryte -
Ciber Consultants -
Concept 4 -
Forth Interest Group -
Harvard Softworks -
Laboratory
Microsystems -
Miller Microcomputer
Services -
Next Generation
Systems -
SDS Electronic -
Silicon Composers -
Vesta Technology -

(Screens continued from page 24.)

S c r e e n # 12
(RTTY - Receive and Transnit nards pac 11:55 09!1?IRb)

: 'SID \ --- f lag . . . i s t h e r e a r e c e i v e d char a t t h e p o r t ?
LSR @ PC@ DAV AND ;

: SKEY \ --- char. . . if so, b r i n g i t to t h e s t a c k
DATAL @ PC@ ;

: SEMI! \ char ---... o u t p u t one c h a r a c t e r
BE6IN LSR @ PC@ TBE AND UNTIL DITIL @ PC! :

(Screens continuedfrom page 17.)
I

Scr
0
1
2
3
4
5
6
7

1/ 4
\ T I P ONE: I R A DEDUCTION
: INCOME-PHRASE

11 1 2 AT ." i f your a d j u s t e d g r o s s income i s " ;
: ADJUSTED-GROSS? AMOUNT? RETURN1 Y/N

I F REDO NO-DEDUCTION ELSE AMOUNT? RETURN2 Y/N
I F REDO PARTIAL-DEDUCTION ELSE NO-PLAN INCOME-PHRASE RETURN3

THEN THEN ;
: PLAN RETURN? ADJUSTED-GROSS? :

8 : IRA-TEST PLAN? I F PLAN ELSE NO-PLAN ." . I ' THEN LOCKUP ;
9 : WAIT 4 0 0 MS ;

10 : END-APPL UNSTACK DARK o o BDUS ;
11 : RUN-APPL BOX MESSAGE WAIT
1 2 BEGIN IRA-TEST RERUN?
13 KEY A S C I I =
14 UNTIL END-APPL ;
15

COMPLETE DEVELOPMENT SYSTEM
FOR MACHINE CONTROL

TINY188 is a low cost "PC somewhat compatible"
engine for OEM controller applications. A selection
of high level languages is available in ROM.
DDS188 An optional development board with EPROM
programmer, floppy disk controller and added memory,
removes to lower target system cost.
Prices start at $269 each/$99 at 1,000.

Vesta Technology, Inc.
(303) 422-8088

Forth Programmers Needed

Volume X, Number 4 37 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimemiom. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Horace Simmons
(907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs.. 7:30 p.m.
AZ State University
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 956-7578

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

/ CALIFORNIA

North Bay Chapter
2nd Sat., 10 a.m. Forth, A1
12 Noon Tutorial. 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454- 1307

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Tom Ghormley
(916) 444-7775

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA / Orlando C h a ~ t e r

Phillip Wasson
(213) 649-1428 I

Los Angeles Chapter
4th Sat, 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Every other wed., 8 p.m.
Herman B. Gibson
(305) 8554790

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (8 13) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues.. 6:30 p.m.
Western Sizzlen, Doraville
Nick Hennenfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
IF' Univ. Campus, B71 Neff
Hall
Blair MacDermid
(21 9) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day, 8: 15 p.m.
Gurdy Leete (515) 472-7077

I
Forth Dimemions 38

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed.. 7 p.m.
Honeywell
300 Concord. Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month, 1st Mon., 7:30
p.m.
Odd Month, 1st Sat., 9:30 a.m
Fred Olson (612) 588-9532
NC Forth BBS (612) 483-671 I

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues.. 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ.. Piscataway
Nicholas Lordi
(201) 338-9363

Volume X, Nwnber 4

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-518-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom. 2
B -6290 Nalinnes
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY. Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat, loam.-noon
N. Alta Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec.. 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

Toronto Chapter
John Clark Smith
PO Box 230, Station H
Toronto, ON M4C 5J2

ENGLAND
Forth Interest Group-UK
London
1st Thus., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
383 1 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Odd month. 4th Sat., 1 p.m.
Monroe Comm. College
Bldg. 7, Rm.102
Frank Lanzafarne
(7 16) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(21 6) 247 -2492

Dayton Chapter
2nd Tues. & 4th Wed.. 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Li-Benton Comm. College
Pann McCuaig (503) 752-51 13

TENNESSEE
East Tennessee Chapter
Oak Ridge
2nd Tues.. 7:30 p.m.
Sci. Appl. Int'l. Corp., 8th F1
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Man Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thus.. 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon., 7:45 p.m.
Intro Class 6:30 p.m.
Univ. at St. Thomas
Russell Harris (713) 461-1618

Volume X, Nwnber 4

SWEDEN
SweFIG
Per Alm
46B-92963 1

VERMONT
Vermont Chapter
Vergennes
3rd Mon.. 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy.. Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed.. 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg.. RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd., Yowie Bay
2228
021524-7490

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

39

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfion
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
(415) 960-1256 (eves.)
1698 Villa St.
Mountain View, CA 94041

Forth Dimemi6

JOIN THE

H INTEREST G
RoundTablem
on GEnie"

INFORMATION
SERVlCES

"I1

Generai Elecuic Network for Information hchange

Over 600 Downloadable Files of Forth Information and Code

Technical Information Exchange on our Bulletin Board and by E-Mail

On-Line Real-Time Conferencing

SPECIAL SIGN-UP FOR FIG MEMBERS ONLY

Includes GEnie Manual Plus 5 FREE Hours on GEnie

Using your modem call: 1 -800-638-8369, type "HHH" (cr)
Following the U# prompt, type "XJMI 1849,GENIE (cr)

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

