
Dimensions

Compiler Macros

A PC DROPmIN BOARD WITH:
Novix Forth engine, 4 MIPS

power, mini computer speed,
parallel PC operation,

V2 Mbyte on board, multi-
tasking capability, software

included. $1,495

YEAH, SURE.

It'sfinally here! The PC4000. Runs the Sieve in Forth in .09 sec-
Plugs into PC/XT or PC compat- onds-2170 times faster than the
ible. Comes with 4 Mhz clock. Sieve runs on the PC in PC-Basic.
Upgrade to 5 Mhz by adding faster Includes SCForth software package
RAM and Clock. 16K of memory for software development. RAM on
ported to PC bus for PClPC4000 board can be used to extend host

SOFTWARE COMPOSERS

FORTH Dimensions 2 Volume VIII. No. 3

Forth Dimensions
Published by the

Forth Interest Group
Volume VIII, Number 3
September/October 1986

Editor
Marlin Ouverson

Advertising Manager
Kent Safford
Production

Cynthia Lawson Berglund
Typesetting

LARC Computing
Forth Dimensions solicits editorial

material, comments and letters. No
responsibility is assumed for accuracy of
material submitted. Unless noted
otherwise, material published by the
Forth Interest Group is in the public
domain . Such mater ial may be
reproduced with credit given to the
author and to the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth
Interest Group at $30 per year ($43
foreign air). For membership, change of
address and t o submit material for
publication, the address is: Forth
Interest Group, P.O. Box 8231, San
Jose, California 951 55.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

I Dimensions

Code and examples con-
form to Forth-83 stand-
ard.

FEATURES
12 Forth Systems With a Segmented Memory Model

1 by Richard Wilton
Lack of a structured "memory map" in Forth has not been a hindrance in small
computer systems with 64K or less of memory. But in complex microcomputer
operating systems, a segmented memory model within a Forth interpreter offers
clear advantages. .

15 The Point Editor

F by Brooks Breeden
Have you ever entered 256 consecutive numbers? Did you ever make a mistake?
You have to be able t o change a number, and add or delete one or more. Written
for Forth-83 under DOS, this simple "point editor" will create a file for data
used in graphical applications.

25 Synonyms and Macros, Part 4: Compiler Macros

f
by Victor H. Yngve
Compiler macros postpone the execution of immediate words when needed, or
postpone processing of the input stream. Immediate words' normal actions are
postponed to when these macros are used to compile another word. This
technique rounds out the author's series with clarity and ease of use.

31 Shuffled Random Numbers

l by Leonard Zettel
An improvement to Brodie's random number generator which, though fine for
many purposes, sometimes is not good enough. Applying Knuth's legerdemath
creates the desired chaos out of order.

32 The Multi-Dimensions of Forth
by Glen B. Haydon
Forth has many dimensions: a religion, a philosophy, a software emulation of a
hardware design, a hardware processor and the assembly language for that
processor, an operating system, a high-level language. Consider how these
dimensions intersect or diverge, and what they mean to Forth.

36 Stack Numbers by Name
by Melvin Rosenfeld
When a word involves more than two or three numbers on the stack, the logistics
of accessing them is often tedious. This method of naming numbers on the stack
also allows easy recursive use of the function being defined.

Code and examples con-
form to ~ o r t h - 7 9 stand-
ard.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

DEPARTMENTS
5 Letters

11 Editorial: "Hackles and Hooes"

Code and examples con-
form to fig-FORTH.

" : " . . " ' ' . ' " . ' : ' ;,;,,' ' ' Y " , , - \ > & , , , a 1
3 FORTH D~rnensions

24 Advertisers Index
38 FIG Chapters

Multi-tasking FORTH-83 Development Systems
for 68000 and 68020-based
microcomputers and industrial target boards.

Machl is a FAST, 32-bit subroutine-threaded implementation of FORTH.
All Machl systems include:

Unlimited multi-tasking--any number of background/terrninal tasks are allowed.

Local variables for readable, recursive, re-entrant programming.

Standard text files--Any text-only editorlword processor may be used.

A STANDARD Motorola 68000 assembler (infix) which supports

EASY creation of stand-alone applications
Complete toolbox support (including
Mac Plus routines)
Macintalk speech driver support
Redirection of I10 to serial ports/devices 5
Graphics printing support
80-bit SANE floating point
68020 compatible

EASY creation of stand-alone applications
Full GEM and DOS support
Integrated GEM editor
68020 compatible

Comes with 300 page manual

16K FORTH Kernel
16K 68000 Assembler
16K Dissassembler/Debugger
Call for source licensing arrangements

FORTH Dlrnens~ons 4 Volume VIII, No 3

- - - -

i

What Forth Can Learn From C

A recent ad for an Arniga version of
Multi-FORTH from Creative Solutions
reminded me of Forth. I had almost
forgotten about Forth because recent
issues of Computer Language and Dr.
Dobb's Journal of Software Tools treat
Forth as if it no longer exists.

Wednesday night I went to a well-
attended Amiga owners meeting to see
a demonstration of a brilliant new
piece of Amiga software from a com-
pany called B.E.S.T. (P.O. Box 852,
McMinnville, Oregon 97128). The soft-
ware will allow small businesses to do
all their bookkeeping using an Amiga.
B.E.S.T. began last fall using Lattice C
and recently switched to Manx's Aztec
C. When I asked these brilliant pro-
grammers if they had considered pro-
gramming in Forth, they expressed the
opinion that Forth is no match for C.

Are they right?
Besides, B.E.S.T. says they have

developed their own auxiliary C tools
that allow them to program on the
Amiga twenty times faster than ordi-
nary Aztec C.

There are lots of libraries of subrou-
tines which can be purchased and in-
corporated into C programs to speed
development time. Are there libraries
of extra Forth "words" for sale to
speed development? It seems to me
that if Forth has been pushed aside by
C, it may be because brilliant Forth
programmers are spending their time
reinventing the wheel (laboriously add-
ing words to Forth and fiddling with
how things are going on and coming
off the stack) while C programmers are
building upon the labors of those who
have already invented the wheel, and
they are making better progress.

Or, put another way, C is so difficult
to learn and use that those who do use
C are willing to pay for and include
other programmers' work in their own
programs. Forth, on the other hand, is
so much easier to learn and use that
Forth programmers have fallen behind
while they happily work at adding their
own words to extend their personal
copy of the language.

I read in the August 1985 Computer
Language that Philippe Kahn says Bor-
land will offer Modula-2, BASIC, C
and Ada languages, but not Forth. He
won't offer Forth because, he says,
"Forth is a religion . . . "

Where can I read the definitive com-
parison of C and Forth? Are Forth
programmers sharing words instead of
encouraging Forth users to go off on
their own to reinvent the wheel?

Awaiting your prompt reply,

Rich Kevin O'Brien
Renton, Washington

"Forth as a religion" was a way of
poking fun at our own conviction, but
like many analogies it has both detrac-
ted from real issues and outlived its
usefulness. One real issue in need of
more attention is Forth "subroutine"
libraries. John James, in particular,
has studied the factors involved in
providing in individual modules the
useful tools developers want and need.
One assumes that a stable Forth nucle-
us will be critical to the creation of
such off-the-shelf, plug-in extensions.
Both system vendors and third parties
may find a line of profit in this think-
ing, provided the work meets specific
design criteria (see James' articles in
Forth Dimensions V11/4, V11/5 and
VIII/2).

By the way, Dr. Dobb's Journal still
publishes an annual Forth issue and, as
of this writing, a periodical column
about Forth. I haven't seen any "defin-
itive comparison of C and Forth," but
i f one or more authoritative, objective
authors could be found I'm sure the
editors of DDJ and those of Computer
Language would be interested in the
idea. But I was talking with CL
Publications' co- founder Craig LaGro w
about this when he made the interest-
ing point that the worst published com-
parisons are those that attempt to
compare apples and oranges. Perhaps
that is the area that will have to be
addressed by anyone comparing Forth
and C.

-Editor

Teaching Forth:
Testing TESTIT

Dear Marlin:

Mr. Apra's article, "Let's Keep It
Simple" (VII/6) makes a good point,
though perhaps not strongly enough. I
have done some teaching and can tes-
tify to the real value of simplicity.
Nevertheless, I would like to take ex-
ception to the efficacy of TESTIT,
IFTRUE, IFFALSE and ENDlT as Mr. Apra
proposes their use.

The points I would make are (refer
to the Apra screens):

1 . Students ought to learn how to
recognize the need for DuP and
DROP. It may be confusing that
TESTIT will sometimes precede and
at other times follow the test de-
pending on whether the number is
to be tested or the resulting flag
needs to be ~ u p e d . In the definition
of EXAMPLE1 a DROP would need to
be added if one of the two phrases
were eliminated. It would be better
to replace TESTIT with DUP. Then
the correct action of eliminating
DUP rather than adding DROP
would be evident.

2. It is important that one's under-
standing of the IFTRUE ELSE ENDlT
control structure be easily transfer-
able to the IF ELSE THEN constructs.
The major problem here, as I see it,
is demonstrated by the definition
of EXAMPLE^, which has the ap-
pearance of a CASE statement. I can
imagine it might lead to further
confusion. Of course, with a CASE
statement, the ending DROP would
be unnecessary, as well as the
numerous TESTITS (DUPS).

Mr. Apra correctly observes that
" . . . the IF ELSE THEN syntax does
not leave enough clues to where the
parts of the conditional should
go." But in the proposed syntax
there is no clue to suggest when -
and when not - to include TESTIT.
Compare the defini t ions of
EXAMPLE1 and EXAMPLES.

Volume VIII, No. 3 5 FORTH Dimensions

.. .!. ~.:.:.~.:.!.!.!.!.!.!.!.!.r.~.!.....!.:.!.r.!.!.!.!.!.!.!.!.!.!.:.!.~.!.!.!.~.!.:.:.:.!.~.~
.i

'??
f.' :< .5'

... .-. $ I offer the code on the enclosed two
Z. .-. :::: screens as the second step in the quest

2 to simplify IF ELSE THEN, for the pur- TORT' .-.
' 5 pose of teaching, to an understanding .:. fi 2; of that conditional structure. I know

A 8 from experience that such conditionals
5; .:. 8 are difficult to grasp for many a begin-
.-. 3 ner. Sometimes those of us who do
Z. .:.
5-

3 understand forget that. . .
f.

8 I believe the IFTRUE OTHERWISE
f. .5 .:. 3 RESUME concept offers a better chance . . .:. . . 8 .. to gain an understanding of the condi-
f.
?..
?..

:8 ?2 tional's true structure. The examples I

INTEL $ $.. have strate included how variable were designed the structure to demon- of
.... ?.* ..., rS' $ such conditionals can be. Replacing
2..
I..' 8 %. DUP with TESTIT in the examples will
:.: .:.: show why I think TESTIT is not so
y.. 8 useful.
Z.'
.-.# f.1 ?..

5 ?.. W :.: MICRO- ... 5 :..
.5'
2.1 CON^^^^^^^% ,T ..
:.. 2.1 %.

3
7.. 2. .?.' f.'

Q

:::
:* ;::
:f? .-.a
%. . . 3
Z.

FEATURES
8 3 .2' .-.*
?.. 2.. 3 -FORTH-79 Standard Sub-Set ,. ..

A -Access to 8031 features ?.a :.-
8 -Supports FORTH and machine $
2. ?Z
5. code interrupt handlers <$

-System timekeeping malntalns 3 :.- .A.
5s time and date with leap c.: f.' ?.'

..:. year correction t.'
F:: -Supports ROM-based self- ?.'
:I 5 ... starting applications .-.' A .5'

I..' .5' ...
8 2 . .
f.

8 t:: . . ::: COST g .5'

3 130 page manual -t 30.00 3
8~ EPROM w ~ t h manual-~100.00 3

::: Postage paid ~n North Arner~ca.
..:a

.?..

lnqurre for l~cense or quantrty pnclng. $
f. %' 3
?:-

.. 5 ?.# .. :.- 7.- :.- A
5'
5. A
.f' :::

.Z ... 3 Bryte Computers, Inc. .-.
$ P.O. Box 46, Augusta, ME 04330 8
...' (207) 547-32 18 .:.
f. .-.. . . :a:

.3...-.. ..
FORTH Dimensions 6

I offer my congratulations to Mr.
Apra. I hope there are many like him
searching for better ways to teach
beginning young programmers. Final-
ly, a word to the students: letters such
as this one are not "put downs" of
other authors. Progress doesn't stop
with a first attempt at improvement; it
is an evolution. I am confident that
competent programmers will argue
with both Mr. Apra and me. Some will
even pooh-pooh it altogether. So be it.
But, of course, most of them are not
teachers.
Sincerely,

Gene Thomas
Little Rock, Arkansas

Listing 1
Screen tt20

0. \ IFTRUE/IFFALSE, OTHERWISE (optional), RESUME GT May86
1. : IFTRUE \ f -- (if tf execute following)
2. CCOMPILEI IF 8 IMMEDIATE
3. : IFFALSE \ f -- (if ff execute following)
4. COMPILE NOT CCOMPILEJ IF ; IMMEDIATE
5. : OTHERWISE \ execute following if IFTRUE or IFFALSE not exec.
6. CCOMPILEI ELSE ; IMMEDIATE
7. : RESUNE \ -- {resume program here after IFTRUE-OTHERWISE)
8. CCOMPILEI THEN ; IMMEDIATE
9.
10. r ?EQUALSTEN (n --) DUP 10 =
11. IFTRUE ." True =lo" DROP OTHERWISE ." False " 10 >
12. CASE 0 OF ." <10" ENDOF
13. 1 OF ." >lo" ENDOF
14. ENDCASE
15. RESUME 1

16. \ IFTRUE1 mcn K!; examples
17.
18. I 7EOUhLSTEN (n -- DUP 10 = DUP
19. IFTRUE ." Yes, " SWhP . RESUME
20. IFFALSE . ' NO, " . RESUME 1
21.
22.
23. I ?EQUALSTEN (n --) DUP 10 =
24 IFTRUE ." True" DROP (and proceeds to last resume)
25. OTHERWISE 10 > (compare with n)

26. IFTRUE ." Bigger than 10"
27. OTHERWISE .' Smaller thrn 10"
28. RESUME
29 RESUME ;
30
31.

Volume VIII. No. 3

Eighth Annual

Forth National Convention
November 2 1-22,1986

The Doubletree Hotel at Santa Clara Trade & Convention Center
Great America Parkway and Tasman Drive, Santa Clara, California 95050

Conference Program
Forth Engines Research

Learn about the latest advances in Forth hardware and software
from the creators and designers of the modem Forth engines.

Demonstrations New Products Tutorials Chapter Activities

Forth Exhibits
Convention activities start Friday, November 21, at 12 noon.

Convention preregistration $15 Conference and Exhibit Hours
Registration at the door $20 Friday Nov. 21st 12 noon-6 p.m.
Banquet Saturday 7 p.m. $35 Saturday Nov. 22nd 9 a.m.-5 p.m.

Special Convention room rates available at Doubletree Hotel, Santa Clara.
Telephone direct to Doubletree reservations by calling 800 528-0444 or 408 986-0700.
Telex reservation number is 668-309DTI. Request special Forth Interest Group rates.

1 m m m m m m m m 9 m m 9 m m 1 m m 1 m m m m m m m m 9 m m m 9 m m . m m 9 m 9 m m m 9 . m 9 m m m m m 9 m 9 9 m 9 9 9 m 9 m m .

- Yes! I will attend the Forth Convention.
Number of pre-registered admissions X $15 $
Number of banquet tickets X $35

- Yes! I want to join FIG and receive Forth Dimensions ($30 US, $43 foreign)

TOTAL CHECK TO FIG $

Name
Address
Company
City State Zip
Phone ()

Return to Forth Interest Group, P. 0. Box 8231, San Jose, CA 95155 0408 277-0668

Volume VIII, No. 3 7 FORTH Dimensions

When New Becomes Obsolete

Dear Sir:

Stop, stop, for pity's sake, STOP! In
anguished supplication I beg of you,
whoever you may be: Please, not an
87-Standard Forth! The way things are
going, in a few years you will have to
change the name Forth Dimensions to
"Forth Fragmentations!"

I concede that Forth-83 is not per-
fect, nor was fig-FORTH or Forth-79.
But the situation is getting ridiculous
with so many "official" versions of
Forth. Is this the planned model
change every four years that once made
us love GM? I submit that no one will
benefit from any further changes in
"standard" Forth except those who
would sell new Forth systems to the few
unsuspecting but trusting souls who
believe they must replace an
"obsolete" system.

fig-FORTH was never so bad that it
had to be junked; it is my firm convic-
tion that [the change to] Forth-79 was

cosmetic, and Forth-83 even more so.
Why make it so difficult for fig-
FORTH users to talk to Forth-79 or
Forth-83 users? I think a much better
solution to the problem of deficiencies
in fig-FORTH would have been to
develop a standard set of extension
words for fig-FORTH which would
have been added to existing systems at
the discretion and convenience of the
programmer.

It is still not too late! If we must live
with the present standard Forth-83,
then so be it. But let us not compound
the felony by foisting another "stan-
dard" on the already troubled Forth
community.

Yes, I do have an operating Forth-83
system. It is the excellent offering by
Wilson Federici for the 6809; he is
giving it away! However, I am serious-
ly considering going back to my 6809
fig-FORTH, which 1 have been work-
ing on to use bank switching something
like the 8088. I realize I can't make fig-
FORTH behave exactly like Forth-83
by just adding additional words, but I

hope to get close. However, I do know
this - I will never update to a new
standard Forth!

Let me address another point as
related to standards. I have seen sever-
al letters lately asking for changes in
Forth that would accommodate the
thirty-two-bit crowd with their larger
addressing space. Don't change Forth!
Instead, add some new words which
will process the extra addressing. What
is wrong with words like 4DUP, etc.?
Additions like this would still make it
possible for people like me, who plan
to keep their eight- and sixteen-bit
machines (like my 6809), to continue
talking to the rest of the Forth com-
munity.

Perhaps I am in the wrong, though.
Perhaps Forth is primarily used by
professional programmers and system
designers who simply tolerate the hob-
byist crowd as long as they keep quiet.
Am I a voice in the wilderness, talking
only to myself? Am I the only hobbyist
who programs in Forth because it is his
favorite language? Oh, I have written

Tight Binding of Source and Code
Dictionary Editor - Allows Modification of Dictionary
(browse, modify, reorder, recompile, insert, delete, ...)
Automatic Recompilation of Modified Source
Tree Structured Scoping
Full Screen Text Editor, 80 columns by N lines
Source Level Tracing and Breakpoints
Large Memory Model
32-bit Arithmetic
8087 Floating Point Support
MS-DOS File Support
Graphics Support
On Line Help Facility
Turnkey Applications
Produces Native Code
Includes F83 Public Domain Assembler

For ZBM or TI PC's with 128K, DOS 2.0 or better.
Amiga and Macintosh versions, First Quarter 1987

Disk: $ 5.00
Disk and Manual: $30.00
Disk, Manual and Newsletter: $40.00

CLICK Software
P.O. Box 10162
College Station, TX 77840
(409)-696-5432 or (409)-693-8853

Fifth 2.0 is a Shareware product, available
on bulletin boards everywhere.
Amiga is a registcmd m d c n w k of Commodore COQ.
MSDOS is a Rgistcrrd oadcmark of Miaosofl Corp.
TI is a rsgirlcnd kdcmrk of Texas lnsmuacn& Corp.
M=Qtosh u a ~ g u l a e d kdcmnrk of Mclnlorh Laboratory, loc.
IBM is a mgistcrrd U . d c n w k of Intemsrional Businas Machines Corp.

FORTH D~mensions

- -

8 Volume VIII, NO. 3

commercial programs for engineering
and control, but in other languages
(BASIC and Fortran) because the cus-
tomer was afraid of a language "no-
body ever heard of." Maybe a few
more hobbyist users of Forth would
actually make it easier to sell Forth
programs.

Am I talking to the wrong group?
Possibly FIG, too, is not interested in
the hobbyist. Am I wasting my money
belonging to an organization which
appears to treat me with disdain? The
questions are not strictly rhetorical; I
hope someone will answer me. My
concern about proliferating standards
is related to program exchange among
hobbyists. Already there is a problem
in using much of the public-domain
software because it is so often tied into
8088 machine language; do people
think that the world begins and ends
with IBM? More "standards" will only
make matters worse.

I would like to close with one more
question, "Who is kidding who?"
Sincerely,
R.D. (Doug) Lurie
Leominster, Massachusetts

Terminal TI
Dear Editor,

As a relatively recent convert to
Forth (little more than a year of Forth),
I was delighted to find that your
publication is actively searching for
articles on TI-Forth for the 99/4A. I
write a column in our user-group
newsletter (MSP99) on Forth.

With reference to "Simple Data
Transfer Protocol" (Forth Dimensions
VI/2), I submit the enclosed two pages.
The first, second and last screens are
my adaptation of the protocol to the
99/4A. The terminal emulator will
work in half or full duplex. The rou-
tines are -set up to use RS-232 port one
at 300 b a ~ d . Data for alterations is
given in the comments. Speeds greater
than 1200 bps may require some rou-
tines to be in CODE. The only option
required is the "-CRU" option, load-
ed in the first screen (that's what the
"CLOAD" loads).
Cordially,
Glenn Davis
St. Paul, Minnesota

.
(s e r i a l c o m m u n i c a t i o n c o n s t a n t s T I 9 9 / 4 A 2 6 S E P 8 5 O E D

b a s e d on w o r d s f r o m F o r t h D i m e n s i o n s V 1 / 2)

B A S E - > R D E C I M A L 88 R - > B A S E C L O A D S T C R
B A S E - > R H E X

0 4 D 0 C O N S T A N T R A T E (0 4 D 0 = 3 0 0 b p s ; 0161=1200 b p s)

083 C O N S T A N T P R O T O C O L (8 b i t s , no p a r i t y , 1 s t o p)

01300 2 / C O N S T A N T C A R D (1 3 0 B = p o r t s 1 & 2 1 5 0 0 = p o r t s 3 & 4)
C A R D 0 7 + C O N S T A N T L E D (L E D on R S 2 3 2 c a r d)

C A R D 020 + C O N S T A N T P O R T D E C I M A L (0 2 0 = o d d p o r t 0 4 0 = e v r n)

P O R T 13 + C O N S T A N T L D I R (L o a D I n t e r v a l R e g i s t e r)

P O R T 16 + C O N S T A N T R T S O N (R e q u e s t T o S e n d ON)

P O R T 18 + C O N S T A N T R I E N B (R e c e i v e I n t e r r u p t E N a B l e)

P O R T 21 + C O N S T A N T R B R L (R e c e i v e B u f f e r R e g L o a d e d
P O R T 22 + C O N S T A N T X B R E (t r a n s m i t B u f f e r R e g E m p t y 1
P O R T 31 + C O N S T A N T R E S E T (R E S E T T M S 9 9 0 2 ACC c h i p)

R - > B A S E - - >

(s e r i a l c o m m u n i c a t i o n p r i m i t i v e s T I 9 9 / 4 A 1 3 J U N 8 5 GED
b a s e d o n w o r d s f r o m F o r t h D i m e n s i o n s V I / 2)

B A S E - > R H E X
: X I N I T R E S E T S B O (r e s e t s e r i a l p o r t 1

P R O T O C O L 08 P O R T L D C R (l o r d r a t e , p a r i t y , s top b i t s)

L D I R S B Z (i n h i b i t a c c r s s t o i n t e r v a l r e g)

R A T E 0 C P O R T L D C R 8 (l o a d r c v , x m t r a t e r e g i s t e r s)

: ?XOUT (- - f) X B R E T B ;
: ? X I N (--- f) R B R L T B ;
: XOUT (c h a r ---)

L E D S B O R T S O N S B O B E G I N ?XOUT U N T I L
08 P O R T L D C R R T S O N S B Z L E D S B Z 5

: X I N (--- c h a r)

L E D S B O B E G I N ? X I N U N T I L 08 P O R T S T C R R I E N B S B Z L E D S B Z ;

R - > B A S E - ->

(c o m m u n i c a t i o n p r o t o c o l p r i m i t i v e s T I 9 9 / 4 0 1 3 J U N B S G E D
b a s e d o n w o r d s f r o m F o r t h D i m e n s i o n s V I / Z)

B A S E - > R H E X

: T X C L R 0 XOUT 5
: E N Q

B E G I N 5 (e n q) XOUT X I N 6 (a c k) = U N T I L ;
: ACK

B E G I , N X I N 5 (e n q) U N T I L
6 (a c k) X O U T ;

a 2 D U P
OVER OVER ;

: ZDROP
D R O P D R O P ;

R - > B A S E - ->

(t r a n s f e r p r o t o c o l s p r i m i t i v e r T I 9 9 / 4 A 1 3 J U N B S O E D
based on w o r d s f r o m F o r t h D i m e n s i o n s V I / 2 B A S E - > R D E C I H A L

: S E N D - B L O C K (b lock-addr ---)

D U P B / B U F + SWAP
B E G I N D U P C B XOUT 1+ 2 D U P =
U N T I L ZDROP ;

I T A K E - B L O C K (b l o c k - r d d r ---)

D U P B / B U F + SWAP
B E G I N X I N O V E R C ! I+ 2 D U P =
U N T I L Z D R O P U P D A T E ;

: S Y N C T X C L R
B E G I N 5 XOUT

? X I N I F X I N 5 = E L S E 0 T H E N
U N T I L 6 XOUT
B E G I N X I N 6 = U N T I L ;

R->BCISE - ->

Volume VIII, NO. 3 9 FORTH Dlrnens~ons

pdyFoRTH GETS
YOUR PROGRAM
FROM CONCEPT

TO REALITY
4 TO 10 TIMES

FASTER

THE ONLY INTEGRATED SOFMIARE
DEVELOPMENT PACKAGE DESIGNED

FOR REAL-TIME APPLICATIONS

If you're a real-ttme software developer,
polyFORTH can be your best ally tn
getting your program up and running
on trme In fact, on the average, you
will develop a program 4 to 10 times
faster than w th tradrtronal program-
mrng languages

polyFORTH shortens development
trme by makrng the best use of y g g
t~me There are no long warts whrle you
load edrtors, comprlers, assemblers, and
other tools, no long warts whrle they
run- becouse everythrng you need IS
In a srngle, eosy-to-use, 100% resrdent
system Uslng polyFORTH, you take a
raw ~dea to fost, compiled code In
seconds-and then test rt rnteroctrvely

polyFORTH has everylhlng you need
to develop reol-trme appllcatrons fast
multl-tasklng, multr-user OS, FORTH
compller, mterpreters, and assemblers,
ed~tor and utrlltres, and over 400 prrmr-
ttves and debuggrng ords Wrth its untque
modular structure, polyFORTH even
helps you test and debug custom hard-
ware rnteroctrvely, and rt IS avorlabb for
most 8.16, and 32-brt computers

FORTH.lnc also provrdes~ts customers
wrth such professronal support servtces
as custom applrcatron programmrng,
polyFORTH programmrng courses, and
the FORTH, lnc 'Hotlrne"

For more Rformation and a free
brochure, contact FORTH, Inc today
FORTH, Inc ,111 N Sepulveda Blvd ,
Manhattan Beach CA 90266 Phone
(213) 372-8493.

piiq- FORTH, Inc.

-
(t r a n s f e r p r o t o c o l u s e r l e x i c o n s T I 9 9 / 4 A ISJUNBS OED

brsmd on w o r d s f r o m F o r t h D immnsions V I / 2) BASE->R DECIMAL
r XMT (f i r s t - s c r # l a s t - s c r # ---)

SYNC 1+ SWAP
DO ENR 2 XOUT I BLOCK SEND-BLOCK
LOOP ENQ 4 (s o t) XOUT ;

r RCV (f i r s t - s c r # ---)

SYNC
BEGIN DUP BLOCK ACK X I N 2 (s t x) OVER =

I F DROP TCIKE-BLOCK 0
ELSE 4 (r o t *

I F DROP FLUSH
THEN 1

THEN SWAP 1 + SWAP
U N T I L DROP 5

R->BASE - ->

(T I 9 9 / 4 A t e r m i n a l c m u l r t o r 26SEPBS OED)

BCISE->R HEX
0 VARIABLE ECHO
: TERMINAL X I N I T

BE0 I N
? X I N I F X I N E M I T E N D I F
?KEY -DUP I F

D U P 2 = I F Q U I T E N D I F
0 8 3 7 ~ ce 0 2 0 AND

I F
ECHO . I F DUP E M I T E N D I F
XOUT ELSE DROP

END I F
E N D I F

AQAIN ;
R- >BASE

Multiple LEAVES by Relay

Dear Editor:

John Hayes' "Another Forth-83
LEAVE" (VII/l) stimulated me to try
to find an even simpler way to handle
multiple Forth-83 LEAVES. I decided
that a straightforward approach invol-
ved having each LEAVE simply branch
to the next LEAVE, with the last one
removing the index values from the
return stack and branching to the word
following LOOP.

This is accomplished by using a flag
to show if there is a LEAVE in the loop;

if so, LOOP sets up a forward branch.
Also, if there is already a LEAVE
present, an added LEAVE sets up a
forward branch to the new LEAVE, not
to the next word. Thus, when LOOP is
reached, there cannot be more than
one LEAVE whose branch jump needs
resolution. In the code, (DO) and (LOOP)
are the standard constructions, as in
McCabe's Forth Fundamentals.

Sincerely,

Chester H. Page
Silver Spring, Maryland

*

: (LEAVE) R> R> DROP DROP BRANCH ;
: >RESOLVE (addr---) HERE OVER - SWAP ! ;
: (RESOLVE (addr---) HERE - , ;
0 VARIABLE LEAVE.FLAG

: DO 0 LEAVE.FLAG ! COMPILE (DO) HERE 3 ; IMMEDIATE
: LEAVE LEAVE.FLAG 3 I F >RESOLVE THEN 1 LEAVE.FLAG !

COMPILE (LEAVE) HERE 0 , ; IMMEDIATE
: LOOP 3 ?PAIRS COMPILE (LOOP) LEAVE.FLAG 3

I F >RESOLVE THEN <RESOLVE ; IMMEDIATE

FORTH Dimensions 10 Volume VIII, No. 3

Hackles and Hopes
Anyone who has read announce-

ments of this year's FORML conference
undoubtedly recalls the theme, "Ex-
t end ing F o r t h Towards t he
87-Standard." Already this has raised
both hackles and hopes among those
who care about standardization work.

Some companies with huge Forth-79
programs chose not to switch to
Forth-83 because of the in-house costs
of upgrading functional systems. Some
vendors felt it more important to pro-
vide a stable system to their existing
clientele than to incorporate the chang-
es required by Forth-83. And many
assert that redefining words in the
nucleus is unforgivable and potentially
lethal to Forth's commercial viability.

How we view the Forth standard de-
pends on who we are. System vendors
have a commercial interest in product
stability that hobbyists don't share. Pro-
fessional users welcome functional im-
provements if they are of clear benefit,
but resist energy-consuming changes un-
related to getting a good job done on
time. Some language hackers embrace
any opportunity to save a clock cycle and
will modify their personal systems regu-
larly without qualm.

The interests of its diverse users
brought them to Forth in the first
place, and meeting their needs perpetu-
ates the language's use. Those needs
are as real and specific as the measur-
able performance of a primitive word
and must, as a matter of course, be
part of the overall approach to the
standards effort. It is evident that the
Forth community has many interests,
of which the most fundamental is suc-
cess of the language itself. A standard
arises from that common interest and
so does resistance to changes. The
intensity and volume of debate over
Forth-83 obscured that common inter-
est, creating an us/them, win/lose at-
mosphere. I hope anyone participating
in future debates will have studied
Getting to Yes by Roger Fisher and
William Ury of the Harvard Negotia-
tion Project.

This morning I spoke with Guy Kelly,
chairman of the Forth Standards Team
(FST), about the growing discussion
over another Forth standard. He told

me the FST has no plans for a Forth-87
and has not called any meetings on the
topic. During two meetings leading to
the Forth-83 Standard, the team had to
deal with about five hundred proposals;
at that time, members of the team
decided there would be no future FST
events without advance technical meet- ,
ings at the regional level. Proposals
would then be published and distributed
to subscribers. Guy said that, as of his
last poll, FST referees had not indicated
any desire to begin this process. It is
easy to see that, even if a new standard
is proposed, 1987 is an unlikely target
date for its completion.

I
Forth Dimensions maintains a neutral

i
ground for discussion and accepts ar- 1 ticles and letters to the editor related to
this subject. We hope representatives of
the standards team will write about its
current plans and intentions, as well as
the focus and likely restrictions of fu-
ture FST meetings. Users and vendors
are equally welcome to submit their
viewpoints and suggestions. Our pages
are limited, so items related to general
topics (e.g., extension word sets, up-
ward compatibility), overall direction
and philosophy will carry the greatest
weight; most experimental, technical
proposals would be better placed at
FORML. Forth Dimensions will
attempt to take no sides, warning only
that we are looking for more light than
heat. Coherent discussion is welcome
from all "sides" in the debate.

The proper place to send formal
proposals is the Forth Standards Team
(P.O. Box 4545, Mountain View,
California 94040). A proposal (even
one suggesting only that the Forth
kernel remain unchanged) must be sub-
mitted in the manner established in the
published Forth-83 Standard docu-
ment, and which we will reproduce in
these pages if space permits. Copies of
the standard are available from several
vendors and the Forth Interest Group.

As always, we will continue publish-
ing material that should be instructive
and useful to our readers right now.
Enjoy the issue!

-Marlin Ouverson
Editor

4
W B ~ P

Forth to the Future!

Forthmacs
for the Atari ST

32-bit Forth-83

REAL stream files -
no need for blocks

Multi-window EMACS editor

Interfaces to all ST
graphics and system
routines

Multitasking

Many programming tools

Structured Decompiler

Assembler/Disassembler

Debugger

Command editing,
history, and completion

Complete manual

On-line documentation

Newsletter

Simply the Best!

Forthmacs + manual: $50

With source: add $50

Bradley Forthware
P.0 Box 4444

Mountain View, CA 94040

Volume VIII, No. 3 11 FORTH Dimensions

Forth Systems With a

Segmented
Richard Wilton

Marina del Rey, California

Most Forth interpreters confine
themselves to a single logical address
space in memory. Executable code,
linked lists of addresses, and structures
of initialized and uninitialized data are
all stored within the same address
space. Accessing any of these program
elements within a Forth program is
simple because any executable code or
data item can be reached with a unique
sixteen-bit address.

The lack of a structured "memory
map" in Forth systems has not proven
to be a major deficit in small com-
puters with sixty-four Kbytes or less of
main memory, or in computers without
sophisticated operating systems. How-
ever, in complex microcomputer oper-
ating system environments, the use of a
segmented memory model within a
Forth interpreter offers clear advant-
ages over older approaches.

Advantages of Memory Segmentation

Memory Model

The Intel 8086. Initially, the preval-
ence of computers based upon the Intel
8086 family of microprocessors provid-
ed the impetus for creating a Forth
interpreter with a segmented memory
model. The architecture of these pro-
cessors is such that memory is most
conveniently addressed in sixty-four
Kbyte partitions or segments. Since the
8086 and related processors have four
segment addressing registers, a soft-
ware memory model which "maps"
into these registers makes very effective
use of memory.

For example, a memory model which
uses four non-overlapping segments
can conveniently utilize 256 Kbytes of
RAM in an 8086-based machine, even
though the software handles only
sixteen-bit addresses for the most part.
A Forth interpreter can thus make
effective use of up to 256 Kbytes of
RAM even with a sixteen-bit address
interpreter.

Headerless and ROMable Code.
There are other strong reasons for
segmentation of memory in a Forth
system apart from such hardware-

related considerations. For example,
applications developers who have no
need for dictionary headers can easily
excise them from a finished application
if the headers are maintained in a
separate memory partition. Also, the
separation of executable code from
other data greatly simplifies the im-
plementation of a Forth interpreter
which can be executed from read-only
memory (ROM).

Links to High-Level Languages. Still
another important reason for using a
Forth interpreter with a segmented
memory model is that most high-level
language compilers generate executable
modules with similar memory segmen-
tation. It is easier to link to such
"external" modules from a Forth sys-
tem with a segmented memory struc-
ture.
The Basic Segmented Memory Model

The implementation of a Forth system
with segmented memory is straightfor-
ward. The basic memory map consists of
three discrete partitions or segments:

Code segment - contains all ex-
ecutable code

Data segment - contains bodies of
colon definitions as well as initialized
and uninitialized program data

Headers segment - contains names
and addresses of all definitions

The parameter and return stacks
may be placed in a fourth discrete
segment. However, it is simpler in
many respects to maintain the stacks in
one of the other segments. Further-
more, certain operating systems con-
strain the stack to either the code or
data segments.

Theoretically, there is no restriction
on the amount of segmentation that
can be done in creating the memory
map. For instance, disk buffers, con-
stants, or a "user" area for multi-
tasking might each be mapped into
separate segments of their own. How-
ever, the increased overhead involved
in keeping track of many separate
segments can degrade system perform-
ance as well as increase the complexity
of the system.

The separation of executable code
from data is particularly useful in en-
vironments in which memory protec-
tion schemes are used. For example, in
its "protected" mode the Intel 80286
supports the creation of execute-only
code segments and non-executable data
segments; attempts to execute data or
to modify existing code generate hard-
ware exceptions which can trap to
software error-handling routines. This
feature might be much appreciated by
Forth programmers whose programs
would otherwise crash irretrievably due
to such errors.

System Data Structures

The structures which contain the
data upon which the interpretive Forth
system operates reflect the segmenta-
tion of the system's memory map. The
actual data structures used in a par-
ticular implementation necessarily de-
pend upon the type of threaded code
used.

Indirect- Threaded Code. For exam-
ple, in an Indirect-Threaded Code
(ITC) system, a colon definition is
mapped into a list of sixteen-bit ad-
dresses in the data segment, as in
Figure One.*

The code field contains the address
of the inner interpreter's "nest" rout-
ine. Since this field points to executable
code, the address refers to a location in
the code segment. The body of the
definition contains code field addresses
(compilation addresses), all of which
refer to locations in the data segment.

A CODE definition is mapped primar-
ily into the code segment. The only
part of a CODE definition to be found
in the data segment is the address of
the executable code, which is stored in
the data segment at the definition's
compilation address. (See Figure Two.)

Direct-Threaded Code. The struc-
tures are somewhat different in a
Direct-Threaded Code (DTC) system.
In a DTC implementation each colon
definition references the inner inter-
preter's "nest" routine explicitly with
a short fragment of executable code, as
shown in Figure Three.

FORTH Dirnens~ons
--

Volume VIII, No. 3

This executable fragment (a jump
instruction) resides in the code seg-
ment. The "nest" routine uses the
address stored in the code segment to
find the body of the definition, which
resides in the data segment. Similarly,
a CODE definition resides entirely in the
code segment.

Headers. The actual structure of
dictionary headers, which are main-
tained in a segment of their own, great-
ly depends upon the structures used to
represent Forth vocneumuvs. How-
ever, the basic structure is simple, as in
Figure Four.

The "compilation address" field
deserves careful attention because the
type of address it contains depends
upon the implementation. In an ITC
implementation, this address referen-
ces a location in the data segment. In a
DTC system, the address is located in
the code segment. This difference is
critical in understanding the function
of a Forth system with a segmented
memory map, although it is immaterial
to a Forth applications programmer.
(For example, the sequence <name>
EXECUTE has the same effect in either
implementation.)

Implications for System Implementation

Because code and data are separat-
ed, complex and unconventional colon
definitions can be easily built. For
example, the implementation of words
containing CREATE . . . DOES> Or ;CODE
is very straightforward, especially in a
DTC system where the size of the code
fragment associated with a definition is
not limited.

Since compilation addresses are main-
tained explicitly in dictionary headers,
it is easy to implement a forward-
referencing scheme. A forward refer-
ence is created with a "dummy"
compilation address. Later, when the
reference is resolved, the "dummy"
address is replaced by a real one.

Both Unix and MS-DOS offer dynarn-
ic memory allocation facilities. Such
dynamically-allocated memory is usually
located in a partition outside of a re-
questing program's initial address space.
A Forth which integrates a segmented
memory model is easily adaptable to this
scheme of memory allocation.

In Forth systems with partitioned
memory, Forth memory operators such
as a and ! implicitly address the data
segment. A problem arises when it is
necessary to access other memory
partitions explicitly. One simple ap-
proach is to utilize "long" memory
operators which require both a "base
address" (e.g., a segment address) and
an "offset":
@L (base-addr offset -- value)

!L (value base-addr offset --)

CMOVEL (base-addr 1 of f se t 1
base-addr2 offset2 #bytes --)

This approach works well in prac-
tice. In any case, such "long" opera-
tions comprise only a small percentage
of most applications.

The unique advantages of a Forth
interpreter with a segmented memory
model are not restricted to micropro-
cessors which directly support memory
segmentation. The segmented memory
scheme works very well on the Motor-
ola 68000, for example. Of course, for
older eight-bit processors with only 64
Kbytes of address space, this sort of
memory partitioning involves more
bookkeeping overhead than it is worth.
Nevertheless, a partitioned memory
model in Z-80 or 6502 systems with
bank-switched memory, such as the
Apple IIe, may yet prove to be useful.

The performance of a Forth inter-
preter with a segmented memory map
is not significantly affected by the
separation of code, data and headers.
Other factors, including the method of
dictionary search, the nature of the
threaded code implementation (e.g.
ITC or DTC) and the efficiency of
machine code primitives, influence per-
formance to a much greater degree.

For example, execution speed bench-
marks on an ITC implementation of an
8086-based Forth system (PC/Forth by
Laboratory Microsystems) are virtually
identical whether or not the memory
map is segmented. Considering the
improvement in efficiency and
flexibility of memory utilization, a
Forth system which incorporates a par-
titioned memory model is a better ap-
proach to Forth programming in de-
manding sixteen-bit systems with com-
plex software environments.

6- di A*'

* FORTH-83
compatible

*32 bit stack
*Multi-tasking
*Separate headers
*Full screen editor
*Assem bler
*Amiga DOS support
*Intuition support
*ROM kernel support
*Graphics and sound

support
*Complete

documentation
*Assembler source

code included
*Monthly newsletter

$85
Shipping included
in continental U.S.
(Ga. residents add sales tax)

UB-
(404)-948-4654

(call anytime)
or send check or money order to:

UBZ s*
395 St. Albans Court
Mableton, Ga. 30059

I 'Amiga is a trademark for
Commodore Computer. UBZ FORTH
is a trademark for UBZ Software. I

Volume VIII. No. 3

*See figures on page 27.

FORTH Dimensions

An invitation to attend the eighth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving
November 28 - 30, 1986

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California

Theme: Extending Forth towards the 87-Standard
FORML isn't part of the Standards Team, but the conference is an opportunity to present
your ideas for additions to the Forth standard. Papers are also welcome on other Forth
topics. Meet other Forth professionals and learn about the state of the art in Forth
applications, techniques, and directions.

To get your registration packet call the FIG Business Office (408) 277-0668
or write to: FORML Registration, Forth Interest Group, P. 0. Box 8231,
San Jose, CA 95155.

Registration: $275 Double ROO^

$3 25 Single Room (Limited availability)

$150 Non-conference guest (Share a double room)

des room, meals, conference materials, and social events.

Space is limited,
advance registration

C 1

FORTH Dimensions 14 VolumeVIII, No. 3

The Point Editor
J. Brooks Breeden
Columbus, Ohio

Hardin's Law: You can never do just
one thing.

Often, I find books and back issues
of Forth Dimensions contain tips and
techniques that I didn't understand or
need when I first read them but that
now make perfect sense and are exactly
what I'm looking for. Sometimes,
however, what I need to help me solve
a problem is hiding, disguised as a
solution to a different kind of prob-
lem. For example:

Recently, while developing a computer-
assisted instruction (CAI) drill-and-practice
test on storm drainage, I wanted to
draw a map of the United States,
showing zones of approximately equal
rainfall. Because I wanted just one
small map in a corner of the display, I
found an 8x10-inch map of the USA
2nd traced it onto graph paper, re-
drawing the outline with straight line
segments that gave a reasonable fac-
simile of the USA's shape. Next, by
trial and error, I found a scale which
related the USA's vertical dimension to
the y-axis coordinate range I wanted on
the display, and scaled the x,y coor-
dinates based on 0,O in the upper-left
corner of Washington state. The USA
outline required the first 128 x,y coor-
dinate pairs shown in Figure One. The
remainder of the points in Figure One
are used to draw the lines of "ap-
proximately equal rainfall."

I use PC/Forth 3.1 from Laboratory
Microsystems, Inc. and, normally,
CAI graphics are simple to program
using the supplied routines for LINE,
FLOOD, ARC, etc. I was worried about
running out of memory with this ap-
plication, however, and I didn't want
to compile a word consisting of x y
x y LINE 128 times for the USA's
outline! I had also measured the x and
y coordinates using the same scale, and
the display required an x-axis multi-
plier because the pixels on IBM dis-
plays aren't square. Having gotten this
far, I finally stopped to think about the
problem. How was I going to draw the
USA?

Three methods came to mind:

1. Define a command to DRAW from
the last point to the next point,
letting the computer re-scale the
x-axis and add an offset from an
"x,y origin" on the display. I could
use a brute-force approach with
screens full of x Y DRAW instead
of x Y x Y LINE (after all, it
was just one map), and I could
relocate the map on the display by
changing the coordinates of the
origin.

2. Create the DRAW command as
above, manually re-scale the x-axis
and , (comma) the coordinates into
an array. A loop could read the
array and draw the USA's outline.

3. Recall a previously stored image
from disk with PC/Forth's ~ m -
IMAGE and overlay it with the rest
of the tutorial.

The first method would require sev-
eral screens of X Y DRAW and match-
ing a point would require looking
through literally hundreds of numbers
and DRAWS. The second method would
take fewer screens, but editing num-

bers separated by only commas (no
DRAWS) would be even harder. Using ,
(comma) to lay down all' the points in
the dictionary would use lots of memory,
too. The third method wouldn't solve
anything, since I had to draw the image,
somehow, before I could store it!

BASIC draws points from arrays
stored in disk files all the time! Then, I
rememberd an exercise in Starting
Forth (chapter ten, exercise five, page
288) to write words to accept pairs of
numbers from the keyboard, write
them to a block, then recall and format
them on the display. Eureka! I could
store coordinate pairs in a block and
draw the USA's outline by using a loop
to read coordinates from the block.

Hardin's Law Strikes

Have you ever entered 256 consecutive
numbers? Did you ever make a mistake?
Don't answer! It's not enough to just
write numbers to a block and read
them back. You have to be able to
change a number and you need to be
able to add or delete one, or several (in
the middle, yet). You see, you can
never do just one thing! I needed a
"point editor."

Figure W o

*

VolumeVtII. NO. 3 15 FORTH Dimensions

Regions of ap-. similar rainfall.

FORT H-83 ST AWARD
6809 Systems avaikbk for

FLEX disk sustem s $1 !50
0S9/6809 $ 150

I 680x0 Systems available for
MACINTOSH $125
CP/M-68K $150

I tFORTH/2O for 68020
Single Board Computer

I Disk based development system
under OS9/68K . . . $290

EpROM set for complete stand-
alone SBC $390

I Forth Model Libraru - List
handler, spreadsheet, Automatic
structure charts . . . each . $40

Talbot Microsgstems
1927 Curtis Ave
Redondo Beach

CA 90278
(2 13) 376-9941

68020 SBC, 5 1 14" floppy size
board with 2MB RAM, 4 x 64K

EpROM sockets, 4 RS232 ports,

Centronics parallel port, timer,

battery backed date/time,

interface to 2 5 1 14" floppies

and a SASl interface to 2
winchester disks$2MO

68881 flt pt option. $500
OS9 mlt i taskawer OS. . $350

F A ST 1 int . knchrnarks

speeds re

FORTH Dimensions

POINTED ("Point Ed-itor") stores
points in a block. Using a non-DOS,
block-oriented Forth like polyFORTH,
that's it; you have a block of points. If,
however, your Forth uses screens in a
DOS file, will the point data be a
screen in your application's file, or a
separate file on the disk? Because I
wanted to be able to read the point
data from a PC/Forth TURNKEY ap-
plication (a DOS .COM file which
wouldn't have any blocks), 1 needed to
store the points in a separate, named,
"point file" on the disk. The DOS
interface was something I hadn't in-
tended to deal with: how and when to
open and close screen files within
Forth, from a .COM file, FCBs, han-
dles, etc. Hardin's Law.
To put off dealing with DOS for

awhile, I chose to use POINTED'S screen
ten.as a data block for "editing." I
entered all the required points and used
LMI's SCOPY utility both to create a
new file and to transfer POINTED'S
screen ten to the new file's screen zero.
(Screen zero can be read and written
to, but cannot be loaded; a distinct
advantage!)

Screens one through four contain the
"command-driven" program. Defined
words allow scaling the x-axis, enter-
ing, changing, deleting, listing and
printing points stored in block ten.
Screens five through seven make a
simple menu-driven interface that a
graduate student assistant not familiar
with Forth can use to input points
(Hardin's Law . . . Murphy's Law,
too). I like to think the source for these
screens is self documenting.

Screen eight contains words for re-
scaling between "raw" data and CGA/
EGA scaled data. These words aren't
normally loaded, as they can be dan-
gerous, although I suppose the most
dangerous word is an option on the
menu. The "best" scale factor for
CGA/EGA will vary with the vertical
adjustment of your display. (Yours will
probably be less.) Experiment, but
backup block ten before you mess
around - it can be frustrating to lose
the original data and have to re-enter
it.

A more sophisticated version would
create a file and work directly with its
screen zero without POINTED'S screen
ten as the "middle man." Another
improvement would automatically up-

Points list for screen 10
Pt.8 X Y
8 0 4 1 8 1 6 2 4 2 6 0 8 3 14 2 8 4 24 4
8 5 38 5 8 6 44 5 8 7 46 3 D 8 46 3 8 9 46 6
8 1 0 52 8 8 1 1 50 9 8 1 2 52 8 H 1 3 52 9 # 1 4 52 9
8 1 5 54 7 8 1 6 56 7 P 1 7 56 8 8 1 8 58 9 8 1 9 60 7
8 20 60 8 8 21 60 9 8 22 58 10 8 23 56 14 8 24 58 19
8 25 58 19 0 26 60 17 # 27 60 15 # 28 58 14 8 29 60 1 1
8 30 60 1 1 8 31 60 9 8 32 62 10 8 33 64 12 8 34 62 13
8 35 62 14 8 36 64 13 8 37 66 14 8 38 64 17 8 39 66 18
8 40 66 18 8 41 70 16 8 42 70 14 # 43 70 13 8 44 74 12
8 4 5 74 1 1 8 4 6 76 8 8 4 7 80 7 8 4 8 80 6 8 4 9 82 5
8 50 82 1 8 51 82 1 8 52 84 0 8 53 84 1 # 54 86 -4
5 5 86 4 0 5 6 88 5 8 5 7 84 8 8 5 8 82 10 # 5 9 84 1 1
8 6 0 82 12 8 6 1 84 13 8 6 2 84 14 8 6 3 82 15 V 6 4 82 16
8 6 5 80 17 8 6 6 80 19 8 6 7 80 20 8 6 8 78 24 D 6 9 78 24
70 78 23 8 71 76 23 8 12 80 28 8 73 78 30 8 74 78 30
8 75 76 32 # 76 76 32 # 77 72 36 8 78 72 38 8 79 72 41
8 80 76 49 # 81 76 51 8 82 74 51 8 83 74 50 8 84 72 50
85 70 46 8 86 70 45 t 87 68 43 8 88 68 42 8 89 66 43
8 90 64 42 8 91 58 43 8 92 58 44 8 93 58 45 8 94 58 46
8 95 56 45 t 96 56 46 8 97 54 45 8 98 48 45 8 99 44 48
8100 42 50 #lo1 44 53 8102 40 52 1103 38 49 8104 36 45
#I05 34 44 0106 32 46 8107 30 45 #I08 28 43 8109 26 40
8110 24 40 #111 22 41 #I12 18 40 8113 12 37 f114 8 36
8115 8 34 8116 6 32 8117 2 31 8118 2 27 8119 2 23
8120 0 21 8121 0 17 8122 0 15 8123 0 12 8124 2 10
8125 4 4 8126 2 2 8127 4 1 8128 4 1 812932898224
8130 6 38 8131 12 32 8132 16 28 8133 28 24 8134 24 2
8135 26 7 8136 26 13 #I37 26 21 8138 28 24 8139 32 25
8140 40 3 8141 34 13 8142 32 25 8143 32 31 8144 34 37
8145 50 4 8146 48 7 8147 50 9 8148 60 13 8149 64 16
8150 70 17 0151 76 13 8152 86 1 1 0153 34 45 8154 34 37
8155 40 24 8156 44 20 8157 48 18 8158 52 21 8159 56 32
8160 58 34 8161 62 34 8162 68 33 8163 78 17 8164 86 15
0165 44 51 8166 42 48 8167 44 44 #I68 46 41 8169 50 39
8170 54 39 8171 64 40 t172 74 40

Figure One Original points scaled from map.

16 Volume VIIi, NO. 3

date the number of points in the file,
eliminating the hassle of manually
keeping track of the number of points.
Still, if you store sets of points to draw
different things in the same block, such
as the "lines of approximately equal
rainfall," you will have to keep track
of starting and ending point numbers
anyway. There are many other improve-
ments to POINED that I leave to the
reader to implement; but remember, I
wasn't trying to write a universal point

editor. I was trying to draw just one
map!

Screen nine contains the drawing
routines. This screen is not a part of
POINTED.SCR, per se, but is included
in the file for convenience. Normally,
you copy it to your application and
modify the file names, origin, etc., as
required. These definitions should be
self-explanatory with the exception of
V + which adds vectors. In DRAW-PIS,
PT# fetches a point's coordinate pair

I Listing One
Screen # 0
(POINTED Point Editor f o r drawings
(Last change: Screen 002

Screen # 1
jbb 10:46 04/28/86) (Scaling? points
jbb 15:31 04/29/86) 10 CONSTANT POINTS

Copyright 1986, by J. Brooks Breeden
A l l comercia1 r igh ts reserved.

You may f ree ly use t h i s program fo r personal non-comercia1 use.

The point edi tor creates f i l e s of binary points (coordinates)
stored i n Screen 10 of THIS f i l e . Up t o 224 PAIRS of x y
values m y be stored. Use SCOPY t o create a new f i l e and
transfer data i n Screen 10 t o the new f i l e ' s Screen 0.
DRAWER.SCR shows how t o c a l l the points from another program.

This progran i s wr i t ten i n and fo r the Forth-83 implerentation
PCIFORTH 3.1 by Laboratory Microsystems, Inc.

Screen # 2
(Enter points jbb 15:31 04/29/86)
: ENTER-PT (- x y) CR .' Enter x <CR> y <CR>. ' CR

.' X = ' #IN CR .' Y = ' 1IN CR ;
: WAIT 28 24 GOTOXY .' Press any key t o continue.' KEY DROP ;

: ?+PTS (- s ta r t count) .' Start ing a t which point 8 ? '
CR XIN 224 WIN CR .' How many points? ' t IN 224 MIN ;

: ?-PTS (- s ta r t end) .' Delete from point t ? ' CR #IN
224 MIM CR .' Delete th ru point X ? ' CR #IN 224 MIN ;

-->

and the ORIGIN'S coordinate pair. v+
adds the ORIGIN'S x to the point's x and
the ORIGIN'S y to the point's y. By
changing the origin, you can draw the
same image at different places on the
screen. This allows "fine tuning" the
display. Note that the file names com-
piled by DRAWER and POINTFILE have
extensions. If you TURNKEY the applic-
ation, be sure the extension for the
name in DRAWER is .COM.

jbb 10:49 04/28/86)
(block 10 i s used t o store points) I

\ step past possible date stamp on l i n e 0, & o f fse t i n t o block
: POINTSBLOCK (i - adr) 2* 2* POINTS BLOCK + 64 + ;
: !POINTS (n n i -) POINTSBLOCK 2! UPDATE ;
VARIABLE ?SCALE (f l ag t o scale x-axis: -l=yes,O=no)
: SCALEIT? CLS .' Scale x-axis? 1 = yes, 0 = n o . '

t l N ?SCALE ! ; (#IN gets integer input)
\ This i s f o r EGA, subst i tute 12 5 */ fo r CGA display scaling.
: SCALING-X? (x y - x ' y) ?SCALE @ IF SWAP

13 10 */ SWAP THEN ;
-->

Screen # 3
(Change & delete pts. jbb 16:41 04/27/86)
: tPTS (s ta r t c w n t -) SWAP POINTSBLOCK SWAP 2* 2* WP >R

OVER + R> CMOVE> UPDATE ;

: -PTS (1st l as t -) I t 224 OVER - 2* 2* >R
POINTSBLOCK SWAP POINTSBLOCK R) CMOVE UPDATE ;

: CHANGE-PT CLS SCALEIT? CR .' Enter the point X. " CR %IN
ENTER-PT SCALING-X? ROT !POINTS UPDATE SAVE-BUFFERS ;

: ADDPTS (s ta r t count -) CLS SCALEIT? CR OVER + SWAP
W .' Pt. t ' I . ENTER-PT SCALING-X? I !POINTS LOOP ;

: INSERTPTS CLS ?+PTS 2WP +PTS ADDPTS SAVE-BUFFERS ;

: DELETEPTS CLS ?-PTS -PTS SAVE-BUFFERS ;
-->

Screen # 4 Screen 8 5
(Show & p r i n t pts jbb 10:46 04/28/86) (Choices jbb 10:47 04/28/06)
: .PTS (s t a r t count -) .' Points l i s t f o r screen 10' CR : CHOICES BLUE 86 CLS WHITE FG 35 7 GOTOXY .' MAIN MWU'

.' Pt.1 X Y ' OVER + SWAP GRAY FG
00 I WINTSBLOCK 20 SWAP I 5 HOD O= 32 11 GOTOXY .' (S) h points'

I F CR ELSE 3 SPACES THEN 32 12 GOTOXY .' (1)nsert points'
.' X' I 3 U.R SPACE 4 U.R 4 U.R LOOP CR ; 32 13 GOTOXY .' (C)hange a point'

32 14 GOTOXY .' (D)elete points'
: SHOWPTS CLS ?tPTS CLS .PTS WAIT ; 32 15 GOTOXY .' (P)r int points'
: PRINTPTS CLS ?+PTS PRINTER .PTS COWSOLE ; 32 16 GOTOXY .' (W)ipe block l o ! ! ! (dangerous!!!)'

32 18 GOTOXY .* Esc leaves the program' WHITE FG
I : WIPE-BLOCK-10 (-) POINTS BLOCK 1024 BLANK ; 26 20 GOTOXY .' Press the f i r s t l e t t e r o f your chofco.'

(DANGER!!! I f y o u d o t h i s y o u w i p e i t A L L a w a y ! ! !) GRAY FG ;
--> -->

Volume VIII. No. 3 17 FORTH Dimensions

The second listing, DRAWER.SCR is
a demo to show that DRAWER does
indeed draw points entered with POINTED
and that the result does resemble the
USA. Screens one through eight build a
dummy of the application that started
the whole thing. An EGA screen dump
of the display is shown in Figure -0.

It's ironic that the source to dummy
the application is almost longer than
everything else. I could not avoid the
DOS interface forever. Screen five
shows how I sequenced the opening

and closing of files so the program
doesn't get lost in DOS and crash,
leaving files lying around open.

The application uses EGA graphics
and floating-point math extensions.
The demo dummy lacks about thirty
screens of irrelevant, generic CAI ques-
tion drivers, answer checkers and ran-
dom problem generators. Everything
looks exactly like the real McCoy,
except it doesn't work. You do not
need floating-point math routines to
load and run the demo, but you do
need an EGA card and display to run
the demo as it is written. (Attempting

to run the demo from PC/Forth with-
out loading EGAGRAPH first will result
in a truly spectacular hard crash!) To
run with a CGA display, eliminate
color references, re-scale the points
and adjust all y-axis references in
DRAWER.SCR accordingly.

I hope some of the "other things" I
had to do in trying to draw just one
map may be of help to others trying to
do just one thing, sometime. If anyone
is interested in the inner workings of
the real application, please contact me.
I'd be happy to discuss the specifics.

C

Screen # 6 Screen # 7
(Message jbb 10:47 04/28/86) (Main program jbb 10:47 04/28/86)
: MESSAGE CLS 12 10 GOTOXY : MENU CHOICES KEY

.' Note: Points w i l l be stored i n Screen 10 of t h i s f i l e . ' WP 27 = IF DROP EXIT ELSE
29 14 GOTOXY .' Be certain Screen 10 i s wiped or that ' WP ASCII S = IF DROP SHOUPTS ELSE
29 15 GOTOXY . " i t i s the point-set you wish t o ed i t .' WP ASCII I = IF DROP INSERTPTS ELSE
29 16 GOTOXY .* Use SCOPY t o rake a new f i l e and t o copy ' WP ASCII C = IF DROP CHANGE-PT ELSE
29 17 GOTOXY .' Screen 10 t o Screen 0 of the new f i l e . " ; WP ASCII D = IF DROP DELETEPTS ELSE

--> WP ASCII P 5 IF DROP PRINTPTS ELSE
WP ASCII W = IF DROP WIPE-BLOCK-10 ELSE
DROP 500 50 BEEP THEN
THEN THEN THEN THEY THEN THEN RECURSE ;

: POINTED MESSAGE WAIT MENU ;

Screen # 8 Screen # 9
(Optional dangerous words jbb 15:24 04/29/86) (Drawer routines jbb 15:30 04/29/86)
\ There i s obviously rounding error i n these words. \ Copy t h i s block i n t o your application and modify as needed.
: UNSCALE-CGA (-) 173 0 (convert CGA scaling t o raw data) 2VARIABLE CP (holds coordinates o f graphic cursor)

DO I POINTSBLOCK 28 SWAP 5 12 */ SWAP I !POINTS : A T (x y -) C P 2 ! ; (set graphic cursor 'ATa CP)
LOOP ; : DRAW (x y -) 2WP CP 20 LINE AT ; (draw l ine , update CP)

: UNSCALE-EGA (-) 173 0 (convert EGA scaling t o raw data) : V+ (x y x l y l - x2 y2) >R ROT + SWAP R> + ; (add vectors)
DO I POINTSBLOCK 28 SWAP 10 13 */ SWAP I !POINTS \ Be sure t o change extension of DRAWER t o .COn i f you TURNKEY
LOOP ; : DRAWER ' DRAWER.SCR ' ; (the file-name t o return to)

: SCALE-CGA (-) 113 0 (convert raw data t o cga scaling) : POINTFILE * USAEGA.SCR ' ; (the file-name holding points)
00 I POINTSBLOCK 28 SWAP 12 5 */ SWAP I !POINTS 0 CONSTANT POINTS (screen 0 i n p o i n t f i l e)
LOOP ; 380 66 2CONSTANT ORIGIN (upper l e f t corner xy of drawing)

: SCALE-EGA (-) 173 0 (convert raw data t o ega scaling) \ Note: the POINTSBLOCK defined i n Screen 1 i s not the same.
DO 1 POINTSBLOCK 20 7 4 */ SWAP 7 4 */ : POINTSBLOCK (n -) POINTS BLOCK + 64 + ; (step t 1 l i ne)

13 10 */ SWAP I !POINTS : PTt (n - x y) 2* 2* WINTSBLOCK 28 ORIGIN V+ ;
LOOP ; : DRAW-PTS (h i 10 -) DO I PTt DRAW LOOP ;

Continued on page 23.

FORTH Dimensions 18 Volume VIII, No. 3

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

MEMBERSHIP
IN THE FORTH INTEREST GROUP

108 - MEMBERSHIP in the FORTH INTEREST GROUP &Volume8
of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth Interest Group is a worldwide non-profit member-supported
organization with over 4,000 members and 90 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $30.00 per year for USA, Canada 8. Mexico; all

other countries may select surface ($37.00) or air ($43.00) delivery.

The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated for
the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receive a membership card and number which entitles you to a
10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM
1. Each item you wish to order lists three different Price categories:

Column 1 - USA, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

2. Select the item and note your price in the space provided.

3. After completing your selections enter your order on the fourth page of this form.

4. Detach the form and return it with your payment to the Forth lnterest Group.

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)
101 - Volume 1 FORTH Dimensions (1 979/80)$15116/18 -
102 - Volume 2 FORTH Dimensions (1 980/81)$15/16/18 -
103 - Volume 3 FORTH Dimensions (1 981 /82)$15/16/18 -
104 - Volume 4 FORTH Dimensions (1 982/83)$15116118 -
105 - Volume 6 FORTH Dimensions (1 983/84)$15116118 -
106 - Volume 5 FORTH Dimensions (1 984185)$15/16/18 -
107 - Volume 7 FORTH Dimensions (1 985/86)$20/21 124 -

FORML CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is
an informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
lnterest Group.
310 -FORML PROCEEDINGS 1980 . . $30133140

Technical papers on the Forth language and extensions.

31 1 - FORML PROCEEDINGS 1981 . $45148155
Nucleus layer, interactive layer, extensible layer, metacom-
pilation, system development, file systems, other languag-
es, other operating systems, applications and abstracts
without papers.

312 - FORML PROCEEDINGS 1982 . $30133140
Forth machine topics, implementation topics, vectored
execution, system development, file systems and lan-
guages, applications.

313 -FORML PROCEED\NGS 1983 . . $30133140
Forth in hardware, Forth implementations, future strategy,
programming techniques, arithmetic & floating point, file
systems, coding conventions, functional programming
applications.

314 -FORML PROCEEDINGS 1984 . . . $30133140
Expert systems in Forth, using Forth, philosophy, im-
plementing Forth systems, new directions for Forth, inter-
facing Forth to operating systems, Forth systems tech-
niques, adding local variables to Forth.

31 5 - FORML PROCEEDINGS 1985 . . . $35138145
Also includes papers from the 1985 euroFORML Con-
ference. Applications: expert systems, data collection,
networks. Languages: LISP, LOGO, Prolog, BNF. Style:
coding conventions, phrasing. Software Tools: decom-
pi ler~, structure charts. Forth internals: Forth computers,
floating point, interrupts, mulitasking, error handling.

Volume VIII, NO. 3 19 FORTH D~mensions

BOOKS ABOUT FORTH
200 -ALL ABOUT FORTH $25126135

Glen B Haydon
An annotated glossary for MVP Forth, a 79-Standard Forth

216 -DESIGNING & PROGRAMMING
N PERSONAL EXPERT SYSTEMS $1 9120129
E Carl Townsend & Denn~s Feucht
W Introductory explanat~on of Al-Expert System Concepts

Create your own expert system In Forth Wrltten In
83-Standard

217 -F83 SOURCE $25126135
N Henry Laxen & Michael Perry
E A complete listing of F83 lncludlng source and shadow
W screens Includes ~ntroduct~on on gettlng started

218 -FOOTSTEPS IN AN EMPTY VALLEY
N (NC4000 Single Chip Forth Engine) $25126135
E Dr. C. H. Tina
W A thorough examination and explanation of the NC4000

Forth chip including the complete source to cmForth from
Charles Moore.

219 -FORTH: A TEXT AND REFERENCE $25126135
N Mahlon G. Kelly & Nicholas Spies
E A text book approach to Forth with comprehensive referen-
W ces to MMS Forth and the 79 and 83 Forth Standards.

220 -FORTH ENCYCLOPEDIA $25126135
Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction.

225 -FORTH FUNDAMENTALS. V.1 $1 611 7/20
Kevin McCabe
A textbook approach to 79-Standard Forth

230 -FORTH FUNDAMENTALS, V.2 $1 311 411 8
Kevin McCabe
A glossary.

232 -FORTH NOTEBOOK $25126135
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice is
included. Code is well documented.

233 -FORTH TOOLS $22123132
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 -INSIDE F-83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.

237 -LEARNING FORTH $1 711 8127
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of Forth.
Includes section on how to teach children Forth.

240 -MASTERING FORTH $1 811 9/22
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities, exten-
sions and numerous examples.

245 -STARTING FORTH (soft cover) $22123132
Leo Brodie
A lively and highly readable intruduction with exercises.

246 -STARTING FORTH (hard cover) $24125129
Leo Brodie

255 -THINKING FORTH (soft cover) . $1 611 7120
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 -THREADED INTERPRETIVE LANGUAGES $25126135
R. G. Loelinger
Step-by-step development of a non-standard 2-80 Forth.

270 -UNDERSTANDING FORTH $3,501516
Joseph Reymann
A brief introduction to Forth and overview of its structure.

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.
321 -ROCHESTER 1981

(Standards Conference) $25128135
79-Standard, implementing Forth, data structures, vocabu-
laries, applications and working group reports.

322 -ROCHESTER 1982
(Data bases & Process Control) . . $25128135 -
Machine independence, project management, data struc-
tures, mathematics and working group reports.

323 -ROCHESTER 1 983
(Forth Applications) $25128135
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like languages,
new techniques for implementing Forth and working group
reports.

324 -ROCHESTER 1984
(Forth Applications) $25128135
Forth in image analysis, operating systems, Forth chips.
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 -ROCHESTER 1985
(Software Management & Engineering) $20121 124 -
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport, development
of MAGICIL, and a Forth-based business applications
language; includes working group reports.

THE JOURNAL OF FORTH APPLICATION & RESEARCH
A refereed technical journal published by the lnstltute for Applied Forth
Research, Inc
403 -JOURNAL OF FORTH RESEARCH V 2 # I

Forth Mach~nes $1 511 611 8
404 -JOURNAL OF FORTH RESEARCH V 2 #2

Real-T~me Systems $1 511 611 8
405 -JOURNAL OF FORTH RESEARCH V 2 #3

Enhancing Forth $1 511 611 8
406 -JOURNAL OF FORTH RESEARCH V 2 #4

Extended Addressing $1 511 611 8
407 -JOURNAL OF FORTH RESEARCH V 3 #1

Forth-based laboratory systems and data structures
$1 511 611 8

REPRINTS
420 -BYTE REPRINTS $51617

Eleven Forth artlcles and letters to the ed~tor that have
appeared In Byte Magazlne

- -- --

FORTH Dlmens~ons 20 Volume VIII. NO. 3

DR. DOBB'S JOURNAL
Th~s magazlne produces an annual speclal Forth Issue wh~ch Includes
source-code llstlng for varlous Forth appllcat~ons
422 -DR DOBB'S 9/82 $51617
423 -DR DOBB'S 9/83 $51617
424 -DR DOBB'S 9/84 $51617
425 -DR DOBB'S 10185 $51617
426 -DR DOBB'S 7/86 $51617

HISTORICAL DOCUMENTS
501 -KITT PEAK PRIMER $25127135

One of the first institutional books on Forth. Of historical
interest.

502 -Fig-FORTH INSTALLATION MANUAL $1 511 611 8
Glossary model editor - We recommend you purchase
this manual when ~urchasing the sourcecode listing.

503 -USING FORTH $20121 123
FORTH, Inc

REFERENCE
305 -FORTH 83-STANDARD . . $1 511 611 8

The autoritative description of 83-Standard Forth. For
reference, not instruction.

300 -FORTH 79-STANDARD $1 511 611 8
The authoritative description of 79-Standard Forth. Of
historical interest.

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source L~stlngs of flg-Forth for Speclflc CPUs and
machlnes w~th compller securlty and varlable length names
51 4 -6502lSEPT 80 $1 511 611 8
51 5 -68001MAY 79 $1 511 611 8
516 -6809lJUNE 80 $1 511 611 8
51 7 - 8080lSEPT 79 $1 511 611 8
51 8 -8086188lMARCH 81 $1 511 611 8
519 -9900lMARCH 81 $1 511 611 8
521 -APPLE IllAUG 81 $1 511 611 8
523 -IBM-PCIMARCH 84 $1 511 611 8
526 -PDP-I I /JAN 80 $1 511 611 8
527 -VAX/OCT 82 $1 511 611 8
528 -Z801SEPT 82 $1 511 611 8

MISCELLANEOUS
601 -T-SHIRT SIZE

Small, Med~um, Large and Extra-Large
Wh~te des~gn on a dark blue shlrt $1 011 111 2

602 -POSTER (BYTE Cover) $51617
616 -HANDY REFERENCE CARD FREE
683 -FORTH-83 HANDY REFERENCE CARD FREE

FORTH MODEL LIBRARY
The model applications disks described below are new addit~ons to the
Forth Interest Group's Ilbrary. These disks are the first releases of new
professionally developed Forth applications disks. Prepared on 5 114"
disks, they are IBM MSDOS 2.0 and up compatible. The disks are
compatible with Forth-83 systems currently available from several Forth
vendors. Mac~ntosh 3 112" disks are avatlable for MasterFORTH systems
only.

Forth-83 Compatibility IBM MSDOS
LaxenlPerry F83 LMI PCIFORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
PolyFORTHm II

Forth-83 Compatibility Macintosh
MasterFORTH

ORDERlNG INFORMATION
701 - A FORTH LIST HANDLER V.l $40143145

by Martin J. Tracy
Forth is extended with list primitives to provide a flexible
high-speed environment for artificial intelligence. ELlSA
and Winston & Horn's micro-LISP are included as ex-
amples. Documentation is included on the disk.

702 - A FORTH SPREADSHEET V.2 . $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions
Volume 7, lssue 1 and 2. These issues contain the
documentation for this disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 $40143145-
by Kim R. Harris
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program docu-
mentation is contained in the 1985 FORML Proceedings.

Please specify disk size when ordering

Volume VIII. No. 3 2 1 FORTH D~rnens~ons

FORTH INTEREST GROUP I
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668

Name

Member Number

Company

Address

City

State1 Prov. ZIP

Country

Phone

FORTH Dimensions 22 Volume VIII, No. 3

ITEM

108

QTY TITLE

MEMBERSHIP

$2.00

UNIT
PRICE

)

AUTHOR

Check enclosed (payable to: FORTH INTEREST GROUP)

VISA MASTERCARD

Card #

Expiration Date

Signature
($15 00 rnlnlrnurn On charge o rde rs)

TOTAL

SEE BELOW

SUBTOTAL

10% MEMBER DISCOUNT

SUBTOTAL

C A R E S I D E N T S S A L E S T A X

HANDLING FEE

M E M B E R S H I P F E E
N E W R E N E W A L $30137143

PAYMENT MUST ACCOMPANY ALL ORDERS
TOTAL

SALES TAX
Del~verles to Alarneda
Cmta Costa % Mate0
Los A- Cniz
"Sa"FrmsooCounbes

ZmyG"", yt zz
~ a ~ f ~ ~ , ~ coun~es add 646

SHIPPING TIME
Books In stock are shlpped
w ~ t h ~ n llve days of recelpt
of the order Please allow
4 6 weeks for out of stock
books (dellvery ln most
cases w ~ l l be much sooner)

MAIL ORDERS
Send to
Forth Interest Group
P 0 Box 8231
San Jose CA 95155

PHONE ORDERS
Call 4081277 0668 to place
cred~t card orders or for
customer servlce Hours
Monday-Fr~day 9am-5pm
PST

PRICES
All orders must be prepa~d Prlces are
subjecl to change wlthout notlce Credlt
card orders w ~ l l be sent and b~l led at
current prices $15 mlnlmum on charge
orders Checks must be ~n US$ drawn
on a US Bank A $10 charge w ~ l l be
added for returned checks

POSTAGE & HANOLlffi
Prlces Include shlpplng A
$2 W handl~ng lee IS

requlred w ~ t h all orders

Continued from page 18.

Listing Two
Screen # 0 Screen # 1
(Drawer EGA MI PC/Forth version jbb 15: 13 04/20/86) (U t i l i t i e s required fo r d m jbb 15:20 04/20/86)
(Last change: Screen 002 jbb 16:25 04/29/86) : FG FOREGROUND ; (shorthand notation f o r PC/FORTHVs names)

: BG BACKGROUND ;
This f i l e requires an EGA adapter and display. You must load : HUE (color -) CREATE , DOES> (- n) 8 ;
PC/FORTH1s EGAGRAPH.CON before loading PC/FORTH i n order t o 1 HUE GRAY 15 HUE WHITE 1 HUE BLUE
load t h i s f i l e , or you w i l l CRASH!!! I guarantee it! 4 HUE RED 2 HUE GREEN

2VARIABLE CP (holds coordinates of graphic cursor)
Copyright 1986, by J. Brooks Breeden : A T (x y -) C P 2 ! ; (set graphic cursor 'AT' CP)

A l l commercial r igh ts reserved. : DRAW (x y -) 2WP CP 20 LINE AT ; (draw l ine , update CP)
You may f ree ly use t h i s program for personal non-commercial use. : V+ (x y x l y l - x2 y2) >R ROT + SWAP R> t ; (add vectors)

This program i s wr i t ten i n and fo r the Forth-83 implementation : ? O . ;
PC/FORTH 3.1 by Laboratory Microsystms, Inc. -->

Screen # 2
(Drawer routines jbb 16:25 04/29/86)
: DRAWER ' DRAWER.SCR ' ; (file-name t o return to)
: POINTFILE ' USAEGA.SCR ' ; (f i le-nare holding points)

0 CONSTANT POINTS (screen 0 i n p o i n t f i l e)
380 66 2CONSTANT ORIGIN (upper l e f t corner of drawing)

\ Note: the PDINTSBLOCK defined i n POINTED.SCR i s not the same.
: PDINTSBLOCK (n -) POINTS BLOCK t 64 t ; (step t 1 l ines)

Screen # 3
(Steelchart regions of r a i n f a l l jbb 11: 14 04/29/86)
: DRAWSA 0 PTX AT 128 0 DRAW-PTS ; (draws out l ine of USA)
: DRAYSTEEL (draws l ines separating regions o f equal r a i n f a l l)

130 PTX AT 131 130 DRAW-PTS
134 PTX AT 140 134 DRAM-PTS
140 PT1 AT 145 140 DRAW-PTS
145 PTX AT 153 145 DRAW-PTS
153 PTX AT 165 153 DRAW-PTS
165 PTX AT 113 165 DRAW-PTS ;

: PT1 (n - x y) 2* 2* POINTSBLOCK 20 ORIGIN V t ; : USAFRAME (draws a double border around the map area)
: DRAW-PTS (h i l o -) DO I PTX DRAW LOOP ; GRAY FG 320 42 AT 631 42 DRAW 631 196 DRAW 320 196 DRAW 320
--> 42 DRAW WHITE FG 316 38 AT 635 38 DRAW 635 200 DRAW 316
The above code i s essent ia l ly a l l there i s t o it. The remainder 200 DRAW 316 38 DRAW ;
of the screens i l l u s t r a t e using the drawer routines. : FILLUSA 480 100 GREEN BRAY FLOOD ; (paint USA)

-->

Screen # 4
(Pr int region Xs jbb 14:49 04/20/86)
:.REGION= 4112OOTOXY GRAYFG (p r i n t s X o f r e g i o n s)

.' Regions of approx. s imi lar ra in fa l l . ' WHITE FG
ASCII 1 130 88 ORIGIN V t GEMIT
ASCII 2 110 45 ORIGIN V t GEUIT
ASCII 3 144 36 ORIGIN V t GEMIT
ASCII 4 156 6 ORIGIN V t GEMIT
ASCII 5 68 14 ORIGIN V t GEMIT
ASCII 6 56 50 ORIGIN V t GEMIT
ASCII 7 25 23 ORIGIN V t GWIT ;

-->

Note: GEIIT i s PC/FORTH f o r emiting a character i n graphics
d e a t x y coordinates rather than colun/row locations.

Screen # 5
(Draw i w g o from f i l e block jbb 11: 11 04/29/86)
\ th i s sequence w i l l open/close required f i l e s .
: DRAWUAP (t o draw the USA.. .)

USAFRAME (draw frame around image area)
CLOSE-SCR (close current screen 'drawerm)
EMPTY-BUFFERS (clear out any blocks stored)
POlNTFl LE OPEN-SCR (open the screen-fi le 'pointf i l e ')
GREEN FG DRAWSA FILLUSA (draw the s t u f f . ..)
RED FG DRAYSTEEL .REGION#S
CLOSE-SCR (close the drawing-file)
EMPTY-BUFFERS (clear any junk from buffers)
DRAWER OPEN-SCR (re-open 'drawer')
2DROP ; (drop lef tover f lags)

-->

Volume VIII, NO. 3 23 FORTH Dimensions

COMBINE THE
RAW POWER OF FORTH

WITH THE CONVENIENCE
OF CONVENTIONAL LANGUAGES I 1
Why HS/FORTH? Not for speed
alone, although it is twice as fast as
other full memory Forths, with near
assembly language performance
when optimized. Not even because
it gives MANY more functions per
byte than any other Forth. Not be-
cause you can run all DOS com-
mands plus COM and EXE programs
from within HS/FORTH. Not be-
cause you can singlestep, trace, de-
compile & dissassemble. Not for the
complete syntax checking 8086/
8087/80186 assembler & optimizer.
Nor forthe fast 9digit software float-
ing point or lightning 18 digit 8087
math pack. Not for the half mega-
byte LINEAR address space for
quick access arrays. Not for com-
plete music, sound effects &graph-
ics support. Nor the efficient string
functions. Not for unrivaled disk flex-
ibility - including traditional Forth
screens (sectored or in files) or free
format files, all with full screen edi-
tors. Not even because I/O is as
easy, but far more powerful, than
even Basic. Just redirect the charac-
ter input and/ or output stream any-
where - display, keyboard, printer
or com port, file, or even a memory
buffer. You could even transfer con-
trol of your entire computer to a
terminal thousands of miles away
with a simple >COM <COM pair.
Even though a few of these reasons
might be sufficient, the real reason
is that we don't avoid the objections
to Forth - WE ELIMINATE THEM!
Public domain products may be
cheap; but your time isn't. Don't
shortchange yourself. Use the best.
Use it now!
HS/FORTH, complete system: $395.
with "FORTH: A Text & Reference"
by Kelly and Spies, Prentice-Hall
and "The HS/FORTH Supplement"
by Kelly and Callahan

Visa Mastercard

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390
\ J

FORTH Dimensions

Screen # 6
(DEMO: Setup jbb 14:52 04/20/86)
: HEADER 0 0 GOTOXY . ' ricroLARCH Drainage Hodule: ' ;
: GIVEN . "Given the following information: ' ;
: SETUP 640x350 VWDE (EGA high-res graphics mode)

BLUE 66 CLS
WHITE FG HEADER 0 14 639 14 LINE 0 233 639 233 LINE
RED FG 0 15 639 15 LINE 0 232 639 232 LlNE
GRAY FG 0 16 639 16 LlNE 0 231 639 231 LINE ;

-->

Screen # 7
(Dummy variables f o r deao jbb 11 : 18 04/29/86)
2VARIABLE D 23400 0 D 2!
ZVARIABLE SLOPE 340 0 SLOPE 2!
2VARIABLE AC 125 0 AC 2!
2VARIABLE C 45 0 C 2!
VARIABLE REGION 3 REGION !
VARIABLE YEAR 10 YEAR !

\ th i s i s a dummy f loa t ing point F@ and formatted F. f o r DEMO)
: F? 20 <X X X ASCII . HOLD XS #> TYPE SPACE ;

: >ENTRY-W 0 11 GOTOXY ; (duaay window control f o r DEMO)
-->

Screen # 8
(Problem jbb 15:21 04/20/86)
: DEMO SETUP DRAWMAP WHITE FG 0 3 GOTOXY GIVEN GRAY FG

1 5 GOTOXY .' Distance of f low (f t .): ' D F?
1 6 GOTOXY .' Slope (%) : ' SLOPE F?
1 7 GOTOXY ." Coefficient of runoff : ' C F?
1 8 GOTOXY .' Region (Steel Chart) : ' REGION ?
1 9 GOTOXY .' Design Storm (year) : ' YEAR ?

1 10 GOTOXY .' Area (acres) : AC F?
>ENTRY-W WHITE FG
.' What i s the Volume of runoff (Q) i n cfs? ' GRAY FG CR ;

Index to Advertisers

Bradley Forthware - 11 Mountain View Press - 28
Bryte - 6 New Micros - 37
CLICK Software - 8 Next Generation Systems - 27
Dash, Find & Associates - 37 Palo Alto Shipping Company - 4
Forth, Inc. - 10 Software Composers - 2
Forth Interest Group - 7, 14, 19-22, 40 SOTA - 34
Harvard Softworks - 24 Talbot Microsystems - 16
Laboratory Microsystems - 30 Tools Group - 35
MicroMotion - 29 UBZ Software - 13
Miller Microcomputer Services - 33

Synonyms and Macros, Part 4

Compiler Macros
Victor H. Yngve
Chicago, Illinois

The important thing about compiler
macros is that they postpone the nor-
mal compile-time action of words to a
later compile time, thus providing us
with valuable programming options.
Let me explain.

The macro definitions written

MACRO < name > . . . END-MACRO

that were previously introduced1 may be
called compile-and-CMOVE macros.
They can be used to increase reada-
bility where a colon definition cannot
be used because of interference with
the return stack, e.g., in accessing loop
indices, and they can be used to in-
crease execution speed in time-critical
parts of the code while preserving the
readability of colon definitions.

However, there is the possibility of
further improvements in readability
where compile-and-CMOVE macros
cannot be used because they would
contain unpaired compiler words like
IF, BEGIN or LOOP, or the Forth imple-
mentation has absolute rather than
relative branch addresses. These cases
would have to be coded in the familiar
manner by what we can call
COMPILE-[COMPILE] compiler
macros: Each nonimmediate word is
preceded by COMPILE, each immediate
word by [COMPILE] and IMMEDIATE is
appended to the definition. Some
examples are given on screen fifty-
eight, which shows macros for IF-NOT
and WHILE-NOT suggested by Ed
~ e t s c h e . ~

But COMPILE-[COMPILE] com-
piler macros can be confusing and error
prone. One has to remember which
words are immediate and which not in
order to choose between [COMPILE] and
COMPILE, and it is easy to forget to
append IMMEDIATE. Also, the resulting
definitions are not very readable, thus
tending to defeat an important reason
for their use.

COMPILE-[COMPILE] compiler
macros are even more difficult and
awkward to use if the definition con-
tains numbers. These were not covered

in Jeffrey Soreff's article3, which war-
rants close study, and it may not be
immediately clear how to handle them.
T h e use of numbers in
COMPILE-[COMPILE] compiler
macros is shown on the same screen in
a suggested macro IF# for testing
whether the number on the stack rep-
resents the ASCII code for a decimal
digit.

The macro facility introduced here
can take care of these cases by the
words < < (postpone) and > > (end
postpone). Simply write

with the words of the macro enclosed
between the angle brackets. It is not
necessary to append IMMEDIATE to the
definition. A Forth-83 style glossary
entry is provided on screen sixty-two.
These < < . . . > > macros are called
angle-bracket compiler macros. They
do nothing more than can be done with
COMPILE-[COMPILE] compiler
macros, namely they make a compiler
word that postpones the immediate or
nonimmediate action of the enclosed
words, but they do it automatically.
Their use is illustrated on screen sixty-
three in the recoding of IF-NOT, WHILE-
NOT and IF# as angle-bracket compiler
macros. The increased readability due
t o removing the COMPILE and
[COMPILE] clutter is especially apparent
in the case of longer definitions like IF#.

Angle-bracket compiler macros can
be nested in normal fashion together
with colon definitions and compile-
and-CMOVE macros. However, one
cannot nest

inside an angle-bracket compiler macro
to postpone the run-time action of the
enclosed words. Use

instead, thus dividing the compiler
macro into two and compiling the
included words normally. Note that

is a postponing version of

:<name> [... 1 . . . ;
The main purpose of using compiler

macros is to postpone the execution of
immediate words when this is necessary
for resolving branch addresses or to
postpone the processing of the input
stream. Their main disadvantages for
other purposes over compile-and-
CMOVE macros are that they take up
more space in the dictionary and they
cannot be tested directly at the console
without first embedding them in other
words.

In a compiler macro, immediate
words have their normal, immediate
compile-time action postponed to when
the compiler macro is used in compiling
another word. With words like .99 this
means compiling a string from the input
stream for later output. With words
like IF and LOOP this means compiling
branches and resolving branch address-
es. With (I] this means compiling the
compilation addresses of a word found
in the input stream. For LITERAL it
means compiling a number on the
stack as a literal. In all these cases the
normal run-time action resulting from
the compile-time action is postponed to
the time when the other word is ex-
ecuted. But for immediate words like (
and .(nothing is compiled at the post-
poned compile time, for their normal
compile-time action is to be executed.

Nonimmediate words such as SWAP,
+ , CREATE, ' (tick) and , (comma) have
their compilation postponed to the
time when the compiler macro is used
in compiling another word. Their run-
time action is then postponed to the
time when this other word is executed.
At that time, (tick) finds a Forth word
in the input stream and leaves its com-
pilation address on the stack, and
words like CREATE make the following
text in the input stream into the name
field of a word being defined.

Thus there are three times associated
with compiler macros where informa-
tion is processed into a different form:
a postpone time when each immediate
word is compiled and each nonimmedi-
ate word is compiled with a preceding
COMPILE, a compile time when the
normal immediate or nonimmediate

Volume VIII. NO. 3 25 FORTH Dimensions

action of the words is taken in compil-
ing another word, and a run time when
the other word is executed. In this they
are like SYNONYM, which has a time
when the synonym is defined, a time
when the synonym compiles the origi-
nal word and a time when that word is
e ~ e c u t e d . ~

And in this they are different from
compile-and-CMOVE macros, which
have only a compile time and a run
time, the run time being delayed by
simply moving the compiled words into
place with CMWE without further pro-
cessing. There are also input-stream
macros, which have been explored by
Don T a y l ~ r . ~ They also have only a
compile time and a run time, but here
the compile time is delayed by saving a
copy of the source text in the dictionary.

In brief, the implementation of < <
and > > is straightforward and can be
done entirely in Forth-83 with the help
of the familiar nonstandard words
defined in Forth-83 on screen fifty-
nine. The word < < (postpone) simply
marks the word in which it appears as
immediate, looks up each following
word in the dictionary, determining
whether it is immediate or not, and
compiles it, preceding it by COMPILE if
it is not immediate. This gives the same
result as using a COMPILE-[COM-
PILE] compiler macro. If a word is not
found, the auxiliary word <NUMBER>
tries to convert it to a number and
compile it appropriately as a literal
with a following [COMPILE] LITERAL.
Compilation is terminated by detecting
> > (end postpone) in the input stream.
The stretch of code between < < and
> > is marked to be used only while
compiling.

For ease of learning and ease of use,
it is important that numbers be treated
the same as by the outer interpreter,
which usually handles both double-
and single-precision numbers. The
standard does not dictate how double
numbers should be represented in the
input stream. The system implemented
here in <NUMBER> is that if the
number contains a period either
initially, finally or in the middle, it is
compiled as a double number. No
record of the location of the decimal
point is kept. Ideally <NUMBER>
should be modified to use the double-

Screen # 58
0 (Examples of macros using COMPILE and [COMPILE])
1
2 (from Ed Petsche, Forth Dimensions VII,3:6)
3 : IF-NOT COMPILE O= [COMPILE] IF ; IMMEDIATE
4 : WHILE-NOT COMPILE O= [COMPILE] WHILE ; IMMEDIATE
5
6 : IF# COMPILE DUP 47 [COMPILE] LITERAL COMPILE >
7 COMPILE OVER 58 [COMPILE] LITERAL COMPILE <
8 COMPILE AND [COMPILE] IF ; IMMEDIATE

Screen # 59
0 (Extensions needed to Forth-83 Required Word Set)
1 32 CONSTANT BL
2 : ASCII (-- n) BL WORD 1 + C@
3 STATE @ IF [COMPILE] LITERAL THEN ; IMMEDIATE
4 : ?COMP STATE @ O= ABORT" Compilation only " ;
5 : ?PAIRS - ABORT" Conditionals not paired " ;
6

0 (Compiler Macros <NUMBER> I sc:en # 60
vhy 11/14/85) I

<NUMBER> (0 0 addr --) (Postpone Number Or Abort)
DUP 1 + C@ ASCII - = DUP >R (neg flag to return stack)
IF 1 + THEN (0 0 a d : n f)

CONVERT DUP C@ ASCII . = DUP >R (doub) (lo hi ad : df nf)
IF CONVERT THEN C@ BL = (found?) (lo hi ff : df nf)
IF R> R> SWAP >R (neg?) (lo hi nf : df)

IF DNEGATE THEN (lo hi : df)
SWAP [COMPILE] LITERAL COMPILE [COMPILE] LITERAL R>
IF [COMPILE] LITERAL COMPILE [COMPILE] LITERAL
ELSE DROP
THEN

ELSE 1 ABORT" Not found "
THEN ;

Screen # 61
0 (Compiler Macros < < ... > > vhy 11/14/85)
1 : > > (--) 1 ABORT" Unpaired " ; IMMEDIATE (End Postpone)
2 : < < (--) (Postpone)
3 ?COMP (this word compile only)
4 COMPILE ?COMP (same for macro words)
5 IMMEDIATE (compiled word immediate)
6 BEGIN
7 BL WORD FIND (search dictionary)
8 OVER ['I > > = NOT (not done?)
9 WHILE DUP (was word found?)
10 IF 1 - (was it nonimmediate?)
1 1 IF COMPILE COMPILE THEN (for nonimmediate words only)
12 r (postpone word)
13 ELSE 0 ROT <NUMBER> (postpone number or abort)
14 THEN
15 REPEAT DROP DROP ; IMMEDIATE

Screen # 62
0 (Compiler Macros Glossary entry)
1

< -- I "postpone"
A compiler word used in the form:
: <name> ... < < ... > > ... ;
When < < is used while compiling, it renders the definition
immediate, compiles each immediate word between < < and > > ,
compiles each nonimmediate word with a preceding COMPILE,
compiles each single number as a literal followed by
[COMPILE] LITERAL , and each double number as two literals
each followed by [COMPILE] LITERAL . The stretch of words
between < < and > > are marked compile only. The result is
that the immediate or nonimmediate action of the words and
numbers between < < and > > is postponed by one step of compil-
ation. The word > > (end postpone) is freestanding and
surrounded by spaces.

FORTH Dimensions 26 Volume VIII, NO. 3

A

Screen # 63
0 (Compiler Macros -- Examples of usage)
1
2 : IF-NOT < < O= IF > > ;
3 : WHILE-NOT < < O= WHILE > > ;
4
5 : IF# < < DUP 4 7 > OVER 58 < AND IF > > ;
6
7 : FOR < < 1 SWAP DO > > ;
8 : NEXT < < -1 +LOOP > > ;
9

1 0 (Defines constants initialized to 0 that can be ticked)
11 : VALUE CREATE 0 , DOES, @ ;
1 2
1 3 (TO a+so known as IS and - > For usage see screen 65)
1 4 : TO >BODY STATE @ IF < < LITERAL ! > > ELSE ! THEN ;
1 5

Screen # 6 4
0 (Compiler Macros -- Examples of usage)
1
2 VARIABLE RECORD 1 3 8 RECORD ! (postpone-time world record)
3 : IF>IS < < RECORD @ > IF > > ;
4 : IF>WAS RECORD @ < < LITERAL > IF > > ;
5 : IF>HAD-BEEN [RECORD @] LITERAL < < LITERAL > IF > > ;
6
7 1 4 5 RECORD ! (compile-time world record)
8 : AWARDS? DUP IF>IS ." Best. Beats the current world record"
9 ELSE DUP IF>WAS ." Better"

1 0 ELSE IF>HAD-BEEN ." Good"
11 ELSE ." Also ran"
12 THEN THEN THEN CR ;
13
1 4 1 4 9 RECORD ! (run-time world record)
15 (now try n AWARDS? for different n)

Segmented Memory Model figures from page 13.
+ - - - - - - + - - - - - + - - - - - + + - - - - - + - - - - - - - - +

data I nest I cia I Cfe I ... I cia I unnest I
seqmant I I I I I I I

+ - - - - - - + - - - - - + - - - - - + + - - - - - + - - - - - - - - +

-
I
I

conpilation
address

Figure One
+ - - - - - - - * - - - - - - - - - + + - - - - - - - - - - + - - - - - - - - - +

code I addr of 1 coae I J M P neat I aadr of I
segment I executable code I segment I I body I

+ - - - - - - - - - - - - - - - - - + + - - - - - - - - - - + - - - - - - - - - *

A

I I

I I

compilation comp~lation
address addreee

Figure Two Figure Three

+ - - - - - - - - - - - - + - - - - - - - - - - - - - + - - - - - - +

headera I name field I compilation I link I
segment I I address I I

+ - - - - - - - - - - - - + - - - - - - - - - - - - - + - - - - +

Figure Four

I NGS FORTH
A FAST mmw,
OPTIMIZED FOR THE IBM
PERSONAL COMFUl'ER AND
MS-ms COMPATIBLES.

STANDARD FEATURES
INCLUDE:

e79 STANDARD

I .FULL ACCESS TO MS-DOS
FILFS AND FUNCTIONS

I .ENVIRONMENT SAVE
& m

I .MULTI-SEGMENTED FOR LARGE APPLICATIONS

I ADDRESSING

I oMEMORY U C A T I O N CONFIGURABLE 0 N - m

I eAm mAD SCREEN BOOT

.LINE & SCREEN EDITORS

.DECOMPILER AND
DEBUGGING AIDS

1 08088 ASSEMBLER

I GRAPHICS & SOUND

eDETAIUD MANUAL

.INEXPENSIW UPGRADES

mNGS USER NEWSLETTER

A CrmPLETE mmH
DEVE1;oPMENT SYSTEM.

I PRICES START AT $70

NEW-HP-150 & EF-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEM
PoOoBOX 2987
M A CLARA, CAo 95055
(408) 241-5909

VolumeVIII, No. 3 27 FORTH Dimens~ons

FORTH
The computer

language for
increased. . .

EFFICIENCY
reduced.

MEMORY
higher.

SPEED
MVP-FORTH
SOFTWARE

Stable.. .Transportable.. .
Public Domain.. .Tools

MVP-FORTH
PROGRAMMER'S KIT

for IBM, Apple, CP/M,
MS/DOS, Amiga, Macintosh

' and others. specify computer.
$1 75

MVP-FORTH PADS,
a Professional Application

Development System. Specify
computer.

$500

MVP-FORTH EXPERT-2
SYSTEM

for learning and developing
knowledge based programs.

$1 00

a word processor and
calculator system for IBM.

$1 50
Largest selection of FORTH

books: manuals, source listings,
software, development systems

and expert systems.
Credit Card Order Number:

800-321 -41 03
(In California 800-468-41 03)

Send for your
FREE

FORTH
CATALOG

MOUNTAIN VIEW
PRESS

PO BOX 4656
Mountain View. CA 94040

number scheme of the implementation
in which it is installed.

Angle-bracket compiler macros have
a variety of programming applications.
For example, they are convenient for
building new programming constructs.
Their use in defining the looping words
FOR and NEXT is illustrated on screen
sixty-three. These words repeat a series
of words n times by writing

n FOR . . . NEXT

On the same screen, a high-level
definition of the word TO (sometimes
called -> or IS) is given using a compil-
er macro. This word works with special
constants defined by VALUE (given on
the same screen) which can have their
value changed. One writes

VALUE SCORE

Then, executing

16 TO SCORE

The index n is counted down to zero, changes the value of SCORE to sixteen.
and is available by using I inside the When the word TO is used, it obtains
loop. the address of the body of SCORE with '

Screen # 65
0 (An implementation of Eaker's CASE: Forth Dimensions II/3:37)
1
2 VALUE OLD-DEPTH (Eaker used the fig-FORTH CSP for this.)
3 : CASE ?COMP OLD-DEPTH DEPTH TO OLD-DEPTH 4 ; IMMEDIATE
4 : OF 4 ?PAIRS < < OVER = IF DROP > > 5 ;
5 : ENDOF 5 ?PAIRS < < ELSE > > 4 ;
6 : ENDCASE 4 ?PAIRS < < DROP > >
7 BEGIN DEPTH OLD-DEPTH = NOT WHILE < < THEN > > REPEAT
8 TO OLD-DEPTH ; (restore depth-value for nesting)
9
10 : TEST CASE (n --) (illustrates usage of Eaker's CASE)
1 1 1 0 OF ." TEN" ENDOF
12 20 OF . " TWENTY" ENDOF
13 30 OF ." THIRTY" ENDOF
14 ." NONE OF THE ABOVE"
15 ENDCASE CR ;

Screen # 66
.O (Macro Sieve 1 PREFACE VERSION E vhy 12/5/85)
1 8190 CONSTANT SIZE CREATE FLAGS SIZE ALLOT
2 MACRO SET-FLAGS-TRUE FLAGS SIZE 1 FILL END-MACRO
3 SYNONYM OCOUNT 0
4 : DO-FLAGS < < SIZE 0 DO > > I

5 : IF-TRUE < < FLAGS I + C@ IF > > ;
6 MACRO GET-PRIME (- p) I D U P + 3 + END-MACRO
7 MACRO FIRST-MULTIPLE (p - p m) DUP I + END-MACRO
8 : WHILE<SIZE (m - m) t c DUP SIZE < WHILE > > ;
9 MACRO SET-FALSE (m - m) 0 OVER FLAGS + C! END-MACRO
10 MACRO NEXT-MULTIPLE (p m - p n) OVER + END-MACRO
1 1 SYNONYM DROP-MULTIPLE DROP
12 SYNONYM PRINT-PRIME DROP
13 SYNONYM INC-COUNT 1 +
14 : NEXT-FLAG < < THEN LOOP > > I

15 : PRINT-COUNT" < < . .It > > I

Screen # 67
0 (Macro Sieve 2 ALGORITHM VERSION E vhy 12/5/85)
1
2 MACRO CANCEL-MULTIPLES (prime -- prime)
3 FIRST-MULTIPLE
4 BEGIN WHILECSIZE SET-FALSE NEXT-MULTIPLE REPEAT
5 DROP-MULTIPLE END-MACRO
6
7 : DO-PRIME
8 SET-FLAGS-TRUE OCOUNT
9 DO-FLAGS
10 IF-TRUE GET-PRIME CANCEL-MULTIPLES PRINT-PRIME INC-COUNT
1 1 NEXT-FLAG
12 PRINT-COUNT" Primes " ;
13
14 : 10-TIMES 10 0 DO DO-PRIME LOOP ;
15

FORTH Dimensions 28 Volume VIII. No. 3

>BODY and, if executing, uses it to
store the number on the stack into the
value. But if compiling, it instead
compiles the address as a literal and
then compiles ! (store), thus postponing
the actual change of the value to the
run time of the word in which TO
SCORE is contained. Thus a new value
on the stack can be stored into SCORE
with the speed of execution of

addr r
where addr is compiled as a literal.

An exercise in dealing separately
with postpone time, compile time and
run time is given on screen sixty-four.
Suppose there is an event in which new
world records are continually being
made. The variable RECORD is updated
at each of these times by storing in it
the current new world record. If one
then executes

n AWARDS?

at run time, the routine will successive-
ly test n against the different records
stored at postpone time, at compile
time and at run time, giving a printout
with the wording dependent on wheth-
er n exceeds one or another of these.

The difference in behavior of com-
piled material and postponed material
is further clarified in the compiler-
macro implementation of Eaker's well-
known CASE construct, which auto-
matically compiles nested IF . . . ELSE
. . . THEN con~ t ruc t s .~ Here the compil-
er security apparatus for the CASE
construct, involving testing pairs of
numbers on the stack with ?PAIRS, is
executed at compile time, and the post-
poned material is compiled. The im-
proved readability from earlier forms
using COMPILE-[COMPILE] com-
piler macros is evident. It is of interest
that Eaker's original implementation
directly compiled OBRANCH and
BRANCH and explicitly resolved the
branch addresses, but this is not neces-
sary, since the IF, ELSE and THEN can
do this for us, as their immediate
action is postponed to compile time.

Angle-bracket compiler macros would
have only marginal utility if their only
use was in implementing system words

like FOR, NEXT, TO and CASE COnStrUCtS,
for these could be defined once and for
all by a Forth system programmer as
COMPILE-[COMPILE] macros. Their
poor readability would be of little
concern. But the genius of Forth is that
everyone can be his own system
programmer. The essence of Forth
programming for anything but the
simplest program is to invent an
appropriate language tailored to the
application, program the application in
it and implement the special language
in terms of Forth words in a prologue.

Thus the most important uses of
angle-bracket compiler macros is in
everyday programming to assist this
process of organizing a program into
appropriately named pieces. As an
illustration, screens sixty-six and sixty-
seven show the sieve benchmark pro-
gram rewritten from version D in the
last article7, here using angle-bracket
compiler macros as well as compile-
and-CMOVE macros, synonyms and
colon definitions. The further increase
in readability is due to using angle-
bracket compiler macros to name co-
herent stretches of code that happen to
include unpaired conditional and loop-
ing words. If the implementation has
absolute rather than relative addresses,
the word CANCELMULTIPLES should be
written as an angle-bracket macro as
well. There is no increase in the run-
ning time of the benchmark, for exact-
ly the same code is compiled as by the
originally published sieve algorithm.

Let us conclude with a summary of
when these various different types of
definition should be used in the course
of general Forth programming. Use

for all normal purposes in Forth with
the following exceptions:

Use

SYNONYM < name > < name >

for any definition with only one word
in it. Synonyms run faster, take up less
room in the dictionary and can be used
for any word, whether it is immediate
or not.

PORTABLE
POWER
WITH

MasterFORTH
Whether you program

on the Macintosh, the
IBM PC, an Apple I I ser-

lM les, a CP/M system, or the
Commodore 64, your ,, - -
program will run un- f w=
changed on all the rest. === = T M

4k
If you wr~te for yourself,
MasterFORTH w ~ l l protect
your ~nvestment. If you wr~te

lM forothers, ~ t w ~ l l expand your
marketplace.

Forth IS Interactwe -
you have lmmed~ate feed-
backas you program, every
step of the way. Forth IS

C!
fast, too, and you can CP/M use its bu~ l t -~n as-

TM sembler to make ~t
even faster. Master-

FORTH's relocatable u t ~ l ~ t ~ e s and
headerless code let you pack a lot
more program Into your memory. The
res~dent debugger lets you decom-
plle, breakpoint and trace your way
through most programmlng prob-
lems. A stnng package, flle Interface
and full screen ed~tor are all standard
features. And the opt~onal target com-
pller lets you optlmlze your appllca-
tlon for v~rtually any programming
environment.

The package exactly matches Mas-
tenng Forth (Brady, 1984) and meets
all provlslons of the Forth-83 Standard.

MasterFORTH standard package $1 25
(Commodore 64 wlth graph@ $100

Graphics (selected systems)
Module relocator(w1th ut111ty sources) $60
TAGS (Target Appllc Generation System)-
MasterFORTH, target compller and

Publlcattons & Appllcatlon Models
Prlnted source l~st~ngs (each)
Forth-83 lnternatlonal Standard $15
Model Llbrary. Volumes 1-3 (each) $40

(21 3) 821 -4340

Volume VIII. No 3 29 FORTH D~mens~ons

1 with LMI FORTHTM /

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth.83 Metacompiler
unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

m~aboratory Microsystems Incorporated
Post Ofhce Box 10430, Marina del Rey, CA 90295

c r e d ~ t card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth.Systeme Angellka Fiesch, Titisee-Neustadt, 7651.1665
UK: System Science Ltd.. London, 01.248 0962
France: Micro-Slgma S.A.R.L.. Paris, (1) 42.65.95.16
Japan: Southern Paclfic Ltd., Yokohama, 045-314-9514
Australia: Wave-onic Associates. Wilson, W.A , (09) 451-2946

FORTH Dimensions 30

If : <name> . . . ; cannot be used
because the return will interfere with
the return stack, or if it is desired to
save the time of nesting and unnesting
at run time, use

MACRO <name > . . . ENPMACRO

with the following exceptions:

If : <name> . . . ; or MACRO
<name > . . . END-MACRO cannot be
used because the code contains
unmatched compiler words like IF or
DO, or if MACRO <name > . . . END
MACRO cannot be used because it
contains branches compiled by words
like IF or LOOP and the Forth
implementation being used has
absolute rather than relative branches,
use

instead.
In addition, use

in colon definitions along with other
words to make compiler words that
postpone compilation of the enclosed
words for special purposes.

References
1. Yngve, Victor H. "Synonyms and

Macros 2: Macros," Forth Dimen-
sions VII/3.

2. Petsche, Ed. Letters to the Editor,
Forth Dimensions VII/3.

3. Soreff, Jeffrey. "Macro Expansion
in Forth," Forth Dimensions V/5.

4. Yngve, Victor H. "Synonyms and
Macros 1: Synonyms," Forth Dim-
ensions VII/3.

5. Taylor, Don. "Macro Generation,"
Forth Dimensions VII/ 1.

6. Eaker, Charles E. "Just in Case,"
Forth Dimensions II/3.

7. Yngve, Victor H. "Synonyms and
Macros 3: Benchmark Readability,"
Forth Dimensions VII/4.

Volume VIII, No 3

k
r*x

% Shuffled Random Numbers
Leonard Zettel

Trenton, Michigan

In my opinion, the random number
generator given by Leo Brodie in Start-
ing Forth is indeed a very good one.
While I have not checked it exhaustive-
ly, it seems to follow all the recommen-
dations in ~ n u t h l , which is usually
regarded as the definitive work on
random number generation. It could
therefore be regarded as best in its
class, the class being sixteen-bit linear,
congruential, pseudo-random number
generators (if you really need to know
what that means, read the reference).

That said, it must also be said that it
shares a weakness shown by all generat-
ors of its type. To highlight the problem
most dramatically, use CHOOSE to gen-
erate x,y pairs and plot them on your
computer screen. When I do this on my
Commodore 64 (using Forth extensions
that come with SuperForth 64 by Parsec
Research), with x going from 0 to 319
and y going from 0 to 159, what I get
looks fine at first but eventually settles
down to a tight corduroy pattern of
diagonal lines. Roughly half the points
never get plotted at all!

Now, if I ever see raindrops doing
that on the pavement, I would get
highly suspicious. Random behavior it
ain't, though possibly good enough for
many purposes to which random num-
bers are applied. When I used the
numbers to study random walks, they
turned out to be not good enough,
because the walk kept insisting on
avoiding large portions of the screen.
In general, you will run into trouble if
you use the numbers in bunches of n,
with the first, second, etc. always used
for the same purpose. In the plotting
example, there are bunches of two,
with the first number always used as
the x coordinate and the second as the
y. In general, you can expect the prob-
lem to get worse for larger n.

Fortunately, Forthwrights, there is a
solution, which Knuth gives on page
thirty-two. The answer is to shuffle the
numbers. The screen shows a Forth im-
plementation of his algorithm B. We put
thirty-three random numbers generated
using RANDOM into the array RANDARRAY

using RANDARRAY.INITIAUZE. Then, when
we need a number we invoke SHRANDOM
to get a shuffled, random number. We
use the thirty-third number in the
RANDARRAY to calculate a position in the
array. We then fetch to the stack the
random number at that position, replac-
ing it in the array with a new number
from RANDOM. We then DUP the random
draw we have on the stack and store one
copy at the end of RANDARRAY, leaving
the other on the stack as the result of
SHRANDOM.

For good measure we have SHOOSE,
which works just like Brodie's CHOOSE
except that it uses SHRANDOM instead
of RANDOM. For those of you tempted
to tinker and, maybe, tempted to re-
place the multiply with a shift opera-
tion of some kind, note that SHOOSE
and CHOOSE use the leftmost bits of the
random number to generate the desired
integer. This is recommended by Knuth,
since the leftmost bits of the output of
a congruential generator are, in many
senses, "more random" than the right-
hand bits.

Now for some comments and, if I
can get away with it, some editorializ-
ing. I do not personally know of any
way to get better quality random num-
bers (with a sixteen-bit modulus) than
the screen presented here. On the other
hand, being a somewhat lazy amateur,
I have not tested the output nearly as

thoroughly as I might have. In fact, the
only tests I have run are the plots and
the random walk. In addition, it is
worth quoting Knuth (page 173), "Per-
haps further research will show that
even the random number generators
recommended here are unsatisfactory;
we hope this is not the case, but the
history of the subject warns us to be
cautious."

If Forth is indeed the best computer
language in existence, and I firmly
believe that it is, then it deserves to
have only the very best routines put
forward as part of its repertoire. You
readers out there are the Forth com-
munity, and collectively you have more
knowledge and experience than any
single author. It would not surprise me
at all if someone out there could im-
prove on what I have presented. If you
can, you have a duty to let the rest of
us know about it; that is what com-
munities are all about. If you don't
want to work it up for publication, I
would be glad to hear from you per-
sonally.

Reference

1. Knuth, Donald E. The Art of Com-
puter Programming, Vol. 2, "Semi-
numerical Algorithms," 2nd ed.,
Addison-Wesley Publishing Co.,
Reading, Mass. 1981.

SCREE14 #63
a) \ SHUFFLED RHt.IDUM t.4UMBEP.S WITH STRNIIHRU blOH.IIS
l > 'iHRIflBLE RflkIDFiRRfl'f 64 HLLUT
2) : RRNDRRRHY.INITIHLIZE C --->
35 66 0 DO RRkIDOM RHt4DARRflY I + 1 2 +LOOP ;
4) RANDHRRAY. I M I T I R L I Z E
5 >
61 ; GHRflNDOM C --- U 1 I \ GET H SHUFFLED RFft4IIUM t4UMBEfZI.
7) WRkIDHRRHY 64 + DUP I
8) 3 2 U# SWHP DROP 21 \ R'Ht4DOPl I t4DEX I t4TO HRRA'I?.
9> RHI.IISHKRAY + DUP I RHt4DOPl RUT ! \ DRHW & REPLHCE RHPIISOM #.

103 DUP ROT ! ; \ t4EW t4UPlBER HT THE Et.IU PUS.
11)
12) : SHOUSE c U l --- U21
13) RRWDOMS ua ~ W R P DROP ;
14)
153

VolumeVIII. No. 3 31 FORTH Dimensions

The Multi-Dimensions of Forth
Glen B. Haydon

La Honda, California

Forth intrigued me when I first came
across it six years ago. I had about ten
years experience programming in a
variety of high-level languages and
some exposure to assembly languages.
It always seemed that I needed to do
things that were not immediately pos-
sible with the tools available in those
languages. Furthermore, many of the
languages required a mainframe com-
puter for the compiler alone.

An acquaintance I met in a computer
store dragged me along to a fourth
Saturday meeting of the Forth Interest
Group. I caught the disease. Many
others have caught the disease. The
symptoms vary, but its contagious na-
ture is there.

I have tried to understand just what
it is about Forth that is so contagious. I
have found that Forth has many dim-
ensions. Forth is a religion. Forth is a
philosophy. Forth is a software kernel
which emulates a hardware design.

Forth is a hardware processor. Forth
is the assembly language for that pro-
cessor. Forth is an operating system.
Forth is a high-level language. Not all
of these dimensions intersect.

Forth as a Religion

Franz Werfel in the introduction to
the "Song of Bernadette" has the fol-
lowing quotation:

"For those who believe in
God, no explanation is neces-
sary; for those who don't, no
explanation is possible."

Those who believe in Forth have no
problem with the requirements of re-
verse Polish notation, stack manipula-
tions and the many unconventional
ways of Forth. There is no way to
explain Forth to experienced program-
mers who find the unusual characteris-
tics of Forth impediments to "good"
programming. A huge gap exists be-
tween the two points of view.

The newcomer to Forth is often
better off if he has had no previous

computer experience. After some time,
he either becomes a member of the sect
or he rejects it and goes on to some-
thing else. Those who end up using
Forth let it become a part of their life.

Unfortunately, the religious image
of Forth has been played up by the
public media. It has had a way of
turning off those who already have a
religion.

Forth as a Philosophy

I find it difficult to pronounce "!".
It is certainly not a common phonetic
symbol. But "store" is a common
Forth function. The symbol is like
Chinese ideograms with no phonetic
meaning.

I found that Forth functions are like
the concepts associated with Chinese
ideograms. I wrote a paper for the 1981
Rochester Forth Conference, "Forth and
the Nature of Ideographic Thought."
There is something very different be-
tween the way the Forth ideograms are
assembled to convey an idea and more
conventional ways of the classical high-
level programming languages. The root
of programming in Forth is to rethink
the problem. Don't use thought pro-
cesses derived from experience with the
other programming languages.

After working closely with Charles
Moore for about six months, I obser-
ved another dimension of Forth. Char-
les Moore has a way of immersing
himself in the problem at hand.There
was no such thing as an eight-hour
work day. His entire life was immersed
in the problem for days at a time.

Of course, his problems included the
use of computers. Charles Moore at-
tempted to understand all aspects of
the problems. Many have heard him
talk about the unreliability of hard-
ware. He had to learn how to make the
hardware, if possible. At the other end
of programming computer applications,
he found that most end users did not
really understand the problem they
were trying to solve. His approach was
to immerse himself in all aspects. There
were occasional escapes into science
fiction and dreams of what things
might be.

This total immersion in problem
solving seems analogous to the ways of
Zen. From time to time I have added
pieces to a notebook which I have
labeled, "Zen and the Art of Problem
Solving." The title alone captures the
spirit of the Forth philosophy.

Forth as a Software Kernel

The origins of Forth were based on
trying to make existing hardware do
the things that the applications requir-
ed. It was a sort of virtual machine.

The Forth kernel simulates a small,
necessary and sufficient set of func-
tions which allows one to get on with
the problems at hand. At the center of
Forth implementations is some sort of
kernel which allows the user to do what
he needs to do. That Forth has been
implemented on such a wide variety of
processors is testimony to the virtue of
a small, necessary and sufficient set of
functions. It is a relatively simple mat-
ter to move the kernel from hardware
system to hardware system.

A careful review of the necessary
and sufficient functions shows that
somewhere between sixty and seventy
functions are convenient. It has been
said that only eleven or twelve primi-
tives programmed for a specific proces-
sor will provide all of the necessary
operations with which to build a full,
convenient set. But most implementa-
tions of Forth kernels include thirty or
more specific functions unique to the
specific hardware.

A unique design feature of Forth is its i
use of multiple stacks. Multiple stack
architectures have been discussed since

i
the mid-1950's. No true hardware im-
plementation of a multiple-stack archit-
ecture was produced. Burroughs did
provide an optimized set of pointer
registers to utilize a part of main
memory as an efficient stack. But the
dedication of high-speed RAM to each
stack apart from main memory is a
relatively recent turn of things.

Forth as a Hardware Processor

There is a better way than emulating
Forth in hardware: design the hard-

FORTH Dimensions 32 Volume VIII, No. 3

ware to do the job. Many of the prob-
lems of implementing Forth on other
processors just go away. Furthermore, a
dramatic speed increase is possible - not
just a factor of two or four, but a factor
of one or two orders of magnitude.

Hartronics has produced a bit-slice
design. Their product is proprietary
but very efficient. In the last year or so,
several other groups have addressed
the problem of implementing a Forth
kernel in hardware; not the least of
these efforts has been that of Charles
Moore. His group designed an archi-
tecture and committed it to silicon as
the Novix 4000 chip. Several vendors
are including that chip in systems. The
systems are generally small and have
low power requirements.

A group at Johns Hopkins have
taken the basic design of the Novix
4000 device and expanded it to a thirty-
two-bit processor on a chip. Again the
functions are hard wired into the silicon.

A group in Hull, England, formed a
company named Metaforth. They have
produced a very fast board implemen-
tation which is becoming available. It
has been optimized with custom com-
ponents and is proprietary.

I have been associated with yet an-
other design of hardware. The design
features a writable control store and
dedicated hardware stacks. The writ-
able control store can be used to imple-
ment Forth or to experiment with other
programming languages. It is able to
run a functional Forth system as fast as
those using a chip. The product is
available today as a kit. All details are
included in the wire-wrap kit to allow
assembly from inexpensive, garden-
variety components.

A writable control store machine is a
true extension of the Forth philosophy
of extensibility. It makes it possible to
redefine and extend the actual proces-
sor functions. One should think of
these machines as another processor
design. The machine language for that
processor can be made to execute a
Forth kernel.

Forth as an Assembler

In conventional thinking, a Forth
assembler provides access to the pro-

cessor on which a software kernel is
implemented. When the processor ex-
ecutes Forth functions, Forth becomes
the assembler mnemonics for the pro-
cessor. There simply is no other as-
sembler.

With this level of maturity, the func-
tions of the Forth kernel are directly
compiled to the machine language of
the Forth processor. As with many
other processors, various fields in the
machine language are directly coupled
with the function of the hardware com-
ponents.

Thus, one dimension of Forth is
comparable with the assembly languag-
es used with other processors.

Forth as an Operating System

Charles Moore found all of the over-
head of an underlying operating system
with its file structures and so on, com-
pletely unnecessary for his applications.
He simply did not use the operating
system's facilities in his work. Other
early Forth users felt much the same
way. They learned to work with their
rudimentary operating system and
found it most satisfactory. Forth was
the operating system and the entire
external storage was randomly accessed
as a single file. What could be simpler?

But then there came those experien-
ced with other operating systems and
other programming languages. They
expected to have available certain facil-
ities. And many of them were using
their hardware for other applications
as well. They needed to have things
"compatible."

The hardware emulation or simula-
tion of a multiple stack system in Forth
is not sufficient to yield a fully function-
al system.

When I started with the kernel from
the fig-FOR TH Installation Manual,
everything seemed to work fine. I could
load screens but I could not write to
screens. Only if I were able to get
something on a screen which was com-
patible with my drives, could I load it.

Interactively, I had to type in the
necessary functions to allow text to be
placed on a screen. Or, I could write the
necessary functions in assembly lan-
guage and have them available in my

VolumeVIII, No. 3 33 FORTH Dimensions

between eith

computer system - SOTA is the
running CP/M -=- ,- -@ FORTH 01
(version 2 x) = = === cho~ce for both
or CP/M Plus s=f r E the novice and
(version 3 x) experienced
Whats more TRS-BO programmer
SOTA doesn t Make it your

6EEr%k (QjPjM ct:E"y"oZr
any awkward copy today
When you order from SOTA, both the fig
model and 79 standard come complete
with the following extra features at no

additional charge.
full featured string handl~ng assembler

screen editor floating point double word
entension s e t relocating loader beginner's
tutorial comprehensive programmer's guide

enhaustive reference manual unparalleled
technical support source listings

unbeatable price

Please bill my 0 VISA Mastercard
for $89 95
Please Send me 79 Standard FORTH rigFORTH model

IBM PC 0 XT AT (and companbles)
0 TRS-80 Model I Model Ill 0 Model 4 0 Model 4P I

CP/M Version 2 x CP/M Plus (Version 3 x)
For CP/M verstons please note 5 1 /4' formats only and
please Specify computer type

I
L I

nRmE:
STREET:
CITY/TOWn: -
STRTE: ZIP:
CRRD TYPE: EXPIRY:
CRRD no:

assembled kernel. The problem was left
to the user. With such a system, how
could one imagine someone new to
Forth being able to do much with it?

It is, perhaps, a fine distinction: is the
editor a part of the operating system, or
is it a higher-level language in its own
right? In either case, the user can use
whatever editor he likes. There are as
many different ideas of an optimal
system as there are people. And so with
the extensibility of Forth, each imple-
mentor added the features he expected
to find in his system. No two systems
seemed to be the same. The file struc-
tures of UNIX, CP/M, MS-DOS, etc.,
are each different.

There simply is no standard in the
computer industry. There are the ideas
from the mainframe programmers and
from the small, dedicated processor
programmers. The extremes do not
meet easily.

Many examples of the problems of
dealing with foreign operating systems
exist. The Apple Macintosh is perhaps
the best example. Apple makes it almost
impossible to use without their operat-
ing system. They do not want to give it
up to a program.

Other operating system problems
have to do with I/O devices. Not only
do keyboards and monitors work dif-
ferently from one machine to another,
but the storage media varies. Even if
you should be fortunate enough to have
a common disk size, the formats of the
disks vary!

Ideally, when Forth takes over a
system, it also takes over all of the
necessary drivers to use that system.
The unit of external storage is a 1024K
block. It is a problem of the implemen-
tation to translate actual disk sector
sizes to logical 1024K blocks.

So, another dimension of Forth is
that of being an operating system.
There are, however, some Forth users
who don't want to take advantage of
this dimension. They forget that when
they have this power, they can emulate
or interface with any other operating
system as the occasion demands. There
is no reason why one cannot access data
in files created by any other operating
system.

Forth as a High-Level Language

Before I caught the Forth disease, I
had a moderate amount of experience
with a variety of high-level languages on
mainframe computers. I found that
PL/I provided me the most access to
the functions I needed. But the PL/I
compiler was large! There was no way it
could be reduced to the 12K system I
started with. Gradually, the small sys-
tems got larger, but a full implementa-
tion of PL/I would not even fit on
many smal l machines today .
Furthermore, even PL/I would not do
everything I thought I wanted to do.

As a high-level language, the fig-
FORTH Model left much to be desired.
Many of the functions I expected just
were not there. String functions were
missing. There was no floating-point
package. But I found that a fig-
FORTH Model with a few custom bells
and whistles served me well.

Then came a change of functional
definitions for forty of the words in the
fig-FORTH Model (suggested by the
Standards Team). I really did not see
much advantage to many of the chang-
es. There was one major one in my
book - the change of the CREATE . . .
DOES> function.

Reluctantly, I went ahead and made
the forty changes to conform. This had
the advantage that there were soon two
tutorials - Leo Brodie's Starting Forth
and Alan Winfield's The Complete
Forth. The revision of the fig-FORTH
Model with the forty functional changes
became MVP-FORTH. I summarized
my learning notes in a glossary that I am
glad others have found useful.

At that point, I had a fully function-
al Forth which allowed me to go on
with application programming. MVP-
FORTH has remained stable for over
four years. A substantial library of
Forth functions is now available which
run on the model I use. I will not be
confined by the additional stipulation
imposed by the 79 Standard. MVP-
FORTH is not 79 Standard. I have no
time to make the changes suggested by
the 83 Standard and will not be con-
fined by the additional stipulations.

FORTH Dimensions 34 Volume VIII. No. 3

1 My experience is not unique. Many
I other vendors have developed excellent

implementations of a functional Forth.
Some of them have kept their kernel
and parts of the rest of their systems
proprietary. This is fine. They have
provided excellent documentation for
their products This is a big help. How-
ever, most other vendors have made
regular revisions. Some of the books
on Forth for some vendor's dialects are
no longer correct.

Now there is little point in changing
your functional Forth just to be chang-
ing. Of course, there are many imple-
mentation techniques which could be
adopted. One can use direct-threaded
code or indirect-threaded code or token- 1 threaded code. They make little dif-
ference in the application of Forth to
specific projects There is little point
quibbling about the details. There are
better things to do.

After learning Forth, one should

; adopt a kernel and add only the
, necessary and sufficient routines to
I provide a uniquely functional Forth.
I
1

I
For example, add your favorite editor

and, only if you need it, add the
floating-point functions. Collect your
own library of Forth "goodies." The
ability to do this is what is attractive
about Forth.

As a high-level language, Forth is as
extensible as you wish to make it.
However, you need not be burdened
with unnecessary and unused extensions.

Conclusions

I have taken you on a short tour of
my attempts to understand Forth and
where it is going.

Whatever you may want to call the
process of immersing yourself in all
aspects of a problem - a religion, a
philosophy, even Zen - Forth embod-
ies an approach to problem solving.

The essence of the Forth language is
its kernel - an emulation of a hard-
ware machine. As such, it provides a
new approach to processor design. The
new hardware machines with multiple
stacks will open new doors to the
computing world They will provide
new alternatives to the conventional

processors and the relatively new RISC
machines.

If the primitive nature of a simple
Forth operating system is satisfactory
for your application, there is no reason
to add the complexities of other sys-
tems. If not, you are free to add
whatever operating system you wish.

Forth as a high-level language will
shake down and take its place along
with everything from BASIC to ADA.
As has been demonstrated, one can
even implement other high-level lan-
guages on a Forth software or hard-
ware kernel. PROLOG has been imple-
mented in a LISP which was imple-
mented in Forth. I don't know what to
call that combination.

The dimensions of Forth encompass
many different aspects for any par-
ticular user. It is a little like Humpty-
Dumpty in Alice in Wonderland. You
need to make clear which combination
of dimensions you are talking about,
and to understand which others are
talking about.

It is the richness of these many
dimensions that makes Forth what it is.

TIHE!+ TOOLS GROUP Do you use Forth professionally?

66230 Forth Street Do you ever wish that you were
Desert Hot Springs, CA 92240 working in an organization large

6 191329-4625 enough to have a full time software
tools group?

I The Tools Group subscription support service is available to any Forth programmer.
Tools are available for the 280 and MC680x0 environments, running either CP/M
2.2, TPM 111, or GEMDOS. iAPX 8x128~ and NS32x32 versions will be ready soon.

Access to the Tools Group programmers and library is through a Hartronix multiuser
bulletin board system. Soon, the service will be available world wide through an X.25
based public data network at very low cost.

The Tools Group library is extensive, including tools like a 64 bit IEEE floating point
package, transportable code between different operating systems, ASCII file support,
automatic librarymanager, and much more. If the tool you need is not in the library,
we will work with you to develop it.

Our motives are simple. We enjoy building real tools for real programmers. We want
to help you. For a small annual fee, you may freely use our tools without royalties.

You don't need to tell anyone that you have a tools group -- you can just let them think
you are Superprogrammer.

Stack Numbers by Name
Melvin Rosen feld use on the word being defined, and 4. Begins compilation of the next

Santa Barbara, California second, their operation during com- word in the input stream, namely) .
pilation of the word. Let us consider The interpreter continues to com-

When a word involves more than the word F from example one. Prior to pile the words in the input stream
two or three numbers on the stack, the its compilation, it is necessary to have until ;; is encountered. This latter
logistics of accessing them is often the following words in the dictionary: word is also immediate. It does the -
tesious. Sometimes the natural idea of
putting the numbers in variables is not 0 VARIABLE STACKTOP

following:

suitable. An exam~le of this will be : MARKSTACK SP@ STACKTOP ! ; 1. Com~iles the literal 3 and one last
given shortly (example two).

I would like to offer a solution that
I've devised. It consists of two words: {
(the left brace) and ;; (a double semi-
colon). Below are two illustrations of
how these words are used.

Example One A definition of the
function

is shown in Figure One. In that figure,
the three words X, Y and Z that appear
between the braces can be arbitrary.
They are dummy names for the rele-
vant stack entries. They will be in the
dictionary only during the compilation
of the word F. The stack effect of F will
be (X Y Z -- answer).
Example Two As a consequence of
the method of implementing the use of
names for numbers on the stack, the
function being defined can be used
recursively. In this example, a word
which solves the "Towers of Hanoi"
puzzle will be given. I won't bother to
remind readers what the puzzle is, since
the point to be made is how neatly a
recursive word can be defined. In this
word, it is presumed that a word
OUTPUT has already been defined (see
Figure Two). OUTPUT takes two num-
bers a and b off the stack and reports,
say by printing on the screen, "Take
the top disk off peg a and place it on
peg b."

In this example. one cannot use a
variable to hold "the" value of, say,
#DISKS since many such values must be
kept while the recursive function HANOI
wends its way down.

Discussion of the Method

Since { and ;; are used to define a
word, there are two aspects to con-
sider: first, the run-time effect of their

:C1 STACKTOP @ 0 + @ ;

: C2 STACKTOP @ 2 + @ ;

The dictionary entry for F (after it
has been compiled) will, in its parame-
ter field, contain the sequence of
CFA's of the words comprising its
definition. The names of this sequence
of words are, in order,

MARKSTACK C3 DUP ' C2
+ C3 C1 C 2 + '

then a literal, in this case three (3),
followed by the CFA of another word,
SHIFTSTACK and finally ;s.

The word SHIFTSTACK must also be in
the dictionary before F can be com-
piled. Its name suggests what it does,
but its definition is best left until later.
Since the temporary name x for the
third number on the stack has been
replaced by c3, there is no reason for x
to be in the dictionary.

Next we consider the compilation
phase of the word F. Consider the
string of symbols

When the interpreter reaches : it of
course begins to compile the next
word, namely F. It is thus in compile
mode when { is encountered. { is an
immediate word and, instead of being
compiled, does the following:

1. Concludes the definition of F (so
that, for the moment, it is a no-op).

2. Counts the number of words in the
input stream until) (three words,
in this case).

3. Defines the first word, namely x, to
be an immediate word. The action
of x will be to place the CFA of c 3
into the next place in the diction-
ary. It similarly defines Y and z.

word, namely SHIFTSTACK into the
definition of) .

2. Concludes the definition of).

3. Shifts within the dictionary the
parameter field of) so that it abuts
the parameter field of F with the
effect that the definition of) be-
comes the definition of F.

4. Erases from the dictionary the words
x, Y, z and).

There is one additional word that
may be useful, namely ;;S. It acts very
much like ;; but doesn't cause the stack
to be shifted at the conclusion of the
run-time action of F.

Time Penalty for Naming Numbers

The time spent in compiling seems
unimportant, since it is undoubtedly
made up for in time saved during
programming. The run-time cost is
important (if the word will be used
many times in a program). Figure
Three shows a short test to check the
overhead of using this technique.

The overhead - the difference
between rightway and wrongway - is
43/20000 seconds per implementation,
about 1/45. Most of the time is taken up
by the word SHIM=. Figure Four
provides a second test, in which ;;s was
used and, therefore, S H I M A C K isn't
needed. The overhead per
implementation without SHIMACK is
1/1176 seconds.

Since only a few words (:, MARKSTACK,
SHIFTSTACK, C1, C2, C3 . . . C10)
are used during run time, if they were
written in machine language, I suspect
test2 would hardly be slower than test1
and there would be little penalty for
using what seems to me a very natural
way of accessing the stack.

FORTH Dimensions 36 Volume VIII, No. 3

The version of Forth that I've used is
Wycove Forth for the TI 99/4. 1 believe
it is a variant of fig-FORTH. I have
used the word move which in this Forth
seems to diverge from the standard.

In Wycove Forth:
addr 1 addr2 count MOVE

Moves the block of main memory
bytes from addrl to addr2. The length
of the block in bytes is given as count.
The direction o f the move is deter-
mined so that no overlap occurs, with
the word CMOVE or <CMOVE called to
actually move the bytes. Data is moved
one byte at a time.

h fig-FOR TH:

addr 1 addr2 n MOVE

Moves n sixteen-bit cells, beginning
at addrl, to the memory locations
beginning at addr2. The move proceeds
from low to high memory. (From
Forth Fundamentals Vol. 2, by Kevin
McCabe.)

: F [X Y Z) X W P u Y + X Z * Y + * ; ;

Figure One

: HANOI PEG 1 PEG2 PEG3 'DISKS 1
'DISKS I -

IF PEG 1 PEG2 OUTPUT
ELSE PEG l PEG3 PEG2 *DISKS I - HANOI

PEG 1 PEG2 OUTPUT
PEG3 PEG2 PEG I *DISKS I - HANOI

THEN ;;

Figure TWO

: rlghtway * DROP ;
:wmngway[xylxyuDROP;;
: test 1 20000 0 DO I I rlghtway LOOP ;
: test2 20000 0 DO I I wrongway LOOP ;

The time for test 1 was 7.2 seconds
The tlme for test2 was 50.2 seconds.

Figure Three

: RIGHTWAY OVER OVER l DROP ;
: WRONGWAY [A B 1 A B DROP ;;S
: TEST3 20000 0 W RIGHTWAY LOOP ;
: TEST4 20000 0 DO WRONGWAY LOOP ;

The tlme for TEST3 was 7.3 seconds.
The time for TEST4 was 24.3 seconds.

Figure Four

1 All the parts needed to make the

r

1 SMALLEST

DASH, FIND
& ASSOCIATES

Our company. DASH. FIND & ASSOCIATES.

is In the business of placing FORTH Program-
mers In pos~tions suited to their capabilities.

We deal only with FORTH Programmers

and companies using FORTH. If you would
like to have your resume included in our

data base, or ~f you are looking for a
FORTH Programmer, contact us or

send your resumi to:

DASH. FIND & ASSOCIATES

808 Dalworth. Suite B
Grand Prairie TX 75050

(214) 642-5495 m
Committed t o Excellence

1 PROGRAMMABLE I FORTH SYSTEM:

+5V (9 mA, typical @ 2 MHz)
l l L Serial In

TTL Serial Out
Ground

I
- -

$50 covers price of parts and manual
in singles, $20 covers cost of chip alone
in 10,000 quantity. $20 gold piece (not
included) shown covering chip to illus-
trate actual size.

The F68HC11 features: 2 Serial Chan-
nels, 5 Ports, 8 Channel 8-bit AID, major
timer counter subsystem, Pulse
Accumulator, Watchdog Timer, Com-
puter Operating Properly (COP) Moni-
tor, 512 bytes EEPROM, 256 bytes
RAM, 8K byte ROM with FORTH-83
Standard implementation.

Availability: F68HC11 Production units
with Max-FORTHm in internal ROM avail-
able 40186. Volume quantity available
1Q187. X68HC11 emulator with Max-
FORTHm in external ROM available
now. NMIX-0022 68HC11 Development
System boards available now: $290.00.

I New Micros, Inc.
808 Dalworth I

I Grand Prairie, TX 75050
(21 4) 642-5494 I

Volume VIII, No. 3
-- - - - -

37 FORTH Dlmens~ons

U.S.

ALABAMA
Huntsville FIG Chapter
Call Tom Konantz
205/881-6483

ALASKA
Kodiak Area Chapter
Call Horace Simmons
907/486-5049

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678
'heson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

ARKANSAS
Central Arkansas Chapter
mice Monthly, 2nd Sat., 2p
4th Wed., 7 p.m.
Call Gary Smith
501/227-7817

CALIFORNIA
Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253
Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Xilbert & Brookhurst
Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784
Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Room A
Call Tom Ghormley
916/444-7775

Bay Area Chapter
Silicon Valley Chapter
Monthly, 4th Sat.
FORML 10 a.m., Fig 1 p.m.
H-P Auditorium
Wolfe Rd. & Pruneridge,
Cupertino
Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668

Stockton Chapter
Call Doug Dillon
209/931-2448 -. . - - .

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Cliff King
303/693-3413

CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/34-99%

FLORIDA
Orlando Chapter
Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790
Southeast Florida Chapter

.m. & Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305/252-0108
Tampa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

GEORGIA
Atlanta Chapter
3rd Tuesday each month, 6:30 p.m.
Computone Cottilion Road
Call Ron Skelton
404/393-8764

ILLINOIS
Cache Forth Chapter
Call Clyde W. Phillips, Jr.
Oak Park
3121'386-3147
Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150

Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242
Rockwell Chicago Chapter
Call Gerard Kusiolek
312/885-8092

INDIANA
Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

Fort Wayne Chapter
Monthly, 2nd Tues., 7 p.m.
IPFW Campus
Rm. 138, Neff Hall
Call Blair MacDermid
2 19/749-2042

IOWA

Iowa City Chapter
Monthly, 4th 'hes.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853
Central Iowa FIG Chapter
Call Rodrick A. Eldridge
5 15/294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
316/267-8852

LOUISIANA
New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS
Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MICHIGAN
Detroit Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz
31 3/562-8506

MINNESOTA
MNFIG Chapter
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
612/588-9532

MISSOURI
Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Call Linus Orth
913/236-9189

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.
Ellisville, M O 6301 1

NEVADA
Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan
Call 505/298-3292

NEW YORK
FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/517-9429
Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Rockland County Chapter
Call Elizabeth Gormley
Pearl River
914/735-8967

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
3 15/46-4600

OHIO
Akron Chaoter
Call Thomas Franks
216/336-3167
Athens Chapter
Call Isreal Urieli
614/594-3731
Cleveland Chapter
Call Gary Bergstrom
216/247-2492
Cincinatti Chapter
Call Douglas Bennett
513/831-0142
Dayton Chapter
mice monthly, 2nd 'hes., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612

FORTH Dimensions 38 Volume VIII,

Dayton, OH VIRGINIA
cail Gary M. Granger
513/849-1483

OKLAHOMA

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers
2410 N.W. 49th
Oklahoma City, OK 73 1 12

OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronu Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-2811

PENNSYLVANIA

Philadelphia Chapter
Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall
Call Melanie Hoag or Simon Edkins
215/895-2628

TENNESSEE

East Tennessee Chapter
Monthly, 2nd The., 7:30 p.m.
Sci. Appl. Int'l. Corp., 8th Fl.
800 Oak Ridge Thrnpike, Oak Ridge
Call Richard Secrist
615/483-7242

TEXAS

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, T X 78718

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Periman Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

UTAH

North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT

Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Don VanSyckel
802/388-6698

. - - - - - - -

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

Potomac Chapter
Monthly, 2nd 'lhes., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/860-9260
Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Call Donald A. Full
804/739-3623

WISCONSIN

Lake Superior FIG Chapter
Monthly, 2nd Fri., 7:30 p.m.
University of Wisconsin
Superior
Call Allen Anway
715/394-8360

Milwaukee Area Chapter
Call Donald H. Kimes
414/377-0708

MAD Apple Chapter
Contact Bill Horzon
129 S. Yellowstone
Madison, WI 53705

FOREIGN
AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

BELGIUM

Belgium Chapter
Monthly, 4th Wed., 20:OOh
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

CANADA

Alberta Chapter
Call Tony Van Muyden
403/962-2203

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2ES
902/477-3665

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5J2

COLOMBIA

Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

8 ENGLAND

Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
D. J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

GERMANY

Hamburg FIG Chapter
Monthly, 4th Sat., l5OOh
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

HOLLAND

Holland Chapter
Contact: Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda
31 76 713104

FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely
50 57 0280

IRELAND

Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 051/74124

ITALY

FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021'645-8688

JAPAN
Japan Chapter
Contact Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 ext. 7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas
Hallskaret 28
Ulset
+ 47-5-187784

REPUBLIC OF CHINA
R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWEDEN

Swedish Chapter
Hans Lindstrom
Gothenburg
+46-31-166794

SWITZERLAND

Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS
Apple Corps Forth Users
Chapter
Twice Monthly, 1st &
3rd lbes., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
41 5/626-6295
Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910
FIGGRAPH
Call Howard Pearlmutter
408/425-8700

Volume VIII, NO. 3 39 FORTH Dimensions

Address Correction Requested

NOW AVAILABLE
t

F83 SOURCE

HENRY W E N / MICHAEL PERRY

NO VISIBLE SUPPORT SOFTWARE

ormr mnnruus, wc.

198

Footsteps in An Empty Valley
11~4000 single chip forth engine

C.H. TING, Ph.D.

'? -
$:s
-2 W - 2 - > e

;$$!I'
,c: ?Fmk

. '41,
fl1tfl*; TT -%. $F ?- L:$,b,t*

*I1 *as,. 'l&z#9" ' - , , I-L a". -.
A, - ,- 4 1 1 r i $p-J-; i;t'
(I / \ '

"
6'

i IP,:$r . . d

'I ,rlpl#\ ,'. .? J ' a,, ?l"'Iq
41 '-'.- $' *

' , , : d":' 1 ' 1 1 %rJlfll*, ,"3@"+ g;i#l;, '14 " 3
I,?.. . I 5' ..

' I , . ' .dI~YI

,., ' " "--.=""" < "%,
41 ,,

111 & -4;;
OllCTE .ENTERPIISIS, INC.

1986

F O R T H F O R T H
INTEREST INTEREST
G R O U P $25 EACH G R O U P

FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP
BULK RATE

U S POSTAGE

P. 0. BOX 8231 Perm~t NO 3107

Sari Jose, CA 95155 San Jose, CA

