

F O R T H
D I M E N S I O N S -

FRACTAL LANDSCAPES BY PHIL KOOPMAN, JR.
12

1 This program generates fractal landscapes, with height-based coloring and hidden-surface
elimination. Fractals are used to describe various geometrical shapes, especially natural

L phenomena, that are not strictly one, two, or three-dimensional. -
FORTH TO THE FUTURE BY MITCH BRADLEY

17
Our new columnist discusses the growing importance of 32-bit machines, and presents a
proven scheme for implementing Forth on them. This method allows programs to run
unchanged on either 16-bit or 32-bit machines without penalizing the newer architectures. -

STARTING FORTH INC.0 INTERVIEW WITH ELIZABETH RATHER
27

Michael Ham interviews the president of FORTH, Inc. about the history of Forth and of
the first company to deal in Forth systems and applications. She speaks frankly of
successes, lean times, and public perception.

I

RUN-TIME STACK ERROR CHECKING BY CHARLES SHATTUCK
32

System-crashing stack errors make for frustrated students who aren't excited about getting
over Forth's learning curve. Run-time stack checking is a good, temporary aid for Forth
beginners plagued by mysterious system crashes. -

PERPETUAL DATE ROUTINE BY ALLEN ANWAY
34 a Ever since humans began numbering days and years, devising a perennially accurate

calendar has been a problem. This article presents definitions that calculate the Gregorian
day and weekday in fixed-point, double-precision Forth.

I

HEADLESS COMPILER BY DARREL JOHANSEN
36

The headers of words that are needed only a few times, for definitions of higher-level words,
just take up valuable dictionary space. This compiler can be loaded into any Forth-79 sys-
tem, compiles code with or without headers, and can be forgotten when it is no longer needed. -

EDITORIAL
4

LETTERS
5

ADVERTISERS INDEX
38

FIG CHAPTERS
42

Volume IX. N&r 1 3 Forth Dimensions

elcome to a new volume of Forth W
Dimensions. During the past few
months, we have thought a lot about the
people who use Forth, and the inte-
resting, progressive things they do with
it. We felt it was time to bring our
publication's physical appearance more in
line with its contents. Cynthia Berglund,
who does our design and physical
production, met with me and advertising
manager Kent Safford to discuss a new
design. She translated our conceptual
abstractions into the tangible pages you
hold in your hands. Meanwhile, Kent
worked overtime with suppliers, support
materials, and advertisers, among other
things.

Fortunately, desktop publishing
makes this upgrade far less costly than it
looks. Thanks to an intensive team effort,
our budget has barely budged; but we
think the final result looks more pleasing
and contemporary. We hope you agree.

A new columnist debuts in this issue.
Mitch Bradley is the author of our "Forth
to the Future" series. His first installment
discusses the importance of 32-bit
compatibility to Forth's future, and
includes a proposed wordset glossary.

Forth, Inc.'s president, Elizabeth
Rather, called with some comments about
last issue's "State of the Standard," in
which a CBEMA motion for an ANS
Forth was reported, along with George
Shaw's concerns about that motion and
his own IEEE proposal. Ms. Rather
found the criticism of the CBEMA
proposal inaccurate. She maintains that
CBEMA grants its Technical Committees
a good deal of latitude in scheduling their

activities, and that voting membership
and size of such a committee is not
restricted at all (some continuity is
required of members). And the proposing
body - far from being biased in favor of
a single vendor - includes Ray Duncan
of Laboratory Microsystems, Don Col-
burn of Creative Solutions, and several of
those major vendors' clients (IBM, MCI,
Oak Ridge National Laboratory).

Elizabeth added that participation is
open; anyone who wants to be informed
about upcoming, Forth-related CBEMA
events can contact Elizabeth Rather at
Forth, Inc. (Manhattan Beach, CA), or
Chris Colburn at Creative Solutions
(Rockville, MD).

Since that conversation, Ms. Rather
wrote that CBEMA's "...final vote for the
establishment of X3J14, the Technical
Committee for ANS Forth was favorable:
36- 1- 1 An organizational meeting has
been scheduled for August 3-4, 1987 at
CBEMA headquarters." A newsletter will
be sent to all ANSI members, a press
release was to have been mailed on May
1, and the 100+ people on the Forth
Vendors Group mailing list will be
notified.

If you still haven't had enough about
standards, be sure to read the letter in this
issue from Guy Kelly, chairman of the
Forth Standards Team. And for more
about Elizabeth Rather and Forth, Inc.,
you will find the interesting interview,
"Starting Forth, Inc." Enjoy!!

--Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume IX, Number 1

May/June 1987
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics
ISSN#O884-0822

Forth Dimensions welcomes editorial
material, letters to the editor, and com-
ments from its readers. No responsibility
is assumed for accuracy of submissions.

Subscription to Forth Dimensions is
free with membership in the Forth
Interest Group at $30 per year ($43
overseas air). For membership, change of
address, and to submit items for
publicatio~, the address is: Forth Interest
Group, P.O. Box 8231. San Jose,
California 95 155. Administrative offices
and advertising sales: 408-277-0668.

Copyright O 1987 by Forth Interest
Group, Inc. The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articles and by Forth Interest Group, Inc.,
respectively. Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes, without the written
permission of Forth Interst Group, Inc. is
a violation of the Copyright Laws. Any
code bearing a copyright notice, however,
can be used only with permission of the
copyright holder.

About the Forth Interest Group
The Forth Interest Group is the

association of programmers, managers,
and engineers who create practical, Forth-
based solutions to real-world needs. Many
research hardware and software designs
that will advance the general state of the
art. FIG provides a climate of intellectual
exchange and benefits intended to assist
each of its members. Publications,
conferences, seminars, telecommunica-
tions, and area chapter meetings are
among its activities.

L I I

Forth Dimemions 4 Volwne IX, Nwnber 1

LETTERS

32 is a Bit Too Many

Dear Mr. Ouverson,
Are we all trapped by power-of-two

chauvinism?
There seems to be an impression that

the next logical advance in Forth is from
a 16-bit word to a 32-bit word. Can we
take a moment to consider 24 bits?

One of the beauties of Forth is that
addresses and data are interchangeable,
since both use 16 bits. Forth's 64K
address-space limit is beginning to seem a
disadvantage, and its 16-bit single
numerical precision is limiting. Expan-
ding both data and address to 32 bits is
easy on a 32-bit microprocessor, but I
feel that four gigabit addressing and
numerical precision is wasted in most
applications. Real memories are unlikely
to exceed eight megawords for a
considerable time, and the ability to
individually address every byte on a hard
disk is hardly necessary in a block-
oriented language. Meanwhile, a 32-bit
Forth engine is either going to have twice
as many pins and twice as much silicon
as a 16-bit engine, or it is going to
multiplex data and addresses and slow
down.

So try 24 bits. The real estate and pin
count has only risen by 50%. The address
space has increased to 16 megawords,
though I grant that we lose the ability to
address bytes directly. Unsigned numerical
precision has increased to the equivalent
of seven decimal digits. We can even pack
a meaningful floating-point number into
24 bits. Double-precision numbers now
have 14 decimal digits of precision,
which should be enough for most of us.

Food for thought, or just a red herring?

Kind regards,
Tom Napier
Dresher, Pennsylvania

WITHIN Words

Newcomers to Forth from other
languages sometimes complain about the
relative lack of standardization, panic-
ularly the use - by different versions of
the standard, and by different im-
plementations of standard and non-
standard Forths - of the same word name
to mean different things. Some of these
complaints are poorly justified.

In my opinion, as a relative newcomer
to Forth (a year and a half as a pro-
fessional Forth programmer, after work-
ing in the Pascal world), the changes
perpetrated by the Forth-83 Standard are
improvements I wouldn't want to live
without. But, as with Pascal (which had
the "advantage" of being standardized at
its inception, rather than after a decade of
practical use like Forth), the standard
wordset is never enough. Other words are
included in different implementations, and
they spread through the Forth community
if programmers find them useful and
memorable. A good name is not the least
important feature of such a word.

One useful non-standard, but popular,
word is WITHIN, which takes three
numbers from the stack and returns a flag
--that indicates whether the first number
is within the range defined by the second
and third. The stack picture is (n low high -

-- flag), where the flag is true if and only
if low <= n <= high.

In a recent revision of their F83 model
implementation, however, Laxen and
Perry have changed the meaning of the
word WITHIN. It retains the same stack
picture, but the significance of the flag is
changed so that it is true if and only if
low <= n c high. In other words, where
previously the flag was true in the case n
= high, in the new version it is false.
Laxen and Perry have kept the old version
of WITHIN, too, renaming it
BETWEEN. But this seems, to me, to
confuse things even more: as a native
speaker of English, I don't see any reason
to choose BETWEEN as a better name
for the old WITHIN, nor do I feel any
natural affinity for either WITHIN or
BETWEEN as the name of a range test
that includes one endpoint and not the
other.

As an alternative to the pair of word
names WITHIN and BETWEEN, 1
would like to introduce a set of four
names. Probably nobody, with the
possible exception of Wil Baden, would
want to implement all of these words
(one of them - any one, for that matter
- would be enough), but perhaps these
names could be taken as something like
unofficial "controlled reference words."
All of them have the same stack picture
as WITHIN and BETWEEN, and are
listed below with the truth condition of
the flag:
WITHIN low <= n <= high
WITHIN (low <= n < high
)WITHIN low < n <= high
) WITHIN (low < n c high

I I
Volume IX, Nwnber 1 5 Forth Dimemions

I NGS f0RM I
I A FAST FORTH,

OPTIMIZED FOR THE IBM I
I PERSONAL COMRJTER AND

MS-DOS COMPATIBLES. I
INCLUDE:

@79 STANDARD

@DIRECT 1/0 ACCESS

@FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

@ENVIRONMENT SAVE
& WAD

.MULTI-SEGMENTED FOR
LARGE APPLICATIONS

@EXTENDED ADDRESSING

.MEMORY ALLOCATION
CONFIGURABLE ON-LINE

.AUTO m A D SCREEN BOOT

@LINE & SCREEN EDITORS

eDECOMPIIER AND
DEBUGGING AIDS

08088 ASSEMBLER

GRAPHICS & SOUND

eNGS ENHANCEMENTS

@DETAILED l4lWUAL

@INEXPENSIVE UPGRADES

mNGS USER NEWSLEmEB

A CrmPLETE FOiU'H
i DEVEU)l?fmw SYSTEM.
I

I PRICES 8 m AT $70

NEXT GENERATION SYSTEMS
PeOeBOX 2987
BANTA CLARA, CA. 95055

My WITHIN is the same as the Guy
Kelly and original F83 WITHIN and the
new F83 BETWEEN-WITHIN (is the
same as F83's new WITHIN. In all
cases, an open parenthesis in a word name
indicates whether the respective endpoint
of the low-to-high number interval is
excluded from the range of true values.
This convention of open parentheses

If my suggestion meets with the
approval of the Forth community, per-
haps we can squash BETWEEN and the
new WITHIN before they infect too
much written code.

Richard Astle
La Jolla, California

S c r e e n it 11
0 \ C A S E
1 : CASE C O M P I L E DLJP O : I M M E D I A T E
2 : I 1+ DLIP 1 '. I F C0MPIL.E OR T H E N C O M P I L E OVER :
3 I MMED T A T E
4 : O F I F C O M P I L E OK T H E N [C O M P T L E I I F C O M P I L E DROP
5 ; I M M E D I A T E
6 : ENDOF C O M P I L E E X I T [C O M P I L E 1 T H E N : I M M E D I A T E

corresponds to a familiar mathematical
convention (many of us learned it with
the "new math" a few decades ago) that
represents ranges on the real number line.
Perhaps the greatest advantage of these
word names is that, when you've once
seen the stack picture, it is impossible to
forget which is which.

7 : ENDCASES C O M P I L E DROP : I M M E D I A T E
8
9 : BREAC' C O M P I L E E X I T [C O M P I L . E I T H E N : I M M E D I A T E

1 1:)
11 \ Ed P e t s c h e
12 \ 620 W e s t S t .
13 \ G r e e n p o r t , N . Y. 1 1 9 4 4
1 4

A Couple of CASES

Dear Marlin,

Wil Baden, in his "Ultimate CASE
Statement" (FD VIIIIS), did an excellent

S c r e e n # 12
O \ C A S E T E S T
1 : BETWEEN (n n l n 2 -- 7)

2 1+ OVER - :.K - R:. u:. ;
3 : CHAPS (n --)

4 C A S E 7 = 11 = O F . " you w i n " HREAY.
= C A S E 2 3 BETWEEN : 12 = O F . " y o u l ose " B R E W
6 . ." i s your p o i n t " :
7 : WHATEVER
8 C A S E O= O F . " z e r o " ENDOF
9 C A S E 13.: O F ." m i n u s " ENDOF
10 C A S E DUP 1- AND O= O F . " p o w e r of 2" ENDOF
11 C A S E A S C I I O A S C I 1 9 BETWEEN O F . " d i g i t " E'NDOF
12 C A S E A S C I I , A S C I I / BETWEEN
13 : A S C I I : = O F . " p ~ t n c t u a t i o n " ENDCIF
1 4 ENDCASES . " w h a t e v e r " :

I

S c r e e n # 13
11) \ C A S E T E S T
1 HEX
2 : C L A S S I F Y

C A S E 13 1F
I 7 F -

C A S E 2 D 2F
I y A 4 1 : r
I 5 B h i)
I 7 B 7 F

C A S E 713 79
C A S E 4 1 5 4
C A S E 61 74
ENDCASES

BETWEEN
O F . " c o n t r o l c h a r " ENDOF

BETWEEN
BETWEEN
BETWEEN
BETWEEN O F . " p u n c t ~ h a t i o n " ENDOF
HETWEEN O F . " d i g z t " ENDOF
BETWEEN O F . " u p p e r c a s e " ENDOF
BETWEEN O F . " l o w e r c a s e " ENDOIz

. " not a c h a r a c t e r " :

(408) 241-5909 1 1 1 4
15

Forth Dimemions 6 Vofwne IX, Nwnber 1

job describing problems with the many
case proposals that have been published
to date. He also stated requirements for
further proposals and gave his own
version of a sweetened case statement.
After reading the article and looking at his
examples, CLASSIFY in particular, I
felt that CASE could use just one more
lump of sugar. The stack operators and
redundant ORs should be eliminated, if
possible. My method for eliminating
them is to use I to separate the tests
within a case clause. This separator is
also used to hide the stack and OR
operations. ENDCASES is used as a
synonym for DROP. It is optional, and
is not used when the default code needs
the value on top of the stack. Also, the
EXIT THEN Sequence at the end of
each case clause is compiled as a macro
(ENDOF) .

I thought BREAK might be a better
name for the ENDOF macro, and I've
included it in one of the examples. One of
the advantages of using BREAK is that it
could be used outside of the case
statement, to replace other EXIT
THEN sequences.

It would be great to see an article
similar to Wil Baden's case article, but
discussing requirements for Forth data-
base elements. Also, I hope there will be
more articles on classes in future issues.

Ed Petsche
Greenport, New York

Dear Marlin:

I'm about "cased out," so when I saw
not one, but two articles on case
statements in the last issue, I proceeded

I
0 \ Trmscase -- see A. Annay, FD VI I I IS, p. 23 Jan1987
I FALSE CONSTANT NOCASE
2 : TRANSCASE I cnt -- :def lncr 1 CREATE DUP t , DMS)
3 DW e SYAP 2 t SWAP
4 DEPTH 3 -)R IS kb-entry addr cnt -- I
5 BOUNDS W
6 WP
7 ~ e =
8 I F
9 I Z+ e SWAP LEAVE

10 THEN
11 4 tLOOP DROP
I 2 DEPTH R) =
13 I F
I 4 NOCASE
IS THEN ;

with reluctance. I have only this to say
about Wil Baden's Ultimate Case: if there
was ever a subject about which nothing is
ultimate, surely it is the case statement!

Happily, Allen Anway's 'Thycase"
provided something to think about. Here
is something a little different, and with a
twist I sort of liked. In this case (is that a
pun?), there is a more extended comment
I'd like to make.

Allen's statement that, "It takes some
stack gymnastics for the high-level word
to work out ..." is an understatement I
haven't seen such convoluted stack
maneuvering since I last looked at some
of the first Forth code I ever wrote. See
the enclosed screens for an example of
how to do it with no stack gymnastics.

Allen's original example becomes:
4 TRANSCASE TEST1
2,234,7,789,18,181,97,
979, (nocase=default)

As can be seen, the only difference is
that the default is not entered as part of
the case-translation entries.

By the way, the BEGIN WHI-
UNTIL (Anway screen 80) combination
will give some Forth compilers trouble
(e.g., my CP/M F83 version 2.0.1).
Anyway, it seems to me that both a mid-
pass test and a post-pass test for
completion of an indefinite loop isn't
needed. It was this problem that actually
got me started on the rewrite, resulting in
the enclosed screens.

Sincerely,
Gene Thomas
Little Rock, Arkansas

4
:qt \S Febl98l;pt

NOCASE A constant t o leave a defaul t 11 no care l a t ch
TRMSCASE Ocf ln lnq word -- precede r l t h count of cases

6et count and l nc r t o f l r s t case addr
Save depth relative t o 0
F83 :bounds over + swap ; s t a r t loop
DUP the key board entered value and
colpare i t n ~ t h the case value a t addr I and
14 r t aatches leave the t r a n s l a t ~ o n on the stack
under the KB entered value I t o be dropped)
The 1 +LOOP erp la lns squared count !OUP tI above
l nc r par t t r an r l a t l on t o ner t c a n - - drop KB entry
DEPTH changed,
I f so, t r m s l a t l o n I n on the stack
I f not, then leave the defaul t

Volume lX, Number 1 7 Forth Dimemiom

By the way, the BEGIN WHILE
m I L (Anway screen 80) combination
will give some Forth compilers trouble
(e.g., my CP/M F83 version 2.0.1).
Anyway, it seems to me that both a mid-
pass test and a post-pass test for
completion of an indefinite loop isn't
needed. It was this problem that actually
got me started on the rewrite, resulting in

I the enclosed screens.

Sincerely,
Gene Thomas 1 Litlle Rock, Arkansas

I FST Accepts Proposals

Dear Marlin,
Thanks for the fine job you're doing at

Forth Dimensions. Perhaps your readers
might be interested in some thoughts
about a few of the events at the 1986
FORML Conference.

There were a variety of working
groups again this year, and one that I
attended discussed both the possible
creation of an ANS Forth and the
activation of the Forth Standards Team's
(FST) technical proposal phase. There
was also a presentation (by a small panel)
concerning a request made to CBEMA to
sponsor a Forth standards effort.

Having been a member of both the
working group and the panel, I discussed
my impressions of them with the local
FIG Chapter, and also with a variety of
other members of the Forth user
community (including several FST mem-
bers). My feeling now is that a majority
of Forth users are in favor of an ANSI
Forth Standard and that they would like
the FST to begin its technical proposal
phase.

There seemed to be general agreement
that (1) any ANSI effort should be to
formalize existing practice and should be
limited to resolving any restrictions and
any machine or operating system depen-
dencies of the Forth-83 Standard, and (2)
any FST effort should be to address
extensions to the standard.

Proposed issues to be addressed by any
ANSI effort would be:

FORTH. lnc.

Arithmetic and logical operators
Flow-of-control structures
Input and output operators
Memory and mass-storage operators
Exception handling
Vectored execution
Compiler-extension operators
Data-description operators
ROM-based applications

Proposed extensions to be addressed by
FST technical proposals might include:

Floating-point operators
String operators
Communications operators
Graphics operators
Data-struc ture operators
File operators
Operating-system-interface methods
Multi-tasking methods

There continues to be discussion as to
whether it would be better to proceed
toward an ANS Forth via CBEMA or
IEEE (or even via a joint effort between
the two). There is, unfortunately, also a
feeling on the part of some members of
the Forth community that something
could go wrong. Some comments implied
that:

The Forth Standards Team, working in
secret, produced a minority document.

The group that submitted the request for
an ANS Forth worked in secret and will
produce a minority document.

The CBEMA group will work in secret
(or will cost too much to participate in)
and will produce a minority document.

All of the above groups have done, or
are going to do, something that was, or
will be, undesirable.

My responses to these comments are:
Having attended and worked at all of

the Forth Standards Team meetings since
the 1979 Catalina meeting (which I
attended as a non-voting observer), I can
assure anyone that there was no intent on

1 the part of the FST to be secretive or to
produce something undesirable. All
meetings were publicized well in advance,
observers were welcomed and encouraged
to participate in discussions and straw
votes, the meeting results were reported

I I I

Forth Dimemions 8 Volwne IX, Number 1

Volwne IX, Nwnber 1 9 Forth Dimensions

FORTHki t

5 Mips computer kit

$400

Includes:

Novix NC4000 micro
160x1 00mm Fk3 board
Press-fit sockets
2 4K PROMS

Instructions:

Easy assembly
cmFORTH listing

shadows
Application Notes
Brodie on NC4000

YOU provide:

6 Static RAMS
4 or 5 MHz oscillator
Misc. parts
250mA @ 5V
Serial line to host

Supports:

8 Pin/socket slots
Eurocard connector
Floppy, printer,

video I/O
272K on-board memory
Maxim RS-232 chip

Inquire:

Chuck Moore's

Computer Cowboys

410 Star Hill Road
Woodside, CA 94062

(415) 851 -4362

and discussed in Forth Dimensions, and a
draft proposed standard was published and
distributed.

The FST members were (and are)
dedicated to advancing the Forth language
and its use. I can understand debate as to
the quality and desirability of the various
standards, but am puzzled by questions
regarding the intent of the group.

The group that submitted the request
to CBEMA was (and is) composed of
users, vendors, and FST members. They
have made copies of the submittal
available to any interested party (I asked
for a copy, and have received and read it).
They also seem dedicated to furthering the
cause of Forth.

A CBEMA working group may cost
more to participate in than an lEEE group
or the FST, but it takes a great deal of
dedication of both time and money to
travel to and attend standards meetings, no
matter who sponsors them. The best
most of us can hope for is that all
meetings will be open to public
observation, that the proceedings of the
meetings will be widely published, and
that input from the Forth community
will be seriously considered. If so, then
each of us can help determine the quality
of any resulting Forth standard.

Please, let's all work together to
support those who have the time and
energy to attempt to enhance the status of
Forth. If you can't directly participate in
the formal efforts, you can follow and
respond to the published standards
committee reports, proposals, and draft
standards. Also, remember the other
avenue open for input by the Forth
community, the FST technical proposal.

As a result of input from FORML and
elsewhere, the FST is soliciting technical
proposals. The technical proposals should
be of two general categories:

1. Proposed extensions to the Forth-83
Standard

These should be as generally useful as
possible, and should attempt to conform
to practices currently accepted by the
majority of the Forth community. The
intent should be to codify proven
techniques, not to generate new and

untried approaches (submit those to
FORML). The extensions should not be
considered as mandatory additions to the
standard, but as optional add-ons. Their
main purpose should be to allow com-
munication of techniques in a standard,
transportable format. They should be
more useful for the transport of
technology between programmers than for
incorporation into all commercial appli-
cations. They should be more concerned
with defining commonly accepted names
for standard operations than with locking
a vendor or user into a single method of
accomplishing a task.

2. Modification of the existing Forth-
83 Standard.

These should only be submitted if it is
necessary to remove ambiguities or to
generalize the standard in order to
incorporate the standard extensions. They
should not be attempts to "fix" an
offending word or to change the intent of
the existing standard. They should provide
input to, or should attempt to conform
to, any ANSI effort.

The forms and procedures for preparing
technical proposals are published in the
Forth-83 Standard. The following plan
has been adopted to help with the creation
and publication of submittals:

1. Become involved with a particular
effort. Select one or more topics of
interest. Contact others in your area who
are interested in the topics. Contact the
FST and get on the appropriate interest
lists. The FST will attempt to place all
interested parties in contact. One of the
interested parties should become the group
leader for the topic.

2. Prepare and distribute preliminary
copies of the proposal. Copies should be
sent to any person(s), publication, or
bulletin board the working group deems
appropriate. Telecommunication should
also be considered.

3. Submit a final version to the FST.
The FST will collect all the proposals for
yearlypublication.

Interested parties should, at any time,
be able to obtain copies of proposals
from the appropriate working groups or
from the FST. The FST plans to publish
updated lists of working groups, with the
name, address, and telephone number of
the group leader, in Forth Dimensions.

An additional, planned activity of the
FST is to solicit technical information
and documents from each Forth vendor,
for review and comparison with the
techniques and methods proposed by the
working groups. This will provide
additional input concerning currently
accepted practices. Any vendor that
wishes to participate in the sharing of
such material should send the documents
to:
Forth Standards Team
P.O. Box 4545
Mountain View, California 94040
or to:
Ge0rge.W. Shaw I1
P.O. Box 3471
Hayward, California 94540
Vendors with questions should contact
George Shaw at 415-276-5953. Other
questions should be sent to the FST
address, or call me evenings or weekends
at 619-454-1307.

Sincerely,
Guy M. Kelly, FST Chairman

DASH, FlND
6; ASSOCIATES

Our company. DASH. FIND & ASSOCIATES.

is In the business of placing FORTH Program-

mers in positions suited to their capabilities.

We deal only with FORTH Programmers

and companies using FORTH. I f you would

like to have your resumt included in our

data base, or if you are looking for a

FORTH Programmer, contact us or

send your resumt to:

DASH, FIND & ASSOCIATES

808 Dalworth. Suite B
Grand Pra~rie TX 75050

(214) 642-5495

A W
Committed to Excellence

Final Exam: F101;
Name:
Date:
Part 1 -Subroutines

1. Define an algorithm to produce an
output that is a reverse mirror image of
itself. Find and justify 10 political
applications for the algorithm.

2. Write a random-number generator to
output an infinitely non-repeating series;
do not use any conditionals. Construct a
simulation to prove its efficacy for
predicting the outcome of everything.
Part 2 -History and Philosophy

3. Explain in detail the philosophy of
Forth as it relates to Fortran, COBOL,
Pascal, Ada, LISP, C, and the morality of
nuclear war. Give an example in each
language, with a translation to BASIC,
and note specific differences and
similarities between Forth and nuclear
war.

4. Outline the history of Forth,
including each commercial and public-
domain version of each standard. Draw a
comparison of your outline with the
history of the world. Be concise.
Part 3 -Practical Application

5. Write a program to prove the big-
bang theory, including a routine to
produce a big bang, creating a universe in
the place of your choice. Do not expend
more than 5 amps.

6. Prepare a thesis in psuedo-code on
the topic, "Real-time control of rioting
crowds with Forth." Be prepared to defend
your thesis. A rioting crowd will be
provided.

Gene Thomas
Little Rock, Arkansas

80386 f o r PC
$29.95 buys: P
Schematic

C
Timing diagram
P a r t s l is t

B
Where t o buy u

Board layout
Descr ip t ions of :

s
Hardware
Tnterf ace

Wirewrap i n s t r u c t i o n s
Bibliography
Forth sc reen

Use low-cost 6264 s t a t i c
rams, o r 43256's f o r 256K

Build your own I n t e l 80386 co-processor board i n a few
evenings. This k i t inc ludes t h e complete design f o r a Wire-
wrap p r o j e c t , inc lud ing a l l pin-outs. The 80386 u s e s 8Kx8 o r
32Kx8 memory c h i p s i n p a r a l l e l f o r maximum speed, y e t t h e 8 b i t
PC bus can access t h e whole memory a r r a y t h r u a 32K window.

S e l e c t a b l e window -- works with any PC/XT/AT d i s p l a y
The PC can Reset , Hold, o r i n t e r r u p t t h e 80386
The PC can p o l l one 8 b i t por t while t h e 80386 runs f u l l speed
When held, t h e PC has access t o ALL of t h e 80386 memory
Use Forth o r DEBUG t o assemble. c o n t r o l t h e 80386. view memory

Don't have a PC? Adapt t h e des ign t o any 8-bit bus wi th t h e s e
four s t robes : memory read, v r i t e , T/O p o r t read , w r i t e .

Send $29.95 (check o r money order) t o Hampton Corporat ion
20800 Center Ridge Road

Immediate d e l i v e r y Cleveland. Ohio 44116

Forth Dimensions 10 Volwne IX, Nwnber 1

1 with LMI FORTHTM I

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 lnterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

m~aboratory Microsystems Incorporated
Post Off ice Box 10430, M a r ~ n a del Rey, CA 90295

c red~ t card orders to: (213) 3067412

1 Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch. Tltisee-Neustadt. 7651-1665
UK: System Sc~ence Ltd.. London, 01-248 0962
France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16
Japan: Southern Paclfic Ltd., Yokohama. 045-314-9514
Australla: Wave-onlc Associates. Wllson, W A,, (09) 451-2946

I
Volume LY, Number 1 11

(Continued fiom page 15.) I
the appropriate graphics-mode initializ-
ation word on line 9 of screen 28 you
should be able to run this program with
any graphics display. Playing with the
scale factor on screen 18 and/or the
horizontal scale factors commented out in
screen 21 may make the pictures more
pleasing on some displays.

References 1
1 . Fractals: Form, Chance, and Dim-
ension, B .B. Mandelbrot. W.H. Freeman
and Company, San Francisco, 1977.

Recommended Reading I
"3-D Fractals," M. van de Panne.
Creative Computing, July 1985, pp. 78-
82.

Art of Computer Programming, D.E.
Knuth. Addison-Wessley Publishing,
Vol. 2, 1981 (includes a discussion of
random number generators).

"Fractals," P.R. Sorensen. BYTE, Sep-
tember 1984, pp. 157-172.

The Fractal Geometry of Nature, B.B.
Mandelbrot. W.H. Freeman and Com-
pany, San Francisco, 1983.

"IBM Fractal Graphics," P.W. Carlson.
Compute!, March 1986, pp. 78-80.

Phil Koopman, Jr. is the vice-president
and chief engineer for WISC Tech-
nologies. The program discussed in this
article was originally developed as a
demonstration for the WISC CPUII6.

I

Forth Dimensions

S A R N E S S THE POWER OF FORTH!
e

FORTH: A TEXT AND REFERENCE
by Mahlon G. Kelly and Nicholas Spies

The syntax, powerful architecture, and program design of FORTH make it the most progressive
way to dramatically increase software productivity.

Both a highly approachable text and an all-inclusive, easily-accessible reference, this
512 pp., handbook on FORTH accommodates those with no prior computer knowledge as well
as advanced programmers looking to delve more deeply into the language. It is designed for both
classroom use and self-study.

This definitive guide to the FORTH language offers:
a more extensive approach that starts with, but goes far beyond, the introductory level.
coverage of both the 1979 and 1983 standards
sample coverage of a typical advanced implementation, MMSFORTH
very extensive examples and exercises with complete answers
very complete index with more than 1500 entries and a detailed nine page table of contents
accessible cross-referencing and 68 pages of separate FORTH words and terminology glossaries

make the book an outstanding desk reference
and extended program, a generic screen editor, is used to explain the unique program-design

procedures of FORTH January 1986. &per $21.95. Cloth $28.67

e
STARTING FORTH, 2nd Edition

by Leo Brodie
Considered to be the "bible" of the introductory books on FORTH, this all-inclusive presen-
tation of the FORTH programming language and operating system allows the beginner a clear,
effective understanding of the whole FORTH system.

Praised as one of the best programminglanguage books in the industry, this re-examined
edition presents:

the FORTH-83 standard systems
differences from the popular fig-FORTH model
the effective coding style described in Thinking FORTH.
an alphabetical index to glossary terms
increased self-study problems
special footnotes that address FORTH-79, MVP-FORTH and fig-FORTH versions

Each outstanding chapter concludes with a "Review of Terms", practical study problems, "Handy
Hints", and features three detailed examples of FORTH in application.
prices subject to change without notice September 1986. Paper $19.95. Cloth $26.67

I& l=mmcEHAu
Available at finer book-
stores or direct from Pren-

Englewmdm,NJ m tice Hall, (201) 767-5937

SUON 6 S C M I E R HIGeR E N C A T M I FUBLlYllffi GROW

Volume IX, Number 1 13 Forth Dimensions

First, consider the straight line segment
shown in Figure One-a. We will take the
midpoint of that line segment and pull it
to one side, as shown in Figure One-b.
Next, we will recursively take each
midpoint of the resulting line segments
and pull them randomly to one side or the
other as shown in Figures One-c and One-
d. AS YOU can see, this process quickly
results in a wandering line. For the most
pleasing shape, the amount of "pull"
applied is cut in half at each level of
recursion, forming a smooth result.

In order to extend this concept to an
area instead of a line, the "Landscape"
program on screens 15-28 forms a two-
dimensional array. Each cell in the array
holds the height of a point above or
below sea level. The word CALCU-
LATE- SERVICE rfxursively breaks
this array into smaller and smaller
squares, using the addresses of the four
comers of the array instead of four pairs
of (X,Y) coordinates. SET-HEIGHTS
Sets the heights for the array cells at the
midpoints of the sides of the current
square and for the center of the current
square, then breaks the square up into four
sub-squares (see the diagram on screen 17
for a description of the nomenclature used
by the subdividing algorithm). After the
data array has a height associated with
each point, the program uses the SEA-
LEVEL word to reassign d l negative
heights to sea level.

After the heights are computed, the
landscape is drawn on the screen. As each
point of the array is drawn, it is assigned
a color based On height and the number of
colors available.

Screen-Drawing Tricks
I have used several tricks in

"Landscape" to speed up the screen-
drawing time. This drawing time would
be prohibitively long if conventional,
three-dimensional graphics techniques
were used.

The most time-consuming part of
many graphics drawing pn>gmmS inv0l-
ves 3-D transformations, especially rota-
tions. On the other hand, a top or side
view of a fractal landscape would not be
tembly exciting. I solved this speed-
versus-prettiness dilemma using two
techniques: a "sleazy" rotation to elevate
the rear of the picture, and an

Forth Dimensions

SCREEN 118
o \ FRACTAL DATABASE
1 DECIMAL
2 5 CONSTANT #LEVELS \ Number of recursion levels
3 65 CONSTANT SIZE \ array size = 1 + 2**(#LEVELS+l)
4 \ NOTE: Change SIZE to 129 and #LEVELS to 6 for EGA
5 \ SQUARE-P1 is a 2D array that holds heights of all grid points
6 CREATE SQUARE-PI SIZE SIZE * CELL* ALLOT
7 SIZE I- CELL* SQUARE-P1 + CONSTANT SQUARE-P2
8 SIZE SIZE * 1- CELL* SQUARE-P1 + CONSTANT SQUARE-P3
9 SIZE SIZE 1- * CELL* SQUARE-P1 + CONSTANT SQUARE-PI

10
11 : SCALE 2* 2* ; \ Scale value of pixels per data array point
12 1 SCALE CONSTANT DELTA
13 : AVE (u1 u2 -> UAVE) \ unsigned average of 2 addresses
14 \ NOTE: This is a prime candidate for machine code speed-up!
15 0 SWAP 0 D+ 2 UIMOD SWAP DROP ;

SCREEN #I9
0 \ SPECIAL LINE DRAWS FOR FRACTAL LANDSCAPES
1 DECIMAL
2 : Y-CONVERT (HEIGHT YI -> ~2)
3 \ For now, assume tilted up 30 degrees in back, no X change
4 \ Inputs are xly data points & height, outputs screen coords
5 + 21 NEGATE YMAX + ;
6 : F-MOVE (X HEIGHT Y-INDEX ->)
7 \ Use the code on the next line for tracing if desired
8 \ ." MOVE:" SWAP U. U. CR ?TERMINAL ABORT" F-MOVE" ;
9 SCALE Y-CONVERT MOVE-CURSOR ;
10 : F-LINE (X HEIGHT Y-INDEX ->)
11 \ Use the code on the next line for tracing if desired
12 \ . " LINE: " SWAP U. U. CR ?TERMINAL ABORT" F-LINE" ;
13 SCALE Y-CONVERT DUP O<
14 IF (Clip line that is off screen) DDROP
15 ELSE LINE THEN ;

SCREEN 1120
o \ INITIALIZE THE HEIGHT ARRAY & CALCULATE COLOR FOR A HEIGHT
1 HEX
2 : INITIALIZE-SQUARE (-> 1
3 \ Fill all initial heights with 8181 for a recognizable tag
4 SQUARE-P1 SIZE 0
5 DO DUP SIZE CELL* 81 FILL SIZE CELL* + LOOP DROP
6 20 SQUARE-~3 ! \ Initial values to slant landscape
7 18 SQUARE-P4 ! \ "forward" for a better view
8 -15 SQUARE-P1 ! -10 SQUARE-P2 ! ;
9 : SET-COLOR (HEIGHT -> 1 \ Figure color for given height
10 \ Adjust the "40" on the line below to individual taste.
11 \ In particular, change to a "18" for EGA
12 DUP 8 < IF (near sea level) DROP 1
13 ELSE 40 / #COLORS 2- MOD 2+ THEN COLOR ! ;
14 \ Redefine as : SET-COLOR DROP 1 COLOR ! ; for CGA/HIRES
15 DECIMAL

SCREEN #21
o \ DRAW THE HEIGHT ARRAY ON THE CRT DISPLAY
1 DECIMAL
2 : DRAW-SURFACE (-) \ Draw from bottom to top on screen
3 SIZE 2- o DO (column) I SIZE + CELL* SQUARE-PI +
4 IOOOO (initial min Y value) SIZE 1- 1 DO (row)
5 \ Test for hidden surface removal
6 OVER @ I SCALE Y-CONVERT DDUP >
7 IF (new min y value means visible point) SWAP DROP
8 \ Add a 2* where indicated when using CGAIHIRES mode
9 OVER @ SET-COLOR J SCALE (2*)
10 DUP DELTA (2*) + 4 PICK SIZE CELL* - CELL+ @ I 1- F-MOVE
11 DUP 4 PICK @ I F-LINE
12 DELTA (2 *) + 3 PICK SIZE CELL* + CELL+ @ I 1+ F-LINE
13 ELSE (hidden) DROP THEN
14 SWAP SIZE CELL* + SWAP 1 /LOOP
15 ?TERMINAL ABORT'' BREAK" DDROP 1 /LOOP ;

14 Volwne TX, Nwnber I

Volwne lX. Number 1 15 Forth Dimensions

unconventional point-connection scheme
to eliminate the need for spinning the
picture.

A standard rotation of a landscape to
elevate the rear of the picture involves
using the equation:

NEW = yvalue * sin(ang1e)
+ height * cos (angle)

for each height data point in the landscape
m y . In order to eliminate the scaled
integer or floating-point arithmetic
involved, I chose my rotation angle to be
30 degrees and changed the "* sin(ang1e)"
term to a division by two. Then, to get
rid of the cosine term, I decided to
approximate cos(30)=.866 by 0.5 (div-
ision by two) and increased the original
height value On line 7 of screen 28 to
compensate. The elevation using this
strategy is accomplished by Y-
CONVERT on screen 19.

Even with the rear of the picture
elevated, the result is pretty unexciting if
points are connected by columns and
rows. You would only see regularly
spaced vertical lines with landscape
profile lines wiggling horizontally across
the screen. In order to fix this, lines 10
through 12 of screen 21 connect points in
sideways "V" patterns to form a picture
composed of diagonal lines instead of
mostly horizontal and vertical lines. The
lines are drawn and colored by columns of
points, front to back.

It turns out that hidden-surface
elimination, a major computational drain
on many graphics programs, comes at
almost no charge when using the drawing
technique described above. Since points
are drawn from front to back, lines 5 - 7
of screen 21 simply ensure that each new
Y value for a point to be displayed is
further up on the screen than any previous
Y values for that column.

Running The Program
Simply type LANDSCAPE from the

Forth "OK prompt The program will
draw a landscape and wait for a keystroke
on a PC-compatible machine with a
Color Graphics Adapter (CGA) display. If
you change the constants on lines 2 - 3 of
screen 18, redefine the coloring word on
lines 9 - 14 of screen 20, and substitute
(Continued on page I I .)

SCREEN #22
o \ SET-HEIGHT -- Set height of a point for recursive processing
1 HEX
2 : SET-HEIGHT (DH LEVEL PX VALUE PY VALUE -> DH LEVEL)
3 ROT + 2/ ROT ROT AVE
4 DUP @ 8181 =
5 IF (store) SWAP 4 PICK RNDF + - + SWAP !
6 ELSE DDROP THEN ;
7
8 DECIMAL
9
10
11
12
13
14
15

SCREEN #23
0 \ SET HEIGHTS FOR ALL THE "x" POINTS TO MAKE SUB-SQUARES
1 DECIMAL
2 : SET-HEIGHTS (PI ~2 ~3 ~4 DELTA-H LEVEL# -> <unchanged>)
3 \ Following 2 lines are debug/trace code to watch recursion
4 \ CR 6 PICK U. 5 PICK U. 4 PICK U. 3 PICK U. OVER U. DUP U.
5 \ ?TERMINAL ABORT" SET-HEIGHTS"
6 (ave ~ 1 / ~ 2) 6 PICK DUP @ 7 PICK DUP @ SET-HEIGHT
7 (ave P2/P3) 5 PICK DUP @ 6 PICK DUP @ SET-HEIGHT
8 (ave P3/P4) 4 PICK DUP @ 5 PICK DUP @ SET-HEIGHT
9 (ave PI/P~) 6 PICK DUP @ 5 PICK DUP @ SET-HEIGHT
lo (ave PI/P~) 6 PICK DUP @ 6 PICK DUP @ SET-HEIGHT ;
11
12
13
14
15

SCREEN #24
0 \ WORD TO SET UP PARAMETERS FOR SUB-SQUARES # 1-2
1 DECIMAL
2 : SQUAREI (PI ~2 ~3 ~4 DELTA-H LEVEL# -> <z.copies>)
3 6 PICK DUP 7 PICK AVE
4 OVER 7PICKAVE 9 PICK 7 PICK AVE
5 6 PICK 21 6 PICK 1- ;
6
7 : SQUARE2 (PI P2 P3 P4 DELTA-H LEVEL# -> <2.copies>)
8 6 PICK 6 PICK AVE 6 PICK
9 DUP PICK AVE OVER 7 PICK AVE
10 6 PICK 21 6 PICK 1- ;
11
12
13
14
1s

SCREEN #25
o \ WORD TO SET UP PARAMETERS FOR SUB-SQUARES t 3-4
1 DECIMAL
2 : SQUARE3 (PI P2 P3 P4 DELTA-H LEVEL# -> <2.copies>)
3 6 PICK 5 PICK AVE 6 PICK 6 PICK AVE
4 6 PICK DUP 7 PICK AVE
5 6 PICK 21 6 PICK 1- ;
6
7 : SQUARE^ (PI ~2 ~3 ~4 DELTA-H LEVEL# -> <z.copies>)
8 6 PICK 4 PICK AVE 6 PICK 5 PICK AVE
9 6 PICK 6 PICK AVE 6 PICK
10 6 PICK 2/ 6 PICK 1- ;
11
12
13
14
15 (Screens continued of next page.)

SCREEN 1/26
0 \ RECURSIVE PROCEDURE TO SET HEIGHTS FOR RANDOM 3-D TERRAIN
1 DECIMAL \ BASED ON SUB-DIVIDED SQUARE FRACTALS
2 : CALCULATE-SURFACE (P1 P2 P3 P4 DELTA-H LEVEL# ->)
3 SET-HEIGHTS
4 DUP ?TERMINAL ABORT" BREAK IN CALCULATE-SURFACE"
5 IF (non-zero level)
6 SQUARE1 RECURSE
7 SQUARE2 RECURSE
8 SQUARE3 RECURSE
9 SQUARE4 RECURSE
10 THEN
11 DDROP DDROP DDROP ;

I I SCREEN #27
3 1
T.

SCREEN #28
0 \ MASTER PROCEDURE TO DRAW A RANDOM 3-D FRACTAL
1 DECIMAL \ BASED ON SUB-DIVIDED SQUARES
2 DVARIABLE SEED-SAVE \ Saves random seed. Placing the saved
3 \ value back into SEED will re-create the same landscape
4 : LANDSCAPE (->)
5 SEED D@ SEED-SAVE D! INITIALIZE-SQUARE
6 CR ." Computing new heights"
7 SQUARE-PI SQUARE-P2 SQUARE-P3 SQUARE-P4
8 YMAX 2/ #LEVELS CALCULATE-SURFACE
9 CR . " Computing sea level" SEA-LEVEL
10 SET-CGA-MODE \ Change to SET-EGA-MODE or SET-CGA-HIRES-MODE
11 \ SEED-SAVE D@ CR ." SEED=" D. (Optional SEED display)
12 DRAW-SURFACE

0 \ SEA-LEVEL -- SET SEA LEVEL FOR NEGATIVE HEIGHT POINTS
1 DECIMAL
2 : SEA-LEVEL (->)
3 SQUARE-PI SIZE 0 DO sIzEODO
4
5 DUP @ DUP O<
6 IF (below sea level -- add fudge factor for waves)
7 1 AND I J + + 7 AND OVER !
8 ELSE DROP THEN
9 CELL+ LOOP
10 LOOP D R O P ;
11

13 CR ." Press any key to continue" KEY DROP
14 SET-TEXT-MODE ;

. . 5
..:a
Z..

.?.*

:.* 2'

::a

.-:a INTEL " :?
k:
r..

5.
P.'

....
7.'
2.'

.5.
I..'

..Z

.5'
...'

A'
....

r;
Pi :3 ...'
Ff 8031 ?.a

Ff ,?.. .5.

1:.

MICRO- :.. Z 5.
:.: CONTROLLER^ . . 2
2.

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code Interrupt handlers
-System timekeeping maintalns

time and date w l th leap
year correction

-Supports ROM-based self-
starting applications

i.' g
.5' 2

COST Zi ,5' ..i

130 page manual - S 30.00 $$
8K EPROM wlth manual-$100.00 jj

Postage paid In North America .:.:
Inquire for l~cense or quantlty priclng 2;

..:a

Z. f.

2
Bryte Computers, Inc.

P.O. Box 46. Augusta, ME 04330 $ (207) 547-32 18 .:.
X
2.

I

Forth Dimensions 16 Volwne IX, Nwnber 1

FORTH
TO THE FUTURE

MITCH BRADLEY-MOUNTAIN VIEW, CALJFORNIA
m

I I

Volume IX, Number 1 17 Forth Dimensions

numbers," which are 32 bits, represented
as two stack items. 32-bit systems do not
need two stack items to represent a 32-bit
number. Existing 16-bit programs use
fancy stack manipulations to move the
separate halves of a 32-bit number.
Double-number operators like 2DUP are
used both for pairs of single numbers and
for 32-bit numbers. A 32-bit number is
an entirely different thing than a pair of
numbers. They just happen to have a
similar representation on a 16-bit system.
On a 32-bit system, this isn't true.

Solutions
Some brief words about the nomen-

clature used here:
A "normal" is a number that is

represented as one stack entry. On a 16-
bit machine, a normal is 16 bits. On a 32-
bit machine, a normal is 32 bits. The
majority of all Forth operations are
performed on normal mmbers.

A "longword" is always a 32-bit
number. On a 16-bit machine, a longword
is represented as two stack entries. On a
32-bit machine, a longword is represented
as one stack entry.

A "word" is always a 16-bit number.
On a 16-bit machine, a word is repre-
sented as a single stack entry. On a 32-bit
machine, a word is represented as the low
16 bits of a stack envy, with the upper
16 bits set to zero.

A "character" is always an 8-bit
number. A character is represented as the
low eight bits of a single stack entry,
with the remaining upper bits set to zero.

Address Incrementing Words
Changing all occurrences of 2+ to

4+ doesn't solve the problem, it just

32 -bit machines are here to stay.
Over the next few years, 32-bit machines
will grow in importance. Forth must be
able to use the full power of 32-bit
machines.

This article presents a consistent,
proven scheme for using Forth on 32-bit
machines, based on several years of
experience with 32-bit systems. It does
not address the problems of simulating
extended addressing on the 8086. The
focus is on making the transition from 16-
bit Forth systems to "real" 32-bit
architectures like the 80386, the 68000,
and the IBM RT.

Goals
1. Programs should run unchanged on
either 16-bit or 32-bit machines.

2. The 32-bit machine must not be
penalized. The full power of the 32-bit
machine must be available.

Tradeoffs
1.Existing programs may have to be
modified in order to make them run on
either size machine.

2. A lot of new words are specified. These
words are necessary because the existing
words do not work right on 32-bit
machines.

Justification
Forth will not succeed if it remains

stuck at 16 bits while the world switches
to 32 bits. Insisting that existing pro-
grams run unchanged on 32-bit machines
penalizes the 32-bit implementation.

The wordset presented here penalizes

neither 16-bit nor 32-bit machines. It adds
no new funtionality, it simply specifies a
set of names for words whose behavior is
independent of the machine size.

What is a 32-bit Machine?
The distinguishing factor is the size of

the address arithmetic. The address
arithmetic determines the size of an
address that can be easily calculated. The
68000 is a 32-bit machine - even
though its data path is only 16 bits wide,
and even though the package has only 24
address pins - because it is easy to
calculate 32-bit addresses. The 80286 is a
16-bit machine, even though it has more
than 16 address pins; addresses outside a
16-bit bank are painful to calculate.

Forth prefers to represent an address as
a single entry on the stack, since the
same operators are used for both number
arithmetic and address arithmetic. It is
possible, but troublesome, to represent
addresses as multiple stack items. The
preferred width of the Forth stack on a
particular machine is the size of that
machine's address arithetic.

Compatibility Problems
When moving code from a 16-bit

Forth implementation, there are two
major problems.

Most Forth programs contain lots of
things like 2+ and 6+. This is fine if
you are trying to add two or six to a
number, but it causes problems if you are
trying to increment an address to point to
the next number. On most 32-bit
machines, S U C C ~ S S ~ V ~ numbers are f0ut
addresses apart* not two.

16-bit numbers are inadequate for
many PurPoses, so has "double

sweeps it under a different rug. What we
really need is a way to increment an
address by the right number, regardless of
what machine we're on. To do this, we
define some names for the sizes of things.

/N (-- n) "per-n"
The number of bytes in a "normal"
number, which is a single stack entry.
/N is four on a 32-bit machine and two
on a 16-bit machine.

/L (-- n) "per-I"
The number of bytes in a 32-bit
"longword." /L is four on all machines.

/W (-- n) "per-w"
The number of bytes in a 16-bit
"word."/w is two on all machines.

/C (-- n) "perc"
The number of bytes in an 8-bit
"character."/C is two on all machines.

The notation /x for "the number of
bytes in an X," pronounced "per-x,"
follows the recommendations in Kim
Harris's nomenclature guidelines ("Forth
Coding Conventions," Proceedings of the
1985 FORML Conference).

You might think, since /L is always
four, that the name "/L" is not needed.
Ditto for /w and /C. However, the
symbolic name /L clearly indicates that
the code is dealing with the size of a
longword, rather than the number four,
which could be anything - perhaps the
expected number of legs on a cow. Magic
numbers make programs harder to
understand and maintain!

Others have suggested the names
CELL and LSIZE instead of /N;
however, the name "normal" and the
mnemonic "N" will be useful to us later.

What will we do with these constants?
One obvious answer is to replace
occurrences of 2+ with /N. Similarly,
in cases where we want to step through
an array of 16-bit words or 32-bit
longwords, we might use /w+ or /L+.

Another use is to calculate the number
of bytes to ALLOT for some data
structure or array. For instance, if we need
space for 100 normal numbers, we could
write 100 /N * ALLOT instead of
100 2*ALLOT.

A third use is to index into an array.
Instead of writing the code in Figure One-
a, for instance, we might use instead the
definitions in Figure One-b. Notice that
in all these cases, we have given up some
efficiency! The word 2+ probably
executes faster than the two words /N
+ and 2* almost certainly is faster than
/N *. We will not tolerate such

Emphasis on Programming in the Large:
Tree Structured Scoping of Dictionary
Direct Editing of Dictionary Structure

with Dictionary Editor
Text Editor allows Screens of any Size
Large Memory Model,

32-bit Stack, Arithmetic
Tight Binding of Source and Code:

Modifed Modules are Compiled
upon leaving the Text Editor

New Definition Completely Replaces
the Old Definition in Dictionary

Old Definition is Returned to Free Memory
Implements Compile by Demand
A voids Re-Loading Source Files

Online Help Facility:
F l Key Provides Context Sensitive Help

(on Errors, in Editors)
Provides Quick Reference on Primitives
Apropos Help from Text Editor on

both Primitives and User Defined Modules
Turnkey Application Generator:

Produces a Stand Alone EXE File
Strips Unused Primitives, Kernel Routines
Invoked with a Single Keystroke
Vectored Error Handling

Complete Debugging Tools:
Source Level Tracing, Breakpoints
Inspect or Modify Variables during Trace
Shell to the Interpreter During Trace

Fortth Dimensionr 18 Volume lX, Number 1

inefficiency! Therefore, we define some
more words, their existence amply
justified by frequent use.

The functions in Figure Two are
presently performed with 1+, 2+, and
4+, whose use does not work on all
machines. Most occurrences of 2+ in
existing Forth code can be replaced by
N A ~ + to make the code more
transportable. The names stand for
"normal-address-one-plus," etc., indica-
ting that they increment an address to the
next datum of a particular type.

Some machines do not directly address
bytes. For instance, the Novix Forth chip
is a word-addressed machine. Adding one
to an address moves to the next 16-bit
word, not to the next byte. For such
machines, NA1+ is not equivalent to
/N +. The real rule is that NAl+
should increment an address to point to
the next item of a given type.

The words in Figures Three and Four
find the address of the nth item in an array
of items starting at addr. For instance,
NA+ is equivalent to /N* + on most

machines.
This may seem like a lot of words. It

is a lot, but they are frequently used,
which is the same justification used for
words like 1+ and 2*.

Explicit 32-bit Operators
One solution to the double-number

problem on 32-bit machines is to make
double numbers 64 bits. This is attractive
because it is compatible with existing
code that manipulates double numbers as
pairs of stack entries. On the other hand,
it is inefficient. @-bit arithmetic is
slower than 32-bit arithmetic on most
machines. While many applications
require more than 16 bits of precision,
few require more than 32.

I believe the best long-term solution is
to define a set of words that explicitly
operates on 32-bit data, regardless of the
machine's word size. The names of these
words begin with the letter L, indicating
that they operate on "long" operands.
Their implementation is simple. On a 16-
bit machine, they are the same as the

existing "D" words (e.g., D+) and the "2"
words (e.g.. DROP). On a 32-bit
machine, they are the same as the regular
single-number operators. The important
point is that the "L" operators always
operate on 32-bit longwords, regardless of
machine size.

Long Arithmetic Operators
Some 32-bit arithmetic operators:

L+ (L1 L2 -- L3) "l-plus"
Adds 32-bit longwords. On a 16-bit
machine, L+ is the same as D+. On a 32-
bit machine, L+ is the same as +.
L- (L1 L2 -- L3) "l-minus"
Subtracts 32-bit longwords. On a 16-bit
machine, L- is the same as D-. On a 32-
bit machine, L- is the same as -.

L* (L1 L2 -- L3) "l-times"
Multiplies 32-bit longwords. On a 16-bit
machine, L* is the same as D* (which
is not included in the standard). On a 32-
bit machine, L* is the same as *.

Provides Complete Programming Tools:
Primitives for Dynamic Memory Support
Produces Native Code - Very Fast
Complete Access to MS-DOS Files
8087 Floating Point Support
Provides Range Checking
Graphics

Includes Fifth Source Files:
Inline 8086,8087 Assembler
Forth 83 to Fifth Convertor
Infix Expression Compiler

A Shareware Version (Fifth 2.0) is Available
Lacks Some Features of Fifth 2.5
Runs Most Fi fh 2.5 Programs
May Be Freely Distributed

For IBM PC's with 128K, DOS 2.0 or better.
Professional Version: $150.00
Shareware Version, Disk and Manual: $ 40.00
Shareware Version, Disk: $ 10.00
System Source Code A vailable

CLICK Software
P.O. Box 10162
College Station, TX 77840
(409)-696-5432

MS-DOS u am- h.chmul d Misrmon Cap.
IBM u a 18- ndxmrk of hummtionl B u b a M.chincs Carp.

Volume IX, Number 1 19 Forth Dimensions

L/ (L1 L2 -- L3) "1-divide"
Divides 32-bit longwords. On a 16-bit
machine, L/ is the same as D/ (which
is not included in the standard). On a 32-
bit machine, L/ is the same as / .

I haven't mentioned all the operators
that are needed, but the rest of them are
named in the obvious way. For instance,
L= compares two 32-bit longwords for
equality.

Stack Manipulations
The "2" stack operators, such as

L SWAP and 2 D W , are unsatisfactory
for manipulating 32-bit longwords. Such
operators were originally intended for
manipulating pairs of numbers, which are
distinctly different from 32-bit longwords.
I propose a set of 32-bit stack
manipulation operators whose names
begin with (you guessed it) the letter L.
Examples are LSWAP and LDUP.

Mixing 32-bit numbers and 16-bit
numbers on the stack poses problems. In
a 32-bit system, all stack entries are 32
bits, so this is not too bad On a 16-bit
system, both 32-bit and 16-bit numbers
may need to coexist on the stack.
Currently, this is handled in an ad hoc
fashion, using operators like ROT to
separately manipulate the pieces of the
numbers. Programs that do this are not
portable to 32-bit machines (here I
assume that we have decided against using
64-bit numbers). What we need is a set of
operators for manipulating mixed stacks.
The needed operators mostly duplicate
existing functions, so we really don't
need new capability, just new names! The
new names will clearly specify the sizes
of the operands.

LDUP (L -- L L) "1-dupe"
Duplicates a 32-bit longword. On a 16-bit
machine, L D W is equivalent to
2DUP. On a 32-bit machine, LDUP is
equivalent to DUP.

LSWAP (L1 L2 -- L2 L1) "1-swap"
Exchanges 32-bit longwords. On a 16-bit
machine, LSWAP is equivalent to
PSWAP. On a 32-bit machine, LSWAP
is equivalent to SWAP.

LOVER (L1 L2 -- L1 L2 L1) "1-

CREATE MYARRAY 100 2" ALLOT
: FILLIT (--) 100 0 DO I MYARRAY 1 2" + ! LOOP ;

I Figure 1 a.

CREATE MYARRAY 100 /N * ALLOT
: FILLIT (--) 100 0 DO I MYARRAY I /N * + ! LOOP ;

I Figure 1 b.

NA1+ (addr -- addr+/n) "n-a-one-plus"
LA1 + (addr -- addr+/l) "1-a-one-plus"
WA1+ (addr -- addr+/w) "w-a-one-plus"
CAI+ (addr -- addr+/c) "c-a-one-plus"

Figure 2 . Words to increment an address by the appropriate amount.

/N* (n -- n*/n) "per-n-timest1
/L* (n -- n*/l) "per-1-timesw
/W* (n -- n*/w) "per-w-t imes"
/C* (n -- n*/c) "per-c-t imes"

Figure 3. Words to scale by dflerent sizes.

NA+ (addr n -- addr+n*/n) "n-a-plustt
LA+ (addr n -- addr+n*/l) wl-a-plusl@
WA+ (addr n -- addr+n*/w) "w-a-pl~s~~
CA+ (addr n -- addr+n*/c) llc-a-pluslg

Figure 4 . Words to index into arrays.

over" Copies a 32-bit longword over a
32-bit longword. On a 16-bit machine,
LOVER is equivalent to OVER On a
32-bit machine, LOVER is equivalent to
OVER.

LDROP (L1 --) "1-drop"
Removes a 32-bit longword from the
stack. On a 16-bit machine, LDROP is
equivalent to PDROP. On a 32-bit
machine, LDROP is euuivalent to
DROP.

LROT (L1 L2 L3 -- L2 L3 L1) "1-
rote"
Rotates 32-bit longwords. On a 16-bit
machine, LROT is equivalent to
2ROT. On a 32-bit machine, LROT is
equivalent to DROT.

LNSWAP (L n -- n L) "1-n-swap"
Exchanges a 32-bit longword with a
normal number. On a 16-bit machine,
M S W A P is equivalent to ROT ROT.
On a 32-bit machine, MSWAP is
equivalent to SWAP.

NLSWAP (n L -- L n) "n-1-swap"
Exchanges a normal number with a 32-bit
longword. On a 16-bit machine,

NLSWAP is equivalent to ROT. On a
32-bit machine, NLSWAP is equivalent
to SWAP.

MOVER (L n -- L n L) "1-n-over"
Copies a 32-bit longword over a normal
number. On a 16-bit machine,
MOVER is equivalent to 2 PICK
2 PICK. On a 32-bit machine,
LNOVER is equivalent to OVER.

NLOVER (n L -- n L n) "n-l-
over"
Copies a normal number over a 32-bit
longword. On a 16-bit machine,
NLOVER is equivalent to 2 PICK.
On a 32-bit machine, ~ V E R is
equivalent to OVER

L>R (L --) "1-to-r"
Moves a 32-bit longword to the return
stack.

LFO (-- L) "1-r-from"
Moves a 32-bit longword from the return
stack.

L>R and LFO are provided to help with

more complicated stack manipulations
(Continued on page 25.)

Fortth Dimensions Volwne IX, Number 1

FIG
MAIL ORDER FORM

I MEMBERSHIP IN THE FORTH INTEREST GROUP I
109 - MEMBERSHIP in the FORTH INTEREST GROUP and
Volume 9 of FORTH DIMENSIONS. No sales tax, handling fee, or dis-
count on membership. See the back page of this order form.

The Forth Interest Group is a world-wide, non-profit, member-sup
ported organization with over 4,000 members and 90 chapters.
FIG membership includes a subscription to the bi-monthly
publication. FORTH Dimensions. FIG also offers its members
group health and life insurance, an on-line data base, a large
selection of Forth literature and many other services. Cost is

$30.00 per year for USA, Canada & Mexico; all other countries
$42.00 per year. The annual membership dues are based on the
membership year, which runs from May 1 to April 30.

When you join, you will receive issues that have already been
circulated for the current volume of Forth Dimensions, and
subsequent issues will be mailed to you as they are published. You
will also receive a membership card and number.

I HOW TO USE THIS FORM
1. Each item you wish to order lists three different price categories:

Column 1 - USA, Canada, Mexico
Column 2 - International Surface Mail
Column 3 - International Air Mail

2. Select the item and note your price in the space provided.

3. After completing your selections, enter your order on the fourth page
of this form.

4. Detach the form and return it with your payment to the Forth Interest
Group.

I FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)

101 - Vol. 1
102 - Vol. 2
103 - Vol. 3
104 - Vol. 4
105 - v01.5
106 - Vol. 6
107 - Vol. 7
108 - Vol. 8

FORTH Dimensions (1979180) $15/16/18
FORTH Dimensions (1980181) $1511 6/18
FORTH Dimensions (1981182) $1511 6118
FORTH Dimensions (1982183) $15116118
FORTH Dimensions (1983184) $15116118
FORTH Dimensions (1984185) $15/16/18
FORTH Dimensions (1985186) $20/21/'24
FORTH Dimensions (1986187) $20/21/24

l F O R M L CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Lab-
oratory) is an infornmal forum for sharing and discussing new or
unproven proposals intended to benefit Forth. Proceedings are a
compilation of papers and abstracts presented at the annual conference.
FORML is part of the Forth Interest Group.

310 - FORML PROCEEDINGS 1980 $30/33/40
Technical papers on the Forth language and extensions.
311- FORML PROCEEDINGS 1981 $45148155
Nucleus layer, interactive layer, extensible layer, metacompilation,
system development, file systems, other languages, other operating
systems, applications and abstracts without papers.
312- FORML PROCEEDINGS 1982 $30/33/40
Forth machine topics. implementation topics. vectored execution,
system development, file systems and languages, applications.

313- FORML PROCEEDINGS 1983 $30/33/40
Forth in hardware, Forth implementations, future strategy. pro-
gramming techniques, arithmetic & floating point, file systems,
d i n g conventions, functional programming applications.
314- FORML PROCEEDINGS 1984 $30/33/40-
Expert systems in Forth, using Forth. philosophy, implementing
Forth systems, new directions for Forth, iterfacing Forth to
operating systems, Forth systems techniques. adding local
variables to Forth.
315- FORML PROCEEDINGS 1985 $35/38/45
Also includes papers from the 1985 euroFORML Conference.
Applications: expert systems. data collection, networks.
Languages: LISP, LOGO, Prolog, BNF. Style: coding conventions,
phrasing. Software Tools: decompilers, smcture charts. Forth
internals: Forth computers, floating point, interrupts,
multitasking, error handling.
3 1 6 FORML PROCEEDINGS 1986 $30/33140

Intelligence, Applications.

-
Forth internals, Methods. Standards, Forth processors. Artificial

B O O K S ABOUT FORTH
200 - ALL ABOUT FORTH $25/26/35
Glen B. Haydon
An annotated glossary for MVP Forth, a 79-Standard Forth.
216 - DESIGNING & PROGRAMMING
PERSONAL EXPERT SYSTEMS $191'20/29
Carl Townsend and Dennis Feucht
Introductory explanation of AI-Expert System Concepts. Create you
own expert system in Forth. Written in 83-Standard.

-

Volume IX, Number 1 21 Forth Dimemiom

Forth Dimemiom 22 Volume lX, Number 1

217 - F83 SOURCE $20/21 PO
Henry Laxen & Michael Perry
A complete listing of F83 including source and shadow screens. Includes
introduction on getting started.
218 -FOOTSTEPS IN AN EMPTY VALLEY
(NC4000 Single Chip Forth Engine) $25126135
Dr. C. H. T i g
A thorough examination and explanation of the NC4000 Forth chip
including the complete source to cmForth from Charles Moore.
219 - FORTH: A TEXT AND REFERENCE $22/23/33
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth with comprehensive references to MMS-
FORTH and the 79 and 83 Forth Standards.
220 - FORTH ENCYCLOPEDLA $25/26P5
Mitch Derick & Linda Baker
A detailed look at each fig-FORTH instruction.
225 -FORTH FUNDAMENTALS, V.l $16/17/20
Kevin McCabe
A textbook approach to 79-Standard Forth
230 - FORTH FUNDAMENTALS, V.2 $13/14/18
Kevin McCabe
A glossary.
232 - FORTH NOTEBOOK $25/26P5
Dr. C. H. Ting
Good examples and applications. Great learning aid. PolyFORTH is the
dialect used. Some conversion advice is included. Code is well docu-
mented
233 - FORTH TOOLS $22423132
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-based
applications.
235 -INSIDE F-83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.
240 - MASTERING FORTH $1811 9/22
Anita Anderson & Martin Tracy
A stepby-step tutorial including each of the commands of the Forth-83
International Standard; with utilities, extensions and numerous
examples.
245 - STARTING FORTH. 2nd Edition (soft cover)

s20n1130 Leo Brodie

-ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit or-
ganizafion which SuPPorts and Promotes the application of Forth. It
sponsors the annual Rochester Forth Conference.

321 - ROCHESTER 1981 $25/28/35
(Standards Conference)
79-Standmd. implementing Forth, data strucmes, vocabularies, applica-
tions and working group reports.
322 - ROCHESTER 1982 $25128135
(Data bases & Process Control)
Machine independence* project management, data SmcmeSl mathma-
tics and working group reports.
323 - ROCHESTER 1983 $25128/35
(Forth Applications)
Forth in robotics, graphics, high-speed data acquisition, real-time
problems, file management, Forth-like languages, new techniques for
implementing Forth and working group reports.
324- ROCHESTER 1984 $25128135
(Forth Applications)
Forth in image analysis, operating systems, Forth chips, functional
programming, real-time applications, crosscompilation, multi-tasking,
new techniques and working group reports.
325 - ROCHESTER 1985 $20/21/30
(Software Management & Engineering)
Impr~ving software ~ ~ o d u c ~ i v i t ~ * using Forth in a ex-
periment, automation of an airport, development of MAGICIL, and a
Forth-based business applications language; includes working group
reports.

I T H E JOURNAL OF FORTH APPLICATION &
RESEARCH
A refereed technical journal published by the Institute for Applied Forth
Research, Inc.

401 - JOURNAL OF FORTH RESEARCH V.l
RoboticsPata Structures $3OP3/38
403 - JOURNAL OF FORTH RESEARCH V.2 #1
Forth Machines $15/16/18
404 - JOURNAL OF FORTH RESEARCH V.2 #2
Real-Time Systems $15/16/18

In this new edition of Starting Forth, the most popular and
complete introduction to Forth, syntax has been expanded to
include the new Forth '83 Standard.
246 - STARTING FORTH (hard cover) %20/21/jO
Leo Brodie
255 -THINKING FORTH (soft cover) $1611 7/20
Leo Brodie
The sequel to "Starting Forth". An intermediate text on style and form.

405 - JOURNALOF FORTH RESEARCH V.2 #3
EnhancingForth $15/16/18
406 - JOURNAL OF FORTH RESEARCH V.2 #4
Extended Addressing $15116118
407 - JOURNAL OF FORTH RESEARCH V.3 #1
Forth-based laboratory systems and data structures.

$15116118
409 -JOURNAL OF FORTH RESEARCH V.3 #3

265 -THREADED INTERPRETIVE LANGUAGES Application Languages $15116118
R. G. Loelinger $25/26P5 410 - JOURNAL OF FORTH RESEARCH V.3 #4
Step-by-step development of a non-standard Z-80 Forth.
267 - TOOLBOOK OF FORTH $23/25135
(Dr. Dobb's)
Edited by Marlin Ouverson
Expanded and revised versions of the best Forth articles collected in the
pages of Dr. Dobb's Journal.
270 - UNDERSTANDING FORTH $3 .SO1516
Joseph Reymann
A brief introduction to Forth and overview of its structure.

Applications, Arthrnatic extensions $15116118

=DR. DOBB'S JOURNAL
This magazine produces an annual special Forth issue which includes
source-code listing fa various Forth applications.

422 - DR. DOBB'S 9/82 $5/6P
423 - DR. DOBB'S 9/83 $5/6P
424 - DR. DOBB'S 9/84 $516P
425 - DR. DOBB'S 10185 $5/6P

l HISTORICAL DOCUMENTS
501 - K l l T PEAK PRIMER $25/27/35
One of the first institutional books on Forth. Of historical interest.
502 - fig-FORTH INSTALLATION MANUAL$15/16/18
Glossary model editor - we recommend you purchase this manual
when purchasing the source code listing.
503 - USING FORTH $20/21/22
FORTH, Inc.

l REFERENCE
305 - FORTH 83-STANDARD $15/16/18
The autoritative description of 83-Standard Forth. For reference, not
instruction.
300 - FORTH 79-STANDARD $15116118
The authoritative description of 79-Standard Forth. Of historical inter-

REPRINTS
420 -BYTE REPRINTS $5/6fl
Eleven Forth articles and letters to the editor that have appeared in Byte
magazine.

I ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-FORTH for specific CPUs
and machines with compiler security and variable length names.

514 - 65021SEPT 80
515 - 6800MAY 79
516 - 6809/JUNE 80
517 - 8080jSEPT 79
518 - 8086/88/MARCH 81
5 19 - 9900MARCH 8 1
521 - APPLE IUAUG 8 1
523 - IBM-PCIMARCH 84
526 - PDP-111JA.N 80
527 - VAXIOCT 82
528 - Z80lSEPT 82

l MISCELLANEOUS
601 -T-SHIRT SIZE
"May the Forth Be With You"
Small, Medium, Large and Extra-Large
White design on a dark blue shirt. $10/11/12
602 - POSTER (BYTE Cover) $516/7
616 - HANDY REFERENCE CARD FREE
683 - FORTH-83 HANDY REFERENCE FREE

CARD

-FORTH MODEL LIBRARY
The model applications disks described below are new additions to the
Forth Interest Group's library. These disks are the fmt releases of new,
professionally developed Forth applications disks. Prepared on 5
114" disks, they are IBM MS-DOS 2.0 and up compatible. The
disks are compatible with Forth-83 systems currently available
from several Forth vendors. Macintosh 3 1/2" disks are available
for MasterFORTH systems only.
Forth-83 Compatibility IBM MS-DOS
LaxenJPerry F83

1
LMI PCIFORTH 3.0
MasterFORTH 1.0
TaskFORTH 1.0
PolyFORTHmn

Forth-83 Compatibility Macintosh
MasterFORTH

Ordering Information
701 -A FORTH LIST HANDLER V.l $40143145
by Martin J. Tracy
Forth is extended with list primitives to provide a flexible high-speed en-
vironment for artificial intelligence. ELISA and Winston & Horn's
micro-LISP are included as examples. Documentation is included on the
disk.

702 - A FORTH SPREADSHEET V.2 $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions Volume 7,
Issue 1 and 2. Those issues contain the documentation for this disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 .
by Kim R. Harris $40143145
These tools for the analysis of large Forth programs were first presented
at the 1985 FORML conference. Program documentation is contained in
the 1985 FORML Proceedings.

704 - A SIMPLE INFERENCE ENGINE V.4 $40143145
by Martin I. Tracy 1
Based on the Inference Engine in Winstom & Horns book of Lisp, this
volume takes you from pattern variables to a wmplete unification
algorithm. Accompanied throughout with a running commentary on
Forth philosophy and style.

706 -THE MATH BOX V.6
by Nathaniel Grossman
A collection of mathematical routines by the foremost author on math in
Forth. Extended double precision arithmetic, a wmplete 32-bit, fixed-
point math package and auto-ranging text graphics are included. There are
utilities for rapid polynomial evaluation, continued fractions and Monte
Carlo factorization.

Please specify disk size when ordering 1
NC4000SERIES

801 - MORE ON NC4000, VOLUME 1 510111114 &
FIG-Tree style forum on NC4000. Topics including bugs, products, tips,
benchmarks, and NC4000 instruction bit patterns. Chuck Moore's
teleconference. 2nd edition.

802 - MORE ON NC4000, VOLUME 2 $15116118
NC4000 User's Group's Newsletters. Many contributions from Chuck /
Moore, Rick VanNorman, C.H. Ting and many other users.
Hardware enhancements, software and many; utility programs.

803 - MORE ON NC4000. VOLUME 3 $15116118 &
NC600015000 data sheets, auans. new DROP. DEPTH, Eakeis CASE, 1
PICK, k O ~ ~ , f l o a t i n ~ p i t Lath packages, new power sources and AID

1 converters for NC4000. Many other tips.

804 - MORE ON NC4000. VOLUME 4 $15116118
Chuck Moore's Application Notes 1-7, Tiny Modula-2 -

I extensions and other tips from Bill Muench, ~ a n ~ o r m a n ' s &reen editor. I
Ting's 32-bit engine design and Fourier eansform.

-- -

Volume lX. Number 1 23 Forth Dimemiom

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, CALJFORNIA 95155 (408)2 77-0668

Name
Member Number
Company
Address
City
StatePmv. ZIP
Country
Phone

OFFICE USE ONLY
BY Date Type -
shipped by Date
UPS Wt. Amt.
TNT Wt. Amt.
USPS Wt. Amt.
BO Date BY
Wt. Amt.

I

ITEM #

109

-

TITLE

MEMBERSHIP

$2.00

[7 CHECK ENCLOSED (Payable to: Forth Interest Group)

VISA M/C

Card #

Expiration Date

AUTHOR

SUB-TOTAL

ORDERS OF $50.00 OR MORE
RECEIVE A 10% DISCOUNT

SUB-TOTAL

CA. RESIDENTS ADD SALES TAX

HANDLING FEE

MEMBERSHIP
0 NEW RENEWAL $30142

QTY UNITPRICE

Signature
($15.00 minimum on all VISA/MC orders.)

PHONE ORDERS
PAYMENT MUST ACCOMPANY ALL ORDERS

TOTAL

SEE BELOW

SHIPPING TIME
Books In stock are sh~pped
w ~ t h ~ n flve days of receipt
of the order Please allow
4 6 weeks for out-of-stock
books (dellvery ~n most
cases wlll be much sooner)

IX-1

Forth Dimemions 24 Volume IX, Number

MAIL ORDERS
Send to
Forth Interest Group
PO Box 8231
San Jose. CA 95155

Call 4081277.0660 to place
cred~t card orders or for
customer servlce Hours
Monday-Fr~day Sm-5pm
PST

PRICES
All orders must be prepa~d R ~ c e s are
subject to change wlthout notlce Cred~t
card orders w ~ l l be sent and b~l led at
current prlces $15 mlnlmum on charge
orders Checks must be ~n US$ drawn
on a US Bank A $locharge will be
added for returned checks

POSTAGE & HANOLlMi
Rlces ~nclude sh~pp~ng A
$2 handllng fee IS

requlred w ~ t h all orders

(Continuedfrom page 20.)
involving mixed stacks. (However, it is
usually preferable to try to avoid complex
stack gymnastics, instead.)

Accessing Memory
We need some words for accessing
memory items of various sizes. We
already have C@, C!, 2 @ , 2 ! , @, and
!. We also need some words to access
exactly 16 bits and exactly 32 bits, so we
add these words:
w@ (adr -- 16b) "w-fetch"
Fetches the 16-bit word at adr. On a 32-
bit machine, the result is padded with zero
to form a 32-bit normal number on the
stack.

<W@ (adr -- 16b) "signed-w-fetch"
Fetches the 16-bit word at adr. On a 32-
bit machine, the result is sign-extended to
form a signed, 32-bit normal number on
the stack.

W ! (16b adr --) "w-store"
Stores the 16-bit word at adr. On a 32-bit
machine, the number "16b" is represented
on the stack as the lower half of a 32-bit
normal number, and only the lower 16
bits are stored at adr.

L@ (adr -- L) "1-fetch"
Fetches the 32-bit longword at adr. On a
16-bit machine, the result is left on the
stack as two 16-bit numbers, with the
most-significant half on the top of the
stack.

L ! (L adr --) "1-store"
Stores the 32-bit longword "L" at adr. On
a 16-bit machine, the longword "L" is
represented on the stack as two 16-bit
numbers, with the most-significant half
on the top of the stack.

Type Conversion
Some words for converting to and

from 32-bit longwords:

N->L (n - -L) "n-to-l"
Converts a normal number to an unsignd
32-bit longword. On a 16-bit machine, N-
>L is equivalent to O. Does nothing on a
32-bit machine.

S->L (n -- L) "signed-to-long"
Converts a normal number to a signed 32-

bit longword. On a 16-bit machine, S -
>L is equivalent to S->D. Does
nothing on a 32-bit machine.

L->N (L -- n) "1-to-n"
Converts a 32-bit longword to a normal
number. On a 16-bit machine, L->N is
equivalent to DROP. Does nothing on a
32-bit machine.

Important Note
It is neither necessary nor desirable to

use the "L" operators all the time on a 32-
bit system. Most of the time you don't
really care whether a number is 16 bits or
32 bits. So you just use the normal
operators like +, -, D m , etc. The right
time to use the "L" operators is when:

1. You require more than 16 bits, and
2. You want your code to run on both 16-
bit and 32-bit machines.

In particular, I use the "L" operators
when converting "double numbers" from
16-bit machines to 32-bit machines. Also
remember that "double numbers" on 16-
bit machines are not always the same as
32-bit longwords. Sometimes the "double
number*' operators are used to manipulate
pairs of single numbers. Such uses must
remain unchanged. A pair of numbers is
still a pair of numbers, even on a 32-bit
machine.

The Name's the Thing
The underlying problem is that Forth

often uses the same name for different
purposes. Examples: 2+ is used to add
the number two, and to increment an
address to the next word; 2DROP is used
to remove two single numbers from the
stack, and to remove a 32-bit number
from the stack. This happens to have
worked in the past, because Forth just
assumed that every machine in the world
is a 16-bit, byte-addressed machine. (In
fact, it didn't work on the Data General
Nova, which is word addressed!) Different
conceptual functions should have different
names, even if the functions happen to
have identical implementations on a
particular machine.

That is why I am proposing new
names without any new functions!

Volume IX, Number 1 25

FIG-FORTH for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later,
uses standard DOS files.
Full-screen editor uses 16 x 64
format.
Editor Help screen can be called
up using a single keystroke.
Source included for the editor
and other utilities.
Save capability allows storing
Forth with all currently defined
words onto disk as a .COM file.
Definitions are provided to allow
beginners to use Starting Forth
as an introductory text.
Source code is available as an
option, add $20.

Async Line Monitor
Use Compaq to capture,

display, search, print, and
save async data at 75-19.2k

baud. Menu driven with
extensive Help. Requires two
async ports. $300

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth. Application code
can be Metacornpiled with
Forth to produce a target

application PROM $280
FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacornpiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45
An all CMOS processor

board utilizing the 6303.
Size: 3.93 x 6.75 inches.
Uses 1 1-25 volts at 12rna,
plus current required for

options. $210 - $280
Up to 24kb memory: 2 kb to
16kb RAM, 8k PROM contains
Forth. Battery backup of RAM
with off board battery.
Serial port and up to 40 pins of
parallet 110.
Processor buss available at
optional header to allow expanded
capability via user provided
interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-61 64

Foreign orders add $5 shipping and handl~ng.
Connecticut residents add sales tax.

Forth Dimensions

PORTABLE
POWER

Dl Whether you program
on the Macintosh, the

-4 IBM PC, an Apple II ser- e<=
TM les, a CP/M system, or the

Commodore 64, your -, - = - - ---
program will run un- + 9- --
changed on all the rest -- -. - TM

If you wr~te for yourself, aM MasterFORTH will protect
your ~nvestment. If you wr~te
for others, ~t w~l l expand your

marketplace.
Forth IS interactwe -

you have ~mmed~ate feed-
back as you program, every
step of the way. Forth IS

C!
fast, too, and you can CP/M use 11s bu~lt-in as-

1. sembler to make ~t
even faster. Master-

FORTH's relocatable ut~lltles and
headerless code let you pack a lot
more program ~n to your memory. The
res~dent debugger lets you decom-
p~le, breakpo~nt and trace your way
through most programming prob-
lems A str~ng package, f ~ l e ~nterface
and full screen ed~tor are all standard

1 features. And the optlonal target com-

Yes, But ...
If we make all these new names for

functions we already have, like

: LSWAP (L1 L2 -- L2 L1)
2SWAP ;
doesn't the code run slower? There are
two answers:

1. It's not much slower.
2. There's a way to get the speed back.

To speed it up, see the article on
synonyms (Yngve, Victor H. "Syno-
nyms," Forth Dimenions VIID). A syno-
nym provides a new name for an existing
word, with no run-time penalty. Basic-
ally, a synonym is an extra name for an
existing word. When the compiler sees
the new name, it compiles the compil-
ation address of the existing word.

Tips for Converting Programs

When I convert a 16-bit program to a
32-bit machine, the first thing I do is
search for all occurrences of the character
2. I look for the number two and for
words that start with 2, such as
2DROP. Many of these have to change.
Usually, words like 2+ change to
NA1+, and 2* to /N*, etc. For words

code, to make them easier to fmd.
Sometimes you may find you need a

mixed 16-bitj32-bit operator not men-
tioned here. I recommend that you pick a
name starting with either "NL," (if the
longword is on the top of the stack) or
"LN (if the normal number is on top).

Further Reading I
This wordset was originally proposed

in two earlier papers.

1. Bradley, Mitch and Sebok, Bill.
"Compatible Forth on a 32-bit Machine,"
The Journal of Forth Application and
Research, Vol. 2 No. 4,1984.

2. Bradley, Mitch and Sebok, Bill.
"Extended Addressing Wordset," Working
Group Report, Proceedings of the 1984
Rochester Forth Conference.

These papers describe some other words
not mentioned here, including names for
words to perform extended addressing on
16-bit machines. Vol. 2 No. 4 of The
Journal of Forth Application and
Research contains several papers
describing other aspects of 32-bit
machines.

MasterFORTH standard package $1 25
(Commodore 64 w ~ t h graphics) $100

Extens~ons

Floattng Po~nt $60
Graphlcs (selected systems) $60
Module relocator(w~th ut~l~tysources) $60
TAGS (Target Appllc Generatton System)-
MasterFORTH target compller and
relocator $495

Publlcat~ons 8 Appllcatlon Models
Pr~nted source ltstlngs (each) $35
Forth83 lnternatlonal Standard 51 5
Model L~brary Volumes 1-3 (each) $40

piler lets you optimize your applica-
tion for virtually any programming
environment.

The package exactly matches Mas
rering Forth (Brady, 1984) and meets
all ~rovisions of the Forth-83 Standard.

The next thing I look for is words like
D+, D-, etc., changing them to L+,L-,
etc.

Sometimes the word 0 is used to
convert an unsigned normal number to a
longword. This has to change to N->L.

Finally, I look for cases where stack
manipulations like ROT are used to swap
mixed 32-bit and 16-bit numbers. These
change to words like NLSWAP. These
are not as hard to find as you might
guess, because they usually occur just

I I before a 32-bit operator, so you should
keep an eye out for them while looking

like 2DROP. YOU have to decide whether
it is to drop a pai of nOmal
numbers (in which case you leave it

Or a 32-bit number (in which case
it changes to LDROP) .

for 2, D+,o, etc.
Since each of the words proposed here

can be implemented so easily, it is easy
to add them to the program as you need
them. I usually group their definitions
together at the beginning of the source

Fortth Dimemiom 26 Volume IX, Number I

Bradley is owner of Bradley
Forthware, vendor of the 3Z-bit "Forth-
macs," a very complete Forth-83 enviro-
-nt for rhe Atari ST.

STARTING
I

FORTH INC.
AN INTERVIEW WITH ELIZABETH RATHER

E lizabeth Rather is the president
of FORTH, Znc. and was as close to
Forth's beginnings as anyone except its
creator. At a recent convention, Michael
Ham interviewed Ms. Rather at length
about the early years of Forth and the
history of the first company to deal in
Forth systems and applications. She
spoke frankly of product successes, lean
times in the early days, and public
perception.

Michael Ham: I'd like to get a
sense of the history of FORTH, Inc., and
then a sense of where it is today and what
its plans are for the next thrust in Forth. I
feel there have been many changes in
terms of product packages and building up
in another, new direction. So let's start
with the history.

Elizabeth Rather: I want to go
back to the actual dawn of time, which
was a day in 1971. I was working at the
University of Arizona, in the registrar's
office, processing student records. My
then husband was an astronomer at the
National Radio Astronomy Observatory,
also in Tucson. I walked into the lab one
day and there was a rack of electronic
equipment in the middle of the lab -
which was not unusual -and there was a
guy sitting in front of it. I asked, 'What's
that?" and he said, "That's a computer."

I was absolutely amazed, because I
knew what a computer was: a computer
occupied an entire room with a raised
floor and had thousands of acolytes around
it This little box in the middle of the
room with a guy sitting in front of it was
something I'd never dealt with before. I
came to understand that this little

computer was going to be controlling the
telescope and doing data acquisition and
analysis, and all kinds of neat stuff. 1
asked, "How are you programming it?"
He said, "Well, it's a language called
Forth." I asked, 'What is that?" And the
rest is history.

MH: You had programmed before?

ER: At that time, I had been
programming for about ten years in
Fortran, assembly language, and a little
bit of Cobol (I'm almost embrassed to
admit). I'd gotten very interested in some
of the avant garde things that were going
on. I'd been playing a little bit, just the
previous week, as a matter of fact, with
APL. I'd really fallen in love with APL,
but it was doomed to be a very short love
affair because I fell in love with Forth
shortly afterwards.

MH: It shows you had a weakness for
weird languages, at least.

ER: Right, and I realized it was really
the interactiveness of APL that appealed
to me, and not anything particular about
it as a language. Going at a program
interactively is something I still think the
world doesn't value nearly enough. Even
the languages people are using today,
such as C, are not interactive, and it is
hard to realize how incredibly powerful
interactivity is.

MH: Right. I'll put in one story of
mine: people don't understand that when
you say it is interactive, it means you can
do this back-and-forth with the program.
They say, "Yeah, but so what?" I

remember the first time I heard about a
text editor. It was Wylbur, and I asked,
"So, what does it do?" My friend
explained to me, "You can correct words,
and search and find them, and move lines
around ..." And I said, "That's it? So
what?" I didn't understand at the time, but
now I can't write without a word pro-
cessor.

When you found Forth, did you start
programming in it right then?

ER: NO, I didn't. I'd always been
interested in the concept of computers
making things wiggle, which was
actually a fairly new concept at that time.
I was also pretty bored with the registrar's
office. Chuck was living at that time in
Charlottesville, Virginia, and he would
come out for a couple of months at a
time, reprogram everything in sight, and
then go back to Charlottesville, leaving
chaos in his wake. Ned Conklin, who ran
the Tucson division of the observatory,
was a very good friend of ours, and he
would come over for dinner, and wring
his hands and cry a lot about this guy
who wrote these beautiful programs that
were always, chronically, ninety percent
done.

I took advantage of the situation and
volunteered to take on, as a moonlighting
operation, the task of understanding the
programs and providing some local
support, talking on the phone with

I Chuck as need be, and solving problems
as they arose. We originally thought it
was going to be ten hours a week, and I
found myself working for them over forty
hours a week in addition to my regular
job. We figured it was time to make
some adjustments.

Volume lX, Number 1 27 Forth Dimensions

MH: That must have been like trying to
learn Chinese by trying to read a
newspaper with the aid of a dictionary.
That's a hard way to get into Forth.

ER: Well, contrary to popular opinion,
Chuck does write. He is capable of it. In
fact, he writes extremely well, and at that
time he had written three volumes of
documentation of Forth. In fact, he wrote
a book - which is a wonderful book -
called Programming a Problem-Oriented
Language. I still have a copy in my
office, and I keep cherishing the hope that
someday I can edit and publish it, because
it was about Forth at a time slightly
before I met Chuck. It was a previous
incarnation of Forth, but very recog-
nizable. The book tells why it was like it
was, how he was making his decisions. It
was written in a style that is absolutely
just like hearing Chuck talk. It's
wonderful to read from that point of view,
and it's very interesting as a historical
document of how an extraordinarily bright
person goes about thinking of a new
language. I don't think that's ever been
documented before. It really is almost a
stream of consciousness account of how
that took place, and it was wonderful. But
it didn't really explain a whole lot about
how the current system worked, and it
certainly looked funny. I really still
sympathize with people who have never
seen Forth before, who look at it and say,
"Boy, is that ever a funny-looking
language."

I can remember how that felt. The
other documentation he wrote tended to
describe individual words. You had to
know what the words were in order to
look them up. It really was not as helpful
as it might have been, so one of the very
early things I did at the observatory was
write a user's manual on Forth per se. I
think that was the first user's manual on
Forth, and it was the first step on a road
of moral decay that's led to the current
polyFORTH reference manual, which I've
just spent the last six months of my life
re-editing.

MH: And repackaging the entire thing in
a handsome way.

ER: I added it up one time. FORTH,

Inc. has spent over one hundred thousand
dollars on that reference manual, in terms
of manpower costs.

MH: It's a cumulative distillation of
experience, as I look at it. It's what you
need to know, really. I've noticed
programmers often don't want to take you
into their confidence. They tell you the
minimal stuff that's actually correct about
the program, but they won't say, "Look.
here's what you need to know." But the
reference manual tells you what you need
to know.

When did you run into Chuck in person
- did he come out on one of his visits?

ER: Yes, it was on one of his visits. I
encountered him sitting in the lab, and
subsequently we had Chuck and Min over
to dinner at our house many times. We
became very good friends. After I got a
job working full-time at the observatory,
we went through a major upgrade of the
observatory software and hardware and
developed a system that has survived at
the observatory--evolving, of course, but
without really significant change - for
over ten years, which in that kind of
research environment is an absolutely
incredible record of longevity. The reason
is, when we installed it, it was so far in
advance of the state of the art that it
stayed an advanced system for a very long
time. When we were near to finishing
that project, I recall very clearly, we were
sitting around our patio one summer
evening in Tucson talking about what the
future was going to hold for computers
and mini-computers and programming,
and what was going to happen to Forth,
and so on. We had given away a number
of systems to astronomers who had come
there - we were a service organization,
and astronomers came from all over the
world to use that facility. A number of
them were so impressed with the software
that they took copies home and tried to
adapt it for use. It had become apparent
that Forth was as powerful for other
people as it was for us. So this particular
evening, we said, "You know, why don't
we form a company and do something?
There's got to be some money in it
somewhere."

Fortth Dimensions
-- -

Volwne IX, Number 1

MH: When you put your company
together, did you start in Tucson?

ER: We never did any business as
FORTH, Inc. in Arizona. We moved to
California in late 1973, reincorporated the
company there, and opened for business
about then. I sent a press release to
Computerworld. I had never written a
press release before and didn't even know
what one looked like. But I wrote one and
sent it to several of the computer
magazines. Computerworld ran it on the
front page in about November of 1973.
By December and January, the letters were
flooding into our new home in Manhattan
Beach, California. We got about 350
letters, and Chuck and Min moved to
California about then. I had an old
typewriter, and Chuck and I sat in the
back room of my house, taking turns
writing personal answers to all 350
letters. Out of that we started getting a
few jobs, doing custom programming for
people.
MH: Your first sale was to a man in
New Jersey?

ER: y e , Art Gravina of Cybek. He had
been working with a very large BASIC
program for business data processing. He
had been the architect of the program,
written in something called Extended
BASIC. ~~~v~ dream was to do larger
applications than this Extended BASIC
could handle. He called us on the phone
and we had several conversations. He said,
" ~ f what you say is real, we*ve got a tiger
by the tail here." He came out for one
weekend, Chuck and I flew up to northern
California, and we all spent the weekend
together at the offices of Systems
Indusuies in Sunnyvale. They made a
computer available to us starting at five
o'clock Friday afternoon.

By Monday morning, we had ported
Forth onto that computer from a paper
tape we had taken with us from the
observatory. We had to develop a new
disk controller for it on the spot, hand
coding in with the paper tape - it was
unreal. Having gotten that done, we
implemented all the rudiments of a
database system, and wrote an application
that would accept data, display data, write
reports, and so on. We had all that done

Forth Dimensions

So FORTH, Inc. was born that
evening. It was in the summer of 1973.
Chuck and his wife Min, myself and my
husband John, and Ned Conklin, who was
our mutual boss, went to see a lawyer the
following week and incorporated FORTH,
Inc.

MH: Was Forth primarily on one
machine at that time?

ER: No, it was on a number of
machines. It was on a PDP-11, which
was the machine we upgraded. The very
first was a Honeywell minicomputer; and
it had migrated into the observatory on
Varian 620s and Hewlett-Packard 2116s,
and the Nova was across the street at
Steward Observatory. So there were a
number of systems.

MH: So Forth from its very beginning
started this heritage of polyF0RTI-I
covering a broad range of machines and
processors. ..

ER: Yes, that was true, and it's also true
that the very first Forth systems were all
multi-tasking, mul~-~ser, standalone
operating systems. Multi-tasking is
absolutely not anything new or recent.
It's been a mainstream of Forth
development on every system that I have
ever had personal experience with.

MH: Were Forth applications at the
observatory Slrictly for telescope COnUOl
and scientific computation? What range of
applications was it being used on, and
where did you see its use?

ER: Forth controlled the telescope, and
it did high-speed data acquisition. We
were recording 500 samples every 10
milliseconds. I believe, which is ticking
along pretty well. We also had a very
early Tektronix graphics terminal that we
had a nice graphics package on, including
some 3-D graphics capability and a lot of
mathematical analysis. The object of the
game was to send an astronomer home
with his &ta mostly reduced on the spot;
it was very important to allow him to
reduce his data on the spot because he
could adjust his observing program
depending on what he was seeing or not
seeing, as the case may be.

Volume lX, Number 1

MH: Let's turn to your background.
Your studies were not in computer
science, as I recall.

ER: No, I have both an undergraduate
and a graduate degree in medieval history.
It's a lot of fun, but there's no money in
it.

MH: Well, it does lead to a career in
Forth. You began in computers just ...

ER: I actually had studied physics as an
undergraduate. 1 didn't complete a degree
in physics, but I had studied it. I was
married to an astronomer, and all our
fiends were scientists. I felt comfortable
in the scientific community. 1 went to
work in the days when any woman
applying for a job was required to take a
typing test. Regardless of what you said
you were interested in, if you were a
female and went into the personnel
department, you took a typing test. It
turns out, of course, that typing is one of
the primary skills for a Forth program-
mer, so that was not inappropriate.

MY first job was handling data
processing for a physics research group at
the Oak Ridge National Laboratory. They
had an extremely primitive computer and
Some very primitive mahfElrt-W - I'm
almost embarrassed to tell you when this
was. I was working with the Computers,
and I convinced my boss, Jack Harvey,
that I should be allowed to take a two-
week Forttan course so I could handle the
programs a little bit better. I did that and
wrote a very Fortran
programs. Not long after that we
to California. I went into the University
of California's personnel office, and said,
"I want a job." They asked, "What do You
do?" and I said, "I'm a programmer."

They Sent me for an interview with the
as-omy department. I really wanted
that job. The professor there had a P U P
working on a NASA contract doing
analysis of comet and satellite orbits, and
he said, "We do all of our programming
in assembly laJWage on a 7094." I said.
''Wefl, 1 have never actually written
assembly language for the 7094." And he
said, "Don't WOW, we'll teach you." And
they did.

29

by Monday morning. We hadn't had a
whole lot of sleep, I must admit, but we
had it all working, with several terminals
up and the whole scene.

MH: It was a multi-user system?

ER: Yes, everything we've ever done has
been multi-user. Art went back to New
Jersey, quit his job the next day and
founded a company. He has done ex-
tremely well since then, and has
continued with large database applica-
tions, most recently in the area of
hospital management. His company was
recently bought by a division of
McDonnell Douglas.

There was another hospital system
written in plyFORTH that Honeywell is
marketing. Bob Barnett, our second or
third customer, wrote it. He's in Iowa,
and he would go away for a couple of
years, developing his applications, then
call us back in, then go away again on
his own.

MH: How big is FORTH, Inc. today,
and what are your major projects at this
time?

ER: We're back in Manhattan Beach after
six years in Hermosa Beach. We have
about 25 employees, most of them full-
time, a few of them consultants. Our
business is about two-thirds custom
programming and one-third sales and
support of polyFORTH. The custom
programming that we're doing is
primarily in areas such as automated
manufacturing, robotics, process control,
that sort of thing.

MH: Private industry more than gover-
nment?

ER: We have done some government
work, but the vast majority of our effort
has been private industry. We have felt
more comfortable there. The greatest part
of our business is products.

MH: Are your clients in California or all
over the country?

ER: They are all over the country. We
have worked for aerospace companies,

major manufacturing companies, major
engineering firms. From the beginning,
we have focused mostly on large
companies, although a number of our
very successful customers have been start-
up companies using polyFORTH to pro-
gram a clever widget they have designed.

One of the most distributed
polyFORTH applications is an auto-
mobile engine analyzer that was
developed by a company called Allen Test
Products in Kalamazoo, Michigan. It is
sort of an expert system. It was originally
written before expert systems were
popular and it lacks some of the
formalization that people expect of expert
systems, but it really was a rule-based
system, with definite rules in it. It takes
an automobile mechanic through a series
of tests and modifies the tests that will be
performed based on the results and on
what it is learning. It will pursue various
avenues and, at the end, it will print out a
report of what is wrong with the car and
what it recommends should be done. This
was picked up by Firestone and is in all
the Firestone Master Care Centers across
the United States. It's called the Master
Mind of Firestone, and it's also sold
privately as something called a Smart-
Scope. It's gone all over the world. The
operator-interaction screens have been
translated into at least five languages.

MH: Do you ever wish it said, "Written
in polyFORTH?"

ER: You bet I do.

MH: Were there any black moments in
Forth's early history?

ER: It was a real hand-to-mouth exis-
tence for a while. We knew very little
about marketing and very little about
things like advertising. It is still true that
people are reluctant to base major
products on a programming language
they've never heard of, and not nearly
enough of them have heard about Forth.
It was very hard. I was the marketing
department and Chuck was the pro-
grammer. I spent days on the phone
calling up people saying, "Can we do
some work for you, can we talk?" And we

had days when we didn't know where the
next nickel was coming from. In more
recent times, there have been a couple of
major downturns. But we've managed to
weather all that. I went back to school
and got an MBA, and that has helped.

MH: What were some of your big hits?

ER: There have been a large number of
those. Wonderful moments early on with
Art, when we gave demonstrations where
we had done something really spectacular
in no time at all. We replaced a program
that was running on a 370, and the Forth
version ran about four times as fast and
did some things that the 370 hadn't been
able to do at all. That was a lot of fun.

We've been the first serious software
on a number of processors. Honeywell, in
the late 70s, came out with a new
minicomputer called the Level 6, and
polyF0RTI-I was the first operating
system of any kind on it. It was the first
high-level programming language on the
Level 6. In order to achieve that, we
worked for several weeks at Honeywell's
facility in Massachusetts. We had access
to the computer from five at night until
five in the morning. We did that for
several weeks. At the end of that time, we
had plyFORTH up on it, and Honeywell
couldn't care less. They were still busy
designing their operating system.

We were the first high-level language
to run on the 8086, by nearly two years.
We were running on the 8086 when there
were still bugs in the part. For a long
time, the only thing Intel offered that ran
on the 8086 was an assembler. Every-
thing else was cross-assembled.

MH: I heard once that Radio Shack was
thinking of putting Forth into their first

I personal computer instead of BASIC. Is
that true?

ER: We had some very serious con-
versations with Radio Shack. I don't
think they were looking at it as an
alternative to BASIC, but they were ' looking at carrying it. They decided, after
an intensive series of conversations, that
there was not a market for it. Dick Miller

, certainly proved that wrong.

I I I I
Fortth Dimensions 30 Volume IX, Number 1

I J

Vdwne IX. Number I 31 Forth Dimensions

hobbyistfhacker toy, and that serious
people don't program in it. That is quite
patently not the case. We at FORTH, Inc.
have not done as good a job as we might
have done, and the Forth community in
general has not done as good a job as it
should have done, at telling the story of
just how successful companies have been
using Forth.

MH: Have you seen polyFORTH adop-
ted in universities?

ER: Oh, yes. We have a fairly aggres-
sive university discount policy and have
for a number of years, and some of them
have been very successful with it. There
is an excellent group at Stanford, a long-
standing and active group at MIT, and
literally hundreds of other universities
from around the country that have picked
it up.

MH: And that contributes to its use.. .

ER: It does, but not nearly enough.
What we see is that in the universities
this is happening in the engineering
departments, where they really are not
interested in Forth per se, or any
computer language per se. They are
interested in getting results out of
experiments. Of course, Forth has always
appealed to people who are focused on
getting results. We don't see it pene-
trating the computer science departments
k a u s e they believe their major raison
d'etre is to train conventional program-
mers to use conventional programming
tools. And polyFORTH, or Fonh in
general, is not perceived in that way.

Michael Ham currently worh in large-
scale dataprocessing, and expects to have
a Forthprogrampublished shortly for the
IBM microcomputer. His work has ap-
peared frequntly in these pages and in
other respectedmgazines.

MH: Based on what people order from
FORTH, Inc., what would you say is the
most popular microprocessor today?
Where is the excitement?

ER: It is completely dominated by the
IBM. In our business, we also see a great
deal of work on the 68000. It is used very
heavily in the kinds of factory automation
applications we work on.

MH: What other things do you think are
significant in the development of
FORTH, Inc., or Forth; other moves in
our history that we haven't really touched
on as you look back at watershed events
and critical decisions.

ER: Goodness. I think probably one of
the big watersheds was when we decided
to go after microprocessors in 1977. That
was when microprocessors were newborn.
In early 1977, we implemented a very
primitive version of Forth on the RCA
1802, which was a brand-new chip at that
time. I gave a paper on it, jointly with
some people at RCA, at Electro '77 in
Boston. Seeing the interest in that and
seeing what was clearly taking shape
around 8080s and around Intel - which
all had just been introduced at that time
- we decided that was the wave of the
future and we were going to go after it at
FORTH, Inc.

On the basis of that, we brought out
our first standard mail-order product,
which was called microFORTH. Prior to
that, all our systems were custom written
and personally installed on minicorn-
puters. With the advent of the micro-
processor, we invested from our very
slender capital - it was a very big risk
for us at the time - and bought an Intel
blue box development system in the
MDS-800 then, and we invested a
considerable amount of effort in bringing
out our first standard mail-order product of
microFORTH. We then implemented that
on several microprocessors. micro-
FORTH was a moderately successful
product for us although, in retrospect,
technically it had an awful lot of
shortcomings. When we upgraded to
polyFORTH less than two years later, it
was a tremedous improvement. What I
think was most signifcant about that was
that we marketed it by selling, for as I

recall about $15, a book called
microFORTH Primer. We sold several
thousand of those.

It was the people who picked up the
microFORTH Primer but were unable to
afford to buy microFORTH who formed
the Forth Interest Group and all that
activity. So that certainly has to be
regarded as a watershed. It was a watershed
for FORTH, Inc. because it first got us
into the standard product business and
standard product support. Without that, I
don't think we would have survived or
thrived as we have as an organization. But
it also had the side effect of stimulating
the formation of the Forth Interest Group
and that whole community.

MH: Is your product line now, I
imagine, primarily microcomputers? Do
you have much mainframe stuff at all?

ER: We have never had any real
mainframe software in the sense of IBMs
and the like. We do work on some
moderately large computers. We have a
version of polyFORTH that runs under
VMS on VAXes, and we have a thirty-
two-bit System that runs On fairly good-
sized 68000-based systems.

MH: If you had it to do over, what
would you do differently?

ER: There are some interesting things I
can Say On that Score. I think the major
thing I would do differently is to take a
much more Serious interest in public
relations in gened. We've SpOnsored a
number of magazine articles over the
years, but we have never really had
anything like the kind of intensive,
continued, sustained public relations
effort that I think we should have done
and that, I think, is required to make
Forth well known. Some of the
spectacular things we've done, such as
being the first high-level hnkYage, the
first real operating system on some of
these processors, the world doesn't know
about.

The world, even today, does not know
about some of the very, very successful
Forth applications - not just poly-
FORTH, but Forth applications in
general. People, to a great extent, still
think that Forth is sort of a freak, a

RUN-TIME
STACK ERROR CHECKING

CHARLES SHATTUCK-ROSEVILLE,CALIFORNIA

0 ne of the biggest problems when
trying to learn Forth, especially for naive
beginners, is stack errors that crash the
whole system. In a classroom envi-
ronment, where students have only an
hour or so to use a computer, the time
spent rebooting can be significant. Add to
that the frustration of not knowing why
the system crashes, and you can get
students who aren't very excited about
Forth.

Laxen and Perry address part of the
problem in their F83 system with the
word ?ENOUGH. This word checks to
see that enough items are on the stack
before execution, preventing accidents
like listing screen zero, which always
messes up the eighty-column card in my
Apple Ile. Otherwise, the main problem
seems to be stack overflow errors, which
cause the Apple to hang irretrievably. To
solve this problem for beginners, we need

5 c t - P 32. ..
8 \ Run-F l r i i e s t a c k et-r-or .-c!lec-k .. rsr ,242..rsBE. Cb.5

E: VRR?C!RLE CHECKTNE CriECi(7NG OFF
3 VR?ICIRLE INPUTS VQRIUHLE CtUT3UT5 VCIZTUH,: PRRRY=TF.Z5
4

5 : *:NPLJTS (n l n 2 n 3 1 DVE2 DEFT? 3 -)

6 CIRORT" h o t e n o u g h ~ n o u t o a r a r n e t e r - s " - DEPTH i - SWCIP - i
7 : 'OUTPUTS i n) DEPTH 1- = NUT
tS CIRORT" W r o n E nunibe t - of nut o u t n a i - a r n e t e r s " :
'3 :* : '!N/OUT i n 1 n 2 1

I : Cl7MP:LE ' INPUTS COMPILE > 3 CHECK::NG Oh ; ;MW'D;QTE . -
. : : CSEC.'i:NG @ I F COMPILE R) CUMPILE 'OUTPUTS T H E N
.: S ZCOYP1LE- : C!iECY:YG OFF ; :MVE3::TE
; ' i
, %? . ..,

... Scr.* 33
12 \ X u n - t line s t a c k e t - r - o r - - c n e c k i n c 2 4 J u n 1 3 6 CWS

2 : PCIROMETEH' i rt -- >
3 DUP CISCII 7 = i F : PURRMETERS @ + ' TAGE ELSE
4 DUP CISC.?I n = I F : PCIXilMESERS O + ' TXi:E ELST1
5 DL]? RSC.:: d = i F 2 PCIRRMETERS @ + ' TRUE ELSE
6 D;iP Q S C I I - = I F CII.:TPL!TS PCIRRMETERS ' -;WE ELSZ
7 DUP CI5CI.i 1 = l ? (l e a v e) FFIL.SE ELSE
8 TQLIE QHURT" S t a c k ~ ~ c t ~ l r - e e r r o r " THEN TSEN TgEN 'iiEN T:iEK
3 SWRP DROP :

a way of checking the stack for correct i P
, .

output at the end of a word as well. It is . : S 7MPUTS DFF DUTPUTS OFF '&PU7% PaRRYETERS '
HEGIN RL WORD i + C@ WIRCIMETER' NUT UNTIL

considered good style to include a stack
diagram with each word definition, so
why not use these to automate stack error
checking?

The word that does the job is (S. The
beginning programmer can include a stack
diagram after the name of a new word, and
have the computer use it to figure out the
number of inputs and outputs the word
requires. At run time, if the expected
number of values differs from the actual
number, an error message is displayed.
Stack errors are caught before they do too
much damage, and the programmer has
some idea of where and why the error
occurred. The immediate feedback is
helpful to beginning Forth programmers.
The teacher just has to be sure the student

1 3 INPUTS P LCUMPIIE? LITERCIL UUTPUTS a COMPILE^ L I T E R R L
: 4 :COMPILE? IN/OUT ; IMMEDICITE . zz

L ,,

S c r # 54. ...
W \ R u n - t l m e s t a c k e t - r - o r - c h e c k ~ n g , e x a r n u l e Z Z J u n B 6 CWS

2 : :Em DS r:: I-I~? -- n 3) + :
3 \ War-ks f l r r e l i a t l ea s t t w o n u r , i b e r s a t - e o n t h e s t a c k a t e n t r y .
4
5 : B i l D (S n l n 2 - - 1 + :
6 \. E l v e s r u n - t l m e e r r - c r b e c a u s e e x u e c t e t i n u m b e r - of o u t n u t s a r e
5 \ n o t ec.ua.1 t r , a c t u a l n u m 3 e r ,:SF O U ~ D U ~ S .

8
9 : 3RDD S 1 2 - - 3 1 D+ :

\ E x o e c t e d i n o u t s a n d o u t a u t s a r e a o u b l e number ' s .
: :; . -. .L : EOUBL. i S n t yo2 -- ?) = :
1 3 \. E x o e c t e o O U ~ S L I ~ 1s a f l a n . b u t -ULI?PUTS O Y Z ~ Y c h e c k s t h e
:4 \ r r ~ l r n b e r o f : k t e m s or, the s t a c k , r ~ t t h e i r - v a : u e s .
15

Forth Dimemiom 32 Volume IX, Number 1

uses a stack diagram with each definition.
The two words ?INPUTS and

?OUTPUTS are similar to ?ENOUGH
and could be used explicitly. But the
point of this is to save beginners from
making too many errors. By the time
many beginners would become comfor-
table using these additional words, the
need for them would have passed. That's
why we need IN/OUT to make
compilation of the error checker more
automatic. They could also be used alone,
much the same as ?ENOUGH is used
now, but that is still asking a lot from
the beginner. In the accompanying code,
you will notice that ; is redefined to
compile ?OUTPUTS automatically.
The input to ?OUTPUTS is held on the

return stack at run time, to avoid
interfering with data on the parameter
stack. Note also that the right parenthesis
ending a stack comment must be preceded
by a blank, or there will be a "stack
picture error."

The final step is to let the stack picture
words themselves execute IN/OUT,
compiling ?INPUTS and ?OUTPUTS.
(S initializes the variables IN-PUTS,
OUTPUTS, and PARA-METERS to
zero, zero, and INPUTS, respectively.
These variables keep tallies of the number
of input and output parameters specified
by the stack diagram. Then a loop is
entered that reads the stack comment,
adding the correct number of bytes to
INPUTS, switching to OUTPUTS

when a -- (double hyphen) is encountered,
and tallying those until the) is seen. As
here, only n, d, ?, -, and) are recognized
by the stack checker. Any other initial
character causes a compile-time error.

Please don't get me wrong: I'm not
suggesting that standard Forth programs
should include run-time stack checking. I
do think it is a good, temporary crutch for
people who are frustrated by frequent and
mysterious Forth system crashes. It also
promotes good style, by encouraging the
programmer to use stack diagrams to
declare the inputs and outputs for each
word they define. The cost in memory and
speed are too great for anything but
educational purposes.

MACH 2
I

Multi-tasking FORTH 83 Development System I

Visit the WI 2 Product Support RoundTableTM on GEnieTM I!

MACH 2 FOR THE 99.95
MACINTOSHTM

I

features full support of the Macintosh
toolbox, support of the Macintalk
speech drivers, printing and floating
point, easy I/O redirection and
creates double-clickable, multi-
segment Macintosh applications.
Includes RMaker,disassembler,
debugger, Motorola-format (infix)
68000 assembler and 500 pg manual.

MACH 2 FOR THE OS-9 495.00
OPUUPTING SYSTEMTM
provides position-independent and
re-entrant execution and full support
of all 0s-9 system calls. Creates
stand-alone 0s-9 applications. Link
FORTH to C and vice-versa. Includes
debugger,disassembler, Motorola-
format (infix) 68000 assembler, and
400 page manual.

MACH 2 FOR
INDUSTRIAL BOARDS
is 680x0 compatible, provides
68881 floating point support, and
produces position-independent,
relocatable, ROM-able code (no
target compilation required).
Includes disassembler, Motorola-
format (infix) 68000 assembler,
and 350 pg. manual.

VISA/MC accepted. CA residents include 6.5% sales tax.
Include shippinglhandling with all orders: US $6; Canada $8; Europe $25; Asia $30

RoundTablc and GEnie are registered trademarks of the General Elccvic information Services Company.

Volume IX, Number I 33 Forth Dimemiom

PERPETUAL
DATE ROUTINE

A perpetual computing problem
has been to come up with a perpetual
calendar. The solution of W.C. Elmore
from the American Journal of Physics is
easy to program in fixed-point, double-
precision Forth, the language automat-
ically taking the required integer parts.
But first, a little background to the
calculation.

The kind of year you and I are most
interested in is defined in terms of the
seasons. Unfortunately, the lengths of the
four seasons and the days are not evenly
divisible. Julius Caesar defined the Julian
calendar, with the astronomy of his time,
to include a leap year every four years. By
1500 A.D., the calendar was ten days off
from the seasons, so a calendar reform
was pushed through by the prominent
leader of the day, Pope Gregory XIII. He
decreed that Thursday, October 4, 1582
would be followed by Friday, October 15,
1582, with a new set of rules for leap
years:

year14 evenly: leap year
year1100 evenly: not leap year
year1400 evenly: leap year

These rules are exact enough for the
purpose. Protestant countries were less
enthusiastic about the Pope's edict,
England finally ruling that Wednesday,
September 2,1752 would be followed by
Thwsday, September 14, 1752. During
the accompanying English riots, the
people cried, "Give us back our 11 days!"

For a perpetual calendar, we define a
unique day number for each day, con-
secutive calendar days having consecutive
day numbers. Elmore has calculated the
following:

ALLEN M A Y - S U P E R I O R , WISCONSIN

Julian Day N = Int[365.25y] +
Int[30.59(m-2)] + d + 30

Gregorian Day N = IntI365.25~1 +
Int[y/400] - Int[y/100] + IntD0.59(m-2)l
+ d + 3 2

assuming that January is month 13 of the
previous year, and that February is month
14 of the previous year.

These two formulas give consecutive
days across Pope Gregory's calendar gap.
The 0.59 (month) fraction is any value
between 7/12 and 6/10.

One calculates the weekday from:

W = (N+3) mod 7
with 0 = Sunday, 1 = Monday, 2 =
Tuesday, ..., 6 = Saturday.

Accordingly, screen 77 presents the
primitive Forth coding to find the
Gregorian day and weekday. Note that the

SCR * 77
0 (* 077) (perpmt calendar p r i m l t l v e)

1 FORTH-83
2 (yrar\month\day --- UD)

3 : GREGDAV
4 ROT (m\d\y) (short year c o r r e c t)

5 DUP 100 < I F 1900 + THEN
6 ROT (d\y\m) (s p e c i a l , prev year)

7 DUP 3 < I F lZ+SWPIP
8 1- swap THEN
9 2- 3059 100 U+/ (month c a l c u l r t ~ o n)

10 ROT (y\U\d) (day c a l c u l a t z o n)

11 32 + + (y\U) 0 (y\UD) ROT (UD\y I
12 DUP 100 1 NEGATE SWAP (UD\N\y)

13 DUP 400 1 ROT + S->D ROT (UD\D\y)

14 3652s un+ l o o un/nnoD (UD\D\mod\UD)

15 ROT DROP D+ D+ : (UD)

16
17 (UD --- mod) (gregorian-day --- 0-6)

18 : WEEKDAY 3 0 D+ 7 UM/nnOD ZDROP ;
19 (O=Sunday, l=Plonday, ... , 6=Saturday)

2 0 :s
2 1
22 W.C.Elmore, Am. J. Phys. 44 482 (1976)
2 3 (May issue) adapted by A l l m Anway

program itself corrects for January and
February monthlyear numbers. One can
easily calculate the number of days
between dates by taking the difference of
Gregorian days. UM/MOD I have re-
named UM/MMOD to show more
consistently the beginning and ending
results (UD1 U2 -- U3 UD4), where U3
is the remainder and UD4 is the quotient.
Here is an example of program operation
for New Year's Day 1985:

85 1 1 GREGDAY D.
will print 725010

1985 1 1 GREGDAY D.
will print 725010

725010. WEEKDAY .
will print 2, for Tuesday.

I encourage the reader to take this
primitive further, and to write an actual
calendar.

Allen Anway is a member of the
American Association of Physics Teach-
ers, and a computer coordinator for the
University of Wisconsin at Superior. His
eldest daughter is a third-generation
physicist.

I I

Forth Dimensions 34 Volume IX, Number 1

CALL FOR PAPERS
for the ninth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 27-29, 1987

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California, USA

Theme: Forth and the 32-bit Com~uter
Computers with large address space and 32-bit architecture are now generally available at
industrial and business sites. Forth has been installed and Forth applications programs are
running on these computers. Graphic displays and applications are currently demanded by
users. Implementation of Forth and meeting these requirements is a challenge for the Forth
professional. Papers are invited that address relevant issues such as:

Large address spaces in 32-bit computers.
The graphic display, windows, & menu handling.

Relation to operating systems, other languages, & networks.
Control structures, data structures, objects, & strings.

Files, graphics, & floating point operations.
Comparison with 16-bit computers.

Papers on other Forth topics are also welcome. Mail your abstract(s) of 100 words or less
by September 1, 1987 to:

FORML Conference
P. 0. Box 8231

San Jose, CA 95155, USA

Completed papers are due November 1, 1987. For registration information call the Forth
Interest Group business office at (408) 277-0668 or write to FORML Conference.

Asilomar is a wonderful place for a conference. It combines comfortable meeting and liv-
ing accommodations with secluded forests on a Pacific Ocean beach. Registration includes
deluxe rooms, all meals, and nightly wine and cheese parties.

Volume IX, Number I 35 Forth Dimensions

HEADLESS
COMPILER

DARREL JOHANSEN-REDWOOD CITY, CALJFORNIA
m

L ike many Forth metacompilers,
this system allows the generation of
headless Forth code. Headers are used by
the Forth outer interpreter when searching
the dictionary. Once a word is compiled
into a new word in the Forth dictionary,
only its CFA (code field) and its PFA
(parameter field) are required for its
execution. Its "head" - the LFA (link
field address) and NFA (name field
address) - are not used except for future
compilations or for direct execution when
encountered by I N T E R P ~ T in the ter-
minal input buffer or when loading a
Forth screen.

For words that may only be needed a
few times in the definition of higher-level
words, there is no reason to have their
heads (link and name fields) clutter up the
dictionary and take up valuable space. On
the other hand, it may require more space
to define a new set of words to "behead"
them than would be gained by stripping
them of name and link fields.

The ideal headless compiler could be
loaded into any Forth system, could
compile code with or without headers,
then could be forgotten when it is to
longer needed.

This metacompiler does all these
functions. It uses standard Forth-79
syntax, and has been implemented for two
different types of Forth dictionary
structures: the Forth PADS system and
the MVP-FORTH system for CP/M.
With little or no modifications, it can be
mansported to any Forth-79 system.

The above two Forth systems differ in
two ways that must be accommodated by
the headless compiler. First, the LFAs of
the two are in different places. In the
PADS version, the LFA precedes the

NFA to speed up dictionary search times.
Also in the PADS version, words below
a certain point in the dictionary are
searched before the rest of the dictionary.
In the PADS version, virtual files are
used in high memory and can cause
serious system crashes if high memory is
used in a scheme like this without paying
extra-careful attention to the way virtual
utilities and development aids use the
same memory areas.

The headless compiler resides in high
memory. It consists of three main
sections:

1. The code for the new compiling
words.

2. Space for storing the link and name
field address that must be "pruned."

3. The headers for the headless words.
The use of the sytem is straight-

forward, and shouldn't cause any unusual
side effects as long as a few things are
remembered:

1. There are two areas of memory
being used, both growing upward.
Caution must be maintained with large
systems so that the main dictionary does
not creep up into the headless compiler.
Also beware of using utilities in virtual
files (such as DUMP) which may over-
write sections of the compiler in high
memory. The editor cannot be used, nor
can the assembler, programming aids, or
utilities in the virtual files without a
thorough understanding of the sections of
memory which could conflict with the
headless compiler.

2. The system must be pruned and
unpatched before it can be saved. There

, cannot be any links to words in high
memory beyond BERE.

, 3. The system cannot be simply

stripped back by FORGET before
pruning without careful consideration.

4. The defining words CREATE
DOES> do not function with the
headless compiler and should be avoided
or redefined to accommodate their special
compiling functions.

5. A definition cannot be made that
uses [COMPIUe] to compile any of
the new defining words (e.g., colon, tick,
constant, variable, etc.). If these are
required, they must be redefined as a
different word or patched into the words
they are compiled in (like forward ref-
erences in a metacompiler) at the end of
compilation.

Most Forth metacompilers require
that the entire dictionary be recompiled to
get the advantage of a system with both
heads and headerless words. If a system is
to retain the basic Forth dictionary and its
compiling words for the user, then very
few, if any, of the low-level words will
be removed from the dictionary. Only
words that are to be taken out of the
application for more efficient use of space
and for security of the application code
need to be stripped of their headers. This
doesn't have to involve a new meta-
compilation of the source code. In fact,
the headless compiler can be invoked a
number of times in the generation of the
application. At each stage, a usable,
extensible Forth system exists. The
headless compiler might be used in a
modular fashion, as subsystems are
developed. These subsystems may be
referenced later by a single word. The rest
of the words in the subsystem probably

, won't be used by any other subsystem
and can be stripped of their heads once
they are compiled. A simple tool like a

L I I I

Forth Dimenswns 36 Volwne IX, Number 1

fancy VLIST can list the CFAs of all
headless words before they are pruned, if
they are required in the future for some
purpose, they can be executed and
compiled even without their heads.

Compilation Steps
1. Set initial himem so there is

enough room for it to grow without
crashing into the disk buffers or other
Forth stuff kept at the very top of
memory, but far enough above the main
system so words defined in the main
dictionary won't creep up into it.

2. Load the headerless compiler
screens.

3. Load your application code, editing
the words HEADS-ON and HEADS-
OFF in the screen files to enter the com-
pilation mode you desire. Normally,
heads-on words are words that will be
needed after this compilation process,
either directly by the user in the
application, or indirectly by words that
will use them after the headless compiler
has been pruned. The first and last word
in this application should have their heads
on unless you are very careful in pruning
and unpatching. Also, don't recklessly
FORGET the last word with heads above
the headless words - this can mess up
Forth. Usually, the word MEND is
included as the last word of the
metacompiler, just to avoid this
situation.

4. When the application is loaded,
type HLIST to get a printout of all the
headerless words and their CFAs, in case
you need them later.

5. Type PRUNE to unhook all the
heads of the headerless words.

6. Type UNPATCH to unhook the
new INTERPRET and re-establish the
normal dictionary search order.

7. Enter' META NFA 'MEND
LFA ! to cut away the headless
compiler. META is the last word defined
before the headless compiler was loaded.
MEND is the last word in the
metacompiler and has a regular head.

8. Type FREEZE COLD and then
save the system.

Limitations
DOES> will not work. A new

version of DOES> must be generated in

Hi Memory
cfa =fa- ptr ' f a

nfae

1 word4 cfa- ptr :...scfa
4 nfa

l f a - pfa
1 cfa

=fa-ptr*........... I n f .

nfa 4 1
*If.

...... ... l f a 7
1.. - ..-

I Pf*

y l f a I

l inks v h i l e compiling

Hi Memory
haadless compiler
last word's nfa

heedless oomp
first word's ifa

Lo Memorx

word6

3 word5

] word4 cfa

L;: j word.

rlfa

l i n k s af ter pruning

Low Memory

I l i n k s v h i l e campil ing l i n k s a f te r unpatching

!,C:F: # I
1:) (I-IE.AUL.~;:<CI L:I:IIIPII.EI': 1 +* I LIM 1: t::il-:rl~w- i
1 FIIRGET T A H I X l - i 9s t r I p t ihc k 1-6, tr- r ,;rs t e r n)

I -? FORGET-SYS get a 1 1 ,vII-~.II&~ 's.,,-,t.~~~ns C,I.I~ I

.? : HL.IS1 I C O M P l L E I ' L)IIF' 14F:S .-: 1 F X)HOF' (: : lJNl~): l I+ 12 {::I $it: I\JV+; 1-ti& PI
CF.: F'Fcl -P I F i [..F AI;t.' NAME" Cf? Y E G 1 N 1.1 ' 4 F [ELDE; DUP F.F-A 2.- ULIF F I E L D S . + I:]I.F i (JP 1s s w , ~ LI FIFI u:.:

6 @ F1EI. I)S 4 ' F'IEI.UR P I F I I I I F , F-1tL.t)S '2t B b I).!:: FFIL-:L:I,G 4
7 8 1:) 8 13.R 4 5F'l iCE:i~ I D . CH 1-HE14 PFli- I Fi-I I+ T)l.lf' C L,F'II(.IDY I? I
t3 L I 1-ERkL. I J F'C;IISE " T E R M 11'd/lL. O f i I IF I I 11. DI::Ol" :
0
/-l
11 UL I S T rrxl 1 r i t g t 1i11t t t ~ e l l r s t c , f wt-wd=, I:,I:> ka~.t~~>acI,=cl with t t 8 f ? ~ t
C c t ~ ~ - l - e n t P E A - - F ~ - F ~ artd t h e ? r C F i l ' 5 i n t h e m a ? n rl i c t r?l-&;rr-:,. Thl ri
I1 ~ i l ~ d r ~ - 5 6 can ttn t l s e c l l a t e r icsr- c o n l p l 1 irlq ,2r ~ : e c ~ t t ~ r , q thi=
E: h e a d 1 e s s ~,rnr-d. : -:-: EXE[I117E clr- :.: .,.: .,
F t i 1 1 8 1 1 ,s a c l ~ q p t r.d f r r.,nr d o c ,.rrnpi I i r i q 01 I :< I f 11.t F'Uli!;

~~~~~ 

Volume IX, Nwnber 1 37 Forth Dimensions 



the metacompiler, if it is required. 
FORGET will not forget gracefully 

through the headless words. Use with 
caution. 

' (tick) will work in the compiling 
and execution modes, but it cannot be 
compiled in definitions like: 
:TEST. . . [COMPILE] ' . . . ; 

This is generally true of all new 
defining words, since the CFA of the new 
word would be compiled into the 
definition. This would crash the system 
after the heads are wiped out. 

CODE is not implemented for head- 
less words. 

CP/M on IBM with Baby Blue 
Since the memory space available for 

CP/M (Baby Blue CP/M board on the 
IBM PC) is greater than for normal 
CP/M systems, this extra memory can be 
used by the metacompiler. The meta- 
compiler can be compiled in a lower part 
of the Forth system, then saved as a 
virtual file, reloaded when needed, and 

stripped away after headless compilation. 
The following steps are required: 

1. Set the new DPHEAD to 
LIMIT, and disable the stack check 
word ?STACK with 
' EXIT CFA ' ?STACK ! 

Then compile the metacompiler as 
normal. 

2. Save the metacompiler as a virtual 
file by figuring out how many 1K blocks 
of memory it uses (usually between one 
and two) and save it to some unused 
Forth screens with: 
HEX LIMIT N BLOCK 400 
CMOVE 
LIMIT 400 + N 1+ 
BLOCK400 CMOVE 
(where N is the first screen) 

3. Then do the normal PRUNE, 
UNPATCH, and ' META NE'A ' 
MEND LFA ! to unpatch i t  

4. Restore ?STACK with ' SP@ 
CFA ' ?STACK ! 

5. Now the virtual file can be moved 
into memory, used, and then unpatched 

Bryte - 16 
Click Software - 18,19 
Computer Cowboys - 9 
Dash, Find & Associates - 10 
FORML - 35 
FORTH, Inc. - 8,4  1 
Forth Interest Group - 21-24,44 
Harnpton Corp. - 10 
Harvard Softworks - 7 
Inner Access - 38 
Laboratory Microsystems - 1 1 
MCA - 25 
MicroMotion - 26 
Miller Microcomputer Services - 28 
Mountain View Press - 39 
Next Generation Systems - 6 
Pal0 Alto Shipping Co. - 33 
Prentice-Hall - 13 
Software Composers - 2 

Get hands-on experience using FORTH for control 
applications with your own Super-8 20Mhz controller 
that you can take back with you. Benefit from the 
experienced teachers who have taught FORTH since 
1980 to employees of IBM, HP, EG&G, ATARI, 
MARATHON, SANDIA LABS and many other 
companies. This course is suitable for beginning and 
intermediate FORTH programmers alike. No 
prerequisites necessary. 

DATES: JUNE15-19,1987 9:OO-4:00 
JULY 27-31 , 1987 9:OO-4:OO 

FORTH WORKSHOP Instructors Gary Feierbach and 
Paul Thomas, co-authors of "FORTH TOOLS and 
APPLICATIONS" have tauaht FORTH worksho~s since 

PRICE: $850 Includes all materials, 1980. Gary and Paul have wrttten numerous FORTH 
comp~lers and ~nterpreters and many large FORTH 

textbook and Super-8 FORTH controller. applicatrons. 

I I Call or write for details on the workshops at (4 15) 574-8295 

A Inner Access 
&I 1 155-A Chess Drive. Suite D, Foster Citv. CA 94404 (41 5) 574-8295 

I I 

Forth Dimemions 38 Volume IX, Number 1 



1:) i HECiDlLL-'!iC; 1::13MPlLFfi 1 EIM) 
1 VARIGBI..E IW1,G- F'TR !.I 1 WlC;-.P.l F< ' I p t.1 at c:~.~I.-~L'I-I t t k r l l  q 1 

;' CREATE TWIGS 28:11l liL.LOT ( t n b l f !  o C  t w ~ ~ : ( c  t i -? bc. t t - i rnn# f? r l )  

1 1 1 1 F 12 1 1 ,  ( - _ r c j l - )  ,; [zi-t i:trr-rrrr,l t r ~ g  :i!:ldr I 
.J I F  . "  t - w l g  r - n G . b l l .  a v  ABCIRT TI-1E:N t LIPL)&l I:- ; 

7 : 
8 : 
9 : 
A :  
E l :  
C 
I) : 
E 

r: J c a r  t d h l  e I 

l : < t r r f > r ~ t .  tt,41q) 

1 
2 : LJNt'iATCH ' 1NTERF'RET :2- ( rzf a )  ' 1FITERPFiEl ' 

FORTH ' - F I N D  10 + ' C:LR-TWIG i F-k E:? j SG TW I[;-Pl-h ' : 
5 i r e s t o r e  t i1  n o r n l i t l  1NrERPRET.  5e.t t.AI)!S r l l l z t  s ~ . , $ r ~ h  i ~ r r J e t - )  
-3 

6 : PHIJNE 
7 E1E:GIIN 
H 

! c1.1t- GtL*:l~,/ t 1eac is j  
( g e t  n f . 3  o.f 1ar;t ~ r e g t t l a r -  I - t ~ a t t i  
i raet ILFG I-)t I,@..: t r r r c ] ~ ~  1 a r  I t c a t 1  I 

THEN ( e lnd  c,( t ~ ~ t C f c + t - . ' i  
k R O R T W  T w i ~  I.*!% 12r u-c l r"  ( c r - r  ~ l - ~ l . )  
i s t . o r - o  : i r l ? o  L F A  o f  n e , : t  I . - .  . . ~ L I J  i+~,- 1-4eact ) 

( rnclve p 1 3 i r a t t . r  up t i r  I # < ?  : t  f l i ? L ~ l i  
( c . @ n t l n u c  u n t ~  L f i n d ~ n g  a 

SCR #:;J 
(:I ( HF.ADL.EGS COMPlLEF: --5 J D I I  ) 
1 
2 : C:FIEATE-HEGD '. 1IV ~? , ,SETHE~ID F I R 6 1  IVCI -- HERE. IJ, - I F  Cr i  7 E M I T  . c : l o s e  t o  b u f - f ' : _ C R  ! spat+--. a v t a l  I at11 e " i  

3 THEN Lf>TEST WL WOGD D U P  I +  LI,? o := 
I F  -2 1)F +,!, $ E L S E  ! I  

6 THEN ATJORl- nu1  1'"" @UP IXCIIJIEXT IP I,? I .d.Fll. l@' 
7 IF I)I)ROP WARNING la 
0 1F CH UIJP I:CJ\UNT TYPE SPACE . "  h n a t i l a s s . n o t  1.1r11qcle " 1tik1'~l 
9 T HEN DI.1P CB 
A WIDTH M I N  1 +  fAL.L@l- DIJP H!:l TCIGGLE HERE J - 
8 80 1-C)GGLE DPRODY 12 . C:I.!RF'ENT (? SE: TBODY 
1: I N  la !;WAF - -  i . - I N  ' : 

1 D :. 
i n i l I v e  ~ n p u t  s t r e a n ,  , a r a u n d  I - I F ~ L ~ )  

E 

SCR # 6  
( HEADLESS COMPILER -6 IEIM ) 

1 1  2 -  I c f a )  I3 CONSTANT *CONSTANT* ! Get. c f a ' z ,  of ) 
2 ' DPHEAD 2- I? CONSTANT #VAR I A B L E *  ( r e g u l  w o r d s )  

D l J I T  2 -  W CONSTANT *COLON* 
4 ' TW1C;S .L-- 13 1:ONSTfINT *CRENTE* =- 

C:ONSTANT HEADLESS? I F  : I N  4 CREPTE-H5AD 
*CONSTFINT* E L S E  CONSTANT THEN . 

V A R I A B L E  HEADI-Es~? 1F . " I N  I2 13REA.TE--HECID 
xVHHIABL;E* 111 EL.SE V A R I A B L E  THEN : 

: SPU CSF. ~ ~ E A D L E ~ S -  IF :-IN 13 CREATE--HE. (~  
*COLOl\lx- SML!DGE 1 E L S E  ' THEN . 

CHEAl -E  HEADL.&SS? 1 F  : - I N  4 C:R&ATE-HEAD 
*CREATE* ELSE CREATE THEN 
HERE NF A ' -FIN11 11.1 + i p a c l s  p a t c h  f o r  

SCR #7 
il ! HEADLESS COMPI&EY -7 I B M  ) 
1 : T I C  LC(IMPII.EI7 . I M M E D I e T E  
2 : - F I N D  !:I= ABORT" nt fnd DROP TCIP Q OVE-:R 1.1.; I F  

2-  la 2 + THEN CC~MPILEI LI TERAL. : IMMEDIATE 
: .: INTERPRET BEI;IN - F I N D  ( I n  dictionary") 

a I F  STATE. B a ( c o m  i l l n  7) 
b I F  5- i c f a )   TO^ Q QVER Uc I F  12 THEN 
7 E L S E  .:--- ( c f a )  TOP I? OVER U. I F  I?! THEN 
8 THEN 
9 E L S E  HERE NUMHER D P L  12 1 +  i then t r y  t o  p u t  
A I F  C;OMP I L E  I D L  I TERAL. 
El E L S E  1)RIIP CCOI'IP?LELI L I .TFRAL THEN 
C THEN ?S'TAC:b: AI3AII'J HERE TOP ! 
D T I C  . I N T E R P R E T  ..- i c f a ;  T I C  IINTEFIPRET ( 1RM 
E i no Inew w a r d s  c a n  be  c a m  i l e d  into m e t a  s y - t e r n  f r  
F HEADS-@N SETBODY I:HE-:ATE MEND i o p t  t o r ~ a l  i n a r t e r - 1  

SCR # t l  
i I i I-iE illl)LE!;S COMF:'1 L IEFI' - 1 r +CF'II S'{Sl-F:lI+* , 
, OF:GE T l.Ar-:C,EIT ! s t l - r p  t ~ n ~ r l  oi.11,- s y s t e m i  

t: K I : ' -  ' '-':?T(,C'l 1 ; 1 rr!:l t.tt.l*= f i . a r  L , +  t c h  1 

2 CF(Eii1-t 1.1E.TCi J? ALLIJT  ,-apt I I C ~ I , S L  rn.:trl eAr ! 

C, ( HERE: L l M 1 1  UF' ' ) ( + o r  b i t t c h  w ,  b;rL>.,, t q lue  I a r r l  i n  I I1M) 
7 HERE &,):I# I ! ,  DI-' 1 < f u r -  r ~ ~ q ~ b l  ,:,I ~:-I:I .'IT, '>,. ,z t ern> 
n 
4 iltiF: 1 ilULE IiPHOIr' i  UF-'Ellll? i . @I-'F<ll l iY L I y l ;  I-1E Tfi 1 

f3 I l l  I '  1 ' I  ' ! 1.) = w i h e o d e  l - w / r ~  tiead.-,I 
1.1 ~ l 1 E I . l  ' H I  'Vi~F.:[r>l-;LE 1-CIP I I 
L. 
I) a I C:IIP.J!-;T~>N r I.IE-,:DLE!;S~~ 
E- ... 

F 

Volume IX, Number I 39 Forth Dimension 



without recompiling every time. 
6. One additional feature is added in 

this version. The NFA of the last word in 
the metacompiler must be saved so that 
the LFA of MEND can be patched in 
when it is reloaded. The word META al- 
lots a couple of extra bytes to save this 
address. 

Here is a list of newly defined words 
and their functions in the headless 
compiler: 

HEADS -ON ( -- 1 
Starts the normal compilation of words 
into the Forth dictionary. 
HEADS-OFF ( -- 1 
Starts the compilation of headerless words 
into the Forth dictionary. 

CREATE -HEAD ( -- 1 
Creates a head in high memory for a word 
which will be headless in the main 
dictionary. 

VARIABLE ( -- 1 
Creates a variable without a head if 
HEADS-OFF has been previously set. 
Otherwise, creates a normal variable. 

CONSTANT ( - - I  
Creates a constant without a head if 
HEADS -OFF has been previously set. 
Otherwise, creates a normal constant. 

( -- 1 
Creates a colon-defined word without a 
head if HEADS-OFF has been 
previously set. Otherwise, creates a 
normal colon-defined word. 

CREATE ( -- 1 
Creates a word without a head if HEADS- 
OFF has been previously set. Other- 
wise, creates a normal word. 

1 (-- pfa) 
Gets the PFA of the following word in 
the input stream. Does CFA @ 2+ if 
the word is in himem. 

DPHEAD ( -- ) 
Variable containing current position of 
DP in himem. 

DPBODY ( -- 1 

SC F! # ' )  
'L) i 1iF:AUL.E.SS I~OI ' IF ' lLEH - 2  1:'PPI SY!+TE.II ) 

$ VfiF:I6+ElL.L'. F I E L I I S  b Al. LOT i ~;tor .at ; lc .  i o t -  h l  1st) 

I I I I - T  F'F fi NAME'" CR (11 F 1  F1-1.)5 1 1::OIITE X 1 I? is ., Pti 'OIN P F A  El?$' DLIP FrIELI,B 4 + ' 
tz ' I.. Cd I- 1 EL I?:; .+ I TOF' II CI'VER 1.1- F I E L l X  I 

FIELIE P J F  FIEILDS 2+ 13 b D . R  F I E L D S  4 + P CI 8 I).&: 4 
8 SF'ACFS DLIF' NFIJ I D .  1:;R 1 HEN 
7 4 - P r)l.lF [ n P n o n v  12 I L. ITERAL 11.' 
Ii F'AIJSE "TERMlNAL OH l J N T I L  DECIF' : 
B 
I-. 

1 
:! LIOF:IAHL E TWIG-PTR ( p t r  a t  ~ : . ~ . ~ r r v r ~ t  t w l q )  

CRFATE IWIGG 10r:l AL.LCIT ! t a b l e  of t w i c j ' z  t o  b ~ '  t r l r r ~ n ~ e d )  

f! : - ' -T IJ IR, , l~W16-PIF :  Q 1:ILIP E G  I - - a d r )  
,' I F  . t w r g  r - e f .  b l  l: ov ABORT 'THEN 
I5 
<7 : C L H - - - l W I G  ,:I 1WIG-PTF: ! l W l I j S  IrICl il IFILL : 
t l  C L R - T W I G  I c l e a r -  t a b l e  ) 
I-; 
C: : 1 - W I G - T B L '  11W1'13 ' 2 TIJIG-I'TF: -1.' : ( s t o r e  c ~ . t r r e r l t  t l , ~ i c j )  
I! 
E : LII\IPfiTCIi ' .lNTEI-:PHE.l.- 2- ' I N l E R P R E I  ! l;L.Fi-TIJIG i 
F - - ;  

S13F: #li 
5.) ( HEADL.ESS COMPILE:F( -4 CPM, 
1 : Sl iT t iEAD HE:REI DF'BODY ' DPHELD P DF' ! : 

-- . . SETEIIJDY HERE DF'HEAI:! ! DPBCIDY 13 D P  ' : 

5 : HEADS--ON 111 ' HEf+L)LESS'-' ' H / B  I? I:.,= I F  1 H,'EI ' 
$ t iEHE TW1l;--THL ! THEN : 

I3 : HLHDS-OFF 1 ' HLADILESS" ' H / B  I3 I F  O H i R  ' 
i L A T E S T  TWJG-THL. ' THEN : 

L> 

k : CREHTE-HEAD . I N  13 SETHEAD E L  WORD 
13 DIJF' CP CI I D11-1 @ M I  I'd I + AL.L OT 
D DLlP YO TOGGLE HERE 1- 8l.l 1IJGGL.E 
E: I,7ATEST ( c p m  l f a  h r r e )  DPEIODY 13 , CLIRRENT 13 ! SETBOD\, 
F .,.IN a r;&np -- + .;.~pd I : .. 

SCR #C 
1.1 i HE-:GDL.ESS 1:OMF-'ILER .-.5 CPI'I PRI.INE) 

PRLJNE O 1-WIG-PTR ' 
R E G I N  +TWIG @ 

+TWIG -7.1- 12 
DUP 0:- I F  E X l T  
DIJF' Cs 1 F  AND + 
DLIP P TOP i? IJ.. 

€3 I 

9 4 TWIG-PTR 4 - '  
A A G A I N  : 
El 

( ( j e t  n f a  of 
! g e t  ILFA oC 

THEN 
1 + ! t r a v e r s e  
ABORT" T w i g  r e s  e r r o r  

( s t o r e  l n t o  LF'A o f  
( m o v e  p o i n t e r  

1 a s t  I- P C J L I ~  a r  I - i e a d i  
n e x t  r e g u l a r  h e a d )  

! e n c l  13f t 3 u f i e r ' - ' )  
n a m e  f i e l d  t o  l f a )  

. , a  

t r e g u l a r -  h e a d )  
t o  n e x t  i l e l d )  

SCK # D  
(1 ( HEADLESS COMPILEG -b l3PM ) 
1 1 2 -  ( c f  a )  13 CONSTANT *CONSTANT+ ( G e t  c f a . 5  o f  I 

2 ' DPHEAD 7- 8 CONSTANT * V A R I A B L E *  ! r e g i t l a r   word^.) 

n U I T  2- 8 CONSTANT *COLON+ 
TWIGS ,- P CONSTANT *CREATE* 

6 : CONSTANT HEAL)LESS" I F  ; I N  Q CREATE--HEAD 
7 *CONSTANT* E L S E  CONSTANT THEN : 
8 : V A R I A B L E  H E A D L ~ S ~  1 F  : ? I N  13 CREATE-HEAD. 
9 * V A R I A B L E *  0 EL.SE VAR1ABL.E THEN 
A : : SP@ CSP ! HEADLEGST IF -IN ~a CREATE-HEAD 
H *COLON* SMUDGE I E L S E  ' THEN , 
c : CREATE HEADL~SS? IF ..IN IS CR~ATE-HEAD 
D F: ,. *CREATE+ . EL.SE CREATE THEN . 
F 

# E  
( HEADLESS COMPI&EF --7 CPM ) 
: T I C  CCCIMPILEI . I M M E D I f T E  
: - F I N D  (:I= ABORT" nt f nd DROP TOP 

2- 2 +  THEN L C O M P I L E I  L ITERAL.  , 
: < I N T E R P R E T  H E G I N  - F I N D  

I F  STarF @ r - . - . . . . - - . 
I F  2- TOP Q OVER U': I F  8 

ELSE 2- TOP 8 OVER ur IF 12 
TUFN 

i o l d  t i c l )  
P OVER U. I F  
I M M E D I A T E ,  

r i n  ( dictionary") c o n t p i  1 ~ n g . ' )  

THEN ( U i f  h e a d l e s s )  
THEN ~ X E C U T E  ( ditto) 

- 
9 ELSE"FERE NUMBER D P L  Ca I +  ( then t r y  t o  p o t  i n  as n u m b e r )  
A I F  C C O H P I L E I  D L I T E R A L  
H E L S E  DROP CC:OMPILEI L I T E R A L  THEN 1 no s t a c l :  c h l r  I ~ r )  
C THEN ( ?STACK)  A G A I N  HERE TOY ( h a h y  h l u e  o n  i h m )  
D TIC z,  INTERPRET DUP 2- ~ ~ T E R P R E T  NFA META 2+ 1 

E ( no n e w  w o r d s  c a n  he c o m p i l e d  i n t o  m e t a  s y s t e m  f r o m  h e r e )  
F HEADS-ON SETBODY CREATE MEND 

Forth Dimenswnr 40 Volume IX, Number 1 



Work at the 
"cutting 
edge"! 

Join the programming team at 
FORTH, Inc. using our powerful 
multi-user polyFORTH software to 
develop challenging real-time appli- 
cations such as: 

A400-computer network con- 
trolling an entire aiport 
A multiprocessor control sys- 
tem for a major automobile 
manufacturer 
The cell controller for a semi- 
conductor process cell 
Expert systems for real-time 
diagnostics 

We have permanent, full-time pro- 
gramming p i t i o n s  open at several 
levels, at our Manhattan Beach head- 
quarters. Send us your resume 
today if you have: 

Engineering training or exper- 
ience, and 
Written at least one real-time 
application in Forth 

Plus at least one of the following: 
Assembler-level experience 
with two or more processors 
Managed several Forth pro- 
grammers 
Good writing and/or teaching 
skills 

If your present job doesn't provide 
enough challenge, variety and pro- 
fessional growth, you may find the 
stimulating environment at 
FORTH, Inc. ideal for you. 
Send your resume today to: 
FORTH. Inc.. 111 N. Sepulveda 
Blvd.,  anh hat tan Beach, CA 
90266. FORTH. Inc. is an equal 
opportunity employer. 

Variable containing current position of 
DP in main dictionary. 

TIC ( --  fa 
Gets PFA of a word with a normal head. 
This is the old ' and is used mainly for 
patching <INTERPRET. 

<INTERPRET 
Interprets or compiles words, depending 
on STATE. If the word is found to have 
a CFA at an address above a certain point, 
it is a headerless word and its CFA is 
gotten with CFA @. 

TWIGS ( - -a&) 
An array in memory that records each 
time HEADS-ON or HEADS-OFF is 
switched. DP and LATEST at that 
point in time are stored in the array, and 
later used to behead the headless words. 

TWIG-PTR ( -- adr ) 
A variable containing the next position in 
TWIGS to be used. 

HLIST 
A routine to list all headless words in the 
dictionary (before pruning, of course) 
along with their CFAs. The CFAs can be 
used later for compilation or execution. 

PRUNE 
A routine that strips away all the heads in 
high memory and resets the links in the 
main dictionary, so headerless words are 
not seen by FIND. 

W A T C H  
A routine to reset the normal INTER- 
PRET and, in the PADS system, to re- 
establish the previous dictionary search 
order. 

References 
MVP-FORTH Professional Applica- 

tions Development System (PADS), 
Tom Wempe. FORTHKIT, 240 Prince 
Street, Los Gatos, CA 95030. 

METAFORTHm A Metacompiler for 
FIG-FORTH, John J. Cassady. 11 Mira 
Monte Road, Orinda, CA 94563. 

Systems Guide to fig-FORTH. C.H. 
Ting. Zero Edition, Offete Enterprises, 
Inc., 1306 South B Street, San Mateo, 
CA 94402. 

All About Forth, 2nd ed., Glen B. 

Haydon. Mountain View Press, Inc., 
P.O. Box 4656, Mountain View, CA 
94040. 

RSC-FORTH User's Manual, Rock- 
well International Corporation. 1983, 
Document No. 2965 1N5 1. 

MetaFORTH for the 6502, Darrel 
Johansen. 1983, San Francisco, CA. 

Thanks to Serge Modular Music 
Systems and to Orion Instruments for 
time, encouragement, and an application 
to use this project on. 

Darrel Johansen has been prog- 
ramming in Forth for ten years, including 
projects in electronic music synthesizer 
control. He is currently senior engineer ar 
Orion Instruments, Inc. 

Volume IX, Nwnber 1 41 Forth Dimensions 



FIG 
CHAPTERS 

ALABAMA 
Huntsville FIG Chapter 
Tom Konantz (205) 88 1 -6483 

ALASKA 
Kodiak Area Chapter 
Horace Simmons (907) 486-5049 

ARIZONA 
Phoenix Chapter 
4th Thurs., 7:30 p.m. 
Dennis L. Wilson (602) 956-7578 
Tucson Chapter 
2nd & 4th Sun., 2 p.m. 
Flexible Hybrid Systems 
2030 E. Broadway #206 
John C. Mead (602) 323-9763 

ARKANSAS 
Central Arkansas Chapter 
Little Rock 
2nd Sat., 2 p.m. & 
4th Wed, 7 p.m. 
Jungkiid Photo, 12th & Main 
Gary Smith (501) 227-7817 

CALIFORNIA 
Los Angeles Chapter 
4th Sat., 10 a.m. 
Hawthome Public Library 
12700 S. Grevillea Ave. 
Phillip Wasson (213) 649-1428 
MontereylSalinas Chapter 
Bud Devins (408) 633-3253 
Orange County Chapter 
4th Wed.. 7 p.m. 
Fullerton Savings 
Huntington Beach 
Noshir Jesung (714) 842-3032 
San Diego Chapter 
Thursdays, 12 noon 
Guy Kelly (619) 450-0553 
Sacramento Chapter 
4th Wed.. 7 p.m. 
1798-59th St., R- A 
Tom Ghormley (916) 444-7775 
Silicon Valley Chapter 
4th Sat, 10 a.m. 
H-P, Cupertino 
George Shaw (415) 276-5953 
Stockton Chapter 
Doug D i o n  (209) 93 1-2448 

COLORADO 
Denver Chapter 
1st Mon., 7 p.m. 
Steven Sams (303) 477-5955 

CONNECTICUT 
Central Connecticut 
Chapter 
Charles Krajewski (203) 344-9996 

FLORIDA 
Orlando Chapter 
Every other Wed., 8 p.m. 
Herman B. Gibson (305) 855-4790 
Southeast Florida Chapter 
Coconut Grove area 
John Forsberg (305) 252-0108 
Tampa Bay Chapter 
1st Wed., 7:30 p.m. 
Terry McNay (813) 725-1245 

GEORGIA 
Atlanta Chapter 
3rd Tues.,6:30 p.m 
Westem Sizzlen, Doraville 
Nick Hennenfent (404) 393-3010 

ILLINOIS 
Cache Forth Chapter 
Oak Park 
Clyde W. Phillips, Jr. 
(312) 386-3147 
Central Illinois Chapter 
Urbana 
Sidney B o w h i  (217) 333-4150 
Rockwell Chicago Chapter 
Gerard Kusiolek (312) 885-8092 

INDIANA 
Central Indiana Chapter 
3rd Sat, 10 a.m. 
John Oglesby (317) 353-3929 
Fort Wayne Chapter 
2nd Tues., 7 p.m. 
I/P Univ. Campus, B71 Neff Hall 
Blair MacDermid (219) 749-2042 

i 
IOWA 

Iowa City Chapter 
4th Tues. 
Engineering Bldg.. Rm. 2128 
University of Iowa 
Robert Benedict (319) 337-7853 

Central Iowa FIG Chapter 
1st Tues., 7:30 p.m. 
Iowa State Univ.. 214 Comp. Sci. 
Rodrick Eldridge (5 15) 294-5659 
Fairfield FIG Chapter 
4th day. 8:15 p.m. 
Gurdy Leete (515) 472-7077 

KANSAS 
Wichita Chapter (FIGPAC) 
3rd Wed., 7 p.m. 
Wilbur E. Walker Co., 
532 Market 
Ame Flones (3 16) 267-8852 

MASSACHUSEITS 
Boston Chapter 
3rd Wed., 7 p.m. 
Honeywell 
300 Concord, Billerica 
Gary Chanson (617) 527-7206 

MICHIGAN 
Detrdt/Ann Arbor area 
4th nu r s .  
Tom Chrapkiewicz (313) 322- 
7862 

MINNESOTA 
MNFIG Chapter 
Minneapolis 
Even Month, 1st Mon., 7:30 p.m. 
Odd Month, 1st Sat., 9:30 a.m. 
Vincent Hall. Univ. of MN 
Fred Olson (612) 588-9532 

MISSOURI 
Kansas City Chapter 
4th Tues., 7 p.m. 
Midwest Research Institute 
MAG Conference Center 
Linus Orth (913) 236-91 89 
St. Louis Chapter 
1st Tues., 7 p.m. 
Thornhill Branch Library 
Contacz Robert Washam 
91 Weis Dr. 
Ellisville. MO 6301 1 

NEW JERSEY 
New Jersey Chapter 
Rutgers Univ., Piscataway 
Nicholas Lordi (201) 338-9363 

NEW MEXICO 
Albuquerque Chapter 
1st Thun., 7:30 p.m. 
Physics & Astronomy Bldg. 
Univ. of New Mexico 
Jon Bryan (505) 298-3292 

NEW YORK 
FIG, New York 
2nd Wed., 7:45 p.m. 
Manhattan 
Ron Martinez (212) 866-1 157 
Rochester Chapter 
4th Sat., 1 p.m. 
Monroe Comm. College 
Bldg. 7, Rm. 102 
Frank Lanzafame (716) 235-0168 
Syracuse Chapter 
3rd Wed., 7 p.m. 
Henry J. Fay (3 15) 446-4600 

NORTH CAROLINA 
Raleigh Chapter 
Frank Bridges (919) 552-1357 

OHIO 
Akron Chapter 
3rd Mon., 7 p.m. 
McDowell Library 
Thomas Franks (216) 336-3 167 
Athens Chapter 
Isreal Urieli (614) 594-3731 
Cleveland Chapter 
4th Tues., 7 p.m. 
Chagrin Falls Library 
Gay Bergstrom (216) 247-2492 
Dayton Chapter 
2nd Tues. & 4th Wed., 6:30 p.m. 
CFC. 11 W. Monument Ave., 
#612 
Gary Granger (513) 257-6984 

OKLAHOMA 
Central Oklahoma Chapter 
3rd Wed.. 7:30 p.m. 
Health Tech. Bldg., OSU Tech. 
Contact Lany Somers 
2410 N.W. 49th 
Oklahoma City, OK 73 112 

OREGON 
Greater Oregon Chapter 
Beaverton 

I I 

Forth Dimemiom 42 Volume lX, Nwnber 1 



2nd Sat, 1 p.m. 
Tektronix Industrial Park, 
Bldg. 50 
Tom Almy (503) 692-281 1 
Wiilamette Valley Chapter 
4th Tues.. 7 p.m. 
Linn-Benton Comm. College 
Pann McCuaig (503) 752-51 13 

PENNSYLVANIA 
Philadelphia Chapter 
4th Sat., 10 a.m. 
Drexel University, Stratton Hall 
Melanie Hoag (215) 895-2628 

TENNESSEE 
East Tennessee Chapter 
Oak Ridge 
2nd Tues.. 7:30 p.m. 
Sci. Appl. Intl. COT., 8th Fl. 
800 Oak Ridge Turnpike, 
Richard Secrist (615) 483-7242 

TEXAS 
Austin Chapter 
Contact Matt Lawrence 
P.O. Box 180409 
Austin. TX 78718 
 aila ask. Worth 
Metroplex Chapter 
4th Thurs.. 7 p.m. 
Chuck Durrett (214) 245-1064 
Houston Chapter 
1st Mon.. 7 p.m. 
Univ. of St. Thomas 
Russel Hanis (713) 461-1618 
Periman Basin Chapter 
Odessa 
Carl Bryson (9 15) 337-8994 

UTAH 
North Orem FIG Chapter 
Contact Ron Tanner 
748 N. 1340 W. 
Oran, UT 84057 

VERMONT 
Vermont Chapter 
Vergemes 
3rd Mon.. 7:30 p.m. 
Vergemes Union High School 
Rm. 210. Monkton R d  
Don VanSyckel(802) 388-6698 

VIRGINIA 
First Forth of Hampton 
Roads 
W i  Edrnonds (804) 898-4099 
Potomac Chapter 
Arlingtcm 
2nd Tues., 7 p.m. 
Lee Center 
Lee Highway at Lexington St. 
Joel Shpentz (703) 860-9260 
Richmond Forth Group 
2nd Wed.. 7 p.m. 
154 Business School 
Univ. of Richmond 
h a l d  A. Full (804) 739-3623 

BELGIUM 
Belgium Chapter 
4th Wed., 20:oOh 
Contact Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
0316584343 
Southern Belgium Chapter 
Contact Jean-Marc Bertinchamps 
Rue N. Monnom. 2 
B-6290 Nalinnes 
071R13858 

WISCONSIN 
Lake Superior FIG Chapter 
2nd Fri.. 7:30 p.m. 
Main 195. UW-Superior 
Allen Anway ('715) 394-8360 
MAD Apple Chapter 
Contact Bill Horton 
502 Atlas Ave. 
Madison, WI 53714 
Milwaukee Area Chapter 
Donald Kimes (414) 377-0708 

INTERNATIONAL 

AUSTRALIA 
Melbourne Chapter 
1st Fri.. 8 p.m. 
Contact Lance Collins 
65 Mattin Road 
Glm Iris. Victoria 3 146 
03/29-2600 
Sydney Chapter 
2nd Fri., 7 p.m. 
John Goodsell Bldg., Rm. LG19 
Univ. of New South Wales 
Contact Peter Tregeagle 
10 Binda Rd., Yowie Bay 
021524-7490 

CANADA 
Northern Alberta Chapter 
4th Sat., 1 p.m. 
N. A h .  Inst. of Tech. 
Tony Van Muyden (403) %2-2203 
Nova Scdia Chapter 
Halifax 
Howard Harawitz (902) 477-3665 
Southern Ontario Chapter 
Quarterly. 1st Sat, 2 p.m. 
Genl. Sci. Bldg., Rm. 212 
McMaster University 
Dr. N. Solntseff (416) 525-9140 
ext. 3 
Toronto Chapter 
Contact John Clark Smith 
P.O. Box 230, Station H 
Toronto. ON M4C 5J2 
Vancouver Chapter 
Don Vanderweele (604) 941 -4073 

DENMARK 
Forth Interesse Gruupe 
Denmark 
Copenhagen 
Erik Oestergaard, 1-520494 

. ENGLAND 
Forth Interest Group- U.K. 
London 
1st Thurs.. 7 p.m. 
Polytechnic of South Bank 
Rm. 408 
Borough Rd. 
Contact D.J. Neale 
58 Woodland Way 
Morden. Suny SM4 4DS 

FRANCE 
French Language Chapter 
Contact Jean-Daniel Dodin 
77 Rue du Cagire 
3 1 100 Toulouse 
(16-61)44.03.06 
FIG des Alpes Chapter 
Anne1 y 
Georges Seibel, 50 57 0280 

COLOMBIA 
Colombia Chapter 
Contact Luis Javier Pam B. 
Aptdo. Aereo 100394 
Bogota 214-0345 

GERMANY 
Hamburg FIG Chapter 
4th Sat.. 1500h 
Contact Hont-Gunter Lynsche 
Common Interface Alpha 
Schanzenstrasse 27 
2000 Hamburg 6 

HOLLAND 
Holland Chapter 
Contact Adriaan van Roosmalen 
Heusden Houtsestraat 134 
4817 We Breda 
3176713104 

IRELAND 
Irish Chapter 
Contact Hugh Dobbs 
Newton School 
Waterford 
051 fl5757 or 051fl4124 

ITALY 
FIG Italia 
Contact Marco Tausel 
Via Gerolamo Fomi 48 
20161 Milano 
OU435249 

JAPAN 
Japan Chapter 
Contact Toshi Inoue 
Dept. of Mineral Dev. Eng. 
University of Tdcyo 
7-3-1 Hongo, Bunkyo 113 
812-21 11 ext 7073 

. NORWAY 
Bergen Chapter 
Kjell Birger Faeraas, 47-51 8-7784 

REPUBLIC O F  CHINA 
(R.O.C.) 
Contact Ching-Tang Tzeng 
P.O. Box 28 
Lung-Tan. Taiwan 325 

SWEDEN 
Swedish Chapter 
Hans Lindsuom, 46-3 1-166794 

SWITZERLAND 
Swiss Chapter 
Contact Max Hugelshofer 
ERN1 & Co., Elektro-Industrie 

SPECIAL GROUPS 

Apple Corps Forth Users 
Chapter 
1st & 3rd Tues., 7:30 p.m. 
1515 Sloat Boulevard. #2 
San Francisco, CA 
Dudley Ackerman 
(4 15) 626-6295 

Baton Rouge Atari Chapter 
Chris Zielewski (504) 292-1910 

FIGGRAPH 
Howard Pearlmutter 
(408) 425-8700 

NC4000 Users Group 
John Carpenter (415) 960- 1256 

I I 

Volume IX, Nwnber 1 43 
Forth Dimensions 




