i

VOLUME X, NUMBER 2

JULYIAUGUST 1988

74

P

= i Er———

--------- Wl EE #dEEE S

:ll!l-'-"-r

L
aE@EEsElsaREE R R EREREEREE
nlilliI‘--!illlllf!liiilil#!!liilli#ll
aEpssssaEEaEAEEEEERAERERRERREERAERER BB R n
gpaamnRidEEE R EREEEEREEEEIEAdERARERER L
TEETRE R B4 Tl it e s e R R R L
Y T I e e e T e R R L R L L
gEEasEEsEERERAREREREEREER RS TEEEE LR L L L
- FEEGEEAE AR EEREEREESE RS FEEETE R D E
.il‘l.'ﬁi.i|||'|'-111||+||'-----iiilll
FEEmEEEEE e E R GRS EEEREERERER R
WEEE RS EEE FEEEsEEREEEEREREERSERERE D
FEsEssnReenEaEREResERdEREEEREREREEE RN
agrpEEEEEEEERERRERERERddEARERERERRERRRED
FEEEEEE SRR FEEESIE RIS
iEEsBpeEEEEERERERRERRIEIiEREEEEERREAREE
"TIilLLL] FEEEEERERI AR R R
R E R AFRFESAEEAEREBRRBRESnEE
sEEREsEmE giRERERERREREREEEREEE
@R EEEEEE] @ EEE S
W EEE R e AR R LR LR LR LN
""l--l‘ 1!---‘ L] LR N Rl
o E e sEEEEEEE TETE
(TR RN LR L] gEEaE e R
e TEET
"*-: :‘I TR
& & m
-

"
L
o
EEEE
B EE
TIR L
EEEEE S
CEE R
EREEEEEEE
TIIEEE Y
EEEEEEIE R EEE @
I A EEEE
& mE R #EEE S
Ty
EEEEsEEEE @RS
------ FEs B EE

saaeEReREw

SILICON COMPOSERS

INTRODUCES THE
SC/FOX™ DEVELOPMENT SYSTEM

B
L]
L]
L]
L]
-
w
l
AR EEEREEE eSS
TEEEL Y
FEBEEEEEEE

& 5 &
- L L R L R

EEEEEE S E
FER B EEREREE

AR EEERR AR R R R RET

S EEEEE
FEEEEEIEESEE
" @

¥ rE T T TT TR

LR R R AR R EELEREER LRI EREEEEEEEREE RN NERNEFE]
&
Ll
L
"
L]
L
-

AR REEEEE
TILELE LR L
e R EE
EEREFEEEES
EEEREE®

Rl = i s,
mEEEE e

- @
L
o
"
L
L]

T

EEEEE RS EE
S EEw

=T

..........

FE Y

e il =
e e A

L, R By T .

L S W A A P : E . .o

A

.w.
SR
L

e e,

*!yuwm#%wuw#M

B ?Eiﬂﬁ“tmﬁ##ﬂﬂ

........ ' A % :

.%Q'Hrlliﬁﬁﬁ'iiid'u-if;l‘;. gn.ﬂ”'

N N <N
5w vl

Wimgain

f_.!ﬁi..“

B
oy T N A . er . o0 v e

iy ey e B R R, B T e

. : ; g
e o R ﬁﬁ&w#ﬁnwmmbg’E#uHWmuuﬁuu@ : U e Sz L e R S
- . oo e . T 0 T 0 0 - o : e 2 3 e : : = : :
e ol - i f:ff“; A e i mmd e o - ' 52 .. .Jﬂmm:'-y'w“{:- X P
I:I-.'-hvﬁ"lll' P e S N e : = 3 e A i : e s WL L0 T S Sl e : ¥

e .-. - i ﬁ I

g

Wrﬁﬂﬁﬁ&t#&&f'

"

. s
.l.| " L

e . s e e ot
- .‘.'rﬁf"'.-'r_"ﬁ' R R T o W R S R P Py

B A A R

SC/FOX COPROCESSOR

Forth Optimized eXpress™
“The quick SC/FOX ran past the slow PC/BOX”

USING THE HARRIS RTX 2000™ RISC CPU

Full-length PC, XT, AT, 386 Board m RTX 2000 Real Time Express™ CPU:
10 to 50 Forth MIPS Operation l-cycle 16X16=32 bit multiply,

8 MHz standard, 10 MHz upgrade l-cycle 14-priority interrupts,

64K standard, upgrade to IM byte two 256-word stack memories,

All memory accessible by PC host three 16-bit timer/counters,

Runs concurrently with PC host 8-channel 16-bit I/0O bus

Includes Forth compiler system m Delivery: 2 weeks ARO

m Unit Price: $1,995

Ideal for real-time control, data acquisition and reduction, image or signal processing,
or computation intense applications. For additional information, please contact us at:

SILICON COMPOSERS INC.
210 California Ave., Suite K, Palo Alto, CA 94306 (415) 322-8763

Forth Dimensions 2 Volume X, Number 2

—— -

——

FOR 1 H

DESIGNING DATA STRUCTURES *» MIKE ELOLA
12

Forth provides the basic foundation needed for object-oriented programming, by the ease with which new data
structures can be defined. This series of articles will focus on the most portable of data objects, and on sharing
operations between related objects. This installment educates the reader about basic concepts and ways to
evaluate objects and their operations.

OBJECT-ORIENTED FORTH * RICK HOSELTON
15
Any computer langnage can produce object-oriented programs, some just make it easier than others. Lan-

guages like Smalltalk actually require an object approach. Forth can be extended easily to provide support for
object programming; the author shares his own approach in code.

STEP-TRACING IN fig-FORTH « GENE THOMAS
20
F83 has a DEBUG utility that single-steps through definitions at the touch of a key. fig-FORTH and its

derivatives can now have a similar utility in their systems. The criteria for the solution boiled down to this: the
application must not require any editing. Vectored execution to the rescue!

@

LINEAR AUTOMATA « ANDREAS CARL
23
The idea for this program is from A.K. Dewdney, who wrote, “In a world of artificial computers, it is surpris-
ing to imagine that we might be surrounded by a variety of natural computers like water, wind, or wood....”

Cellular automata can demonstrate the arithmetic abilities of natural systems. Experimenting with this Forth
program helps to make the point clear.

|
VOLUME EIGHT INDEX * MIKE ELOLA
26

A comprehensive reference guide to all issues of Forth Dimensions published during the volume eight
membership year. See the FIG Order Form to order complete sets of back issues.

THE BEST OF GENIE - GARY SMITH
29
Sunday Q&A at the “Figgy Bar” is coming for Forth novices... And this column recaps some standards-

making dialog from the GEnie Forth RoundTable. Get a taste of what a proposer to the ANSI committee goes
through to prepare his proposal.

Editorial Advertisers Index
4 28
Letters FIG Chapters
5 36
Volume X, Number 2 3

Forth Dimensions

C harles Keane sent me a note on
GEnie, to this effect:

“At it’s last meeting, the ANS Forth
Technical Committee (X3J14) voted to
constitute itself as a Speakers Bureau for
FIG Chapiters, specifically on the subject of
current standardization activity. It also
designated y’r ob’t servant as the clearing-
house for this effort. Interested chapters
may contact me on GEnie (address
C.KEANE), by phone (518-274-4774), or
U.S. Mail (515 — 4th Avenue, Watervliet,
NY 12189-3703).”

Invite a scapegoat to dinner, anyone?
Seriously though, folks, this sounds like a
great way to get a good, close look into the
horse’s mouth (so to speak). I suspect that
any speaker from X3J14 could relate
enough about the ANS process and techni-
cal tradeoffs to enliven and enlighten any
meeting.

* * *

We have been looking for material re-
lated to object-oriented programming.
There’s a world full of people who think
we’d be using objects, if we had any class.
Mike Elola has kindly offered to bring
objects to light in several articles. His first
appears herein, and explains the fundamen-
tal concepts and terminology of object-
oriented programming.

Like Forth, objects can be tough to
appreciate without enough hands-on tink-
ering to provide, at the least, a gestaltic
moment or two. To that end, Rick Hoselton
provides F83 code that supports object-
oriented programming, (Other versions are
also welcome, and Mike Elola will be
developing one with that series of articles.)
He offers another view of the general sub-
ject,leavingitto the readertodevelop some
illustrations of the real usefulness of ob-

EDITORIAL

jects. We continue to welcome well-chosen
examples and stories about object-oriented
programming in Forth.

Any Forth programmer remotely inter-
ested in this topic must read Dick
Pountain’s book, Object-Oriented Forth.
It’s mandatory — even the introduction is
good. Add it to your library even if you’re
just generally interested in Forth tech-
niques, especially ones involving data
structures (Academic Press, 1987).

* * *

1 hope you can attend this year’s Forth
National Convention. Until this year, it
always has been held in the vicinity of San
Francisco. This was natural — most of its
early organizers lived in that area, and the
strong FIG chapters there supported it vig-
orously as volunteer staff and as attendees,
speakers, and exhibitors. Not incidentally,
some local FIG members also attended the
business group and board meetings at
which the convention was planned.

For years, there have been brief discus-
sions about moving this keystone event of
FIG’s year to another locale. That would
give local Forth programmers and vendors
a chance to use the event as a showcase of
their Forth-related work, and would pro-
vide the local technical community with a
chance to learn about contemporary Forth
products and practices. Besides, the inevi-
table infusion of techno-gossip and code-
riddled repartee would give the local Forth
community an infusion of ideas and a sense
of perspective. But such discussions were
usually short-lived, coming too late in the
planning year and without local leadership
or an actual plan.

Martin Tracy lives in southern Califor-
nia and is a member of the Board of Direc-

{Continued on page 38.)

Forth Dimensions
Published by the

Forth Interest Group
Volume X, Number 2
July/August 1988
Editor
Marlin Ouverson
Advertising Manager
Kent Safford
Design and Production
Berglund Graphics

Forth Dimensions welcomes editorial ma-
terial, letters to the editor, and com-ments from
its readers. No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth
Interest Group, P.O. Box 8231, San Jose,
California 95155. Administrative offices and
advertising sales: 408-277-0668.

Copyright © 1987 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the indi-
vidual authors of the articles and by Forth
Interest Group, Inc., respectively. Any repro-
duction or use of this periodical as it is com-
piled or the articles, except reproductions for
non-commercial purposes, without the written
permission of Forth Interest Group, Inc. is a
violation of the Copyright Laws. Any code
bearing a copyright notice, however, can be
used only with permission of the copyright
holder.

About the Forth Interest Group

The Forth Interest Group is the association
of programmers, managers, and engineers
who create practical, Forth-based solutions to
real-world needs. Many research hardware
and software designs that will advance the
general state of the art. FIG provides a climate
of intellectual exchange and benefits intended
to assist each of its members. Publications,
conferences, seminars, telecommunications,
and area chapter meetings are among its activi-
ties.

“Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave,,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155.”

Forth Dimensions

Volume X, Number 2

ANS Process Offers Fairness

Dear Marlin:

This is in response to the letter from
Gary Chanson (FD X/1) regarding an
American National Standards Institute
(ANSI) standard for Forth and the process
which gets us there.

I am NASA'’s representative on the
ANSI Accredited Standards Committee
(ASC) X3J14. I have attended every hour
of every meeting of X3J14. I was as appre-
hensive and suspicious before the first
meeting as anybody had a right to be. My
motivation was and is simple: I am a Forth
user with important applications in view,
and feel I have a stake in the outcome of the
standards process.

Gary’s letter might have left some read-
ers with the impression that this process has
been commandeered by the big Forth ven-
dors for their own purposes. Or that users
have been left out. I would like to offer my
testimony to the contrary.

By my own observation I can attest that
X3J14 was formed in accordance with
ANSI rules. It does, in fact, have an ANSI
charter to draft a proposed ANSI standard.
As far asIcan tell, it is operating in scrupu-
lous regard for the letter and the spirit of
ANSI rules.

Now, regarding ANSI rules, these are
well-honed and rather inflexible. Space
does not permit a full run-down on them
here, but they are basically concerned with
full public scrutiny; with guarantees that all
input from any source be considered; and
with ensuring that adequate time intervals
are allowed for public response to proposed
standards. These rules have resulted from
decades of experience in developing stan-
dards. They are designed to balance the

LETTERS

numerous interests that are always in-
volved, whether the field is nuts and bolts or
computer languages. In my judgment,
these rules prevent chaos: by adhering to
them, a standard can come into being; and
a standard, by definition, reduces chaos.
Further, the rules seem to be about the only
realistic approach to achieve fairness.

Thus, even if they wanted to, or at-
tempted to, the big Forth vendors probably
would not have found it possible to com-
mandeer the ANSI process.

The other misimpression that might
have been left by Gary’s letter is really just
the flip side of the above concern — that
users have no voice. Actually, the represen-
tation on X3J14 puts users in a near major-
ity position. At my last count, there were
nine producer members and 11 consumer
members, with two others designated as
“general interest.” Membership, by the
way (as has been stated widely and often),
is completely open to anyone willing to pay
the membership fee ($175), and who is
willing to work, put in the time, and travel
to the meetings.

Certainly, none of us likes the idea of a
new standard drafted in secret by a self-
appointed clique and then handed down as
though from on high. Gary’s letter repre-
sents the opinions of the Boston {chapter of
the] Forth Interest Group, to the effect that
they are ticked off by the past and don’t
want it repeated. My message is simple:
take advantage of the new rules and the new
process; getinvolved; make photocopies of
the technical proposal and comment forms
published in Forth Dimensions X/1 and in
Dr.Dobb’s Journal #137 (April 1988) and
submit proposals and comments; seriously
consider the possibility of becoming a

member of X3J14 to represent the points of
view shared by youand your group. Andbe
prepared in a year or so to get a copy of the
draft proposed ANS Forth, study it, and
comment on it formally. That, too, is part
of the ANSI process. Your comments must
receive due consideration and must be
answered formally for the process to con-
tinue.

Perhaps the reaction expressed in
Gary’s letter stems from the way our exist-
ing standard, Forth-83, was brought forth
(or handed down?). That process, of
course, was not the ANSI process. The
rules were quite different. And with hind-
sight we can see they were not adequate to
prevent dissatisfaction. I understand all
this, but that was five years ago, and five
years is an eon in the world of computers.
Grudges someday must be laid aside and
realities be consulted. And we do have new
realities staring us in the face (e.g., 32-bit
microprocessors which were not real five
years ago), and more realities to face
shortly (e.g., optical storage).

Ibelieve that achieving ANS Forth will
be an important event. It surely is inevi-
table. X3J14 is working very hard to make
itahigh quality achievement, one that will
indeed have the broad support of users
such as myself. But once again, your con-
tributions are more than welcomed. They
are expected!

James L. Rash

NASA

Goddard Space Flight Center
Greenbelt, Maryland

Volume X, Number 2

Forth Dimensions

(Shattuck’s screens.)

Scr # 37 KERNEL.BLK
0 \ Task Dependant USER Variables 03Apr88cws
1 USER DEFINITIONS
2 VARIABLE TOS { TOP OF STACK)
3 VARIABLE ENTRY ({ ENTRY POINT, CONTAINS MACHINE CODE)
4 VARIABLE MPAGE ({ MEMORY PAGE)
5 VARIABLE JUMP { ADDRESS OF RESTART OR NEXT TASK }
6 VARIABLE LINK (LINK TO NEXT TASK)
7 VARIABLE SPO (INITIAL PARAMETER STACK)
8 VARIABLE RPO (INITIAL RETURN STACK)
9 VARIABLE DP ({ DICTIONARY POINTER)
10 VARIABLE #OUT { NUMBER OF CHARACTERS EMITTED)
11 VARIABLE #LINE { THE NUMBER OF LINES SENT SO FAR)
12 VARIABLE OFFSET (RELATIVE TO ABSOLUTE DISK BLOCK 0)
13
14
15
Scr # 22 CPU68000.BLK
0 \ Multitasking low level 03Apr88cws
1 LABEL (PAUSE) (s -—-)
2 IP SP -) MOVE RP SP -) MOVE (push ip., rp)
3 UP bank L#) D7 MOVE D7 A0 LMOVE (load up)
4 SP A0) MOVE (sp to tos) 8 A0 LONG ADDQ WORD
5 A0) D7 MOVE D7 A0 LMOVE (point to next task)
6 A0) JMP C; { jump to next task)
7 LABEL RESTART (s --)
8 SP)+ A0 LMOVE (pop return address, current link)
S 8 A0 LONG SUBQ WORD A0 UP bank L#) MOVE (get up)
10 A0) D7 MOVE D7 SP LMOVE ({ restore stack)
11 SP)+ D7 MOVE D7 RP LMOVE (restore rp)
12 SP)+ D7 MOVE D7 IP LMOVE (restore ip)
13 NEXT C;
14 ENTRY LINK ! { I point to nmyself)
15
Scr # 23 CPU68000.BLK
0 \ Manipulate Tasks 04Apr88cws
1 HEX
2 4EF9 CONSTANT JMPL# \ op word for a long jump
3 4EBY9 CONSTANT JSRL# \ op word for a long jump to subroutine
4 DECIMAL
5 : LOCAL (S base addr -- addr') Uup @ - + :
6 @LINK (S -- addr) LINK @ ;
7 'LINK (S addr --) LINK ! ;
8 SLEEP (S addr --) DUP LINK LOCAL @ OVER JUMP LOCAL !
9 JMPL# SWAP ENTRY LOCAL ! :
10 : WAKE (S addr --) RESTART OVER JUMP LOCAL !
11 JSRL# SWAP ENTRY LOCAL ! H
12 : STOP (S ——) UP @ SLEEP PAUSE H
13 : SINGLE (S ~-—) ('] PAUSE »>BODY ['] PAUSE ! H
14 : MULTI (s --) UP @ WAKE (PAUSE) ['] PAUSE ! ;
15

Forth Dimensions 6 Volume X, Number 2

(McBrien’s screens.)

Dear Marlin,

I want to thank you very much for pub-
lishing the article by Robert J. Eager,
“Relocatable F83 for the 68000” (FD IX/
6). I know that some people don’t want to
see such machine-specific articles in
Forth Dimensions, but this one really
helped me. I have a copy of F83 modified
for the Atari ST by George Morison. Mr.
Morison did a wonderful job of porting
F83 to the Atari, with the same basic idea
used by Mr. Eager. Unfortunately, both
the single-step debugger and the multi-
tasker caused the system to bomb, so I1did
without them. With the help of Mr.
Eager’sarticle, I was able to fix the debug-
ger almost immediately, and used it to
tackle the multitasker.

After hours of constant bombing, I de-

traps that I just didn’t understand. It oc-
curred to me that I could add another couple
of bytes to the user area to allow the use of
the JSR instruction rather than the TRAP
instruction. This means a little more com-
plexity for the words WAKE and SLEEP, but
the code works, is easy to understand, and
avoids some extra stack popping required
by the trap instruction, so it may even run
faster. WAKE now puts a JSRL instruction
into ENTRY and the address of RESTART
into a new user variable called JUMP.
SLEEP puts a JMPL instruction into EN~
TRY and the address of the next task (taken
from LINK) into JUMP. The included code
is specific to the 68000 but I imagine the
same idea would work with any processor,
but without requiring any knowledge of
traps and exception vectors.

Let’s continue to hear more about multi-

Screen 210 T
t (DISFORTHer primitives. Retyped by Chris MeBrien 20 Sept 1987,
2 Adapted from Hewlett Packard’s 9835 FORTH User’s Manual.
4 DISFORTH willd decompile a Forth word into 1t7s component
5 words or tell you if it is a USER, VARIABLE or CODE
& definition. To ease typing, DISFORTH 1z renamed SEE)
§ 1 VARIABLE STRINGLIST] .My [
9 ¢ VARIABLE TERMINATORS] ;% (;CODE) |
10 4 VARIABLE BRANCHES] (LOOPY (+LOOP) BRANCH OBRANCH [
11 &8 VARIABLE LITERALIST 1 LIT (LO0OPY (+LOOP) BRANCH DBRANCH |
12
13 ELEMENT? (n \ 1ist ELEMENT? pos) { 1ist 1s searched for n)
14 DUP Z+ SWAP @ 2 * OVER + SWAP
15 PO 1 @ OVER = 1F DROP 1 O LEAVE THEN 2z +LOOF
16 IF O THEN ; -=>
ok
Screen 211
1 (DISFORTHer ... Page 2 of 3)
2 : PRINT-WORD (pfaddr PRINT-WORD next addr)
3 CR DUP U. (addre=zz)
4 DUP @ DUP U. SPACE (cfa)
5 SPACE DUP 2+ NFA ID. (mame)
6 DUP STRINGLIST ELEMENT? IF {(1f inline string)
7 SWAP 2+ COUNT 2DUF TYPE (then type it out)
8 + 2 - SWAP THEN
9 DUP - COMPILE CFA = IF SWAP 2+ DUP @& 2+ NFA ID. SWAFP THEN
10 DUP LITERALIST ELEMENT? IF
11 SWAP 2+ DUP @ ROT BRANCHES ELEMENT? IF OVER + THEN U.
12 ELSE DROP THEN 2+
14 PRINT-DEF (PFA PRINT-DEF)
16 BEGIN DUP @ TERMINATORS ELEMENT? 0= WHILE
16 PRINT-WORD REPEAT PRINT-WORD DROP ; -=>
ok
No TRAPs in cided there must be something about 68000 | tasking in Forth Dimensions, and how
His Multitasker...

about some articles about implementing
multi-user Forth as well?

Sincerely,

Charley Shattuck
1509 Gerry Way
Roseville, CA 95661

Visible Forth
(with no exceptions)
Dear Editor,

With reference to Rich Franzen’s “The
Visible Forth” (FD IX/3), the EXCEP-
TIONS in screen 17 do seem to make the
application rather non-portable, at least
until the user has sorted out the addresses
of the exception words.

Although I claim no originality for the
application submitted, I have cleaned it up
and gotten rid of one major typing error.

Volume X, Number 2

Forth Dimensions

(McBrien’s screens, continued)

Screen 212
1 (DISFORTHer... Page 3 of 3)
2 : DISFORTH (DISFORTH ccce eqg: DISFORTH VLIST)
3 CLS { Clear the screen)
4 CR [COMPILE] - DUP NFA ID. (get PFA of cccc)
5 DUP NFA C@ &4 AND IF ." .15 an IMMEDIATE word" THEN
=3 Dup CFA @ [° . CFA @] LITERAL = 1IF { colon defimition)
7 PRINT-DEF
8 ELSE DUP CFA ® [* FENCE CFA @] LITERAL = IF
G oL ois 8 USER variable. QFFSET = » @ CR
10 ELSE DUP CFA @ [~ O CFA @] LITERAL = IF
11 Lo L.ds a CONSTANT. VALUE = " @ CR
2 ELSE DUP CFA @ [* USER CFA @] LITERAL = IF
12 Nt .is a VARIAEBLE. CONTENTS = " @ CR
14 ELSEis a CODE definition. " CR
15 DROFP THEN THEN THEN THEN CR
16 SEE BASE @ >R HEX DISFORTH R> BASE ! { SEE VLIST)
ok
Screen 231
1 (TRIAL... To test the resolving of a BRANCH 3
3 TRIAL 10 0 DO CR ." BRANCH TEST"
4 LOOP CR
5
&
7
“
9
10
11
12
14
15
16
ok
TRIAL
538D 4D5 LIT A
58DF 8CB 0
EQE1l 5&4 (DO
E2E3 202% CR
58ES AGS (.") BRANCH TEST
58F2 583 (LOOP) BLIDS
E8F7 2025 CR
58F9 596 H
ok
58D0 05 85 54 52 4% 41 CC B7 58 0A 07 D&% 04 OA 0D CB ..TRIAL7?7X..U...X
58EQ0 03 84 05 25 20 62 0A OB 42 92 41 4E 43 48 20 54 ,..% h,.BRANCH T
58F0 4% 53 54 53 05 E3 58 25 20 96 05 04 44 55 4D 50 ESTS.cX% ...DUMP
5900 20 20 20 20 20 20 20 20 20 20 20 20 206 20 2 20
5910 20 20 20 20 2 20 20 20 20 20 20 20 20 OB 59 25 L Y%
ok
Forth Dimensions 8 Volume X, Number 2

(McBrien’s screens, continued.)

Screen Q0

1 { ELEMENT?Z Decompile high level Forth definitions)
3 1 VARTABLE STRINGLIST 1 ¢.") [

4 2 VARTABLE TERMINATORS T 3% (,CoDEY |

% 0 VARIABLE EBRANCHES] {

& % VARIABLE LITERALIGST 1 LIT (LOOP) (+LOOP) BRANCH OBRANCH [

-

8 { The cfa of a word aleng with it’s relevant l1ist “ELEMENT?’

) Qives the address of the cfa in that list 3
10 ELEMENT? (cfa \ list addr in the list)

11 (0593 BRANCHES element? 71EE Lin omy system)
12 DUF 2+ SWAP @ 2 * OVER + SWAF

13 DO I @ OVER = IF DROP I O LEAVE THEN 2 +LOOP
14 IF O THEN ;

15

16 -->
ok

Screen 201

1 { PRINT-WORD More decompiling words)
2 ¢ PRINT-WORD (pfa next pfa)

3 CR DUP U. { print the pfa)

4 DUF @ DUP U. SPACE { print the cfa)

5 SPACE DUP 2+ NFA ID. (prinmt the name)

€ DUP STRINGLIST ELEMENT? { if an inline string)
7 IF SWAFP 24 COUNT ZDUP TYPE + 2 - SWAP { type i1t out)
8 THEN DUP ° COMPILE CFA =

9 IF SWAP 2+ DUP @ 2+ NFA ID. SWAP

10 THEN DUP LITERALIST ELEMENTY

11 IF SWAP 2+ DUP @ ROT BRANCHES ELEMENT?

12 IF OVER +

13 THEN U.

14 ELSE DROP

15 THEN 2+ ;

16 -=2
ok

Listing One is the original, semi-working
version but, as can be seen, the BRANCH
resolving isnot correctaccording to the test
word TRIAL. (Joke SEA TRIALs.)Iama
novice Forth programmer and have been
unable to cure this branching problem apart
from the vicious hack in Listing Two, in
which I removed the WORDS from
VARIABLE BRANCHES simply because
the branch address seemed to be double
what it should be; so I removed the dupli-
cate branch words, and it worked. The test
word AA in Listing Two is resolved cor-
rectly. If anyone can throw some light on
this slight problem, I — for one — would
learn a little more. Also, I feel this version

would be more portable than Rich’s: it
originally came from a Hewlett-Packard
9835 application later modified for an HP
86, which uses an octal-based processor.
My system is basically a Forth-79 ker-
nel, with additional words for an MS-DOS
system running on a Hewlett-Packard 150.
(Notice that screens’ line numbers go from
one through 16, not zero through 15. This
does mean that .LINE is one off when
used. Why don’t people stick to a standard?

Chris McBrien

1. Milton of Straloch
Newmachar,
Aberdeen, Scotland

Errata and Improvements
to a 6502 Assembler
Dear Marlin,

While using the assembler I described
inForth Dimensions (IX/5), 1 have discov-
ered several bugs. The first of these was
dueto my ignorance of some opcode proce-
dures; the others were just errors.

There are a number of operations, such
as LDA, for which the lists of available
addressing modes include:

Absolute, X

Absolute, Y

Zero page, X
but not Zero page, Y.

Volume X, Number 2

Forth Dimensions

I'hadn’t realized that the missing Zero
page, Y addressing mode could be in-
voked by using an absolute address refer-
ence to zero page (e.g., 00E1). In trying to
modify the assembler to automatically
compile an absolute zero-page address
when appropriate, 1 found a few more
bugs. So I decided to simplify the logic
sequence and correct the screens. Screens
2,3, 5, 8 and 9 have small changes;
screens 4 and 6 have massive changes
based on use of the new words ? LEGAL,
22P, and ? IMM.

The suggested improvement is the use
of equates. One of the conveniences of a
conventional assembler is the provision
for using names for addresses; e.g.:
COUT EQU S$FDED
TEMP EQU $El

In the Forth assembler, COUT and
TEMP can be defined as constants, but are
needed only temporarily. If such con-
stants are defined (either before or after
the assembler is loaded) after space has
been allotted for the assembler and before
the dictionary pointer has beenresetta the
top of the core vocabulary, they will be
available to the assembler but will be
forgotten along with it when the vocabu-
lary linkage is changed after assembly is

ASSEMBLER SCR # 1

CONOUDWND

Assembly cample
Conventional format
LDA #O
LDY #$80
L1 §TA 300,Y
DEY
BPL L1
JMP NEXT

27JUNB7CHP

S S

Format for this assembler
ASSEMBLE TEST

0 # LDA, 80 # LDY,
END

101 300 ,Y STA, DEY, 101 BPL, GONEXT

Vv Ay ard

-->

ASSEMBLER SCR # 2

Q

AN 08MARBBCHP

HEX

VOCABULARY ASSEMBLER

ASSEMBLER DEFINITIONS

VARIABLE MODE

VARIABLE MODE.KEY

\ The allowable numbers of labels and references is controlled

N in the rest of this screen

14 ARRAY LABEL.TABLE N\ Provide for 20 labels, and

CREATE REF.TABLE 0 , 0 , 56 ALLOT N\ for 30 references

UARIABLE REF.POINTER

s CLEAR.TABLES 15 1 DO 0 I LABEL.TABLE !
REF.TABLE 3 + REF.POINTER ! 3

VARIABLE LONG.ADDR

—-—>

LOOP

ASSEMBLER SCR # 3

0 N Modes 0PMARBBCHF
umnpknc. 1 :+ ZFP O MODE ¢ 0 MODE.KEY ! 3 \ Adds 4 to opcode
2 \ ZP is default mode
. 3 : ,X 1 MODE ! | MODE.KEY ! ; \ Adds 14 <(zero page,X?
Sincerely, 4 : ,vy 2 MODE ' 202 MODE.KEY ! ; \ Adds 14 - LDX, STX, only
Chester H. Page S : %> 3 MODE ! 4 MODE,.KEY ' ; N\ Adds 0 (ZF X
. . 4 t)Y 4 MODE ' 8 MODE.KEY ! 3 N Adds 10 (2P, ¥
1707 Merrifields Drive 7 : # S MODE ! 110 MODE.KEY ! ; \ Adds 8 Immediate
Silver Spring, Maryland 8 : ,A & MODE ! 20 MODE.KEY ' ; \ Adds 8 Accumulator
9 ¢+ > 7 MODE ! 40 MODE.KEY ! 3 N\ Adds 2C - Indirect JMPFs only
10 - 8 Adde C - Absolute address
11 k4 Adds IC - Aabsolute X
12 N\ 2] Adds 18 - Absolute .Y
13 CREATE ADD.TABLE N\ Indexed by mode value
14 1404 , 0014 , 0810 , 2C08 , 1COC , 18 C,
15 —->
ASSEMBLER SCR # 4
0 NA is a given address 0 9MARBBCHP
1 ~ C is address returned by opcode mnemonic
2+ PLEGAL ¢ C---C)> DUP 1+ Ca MODE.KEY @ AND FF aAaND
3 ABORT" 1Illegal Opcode" DUP C? 20 = N Check for ,A
4 0= IF OVER 100 U< 0= IF MODE.KEY @ 0C AND
S ABORT" Il1legal Indirect" THEN THEN 3
é
7 + ABS.ADDR DUP 1+ 3 MODE.KEY @ DUP 3C AND
8 ABORT" Illegal address" DUP 40 = IF DROP DROP ELSE AND 200 =
b4 IF -1 MODE +! THEN 8 MODE +! THEN 1 LONG.ADDR ! 3
10 ?2P (€C~---C> MODE.KEY ® 20 = 0= IF OVER 100 U< 0=
11 OVER 1+ C2 MODE.KEY 9 OVER OR 262 = SWAP 3F = OR OR
12 IF ABS.ADDR THEN THEN
13
14 : ?IMM DUP {+ @ MODE.KEY 3 AND 100 = IF -2 MODE +! THEN ; -->
15 \ Special treatment of immediate with CPX, CPY, STX, or STY,
Forth Dimensions 10 Volume X, Number 2

‘.
ASSEMBLER SCR # 5 |
(IAN 0 PMARSSCHP
: LABEL.SAVE FF AND DUP LABEL.TABLE 9 \ Not new label?
ABORT" Duplicate label™

1

2

3 HERE SWAP LABEL.TABLE ! ; \ Save label address NGS FORTH
4

5 : LC1 SP@ SO 4 -

&

7

8

9

IF SWAP LABEL.SAVE THEN

: LC2 SP@ S0 6 -~ = IF ROT LABEL.SAVE THEN . A FAST mm'
OPTIMIZED FOR THE IBM
tDUR FFOD AND 100 = N I it a tabel® PERSONAL COMPUTER AND
= s | a f
10 IF HERE REF.POINTER @ 0 OVER C! \ Full address iabel needed MS-DOS COMPATIBLES.
i1 1+ ! \ Save compilation address
i2 3 REF.POINTER +! N Advance for next entry TANDARD FEATURE
13 THEN LONG.ADDR 9 8 8
14 IF , ELSE C, THEN ; \ Compile absolute address or ZP byte INCLUDE:
15 -2
79 STANDARD
ASSEMBLER SCR # & ®DIRECT I/O ACCESS
0 \ CREATE operatorcs for defining mnemonics 0YMARBBCHP
1 \ Multimode opcodes oFULL ACCESS TO MS-DOS
2 3 M/CPU CREATE 2 ALLOT G, , DOES)> 0 LONG.ADDR ! LC2 ?LEGAL FILES AND FUNCTIONS
3 ?ZP ?1MM
4 C2 MODE C? ADD.TABLE + C? + C, ~ Adjust opcode ®ENVIRONMENT SAVE
S MODE.KEY @ 20 = 0= IF COMPILE.ADDRESS THEN 2P ; & ILOAD
é
7 \ Single-mode opcodes eMULTI-SEGMENTED FOR
g : CPU CREATE 2 ALLOT C, DOES> LC1 C? C, 2P ; LARGE APPLICATIONS
:? ! EEAECHES CREATE 2 ALLOT C, DOES> LC2 OEXTENDED ADDRESSING
k] s
- ' Ffe
1? HERE 1t REF.POINTER @ 1 OQVER €! \ Branch o+f.,et.needed eMEMORY AIJ.DCATION
13 1+ ! \ Save compilation address CONFIGURABLE ON-LINE
i4 3 REF.PUOINTER +! 2P 3 N Advance for next entry
-—7
15 ®AUTO IOAD SCREEN BOOT
) &
ACSEMBLER SCR # 7 LINE & SCREEN EDITORS
0 \ Second pass replaces stored label targets 21 JUL87CHP ®DECOMPILER AND
2 BEGIN -2 REF.POINTER +! REF.POINTER 3 DUP 1+ 9
3 N Find label compilation address
4 DUP WHILE DUP C3 DUP LABEL.TABLE @ Label addrecs #8088 ASSEMBLER
5 3 ROLL C% \ Word-or-byte f)ag
p IF 2 PICK - 1- . Offcet OGRAPHICS & SOUND
7 DUP ABS 7F >
8 IF DROP CR ." Branch to " 100 + . ." it too far” ONGS ENHANCEMENTS
g ." for label is missing)* SP! QUIT
10 THEN ROT C! eDETATILED MANUAL
11 ELSE ROT !
12 THEN DROP REPEAT DROP DROP ; ®INEXPENSIVE UPGRADES
13
14 ~--@ @®NGS USER NEWSLETTER
15

A COMPLETE FORTH

DEVELOPMENT SYSTEM.
ASSEMBLER SCR # 8

0\ Definitions of mnemonics 0 8MARBBCHP

| 0040 &1 M/CPU ADC, 0060 21 M/CPU AND, 0040 Ci M/CPU CMP, PRICES START AT $70
2 0040 41 M/CPU EOR, 0080 01 M/CPU ORA, 0060 Ei M/CPU SBC,

3 0060 81 M/CPU STA, D040 Al M/CPU LDA,

4 025E 02 M/CPU ASL, 025E 42 M/CPU LSR, NEWeHP-150 & HP-110
5 0256 22 M/CPU ROL, 025E 42 M/CPU ROR, VERSIONS AVAILABLE

46 027E C2 M/CPU DEC, 027E E2 M/CPU INC,

7 014F EO M/CPU CPX, 01&4F CO M/CPU CPY, “

8 034D A2 M/CPU LDX, D16E A0 M/CPU LDY, 027D 82 M/CPU STX,

% DO7E 80 M/CPU STY, DG7F 20 M/CPU BIT, D03F 40 M/CPU JMP, ‘

10 00 CPU BRK, 18 CPU CLC, D8 CPU CLD, 58 CPU CLI, B8 CPU CLV,

11 CA CPU DEX, 88 CPU DEY, E8 CPU INX, C8 CPU INY, EA CPU NOP, .'

12 48 CPU PHA, 08 CPU PHP, 48 CPU PLA, 28 CPU PLP, 40 CPU RTI,

13 &0 CPU RTS, 38 CPU SEC, F8 CPU SED, 78 CPU SEIl, Aa CPU TAX, NEXT GENERATION SYSTEMS
14 A8 CPU TAY, BA CPU TSX, 84 CPU TXA, %A CPU TXS, 98 CPU Tya
'S ——> ’ ’ P.O.BOX 2987

BANTA CLARA, CA. 95055
(408) 241-5909

(Letters screens continued on page 22.)

Volume X, Number 2 11 Forth Dimensions

Erth includes all the fundamental
tools needed to create data objects. With
these tools, you can create innumerable
different kinds of such objects.

For this series of articles, our focus will
be on the data objects that are most port-
able across CPUs of different bit widths,
and on the ability to share operations be-
tween related types of objects. Without
these concems for portability and pooling
of operations, designing new data objects
has been guided by two main criteria: the
simplicity with which frequently associ-
ated operations can be implemented
(which also affects the speediness of such
operations) and the memory compactness
of the layout (which often inversely affects
the simplicity of the associated opera-
tions).

New designs should be evaluated with
respect to all these criteria. In this discus-
sion, the performance and compactness of
the code will only be mentioned when new
design approaches threaten to compromise
them too much.

The many topics about data objects
include: how much data typing is sup-
ported by Forth; what constitues a Forth
data type; how portability issues converge
with data typing issues; and how data typ-
ing can be implemented. Another topic
which is often treated too lightly is the
choice of action (specified following
DOES>)in user-supplied, data-declaration
routines. This action is adopted by all data
objects created with the parent declarator.
Throughout this text, I will refer to this
behaviorasthe “default” or “initial” opera-
tion,

The Quest for Reliable Object Designs
To be able to talk about goals such as

DESIGNING
DATA STRUCTURES

MIKE ELOLA - SAN JOSE, CALIFORNIA

“reliability,” several basic terms must be
understood precisely.

Objects are binary representations of
numbers, dates, letters, or other abstrac-
tions. The individual bits that comprise the
object are usually grouped into larger units,
which can represent more than a Boolean
on/off state. These bit-groupings help to
structure the object.

“An object is sim-
ply a collection of
properties.”

The design of objects encompasses
more than structure alone. Each structural
component of an object is invested with a
particular interpretation, which gives rise
to the properties exhibited by the object. An
object can be thought of as a collection of
structural components and their associated
interpretations. A more portable, or im-
plementation-independent, way to view an
object is simply as a collection of proper-
ties. For example, a signed integer has a
sign property. The sign property arises
from a particular component of the object,
such as the interpretation of the most sig-
nificant bit.

Identifying each context in which the
object is intended to be used will help to
determine the properties of the object. For
example, assume you have to store phone
numbers. While a sign bit would not serve
any useful purpose in this context,a “work”
or “home” discriminator might be useful. A
32-bit signed integer object could still be
used for storing the numbers, but the object
would not have a sign property. Instead, the

bit normally associated with a sign could
be interpreted as a work/home flag, an al-
together different property.

Operations act upon an object by tak-
ing advantage of known properties of the
object. For example, a muitiply operation
uses the sign bits of its operands to deter-
mine the sign bit of the result. This way,
the properties of the result are consistent
with the properties of the input objects.

If we know the properties of the resul-
tant object, we may say that the object is
reliable with respect to the operation.
When the result is an object with un-
known properties, the operation is unreli-
able with respect to the object. For ex-
ample, a string concatenation operation is
reliable when it properly accounts for the
maximum-length property of the string
into which the result is stored. By design-
ing operations whichrespect the invariant
properties of objects, we make our data
objects “reliable.” (See Reliable Data
Structures in C by Thomas Plum for a
more detailed discussion of this subject.)

The process of object design requires
careful judgments about all the properties
and operations an object should support.
These properties and operations cannot
be considered separately. The necessity
for specific operations determines the
choice of properties for an object. Like-
wise, the choice of properties impacts the
operations that can be reliably performed
upon an object. A string storage operator
cannot reliably store a string unless the
string variable includes a “maximum
length” property, so that it can at least
report error conditions arising from space
limitations. So the design of objects alter-
nates between consideration of the opera-
tions to be supported and consideration of

Forth Dimensions

12

Volume X, Number 2

the structural components that reliably
support those properties.

Forth Data Types

Forth is a typed language, in terms of
having many objects that share the same
properties. Accordingly, operators and
objects must be correctly paired. For ex-
ample, the EMIT operation is only useful
when applied to the correct object. The
Forth programmer must oversee the proper
matchup between operations and objects.
Other languages also expect you to make
the proper matchups, but they can provide
a warning when you have made a mistake.
Forth provides no such warning, unless you
add the necessary code to make this pos-
sible. But Forth’s lack of built-in type
checking does not imply an absence of data
types or any special dislike of data types.

The topic of Forth data types is often a
sensitive one. Most authorities would say
that the absence of strongly enforced data
typing is bad. What they are really saying is
that most programmers cannot kecp track
as well as the computer can of what they
declare, and this is inarguably true. But by
overcompensating for human frailty with
strictly enforced type checking, languages
become too confining.

Few languages besides Forth will let
you make the final decision about whether
an operator and an operand will be suitable
for one another. So sets of operations
(COUNT, -TRAILING, and TYPE for ex-
ample) can be intermixed in ways that
support a variety of objects, and with much
greater efficiency in Forth than in most
other languages.

Properties of
Forth Data Objects

The properties of an object arise out of
the unambiguous and stable interpretations
we associate with each bit and byte of an
object. Properties also include other facts
about an object, such as a length (including
component parts) and the layout. The lay-
out properties of a multi-partobjectinvolve
the order of the parts and their offsets from
the start of the object.

These shared properties of data objects
giverise todatatypes like integer variables,
ASCII character codes, arrays, etc. As a
designer, you need little more than consis-
tency among a group of objects to establish
data types. (Because it encapsulates a
group of properties, even one instance of an

object establishes a data type.)

“Variable” is a convenient label for a
group of similar objects. The word variable
is used to identify a type of object without
redescribing it. The term helps to displace
phrases like “16-bit, signed integer value.”
(“Variable™refers to the variable data type
— the group of objects with the properties
we commonly associate with Forth
variables. VARIABLE refers to the Forth
routine that creates instances of variables.)

In Forth, named data objects have a
parent code field address (CFA) associated
with them. Although the CFA (and
associated DOE S> phrase) is more abehav-
ioral inheritance of the data object, that
behavior is tightly bound to the object. As
such, this behavior can be loosely consid-
ered a property of the object. If you think of
the CFA as a physical subcomponent of the
object, this idea gains more respectability.

The behavior of a constant is to return
the value with which it was declared. That
action can be considered an operation,
rather than a property. Here’s why: to de-
sign the initial operation for a constant, first
you must take into account the width of the
stored datum, so that the correct fetch op-
erator can be engaged. Therefore, the width
of the object is the fundamental property.

A data object need not have any opera-
tional property, as in the case of user vari-
ables. Memory has been allocated for user
variables without a nearby CFA and label.
Other examples of objects without built-in
operational properties are disk buffers and
headerless tables.

Reusability of Operations

Provisions for data typing block the
compilation of an incorrect type of operator
for an object, or else report a fatal error at
run time. (Some compilers will perform
type conversions automatically to avoid
this error, but that digresses...) In object-
oriented languages, provisions for objects
assist in the selection of the correct type of
operation through hierarchical data typing;
if the current operation type is not found, an
appropriate parent type operation may be
selected. This operator-selection mecha-
nism is called inheritance.

Careful design of Forth data objects also
allows operations to be reused by different
objects. The reusability of operations has
received recent attention due to its intro-
duction in object-oriented versions of es-
tablished languages. In Forth, however, this

kind of inheritance mechanism is overkill.
When objects inherit operations, they are
“enabled” foruse. Without data abstraction
or data type enforcement, Forth operations
are always enabled for use with any object;
but the selection mechanism is that crea-
ture known as the programmer.

Objects which have identical properties
can be directly manipulated by a common
set of operations. Objects may also be de-
signed that share certain properties and not
others, In such cases, you can often use a
subset of the operations for both types of
objects — particularly, the operations
which engage only the property or proper-
ties shared by the different objects.

For example, an array of characters can
be one object printed by TYPE, and a
counted-string is another object thatcan be
printed by TYPE when preceded by
COUNT. Youcouldalsosay that TYPE only
works on one object (an array of charac-
ters), and itis incidental that the object may
be part of another object. Whatever view
you take, an array of characters is the prop-
erty shared by both these objects, and at
least that much can be clearly stated.

For this discussion, I will not consider
parts of objects to be distinct objects.
Rather, I encourage the reader to think of
such a subcomponent as a distinct prop-
erty. Any such properties can be shared by
one or more different objects. In other
words, treat the properties of an object as
traits that must be individually accounted
for by the applicable operations. Because
TYPE only addresses the property of an
array of characters, it can be applied to a
variety of objects with that component
property. (A side-effect of making opera-
tions property oriented rather than object
oricnted is that strict data type enforcement
becomes more difficult.)

By designing objects to share important
properties, we will also be able to design
reusable operations for those objects. So a
design strategy for data objects and their
supporting operations may be:

When designing data objects that are
closely related to one another, choose
layouts that are as regular (standard) as
possible, which results in shared layout
propertics. Similarly, choose the initial
operations so that their functionality
dovetails with pre-existing operations.
(Efficiencies are more likely 1o be real-
ized when objects have as many shared

Volume X, Number 2

13

Forth Dimensions

TOTALCONTROL
with LM/ FORTH"

For Programming Professionals:

an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers

e 16-bit and 32-bit implementations

* Full screen editor and assembler

» Uses standard operating system files

* 400 page manual written in plain English

¢ Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler

¢ Unique table-driven multi-pass Forth compiler

¢ Compiles compact ROMable or disk-based applications

¢ Excellent error handling

* Produces headerless code, compiles from intermediate
states, and performs conditional compilation

¢ Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303

¢ No license fee or royalty for compiled applications

For Speed: CForth Application Compiler

* Translates “high-level” Forth into in-line, optimized
machine code
¢ Can generate ROMable code

Support Services for registered users:

¢ Technical Assistance Hotline
* Periodic newsletters and low-cost updates
e Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

.Laboratory Microsystems Incorporated
IPost Office Box 10430, Marina del Rey, CA 90295
Phone credit card orders to: (213) 306-7412

Overseas Distributors.

Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt, 7651-1665
UK: System Science Ltd., London, 01-248 0962

France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16

Japan: Southern Pacific Ltd., Yokohama, 045-314-9514

Australia: Wave-onic Associates, Wilson, W.A., (09) 451-2946

properties as possible.)

Such a strategy should yield a robust sub-
set of general operations, as well as a
minimal subset of object-specific opera-
tions.

Categorizing Operations

There are a couple of ways to catego-
rize operations: as memory based or stack
based. Since strings cannot be placed on
the stack, string operations are memory
based (although parameters for such string
operations may be passed on the stack).

Later, we will categorize operations as
object sensitive (or object specific) and
object insensitive. An object-insensitive
operation could be applied to many dis-
tinct, but related objects. TYPE was
shown to be an object-insensitive opera-
tion which can be used across different
string objects.

Tiers of Operations

A user variable is structured differ-
ently than a variable or a constant. The
initial operation of a user variable feiches
an address that points to the associated
value. The net effect is the same as with a
variable (yielding the address of a cell).
However, a different initial operation was
required, in order to account for the differ-
ent layout property of a user variable: a
pointer resides where the value would
normally be. Once the address is placed on
the stack, the fetch and store operators (@
and!) can be used with either type of
variable. So those operators are object-
insensitive, because they can be used with
several types of objects.

To be precise, these different kinds
objects ultimately make reference toa cell
and, therefore, exhibit cell properties. The
cell is one of three tiers (or supertypes) of
basic objects in Forth. Other tiers of opera-
tions are based upon the double and the
character (or byte).

After the value associated withacell or
character value has been fetched onto the
stack, other of the cell-oriented tier of
operations can be applied, such as add,
subtract, logical AND, logical OR, efc.
Ultimately, many different objects are
manipulated by the same set of Forth op-
erators. In this way, Forth derives in-
creased efficiency and compactness.

The ease with which different object
layouts can be homogenized for use witha

(Continued on page 38.)

Forth Dimensions

14

Volume X, Number 2

Once upon a time, while the sorceror
was away, his apprentice magically made
a broom carry water from a well into the
house. When the job was done, the appren-
tice didn’t know how to stop the magic
broom, so he chopped it into a thousand
pieces. But then, each piece began to carry
water. The house was flooded, and the
apprentice almost drowned. The sorceror
himself had to straighten out the mess.

To write a complicated program, you
definitely need to “chop it into pieces.”
But, as the sorceror’s apprentice discov-
ered, chopping up a problem just any old
way sometimes makes it worse! You need
a technique for breaking programs into
manageable pieces.

How can you structure a program so
that it is as simple as possible? Well, every
useful program mimics some activity or
event. Aninventory program may simulate
a warehouse operation; a game program
might simulate an airplane flight or a poker
hand. A program can’t be simpler than the
event it simulates. When your program’s
structure precisely matches the structure of
the event it mimics, you have avoided use-
less complexity.

Events can be naturally divided into
objects. For instance, an airplane flight is
made of objects such as aplane, apilot, and
anairport. These objects act in ways deter-
mined by their natures. Airports stay in one
place, planes must take off before they can
land. Objects interact. When a pilot ma-
nipulates a plane’s controls, he “sends a
message” to the plane to bank or to climb.
Complicated objects can be made of sim-
pler objects. A plane can be considered to
be made of an engine, control surfaces, etc.

Matching a program’s structure to an

FORTH

RICK HOSELTON - HOUSTON, TEXAS

event’s objects is called object-oriented
programming. Some supporters of object-
oriented programming believe that pro-
grams should treat everything, even each
location in memory, as an object. In prac-
tice, “object orientation” is a matter of
degree. Object programming is a style or
philosophy, as much as a formula.

Any computer language can be used t0
produce object-oriented programs, but
some make it easier than others. Some
programming languages, like Smalltalk,
actually require an objectapproach. Forthis
not a likely choice to rigidly enforce a
programming discipline, but it caneasily be
extended to provide object programming
support.

“Object program-
ming is a style or
philosophy, as much
as a formula.”

Objectives

Following Forth’s minimalist philoso-
phy, the routine should be brief. It should
meet the common goals of object program-
ming, and allow programmers to extend
and customize it for their own use. The
routine must not interfere with the current
capabilities of Forth — the goal is to en-
hance the powers of Forth, not to bury them.

The routine must define objects to
handle their own data with their own rou-
tines (methods). An object may exchange
information with other objects by sending

OBJECT-ORIENTED

and receiving messages. It shouldn’t di-
rectly access or change other objects’ data.
An object “obeys” or “acts on” messages
by executing corresponding methaods.

The routine must define methods for
the objects. A method is a routine an object
uses to manipulate its data. Executing a
method is the way an object responds to a
particular message. The same message
may be used in different ways by different
objects. For example, two objects named
GOLFBALL and TRUCK might have differ-
ent methods for the message DRIVE. The
phrase DRIVE GOLFBALL would cause a
completely different action than the phrase
DRIVE TRUCK.

The routine should support late bind-
ing. Early binding means the system needs
to know which object is to receive a mes-
sage at the time it compiles the message
call. With late binding, the application can
wait until run time to decide which object
should receive a message. The phrase
ENTERMETHOD DECEMBER?

IF ANNUALOBJECT
ELSE MONTHLYOBJECT THEN
would not work in an early binding system.

The routine should support irheri-
tance. Sometimes, a group of objects can
respond to the same group of messages
with the same methods. And sometimes, a
group of objects must share some data with
each other. It’s convenient to describe such
groups of objects as classes. Common
methods and common data can be de-
scribed just once for the entire class, in-
stead of once for each object. This is called
inheritance.

Object Forth must execute quickly. If it
is not fast, it is just not useful.

(Text continued on page 34.)

Volume X, Number 2

15

Forth Dimensions

-
¢ N
@ \ CBJECY 2RCERAYMING SUPRCRT "GOLS 3¢ Seotember, 1987 \ Data Structures:
g JFFEET RBYTES METHID fowrwmat
3 8 P rext cloer Srother METHDD oointer
& HEHEHEHEH R R R R 2 z AESSAGE rumber
3 The faoliowing routine is placed in the public 4 { METHOD's code
5 gomain. I give my permission for it to be used for
7 any legitimate purpcse, free of charge.
8 I make no mavranty of any king for this routine, anc DFFSET #BYTES CRJECT format
9 bear ro responsibility wiatever for its use, 2 e father OBJECT address
it 2 g youngest son DBJECT address + 4
o Rick F. Hoselfon 4 2 next older brother OBJECT address + &
i & 4 youngest METHOD address
13 EREEFERAEEE R 8 n optional local data
14
15
H 15
9 \ Loading \ Loading
i
2 CREA™E APPLICRTION 3 "FORBETahle" definition
3
4 £ 9 THRU \ Object tools The wordset to make OBJECTs and ETHODs work,
3 18 13 THRU \ Testing ~ Demonstration A demonstration.
6
7
8\S
9 This routire is written So worl with LOXAN & PERRY's F83.
16 This is a routine to assist FORTH programmers who Other FORTH implementations will probably recuire some
11 want to produce "DBJECT ORIENTED" code, That phrase changes. Esopecially, check YETHOD: RACTION amd ?CREATE.
12 seews to mean different things tc different people.
13 Here 15 what it means to we.
4
5
2 16
8 \ ACTION \ ACTION
!
2 CODE ACTL { ghy msg — ! This wore finds the ¥ESSABE on the given OBJECT's
2 APP WPROP & ¢ W ADD YETHOD-1ist and performs the corresponging METHOD
4 BEGIN 2 Wl W MOV 2 Wl AX CMP = INTIL
S 4 %WADD 8 (W I END-CODE
€
71§
8
9 : ACTIN (ob) #sg —) \ Just like the CODE This high-Tevel cefinition coes the same thirg.
10 SWAP & + \ locate METHOD poirter It is grovicded for decumertation, and for those wha
11 BEBIN @ 2DUp 2+ @ = INTIL \ search for egua! MESSAGE systems that aren’t BRSE family hasec. The soeec loss
12 4+ NIP EXECUTE 3 \ execute the METHED oes not seem to be eritical.
13
14
13

Forth Dimensions 16 Volume X, Number 2

3 17
2 \ ACTICN \ ACTION
2 VARIAELZ 'MS3 \ Current ¥ESSAGE # location Ypints to the last METHOD in the list. Placing the MESSAGE
3 number into this location ensures that a matcn will pe foume
4 YARIARLE *DBJECT \ Points to current QBJECT Poirts to the current OBJECT
T
& : RCT (pfa msg — ! \ What MESSAGES do. Betuy the OBJECT and MSE poirters, then zo serform the
7 20Up M55 & ! OBJECT ' ACTION METHOD requested for this OBJECT,
B
J:E (7)) \ Current CBJECT Place current DEJZCT's address ortc twe stacs.
18 'OBJECT 8.
it Fiace current OBJECT's FATHER's address onto the stack.
13
i
15
4 i8
& \ Object acdressivg \ Dbyect addressing
g
3 ¢ YOBJECT (rel-ador -- adcr § \ Locate in current DBIECT Convert an BJECT offset into a nemory adcress.
4 ME+ g
5
5 4+)SUPER { rei-ador —- addr)\ Locate in ORJECT's narent Convert an offset in the current DBJECT'S ‘father into a
7T MR+ menory address.
8
9 LINK, € ader —-) \ Link here to adoressec head Useful for building links, and we use many,
1@ AERE OVER @, GhaP ! g \ afdr points here, here points
i1 \ where adcr pointed
i
13
14
18
S 13
2 \ MRSTER \ MASTER
¢ BEL {—) For suiiging DRJECTS.
3 YORJECT LINK, \ make current and build father
4 2, \ start with no sons
S 2)BUPER LINK, \ iink up with brothers
5 L ISUEER® , \ innerit METHODs
7
8 CREATE MRSTER MRSTER Qs the too OXECT ir fhe systen. 411 JRJEDTs
5 MWASTER 'OBJECT \ maxe master the current pven MASTER, are cescendents of MASTER
@ CR3ECTY \ master is his own father °
it ¢ 10BJECT & ERARE \ clear master
e
13
14
13
Volume X, Number 2 17

Forth Dimensions

& 20
@ \ (METHOD:) \ (METHOD:}
i
2 s {METRDD) (- msp) \ Builgc a MESSAGE Buiid a MESSAGE header, and leave the PFA on the stacu.
3 CREATE HERE DOES) ACT At run time, the MESSAGE will ACT,
4
5t MREATE (-- msp) \ et ¥ESSABE number 1¢ a PESSABE has rot peer defired, cefire it,
& YINE BL WORD FIND Either way, leave the MESSAGE number (parameter fielo address)
7 IF NIF)YBODY ELSE [DROP »IN ! (METHOD) THEN or the stack, BE CAREFUL not to use a name for a MESSASE that
8 nas aiready been used for anything but a message!
9 ¢ METHQDY) (-
¢ CReATE \ Be sure MESSAGE exists Set for create) the XESSABE number.
it £ YORIECT LINY, , \ vink this MESSAGE number Compiie this ESSAGE number and link up the METHOD chain.
2 D] LITERAL \ gnter polon definition Compiie the code for this METHOD,
i3 WEP Iy \ compile this METHOD
14
13

7 21
@ \ MASTZR METHOD's \ MASTER METHODS
i
2 \ The system's base METHOD ANCHOR is always at the end of the METHOD chain.
3 (METHOD:) ANCHOR ." I don't understang" Its MESSAGE number is set by ACT to the current MESBAGE.
4 ' ANCHOR YBODY 2+ "™MSG ! S0, if ACT firds no other matching METHOD, it uses this ore.
5
& \ Building a METHDD is a METHOD This is the default METHOD for building METHOD's.
7 (METHOD:) WETHOD: { —-) OBJECT's can have a different METHOD: if you define one.
B8 {METHOD:} ;
12\ Bullding a rew OBJECT is a ¥ETHOD for the parent This is tihe defaylt METHOD for gefining ORJECT's.
11 MASTER METHOD: CRIECT: (-} You may defire a different OBJECT: to build
12 CREAT: OBJECT) ¢ nore compiexn tyses of CRJEZT's,
13
15

8 =
8 \ . METHODS \ . METHODS
21 JMETHOD 1 limk -) Disnlay the rame of a METHOD.
2 R DUP B UR DUPE &UR
4 g+ ® [P B UR 2 SPACES BODY) INAME .ID g
5
& MASTER METHOD: LMETHBDS { - Displays all the ®ETADD's that have peen gefineo for the
7 BASE B HEX 6 YOBJECT current QBJECT,
8 BESIN @ 7DUP WHILE DUP .METHOD REPEAT
9 BRASE !
2
1l
ie
(3
ih
15

{(Screens continued on page 33.)

Forth Dimensions 18 Volume X, Number 2

CALL FOR PAPERS

for the tenth annual

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 25-27, 1988

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California U.S.A.

Theme: Forth and Artificial Intelligence

Artificial intelligence applications are currently showing great promise when developers
focus on easy-to-use software that doesn't require specialized expensive computers. Forth's
design allows programmers to modify the Forth language to support the unique needs of
artificial intelligence. Papers are invited that address relevant issues such as:

Programming tools for Al
Multiusers and multitasking
Management of large memory spaces
Meeting customer needs with Forth Al programs
Windowing, menu driven or command line systems
Captive Forth systems—operating under an OS
Interfacing with other languages
Transportability of AI programs
Forth in hardware for Al
System security

Papers about other Forth topics are also welcome. Mail your abstract(s) of 100 words or
less by September 1, 1988 to:
FORML
P. O. Box 8231
San Jose, CA 95155

Completed papers are due by October 15, 1988. For registration information call the Forth
Interest Group business office at (408) 277-0668 or write to FORML.

Asilomar is a wonderful place for a conference. It combines comfortable meeting and
living accommodations with secluded forests on a Pacific Ocean beach. Registration
includes deluxe rooms, all meals, and nightly wine and cheese parties.

Volume X, Number 2 19 Forth Dimensions

User’s of Laxen and Perry’s F83
have a stepping utility invoked by the word
DEBUG. It steps through definitions, dis-
playing the stack contents at each step
every time a key is pressed. Users of fig-
FORTH and its derivatives have no such
utility inherently resident in their systems.

During a meeting of the central Arkan-
sas chapter of the Forth Interest Group,
someone noted how nice it would be if fig-
FORTH definitions could be stepped
through; they suggested redefining ;
(semi-colon). Those with a fair degree of
Forth experience — and perhaps even
novices, after amoment’sreflection — will
see that attempting to define

; KEY DROP ;
will result in a problem as soon as the first
semi-colon is encountered by the compiler.
Even if the above definition was renamed
to [;) and additions made it a workable
replacement for ;, a lot of editing work
would be required to insert the new word
when needed and to remove it when done.
When I started this project, I made a rule:
the finished application must not require
any editing when it is used.

The Solution

The solution I finally arrived at uses :
(colon) rather than ; (semi-colon), and
vectored execution “tricks” the colon into
being redefined. This has three advantages
over the other methods I tried. First, no
debugging word needs to be edited in and
out. Second, stepping mode can be toggled
on and off without recompiling. Third, the
colon itself does not have to be recompiled.

Listing One is the step-trace applica-
tion. Listing Two contains a few support
words, which must be loaded before the

fig-FORTH

IN fig-FORTH

code in the first listing if your system
doesn’t already have them,

Now let’s examine the step trace code,
beginning with screen three of Listing One.
The word DEBUG is executed and the rou-
tine to be debugged is recompiled.
Executing DEBUG replaces the value in the
first PFA address (COL : ADR) of : (colon)
with the CFA of [:] (STEP:VAL). The
definition of [:] beginning on line 18 will
now be used when acolon is encountered in
definitions compiled after DEBUG execu-
tion. The remaining PFA addresses in the
definition of : will not be executed because
of the R> DROP on line 25.

“[:] will now be
used when : (colon)
is encountered...”

The stepping function will be taken care
of when STEP2iscalledby [:] (STEP?’s
CFA was pushed into [:] on line 23).
When STEP? is called (see line 7), the
variable DO-STEP? is checked to see if
words are to be stepped; if so, it uses the top
of the return stack to display the name of the
word and displays the contents of both
stacks. STEP ? then stops and waits for a
keypress (line 11). If the keypressisa B (or
b), BREAK is executed; otherwise, the next
word is stepped. (See FD V/1 for a full ex-
planation of the BREAK/GO tool in screen
two of Listing Two.)

Here is how : (colon) would look if
decompiled before execution of DEBUG:

STEP-TRACING

GENE THOMAS - LITTLE ROCK, ARKANSAS

?EXEC !CSP
CURRENT CONTEXT
CREATE (;CODE)

HERE 2- !] ;
IMMEDIATE

And, after executing DEBUG:
[:] 'Csp
CURRENT CONTEXT !
CREATE (;CODE)
HERE 2- ! 1 ;
IMMEDIATE;

But, because of the construction of
[:1, the debug version of : acts as if it
were defined like:

: [:] ; IMMEDIATE

Thus, through the magic of vectored
execution, we are able to toggle between
two alternate versions of : (colon), com-
piling under whichever we choose.

The default state of STEP? is off.
After compiling a routine for use with
DEBUG, the word STEP is executed to
toggle to the stepping mode. STEP may be
called as often as desired. Whenever you
are unsure whether compiling is set to
normal or to debug, invoke ? STEP to find
out. Of course, the normal compiling
condition of the colon is restored by
RESTORE : COL.

A display of the return stack contents
isof little value unless there is an easy way
to identify the word to which those num-
bers (PFA return addresses) belong.
While in the BREAK state, or at any time
when not executing, the word NAME on
screen four of Listing One will provide the
needed information. Feeding any valid
address from a parameter field to NAME
will produce the name of the word to

Forth Dimensions

20

Volume X, Number 2

which that parameter field belongs. Some-
times the return stack contains items like
DO LOOP indices. Giving NAME an invalid
PFA has never crashed my system, but a
memory check location in addition to
DEF~END could be added to stop NAME
when the bottom of the dictionary is
reached. It is also well to remember that a
return stack number may be equivalent to a
PFA address and yet not actually be one. A
DO LOOP index, for example, may be equal
to some PFA address. Actually, NAME will
respond correctly when given any address
from a word’s dictionary entry, except the
last PFA address containing the CFA of ; §
(EXIT). In that case, NAME will produce
the name of the following word in the
dictionary.

Four words in the step-trace application
are intended to be executed from the
keyboard: STEP, STEP?,
RESTORE : COL, and DEBUG. The words
NAME, BREAK, GO, . S, and . RP are inde-
pendent of the step trace in the same way as
words like R> and DROP.

When you are debugging the step-trace
application itself, avoid crashes by
executing RESTORE : COL before forget-
ting and recompiling. After the step trace is
up and running, crashes will not occur if
you forget to RESTORE : COL and recom-
pile the routine you are debugging.

Compatibility

The definition of NAME assumes that
each dictionary entry’s LFA is followed by
its NFA. If the NFA comes first in your
system, change the 4 + on line 57 to 2+.

The definition of . RP assumes that the
return stack grows downward in memory;
anadjustment will be necessary for systems
in which that stack grows upward.

Ibelieve the definitionof [: 1 will work
in most systems, even if the : colon is
defined differently than in fig-FORTH. If
not, you will need to decompile your colon.
Using that decompilation, insert the code
on lines 21 — 25 at the appropriate place.

Gene Thomas edits the Comment Line,
the newsletter of the Central Arkansas
FIG Chapter, and is a registered poly-
somnographic technologist at the Sleep
Disorders Center at the University of
Arkansas for Medical Sciences.

Listing One.

Beginning scr #43
®. \ Scr #1Z Step trace Gene Thomas Feb84
t. ® VARIABLE DO-STEP?
2, = STEP \ -— | user; toggle step mode
3. SPACE ." Step is " DO-STEP? DUP & \ Toggle & display
4, IF OFF " oofflt \ If on, turn of+f
S. ELSE ON " oon.” \ If off, turn on
6. THEN
7. = STEP? \ -- !vectored to from [:]
8. DO~-STEP? B \ Step mode on?
9. IF CR R (R®) \ If so copy pfa adr
19. CFA NFA 1D. \ Display name and stacks
11, .5 .RP KEY DUP &6 = \ then stop and await key
12, SWAP 98 = OR \ press before continuing
13. IF BREAK THEN \ If{ key = B or b then
14. THEN ; A\ break, else continue
15, --% stepping cycle
16. \ Scr #2% Step trace gt Feb86
17. ? 2 CFA @ CONSTANT CFA:
18. = [31 \ —- isetup to vector colon for step execution
19. PEXEC !CSP CURRENT @ CONTEXT ! CREATE
26. \ normal definition of colon to here
21. CFa:z \ Inserts your colonl’s cfa in
22. HERE 2- ! \ next adr
23. } STEP? CFA DUP @ A\ Insert stepping instruction
24, HERE 2- ! , \ in the next adr
25. R> DROP 1 3 \ Drop ret adr to original col
26. ¢ remind CR ." Re-compile under current colon."
27. ? VARIABLE STEP-MODE
28. 2 ?8TEF \ -- luser; show compiling condition: normal /debug
29, CR ." Compiling " STEP-MODE @ IF ." under step mode."
30. ELSE ." under normal mode." THEN
31, >
32. \ Scr #3- Step trace gt FebBé
33. ? [21 CFA CONSTANT STEFIVAL \ Vectors used by debug
34, L @ CONSTANT COL VAL \ and restoreicol
3S. L CONSTANT COLZPFA \ Contents toggled by
36. \ debug and restoreicol
37. ° RESTOREZCOL \ -- iuser; set for normal compiling
38. remind COL:=VAL COLSPFA ! STEF-MODE OFF 3
39. ¢ DEBUG \ -- luser; set for compileing under step vector
49, remind STEPSVAL COL=PFA ! STEP-MODE ON
41, -2
42, To debug: forget routine if not compiled under debug mode,
43. execute DEBUG and re-compile the routine. Routine can now he
44, run under STEP (step on ok), or STEF (step off ok). When
45. debugged= forget routine, execute RESTOREZCOL and recompile.
44, Definitions are now compiled under normal conditions. Step
47. Trace screens can remain in system.
Beginning scr #44
48. \ Scr #4; Step trace augment 6T may85
49,
S50. ' ;8 CFA CONSTANT DEF-END N\ 1S = EXIT in some systems
S1.
32. 2 NAME \ any-pfa~adr -- !user; show name of word to which pfa
I \ belongs - is an independent word
S54. CR
55. BEGIN
56. 2- DUP @
37. DEF-END = \ Find end of prev dict entry
58. UNTIL 4 + \ and jump forward to nfa
SZ. " Adr is int " ID, \ Show name of word pfa is in
61.
62, TI-FORTH, an extension of FIG FORTH
63, END Step trace

Volume X, Number 2

21

Forth Dimensions

(Thomas's screens, from previous page.)

<

Beginning scr #41
0.
1.
2.
3.
4,
S.
6.
7.
8.
9.
10.
11,
12.
13.
14.
15.
16.

-

i

18.
19.
20.
21,

22,
23.
24,
23,
26.
27.
28.
29.
9.
31,

\ Scr #1; Non-destruct return stack display GT may8%

Some def’s you may need
= .RP \ —- juser; display contents of return stack
BASE 8 HEX \ Save base
CR RFPE 2- RO @ 2- RV \ Get limits of r-stack
DO I @ U, -2 +LOOP \ Display contents
BASE ! \ Restore base
;S

Alternate def for .RP

* .RP BASE @ HEX RO @ 2+ RFE DO I @ U. (2 +L0OOP)

LOOP BASE ! 3
(r-stack grows up in memory: Gray Smith)
RFE for TI-FORTH users (load scr #74, code):
HEX CODE RPE 8649 , Cb64E , B4ASF DECIMAL

\ Scr #2: Step trace support; modified for Step Trace, gt
\ Break point tool from Forth Dimensions vol V no. 1
\ Debugging tools: BREAK & GO WF
\ by Frank Seuberling, 3/4/81

® VARIABLE CHECK

13DEC81 KRH

: BREAK (==) CR RP@ 4 - CHECK ! \ R-stack security
® BLK ! \ Take input from
BEGIN \ terminal

QUERY INTERFPRET . " aok" CR
AGAIN
60 (- RPR CHECK B = \ R-stack security
IF R>» DROP K> DROP \ FResume exec prog
ELSE ." Can't resume" QUIT \ unless rp@ has
THEN ; \ changed
1S END Step Trace Support

(Page's screens, from page 11.)

0
1
2
3
4
S
é
7
<]
9
10
11
12
13
14
19

ASSEMBLER SCR # 9
6 \ More mnemonics and special
3 S0 BRANCHES BVC,

DUP 200 U< SWAP 100 U< 0= AND IF REF.POINTER 3 DUP
N If 100 < addr < 200 then

ASESEMBLER SCR # 10

AN

FORTH DEFINITIONS

definitions 0PMARBBCHP
B0 BRANCHES BCS, FO BRANCHES BEQ,
D0 BRANCHES BNE, 10 BRANCHES BPL,
JSR, SP38 80 4 - = IF SWAP LABEL.SAVE THEN DUP 20
it is a label

"\ Save compilation address
THEN

1+ HERE 2- SWAP !
3 REF.POINTER +!

vy SP® 50 4 - = IF SWAP LABEL.SAQVE THEN , ;

C,, 3F2 S0 4 - = IF SWAP LABEL.SAVE THEN C, ;

END SECOND.PASS CURRENT 3 CONTEXT ! ?EXEC ?CSP ;

GONEXT [71 NEXT >BODY JMP, ;

7 >BODY JSR, 3 --> N Useful in composite primitives
N e.g., ASSEMBLE PROGRAM ~ A " B " C GONEXT END

IMMEDIATE

Assembler concluded 1 2JUNSY7CHP
PRIM -2 ALLOT HERE 2+ , ;

ASSEMBLE 7?EXEC CREATE ASSEMBLER PRIM
[ASSEMBLER] CLEAR.TABLES ZP !'CSP ;

BRYTE
FORTH

INTEL
0K]

MICRO-

FEATURES
—FORTH-79 Standard Sub-Set
—Access to 8031 features
—Supports FORTH and machine

code interrupt handiers
—System timekeeping maintains
time and date with leap
year correction
—Supports ROM-based self-
starting applications

COSsT
130 page manual —$ 30.00
8K EPROM with manuai—$100.00
Postage paid in North America.
Inquire for license or quantity prcing.

IMMEDIATE &
DECIMAL

Bryte Computers, Inc. '.

P.O. Box 46, Augusta, ME 04330

(207) 547-3218 %

(Le tters Con t in ue d on page 3 2 .) n'-'-’c‘a‘-'u'o'l'.'.'-'o'.‘c’.'-'o'-'-'-'-'-'-'-'-‘-'.’-'-'-'.‘-’-'-P.'.\'c’-'-’.'-'-'-’-'-'.‘-'l

Forth Dimensions 22 Volume X, Number 2

fig-FORTH

LINEAR
AUTOMATA

ANDREAS CARL - BERLIN, WEST GERMANY
-

rI‘he idea for the following program is
from A.K. Dewdney in Scientific Ameri-
can (German edition, July 1985). He
writes, “In a world of artificial computers,
itis surprising to imagine that we mightbe
surrounded by a variety of natural com-
puters like water, wind, or wood. Such
natural systems don’t calculate in a con-
ventional way, of course, but their struc-
ture makes arithmetic abilities a hidden
possibility. Stephen Wolfram, physicist at
the Institute for Advanced Study in Prin-

ceton, is as advocate of this thesis. He is of i
“Cellular automata
can calculate and il
simulate natural sys- i ns
tems.”

VYRR

i

the opinion that a turbulent fluid or a
growing plant are built of simple ele-
ments, but in the whole are so complicated
that behavior cannot be reduced to mathe-
matical terms. This irreducibility means
they can store, transfer, and process infor-
mation — they can calculate!”

To demonstrate the arithmetic abilities
of natural systems, he uses cellular auto-
mata. In looking for cellular automata
which can both calculate and simulate
natural systems, Wolfram confines him-
self to the simplest automata, those of one
dimension.

These linear automata are defined by
two constants and a set of rules, which
define the transition from one generation
of cells to the next. k gives the number of

Volume X, Number 2 23 Forth Dimensions

states a cell can have; usually, it is two (to
be or not to be). r is the radius; it deter-
mines the number of adjacent cells that
will influence the subsequent state of a
cell.

A table of rules gives the state of the
next generation for every possible con-
figuration. For example, for k=2 and r =
2, there might be a rule which determines
that a configuration like 0-1-0-1-1 leads
the middle cell to become 1. For
simplicity’s sake, we can refrain from
rules that Wolfram calls “total.” Thus, a
cell’s next state depends only on the sum of
the current states of all cells within radius
r. In the example above, the sum can be
between zero and 5, so a table of rules
might look like:

Sum: S 4 3 2 1 ¢
Next state: 0 1 0 1 0 O

If you read the next-state line as a binary
number (e.g., 10100, which is 20 =22+ 2%,
you get the code of the rules. So this “linear
automaton” is characterized by k=2, r=2,
code=20. There are 64 different codes
(tables of rules) for k=2 and r=2.

Now, if you apply this automat to the
starting pattern 10111011, you will see
thatitmoves like a signal to the right. In the
world of this automat, it is a signal. Try to
find other signals, patterns which produce
or consume signals, and see what happens
when two signals hit each other.

Try the automaton with k=2, r=3, and
code=88 on the starting pattern
1111111111011, This is the famous can-
non by J.K. Park: a signal-producing pat-
tern which “shoots” to both directions
every 119 generations. Good luck hunting
for patterns!

Glossary

It should be fairly easy to convert the
accompanying fig-FORTH screens into a
dialect which will run on your computer,
All you need is a Forth system with graph-
ics capabilities.

PLOT (xy--)
Plots a point at the coordinates (x,y).

?PLOT (xy--f)
Returns a flag, depending on whether a
point is set or not.

SUMME

Calculates the sum of states for a given x
coordinate.

REIHE

Compares SUM with KODE to decide
whether to plot a point for any of the 320 x
coordinates.

AUTO

Calculates the new generation for any of
the 199 y coordinates.

SET

Sets a starting pattern into the first row
(y=0) of the graphics display (bit map).
(The address provided in the definition of
this word is specific to the Commodore-
64 on which it was written.)

#5CR 01
0 { LINEAR AUTOMAT)
i
2 0 VARIABLE Y 0 VARIABLE SUM
3 0 VARIABLE RADIUS 0 VARIABLE KODE
4
S . DUAL 2 BASE !
]
7 : SUMME RADIUS @ DUP 1+ SNAP -1 # DD ZDUP SHAP I + SWAP
8 ?PLOT 0= IF ELSE SUM 8 2 # SUM ! ENDIF
9 LOOP 2DROP :
10
11) REIHE 320 0 DD I Y & | SUM ! SUMME
12 SUM 8 KODE 8 AND
13 IF1Y@®1+ PLOT ENDIF
14 LO0P -}
15
#5CR 02
0 (CONT.)
i
2. AUTO 193 0 DO I Y ! REIHE LOOP ;
3
4 . SET 256 /MOD 8352 C! 8360 C! DECIMAL
5
6
7
8
g
10
it
12
13
14
15

Forth Dimensions

24

Volume X, Number 2

Real-Time Programming
Convention

November 18 - 19, 1988
Grand Hotel, Anaheim, California

Call for Presentations

The 1988 Real-Time Programming Convention will be held at the Grand Hotel in Anaheim,
California, and is sponsored by the Forth Interest Group.

The theme of this year's convention is Real-time Programming Systems. The invited
speakers are Jef Raskin, head of the original Macintosh development team and inventor of
the Canon Cat, and Ray Duncan, well-known author and expert on IBM PC Operating
Systems. Both speakers have made extensive use of Forth, a language especially suited to
real-time applications.

There is a call for presentations on topics in the following areas:

Programming Environments Applications

Real-time Operating Systems Aerospace

Language-oriented RISC machines Medical

Parallel Processing Laboratory

Languages for Data Acquisition and Machine-vision

Analysis Digital Signal Processing

Robotics and Real-time Device Control Robotics
Automation

Intelligent Devices Instrumentation

Intelligent Instrumentation

Working Neural Nets

Adaptive devices

Software Peripheral Controllers

Presentations may be either talks or demonstrations. Talks are limited to fifteen minutes.
Please submit an abstract of the talk and a request for any audio-visual assistance by October
15. Demonstrations may accompany the talk or appear separately throughout the
convention. Please send a description of the demonstration and its requirements by October
15.

Abstracts and descriptions should be sent to: Real-Time Programming Convention,
Forth Interest Group, PO Box 8231, San Jose, CA 95155.

Volume X, Number 2 25 Forth Dimensions

Volume Eight Index

A comprehensive reference guide to all issues of Forth Dimen-
sions published during the Volume VIII membership year. (Spe-
cial thanks to indexer Mike Elolaof San Jose, California.) See the
FIG Order Form to order complete sets of back issues.

Algorithms
CRC
XMODEM Tutorial, Vol 8, Issue 2, pg 9
Checksums
Checksum More, Vol 8, Issue 6, pg 40
Random Number
Shuffled Random Numbers, Vol 8, Issue 3, pg 31
Sorting
Batcher’s Sort
Batcher’s Sort, Vol 8, Issue 4, pg 39
XMODEM Protocol
XMODEM Tutorial, Vol 8, Issue 2, pg 9
Graphic/Plotting
see Graphics
Architectures
Letter, Vol 8, issue 5, pg 9
32-bit
Letter, Vol 8, issue 1, pg 5
Forth Virtual Machine
The Multi-Dimensions of Forth, Vol 8, Issue 3, pg 32
Assemblers
The Multi-Dimensions of Forth, Vol 8, Issue 3, pg 32

Benchmarks, Performance
Sieve of Primes
Letter, Vol §, Issue 6, pg 31
Letter, Vol 8, Issue 4, pg 5
Letter, Vol 8, Issue 4, pg 6
Letter, Vol 8, Issue 2, pg 5
Bulletin Boards
Forth Resources via Modem, Vol 8, Issue 2, pg 25

Common Usage
A Forth Standard?, Vol 8, Issue 4, pg 28
Compiled Code, Development Utilities for
LOCATE source code
On-Line Documentation, Vol 8, Issue 2, pg 21
Letter, Vol 8, Issue 5, pg 6
Testing
using Assertions
Letter, Vol 8, Issue 6, pg 4
Compilers
File-based
Letter, Vol 8, Issue 5, pg 7
Screenless Forth, Vol 8, Issue 5, pg 13

SYNONYMs
Letter, Vol 8, Issue 1, pg 5
Letter, Vol 8, Issue 6, pg 9
Letter, Vol 8, Issue 6, pg 10
Compiler Directives
Control Flow
CASE
The Ultimate CASE Statement, Vol 8, Issue 5, pg 29
DO-LOOP
Letter, Vol 8, Issuc 1, pg 6
LEAVE
Letter, Vol 8, Issue 3, pg 10
Letter, Vol 8, Issuc 4, pg 9
Recursion
Letter, Vol 8, Issue 5, pg 5
Conferences
Editorial, Vol 8, Issue 1, pg 6
FORML ’86 in Review, Vol 8, Issue 6, pg 38
Conventions
Editorial, Vol 8, Issue 1, pg 6
National Forth Convention *86, Vol 8, Issue 5, pg 34

Data Structures within the Forth Dictionary
Screen Fields
LOCATE
On-Line Documentation, Vol 8, Issue 2, pg 21
Parameter Fields
Threaded Code
Forth Systems With a Segmented Memory Model,
Vol 8, Issue 3, pg 2
Data Records and Associated Operations
Select, Ordered, Perform
Select, Ordered, Perform, Vol 8, Issue 1, pg 22
Maintenance Operations (add, delete, etc.)
The Point Editor, Vol 8, Issue 3, pg 15
Editing
The Point Editor, Vol 8, Issue 3, pg 15
Querying
Data Structures and Associated Operations,
Vol 8, Issue 4, pg 17
Sparse Amrays
Lookup
A Simple Translator: Tinycase, Vol 8, Issue 5, pg 23
Data Types and Associated Operations
Characters, byte
Case Conversion
Case Conversion in KEY, Vol 8, Issue 1, pg 21
Integers, cell
Comparison Operations
The Ultimate CASE Statement, Vol 8, Issue 5, pg 29
Formatted Output
Letter, Vol 8, Issue 1, pg 6
Letter, Vol 8, Issue 4, pg 6

Macro Compilers Masking off Bits
Synonyms and Macros, Part 4: Compiler Macros, Vol 8, Letter, Vol 8, Issue 4, pg 6
Issue 3, pg S Square Root Algorithms
Letter, Vol 8, Issue 4, pg 8
Forth Dimensions 26 Volume X, Number 2

Trigonometric Functions Information Services
Fast Fixed-Point Trig, Vol 8, Issue 1, pg 14 Forth Resources vi Modem, Vol 8, Issue 2, pg 25
Letter, Vol 8, Issue 4, pg 10 Interpreters
Integers, double SYNONYM
Arithmetic Letter, Vol 8, Issue 1, pg 5
Letter, Vol 8, Issue 2, pg 5 Forth (words)
Trigonometric Functions Dual-CFA Definitions, Part Two, Vol 8, Issue 4, pg 13
Letter, Vol 8, Issue 1, pg 5 Interrupts
UM/MOD TI 99/4A ISR Installation, Vol 8, Issue 1, pg 23
Unsigned Division Code Routines, Vol 8, Issue 6, pg 18
Integers, quad Libraries
Arithmetic A Forth Standard?, Vol 8, Issue 4, pg 28
Letter, Vol 8, Issue 2, pg 5 Letter, Vol 8, Issue 5, pg 6
Real Numbers
Arithmetic Marketing
Practical Considerations for Floating-Point, Forth
Vol 8, Issue 5, pg 10 XMODEM Tutorial, Vol 8, Issue 2, pg 9
Strings Letter, Vol 8, Issue 3, pg 5
Parsing Letter, Vol 8, Issue 5, pg 6
Dual-CFA Definitions, Part Two, Vol 8, Issue 4, pg 13 Editorial, Vol 8, Issue 5, pg 9
Letter, Vol 8, Issue 4, pg §
Decomposition of Functions Memory
Dual-CFA Definitions, Vol 8, Issue 2, pg 30 Segmented
Deferred Definitions Letter, Vol 8, Issue 1, pg §
Dual-CFA Definitions, Part Two, Vol 8, Issue 4, pg 13 Forth Systems With a Segmented Memory Model,
Simple File Query, Vol 8, Issue 4, pg 17 Vol 8, Issue 3, pg 12
Disk OS Structures and Associated Operations
File Control Blocks (FCBs) Natural Languages
DOS File Disk 1/0, Vol 8, Issue 6, pg 19 Letter, Vol 8, Issue 4, pg 5
Data Files for Forth Screens
DOS File Disk 1/O, Vol 8, Issue 6, pg 19 Operating Systems
Interfacing with Forth
Education DOS File Disk I/O, Vol 8, Issue 6, pg 19
Letter, Vol 8, Issue 2, pg 8 Portability
Letter, Vol 8, Issue 5, pg 5 Moore Chats on CompuServe, Vol §, Issue 1, pg 25
Error Processing Letter, Vol 8, Issue 3, pg 8
XMODEM Tutorial, Vol 8, Issue 2, pg 9 The Multi-Dimensions of Forth, Vol 8, Issuc 3, pg 32
Programming Languages and Methodologies
Games and Recreation Forth, philosophy behind
Tracking the Beast, Vol 8, Issue 5, pg 15 Dual-CFA Definitions, Vol 8, Issue 2, pg 30
7776 Limericks, Vol 8, Issue 6, pg 28 The Multi-Dimensions of Forth, Vol 8, Issue 3, pg 32
Graphics Dual-CFA Definitions, Part Two, Vol 8, Issue 4, pg 13
Plotting of Lines Object Oriented
The Point Editor, Vol 8, Issue 3, pg 15 Classes in Forth, Vol 8, Issue 5, pg 24
The Bresenham Line-Drawing Alogirthm,
Vol 8, Issue 6, pg 12 Scope
Plotting of Functions Local Variables
Windows for the TI 99/4A, Vol 8, Issue 4, pg 34 Stack Numbers by Name, Vol 8, Issue 3, pg 36
Source Code
Hardware Editing of
Integrated Circuits Letter, Vol 8, Issue 2, pg 6
Moore Chats on CompuServe, Vol 8, Issue 1, pg 25 Getting Started with F83, Vol 8, Issue 4, pg 37
Letter, Vol 8, Issue 5, pg 9 Formatting
Forth Source Formatter, Vol 8, Issue 2, pg 27
History, Forth Libraries
A Forth Standard?, Vol 8, Issue 4, pg 28 Letter, Vol 8, Issue 1, pg 6
State of the Standard, Vol 8, Issue 6, pg 34 Standards
ANSI Forth
Volume X, Number 2 27

Forth Dimensions

State of the Standard, Vol 8, Issue 6, pg 34
Forth
Moore Chats on CompuServe, Vol 8, Issue 1, pg 25
Editorial, Vol 8, Issue 3, pg 11
Letter, Vol 8, Issue 3, pg 8
A Forth Standard?, Vol 8, Issue 4, pg 28
Letter, Vol 8, Issue 6, pg 4
State of the Standard, Vol 8, Issue 6, pg 34
Support, Technical
Moore Chats on CompuServe, Vol 8, Issue 1, pg 25

Syntax
Conditionals
Moore Chats on CompuServe, Vol 8, Issue 1, pg 25
Letter, Vol 8, Issue 2, pg 8
Letter, Vol 8, Issue 3,pg S

The Ultimate CASE Statement, Vol 8, Issue 5, pg 29

Terminal Emulation
XMODEM Tutorial, Vol 8, Issue 2, pg 9
Letter, Vol 8, Issue 3,pg 9
Testing
via Assertions
Letter, Vol 8, Issue 6, pg 4

Threaded Code
Models
Forth Systems With a Segmented Memory Model,
Vol §, Issue 3, pg 12
Tutorials
XMODEM Tutorial, Vol 8, Issue 2, pg 9
Getting Started with F83, Vol 8, Issue 4, pg 37

User Groups
Letter, Vol 8, Issue 1, pg 6
User Interface
Menus
Interrupt-Driven Serial Input, Vol §, Issue 1, pg 8
Windows
Windows for the TI99/4 A, Vol 8, Issue 4, pg 34
Video Functions
Windows for the T1 99/4A, Vol 8, Issue 4, pg 34

Vectored Execution
Simple File Query, Vol 8, Issue 4, pg 17

Advertisers Index

PVMB83 is a complete Prolog extension to Laxen and Perry F83.

I F83 USERS

Next Generation Systems -

Silicon Composers -

Bryte - 22
Concept - 28
Dialog Corporation - 39
Forth Interest Group - 25
FORML - 19
Future, Inc. - 30
Harvard Softworks - 35
Laboratory Microsystems - 14

Miller Microcomputer Services -38

11
2

It handles the primary data structures of strings,numbers,logical constants,
logical variables, compound predicates, and lists. PVMB83 is designed to add
productlvity and flexibllity. Itis fully interactive between Prolog procedures,
and Forth code. PVM83 is a compiled Prolog featuring fast execution times.

PVMB83 is fully extensible. “Standard” definitions gives the
programmer flexibility to design just those procedures needed for his
application. PVM83 code can execute Forth words. F83 can call the PVM83
backtracking and problem solving capabilities.

PVM83 code is incrementally
compilied in higher memory segments
than the F83 core, leaving room in
the F83 kernal for the "standard” exien-
sions or other F83 code that the pro-
grammer needs.

PVMB83 is designed to keep the
Forth philosophy of being both
compiled, and interactive. You cantype
in procedures from the keyboard and
test them, or supply source code from
Forth block files, or text files

Intersegment memory management
source code included.

I PVM 83

only $69.95
includes manual

requires
DOS 2.0 or higher 256K RAM

Concept 4

PO Box 20136
VOC Az 86341

Forth Dimensions

28

Volume X, Number 2

News from the GEnie Forth
RoundTable: Beginning July 10, the Sun-
day on-line meetings at the “Figgy Bar”
will feature a question-and-answer session
for novices, with Leonard Morgenstern as
chair for these tutorial conferences.

Since it is not unusunal to see 10K or
more of new messages on a given day, and
this column is limited in size, you are only
getting a peek at recent on-line activity.
This time, the peek will be into the very
lively standards category (Category 10).

Some still may not realize the X3/J14
Technical Committee has made the GEnie
Forth RoundTable their home service. X3/
J14 has the task of drafting a ANS standard
Forth. Here, the very future of our language
isbeing debated with a grand mix of knowl-
edge, wisdom, and humor. This excerpt
features a discussion centered around a
proposal by Lee Brotzman. I hope it will
encourage you to get involved.

Category 10, Topic 23, Message 76
Wed Mar 23, 1988 S.W.SQUIRES
{scott]

Lee, I have some of the same suggestions
that Leonard does for your file words. How
about:

OPEN (addr - - file#)

File# could be a number or a handle or
pointer or fcb or whatever would be in
keeping with the specific computer/Forth
system as long as it is consistent on that
system. On a one-file limited system it
would just leave the same number. Mul-
tiple files have been the norm for some time
even in the simple Forth systems I’ ve used.
Typical case is reading in one file, manipu-
lating it and writing it back out to another
file.

GENIE

CLOSE (file# - -)
READ (addr nl file# - - n2)
WRITE (addrnl file# - - n2)

SEEK and FILEPOS would require a
file# as well. Would it be more beneficial to
provide pointers with the READ and
WRITE commands? Le., READ (addr nl
file-offset file# - - n2) The more primitive
the words, the more flexible they could be.
Same thing with flags — would it just be
more straightforward to leave a flag after
every disk operation?

How about a create-file function?
You’d probably need to provide a size
parameter as well as an addr of the naming
convention to allow for systems with un-
expandable file sizes.

How about a request for the file size?
This would allow a program to set aside the
correct buffer size and to use the size for
any calculations, —Scott

Category 10, Topic 23, Message 77
Thu Mar 24, 1988 L. BROTZMAN
Leonard and Scott,

Jerry Shifrin voiced the same concerns
as yours when I uploaded my proposal to
the East Coast Forth Board. I'll just repro-
duce my answer to him here:

Date: 03-23-88 (11:57) Number: 276
To: SYSOP Refer#: 273
From: LEE BROTZMAN Read: YES
Subj: HOST FILE ACCESS PROPOSAL
Status: PUBLIC MESSAGE

Yes, Jerry, I purposely avoided the
subject of multiple files since I think that
trying to pass file handles, of reference
numbers or whatever, is so system specific
that it becomes very difficult to standard-
ize. This proposal is hard enough to get

THE BEST OF

GARY SMITH - LITTLE ROCK, ARKANSAS

adopted as is; adding system-specific file
handles would kill it for sure.

I don’t agree that this proposal pre-
cludes multiple-file handling however,
and let me explain why. I’ll use Uniforth
for my example, because that’s what I
know.

In Uniforth there is a user variable
called FCB. FCB points to the file handle
(file control block, reference buffer, what-
everthe OS in question uses) of the current
open file. The value of FCB is changed by
asetof words called: CHANA, CHANB, efc.
To open two files simultaneously, for ex-
ample, one would do the following:

CHANA OPEN filel.fth
CHANB OPEN file2.fth

A word that copies a line of text from
one file to another would be something
like this:

: COPY-LINE

(copy a line of text)

(from CHANA to CHANB)
CHANA pad 80 RDLINE

(length - -)
CHANB pad swap WRLINE drop ;

where I have used the Uniforth words
RDLINE and WRLINE instead of my pro-
posed words READ and WRITE. The code
would be the same in either case.

If the proposal were changed to in-
clude file handles, I would anticipate
changes like the following:

OPEN (--fcb)
Open a file and return the file handle.

Volume X, Number 2

29

Forth Dimensions

FUTURE

announces
Eight new products based on the NC4016

Future Series products:

CPU board (available 2nd quarter 1988)
* NC4016 (5 MHz standard)
¢ Stack and data RAM
* Full 128Kbytes of paged main memory
¢ Power fail detect
* Automatic switching to on board battery backup at power fail
* Psuedo-serial port - full compatibility with CM-FORTH and SC-FORTH
* 16Kbytes of EPROM (SC-FORTH, SC-C and CM-FORTH available)

Display/Debugger board (available 2nd quarter 1988)
useful for testing and debugging custom hardware
* Provides hexadecimal display of the data, address, and B-port

* Indicates status of reset, interupt, WEB, WED, and X-port
* Provides for free running and single step clocking
* Provides the ability to independently drive (write to) the data, address, and
B-port directly with user data
I/0 board (available 2nd quarter 1988)
for serial communication, interupt handling, event timing, time and date
logging and saving system state parameters
* Two RS232 serial ports
* Eight level prioritized interupt controller. Each interupt line is individually

maskable and resetable. Current pending interupt status is readable.
* Real time clock with 2K of non-volatile RAM

* Three 16-bit timer/counters
Extended Memory board (available 3rd quarter 1988)
* Paged memory — 64 Kbytes segments, up to eight segments

Card Cage & Power Supply (available 3rd quarter 1988)
* Rack mountable card cage with face plates for each slot
* +5 volts and +12 volts supplied
* 72 Pin backplane

Disk Drive Controller board (available 3rd quarter 1988)
* 3-1/2 inch floppy and SCSI controllers (for hard disks)

Video board (available 4th quarter 1988)

* Will drive Apple Macintosh II high resolution (640 x 480) monochrome
monitor and PC compatible monochrome monitors

A/D & D/A board (available 4th quarter 1988)
* 12 bit, 1 MHz A/D & D/A converters

CLOSE (fcb--)
Close the file pointed to by the file handle.

READ (fcbadrlenl --len2)
As before except with file handle.

WRITE (fcbadrlenl --len2)
As before except with file handle.

SEEK, FILEPOS , and WREOF would
be changed similarly. Frankly, I don’t see
much difference in the ultimate use of these
words. Returning the file handles means
they must be saved somewhere in a vari-
able. So the COPY-LINE above would
become:

COPY-LINE
FCB1 @ pad 80 READ
FCB2 @ pad swap WRITE drop ;

(In fact the definition of CHANA is
something like;: FCB1 @ FCB ! and CHANB
is FCB2 @ FCB ! for most, but not all
operating system interfaces implemented.)

So you see, it isn’t difficult to handle
multiple files using the proposed word set.
Perhaps I should say that in the proposal, in
order to make clear what I already thought
would be understood implicitly. I keep
forgetting that other systems handle things
in very different ways. Do you think I
should also propose some standard means
of file switching? It should be as generic as
possible, because the manipulation of file
control blocks is different for every operat-
ing system, while, in Uniforth at least, the
ultimate top-level file operators like those
above are uniform.

To continue, I would like to say that I
prefer “file-switching” words like CHANA
and CHANB to explicit references to file
handles, because the explicit method is
unnecessary and less self-documenting,
and it follows the principle of “hiding data”
dla Brodie’s Thinking Forth.

Leonard, thanks for pointing out the
deficiencies in language in my proposal. I
see that it must be more carefully written to
avoid misinterpretation. When I say
CLOSE will “close the file currently open,”

Ishould say “...close the file on the current
Future, Inc. P.O. Box 10386 Blacksburg, VA 24062-0386| 4.1 /O channel” — after I define whata file
(703) 552 - 1347 I/O channel is of course. :-)
The definition of READ should say that
Apple is a registered trademark of Apple Comp Inc. Macintosh is a trademark of Apple Comp Inc. reading will Stop “...when nl bytes of data
SC-FORTH and SC-C are products of Silicon Compaosers.
Forth Dimensions 30 Volume X, Number 2

have been read, an end-of-file mark is en-
countered, or in the case of a variable...”

Finally, as I said above, my proposal
isn’t incompatible with “handles,” it just
assumed they are handled elsewhere (pun
intended).

Scott, about file creation: much more
than size and name go into file creation, like
access method, logical record length,
blocking factor, data type (binary, charac-
ter, executable, etc.), protection, and on and
on. That’s a pretty big can of worms.

Arequest for file size is a good idea, and
something Iuse alot. I'll add it to the list. —
Lee

Category 10, Topic 23, Message 78
Thu Mar 24, 1988 L BROTZMAN
Greg,

Thanks for the tip on the proposal. [will
try to amend the draft in light of the re-
sponses above and get it in the mail ASAP,
While we’re talking about proposals, I
asked Martin Tracy whether discussion on
my DO LOOP proposal could be postponed
until the November TC meeting at Goddard
Space Flight Center, since I plan to attend
that meeting and would then be available to
explain and answer questions. He said I
should ask you, so I'm asking. (Actually, if
there is a move afoot to go back to Forth-79
DO LOOPS, my proposal is obsolete, which
is fine with me — I have no problems with
the carlier DO structure).

Sorry about sounding irate re BLOCK in
this topic. I really have nothing against
BLOCK in host file operations, it has its
place. I just don’t think that it is a panecea.

My earlier postings about BLOCK in this
topic have been (as far as I can recall with-
out digging back into my log files) an effort
to make it more compatible with the hosted
environment, e¢.g. ‘“undefined” block
length, and releasing restrictions on buffer
sizes. These are issues of little importance
for standalone systems, but they could
make life with BLOCK under an operating
system a whole lot easier.

I don’t think I ever said BLOCK wasn’t
suitable to access adatabase, just thatitisn’t
the only suitable way. I expressed this ex-
plicitly in my last two messages, and I tried
to be accommodating about saying that
there are indeed times when BLOCK is the
way to go— at least, that’s what I wanted to
say. (Damn electronic communications...
bad E-mail, bad!)

Off the top of my head, the theoretical
limit on throughput of a CD ROM drive is
roughly 150 Kilobits/sec. I have not ana-
lyzed our system as to actual throughput
(we have to make the disk first!), but if you
have friends at JPL, the guy to ask there is
Mike Martin of the Planetary Data Systems
Group. He has produced two CD ROMs of
astronomical images and character-table
data, and has written software to support it
on IBM PC/AT/XT clones under MS-
DOS. He told me that his throughput on the
PCrivals that of an unloaded VAX reading
from a hard disk, but VMS is such a dog
that I won’t venture to interpret that state-
ment,

The FITS files will be random accesson
the CD ROM. I would much prefer heavily
indexed, flat text files but FITS has been
foisted on me by NASA. Our first disk is
simply a testof the CD ROM as storage and
distribution medium, and FITS as a disk-
based interchange format (currently, FITS
is primarily for tapes, not disks, although
several observatories have done some
good work with disk-FITS already). The
production schedule for this disk is too
tight to allow more than minimal indexing
for a few files (i.c., about 30 catalogs,
totalling more than 50 files and 400
Mbytes; final selection isn’t set until mid-
May). Subsequent disks, assuming that
funding is continued, will include index
files into the FITS formatted data, and
more sophisticated data-base software. By
that time, I hope to have the Forth software
advanced enough to stave off the higher-
ups that think it should be in C.

You’'re right that the slow seek times
are a real pain. Users are more than willing
to put up with it, however, to get up to 600
Mbytes of direct-access storage on their
PCs,allin oneplace at arelatively low cost.
Drives are running about $700, and most
CDROM application disks are about $100-
200 — ours will be distributed for cost of
media only, of course — $40-50 at most.
There are now a few vendors of drives that
claim to cut the seek time by quite a bit, but
I haven’t seen the spec sheets yet, — Lee

P.S. Touché,JAX. A full-blown, Forth-
based workstation environment couldn’t
end up any weirder or more esoteric than
Unix, and that’s pretty popular nowadays.
Keep on trucking.

Category 10, Topic 23, Message 79
Thu Mar 24, 1988 S.W.SQUIRES [scott]
L’eev

I'd still prefer an explicit means of se-
lecting a file. This would allow a variable
(or better yet a TO-type variable) with a de-
scriptive name for that particular program.
(i.e. SOURCE, DESTINATION, AC-
COUNTS, etc.) The potential problem with
using the CHANA / CHANB is that the FCB
is set until it is changed again. By looking
at the source code for a program that did file
access, you’d have to look back and deter-
mine what set it the last time, if you didn’t
doitin the actual word doing the file access.
Likewise, debugging could be confusing if
FCB wasset by astray word. By passing the
FCB (or file#) explicitly, the program can
actually become more readable. Also, the
usage is up to the programmer and he can
use arrays or other structures if he desires.
—Scott

Category 10, Topic 23, Message 80
Fri Mar 25, 1988 J.SHIFRIN
Lee, I know I'll get confused trying to
respond here and on the ECFB, but I still
don’t think your files proposal is very solid.
Nothing against UniForth, but I think the
CHANA/CHANB approach is both a kludge
and abitbizarre. Also, I believe it fallsapart
in a multitasking enviroment. I don’t care
what’s passed as a file identifier, but I think
it should be a single stack item — an ad-
dress or i.d. number which uniquely refers
tosomething (FCB, HCB, DCB, filename),
implementation dependent, to describe the
file being operated on

{Sorry about the awkward prose — I
hate the GEnie editor and didn’t want to get
into it for cleanup. Should’ve composed
this offline!]

Category 10, Topic 23, Message 81

Sat Mar 26, 1988 G.BAILEY1
[ATHENA]

Lee, your proposal (known as TP88-038) is
in the pile for consideration at the May TC
meeting, and I will state your request to
postpone its consideration as a motion to
commit it to the group that is working on
control structure and looping issues. We
will probably convene that group at least
once inRochester and it is probable that this
group will not have concrete recommenda-
tions for some time. Unfortunately, it is
difficult to indicate your willingness to

Volume X, Number 2

31

Forth Dimensions

(McBrien'’s screens, from page 22.)
Screen 203
1 { DISFORTH Decompile Forth words to their component words J
2 : DISFORTH { DISFORTH cccc)
3 CR [COMPILE] * DUF NFA 1D. ‘ (get PFA of cccec)
4 DUP NFA C@ &4 AND { check the preciderice bit)
5 IF .° ..is an IMMEDIATE word.”
& THEN DUP CFA @ [° CFA @ 1 LITERAL =
7 IF PRINT-DEF (colon definition)
3 ELSE DUP CFA @ [“ FENCE CFA @] LITERAL =
9 IF " .15 a USER variable. OFFSET = " @ CR
10 ELSE DUP CFA @ [~ O CFA @] LITERAL =
11 IF ." ...i5 a CONSTANT. VALUE= " @ CR
z ELSE DUP CFA @ [“ USER CFA @] LITERAL =
12 IF " ..is a VARIABLE. CONTENTS= " @ CR
14 ELSE ." ...is a CODE definition " CR
1% DROP THEN THEN THEN THEN
16 SEE DISFORTH ;
ok
5540 54 37 04 96 05 82 41 C1 1D B5 QA 07 25 20 F5 04 T7....AA.U..% u.
5550 7B 5% 68 0A 20 20 20 49 46 2E ZE 2E 20 &6FE ©6F &E {Uh. IF... non
5560 20 7A &% 72 &F 20 70 72 59 6E 74 20 74 68 €9 73 zero print this
5570 20 6C 69 6E 65 25 20 E4 04 9F 55 68 0OA 1F 45 4C 1l1ine% d..Uh..EL
6580 B3 45 2E 2E 2E 20 69 €6 20 7A 65 72 6F 20 70 72 SE... if zero pr
§590 69 GE 74 20 74 68 69 73 20 6C €9 6E 65 25 20 68 int this line% h
BBA0 OA 27 %4 48 4% 4E 2E Z2E ZE 20 72 65 &7 61 72 64 , THEN... regard
55RO 6C &5 73 73 20 77 €8 61 74 20 70 72 69 6E 74 20 less what print
55C0 74 €8 £9 73 20 6C &9 HE 65 25 20 96 05 88 44 49 this line% ...DI
ak
AA
§54C 2025 CR
554E 4FG OBRANCH 58578R
BEEB2 AES .") IF... non zero print this line
5575 2025 CR
F&77 4E4 BRANCH 559F
ER78B AGS (.") ELSE... if zero print this line
559D 2025 CR
559F AG8 (.") THEN... regardless what print this line
58C3 2025 CR
ERCB 596 'S ok
Screen 202
1 (PRINT-DEF More DISFORTHer words)
3 PRINT-DEF (pfa --- 3 (word is decompiled from that pfa)
4 BEGIN DUP @ TERMINATORS ELEMENT? 0= WHILE
) PRINT-WORD REPEAT FPRINT-WORD DROP
&
7 (AA is a tezt word for SEE to check the branches are resolved
8 corectly)
9 AR (n -=-~
10 CR
11 Ie 0" [F... non zero print this 1ine” (R
12 ELSE . ELSE... if zero print this line" CR
3 THEN " THEN... regardless what print this line" CR H
14
15
16
{ (End of Letters screens.)
Forth Dimensions 32 Volume X, Number 2

Hoselton's screens, from page 18.)

9
@ \ .5088

1 .ME S —)
CR SPACES ME BODY))NAME , 1D

DUP .ME 2+ 2)GBJECT
BEGIN @ DUP WHILE

8 20R0P
g
18 MASTER METHOD: .SONS
it @ M ((SNS)
12
13 MASTER METHOD: .ONE
14 & .BE
15

2
3
4
3 MASTER METHOD: (LSONS) (G n —)
&
7

ZDUP & - (.SONS) REPEAT

{)

12
8 \ Testing & demonstration
i
2 MASTER ORJECT: VEHICLE
3
4 VERICLE WETHOD: #WHEELS B)SUPER @ ;
3
6 VEHICLE OBJECT: BOAT 8,
7 VEHICLE OBJECT: CAR 4,
8 VEHICLE OBJECT: TRICYCLE 3,
8
10 CAR OBJECT: GREEN-MONSTER
11 BOAT OBJECT: GLEEN-MARY
12\8
13 QUEEN-MARY MWHEELS .
14 GREEN-MONSTER #WHEELS
13

11
2 \ Testing § cemonstration
1
2 MASTER OBJECT: ALTOMOBILE
3
4

5

6 AUTOMOBILE mETMOD: OBJECT: (S n --)
7 CRERTE OBJECT) \ Build links

23
Y L GONS

Display the name of the addressed OBJECT.

Display the name of the addressed OBJECT and, indented
the nawes of ail his descendent DBJECTs. This is a recursive
routine. "LATE BINDING" 1s very useful here.

Display the name of the current OBJECT ang ali mis
tescendents.

Display the name of the current OBJECT,

24
\ Testing & demonstration

A "superclass” of vehicle types

A METHOD for finding the number of wheels for a
grandson of VEHICLE.

fin CRJECT whose immediate descendants have no wheels

fin OBJECT whose immepiate descencants have 4 wheels

An OBJECT whose immediate descendents have 3 wheels

a famous car
a famous boat { Weil, really it's a ship}

How many wneels doces the GUEEN-MARY have ?

How many wheels does the GREEN-MONSTER have?

Never say CAR #WHEELS . {(#WHEELS isn't written for that.)

25
\ Testing & cemorstration

A new example: AUTOMOBILE
Note that this RUTOMOBILE is rot a son of VERICLE.
We're on a new sudlect.

RUTOMDOBILE type OBJECT's arer’t cuite the same as orainary
ORJECT*s. They have some exira data appended.

B @, \ 8) Ddometer mileage 7o define an AUTOMOBILE ORJECT, the siles-per-gallon for
3 @, \ 10) Ogometer mileage @ last fillup that OBJECT must be on the stach.
0 e, \ I2) gas in tank
1 . 3 \ 14) miies~per gallon
12
:
14
15
Volume X, Number 2 33 Forth Dimensions

oy
-
-1
o
&
o+
o]
7

2 & demonstration

i

12 AUTOMORILE METACD: FILL-GAS (S n —)
13 12 YORJECT +! ME TELL-GAS

14
15
13
2 \ Testing & demorstration
1

2 7 AUTOMOBILE OBJECT: RACER
3 23 AUTOMCBILE OBJECT: SLOW-POKE
4

&

7

81\5

9

10 13 RACER FI L-GAS
11 188 RACER DRIVE

12 RACER TELL-BGAS

13 SLOW-POKE TELL-BAS
14

15

(gas#mpg=range) MIN
(1nerement cdometer)

S SLOW-POKE METHOD: TELL-GAS CR ." It's a secret! *

26

\ Testing & demcnstration

To drive gur AUTOMCRILE n miles, we first check our range,
{ gas times miles-per—gaiion) to see how far we can go.
then we ircrement our odometer reading, decrease our fuel
and regort just how far we drove.

Report the fuel in the tank.

b

2 AUTOMOBILE METHOD: DRIVE (S w —)

3 14 YORJECT @ 12)0BJECT & #

4 DUP 8 YORJECT +!

5 D 14)ORJECT @ / NEGRTE 12 YORJECT +!
6 LUoMadeiving Y. LY miles Ty

7

8 QUTOMORILE #E750D: "E_L-BAS (5 —)

8 12)OBJECT @ (R

1@ " THAVE ", ." GRLLONS IN MY TANK *
i

Add fuel to the tank.

In a more complicated example, we sight check the cas tark
capacity, reduce the driver's cash, etc.

27

\ Testing & demonstration

High performarce, seven miles-per-gallon.
Low performance, twenty-three miles-per-gallon.

But some gas in the tank,

Drive for a while.

Report gas remaining.

Scwe privacy for SLOW-FOKE
This shows that differeni objects can use the same MESSAGE
name to proguce different resulfs.

Evaluation

I searched for an object-Forth support
routine that met these objectives, but I
didn’t find any that really suited me. Neon
provides some fine object tools, but it has
changed so much that it isn’t Forth any
more. Vocabulary-based implementations
of object Forth can be slow, and none that
Iexamined support late binding. So, I wrote
my own object Forth,

Rather than supporting an explicit class
construction, this routine supports inheri-
tance by causing each object to be the “son”
of some other object. “Brother” and

“cousin” objects can inherit data, data
structure, and methods from the common
“ancestors.”

There don’tseem to be any bugs left, but
there is a “feature” I don’t like: it is easy to
misuse a method. A method might be de-
signed only to be inherited. It might not
work at all with the original object, but itis
still possible to make that request. Another
warning: don’t use a name for a message if
that name has already been used for some-
thing else. There is very little error check-
ing; when you ask for a mistake, you usu-
ally get one.

Summary

Here is a fast, late binding, and free
object-Forth support routine. It runs un-
der Laxen and Perry’s public-domain
F83. Now you possess Forth, the world’s
most powerful programming language,
and support for one of the world’s most
powerful conceptual tools: object-ori-
ented programming.

Rick Hoselton is a professional Forth
programmer with General Information
Technologies, Inc. His work with Forth
spans the last six of his seventeen years
spent as a full-time computer profes-
sional.

Forth Dimensions

34

Volume X, Number 2

YES, THERE IS A BETTER WAY
AFORTH THAT ACTUALLY
DELIVERS ON THE PROMISE

HS /FORTH

POWER

HS/FORTH's compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per minute, it
compiles faster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optimizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HS/FORTH provides the best architecture, so good that
another major vendor “cloned” (rather poorly) many of
its features. Our Forth uses all available memary for
both programs and data with almost no execution time
penaity, and very little memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or agigabyte of virtual, and run aimost as fast as in real
mode.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition’s local
variables.

Colon definitions can execute inside machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with multiple entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
itsimmense dictionary (1600 words) would imply.

INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Linker opens the world of
utility libraries. Link to resident routines or link & remove
routines interactively. HS/FORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HS/FORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs al! FIG Libraries, the main difference being they
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both fite and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

FUNCTIONALITY

More important than how fast a system executes. is
whether it can do the job at all. Can it work with your
compuler. Can itwork with your other tools. Can ittrans-
form your data into answers. A language should be
complete on the first two, and minimize the unavoidable
effort required for the last.

HS/FORTH opens your computer like no other lan-
guage. You can execute function calls, DOS com-
mands, other programs interactively, from definitions,
or even from files being loaded. DOS and BIOS function
calls are well documented HS,FORTH words, we don't
settle for giving you an INTCALL and saying "have atit”.
We also include both fatal and informative DOS error
handlers, installed by executing FATAL or INFORM.

HS/FORTH supports character or blocked, sequential
or random I/O. The character stiream can be received
from/sent to console, file, memory, printer or com port.
We include a communications plus upload and down-
load utility, and foreground/background music. Display
output through BIOS for compatibility or memory
mapped for speed.

Our formatting and parsing words are without equal. In-
teger, double, quad, financial, scaled, time, date, float-
ing or exponential, all our output words have string
formatting counterparts for building records. We also
provide words to parse all data types with your choice of
field definition. HS/FORTH parses files from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write from/to a handle (fite or device) as
fast as possible. For advanced file support, HS/FORTH
easily links to BTRIEVE, etc.

HS/FORTH supports text/graphic windows for MONO
thru VGA. Graphic drawings (line rectangle ellipse) can
be absolute or scaled to current window size and
clipped, and work with our penplot routines. While great
for piotting and line drawing, it doesn’t approach the ca-
pabilities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to interface to Meta-
windows. HS/FORTH with MetaWindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

HS/FORTH provides hardware/software floating point,
including trig and transcendentals. Hardware fp covers
full range trig, log, exponential functions plus complex
and hyperbolic counterparts, and all stack and compari-
son ops. HS/FORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machine code)
and parse/format words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizes conversion time.

Single element through 4D arrays for all data types in-
cluding complex use multiple cfa’s to improve both per-
formance and compactness. Z = (X-Y) /(X + Y) would
be coded: X Y-XY + /1SZ (16 bytes) instead of: X @
Y@-X@Y @ + /Z!(26 bytes) Arrays can ignore 64k
boundaries. Words use SYNONYMs for data type inde-
pendence. HS/FORTH can even prompt the user for
retry on erroneous numeric input.

The HS/FORTH machine coded string library with up to
3D arrays is without equal. Segment spanning dynamic
string supportincludes insert, delete, add, find, replace,
exchange, save and restore string storage.

Our minimal overhead round robin and time slice multi-
taskers require a word that exits cleanly at the end of
subtask execution. The cooperative round robin multi-
tasker provides individual user stack segments as well
as user tables. Control passes to the next task/user
whenever desired.

APPLICATION CREATION TECHNIQUES

HS/FORTH assembles to any segment to create stand
alone programs of any size. The optimizer can use HS/
FORTH as a macro library, or complex macros can be
built as colon words. Full forward and reverse labeled
branches and calls complement structured fiow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompiler produces threaded systems froma
few hundred bytes, or Forth kernels from 2k bytes. With
it, you can create any threading scheme or segmenta-
tion architecture to run on disk or ROM,

You can turnkey or seal HS/FORTH for distribution, with
no royalties for turnkeyed systems. Or convert for ROM
in saved, sealed or turnkeyed form.

HS/FORTH includes three editors, or you can quickly
shelt to your favorite program editor. The resident full
window editor lets you reuse former command lines and
save to or restore from afile. Itis both an indispensable
development aid and a great user interface. The macro
editor provides reuseable functions, cut, paste, file
merge and extract, session log, and RECOMPILE. Our
full screen Forth editor edits file or sector mapped
blocks.

Debug tools include memory/stack dump, memory
map, decompile, single step trace, and prompt options.
Trace scope can be limited by depth or address.

HS/FORTH lacks a “modular” compilation environ-
ment. One motivation toward modular compitation is
that, with conventional compilers, recompiling an entire
application to change one subroutine is unbearably
slow. HS/FORTH compiles at 20,000 lines per minute,
faster than many languages link — let alone compile!
The second motivation is linking to other languages.
HS/FORTH links to foreign subroutines dynamically.
HS/FORTH doesn't need the extra layer of files, or the
programs needed to manage them. With HS/FORTH
you have source code and the executable file. Period.
"Development environments” are cute, and necessary
for unnecessarily complicated languages. Simplicity is
so much better.

HS/FORTH Programming Systems
Lower levels include all functions not named at a higher
level. Some functions available separately.
Documentation & Working Demo
(3 books, 1000 + pages, 6 1bs) $ 95.

Student $145.

Personal optimizer, scaled & quad integer ~ $245.

Professional 80x87, assembler, turnkey, $395.
dynamic strings, multitasker
RSDL linker,

physical screens
Production ROM, Metacompiler, Metawindows

$495.
Level upgrade, price difference plus $ 25.
0OBJ modules $495.
Rosetta Stone Dynamic Linker $ 95.
Metawindows by Metagraphics (includes RSDL)

$145.
Hardware Floating Point & Complex $ 95.
Quad integer, software floating point $ 45,
Time slice and round robin muftitaskers $ 75.

GigaForth (80286/386 Native mode extension) $295.

HARVARD
SOFTWORKS

POBOX69
SPRINGBORO, OH 45066
(513) 748-0390

Volume X, Number 2

35

]

Forth Dimensions

The FIG Chapters listed be-
low are currently registered as
active with regular meetings. If
your Chapter listing is missing or
incorrect, please contact Kent
Safford at the the FIG office’s
Chapter Desk. This listing will
be updated in each issue of Forth
Dimensions. If you would like to
begin a FIG Chapter inyour area,
write to the Chapter Desk for a
“Chapter Kit and Application.”
Forth Interest Group, P.O.
Box 8231, San Jose, California
95155

US.A.

+ ALABAMA

Huntsville Chapter

Tom Konantz (205) 881-6483

« ALASKA

Kodiak Area Chapter
Horace Simmons (907) 486-
5049

« ARIZONA

Phoenix Chapter

4th Thurs., 7:30 p.m.

Dennis L. Wilson (602) 956-
7578

* ARKANSAS

Central Arkansas Chapter
Little Rock

2nd Sat., 2 pm. &

4th Wed., 7 p.m.

Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

* CALIFORNIA

Los Angeles Chapter

4th Sat., 10 a.m.

Hawthomne Public Library
12700 S. Grevillea Ave.
Phillip Wasson (213) 649-1428

FIG
CHAPTERS

North Bay Chapter

2nd Sat., 10 a.m, Forth, Al

12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter

4th Wed., 7 p.m.

Fullerton Savings

Huntington Beach

Noshir Jesung (714) 842-3032

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Sacramento Chapter

4th Wed., 7 p.m.

1798-59th St., Room A

Tom Ghormley (916) 444-7775

Silicon Valley Chapter
4th Sat., 10 am.

H-P Cupertino

Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 931-2448

+« COLORADO

Denver Chapter

1st Mon., 7 p.m.

Clifford King (303) 693-3413

« CONNECTICUT

Central Connecticut Chapter
Charles Krajewski (203) 344-
9996

*« FLORIDA

Southeast Florida Chapter
Coconut Grove Area

John Forsberg (305) 252-0108

Tampa Bay Chapter
Ist Wed., 7:30 p.m.
Terry McNay (813) 725-1245

* GEORGIA

Atlanta Chapter

3rd Tues., 6:30 p.m.

Western Sizzlen, Doraville

Nick Hennenfent (404) 393-3010

«ILLINOIS

Cache Forth Chapter

Oak Park

Clyde W. Phillips, Jr. (312) 386-
3147

Central Ilinois Chapter
Urbana
Sidney Bowhill (217) 3334150

« INDIANA

Fort Wayne Chapter

2nd Tues., 7 p.m.

I/P Univ. Campus, B71 Neff Hall
Blair MacDermid (219) 749-
2042

+IOWA

Central Iowa FIG Chapter

1st Tues., 7:30 p.m.

Iowa State Univ., 214 Comp. Sci.
Rodrick Eldridge (515) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (515) 472-7077

* MASSACHUSETTS
Boston Chapter

3rd Wed., 7 p.m.

Honeywell

300 Concord, Billerica

Gary Chanson (617) 527-7206

« MICHIGAN

Detroit/Ann Arbor Area

4th Thurs.

Tom Chrapkiewicz (313) 322-
7862

« MINNESOTA

MNFIG Chapter

Minneapolis

Even Month, 1st Mon,, 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall, Univ. of MN

Fred Olson (612) 588-9532

« MISSOURI

Kansas City Chapter

4th Tues., 7 p.m.

Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter

1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam

91 Weis Drive

Ellisville, MO 63011

* NEW JERSEY

New Jersey Chapter

Rutgers Univ., Piscataway
Nicholas Lordi (201) 338-9363

* NEW MEXICO
Albuquerque Chapter

1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico

Jon Bryan (505) 298-3292

* NEW YORK

FIG, New York

2nd Wed., 7:45 p.m.
Manhattan

Ron Martinez (212) 866-1157

Rochester Chapter
Monroe Comm. College
Bidg. 7, Rm. 102

Frank Lanzafame (716) 462-
3398

Forth Dimensions

Volume X, Number 2

+ NORTH CAROLINA
Raleigh Chapter
Frank Bridges (919) 552-1357

» OHIO

Cleveland Chapter

4th Tues., 7 p.m.

Chagrin Falls Library

Gary Bergstrom (216) 247-2492

Dayton Chapter

CFC. 11 W, Monument Ave.
#612
Gary Ganger (513) 849-1483

+ OKLAHOMA

Central Oklahoma Chapter
3rd Wed., 7:30 p.m.

Health Tech. Bldg., OSU Tech.
Larry Somers

2410 N.W. 49th

Oklahoma City, OK 73112

* OREGON

Willamette Valley Chapter
4th Tues., 7 p.m.

Linn-Benton Comm. College
Pann McCuaig (503) 752-5113

« TENNESSEE

East Tennessee Chapter

Oak Ridge

2nd Tues., 7:30 p.m.

Sci. Appl. Int’l. Corp., 8th F1
800 Oak Ridge Turnpike
Richard Secrist (615) 483-7242

+ TEXAS

Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Houston Chapter

3rd Mon., 7:45 p.m.

Intro Class 6:30 p.m.

Univ. at St. Thomas

Russell Harris (713) 461-1618

+ UTAH

North Orem Chapter
Ron Tanner

TA8 N. 1340 W.

Orem, UT 84057

+ VERMONT

Vermont Chapter

Yergennes

3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.

Hal Clark (802) 453-4442

2nd Tues. & 4th Wed., 6:30 p.m.

« VIRGINIA

First Forth of Hampton Roads
William Edmonds (804) 898-
4099

Richmond Forth Group

2nd Wed., 7 p.m.

154 Business School

Univ. of Richmond

Donald A. Full (804) 739-3623

» WISCONSIN

Lake Superior Chapter
2nd Fri., 7:30 p.m.

1219 N. 21st St., Superior
Allen Anway (715) 394-4061

MAD Apple Chapter
Bill Horton

502 Atlas Ave.
Madison, WI 53714

INTERNATIONAL

« AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.

Lance Collins

65 Martin Road

Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter

2nd Fri., 7 p.m.

John Goodsell Bldg., RM LG19
Univ. of New South Wales
Peter Tregeagle

10 Binda Rd., Yowie Bay 2228
02/524-7490

» BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2

B-6290 Nalinnes
071/213858

» CANADA

Northern Alberta Chapter
4th Sat., 1 p.m.

N. Alta. Inst. of Tech.

Tony Van Muyden (403) 962-
2203

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.

Genl. Sci. Bldg., RM 212
McMaster University

Dr. N. Solntseff (416) 525-9140
x3443

Toronto Chapter
John Clark Smith
PO Box 230, Station H
Toronto, ON M4C 5J2

Vancouver Chapter
Don Vanderweele (604) 941-
4073

« ENGLAND

Forth Interest Group-UK
London

1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408

Borough Rd.

D.J. Neale

58 Woodland Way
Morden, Surry SM4 4DS

* FRANCE

French Language Chapter
Jean-Daniel Dodin

77 Rue du Cagire

31100 Toulouse
(16-61)44.03.06

« HOLLAND

Holland Chapter
Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda

3176 713104

«ITALY

FIG Italia

Marco Tausel

Via Gerolamo Forni 48
20161 Milano
02/435249

« JAPAN

Japan Chapter

Toshi Inoue

Dept. of Mineral Dev. Eng.
University of Tokyo

7-3-1 Hongo, Bunkyo 113
812-2111 x7073

* NORWAY

Bergen Chapter

Kjell Birger Faeraas, 47-518-
7784

* REPUBLIC OF CHINA
(R.O.C))

Ching-Tang Tzeng

PO Box 28

Lung-Tan, Taiwan 325

» SWEDEN
SweFIG
Per Alm
46/8-929631

« SWITZERLAND

Swiss Chapter

Max Hugelshofer

ERNI & Co., Elektro-Industrie
Stationsstrasse

8306 Bruttisellen
01/833-3333

SPECIAL GROUPS
« NC4000 Users Group
John Carpenter (415) 960-1256

Volume X, Number 2

37

Forth Dimensions

- The Gifted
Computer

1. Buy MMSFORTH before year's end,
to let your computer work harder and
faster. ‘

2. Then MMS will reward it (and you)
with the MMSFORTH GAMES DISK,
a'$38.95 value which we'll .add on at
no additional charge!

MMSFORTH is the unusually smooth

and complete Forth system with the

four to ten times greater productivity
with this outstanding system, and MMS
provides advanced applications pro-
grams in Forth for use by beginners and
for custom modifications. Unlike many

and debugging tools that professional
programmers want. The licensed user
gets continuing, free phone tips and a
MMSFORTH Newsletter is available.

arcade games (BREAKFORTH, CRASH-
FORTH and, for TRS-80, FREEWAY),
board games (OTHELLQ and TIC-TAC-
FORTH), and a top-notch CRYPTO-
QUOTE HELPER with a.data file of
coded messages and the ability to en-
code your own. All of these come with
Forth source code, for a valuable and
enjoyable demonstration of Forth pro-
gramming techniques.

Hurry, and the GAMES DISK will be our
free gift to you. Our brochure is free,
too, and our knowledgeabie staff is
ready to answer your questions. Write.
Better yet, call 617/653-6136.

and a free gift!

GREAT FORTH:

MMSFORTH V24.................. $179.95*

The one you've read about in FORTH: A
TEXT & REFERENCE. Available for IBM
PC/XT/AT/PS2 etc., and TRS-B0 M.1, 3
and 4

GREAT MMSFORTH OPTIONS:

FORTHWRITE $99.95"
FORTHCOM ... 49.95
DATAHANDLER 659.95
DATAHANDLER-PLUS* 99.95

UTILITIES
*Single-computer, single-user prices; cor-

porate site licenses from §1,000 additional.

3%" format, add $5/disk; Tandy 1000, add

$20. Add S/H, plus 5% tax on Mass. orders.

DH+ not avail. for TRS-80s.

GREAT FORTH SUPPORT:

Free user tips, MMSFORTH Newsietter,

consulting on hardware selection, staff

training, and programming assignments

targe or small.

GREAT FORTH BQOKS:

FORTH: ATEXT & REF............. $21.95*
THINKING FORTH

Many others in stock.

MILLER MICROCOMPUTER SERVICES

61 Lake Shore Road, Natick, MA 01760
{617/653-6136, 9 am - 9 pm)

NOW FOR IBM PC, XT, AT, PS2
AND TRS-80 MODELS 1,3, 4, 4P

great support. Many programmers report

Forths on the market, MMSFORTH gives
you-a rich set of the instructions, editing

The MMSFORTH GAMES DISK includes

(Data Structures, from page 14.)

tier of operations is a virtue of Forth, Char-
les Moore preserved a greatdeal of flexibil-
ity by manipulating values in steps: an
object in memory is fetched to the stack,
converted to a cell-length object (or mul-
tiples thereof), processed by whatever
postfix operators are available to the
object’s supertype (you might say there are
only two types at this point: doubles and
cells), and then stored with the correct
operators (back to three data types).

Conclusion

Other languages don’t support the crea-
tion of new data types; they leave you with
asmall vocabulary of basic types and meth-
ods from which to build compound types
such as records. The basic type vocabulary
also tends to be a minimal one. Each of the
few basic types available is usually quite
different from the others. Contrast this with
Forth, where you can create a dozen string
data types if you need them. And within
twelve different applications, you may find
yourself needing them.

Forth doesn’t presume to have discov-
ered all the basic data objects or types
needed to solve your problems. With its
limited but extensible base, Forth provides
the opportunity to create just the data type
or data object you need.

Copyright © 1988 by Mike Elola. All rights
reserved.

Mike Elola is a published Forth pro-
grammer and a full-time writer at Apple
Computer. Over the years, Mike feels,
Forth has tricked him into believing that
he is a computer scientist.

(Editorial, from page 3.)

tors of the Forth Interest Group. Under his
leadership, the 1988 Forth National Con-
vention (“The 1988 Real-Time Program-
ming Convention,” featuring banquet
speaker Jef Raskin and keynote speaker
Ray Duncan) will be held November 18 —
19 in Anaheim, California (across from
Disneyland). Los Angeles and Orange
County have local FIG members with the
expertise, professionalism, and energy to
lend to an exciting event. We are looking
forward to traveling there, and hope to see
you there. Bring along your computer and
favorite language, too: the black-belt pro-
grammers contest offers a $1000 prize —
write to FIG for a copy of the rules.
—Marlin Ouverson

Editor

(GEnie, from page 31.)

accept the Forth-79 definition in our audit
trail, and unless someone generates a pro-
posal to that effect there is no way it can
even be considered. If you consider the
Forth-79 loop behavior to be equally desir-
able, there is absolutely nothing wrong
with submitting a separate proposal to that
effect. There are plentiful cases where a
submitter finds two mutually exclusive
changes equally acceptable, and in such a
case two proposals are easier to work with
than would be a single proposal outlining
two possibilities. Cheers —Greg.

Forth Dimensions

38

Volume X, Number 2

Y rsenires

BN
A N A A B A N I B
TR AR R A :

Investigate career opportunities with Digalog

Experience:
* > 5 yrs programming, 3 yrs Forth
+ Realtime instrumentation & Control

« Linear algebra, Z transforms,
state space

« Strong hardware background

Interests:

* Software Product design

» Applications language development

« Automotive or aerospace laboratories
« Relocating to Ventura, California

Send resume to:

DboicaLoc

Digalog Corporation ® PO Box 3315 e Ventura, CA 93006-3315 & 805/644-9928

Volume X, Number 2

39 Forth Dimensions

for the World's Fastest Programmer.

Be the first to put our mystery gizmo through its paces and
win $1000! Use any computer, any software. The showdown is
at the Real-Time Programming Convention, Nov 18-19th,
Anaheim, Calif. For complete rules, write:

Programming Contest, Forth Interest Group, PO Box 8231,

San Jose, CA 95155.
Forth Interest Group
P.O.Box 8231 Second Class
San Jose, CA 95155 Postage Paid at
San Jose, CA

