

F O R T H
-

D I M E N S O N S
rn

DESIGNING DATA STRUCTURES MIKE ELOLA
12

Forth provides the basic foundation needed for object-oriented programming, by the ease with which new data
structures can be defined. This series of articles will focus on the most portable of data objects, and on sharing
operations between related objects. This installment educates the reader about basic concepts and ways to
evaluate objects and their operations.

rn
OBJECT-ORIENTED FORTH RICK HOSELTON

15

Y Any computer language can produce object-oriented programs, some just make it easier than others. Lan-
guages like Smalltalk actually require an object approach. Forth can be extended easily to provide support for
object programming; the author shares his own approach in code.

STEP-TRACING INfig-FORTH GENE THOMAS
20 s F83 has a DEBUG utility that single-steps through definitions at the touch of a key. fig-FORTH and its

derivatives can now have a similar utility in their systems. The criteria for the solution boiled down to this: the
application must not require any editing. Vectored execution to the rescue!

rn
LINEAR AUTOMATA ANDREAS CARL

23
The idea for this program is from A.K. Dewdney, who wrote, "In a world of artificial computers, it is surpris-

ing to imagine that we might be surrounded by a variety of natural computers like water, wind, or wood"
Cellular automata can demonstrate the arithmetic abilities of natural systems. Experimenting with this Forth
program helps to make the point clear.

rn
VOLUME EIGHT INDEX MIKE ELOLA

26
A comprehensive reference guide to all issues of Forth Dimensions published during the volume eight

membership year. See the FIG Order Form to order complete sets of back issues.

THE BEST OF GENIE GARY SMITH
29

Sunday Q&A at the "Figgy Bar" is coming for Forth novices ... And this column recaps some standards-
making dialog from the GEnie Forth RoundTable. Get a taste of what a proposer to the ANSI committee goes
through to prepare his proposal.

Editorial
4

Letters
5

Advertisers Index
28

FIG Chapters
36

I I

Volume X, Number 2 3 Forth Dimensionr

C harles Keane sent me a note on
GEnie, to this effect:

"At it's last meeting, the ANS Forth
Technical Committee (X3J14) voted to
constitute itself as a Speakers Bureau for
FIG Chapters, specifically on the subject of
current standardization activity. It also
designated y'r ob't servant as the clearing-
house for this effort. Interested chapters
may contact me on GEnie (address
C.KEANE), by phone (518-274-4774), or
U.S. Mail (5 15 - 4th Avenue, Watervliet,
NY 12189-3703)."

Invite a scapegoat to dinner, anyone?
Seriously though, folks, this sounds like a
great way to get a good, close look into the
horse's mouth (so to speak). I suspect that
any speaker from X3J14 could relate
enough about the ANS process and techni-
cal tradeoffs to enliven and enlighten any

I meeting.

We have been looking for material re-
lated to object-oriented programming.
There's a world full of people who think
we'd be using objects, if we had any class.
Mike Elola has kindly offered to bring
objects to light in several articles. His first
appears herein, and explains the fundamen-
tal concepts and terminology of object-
oriented programming.

Like Forth, objects can be tough to
appreciate without enough hands-on tink-
ering to provide, at the least, a gestaltic
moment or two. To that end, Rick Hoselton
provides F83 code that supports object-
oriented programming. (Other versions are
also welcome, and Mike Elola will be

1 developing one with that series of articles.)
I He offers another view of the general sub-
ject, leaving it to the reader to develop some
illustrations of the real usefulness of ob-

Forth Dimensions
Published by the

Forth Interest Group
Volume X, Number 2

July/August 1988
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

business group and board meetings at
which the convention was planned.

For years, there have been brief discus-
sions about moving this keystone event of
FIG'S year to another locale. That would
give local Forth programmers and vendors
a chance to use the event as a showcase of
their Forth-related work, and would pro-
vide the local technical community with a
chance to learn about contemporary Forth
products and practices. Besides, the inevi-
table infusion of techno-gossip and code-
riddled repartee would give the local Forth
community an infusion of ideas and a sense
of perspective. But such discussions were
usually short-lived, coming too late in the
planning year and without local leadership
or an actual plan.

Martin Tracy lives in southern Califor-
nia and is a member of the Board of Direc-

(Continued on page 38.)

jects. We continue to welcome well-chosen
examples and stories about object-oriented
programming in Forth.

programmer inter-
ested in this topic must read Dick
Pountain's book, Object-Oriented Forth.
It'' mandatory - even the introduction is
good. Add it to your library even if
just generally interested in Forth tech-
niques, especially ones involving data
structures (Academic Press, 1987).

* * *

I hope you can attend this year's Forth
National Convention. Until this year, it
always has been held in the vicinity of San
Francisco. This was natural - most of its
early organizers lived in that area, and the
strong FIG chapters there supported it vig-
orously as volunteer staff and as attendees,
speakers, and exhibitors. Not incidentally,
some local FIG members also attended the

holder.
About the Forth Interest Group

The Forth Interest Group is the association
of programmers, managers, and engineers
who create practical, Forth-based solutions to
real-world needs. Many research hardware
and software designs that will advance the
general state of the art. FIG provides a climate
of intellectual exchange and benefits intended
to assist each of its members. Publications,
conferences, seminars, telecommunications,
and area chapter meetings are among its activi-
ties.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave.
Suite D, San Jose, CA 95128. Second-clas!
postage paid at San Jose, CA. POSTMASTER
Send address changes to Forth Dimensiotu
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensions welcomes ma-
terial, letters to the editor, and com-ments from
its readers. No responsibility is assumed for
accuracy of submissions.

Subsc.ption u, Forth Dimensions is in-
cluded with memhrship in the Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth
Interest Group, P.O. BOX 8231, sari Jose,
California 95155. Administrative offices and
advertising sales: 408-277-0668.

Copyright O 1987 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the indi-
vidual authors of the articles and by Forth
Interest Group, Inc., respectively. Any repro-
duction or use of this periodical as it is com-
piled or the articles, except reproductions for
non-commercialpurposes, without the written
permission of Forth Interest Group7 Inc. is a
violation of the Copyright Laws. Any code
haring a copyright notice, however, can be
used only with permission of the copyright

I
Forth Dimensions 4 Volume X , Number 2

ANS Process Offers Fairness
Dear Marlin:

This is in response to the letter from
Gary Chanson (FD X/1) regarding an
American National Standards Institute
(ANSI) standard for Forth and the process
which gets us there.

I am NASA's representative on the
ANSI Accredited Standards Committee
(ASC) X3J14. I have atknded every hour
of every meeting of X3J14. I was as appre-
hensive and suspicious before the first
meeting as anybody had a right to be. My
motivation was and is simple: I am a Forth
user with important applications in view,
and feel I have a stake in the outcome of the
standards process.

Gary's letter might have left some read-
ers with the impression that this process has
been commandeered by the big Forth ven-
dors for their own purposes. Or that users
have been left out. I would like to offer my
testimony to the contrary.

By my own observation I can attest that
X3J14 was formed in accordance with
ANSI rules. It does, in fact, have an ANSI
charter to draft a proposed ANSI standard.
As far as I can tell, it is operating in scrupu-
lous regard for the letter and the spirit of
ANSI rules.

Now, regarding ANSI rules, these are
well-honed and rather inflexible. Space
does not permit a full run-down on them
here, but they are basically concerned with
full public scrutiny; with guarantees that all
input from any source be considered; and
with ensuring that adequate time intervals
are allowed for public response to proposed
standards. These rules have resulted from
decades of experience in developing stan-
dards. They are designed to balance the

numerous interests that are always in-
volved, whether the field is nuts and bolts or
computer languages. In my judgment,
these rules prevent chaos: by adhering to
them, a standard can come into being; and
a standard, by definition, reduces chaos.
Further, the rules seem to be about the only
realistic approach to achieve fairness.

Thus, even if they wanted to, or at-
tempted to, the big Forth vendors probably
would not have found it possible to com-
mandeer the ANSI process.

The other misimpression that might
have been left by Gary's letter is really just
the flip side of the above concern - that
users have no voice. Actually, therepresen-
tation on X3J14 puts users in a near major-
ity position. At my last count, there were
nine producer members and 11 consumer
members, with two others designated as
"general interest." Membership, by the
way (as has been stated widely and often),
is completely open to anyone willing to pay
the membership fee ($175), and who is
willing to work, put in the time, and travel
to the meetings.

Certainly, none of us likes the idea of a
new standard drafted in secret by a self-
appointed clique and then handed down as
though from on high. Gary's letter repre-
sents the opinions of the Boston [chapter of
the] Forth Interest Group, to the effect that
they are ticked off by the past and don't
want it repeated. My message is simple:
take advantage of the new rules and the new
process; get involved; make photocopies of
the technical proposal and comment forms
published in Forth Dimensions XI1 and in
Dr. Dobb's Journal #137 (April 1988) and
submit proposals and comments; seriously
consider the possibility of becoming a

member of X3J 14 to represent the points of
view sharedby you and your group. And be
prepared in a year or so to get a copy of the
draft proposed ANS Forth, study it, and
comment on it formally. That, too, is part
of the ANSI process. Your comments must
receive due consideration and must be
answered formally for the process to con-
tinue.

Perhaps the reaction expressed in
Gary's letter stems from the way our exist-
ing standard, Forth-83, was brought forth
(or handed down?). That process, of
course, was not the ANSI process. The
rules were quite different. And with hind-
sight we can see they were not adequate to
prevent dissatisfaction. I understand all
this, but that was five years ago, and five
years is an eon in the world of computers.
Grudges someday must be laid aside and
realities be consulted. And we do have new
realities staring us in the face (e.g., 32-bit
microprocessors which were not real five
years ago), and more realities to face
shortly (e.g., optical storage).

I believe that achieving ANS Forth will
be an important event. It surely is inevi-
table. X3J 14 is working very hard to make
it a high quality achievement, one that will
indeed have the broad support of users
such as myself. But once again, your con-
tributions are more than welcomed. They
are expected!

James L. Rash
NASA
Goddard Space Flight Center
Greenbelt, Maryland

Volume X, Nwnber 2 5 Forth Dimensiom

(Shutruck's screens.)

Scr # 37 KERNEL-BLK
0 \ Task Dependant USER Variables 03Apr88cws
1 USER DEFINITIONS
2 VARIABLE TOS (TOP OF STACK)
3 VARIABLE ENTRY (ENTRY POINT, CONTAINS MACHINE CODE)
4 VARIABLE MPAGE (MEMORY PAGE)
5 VARIABLE JUMP (ADDRESS OF RESTART OR NEXT TASK)
6 VARIABLE LINK (LINK TO NEXT TASK)
7 VARIABLE SPO (INITIAL PARAMETER STACK)
8 VARIABLE RPO (INITIAL RETURN STACK)
9 VARIABLE DP (DICTIONARY POINTER)
10 VARIABLE #OUT (NUMBER OF CHARACTERS EMITTED)
11 VARIABLE #LINE (THE NUMBER OF LINES SENT SO FAR)
12 VARIABLE OFFSET (RELATIVE TO ABSOLUTE DISK BLOCK 0 1
13
14

Scr # 22 CPU68000.BLK
0 \ Multitasking low level 03Apr88cws
1 LABEL (PAUSE) (S --
2 IP SP - 1 MOVE RP SP - 1 MOVE (push ip, rp)
3 UP bank L#) D7 MOVE D7 A0 LMOVE (load up
4 SP A0 MOVE (sp to tos) 8 A0 LONG ADDQ WORD
5 A0) D7 MOVE D7 A0 LMOVE (point to next task)
6 A0) JMP C; (jump to next task
7 LABEL RESTART (S --)
8 SP) + A0 LMOVE (pop return address, current link)
9 8 A0 LONG SUBQ WORD A0 UP bank L#) MOVE (get up)
10 A0) D7 MOVE D7 SP LMOVE (restore stack)
11 SP) + D7 MOVE D7 RP LMOVE (restore rp
12 SP) + D7 MOVE D7 IP LMOVE (restore ip
13 NEXT C;
14 ENTRY LINK ! (I point to myself)

Scr # 23 CPU68000.BLK
0 \ Manipulate Tasks 04Apr88cws
1 HEX
2 4EF9 CONSTANT JMPL# \ op word for a long jump
3 4EB9 CONSTANT JSRL# \ op word for a long jump to subroutine
4 DECIMAL
5 : LOCAL (S base addr -- addr') UP 8 - + ;
6 : BLINK (S -- addr) LINK 8 ;
7 : !LINK (S addr --) LINK ! ;
8 : SLEEP (S addr --) DUP LINK LOCAL 8 OVER JUMP LOCAL !
9 JMPL# SWAP ENTRY LOCAL ! ;
10 : WAKE (S addr --) RESTART OVER JUMP LOCAL !
11 JSRL# SWAP ENTRY LOCAL ! ;
12 : STOP S -- UP 8 SLEEP PAUSE '

13 : SINGLE S --) [' I PAUSE >BODY [' I PAUSE ! I

14 : MULTI S - - U P 8 W A K E (PAUSE) [' I PAUSE ! ;

Forth Dimemiom 6 Volume X, Nwnber 2

(McBrien's screens.)

S c r r e r i 2 1 0
1 (P 1 S F O R T H t . r p ~ - i n - i i t i v e . _ ? . F ; e t \ p e d b y i : l > r i 5 M c B t - i e n 2 0 ' ? ~ e p t 15187.
2 A d a p t e d f r s m H e w l e t t F a s k a r d ' s 9 8 3 5 F O R T H U s e r ' s M a n u a l .
3

D I S F O R T H w i 1 1 r l l r c o r n p i l e a F . s r t h w o r d i n t o i t ' s s o r r i p o n r n t .
w o r d s o r t e l l y o u i f i t i s a U S E R , V A R I A B L E o r CODE
d c f i n i t i o t - 1 . T o e a s e t) ; p i n g , D I S F O R T H i a r e n a m e d 5,EE

V A R I A B L E S T R I N G L I S T] i : . " j [
V A R I A B L E T E R M I N A T O R S] ; S ('CODE:) [
V A R I A B L E B R A N C H E S I I L O O P) (+ L O O P) B R A N C H O B R A N C H [
V A R I A B L E L I T E R A L I S T 1 L I T (LOOP:) (+ L O O P) B R A N C H <)BRANCH [

E L E M E N T ? (n \ l i s t E L E M E N T ? p o s) i l i s t i s s e a r c h e d f o r 1-13
DUP Z + SWAP @ 2 * O V E R + SWAP
DO I @ O V E R = I F DROP I O L E A V E T H E N 2 +LOOF'
I F 0 T H E N ; - - >

S c r e e n 2 1 1
1 (D I S F O R T H e r . . . P a g e 2 o f 3)
2 : P R I N T - W O R D (p f a d d r P R I N T - W O R D n e x t a d d r
3 C k UlJP U . (a d d r e s s)
4 D l l P @ DlJP U . S P A C E (c f a)
5 S P A C E DUP 2 + N F A I D . (I -~a rne)
6 DUP S T R I N G L I S T E L E M E N T ? I F (i f i n l i n e s t r i n q)
7 SWAP 2 + COUNT Z D U P T Y P E (t h e n t y p e i t o u t)
8 + 2 - SWAP T H E N
9 DUP ' C O M P I L E CFA = I F SWAP 2 + DUP @ 2 + N F A I t) . SWAP T H E N

10 DUP L I T E R A L I S T E L E M E N T ? I F
1 1 SWAP 2 + D U P @ R O T B R A N C H E S E L E M E N T ? I F OVER + T H E N U .
1 2 E L S E DROP T H E N 2 + ;
1 3
1 4 : P R I N T - D E F (P F A P R I N T - D E F)
1 5 B E G I N [)UP @ T E R M I N A T O R S E L E M E N T ? O = W H I L E
1 6 P R I N T - W O R D R E P E A T F R I N T - W O R D DROP ; - - >
o h

No TRAPS in
His Multitasker ...
Dear Marlin,

I want to thank you very much for pub-
lishing the article by Robert J. Eager,
"Relocatable F83 for the 68000" (FD 1x1
6) . I know that some people don't want to
see such machine-specific articles in
Forth Dimensions, but this one really
helped me. I have a copy of F83 modified
for the Atari ST by George Morison. Mr.
Morison did a wonderful job of porting
F83 to the Atari, with the same basic idea
used by Mr. Eager. Unfortunately, both
the single-step debugger and the multi-
tasker caused the system to bomb, so I did
without them. With the help of Mr.
Eager's article, I was able to fix the debug-
ger almost immediately, and used it to
tackle the multitasker.

After hours of constant bombing, I de-

cided there must be something about 68000
traps that I just didn't understand. It oc-
curred to me that I could add another couple
of bytes to the user area to allow the use of
the JSR instruction rather than the TRAP
instruction. This means a little more com-
plexity for the words WAKE and SLEEP, but
the code works, is easy to understand, and
avoids some extra stack popping required
by the trap instruction, so it may even run
faster. WAKE now puts a JSRL instruction
into ENTRY and the address of RESTART
into a new user variable called JUMP.
SLEEP puts a JMPL instruction into EN-
TRY and the address of the next task (taken
from LINK) into JUMP. The included code
is specific to the 68000 but I imagine the
same idea would work with any processor,
but without requiring any knowledge of
traps and exception vectors.

Let's continue to hear moreaboutmulti-

tasking in Forth Dimensions, and how
about some articles about implementing
multi-user Forth as well?

Sincerely,
Charley Shattuck
1509 Gerry Way
Roseville, CA 95661

Visible Forth
(with no exceptions)
Dear Editor,

With reference to Rich Franzen's "The
Visible Forth" (FD IX/3), the EXCEP-
T IONS in screen 17 do seem to make the
application rather non-portable, at least
until the user has sorted out the addresses
of the exception words.

Although I claim no originality for the
application submitted, I have cleaned it up
and gotten rid of one major typing error.

I 1

Volume X, Nwnber 2 7 Forth Dimemiom

(McBrien's screens, continued)
1

S c r e e n 2 1 2
1 (D I S F O R T H e r . . . P a q s 3 o f 3)
2 : D I S F O R T H (D I S F O R T H c c c c e g : D I S F O R T H V L I S T)
3 C L S (C l e a r t h e s c r e e n 1
4 CR [C O M P I L E] ' DUP N F A I D . (g e t P F A o f c c c c)
5 DIJF N F A C @ 6 4 AND I F . " . . .i s a n I M M E D I A T E w o r d " T H E N
6 DUP CFA @ [' . C F A @] L I T E R A L = I F (c o l o n d e f i n i t i o n)
7 P k I N T - D E F
Y E L S E [)UP C F A @ [' F E N C E CFA @] L I T E R A L I F
9 . I ' . . .I 5. a U S E R v a r l a h l e . O F F S E T = " @ . CR

1 0 E L S E DIJP C F A @ [' O C F A @ 1 L I T E R A L = I F
1 1 . " . . .I s a C O N S T A N T . V A L U E = " @ . CR
1 2 E L S E [)UP C F A @ [' U S E R C F A @] L I T E R A L = I F
1 3 . " . . . i 5 a V A R I A B L E . C O N T E N T S = " @ . CR
1 4 EL5.E . " . . . i s a CODE d + f i n i t i o r t . " CR
1 5 DROP T H E N T H E N T H E N T H E N CR ;
1 6 : S E E B A S E @ > K HEX D I S F O R T H R > B A S E ! ;
o k

(S E E V L I S T j

S c r e e n 2 3 1
1 (T R I A L . . . T o t e s t t h e r e s o l v i n g o f a B R A N C H 1
3 L

3 : T R I A L 1 0 O D O CR . " E R A N C H T E S T "
4 LOOP CR ;
5
t;
7
S
q

1 0
1 1
1 2
1 3
1 4
1 5
1 6
o k

T R I A L
5 8 D E 4 D 5
S S D F 8 C 5
5 8 E 1 5 8 4
5 8 E 3 2 0 2 5
5 8 E 5 A 6 8
5 8 F 3 5 5 3
5 8 F 7 2 0 2 5
5 8 F 9 5 9 6

o k

L I T A
0
(130)

CR
(. ' j B R A N C H T E S T
(L O O P) 6 1 D S

C R
; S

5 8 0 0 0 5 8 5 5 4 5 2 4'3 4 1 ' C 5 7 5 8 CIA 0 7 D5 0 4 OA 011 C B . . T R I A L 7 X . . U . . . K
5 8 E 0 0 8 8 4 0 5 2 5 2 0 68 OA OB 4 2 5 2 4 1 4 E 4 3 4 8 2 0 5 4 . . .YO h . . B R A N C H T
5 8 F O 4 5 5 3 5 4 5 3 0 5 E 3 58 2 5 2 0 9 6 0 5 0 4 4 4 5 5 4 D 5 0 E S T S . c X I . . . DUMP
5 9 1 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
5 9 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 20 2 0 2 0 2 0 OB 59 2 5 . V ?'o

o k

I

Forth Dimensionr 8 Volume X, Nwnber 2

(McBrien's screens, continued.)

' > a r e e n

1 (E L E M E N T ' ? D e z c m p i l r I - ~ i g l - I l e v e l F . > l - t h d e f i l - l i t i o n s
7
L

2 1 ' V A R I A 8 L E 5 T F I N i ; L I s T] (."I [
4 L V A R I A B L E T E R M I N A T O R * ?] ; 5 (; C O D E) [
5 i~ V A R I A B L E G R A N C H E S I [
6 5 V A R I A G L E L I T E R A L I S T] L I T (L O O P) (+ L O O P) E K A N C H O B R A N C H [
7

8 (T h e c f a o f a w o r d a l o n q w i t h i t ' s r s l c v a n t . 1 i s t ' E L E M E N T ? '
3 g i v e s t h e a d d r e s s o f t h e c f a i n t h a t l i s t :!

1 0 : E L E M E N T ? (: c f a \ l i s t - a d c l r i n t h e 1 i s t :I
1 1 i: (3593 E R A N C H E S e l r r r - l e n t ? 7 1 E E . . . i n my s y s t e m >
1 2 [>UP :+ SWAP @ Z * O V E R + SWAP
1 3 DO I @ O V E R = I F DROP I i l L E A V E T H E N L + L O O P
1 4 I F O T H E N ;
1 5
1 6
oh

S c r e e n :(I1
1 P R I N T - W O R D Mo t -e d e c o m p i 1 i n g w o r d s
2 : P R I N T - W O R D (p f a - n e x t . p f a)
3 C R I S U P U . (p r i n t t .he p f a)

4 D U P @ D U P U . S P A C E (p r i n t t h e z f a)

5 S P A C E [)UP 2 + N F A I D . (p r i n t t .he n a m e :I
G D U P S T R I N G L I S T E L E M E N T ? i f a n i n l i r ~ e s t r i n g
7 I F SWAP ? + C O U N T 2 D U P T Y P E + ? - SWAP (t y p e i t n u t
8 T H E N DUP ' C O M P I L E C.FA =
9 I F SWAP 2 + @ U P @ 2+ N F A I D . SWAP

10 T H E N [)UP L I T E R A L I S T E L E M E N T ?
I 1 I F S W A P 2 + D U P @ R O T B R A N C H E S E L E M E N T ?
1 2 I F O V E R +
1 3 T H E N IJ.

1 4 E L S E D R O P
15 T H E N 2 + ;
1 6
ok

Listing One is the original, semi-working
version but, as can be seen, the BRANCH
resolving is not correct according to the test
word TRIAL. (Joke SEA TRIALS.) I am a
novice Forth programmer and have been
unable to cure this branching problem apart
from the vicious hack in Listing Two, in
which I removed the WORDS from
VARIABLE BRANCHES simply because
the branch address seemed to be double
what it should be, so I removed the dupli-
cate branch words, and it worked. The test
word AA in Listing Two is resolved cor-
rectly. If anyone can throw some light on
this slight problem, I - for one - would
learn a little more. Also, I feel this version

would be more portable than Rich's: it
originally came from a Hewlett-Packard
9835 application later modified for an HP
86, which uses an octal-based processor.

My system is basically a Forth-79 ker-
nel, with additional words for an MS-DOS
system running on a Hewlett-Packard 150.
(Notice that screens' line numbers go from
one through 16, not zero through 15. This
does mean that . LINE is one off when
used. Why don't people stick to a standard?

Chris McBrien
1. Milton of Straloch
Newmachar,

I Aberdeen, Scotland

Errata and Improvements
to a 6502 Assembler
Dear Marlin,

While using the assembler I described
in Forth Dimensions (IX/5), I have discov-
ered several bugs. The first of these was
due to my ignorance of some opcode proce-
dures; the others were just errors.

There are a number of operations, such
as LDA, for which the lists of available
addressing modes include:

Absolute, X
Absolute, Y
Zero page, X

but not Zero page, Y.

Volume X, Number 2 9 Forth Dimensions

I hadn't realized that the missing Zero
page, Y addressing mode could be in-
voked by using an absolute address refer-
ence to zero page (e.g., 00E1). In trying to
modify the assembler to automatically
compile an absolute zero-page address
when appropriate, I found a few more
bugs. So I decided to simplify the logic
sequence and correct the screens. Screens
2, 3, 5, 8, and 9 have small changes;
screens 4 and 6 have massive changes
based on use of the new words ?LEGAL,
?ZP, and ?IMM.

The suggested improvement is the use
of equates. One of the conveniences of a
conventional assembler is the provision
for using names for addresses; e.g.:
COUT EQU SFDED
TEMP EQU $El

In the Forth assembler, COUT and
TEMP Can be defined as constants, but are
needed only temporarily. If such con-
stants are defined(eithe; before or after
the assembler is loaded) after space has
been allotted for the assembler and before
the dictionary pointer has been reset to the
top of the core vocabulary. they will be
available to the assembler but will be
forgotten along with it when the vocabu-
lary linkage is changed after assembly is
complete.

Sincerely,
Chester H. Page
1707 Memfields Drive
Silver Spring, Maryland

ASSEMBLER SCR # 1
0 \ A s s e m b l y s a m p l e Z7JUN87CHP
1 \ C o n v e n t i o n a) f o r m a t
2 \ LDA #O
3 '\ LDY #680
4 \ L 1 STA 300,Y
5 \ DEY
6 \ BPL L 1
7 \ JMP NEXT
8
9 \ F o r m a t f o r t h i s a s s e m b l e r

10 \ ASSEMBLE TEST
11 \ 0 # LDA, 8 0 # LDY, 1 0 1 3013 ,Y STA, DEY, 1 0 1 BPL, GONEXT
1 2 \ END
1 3
1 4 -->
1 5

ASSEPiBLER SCR # Z
0 \ 0 W R 8 8 C H P
1 HEX
2 VOCABULARY ASSEMBLER
3 ASSEMBLER DEF IN IT IONS
4 VARIABLE MODE
5 VARIABLE MODE.KEY
6 \ The a1 l o w a b l e n u m b e r s o f 1 abe l s a n d r e f e r e n c e s i s c o n t r o l 1 e d
7 \ I n t h e r e s t o f t h i s s c r e e n
8 1 4 ARRAY LeBEL.TABLE \ P r o v i d e for 2 0 l a b e l s , a n d
9 CREATE REF.TABLE 0 , 0 , 5 6 A L L O T \ f o r 3 0 r e f e r e n c e s

10 VARIABLE REF. POINTER
11 : CLEAR.TABLES 1 5 1 DO 0 I LABEL.TfiBLE ! LOOP
1 2 REF.TABLE 3 + REF.POINTER ! ;
1 3 VARIABLE LONG.ADDR
1 4 - ->
1 5

ASSEMBLER SCR # 3
0 \ Modes OPWR88CHF
1 : ZP O MODE 0 MODE.KEY ; \ A d d s 4 t o o p c o d e
2 \ ZP 1 s d e f a u l t mode
3 : . X I M O D E ' 1 MODE.KEY ; \ A d d s 1 4 (z e r o p a g e , *)
4 : ,Y 2 MODE 2 0 2 MODE.KEY : \ A d d s 1 4 - LDX. STX, o n l u
5 : X) 3 MODE 4 MODE .KEY : \ A d d s 0 (Z P .X>
6 :) Y 4MOOE ' 8 M O D E . K E Y ' ; \ A d d s 10 t Z P > , Y
7 : # 5MODE 110MODE.KEY ; \ A d d s 8 I m m e d ~ a t e
8 : , A 6 M O D E ' 2 0 M O D E . K E Y ; \ A d d s 8 A c c u m u l a t o r
9 :) 7 MODE 40 MODE.KEY ; \ A d d s 2 C - I n d l r e c t JMPs on1 v

1 0 ' . 8 A d d s C - A b s o l u t e a d d r e c s
1 1 9 A d d s 1 C - - I h > : ~ l u t r , \
1 2 \ A A d d s 1 8 - A b s o l u t e . \
1 3 CREATE ADD.TABLE \ I n d e x e d by mode v a l u e
14 1404 . 0 0 1 4 , 0810 . 2C08 . lCOC . 1 8 C .
1 5 -->

ASSEMBLER SCR # 4
O \ A I S a g l v e n a d d r e s s OPMAR88CHP
1 \, C 1 s a d d r e s s r e t u r n e d by o p c o d e m n e m o n ~ c
Z : ?LEGAL r C---C) DUP 1+ C? MODE.KEY i) AND F F AND
3 ABORT" I 1 1 e g a l Opcode" DUP C? 20 = \ Check f o r ,A
4 O= I F OVER 100 U< O= I F MODE.KEY ? OC AND
5 ABORT" I l l e g a l I ~ ~ I ~ ~ C ~ ~ T H E N T H E N :
6
7 : ABS.ADDR DUP 1+ 3 MODE.KEY ? DUP 3C AND
8 ABORT" I l l e g a l a d d r e s s " DUP 40 = I F DROP DROP ELSE AND 200 =
9 I F -1 MODE + ! THEN 8 MODE + ! THEN 1 LONG.ADDR ! ;

10 : ?ZP (C---C) MODE.KEY 3 2 0 = O= I F OVER 1 0 0 U< O=
11 OVER 1 + Ci) MODE.KEY ? OVER OR 2 6 2 = SWAP 3 F = OR OR
1 2 I F ABS.ADDR THEN THEN ;
1 3
1 4 : ?IMM DUP I + ? MODE.KEY 3 AND 100 = I F -2 MODE + ! THEN ; -->
1 5 \ S p e c i a l t r e a t m e n t o f i m m e d i a t e w i t h CPX, CPY, STX, o r STY,

I

Forth Dimemiom 10 Volume A, Number 2

ASSEMBLER SCR # 5
0 \ 09MAR88CHP
1 : LABEL. SAVE FF AND DUP LABEL .TABLE 3 \ N o t new l a b e l ?
2 ABORT" D u p l i c a t e 1 a b e l '
3 HERE SWAP LABEL.TABLE ! ; \ Save 1 a b e l a d d r e s s
4
5 : LC1 SP? SO 4 - = I F SWAP LABEL.SAVE THEN :
6 : LC2 SP? SO 6 - = I F ROT LABEL .SAVE THEN :
7
8 : COMPILE.ADDRESS < A---)
9 DUP FFOO AND 100 = \ I s i t a l a b e l ?

10 I F HERE REF.POINTER 3 0 OVER C! \ F u l l a d d r e s s l a b e l n e e d e d
11 1+ ! \ Save c o m p ~ l a t ~ o n a d d r e s s
1 2 3 REF.POINTER + ! \ A d v a n c e f o r n e x t e n t r y
1 3 THEN LONG.ADDR 3
1 4 I F , ELSE C, THEN ; \ C o m p ~ l e a b s o l u t e a d d r e s s o r ZP b y t e
1 5 -->

ASSEMBLER SCR # 6
0 \ CREATE o p e r a t o r s f o r d e f i n i n g mnemonics 09MAR88CHP
1 \ Mu1 t i m o d e o p c o d e s
2 : M/CPU CREATE 2 ALLOT C, , DOES> 0 LONG.ADDR ! L C 2 ?LEGAL
3 ?ZP ?IMM
4 C? MODE C3 ADD.TABLE + C3 + C, \ A d ~ u s t o p c o d e
5 MODE.kEY O 20 = O= I F COMPILE.ADDRESS THEN ZP ;
6
7 S i n g l e - m o d e o p c o d e s
8 : CPU CREATE 2 ALLOT C, DOES> LC1 C3 C, ZP ;
9

10 : BRANCHES CREATE 2 ALLOT C, DOES) LC2
11 C 3 C , C ,
1 2 HERE 1- REF.POINTER 3 1 OVER C! \ B r a n c h o f f s e t n e e d e d
1 3 1+ I \ Save comp l l a t i o n a d d r e s s
14 3 REF.POINTER + ! ZP ; \ A d v a n c e f o r n e x t e n t r y
1 5 -->

ASSEMBLER SCR # 7
0 \ S e c o n d p a s s r e p l a c e s s t o r e d l a b e l t a r g e t s 21 JUL87CHP
1 : SECOND. PASS
2 BEGIN -3 REF.POINTER + ! REF.POINTER a DUP I+ a
3 \ F t n d l a b e l c o m p t l a t i o n a d d r e s s
4 DIJP WHILE DUP C? DUP LABEL.TABLE 3 \ L a b e l a d d r e s s
5 3 ROLL ~ ' 3 .\ W o r d - o r - b y t e f 1 a g
5 I F 2 P ICK - 1- \. O f f s e t
7 DUP ABS 7 F >
8 I F DROP CR ." B r a n c h t o " 100 + . ." i s t o o f a r "
5 ." < o r l a b e l i s m l s s l n g j " SP! QUIT

10 THEN ROT C!
1 1 ELSE ROT !
12 THEN DROP REPEAT DROP DROP ;
1 3
14 -+
1 5

ASSEMBLER SCR # 8
0 \ D e f i n i t i o n s o f m n e m o n i c s 08MARB8CHP
1 0060 6 1 M/CPU ADC, 0060 2 1 M/CPU AND, 0060 C1 M/CPU CMP,
2 0060 41 M/CPU €OR, 0060 0 1 M/CPU ORA, 0060 E l M/CPU SBC,
3 0060 8 1 M/CPU STA, 0060 A i M/CPU L M ,
4 025E 0 2 M/CPU ASL, 025E 4 2 M/CPU LSR,
5 025E 2 2 M/CPU ROL, 025E 6 2 M/CPU ROR,
6 027E C2 M/CPU DEC, 027E € 2 M/CPU INC,
7 0 1 6 F EO M/CPU CPX, 0 1 6 F CO M/CPU CPY,
8 036D A 2 M/CPU LDX, 016E A0 W C P U LDY, 027D 8 2 M/CPU STX,
9 007E 8 0 M/CPU STY, 0 0 7 F 2 0 M/CPU B I T , 0 0 3 F 40 M/CPU JMP,

10 0 0 CPU BRK, 1 8 CPU CLC, D8 CPU CLD, 5 8 CPU C L I , B8 CPU CLU,
11 CA CPU DEX, 8 8 CPU DEY, E 8 CPU INX , C8 CPU INY , EA CPU NOP,
1 2 4 8 CPU PHA, 0 8 CPU PHP, 6 8 CPU PLA, 2 8 CPU PLP, 40 CPU R T I ,
1 3 6 0 CPU RTS, 3 8 CPU SEC, F 8 CPU SED, 7 8 CPU S E I , AA CPU TAX,
1 4 A 8 CPU TAY, BA CPU TSX, 86 CPU TXA, 9A CPU TXS, 9 8 CPU TYA,
1 5 -->

(Letters screens continued on page 22.)

I NGS FORTH I I
A FAST FY)RTH,
OPTIMIZED 3DR THE IBM
PERSONAL COMH/TER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

e79 STANIXRD

@DIRECT 1/0 ACCESS

I @F'ULL ACCESS TO MS-DOS
F I B S AND FUNCTIONS I I

@ENVIRONMENT SAVE 1 & LDAD

I @MULTI-SEGMENTED FOR
LARGE APPLICATIONS I ' I @EXTENDED ADDRESSING I I

.MEMORY W C A T I O N 1 CONFIGURABLE ON-LINE I 1

.AUTO LOAD SCREEN BOOT

@LINE C SCREEN EDITORS I I
eDECOMPILEFt AND

DEBUGGING AIDS

GRAPHICS & SOUND

@NGS ENHANCEMENTS

@DETAILED MANUAL

@INEXPENSIVE UPGRADES

aNG!s USER NEWSxEmER

A COMPLETE ~ K T H
DEVEU)PUENT SYSTEM. I I
NEW+-150 & HP-110
VERSIONS AVAILABLE I I

NEXT GENERATION SYSTEMS
P.0.BOX 2987
BANTA CLARA, CA. 95055
(408) 241-5909

I

Volume X , Number 2 11 Forth Dimensions

DESIGNING
DATA STRUCTURES
--

MIKE ELOLA - SAN JOSE, CALIFORNIA

/ Fonh includes all the fundamental I "reliability." several basic terms must be I bit normally associated with a sign could
tools needed to create data objects. With
these tools, you can create innumerable
different kinds of such objects.

For this series of articles, our focus will
be on the data objects that are most port-
able across CPUs of different bit widths,

32-bit signed integer object could still be limitations. So the design of objects alter- / The Quest for Reliable Object Designs 1 used for storing the numbers, but the object 1 nates between consideration of the opera- I

understood precisely.
Objects are binary representations of

numbers, dates, letters, or other abstrac-

and on the ability to share operations be-
tween related types of objects. Without
these concerns for portability and pooling
of operations, designing new data objects
has been guided by two main criteria: the
simplicity with which frequently associ-
ated operations can be implemented
(which also affects the speediness of such
operations) and the memory compactness
of the layout (which often inversely affects
the simplicity of the associated opera-
tions).

New designs should be evaluated with
respect to all these criteria. In this discus-
sion, the performance and compactness of
the code will only be mentioned when new
design approachesthreaten to compromise
them too much.

The many topics about data objects
include: how much data typing is sup-
ported by Forth; what constitues a Forth
data type; how portability issues converge
with data typing issues; and how data typ-
ing can be implemented. Another topic
which is often treated too lightly is the
choice of action (specified following
DOES>) in user-supplied, data-declaration
routines. This action is adopted by all data
objects created with the parent declarator.
Throughout this text, I will refer to this
behavior as the "default" or "initial" opera-
tion.

(To be able to talk about goals such as I would not have a sign property. Instead, the I tions to be supported and consideration of /

be interpreted as a work/home flag, an al-
together different property.

Operations act upon an object by tak-
tions. The individual bits that comprise the
object are usually groupedinto larger units,
which can represent more than a Boolean

I

Forth Dimensions 12 Volume X , Nwnber 2

ing advantage of knbwn of the
object. For example, a multiply operation
uses the sign bits of its operands to deter- 1

onloff state. These bit-groupings help to
structure the object.

"An object is sim-
P'Y a cozzection of
properties. 99

The design of objects encompasses
more than structure alone. Each structural
component of an object is invested with a
particular interpretation, which gives rise
to the properties exhibited by the object. An
object can be thought of as a collection of
structural components and their associated
interpretations. A more portable, or im-
plementation-independent, way to view an
object is simply as a collection of proper-
ties. For example, a signed integer has a
sign property. The sign property arises
from a particular component of the object,
such as the interpretation of the most sig-
nificant bit.

Identifying each context in which the
object is intended to be used will help to
determine the properties of the object. For
example, assume you have to store phone
numbers. While a sign bit would not serve
any useful purpose in this context, aUwork"
or"home"discriminator might be useful. A

mine the sign bit of the result. This way,
the properties of the result are consistent
with the properties of the input objects.

If we know the properties of the resul-
m t object, we may say that the object is
reliable with respect to the operation.
When the result is an object with un-
known properties, the operation is unreli-
able with respect to the object. For ex-
ample, a string concatenation operation is
reliable when it properly accounts for the
maximum-length property of the string
into which the result is stored. By design-
ing operations which respect the invariant
properties of objects, we make our data
objects "reliable." (See Reliable Data
Structures in C by Thomas P&m for a
more detailed discussion of this subject.)

The process of object design requires
careful judgments about all the properties
and operations an object should support.
These properties and operations cannot
be considered separately. The necessity
for specific operations determines the
choice of properties for an object. Like-
wise, the choice of properties impacts the
operations that can be reliably performed
upon an object. A string storage operator
cannot reliably store a string unless the
string variable includes a "maximum
length" property, so that it can at least
report error conditions arising from space

L

Volume X, Number 2 13 Forth Dimensions

the structural components that reliably
support those properties.

Forth Data Types
Forth is a typed language, in terms of

having many objects that share the same
properties. Accordingly, operators and
objects must be correctly paired. For ex-
ample, the E M I T operation is only useful
when applied to the correct object. The
Forth programmer must oversee the proper
matchup between operations and objects.
Other languages also expect you to make
the proper matchups, but they can provide
a warning when you have made a mistake.
Forthprovidesno such warning, unless you
add the necessary code to make this pos-
sible. But Forth's lack of built-in type
checking does not imply an absence of data
types or any special dislike of data types.

The topic of Forth data types is often a
sensitive one. Most authorities would say
that the absence of strongly enforced data
typing is bad. What they are really saying is
that most programmers cannot keep track
as well as the computer can of what they
declare, and this is inarguably true. But by
overcompensating for human frailty with
strictly enforced type checking, languages
become too confining.

Few languages besides Forth will let
you make the final decision about whether
an operator and an operand will be suitable
for one another. So sets of operations
(COUNT, -TRAILING, and TYPE for ex-
ample) can be intermixed in ways that
support a variety of objects, and with much
greater efficiency in Forth than in most
other languages.

Properties of
Forth Data Objects

The properties of an object arise out of
the unambiguous and stable interpretations
we associate with each bit and byte of an
object. Properties also include other facts
about an object, such as a length (including
component parts) and the layout. The lay-
out properties of a multi-part object involve
the order of the parts and their offsets from
the start of the object.

These shared properties of data objects
give rise to data types like integer variables,
ASCII character codes, arrays, etc. As a
designer, you need little more than consis-
tency among a group of objects to establish
data types. (Because it encapsulates a
group of properties, even one instance of an

object establishes a data type.)
"Variable" is a convenient label for a

group of similar objects. The word variable
is used to identify a type of object without
redescribing it. The term helps to displace
phrases like "16-bit, signed integer value."
("Variab1e"refers to the variable data type
- the group of objects with the properties
we commonly associate with Forth
variables. VARIABLE refers to the Forth
routine that creates instances of variables.)

In Forth, named data objects have a
parent code field address (CFA) associated
with them. Although the CFA (and
associatedDOES> phrase) is more abehav-
ioral inheritance of the data object, that
behavior is tightly bound to the object. As
such, this behavior can be loosely consid-
ered a property of the object. If you think of
the CFA as a physical subcomponent of the
object, this idea gains more respectability.

The behavior of a constant is to return
the value with which it was declared. That
action can be considered an operation,
rather than a property. Here's why: to de-
sign theinitialoperation foraconstant, first
you must take into account the width of the
stored datum, so that the correct fetch op-
erator canbe engaged. Therefore, the width
of the object is the fundamental property.

A data object need not have any opera-
tional property, as in the case of user vari-
ables. Memory has been allocated for user
variables without a nearby CFA and label.
Other examples of objects without built-in
operational properties are disk buffers and
headerless tables.

Reusability of Operations
Provisions for data typing block the

compilation of an incorrect type of operator
for an object, or else report a fatal error at
run time. (Some compilers will perform
type conversions automatically to avoid
this error, but that digresses ...) In object-
oriented languages, provisions for objects
assist in the selection of the correct type of
operation through hierarchical data typing;
if the current operation type is not found, an
appropriate parent type operation may be
selected. This operator-selection mecha-
nism is called inheritance.

Careful design of Forth data objects also
allows operations to be reused by different
objects. The reusability of operations has
received recent attention due to its intro-
duction in object-oriented versions of es-
tablished languages. In Forth, however, this

kind of inheritance mechanism is overkill.
When objects inherit operations, they are
"enabled" for use. Without data abstraction
or data type enforcement, Forth operations
are always enabled for use with any object;
but the selection mechanism is that crea-
ture known as the programmer.

Objects which have identical properties
can be directly manipulated by a common
set of operations. Objects may also be de-
signed that share certain properties and not
others. In such cases, you can often use a
subset of the operations for both types of
objects - particularly, the operations
which engage only the property or proper-
ties shared by the different objects.

For example, an array of characters can
be one object printed by TYPE, and a
counted-suing is another object that can be
printed by TYPE when preceded by
COUNT. Youcouldalsosay that TYPE only
works on one object (an array of charac-
ters), and it is incidental that the object may
be part of another object. Whatever view
you take, an array of characters is the prop-
erty shared by both these objects, and at
least that much can be clearly stated.

For this discussion, I will not consider
parts of objects to be distinct objects.
Rather, I encourage the reader to think of
such a subcomponent as a distinct prop-
erty. Any such properties can be shared by
one or more different objects. In other
words, treat the properties of an object as
traits that must be individually accounted
for by the applicable operations. Because
TYPE only addresses the property of an
array of characters, it can be applied to a
variety of objects with that component
property. (A side-effect of making opera-
tions property oriented rather than object
oriented is that strict data type enforcement
becomes more difficult.)

By designing objects to share important
properties, we will also be able to design
reusable operations for those objects. So a
design strategy for data objects and their
supporting operations may be:

When designing data objects that are
closely related to one another, choose
layouts that are as regular (standard) as
possible, which results in shared layout
properties. Similarly, choose the initial
operations so that their functionality
dovetails with pre-existing operations.
(Efficiencies are more likely to be real-
ized when objects have as many shared

1 with LMI FORTHTM /

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-60, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance ~ o t l i n e
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, M a r ~ n a del Rey, CA 90295

credit card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch. Tttlsee-Neustadt. 7651.1665
U K . System Sc~ence Ltd.. London, 01-248 0962
France: Micro-S~gma S.A.R.L.. Paris, (1) 42.65.95 16
Japan: Southern Pacific Ltd., Yokohama. 045.314-9514
Ausfral~a, Wave-onlc Assoctates, Wilson. W.A.. (09) 451-2946

I

Forth Dimensions 14

/ properties as possible.)

Such a strategy should yield a robust sub-
set of general operations, as well as a
minimal subset of object-specific opera-
tions.

Categorizing Operations
There are a couple of ways to catego-

rize operations: as memory based or stack
based. Since strings cannot be placed on
the stack, string operations are memory
based (although parameters for such string
operations may be passed on the stack).

Later, we will categorize operations as
object sensitive (or object specific) and
object insensitive. An object-insensitive
operation could be applied to many dis-
tinct, but related objects. TYPE was
shown to be an object-insensitive opera-
tion which can be used across different
string objects.

Tiers of Operations
A user variable is structured differ-

ently than a variable or a constant. The
initial operation of a user variable fetches
an address that points to the associated
value. The net effect is the same as with a
variable (yielding the address of a cell).
However, a different initial operation was
required, in order to account for the differ-
ent layout property of a user variable: a
pointer resides where the value would
normally be. Once the address is placed on
the stack, the fetch and store operators (@
and!) can be used with either type of
variable. So those operators are object-
insensitive, because they can be used with
several types of objects.

To be precise, these different kinds
objects ultimately make reference to a cell
and, therefore, exhibit cell properties. The
cell is one of three tiers (or supertypes) of
basic objects in Forth. Other tiers of opera-
tions are based upon the double and the
character (or byte).

After the value associated with a cell or
character value has been fetched onto the
stack, other of the cell-oriented tier of

I operations can be applied, such as add,
I

subtract, logical AND, logical OR, etc.
Ultimately, many different objects are
manipulated by the same set of Forth op-

I erators. In this way, Forth derives in-
creased efficiency and compactness.

The ease with which different object
layouts can be homogenized for use with a

(Continued on page 38.)

Volume X, Number 2

OB JECT-ORIENTED
FORTH

RICK HOSELTON - HOUSTON, TEXAS
rn

- I 1 Matching a program's structure to an 1 information with other objects by sending
(Text continued on page 34.)

I
Volume X, Number 2 15 Forth Dimensions

and receiving messages. It shouldn't di-
rectly access or change other objects' data.
An object "obeys" or "acts on" messages
by executing corresponding methods.

The routine must define methods for
the objects. A method is a routine an object
uses to manipulate its data. Executing a
method is the way an object responds to a
particular message. The same message
may be used in different ways by different
objects. For example, two objects named
GOLFBALL and TRUCK might have differ-
ent methods for the message DRIVE. The
phrase DRIVE GOLFBALL would cause a
completely different action than the phrase
DRIVE TRUCK.

The routine should support late bind-
ing. Early binding means the system needs
to know which object is to receive a mes-
sage at the time it compiles the message
call. With late binding, the application can
wait until run time to decide which object
should receive a message. The phrase
ENTERMETHOD DECEMBER?
IFANNUALOBJECT
ELsEMoNTHLYoBJEcTTHEN
would not work in an early binding system.

The routine should support inheri-
tance. Sometimes, a group of objects can
respond to the same group of messages
with the same methods. And sometimes, a
group of objects must share some data with
each other. It's convenient to describe such
groups of objects as classes. Common
methods and common data can be de-
scribed just once for the entire class, in-
stead of once for each object. This is called
inheritance.

Object Forth must execute quickly. If it
is not fast, it is iust not useful.

O n c e upon a time, while the sorceror
was away, his apprentice magically made
a broom carry water from a well into the
house. When the job was done, the appren-
tice didn't know how to stop the magic
broom, so he chopped it into a thousand
pieces. But then, each piece began to carry
water. The house was flooded, and the
apprentice almost drowned. The sorceror
himself had to straighten out the mess.

To write a complicated program, you
definitely need to "chop it into pieces."
But, as the sorceror's apprentice discov-
ered, chopping up a problem just any old
way sometimes makes it worse! You need
a technique for breaking programs into
manageable pieces.

How can you structure a program so
that it is as simple as possible? Well, every
useful program mimics some activity or
event. An inventory program may simulate
a warehouse operation; a game program
might simulate an airplane flight or a poker
hand. program can't be simpler than the
event it simulates. When your program's
structure precisely matchesthe structureof
the event it mimics, you have avoided use-
less complexity.

Events can be naturally divided into
objects. For instance, an airplane flight is
made of objects such as a plane, a pilot, and
an airport. These objects act in ways deter-
mined by their natures. Airports stay in one
place, planes must take off before they can
land. Objects interact. When a pilot ma-
nipulates a plane's controls, he "sends a
message" to the plane to bank or to climb.
Complicated objects can be made of sim-
pler objects. A plane can be considered to
bemade of an engine, control surfaces, etc.

event's objects is called object-oriented
programming. Some supporters of object-
oriented programming believe that pro-
grams should treat everything, even each
location in memory, as an object. In prac-
tice, "object orientation" is a matter of
degree. Object programming is a style or
philosophy, as much as a formula.

Any computer language can be used to
produce object-oriented programs, but
some make it easier than others. Some
programming languages, like Smalltalk,
actually require an object approach. Forth is
not a likely choice to rigidly enforce a
programming discipline,but it can easily be
extended to provide object programming
support.

"Object program-
ming is a or
philosophy, as much
as a formula. "

Objectives
Following Forth's minimalist philoso-

phy, the routine should be brief. It should
meet the common goals of object program-
ming, and allow programmers to extend
and customize it for their own use. The
routine must not interfere with the current
capabilities of Forth - the goal is to en-
hance the powers of Forth, not to bury them.

The routine must define objects to
handle their own data with their own rou-
tines (methods). An object may exchange

L

2
4 i+t+Ht+*************t+t**t***t***********t*********************
5 - h e & - " ~ l~owing routine :s placea irl the ~ub i l c
5 comain. ;:ve my =rr~!issiirn for it tit oe [used For
7 arty :egit;inate Jurocse, free of ciarge.
6 : w<e -o rrj-:.anty sf any Kinc for this rout:ne, anc
4 bear r*o respnsASil ~ t y w7aiever i t s use.

:z . , . . Rlck F. Hoselton
:t
13 Httf*it+i+*+*H+H.)HHH+*++H+~*HHt+HHHf*(.++HH~M
! 4
15

A

2 CRWT RF1PI:CRTION
3
4 2 9 THRU \ Object tnols
5 % e l 3 %RU \Testing-Demonstration
6
7
8 \S
9

16 Ttris i s a routine to assist FORn prngramrners who
11 *ant to produce "DEJECT ORIENTED" ccde. That phrase
12 seems to wan different things to different people.
;3 !+re is what i t means to xe.
:4
15

!
2 MDE KTION ! obj resg - !
3 QX 3LP U KIP 6 8 ii RDD
4 BE61R B IW1 U K I V 2 !MI RX CRP (E= LlhTIL
5 4 1 U R3D 0 [W; JW END-CODE
6
7 \S
B
9 : RCTI1% (051 -4 --) \ Just like the 3lDE

10 W 6 + \ locate METHOD ~oirgter
! BEGIN @ awl 2+ !? = i f iTi i \ searcn for gua! FESSRSE
:2 4 + UiP EXECLiTE : \ execute the METHOD
I3
!4
15

3FFSE; tBY'iS !ET-tSD fg:>rvat
a t next cllaer s~nt her YETHIID x ln te r
- - rtESS%i u:uffiberT
4 n w r i 9 ~ ~ ~ coae

3FFSET #BYTES DWECT fotmat
B 2 fat her OBJECT add wss
2 2 youngest son OBJECT address + 4
4 2 next older brother OBJECT address + 4
5 t youngest WETHCD address
B n optional local data

15
\ Loading

a "FO#ETaS!e" Cefinit ion

The wordset to rnaie 5BJECTs and 9E'HQDs work.
A demonstrat ion.

T h i s routine 1s drrrltfert to H C . ~ ~ i t h LRXClN J PERRY1 s F63.
Other FDRTH imolernentat ions bi :l ~mbably m u i r e some
changes. Es3ecla!1y, check YC,'WD: A C T I N and ''CRFITE.

16
\ FICTION

This nord finds the ESSAGE on the given OEJECT1s
METHOD-list and prforms the corresponding METHOD

This hlgh-:e\/Pl cefin1ti:ln coes sase fh:??q.
I t is grovieeci for docurnentat ion, and for twse who
systeas that aren't M86 far:!y SaseC. Tie sseec loss
does not seem t u be cr i t lea:.

I I
Forth Dimensions 16 Volww X, Nwnber 2

3 17
E \ RCTYCN \ RCTION

2 VAQ;&E 'YS3 \ Ccrrent rESS9GE +I lccatlon %o:nts to the last FE'HOD i n tne List. slacirt; t3e eSSCI6E

3 number lnto thls iocatlor~ ensures tqat a natc'l wl!l w fouW

4 VRS:RE,E 'OBJECT \ Polnts to current OBJECT Po:nts to the c-wren: DBJECT
5
6 : RC' (pfa lasg -- ! \ *at fiESSFIGES do. Setuj the OBJECT and US5 pulr.ters, t*:er: ;o xrforr t'le

7 2WP ' W S S I I ' DEJECT KT:3q ; AEThOD rwuested for t s i s O6JEC'.
8
g : E (- - ? ?) \ Current CBJECT Place ccrren: ObJSCT1s scdtT55 orl tc t-~e stam.

l a ' DbZEC' rd : . ' -
12 PLace current OB,EC-'s FATHER'S address onto t?e stacv.
13
14
15

4 i a
\ Cbject acaressl~g \ Object addressing

2
3 : !OBJECT ! ve:-aoc~ -- adcr i \ iocate ~r c c ~ r e a OFJEC- Cor~ver; ar~ OBXCT sffset into a riemry adcr5ez;s.
4 Y E * ;
c

5 : !Sb?ES (rei-auc,. -- addr) \ -firate ~ Y I JE-;ECT's x w n t Convert an sCfset In t7e curr-ent DNECT'S Ca:!?e!' lhto a
7 % @ t ; rn~~iw-y address.
B
3 : LzN4, aotr -- 1 \ i lnuneretoadoressec?ead Jsrfulfor tc!lding!lnks, a~due i l sesanr .

Id ,ERE UVER e , %RP ; \ acdr points hew, here points
4 .
I I '\ dm-e adct- oolnted
: i
r 3
14
i C
L

C

I \ YGSTER

2 : 2KECT) --)

3 ' OBJEC' LIVK,
4 a 1
S 2)SuPES ,INK,
6 5 ! S ? Z E R @ , ;
7
6 C P 3 - E YGS-ii
S YGS-Eg ' ORJErT

i9 X E C V
1: i) DKf C' 6 ERRSE . .- . c'
13
: 4
3 c - -

For >uiloln: CFJEC-S.
\ rnake clirrent and bus15 father
\ Gait d i t h nil sons
\ ;:n~ do w:t> brotqers
\ inner 1 t "Ii'PODs

FRS'g? 1s tne t 2 3 g?,?;L- :<: $:. sys';?;:. 4: : 3s.TE3-5,

\ rca~e master the c ~ ~ r r e ~ t even XFiS-iq, atu ~escenaents oC CX'E?
\ aster !s n l s swr~ ;afne:.
\ ciear mastei-.

Volume X, Nwnber 2 17 Forth Dimemiom

5
8 \ (YET~IOD:)

1
2 : (VE'4D) (-- mu 1 \ 8111 i d a E%XE
2 CRW'E GRE DOES) AC' ;
4
5 : 'JCRER-E (-- nisg) \ Set 4ESSRGE nm~er
6):'4 9 bi mRL\ FIND
7 1; I I P)P'JDY ELSE CRDP , l h ' (MtThODl 7 k E ~ ;
6
9 : !YE-*OD:) i - -)

;@ 'CSEFI-I \ Be sure FSSRGE exists
11 6)OE.JECT ,IN<, , \ ink t s i s NESSRGE nurntter
:t i ' : F ; ,:'ESRL, \ inter colon def:nitiof
' 7 :,;p ; .
rU \ com;ll!e thls K i d O D
14
15

7
0 \ %ST-R METHOD'S
1

2 \ '"l eystemls base KETYOD
3 (MEihOD:) R"IM . ." I: donft lunderstand" ;
4 FlhlChOR)80DY 2+ 'PIS6 '
r

b \ b~~iiding a METHOD is a METrlOD
7 (METALID:) NETHOD: (--)

8 (METADD:! ;
n

!a \ Bulidin; a rew O8JECT 15 a %NOD for tne sarent
:: YPS'Ei7 hE?eOD: CBJECT: (- 1
:2 EFKE 3B:ECe) ;
13
: 4
: 5

? : .YETHOD : i ~ n k --)

? CR DGP 6IJ.R D E ? @ 6U.R
4 2t EJ DJG 6 C. 1 2 SPACES 50EY)) NRFE . i D :
5
5 YRS'ER 4ErqOD: ..'IETHODS i --)

7 HSE F HEX 6)OBJECT
8 ESI* @ 1D8P K H I i E DGP .MET-(OD REGEAT
9 B a s ! ;

l e
: 1
, * . r'
; 3
14
i5

20
\ (METHOD:)

Euiid a 8ESSRGE Reader, a30 leave t7e ?FF(0.1 tee staci.
Flt run tiae, the YESSCIGE will K1.

I f a hESR"U Eas not been defiwd, define i t .
Either way , leave the MESSRE number [parameter f:eiG address)
or; the stack. BE WREF'K rat to use a ME for. a lrESSCISE that
ria5 already s e n u s & for anything bl~t a message!

Set !or create) the YESSCIGE quraber.
C m p i : ~ t1:s YESSFlCiE number and link u p the METHOE cha:n.
Compi;e trle code for this EThOL!.

fiNCMR is alnays at tho en0 of the IIETXID chain.
I ts NESSRGE number is set by ACT to the current RSM.
So, i f K T fir& n o other mtching KTHOD, i t uses t h ~ s om.

T h i s is the default NETHOD for bullding E?ETHODfs.
OBJECT'S can have a different RETWD: if you deflne one.

This 1s tile de fa~ i t ET?UD for oe+l?i~g GirJEfT's.
You rnay define a different OBJECT: to Sui!d
41ctr.e cunpien tyoes c l f CBdTC7's.

Disalay the nane a f a mEinOD.

Disolays a!! tix eE'rKID1s t?af have own c;e2iwa icr' tne
current OBJECT.

(Screens continued on page 33.)

I

Forth Dimensions 18 Volume X , Number 2

CALL FOR PAPERS
for the tenth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

I 11 Following Thanksgiving, November 25-27,1988

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Theme: Forth and Artificial Intelligence
Artificial intelligence applications are currently showing great promise when developers
focus on easy-to-use software that doesn't require specialized expensive computers. Forth's
design allows programmers to modify the Forth language to support the unique needs of
artificial intelligence. Papers are invited that address relevant issues such as:

Programming tools for A1
Multiusers and multitasking

Management of large memory spaces
Meeting customer needs with Forth A1 programs

Windowing, menu driven or command line systems
Captive Forth systems--operating under an OS

Interfacing with other languages
Transportability of A1 programs

Forth in hardware for A1
System security

Papers about other Forth topics are also welcome. Mail your abstract(s) of 100 words or
less by September 1, 1988 to:

FORML
P. 0 . Box 8231

I San Jose, CA 95155

i II Completed papers are due by October 15, 1988. For registration information call the Forth
Interest Group business office at (408) 277-0668 or write to FORML. II
Asilomar is a wonderful place for a conference. It combines comfortable meeting and
living accommodations with secluded forests on a Pacific Ocean beach. Registration
includes deluxe rooms, all meals, and nightly wine and cheese parties.

Volume X , Number 2
--

Forth Dimensions

STEP-TRACING

u s e r ' s of k e n and Perry's ~ 8 3
have a stepping utility invoked by &e word
DEBUG. It steps through definitions, dis-
playing the stack contents at each step
every time a key is pressed. Users of fig-
FORTH and its derivatives have no such
utility inherently resident in their systems.

During a meeting of the central Arkan-
sas chapter of the Forth Interest Group,
someone noted how nice it would be if fig-
FORTH definitions could be stepped
through; they suggested redefining ;
(semi-colon). Those with a fair degree of
Forth experience - and perhaps even
novices, after a moment's reflection - will
see that attempting to define
: ; KEY DROP ;
will result in a problem as soon as the first
semi-colon is encountered by the compiler.
Even if the above definition was renamed
to [; I and additions made it a workable
replacement for ;, a lot of editing work
would be required to insert the new word
when needed and to remove it when done.
When I started this project, I made a rule:
the finished application must not require
any editing when it is used.

The Solution
The solution I finally arrived at uses :

(colon) rather than ; (semi-colon), and
vectored execution "tricks" the colon into
being redefined. This has three advantages
over the other methods I med. First, no
debugging word needs to be edited in and
out. Second, stepping mode can be toggled
on and off without recompiling. Third, the
colon itself does not have to be recompiled.

Listing One is the step-trace applica-
tion. Listing Two contains a few support
words, which must be loaded before the

code in the first listing if your system
doesn't already have them.

Now let's examine the step trace code,
beginning with screen three of Listing One.
The word DEBUG is executed and the rou-
tine to be debugged is recompiled.
Executing DEBUG replaces the value in the
first PFA address (c o ~ : ADR) of : (colon)
with the CFA of [: I (STEP :VAL). The
definition of [:] beginning on line 18 will
now be used when a colon is encountered in
definitions compiled after DEBUG execu-
tion. The remaining PFA addresses in the
definition of : will not be executed because
of the R> DROP on line 25.

" [: I will now be
used when : (colon)
is encountered. .. 99

The stepping function will be taken w e
ofwhenST~~?iscalledby [: I (STEP?'S
CFA was pushed into [: 1 on line 23).
When STEP? is called (see line 7), the
variable DO-STEP? is checked to see if
words are to be stepped; if so, it uses the top
of the return stack to display the name of the
word and displays the contents of both
stacks. STEP? then stops and waits for a
keypress (line 11). If the keypress is a B (or
b), BREAK is executed; otherwise, the next
word is stepped. (See FD V/1 for a full ex-
planation of the BREAKIGO tool in screen
two of Listing Two.)

Here is how : (colon) would look if
decompiled before execution of DEBUG:

: : ?EXEC !CSP
CURRENT CONTEXT
CREATE (; CODE)

HERE 2- !] ;
IMMEDIATE

And, after executing DEBUG:
: : [: I !CSP

CURRENT CONTEXT !
CREATE (; CODE)

HERE 2- !] ;

IMMEDIATE ;

But, because of the construction of
[: I , the debug version of : acts as if it
were defined like:
. . . . [: I ; IMMEDIATE

Thus, through the magic of vectored
execution, we are able to toggle between
two alternate versions of : (colon), com-
piling under whichever we choose.

The default state of STEP? is off.
After compiling a routine for use with
DEBUG, the word STEP is executed to
toggle to the stepping mode. s TEP may be
called as often as desired. Whenever you
are unsure whether compiling is set to
normal or to debug, invoke ?STEP to find
out. Of course, the normal compiling
condition of the colon is restored by
RESTORE : COL.

A display of the return stack contents
is of little value unless there is aneasy way
to identify the word to which those num-
bers (PFA return addresses) belong.
While in the BREAK state, or at any time
when not executing, the word NAME on
screen four of Listing One will provide the
needed information. Feeding any valid
address from a parameter field to NAME
will produce the name of the word to

Forth Dimensions 20 Volume X, Number 2

I Listinn One.
which that parameter field belongs. Some-
times the return stack contains items like
Do LOOP indices. Giving NAME an invalid
PFA has never crashed my system, but a
memory check location in addition to
DEF-END could be added to stop NAME
when the bottom of the dictionary is
reached. It is also well to remember that a
return stack number may be equivalent to a
PFA address and yet not actually be one. A
DO LOOP index, for example, may be equal
to some PFA address. Actually, NAME will
respond correctly when given any address
from a word's dictionary enhy, except the
last PFA address containing the CFA of ; s
(EXIT). In that case, NAME will produce
the name of the following word in the
dictionary.

Four words in the step-trace application
are intended to be executed from the
keyboard: STEP, STEP?,
RESTORE : COL, and DEBUG. The words
NAME, BREAK, GO. . S, and . RP are inde-
pendent of the step trace in the same way as
words like R> and DROP.

When you are debugging the step-trace
application itself, avoid crashes by
executing RESTORE : COL before forget-
ting and recompiling. After the step trace is
up and running, crashes will not occur if
you forget to RESTORE : COL and recom-
pile the routine you are debugging.

Compatibility
The definition of NAME assumes that

each dictionary entry's LFA is followed by
its NFA. If the NFA comes first in your
system, change the 4 + on line 57 to 2+.

The definition of . RP assumes that the
return stack grows downward in memory;
an adjustment will be necessary for systems
in which that stack grows upward.

I believe the definition of [:] will work
in most systems, even if the : colon is
defined differently than in fig-FORTH. If
not, you will need to decompile your colon.
Using that decompilation, insert the code
on lines 21 - 25 at the appropriate place.

Gene Thomas edits the Commenr Line,
the newsletter of the Central Arkansas
FIG Chapter, and is a registered poly-
somnographic technologist at the Sleep
Disorders Center at the University of
Arkansas for Medical Sciences.

Beginning scr $43
0. \ Scr $1: Step t race Gene Thomas Feb86
1. 0 VARIABLE DO-STEP?
2. : STEP \ -- l user; togg le step mode
3. SPACE . " Step i s " DO-STEP? DUP @ \ Toggle t d isp lay
4. I F OFF ." o f f . " \ I f on, t u r n o f f
5. ELSE ON . " on. " \ I f o f f , t u r n on
6. THEN ;
7. : STEP? \ -- :vectored t o from [:I
8. DO-STEP? @ \ Step mode on?
9. I F CR R (RE) \ I f so copy p f a adr

10. CFA NFA I D . \ Display name and stacks
11. .S .RP KEY DUP 66 = \ then stop and await key
12. SWAP 98 = OR \ press before cont inuing
13. I F BREAK THEN \ I f key = B or b then
14. THEN ; \ break, e l se continue
15. --;. stepping cyc le

16. \ Scr #2: Step t race g t Feb86
17. 1 : CFA @ CONSTANT CFA:
18. : [:I \ -- Ise tup t o vector colon f o r step execution
19. ?EXEC !CSP CURRENT @ CONTEXT ! CREATE
20. \ normal d e f i n i t i o n of colon t o here
21. CFA: \ I n s e r t s your co lon 's c f a i n
22. HERE 2- ! \ next adr
23. STEP? CFA DUP @ \ I n s e r t stepping i n s t r u c t i o n
24. HERE 2- ! , \ i n the nest adr
25. R> DROP 1 ; \ Drop r e t adr t o o r i g i n a l co l
26. : remind CR ." Re-compile under current colon."
27. 0 VARIABLE STEP-MODE
28. : ?STEP \ -- luser ; show compil ing condit ion: normal/debug
29. CR ." Compiling " STEP-MODE @ I F ." under step mode."
30. ELSE . " under normal mode." THEN ;
31. -->

32. \ Scr #3: Step t race g t Feb86
33. 1 [E l CFA CONSTANT STEP:VAL \ Vectors used by debug
34. 1 : @ CONSTANT C0L:VAL \ and restore:col
35. 1 : CONSTANT C0L:PFA \ Contents toqgled by

\ debug and ;estore:col
: RESTOREZCOL \ -- :user; set f o r normal compil ing

remind COLEVAL C0L:PFA ! STEP-MODE OFF ;
: DEBUG \ -- : user; se t f o r compileing under step vector

remind STEP:VAL COLEPFA ! STEP-MODE ON ;
-- >

To debug: f o rge t r o u t i n e i f not compiled under debug mode,
execute DEBUG and re-compile the rout ine . Routine can now be
run under STEP (step on ok), or STEP (step o f f ok). When
debugged: f o rge t rou t ine , execute RESTOREECOL and recompile.
D e f i n i t i o n s are now compiled under normal condi t ions. Step
Trace screens can remain i n system.

Beginning scr #46
48. \ Scr $4; Step t race augment GT may85
49.
50. ' ;S CFA CONSTANT DEF-END \ ;S = EXIT i n some systems
51.
52. : NAME \ any-pfa-adr -- luser; show name of word t o which p f a
53. \ belongs - i s an independent word
54. CR
55. BEG IN
56. 2- DUP @
57. DEF-END = \ Find end of prev d i c t en t ry
58. UNTIL 4 + \ and jump forward t o n fa
59. ." Adr i s in: " ID. ; \ Show name of word p f a i s i n
60.
61.
61. ;S TI-FORTH, an extension of FIG FORTH
63. END Step t race

I

Volume X, Nwnber 2 21 Forth Dimensions

(Thomas's screens, from previous page.)
1 Beg inn ing s c r #41

0, \ Sc; # I ; Non-dest ruc t r e t u r n s t a c k d i s p l a y GT may85
1. Some d e f ' s you may need
2. : .RP \ -- l u s e r ; d i s p l a y c o n t e n t s o f r e t u r n s t a c k
3. EASE @ HEX \ Save base
4. CR RP@ 2- RB @ 2- . " RI " \ Get l i m i t s o f r - s t a c k
5. DO I @ U. -2 +LOOP \ D i s p l a y c o n t e n t s
6. BASE ! ; \ R e s t o r e base
7.
8. ;s ..
9. A l t e r n a t e def f o r .RP

10. : .RP BASE @ HEX R 0 @ 2+ RP@DO I @ U . (2 + L O O P)
11. LOOP BASE ! ;
12. (r - s t a c k grows up i n memory: Gray Smi th)
13.
14. RP@ f o r TI-FORTH u s e r s (l o a d s c r #74, code):
15. HEX CODE RP@ 0649 , C64E , 045F DECIMAL

16. \ Scr #2: Step t r a c e suppor t ; m o d i f i e d f o r S tep Trace, g t
17. \ Break p o i n t t o o l f r o m F o r t h Dimensions v o l V no. 1
18. \ Debugging t o o l s : BREAK & GO WF 13DEC8 1 KRH
19. \ b y Frank Seuber l i ng , 5 /4 /81
20. 0 VARIABLE CHECK
21. : BREAK (--) CR RP@ 4 - CHECK ! \ R-stack s e c u r i t y
22. 0 ELK ! \ Take i n p u t f r o m
23. BEGIN \ t e r m i n a l
24. QUERY INTERPRET . " aok" CR
25. AGAIN ;
26. : GO (--) RP@ CHECK @ = \ R-stack s e c u r i t y
27. I F R) DROP R> DROP \ Resume exec p r o g
28. ELSE ." Can ' t resume" QUIT \ u n l e s s r p @ has
29. THEN ; \ changed
30.
31. i S END S tep Trace Suppor t

(Page's screens, from page I 1 .)
I I

ASSEMBLER SCR # 9
0 \ More mnemonics and s p e c i a l d e f t n i t i o n s 09MAR88CHP
1 90 BRANCHES BCC, BO BRANCHES BCS, FO BRANCHES BEQ,
2 30 BRANCHES BMI, DO BRANCHES BNE, 10 BRANCHES BPL,
3 50 BRANCHES BVC, 70 BRANCHES BUS,
4 : JSR. s p a SO 4 - = IF SWAP LABEL.SAVE THEN DUP 20 C . ,
5 DUP 200 U< SWAP 100 U< O= AND IF REF.POINTER a DUP o SWAP C !
6 \ I f 100 < a d d r < 200 t h e n i t i s a l a b e l
7 1+ HERE 2- SWAP ! \ Save c o m p i l a t i o n a d d r e s s
8 3 REF.POINTER + ! THEN ;
9

10 : , , SPO SO 4 - = I F W P LABEL.SAVE THEN . ;
11 : C,, SP@ SO 4 - = I F SWAP LABEL.SAVE THEN C. ;
12 : END SECOND.PASS CURRENT 3 CONTEXT ' 'EXEC ?CSP ; IMMEDIATE
13 : GONEXT [' I NEXT >BODY JMP, ;
14 : .' ' >BODY JSR, ; - - \ U s e f u l i n c o m p o s ~ t e p r ~ r n c t i v e s
15 \ e . g . , ASSEMBLE PROGRAM ; A A B * C GONEXT END

ASSEMBLER SCR 44 10
0 \ Assemb le r c o n c l u d e d
1
2 FORTH DEFINITIONS
3
4 : PRIM -2 ALLOT HERE 2+ , ;
5
6 : ASSEMBLE ?EXEC CREATE ASSEMBLER PRIM
7 C ASSEMBLER 1 CLEAR.TABLES ZP ! CSP ;
8
9 IMMEDIATE

10
11 DECIMAL
1 2
13
14
15

(Letters continued on page 32.)

:::

MICRO- :::
2. z::

CONTROLLER! :::

Z.:. . .

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
--Supports FORTH and machine

code interrupt handlers
-System t~mekeeping malntalns

time and date wtth leap
year correction

-Supports ROM-based self-
starting appl~cat~ons

COST
130 page manual -S 30.00
8K EPROM w~th manual-S 100.00

Postage pa~d In North Arner~ca
lnqu~re for l~cense or quantlty prlclng

Brvte Com~uters . Inc.
P.O. 6ox 46, ~ u ' ~ u s t a . ME 04330

(207) 547-32 18

I

Forth Dimensions 22 Volume X, Nwnber 2

LINEAR
AUTOMATA

ANDREAS CARL - BERLIN, WEST GERMANY
m

T h e idea for the following program is
from A.K. Dewdney in Scientific Ameri-
can (German edition, July 1985). He
writes, "In a world of artificial computers,
it is surprising to imagine that we might be
surrounded by a variety of natural com-
puters like water, wind, or wood. Such
natural systems don't calculate in a con-
ventional way, of course, but their struc-
ture makes arithmetic abilities a hidden
possibility. Stephen Wolfrarn,physicistat
the Institute for Advanced Study in Prin-
ceton, is as advocate of this thesis. He is of

''Cellular automata
can calculate and
simulate natural sys-
tems."

-- -- -- --

the opinion that a turbulent fluid or a
growing plant are built of simple ele-
ments, but in the whole are so complicated
that behavior cannot be reduced to mathe-
matical terms. This irreducibility means
they can store, transfer, and process infor-
mation - they can calculate!"

To demonstrate the arithmetic abilities
of natural systems, he uses cellular auto-
mata. In looking for cellular automata
which can both calculate and simulate
natural systems, Wolfram confines him-
self to the simplest automata, those of one
dimension.

These linear automata are defined by
two constants and a set of rules, which
define the transition from one generation

1 of cells to the next k gives the number of

Volume X , Nwnber 2 23 Forth Dimensions

states a cell can have; usually, it is two (to
be or not to be). r is the radius; it deter-
mines the number of adjacent cells that
will influence the subsequent state of a
cell.

A table of rules gives the state of the
next generation for every possible con-
figuration. For example, for k = 2 and r =
2, there might be a rule which determines
that a configuration like 0- 1-0- 1- 1 leads
the middle cell to become 1 . For
simplicity's sake, we can refrain from
rules that Wolfram calls "total." Thus, a
cell's next state dependsonly on thesum of
the current states of all cells within radius
r. In the example above, the sum can be
between zero and 5, so a table of rules
might look like:

Sum: 5 4 3 2 1 0
Nextstate: 0 1 0 1 0 0

If you read the next-state line as a binary
number (e.g., 10100, which is 20 = Z2+ 24),
you get the code of therules. So this "linear
automaton" is characterized by k=2, r=2,
code=20. There are 64 different codes
(tables of rules) for k=2 and r=2.

Now, if you apply this automat to the
starting pattern 101 1101 1 , you will see
that it moves like a signal to the right. In the
world of this automat, it is a signal. Try to
find other signals, patterns which produce
or consume signals, and see what happens
when two signals hit each other.

Try the automaton with k 2 , r=3, and
code=88 on the starting pattern
1111111111011. This is the famous can-
non hy J.K. Park: a signal-producing pat-
tern which "shoots" to both directions
every 119 generations. Good luck hunting
for patterns!

Glossary
It should be fairly easy to convert the

accompanying fig-FORTH screens into a
dialect which will run on your computer.
All you need is a Forth system with graph-
ics capabilities.

PLOT (X Y - -)
Plots a point at the coordinates (x,y).

?PLOT (X Y - - f)
Returns a flag, depending on whether a
point is set or not.

SUMME
Calculates the sum of states for a given x
coordinate.

REIHE
Compares SUM with KODE to decide
whether to plot a point for any of the 320 x
coordinates.

AUTO

Calculates the new generation for any of
the 199 y coordinates.

SET
Sets a starting pattern into the first row
(y=O) of the graphics display (bit map).
(The address provided in the definition of
this word is specific to the Commodore-
64 on which it was written.)

0 (LINEAR AUTOHAT)

1
2 0 VARIABLE Y 0 WIRIABLE SUH
3 0 VARIABLE RADIUS 0 VARIABLE KODE
4
5 : DUAL 2 BASE ! ;
6
7 : SUME RADIUS e DUP I+ SUAP -1 t DO ZDUP SWAP I + SUAP
8 ?PLOT O= IF ELSE sun e 2 * sun ! ENDIF
9 LOOP ZDROP ;
10
1 1 : REIHE 320 0 DO I Y @ 1 SM ! SUHHE
12 sun e KODE e AND
13 IF I Y e I+ PLOT ENDIF
14 LOOP ; -- >
15

0 (CONT. I
1
2 : AUTO 199 0 DO I Y ! REIHE LOOP ;
3
4 : SET 256 /HOD 8352 C! 8360 C! DECIML ;
5
6
7
8
9
10
1 1
12
13
14
15

Forth Dimensioru 24 Volume X, Nwnber 2

Real-Time Programming
Convention
November 18 - 19,1988

Grand Hotel, Anaheim, California

Call for Presentations

The 1988 Real-Time Programming Convention will be held at the Grand Hotel in Anaheim,
California, and is sponsored by the Forth Interest Group.

The theme of this year's convention is Real-time Programming Systems. The invited
speakers are Jef Raskin, head of the original Macintosh development team and inventor of
the Canon Cat, and Ray Duncan, well-known author and expert on IBM PC Operating
Systems. Both speakers have made extensive use of Forth, a language especially suited to
real-time applications.

There is a call for presentations on topics in the following areas:

Programming Environments Applications

Real-time Operating Systems
Language-orien ted RIS C machines
Parallel Processing
Languages for Data Acquisition and
Analysis
Robotics and Real-time Device Control

Intelligent Devices

Aerospace
Medical
Laboratory
Machine-vision
Digital Signal Processing
Robotics
Automation
Instrumentation

Intelligent Instrumentation
Working Neural Nets
Adaptive devices
Software Peripheral Controllers

Presentations may be either talks or demonstrations. Talks are limited to fifteen minutes.
Please submit an abstract of the talk and a request for any audio-visual assistance by October
15. Demonstrations may accompany the talk or appear separately throughout the
convention. Please send a description of the demonstration and its requirements by October
15.

Abstracts and descriptions should be sent to: Real-Time Programming Convention,
Forth Interest Group, PO Box 8231, San Jose, CA 95155.

Volume X, Number 2
-- -

Forth Dimensions

Volume Eight Index
A comprehensive reference guide to all issues of Forth Dimen-
sions published during the Volume VIII membership year. (Spe-
cial thanks to indexer Mike Elolaof San Jose, California.) See the
FIG Order Form to order complete sets of back issues.

Algorithms
CRC

XMODEM Tutorial, Vol8, lssue 2, pg 9
Checksums

Checksum More, Vol8, Issue 6, pg 40
Random Number

Shuffled Random Numbers, Vol8, Issue 3, pg 31
Sorting

Batcher's Sort
Batcher's Sort, Vol8, Issue 4, pg 39

XMODEM Protocol
XMODEM Tutorial, Vol8, Issue 2, pg 9

Graphic/Plotting
see Graphics

Architectures
Letter, Vol8, issue 5, pg 9

32-bit
Letter, Vol8, issue 1, pg 5

Forth Virtual Machine
The Multi-Dimensions of Forth, Vol8, Issue 3, pg 32

Assemblers
The Multi-Dimensions of Forth, Vol8, Issue 3, pg 32

Benchmarks, Performance
Sieve of Primes

Letter, Vol8, Issue 6, pg 3 1
Letter, Vol8, Issue 4, pg 5
Letter, Vol8, Issue 4, pg 6
Letter, Vol8, Issue 2, pg 5

Bulletin Boards
Forth Resources via Modem, Vol8, Issue 2, pg 25

Common Usage
A Forth Standard?, Vol8, Issue 4, pg 28

Compiled Code, Development Utilities for
LOCATE source code

On-Line Documentation, Vol8, Issue 2, pg 21
Letter, Vol8, Issue 5, pg 6

Testing
using Assertions

Letter, Vol8, Issue 6, pg 4
Compilers

File-based
Letter, Vol8, Issue 5, pg 7

Screenless Forth, Vol8, Issue 5, pg 13
Macro Compilers

Synonyms and Macros, Part 4: Compiler Macros, Vol8,
Issue 3, pg 5

SYNONYMS
Letter, Vol8, Issue 1, pg 5
Letter, Vol8, Issue 6, pg 9
Letter, Vol8, Issue 6, pg 10

Compiler Directives
Control Flow

CASE
The Ultimate CASE Statement, Vol8, Issue 5, pg 29

DO-LOOP
Letter, Vol 8, Issue 1, pg 6

LEAVE
Letter, Vol8, Issue 3, pg 10
Letter, Vol8, Issue 4, pg 9

Recursion
Letter, Vol8, Issue 5 , pg 5

Conferences
Editorial, Vol8, Issue 1, pg 6
FORML '86 in Review, Vol8, Issue 6, pg 38

Conventions
Editorial, Vol8, Issue 1, pg 6
National Forth Convention '86, Vol8, Issue 5, pg 34

Data Structures within the Forth Dictionary
Screen Fields

LOCATE
On-Line Documentation. Vol8, Issue 2, pg 21

Parameter Fields
Threaded Code

Forth Systems With a Segmented Memory Model,
Vol8, Issue 3, pg 2

Data Records and Associated Operations
Select, Ordered, Perform

Select, Ordered, Perform, Vol8, Issue 1, pg 22
Maintenance Operations (add, delete, etc.)

The Point Editor, Vol 8, Issue 3, pg 15
Editing

The Point Editor, Vol8, Issue 3, pg 15
Querying

Data Structures and Associated Operations,
Vol8, Issue 4, pg 17 1 Sparse Arrays
Lookup

A Sim~le Translator: Tinycase, Vol8, Issue 5, pg 23
Data Types anh Associated Operations

Characters, byte
Case Conversion

Case Conversion in KEY, Vol8, Issue 1, pg 21
Integers, cell

Comparison Operations
The Ultimate CASE Statement, Vol8, Issue 5, pg 29

Formatted Output
Letter, Vol8, Issue 1, pg 6
Letter, Vol8, Issue 4, pg 6

Masking off Bits
Letter, Vol8, Issue 4, pg 6

Square Root Algorithms
Letter, Vol8, Issue 4, pg 8

I
Forth Dimensions 26 Volume X, Number 2

Trigonometric Functions
Fast Fixed-Point Trig, Vol8, Issue 1, pg 14
Letter, Vol8, Issue 4, pg 10

Integers, double
Arithmetic

Letter, Vol8, Issue 2, pg 5
Trigonometric Functions

Letter, Vol8, Issue 1, pg 5
UM/MOD

Unsigned Division Code Routines, Vol8, Issue 6, pg 18
Integers, quad

Arithmetic
Letter, Vol8, Issue 2, pg 5

Real Numbers
Arithmetic

Practical Considerations for Floating-Point.
Vol8, Issue 5, pg 10

Strings
Parsing

Dual-CFA Definitions, Part Two, Vol8, Issue 4, pg 13
Letter, Vol8, Issue 4, pg 5

Decomposition of Functions
Dual-CFA Definitions, Vol8, Issue 2, pg 30

Deferred Definitions
Dual-CFA Definitions, Part Two, Vol8, Issue 4, pg 13
Simple File Query, Vol8, Issue 4, pg 17

Disk OS Structures and Associated Operations
File Control Blocks (FCBs)

DOS File Disk 110, Vol8, Issue 6, pg 19
Data Files for Forth Screens

DOS File Disk 110, Vol8, Issue 6, pg 19

Education
Letter, Vol8, Issue 2, pg 8
Letter, Vol8, Issue 5, pg 5

Error Processing
XMODEM Tutorial, Vol8, Issue 2, pg 9

Games and Recreation
Tracking the Beast, Vol8, Issue 5, pg 15
7776 Limericks, Vol8, Issue 6, pg 28

Graphics
Plotting of Lines

The Point Editor, Vol8, Issue 3, pg 15
The Bresenham Line-Drawing Alogirthm,
Vol8, Issue 6, pg 12

Plotting of Functions
Windows for the TI 99/4A, Vol8, Issue 4, pg 34

Hardware
Integrated Circuits

Moore Chats on CompuServe, Vol8, Issue 1, pg 25
Letter, Vol8, Issue 5, pg 9

History, Forth
A Forth Standard?, Vol8, Issue 4, pg 28
State of the Standard, Vol8, Issue 6, pg 34

Information Services
Forth Resources vi Modem, Vol8, Issue 2, pg 25

Interpreters
SYNONYM

Letter, Vol8, Issue 1, pg 5
Forth (words)
Dual-CFA Definitions, Part Two, Vol8, Issue 4, pg 13

Interrupts
TI 99/4A ISR Installation, Vol8, Issue 1, pg 23

Libraries
A Forth Standard?, Vol8, Issue 4, pg 28
Letter, Vol8, Issue 5, pg 6

Marketing
Forth

XMODEM Tutorial, Vol8, Issue 2, pg 9
Letter, Vol8, Issue 3, pg 5
Letter, Vol8, Issue 5, pg 6
Editorial, Vol8, Issue 5, pg 9

Memory
Segmented

Letter, Vol8, Issue 1, pg 5
Forth Systems With a Segmented Memory Model,
Vol8, Issue 3, pg 12

Natural Languages
Letter, Vol8, Issue 4, pg 5

Operating Systems
Interfacing with Forth

DOS File Disk 110, Vol8, Issue 6, pg 19
Portability

Moore Chats on CompuServe, Vol8, Issue 1, pg 25
Letter, Vol8, Issue 3, pg 8
The Multi-Dimensions of Forth, Vol8, Issue 3, pg 32

Programming Languages and Methodologies
Forth, philosophy behind

Dual-CFA Definitions, Vol8, Issue 2, pg 30
The Multi-Dimensions of Forth, Vol8, Issue 3, pg 32
Dual-CFA Definitions, Part Two, Vol8, Issue 4, pg 13

Object Oriented
Classes in Forth, Vol8, Issue 5, pg 24

Scope
Local Variables

Stack Numbers by Name, Vol8, Issue 3, pg 36
Source Code

Editing of
Letter, Vol8, Issue 2, pg 6
Getting S m d with F83, Vol8, Issue 4, pg 37
Formatting
Forth Source Formatter, Vol8, Issue 2, pg 27

Libraries
Letter, Vol8, Issue 1, pg 6

Standards
ANSI Forth

Volume X, Nwnber 2 2 7 Forth Dimemiom

State of the Standard, Vol8, Issue 6, pg 34
Forth

Moore Chats on CompuServe, Vol8, Issue 1, pg 25
Editorial, Vol8, Issue 3, pg 11
Letter, Vol8, Issue 3, pg 8
A Forth Standard?, Vol8, Issue 4, pg 28
Letter, Vol8, Issue 6, pg 4
State of the Standard, Vol8, Issue 6, pg 34

Support, Technical
Moore Chats on CompuServe, Vol8, Issue 1, pg 25

Syntax
Conditionals

Moore Chats on CompuServe, Vol8, Issue 1, pg 25
Letter, Vol8, Issue 2, pg 8
Letter, Vol8, Issue 3, pg 5
The Ultimate CASE Statement, Vol8, Issue 5, pg 29

Terminal Emulation
XMODEM Tutorial, Vol8, Issue 2, pg 9
Letter, Vol8, Issue 3, pg 9

Testing
via Assertions

Letter, Vol8, Issue 6, pg 4

Threaded Code
Models

Forth Systems With a Segmented Memory Model.
Vol8, Issue 3, pg 12

Tutorials
XMODEM Tutorial, Vol8, Issue 2, pg 9
Getting Started with F83, Vol8, Issue 4, pg 37

User Groups
Letter, Vol8, Issue 1, pg 6

User Interface
Menus

Interrupt-Driven Serial Input, Vol8, Issue 1, pg 8
Windows

Windows for the TI 99/4A, Vol8, Issue 4, pg 34
Video Functions

Windows for the TI 99/4A, Vol8, Issue 4, pg 34

Vectored Execution
Simple File Query, Vol8, Issue 4, pg 17

1 1 Advertisers Index

Bryte - 22

Concept - 28

Dialog Corporation - 39

Forth Interest Group - 25

FORML - 19

Future, Inc. - 30

Harvard Softworks - 35

Laboratory Microsystems - 14

Miller Microcomputer Services -38

Next Generation Systems - 11

Silicon Composers - 2

I F83 USERS

PVM83 is a complete Prolog extension to Laxen and Perry F83.
It handles the primary data structures of strings,numbers,logical constants,
logical variables, compound predicates, and lists. PVM83 is designed to add
productlvlty and flexlblllty. It is fully interactive between Prolog procedures,
and Forth code. PVM83 is acornpiled Prolog featuring fast execution times.

PVM83 is fully extensible. "Standard" definitions gives the
programmer flexibility to design just those procedures needed for his
application. PVM83 code can execute Forth words. F83 can call the PVM83
backtracking and problem solving capabilities.

PVM83 code is incrementally
complled in higher memory segments
than the F83 core, leaving room in
the F83 kernal for the "standard exten-
sions or other F83 code that the pro-
grammer needs.

PVM83 is designed to keep the
Forth philosophy of being both
compiled, and interactive. You can type
in procedures from the keyboard and
test them, or supply source code from
Forth block files, or text files
lntersegment memory management
source code included.

1 PVM 83

only $69.95
includes manual

requires
DOS 2.0 or higher 256K RAM

Concept 4
PO Box 20136
VOC Az 86341

I

Forth Dimensions 28 Volume X , Number 2

THE BEST OF
GENIE

GARY SMITH - LIlTLE ROCK, ARKANSAS
rn

L

Volume X, Number 2 29 Forth Dimensions

adopted as is; adding system-specific file
handles would kill it for sure.

I don't agree that this proposal pre-
cludes multiple-file handling however,
and let me explain why. I'll use Uniforth
for my example, because that's what I
know.

In Uniforth there is a user variable
called FCB. FCB points to the file handle
(file control block, reference buffer, what-
evertheOS in question uses) ofthecurrent
open file. The value of FCB is changed by
a set of words called: CHANA, CHANB, etc.
To open two files simultaneously, for ex-
ample, one would do the following:

CHANA OPEN filel-fth
CHANB OPEN file2. fth

A word that copies a line of text from
one file to another would be something
like this:

: COPY-LINE
(copy a line of text)

(from CHANA to CHANB)

CHANA pad 8 o RDLINE
(length - -)

CHANB pad swap WRLINE drop ;

where I have used the Uniforth words
RDLINE and WRLINE instead of my pro-
posed words READ and WRITE. The code
would be the same in either case.

If the proposal were changed to in-
clude file handles, I would anticipate
changes like the following:

OPEN (- - fcb)
Open a file and return the file handle.

N e w s from the GEnie Forth
RoundTable: Beginning July 10, the Sun-
day on-line meetings at the "Figgy Bar"
will feature a question-and-answer session
for novices, with Leonard Morgenstern as
chair for these tutorial conferences.

Since it is not unusual to see 10K or
more of new messages on a given day, and
this column is limited in size, you are only
getting a peek at recent on-line activity.
This time, the peek will be into the very
lively standards category (Category 10).

Some still may not realize the X31J14
Technical Committee has made the GEnie
Forth RoundTable their home service. X31
J14 has the task of drafting a ANS standard
Forth. Here,thevery future of our language
isbeing debated with a grandmix of knowl-
edge, wisdom, and humor. This excerpt
features a discussion centered around a
proposal by Lee Brotzman. I hope it will
encourage you to get involved.

Category 10, Topic 23, Message 76
Wed Mar 23, 1988 S.W.SQUIRES
[scott]
Lee, I have some of the same suggestions
thatLeonard does for your file words. How
about:
OPEN (addr - - file#)

File# could be a number or a handle or
pointer or fcb or whatever would be in
keeping with the specific computer/Forth
system as long as it is consistent on that
system. On a one-file limited system it
would just leave the same number. Mul-
tiple files have been the norm for some time
even in the simple Forth systems I've used.
Typical case is reading in one file, manipu-
lating it and writing it back out to another
file.

CLOSE (file# - -)
READ (addr nl file# - - n2)
WRITE (addr nl file# - - n2)

SEEK and FILEPOS would require a
file# as well. Would it be more beneficial to
provide pointers with the READ and
WRITE commands? I.e., READ (addr nl
file-offset file# - - n2) The more primitive
the words, the more flexible they could be.
Same thing with flags - would it just be
more straightforward to leave a flag after
every disk operation?

How about a create-file function?
You'd probably need to provide a size
parameter as well as an addr of the naming
convention to allow for systems with un-
expandable file sizes.

How about a request for the file size?
This would allow a program to set aside the
correct buffer size and to use the size for
any calculations. -Scott

Category 10, Topic 23, Message 77
Thu Mat 24,1988 L.BROTZMAN
Leonard and Scott,

Jerry Shifrin voiced the same concerns
as yours when I uploaded my proposal to
the East Coast Forth Board. I'll just repro-
duce my answer to him here:
.............................
Date: 03-23-88 (1 157) Number: 276
To: SYSOP Refer#: 273
From: LEE BRO'IZMAN Read: YES
Subj: HOST FILE ACCESS PROPOSAL
Status: PUBLIC MESSAGE

Yes. Jerry, I purposely avoided the
subject of multiple files since I think that
trying to pass file handles, of reference
numbers or whatever, is so system specific
that it becomes very difficult to standard-
ize. This proposal is hard enough to get

F U T U R E
announces

Eight new products based on the NC4016

Future Series products:
CPU board (available 2nd quarter 1988)

NC4016 (5 MHz standard)
Stack and data RAM
Full 128Kbytes of paged main memory
Power fail detect
Automatic switching to on board battery backup at power fail
Psuedo-serial port - full compatibility with CM-FORTH and SC-FORTH ~ 16Kbytes of EPROM (SC-FORTH, SC-C and CM-FORTH available)

DisplayIDebugger board (available 2nd quarter 1988)
useful for testing and debugging custom hardware

Provides hexadecimal display of the data, address, and B-port
Indicates status of reset, interupt, WEB, WED, and X-port
Provides for free running and single step clocking
Provides the ability to independently dnve (write to) the data, address, and

B-port directly with user data

110 board (available 2nd quarter 1988)
for serial communication, interupt handling, event timing, time and date
logging and saving system state parameters

Two RS232 serial ports
Eight level prioritized interupt controller. Each interupt line is individually
maskable and resetable. Current pending interupt status is readable.
Real time clock with 2K of non-volatile RAM
Three 16-bit timerfcounters

Extended Memory board (available 3rd quarter 1988)
Paged memory - 64 Kbytes segments, up to eight segments

Card Cage & Power Supply (available 3rd quarter 1988)
Rack mountable card cage with face plates for each slot
f 5 volts and +12 volts supplied
72 Pin backplane

CLOSE (fcb - -)
Close the file pointed to by the file handle.

READ (fcb adr lenl - - len2)
As before except with file handle.

WRITE (fcb adr lenl - - len2)
As before except with file handle.

SEEK, FILEPOS , and WREOF would
be changed similarly. Frankly, I don't see
much difference in the ultimate use of these
words. Returning the file handles means
they must be saved somewhere in a vari-
able. So the COPY-LINE above would
become:

Disk Drive Controller board (available 3rd quarter 1988)
3-112 inch floppy and SCSI controllers (for hard disks)

Video board (available 4th quarter 1988)
Will drive Apple Macintosh II high resolution (640 x 480) monochrome
monitor and PC compatible monochrome monitors

AID & D/A board (available 4th quarter 1988)
12 bit, 1 MHz AID & DfA converters

' Future, Inc. P.O. Box 10386 Blacksburg, VA 24062-0386
(703) 552 - 1347

I Applc is a rcgirtc~ed tndcmuk of Applc Cmptcr. Inc. Mscintosh is a wadcmnrk of Applc Compltcr, Inc.
SC-FORTH md SC-C rn products of Silicon Canporcrs.

COPY-LINE
FCBl @ pad 8 0 READ
FCB2 @ pad s w a p WRITE d r o p ;

(In fact the definition of CHANA is
something like: FCBl @ FCB ! and CHANB
is FCB2 @ FCB ! for most, but not all
operating system interfaces implemented.)

So you see, it isn't difficult to handle
multiple files using the proposed word set.
Perhaps I should say that in the proposal, in
order to make clear what I already thought
would be understood implicitly. I keep
forgetting that other systems handle things
in very different ways. Do you think I
should also propose some standard means
of file switching? It should be as generic as
possible, because the manipulation of file
control blocks is different for every operat-
ing system, while, in Uniforth at least, the
ultimate top-level file operators like those
above are uniform.
.............................

To continue, I would like to say that I
prefer "file-switching" words like CHANA
and CHANB to explicit references to file
handles, because the explicit method is
unnecessary and less self-documenting,
and it follows the principle of "hiding data"
Bla Brodie's Thinking Forth.

Leonard, thanks for pointing out the
deficiencies in language in my proposal. I
see that it must be more carefully written to
avoid misinterpretation. When I say
CLOSE will "close the file currently open,"
I should say "...close the file on the current
file110 channely'-after I define what a file
110 channel is of course. :-)

The definition of READ should say that
reading will stop "...when nl bytes of data

Forth Dimensions 30 Volume X, Number 2

have been read, an end-of-file mark is en-
countered, or in the case of a variable ..."

Finally, as I said above, my proposal
isn't incompatible with "handles," it just
assumed they are handled elsewhere (pun
intended).

Scott, about file creation: much more
than size and name go into file creation, like
access method, logical record length,
blocking factor, data type (binary, charac-
ter,executable, etc.), protection, and on and
on. That's a pretty big can of worms.

A request for file size is a good idea, and
something I use a lot I'll add it to the list -
Lee

Category 10, Topic 23, Message 78
Thu Mar 24,1988 L.BROTZMAN
Greg,

Thanks for the tip on the proposal. I will
try to amend the draft in light of the re-
sponses above and get it in the mail ASAP.
While we're talking about proposals, I
asked Martin Tracy whether discussion on
my DO LOOP proposal could be postponed
until the November TC meeting at Goddard
Space Flight Center, since I plan to attend
that meeting and would then be available to
explain and answer questions. He said I
should ask you, so I'm asking. (Actually, if
there is a move afoot to go back to Forth-79
DO LOOPS, my proposal is obsolete, which
is fine with me - I have no problems with
the earlier DO structure).

Sorry about sounding irate re BLOCK in
this topic. I really have nothing against
BLOCK in host file operations, it has its
place. I just don't think that it is a panecea.

My earlier postings about BLOCK in this
topic have been (as far as I can recall with-
out digging back into my log files) an effort
to make it more compatible with the hosted
environment, e.g. "undefined" block
length, and releasing restrictions on buffer
sizes. These are issues of little importance
for standalone systems, but they could
make life with BLOCK under an operating
system a whole lot easier.

I don't think I ever said BLOCK wasn't
suitable toaccess adatabase, just that it isn't
the only suitable way. I expressed this ex-
plicitly in my last two messages, and I tried
to be accommodating about saying that
there are indeed times when BLOCK is the
way to go- at least, that's what I wanted to
say. (Damn electronic communications ...
bad E-mail, bad!)

Volume X, Number 2 31 Forth Dimemiom

Off the top of my head, the theoretical
limit on throughput of a CD ROM drive is
roughly 150 Kilobits/sec. I have not am-
lyzed our system as to actual throughput
(we have to make the disk first!), but if you
have friends at JPL, the guy to ask there is
Mike Martin of the Planetary Datasystems
Group. He has produced two CDROMs of
astronomical images and character-table
data, and has written software to support it
on IBM PC/AT/XT clones under MS-
DOS. He told me that his throughput on the
PC rivals that of an unloaded VAX reading
from a hard disk, but VMS is such a dog
that I won't venture to interpret that state-
ment.

TheFITS files willberandomaccesson
the CD ROM. I would much p~efer heavily
indexed, flat text files but FITS has been
foisted on me by NASA. Our first disk is
simply a test of the CD ROM as storage and
distribution medium, and FITS as a disk-
based interchange format (currently, FITS
is primarily for tapes, not disks, although
several observatories have done some
good work with disk-FITS already). The
production schedule for this disk is too
tight to allow more than minimal indexing
for a few files (i.e., about 30 catalogs,
totalling more than 50 files and 400
Mbytes; final selection isn't set until mid-
May). Subsequent disks, assuming that
funding is continued, will include index
files into the FITS formatted data, and
more sophisticated data-base software. By
that time, I hope to have the Forth software
advanced enough to stave off the higher-
ups that think it should be in C.

You're right that the slow seek times
are a real pain. Users are more than willing
to put up with it, however, to get up to 600
Mbytes of direct-access storage on their
PCs, all in one place at arelatively low cost.
Drives are running about $700, and most
CDROMapplicationdisksareabout$100-
200 - ours will be distributed for cost of
media only, of course - $40-50 at most.
There are now a few vendors of drives that
claim to cut the seek time by quitea bit, but
I haven't seen the spec sheets yet. -Lee

P.S. TouchC, JAX. A full-blown, Forth-
based workstation environment couldn't
end up any weirder or more esoteric than
Unix, and that's pretty popular nowadays.
Keep on trucking.

I

i

Category 10, Topic 23, Message 79
Thu Mar 24,1988 S.W.SQUIRES [scott]
Lee,

I'd still prefer an explicit means of se-
lecting a file. This would allow a variable
(or better yet a TO-type variable) with ade-
scriptive name for that particular program.
(i.e. SOURCE, DESTINATION, AC-
COUNTS, etc.) The potential problem with
using the CHANA / CHANB is that the FCB
is set until it is changed again. By looking
at the source code for aprogram that did file
access, you'd have to look back and deter-
mine what set it the last time, if you didn't
do it in the actual worddoing the fileaccess.
Likewise, debugging could be confusing if
FCB was set by astray word. By passing the
FCB (or file#) explicitly, the program can
actually become more readable. Also, the
usage is up to the programmer and he can
use arrays or other structures if he desires.
-Scott

Category 10, Topic 23, Message 80
Fri Mar 25,1988 J.SHIFRIN
Lee, I know I'll get confused trying to
respond here and on the ECFB, but I still
don't think your files proposal is very solid.
Nothing against UniForth, but I think the
CHANMCHANB approach is both a kludge
and a bit bizarre. Also, I believe it falls apart
in a multitasking enviroment. I don't care
what's passed as a file identifier, but I think
it should be a single stack item - an ad-
dress or i.d. number which uniquely refers
to something (FCB, HCB, DCB, filename),
implementation dependent, to describe the
file being operated on

[Sorry about the awkward prose - I
hate theGEnie editor and didn't want to get
into it for cleanup. Should've composed
this offline!]

Category 10, Topic 23, Message 81
Sat Mar 26, 1988 G.BAILEY1
[ATHENA]
Lee, your proposal (known as TP88-038) is
in the pile for consideration at the May TC
meeting, and I will state your request to
postpone its consideration as a motion to
commit it to the group that is working on
control structure and looping issues. We
will probably convene that group at least
once in Rochester and it is probable that this
group will not have concrete recommenda-
tions for some time. Unfortunately, it is
difficult to indicate your willingness to

(McBrien's screens. from page 22.)

S c r e e n 2 0 3
1 (OISFORTH D e c o m p i l e F o r t h w o r d s t o t h e i r c o m p o n e r i t w o r d s I

2 : D ISFORTH (D ISFORTH c c c c)

3 CR [C O M P I L E] ' DUP NFA I D . (g e t PFA o f c c c c)
4 DUP NFA C @ 6 4 AND (c h e c k t h e p r e c i d e n c e b i t)
5 I F . " . . . i s a n IMMEDIATE w o r d . "
6 THEN DUP CFA @ [' . CFA @] L I T E R A L =
7 I F P R I N T - D E F c o l o n d e f i n i t i o n)
8 ELSE DUP CFA @ [' FENCE CFA @] L I T E R A L =
9 I F . " . . . i s a USER v a r i a b l e . OFFSET = " @ . CR

1 0 ELSE DUP CFA @ [' 0 CFA @] L I T E R A L =
1 1 I F . " . . . i s a CONSTANT. VALUE= " @ . CR
1 2 ELSE DUP CFA @ [' USER CFA @] L I T E R A L =
1 3 I F . " . . . i s a V A R I A B L E . CONTENTS- " @ . CR
1 4 ELSE . ' I . . . i s a CODE d s f i n i t i o n " CR
1 5 DROP THEN THEN THEN THEN ;
1 6 : SEE D ISFORTH ;
ok

5 5 4 0 5 4 3 7 0 4 9 6 0 5 8 2 4 1 C1 1 D 5 5 0A 0 7 2 5 2 0 F5 0 4 T 7AA .U . . y * u .
5 5 5 0 7 B 5 5 6 8 CIA 2 0 2 0 20 4 9 4 6 2E 2E 2E 2 0 6E 6 F 6E {Uh. I F . . . n u n
5 5 6 0 2 0 7A 6 5 7 2 GF 2 0 7 0 7 2 69 6E 7 4 2 0 7 4 6 8 59 73 z e r o p r i n t t h i s
5 5 7 0 2 0 6C 6 9 6E 6 5 2 5 20 E4 0 4 9 F 5 5 6 8 OA 1 F 4 5 4 C l i n e % d . . U h . . E L
5 5 8 0 5 3 4 5 2E 2E 2E 20 6'3 6 6 2 0 7A 65 7 2 6F 2 0 7 0 7 2 S E . . . i f z e r o p r
5 5 3 0 6 9 6E 7 4 2 0 7 4 6 8 6 3 7 3 2 0 6C 6 9 6E 6 5 2 5 2 0 6 8 i n t . t h i s l i n e % h
55AO 0A 2 7 5 4 4 8 45 4E 2E 2E ? E 2 0 7 2 65 6 7 6 1 7 2 6 4 . ' T H E N . . . r e g a r d
55RO 6C 6 5 7 3 7 3 2 0 7 7 6 8 6 1 7 4 2 0 7 0 7 2 69 6E 7 4 2 0 l e s s w h a t p r i n t
5 5 C 0 7 4 6 8 L 9 7 3 2 0 6C 6 9 6E 6 5 25 2 n 9 6 0 5 8 8 4 4 4 9 t h i s 1 i ne% . . . D I

o k

A A
5 5 4 C 2 0 2 5 CR
5 5 4 E 4 F 5 ORRANCH 5 5 7 8
5 5 5 2 k 6 8 . I F . . . n o n z e r o p r i n t t h i s l i n e
5 5 7 5 2 0 2 5 CR
5 5 7 7 4 E 4 BRANCH 5 5 9 F
5 5 7 B A68 (. " I E L S E . . . i f z e r o p r i n t t h i s l i n e
5 5 3 D 2 0 2 5 CR
5 5 9 F A68 [. ") T H E N . . . r e g a r d l e s s w h a t p r i n t . t h i s l i n e
55C.9 2 0 2 5 CR
5 5 C B 5 9 6 ;S ok

S c r e e n 2 0 2
1 (P R I N T - D E F M o r e O I S F O R T H e r w o r d s 1
L

3 : P R I N T - D E F (p f a - - -) (w o r d i s d e c o m p i l e d f r o m t h a t p f a)
4 B E G I N DUP @ TERMINATORS ELEMENT? O= W H I L E
5 PRINT-WORD REPEAT PRINT-WORD OROF ;
6
7 (A A i s a t e s t w o r d f!:,r SEE t o c h e c k t . h e b r a n c h e s a r e r e s o l v e d
8 c o r e c t l y)
9 : AA (1-1 - - - :)

1 0 C R
1 1 I F . " I F . . . n o n z e r a p r i n t t h i s l i n e " CR
1 2 ELSE . " E L S E . . . i f z e r o p r i n t t h i s l i n e " CP
1 3 THEN . " T H E N . . . r e g a r d l e s s w h a t p r i n t . t h i s 1 i n e " CR ;
1 4
1 5
1 6
0 k

(End of Letters screens.)
I

Forth Dimensions 32 Volume X. Nwnber 2

(Hoselton's screens,from page 18.)

1
? : .ME !S n - !
3 CR SWCES ME BODY))MK . ID ;
4
5 MSTER ETHOZ): (. %%) (S n -)
6 DW . X 2+ 2)OBJECT
7 BEGIN @ N l l E BUP 4 - (.SOIS) REPEOT
B 2DRW ;
9
19 W;ER IYTdOD: .SONS i --
11 a K(.SONS) :
i2
13 MTR *RED: .OK
14 4.M;
15

10
B \ Testing & demonstration
1
2 MTR OBJECT: VEHICLE
3
4 KEEIIICLE RETHOD: WHEELS 8)SUPER 13 ;
5
6 VEHICLE OBJECT: W4T 8 ,
7 WICLE OBJECT: W R 4 1

B VEHICLE OBJECT: TRICYCLE 3 ,
9

10 CClR OBJECT: GREEkKlNSTER
11 BOOT OBJECT: (WEM-MRY
12 \s
13 WEEN-ffiRY I#JHEE;S .
14 GREEN+O#S?ER WHEELS .
15

11
8 \ Testing 6 cewmtrat ion
1
2 WSXR OBJECT: KTOF!OB!?E
3
4
5
6 CYiTDllOBfLE RTHOD: 06JECT: iS n --)

7 CRERTE OBJECT) \ Build links
' 1 \ 8) Odometer mileage

9 8 , \ 10) &meter lniieage C Last fillup
18 0 , \ 12) gas in tank
11 , i \ 14) s1:es-per gallon
12
i3
14
15

Dis~lay the name of the addr-.essed OBJECT.

D l ~ ~ l a y the nase of tne aedressed CEJECT and, lndentea
the nantes of ail his descenoertt 'JbJECTs. 'his 1s a recursive

routlne. " L R T i EJhDING1' I S very usefd! Qere.

Display the name o f the ciurrent OBJECT and a l i nls
descer~der~ts.

Disuiay the name of the current OBJECT.

24
\ Testing i% demonstration

R kuperclass" of vehlcle types

R METHOD for finding rne nunber of wseeis for a
grandson of MHICiE.

On GEJECT wnose ~mmeelate descewants have YO wheeis
Rn OBJECT whose irnmeciate descerfiar~ts have 4 wheeis
fln OBJECT nhose imaedlate descendents nave 3 wheeis

a fawus car
a famous boat (kieii, rea!iy i t ' s a s h i p j

rlow Many wneels @oes the WEiN+F\RY have 7
How many nneeis does the GREEk-MOBSTER have'
Sever say CRB #WHEELS . (#WHEELS isn't written for that.)

25
\ Testing B demnstratlon

R new example: WT0140BILE
Note that this fiUTCPIOBILE is not a son of VEHICLE.
We're on a new subject.

RllTOlrlDb!iE type OBJECT'S aren't cn it e tne same as oralnary
OUECT9s. They have sorse extra data appended.
k define an FlilTOFOBILE OBJECT, the niles-oer-gaiion fur
that OBJECT must be 1 x 1 the stack.

I
Volume X, Nwnber 2 33 Forth Dimensions

2 WTUPIOEIiE ETgOD: DQIVE (S .I -)
3 14 ?OBJECT ? 12)OBJECT @ * (gas?mpg=ranqe ! N I N
4 DUP 8)DWECT + i i increment odof~wter.)

5 D'LP 14 !OPEC- @ 1 NEGATE 12)DEJECT +!
5 ." I ' a drivin; " . ." miles " :
7
8 UTOl4IEILE !ETI.OD: -Ei-GRS (S --)

5 !?)OicECTid CR
18 . V IHRVE . . ." SRLiONS I N MY TRNK '' ;
:I
12 FUJSOMOFILE SETSGD: FI-,-EX (S r! -
13 2) OBJECT + i ME TELL-GFIS ;
14
15

13
8 \ Testing 8 demonstration
1
2 7 FKFTOWE!LE OBJECT: RRCEl
3 23 IIUTOMGBILE OBJECT: SLOW-POKE
4
5 SLM-POKE %THUD: TELL-SFIS CR ." I t ' s a secret " ;
6
7
8 \S
9

10 13 RRCER FI1-GCIS
11 i@ M E Q DS!'JE
12 WER TELL-GFIS
13 SLW4OKE TEiiL-66
14
15

To d r l ~ e our BLTO'KB:LE n ~ i i e s , Ne first chec* O U ~ range,
(gas tunes miles-per-ga:ion ta see 7w far we can gc.
:$en ~e if&t.efnent, our odoeeter readlnq, oecrease ow fuel
and r e ~ o r t just how far we drove.

Se~ort the fuel i n the taw.

9dd fuel to the tank.
I n a roore compl~cated exampk, we might check the Gas tank
capacity, reduce the drlverls Cash, etc.

27
\ Testing & demonstrat~irn

High prformar:ce, seven xi les-per-gal Ion.
iow performance, tuenty-three mi les-per-qa5 Ion,

Sme privacy for SLOW-POKE
This shows that different objects can use the same MESSRGE
nase to ~roduce different wsu!ts.

Put some gas In the tank.
Drive for a whlle.
Re~ort gas twnaifilng.

Evaluation
I searched for an object-Forth support

routine that met these objectives, but I
didn't find any that really suited me. Neon
provides some fine object tools, but it has
changed so much that it isn't Forth any
more. Vocabulary-based implementations
of object Forth can be slow, and none that
I examined support late binding. So, I wrote
my own object Forth.

Rather than supporting an explicit class
construction, this routine supports inheri-
tance by causing each object to be the "son"
of some other object. "Brother" and

"cousin" objects can inherit data, data
structure, and methods from the common
"ancestors."

There don't seem tobeany bugs left, but
there is a "feature" I don't like: it is easy to
misuse a method. A method might be de-
signed only to be inherited. It might not
work at all with the original object, but it is
still possible to make that request. Another
warning: don't use a name for a message if
that name has already been used for some-
thing else. There is very little error check-
ing; when you ask for a mistake, you usu-
ally get one.

Summary
Here is a fast, late binding, and free

object-Forth support routine. It runs un-
der Laxen and Perry's public-domain
F83. Now you possess Forth, the world's
most powerful programming language,
and support for one of the world's most
powerful conceptual tools: object-ori-
ented programming.

Rick Hoselton is a professional Forth
programmer with General IMormation
Technologies, Inc. His work with Forth
spans the last six of his seventeen years
spent as a full-time computer profes-
sional.

Forth Dimensions 34 Volume X, Number 2

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ON THE PROMISE

I POWER

I HSIFORTH's compilation and executlon speeds are
unsurpassed. Compiling at 20,000 lines per mlnute, ~t
compiles faster than many systems link. or real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optimizer
gives assembler language performance even for
deeply nested definltrons containing complex data and
control structures.

HSIFORTH provldes the best arch~tecture, so good that
another major vendor "cloned" (rather poorly) many of
itsfeatures. Our Forth uses all available memory for
both programsand data with almost no execution time
penalty, and very little rnemory overhead. None at all for
programs smaller than 20OkB. And you can reslze seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or agigabyteof virtual, and run almost as fast as in real
mode.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition's local
variables.

Colon definitions can execute ins~de machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with mult~ple entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
its immensedictionary (1 600 words) would imply.

I INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Linker opens the world of
utility libraries. Link to resident routines or link & remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HSIFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG Libraries, the maln difference being tney
load and run faster, and you can develop larger applica-
tions than with any other system. We like sourcecode in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and Includes automatic path
search.

FUNCTIONALITY

More important than how fast a system executes. IS

whether 11 can do the job at all. Can ~t work w~th your
computer. Can it work with your other tools. Can ~t trans-
form your data Into answers A language should be
complete on the first two, and minimlze the unavoidable
effort required for the last.

HSIFORTH opens your computer like no other lan-
guage. You can execute funct~on calls. DOS com-
mands, other programs interactively, from defln~tlons.
or even from files being loaded. DOS and BlOS function
calls are well documented HSIFORTH words, we don't
settle for glving you an INTCALL and saylng "have at ~t".
We also Include both fatal and informat~ve DOS error
handlers, installed by executing FATAL or INFORM.

HSIFORTH supports character or blocked, sequent~al
or random 110. The character stream can be rece~ved
from sent to console, file, memory, prlnterorcom port.
We Include a commun~cations plus upload and down-
load util~ty, and foregroundlbackground muslc. D~splay
output through BlOS for compatibility or rnemory
mapped for speed

Our formatting and parsing words are without equal In-
teger, double, quad, financ~al, scaled, time, date, float-
Ing or exponential, all our output words have string
formatting counterparts for bulldlng records. We also
prov~de words to parse all data types with your choice of
field definltlon. HSIFORTH parses flles from any lan-
guage. Other words treat files l~ke memory, nn@H and
nn!H read or wrlte fromlto a handle (file or devlce) as
fast as poss~ble. For advanced file support, HSIFORTH
easily l~nks to BTRIEVE, etc.

HSIFORTH supports texvgraphlc wlndows for MONO
thru VGA. Graphic draw~ngs (line rectangle ellipse) can
be absolute or scaled to current wlndow slze and
clipped, and work with our penplot routines While great
for plotting and line drawing, ~t doesn't approach the ca-
pab~lities of Metawindows (tm Metagraphlcs). We use
our Rosetta Stone Dynamic Llnker to interface to Meta-
windows. HSIFORTH with Metawindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

HSIFORTH provides hardwarelsoftware floatlng point,
including trig and transcendentals. Hardware fp covers
full range trig, log, exponent~al functions plus complex
and hyperbolic counterparts, and all stack and comparl-
son ops. HSIFORTH supports all 8087 data types and
works In RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machlne code)
and parselformat words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizesconversion time.

Slngle element through 4D arrays for all data types In-
cludlng complex use mult~ple cfa s to Improve both per-
formance and compactness Z = (X-Y) I (X + Y) would
be coded X Y - X Y + I IS Z (16 bytes) Instead of X Ca
Y @ - X @ Y @ + I Z l(26 bytes) Arrays can Ignore 64k
boundar~es Words use SYNONYMS for data type lnde-
pendence HSIFORTH can even prompt the user for
retry on erroneous numerlc Input

The HSIFORTH machlne coded strlng library w~th up to
3D arrays IS without equal. Segment spanning dynam~c
strlng support Includes insert.be~ete, add, find, replace,
exchange, save and restore strlng storage.

Our mlnlmal overhead round robin and time slice multi-
taskers require a word that exits cleanly at the end of
subtask executlon. The cooperatlve round rob~n multi-
tasker provides ~ndiv~dual user stack segments as well
as user tables. Control passes to the next taskiuser
whenever desired.

Volume X, Number 2

APPLICATION CREATION TECHNIQUES

HSIFORTH assembles to any segment to create stand
alone programs of any sue. The optimizer can use HSI
FORTH as a macro library, or complex macros can be
built as colon words. Full forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompller produces threaded systems from a
few hundred bytes, or Forth kernels from 2k bytes. With
11, you can create any threading scheme or segmenta-
tion arch~tecture to run on disk or ROM.

You can turnkey or seal HSIFORTH for dlstributlon, with
no royalt~esfor turnkeyed systems. Or convert for ROM
In saved. sealed or turnkeyed form

HS:FORTH Includes three ed~tors, or you can quickly
shell to your favor~te program editor. The res~dentfull
wlndow editor lets you reuse former command lines and
save to or restore from a f~le. It IS both an Indispensable
development ald and a great user interface. The macro
editor prov~des reuseable functions, cut, paste, file
mergeand extract, sesslon log, and RECOMPILE. Our
full screen Forth ed~tor edits f~ le or sector mapped
blocks.

Debug tools Include memorylstack dump, memory
map, decompile, slngle step trace, and prompt options.
Trace scope can be lim~ted by depth or address.

HSIFORTH lacks a modular comp~lat~on envlron-
ment One motlvatlon toward modular comp~lat~on IS

that, w~th convent~onal compliers recomplllng an ent~re
appllcatlon to change one subroutine IS unbearably
slow HSIFORTH comp~les at 20,000 llnes per m~nute.
faster than many languages llnk- let alone comp~lel
The second motlvatlon IS llnklng to other languages
HSIFORTH l~nks to fore~gn subroutines dynam~cally
HSIFORTH doesn t need the extra layer of f~les, or the
programs needed to manage them W~th HSIFORTH
you have source coda and the executable f~le Perlod
Development environments are cute and necessary

for unnecessarily complicated languages Slmpllclty IS
so much better

HSIFORTH Programming Systems
Lower levels Include all functions not named at a higher
level. Some functions ava~lable separately.

Documentation 8 Worklng Demo
(3 books. 1000 + pages. 6 Ibs) $ 95

Student $145.
Personal optimizer, scaled 8 quad Integer $245.
Professional 80x87. assembler. turnkey. $395.

dynam~c strings, multitasker
RSDL Ilnker,
physical screens

Product~on ROM, Metacompiler, Metawlndows
$495.

Level upgrade, price d~fference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynam~c Linker $ 95.
Metawindows by Metagraphics (~ncludes RSDL)

$145.
Hardware Floating Polnt 8 Complex $ 95.
Quad integer, software floatlng polnt $ 45.
Time slice and round robin multitaskers $ 75.
GigaForth (802861386 Native mode extension) $295.

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

I

Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed be-
low are currently registered as
active with regular meetings. If
your Chapter listing ismissing or
incorrect, please contact Kent
Safford at the the FIG office's
Chapter Desk. This listing will
be updated in each issue of Forth
Dimensions. If you would like to
begin a FIG Chapter in your area,
write to the Chapter Desk for a
"Chapter Kit and Application."
Forth Interest Group, P.O.
Box 8231, San Jose, California
95155

U.S.A.
ALABAMA

Huntsville Chapter
Tom Konantz (205) 881-6483

ALASKA
Kodiak Area Chapter
Horace Simmons (907) 486-
5049

ARIZONA
Phoenix Chapter
4th Thurs.. 7:30 D.m.
Dennis L. wilso;l(602) 956-
7578

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson (213) 649-1428

North Bay Chapter
2nd Sat., 10 a.m. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Sacramento Chapter
4th Wed., 7 p.m.
1798-59th St., Room A
Tom Ghormley (916) 444-7775

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski (203) 344-
9996

I FLORIDA
Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

I
Tampa Bay Chapter
1st Wed., 7:30 p.m.
Teny McNay (813) 725- 1245

GEORGIA
Atlanta Chapter
3rd Tues., 6:30 p.m.
Western Sizzlen, Doraville
Nick Hennenfent (404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips. Jr. (3 12) 386-
3147

Central Illinois Chapter
Urbana
Sidney Bowhill (217) 333-4150

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
UP Univ. Campus, B71 Neff Hall
Blair MacDermid (219) 749-
2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp. Sci.
Rodrick Eldridge (5 15) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (515) 472-7077

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitlAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz (3 13) 322-
7862

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall, Univ. of MN
Fred Olson (612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
h4idwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
9 1 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ.. Piscataway
Nicholas Lordi (201) 338-9363

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Monroe Comrn. College
Bldg. 7, Rm. 102
Frank Lanzafame (716) 462-
3398

Forth Dimensions 36 Volume A', Number 2

The Gifted
Computer

1. Buy MMSFORTH before year's end,
to let your computer work harder and
faster.

2. Then MMS will reward it (and you)
with the MMSFORTH QAMES DISK,
a $39.95 value which we'll add on at
no addltionai chargs!

MMSFORTH is the unusually smooth
and comptete Forth system with the
great support. Many programmers report
lour Ilo ten Hmor greater pmduclWy
with thls outstanding system, and MMS
prov~des advanced applcatlons pro-
grams In Forth for use by beg~nners and
for custom modifications. Unlike many
Forths on the market. MMSFORTH gcves
you a rich set of the tnstructlons, editing
and debugging tools that profsssional
programmers want. The licensed user
gets conlinuing, free phone tips and a
MMSFORTH Newsletbr IS available.
The MMSFORTH GAMES DISK lncludes
arcade games (BREAKFORTH. CRASH-
FORTH and, for TRS-80, FREEWAY),
board games (OTHELLO and TIC-TAC-
FORTH), and a top-notch CRYPTO-
QUOTE HELPER with a data file of
coded messages and the abtl~ty to en-
code your own. All of these come wlth
Forth source code, for a valuable and
enjoyable demonstration of Forth pro-
gramming techn~ques
Hurry, and the GAMES DISK wll
free gtft to you Our brochure
too, and our knowledgeable st
ready to answer your question
Better yet, call 617/853-6136.

I an&a free c

(TIATIPS2 etc., and TRS-
and 4
GREAT MMSFORTH OPTIONS:
FORTHWRITE $99 95'
FORTHCOM 49 95
DATAHANDLER 59 95
DATAHANDLER-PLUS* 99 95
EXPERT-2 69 95
UTILITIES 49.95
'S~ngle-computer, single-user prlces, cor-
porate slte llcenses from $1,000 add~tlonal
3%" format, add $Wd~sk, Tandy 1000. add
$20 Add S/H, plus 5% tax on Mass orders
DH+ not ava~l for TRS-80s
GREAT FORTH SUPPORT:
Free user t~ps, MMSFORTH Newsletter,
consult~ng on hardware selection, staff
tralncng, and programmtng assignments
large or small

BOOKS:
r 8 REF$21.95* I

Wany others I" stock. I
MILLER MICROCOMPUTER SERVICES

(Data Structures, from page 14.)

tier of operations is a virtue of Forth. Char-
les Moore preserved a great deal of flexibil-
ity by manipulating values in steps: an
object in memory is fetched to the stack,
converted to a cell-length object (or mul-
tiples thereof), processed by whatever
postfix operators are available to the
object's supertype (you might say there are
only two types at this point: doubles and
cells), and then stored with the correct
operators (back to three data types).

Conclusion
Other languages don't support the crea-

tion of new data types; they leave you with
a small vocabulary of basic types and meth-
ods from which to build compound types
such as records. The basic type vocabulary
also tends to be a minimal one. Each of the
few basic types available is usually quite
different from the others. Contrast this with
Forth, where you can create a dozen string
data types if you need them. And within
twelve different applications, you may find
yourself needing them.

Forth doesn't presume to have discov-
ered all the basic data objects or types
needed to solve your problems. With its
limited but extensible base, Forth provides
the opportunity to create just the data type
or data object you need.

Copyright O 1988 by Mike Elola. All rights
reserved.

Mike Elola is a published Forth pro-
grammer and a full-time writer at Apple
Computer. Over rhe years, Mike feels,
Forth has tricked him into believing that
he is a computer scientist.

(Editorial, from page 3.)

tors of the Forth Interest Group. Under his
leadership, the 1988 Forth National Con-
vention ('The 1988 Real-Time Program-
ming Convention," featuring banquet
speaker Jef Raskin and keynote speaker
Ray Duncan) will be held November 18 -
19 in Anaheim, California (across from
Disneyland). Los Angeles and Orange
County have local FIG members with the
expertise, professionalism, and energy to
lend to an exciting event. We are looking
forward to traveling there, and hope to see
you there. Bring along your computer and
favorite language, too: the black-belt pro-
grammers contest offers a $1000 prize -
write to FIG for a copy of the rules.

-Mar l in Ouverson
Editor

(GEnie, from page 31 .) I
accept the Forth-79 definition in our audit
trail, and unless someone generates a pro-
posal to that effect there is no way it can
even be considered. If you consider the
Forth-79 loop behavior to be equally desir-
able, there is absolutely nothing wrong
with submitting a separate proposal to that
effect. There are plentiful cases where a
submitter finds two mutually exclusive
changes equally acceptable, and in such a
case two proposals are easier to work with
than would be a single proposal outlining
two possibilities. Cheers --Greg.

I

Forth Dimensions 38 Volume X, Number 2

Investigate career opportunities with Digalog
Experience: Interests:

> 5 yrs programming, 3 yrs Forth Software Product design
Realtime instrumentation & Control Applications language development
Linear algebra, Z transforms, Automotive or aerospace laboratories
state space Relocating to Ventura, California
Strong hardware background

Send resume to: DDIGALOG
Digalog Corporation PO Box 3315 Ventura, CA 93006-331 5 8051644-9928

h m e X, Number 2 39 Forth Dimensions

16 1000 REWBRD
for the World's Fastest Programmer.

Be the first to put our mystery gizmo through its paces and
win $1000! Use any computer, any software. The showdown is
at the Real-Time Programming Convention, Nov 18-19th,
Anaheim, Calif. For complete rules, write:
Programming Contest, Forth Interest Group, PO Box 8231,
San Jose, CA 95155.

Forth Interest Group
P.O.Box 823 1
San Jose, CA 95 155

Second Class
Postage Paid at
San Jose, CA

