
$4.00

Dimensions

Forth Resources
via Modem

THEY'RE HERE!
SOFTWARE COMPOSERS
Del ta Development System, Model 1

+ D e i t a Board. seven s o c i e t bac ip laqe , 501-word CMOS memorv board.
pcwe r f ba t t e r , c a ~ d , s e r i a l cab le. p o r t a b l e Ce l t a Bo:: and cmfor th .
Fu l l \ , assemDied, t es ted , and reaav t o use w l t h 40-dav warrantv.

~ a r user b u l Let i n board sctpport. * Uset- a ~ a n ~ ~ a i and access t o 24--b-
SCFORTH

+ ForthBT Standard-1iLe word s e t w i t h a u t l ! l t y module.
DELTA-C

+ E::tended Small-C programminq larrgiiaqe f o r t h e D e l t a Board.
* On PC t r a n s l a t e r C t o For rh +o r up load and ope ra r i cn on D e l t a Board

The Delta Evaluation System $895
4 MHz Delta Board with Novix NC4000 Forth Chip on board.
cmFORTH programming language interpreter and compiler in EPROM.
User manual, board schematic, and user bulletin board support.

4 K 16 bit words of static RAM and 4K words of EPROM.
8 selectable 256 word data stacks and return stacks for multi-tasking.
2 1 independently programmable single bit UO ports.
4 112" x 6 112" board with 72-pin edge-connector bus with all major NOV
signals.
Delta Regulator Base with attached connector and single 5-volt wall
mount power supply.

Reset switch and serial port on board with RS232 connector and cable.
90 day warranty.

Ful ly assembled, tested, and ready to use.

Additional Novix chips available for $195, 1-9 quantity.

Software Composers is an authorized Novix Distributor
SC-1000CPU Users Manual: 575 shipping/hand! inq i nc l uded i n U.S. Covers
D e l t a Board, Novix ch i p . and cmfor th . Deduc t ib le from p r i c e o f D e l t a Board
i n event o f purchase. PC c lone t e r m l n a l / d l s k se rver FEZ so f tware prov ided.
S ix manth s u b s c r i p t i o n t o 24 hour user b u l l e t i n board.

"I'm delighted to see Software Composers' board on the market. It provides
incredible capability and versatility with minimal parts, size and price. An
excellent introduction to the new generation of hardware and software,"

Chuck Moore, November 1985

COMING SOON!
SC-1000PBB Power/Battery Board

.#. 4.5":-:&. 5"; c o r n p a t i b l e w i t h Bac i : : p l ane a n d E v . i t l ~ t a t i o n Sys tem power supply.
:it. U s e s 4 D - s i z e NICE! b a t t e r i e s w i t h r - e c h a t - p i n g c i t - c u i t r y .

SC-1000PER Peripheral Board

For product data and ordering information, write:

SOFTWARE COMPOSERS

Sohare Composers
210 California Avenue #F

Palo Alto, CA 94306
(415) 322-8763

FORTH Dimensions 2 Volume VIII, No. 2

Forth Dimensions
Published by the

Forth Interest Group
Volume VIII, Number 2

July/August 1986
Editor

Marlin Ouverson
Production

Cynthia Lawson Berglund
Typesetting

LARC Computing
Forth Dimensions solicits editorial

material, comments and letters. No
responsibility is assumed for accuracy of
material submitted. Unless noted
otherwise, material published by the
Forth Interest Group is in the public
domain. Such material may be
reproduced with credit given to the
author and to the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth
Interest Group at $30 per year ($43
foreign air). For membership, change of
address and to submit material for
publication, the address is: Forth
Interest Group, P.O. Box 8231, San
Jose, California 95 155.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

FEATURES
9 XMODEM Tutorial

1 by John S. James
The public-domain XMODEM protocol has long been in widespread use for
error-free data transfer among personal computers. Because of the various states
in the execution of the program and their associated timeouts, it may not be ob-
vious at first how to organize the algorithm gracefully in a structured language.
This implementation is a tutorial on Forth programming and is also a useful,
complete application.

21 On-Line Documentation
by John J. Wavrik
The best form of documentation for a Forth application is the source code. F83's
VIEW or LOCATE show the screen on which a word has been defined. Here is the
same facility implemented for fig-FORTH, Kitt Peak VAX-Forth, MMS-Forth
and MVP-FORTH. A great tool!

Forth Resources via Modem
by Gary Smith
More Forth material than ever before is available on private and vendor-
supported electronic bulletin boards and on commercial information systems.
FIG members with modems and communications software have more oppor-
tunities than ever before to expand their knowledge and their personal dialog with
other Forth experts. Here's where to find them!

Forth Source Formatter
by John Konopka
The problem of neatly formatting source code is accentuated for Forth program-
mers, who often must add code to the fixed size of one screen. The program
presented here will take the most compact, confusing source code as input and
will turn out a cleanly formatted listing with new lines for every colon definition,
proper indenting for structured constructs and more.

Dual-CFA Definitions
by Mike Elola
Decomposing functions is a critical part of Forth programming. Dual-CFA
definitions provide the benefits of decomposed functions in situations where
decomposition would not be possible normally. By first exploring more conven-
tional Forth programming techniques, such as vectored execution, the author
discusses various issues that showcase the advantages of dual-CFA words.

Code and examples con-
form to fig-FORTH.

34 FIG Chapters

Code and examples con-
form to Forth-79 stand-
ard.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

DEPARTMENTS
5 Letters

33 Advertisers Index

Volume VIII, No. 2 3 FORTH Dimensions

Multi-tas king FORTH-83 Development Systems
for 68000 and 68020-based
microcomputers and industrial target boards.

Mach1 is a FAST, 32-bit subroutine-threaded implementation of FORTH.
All Mach1 systems include:

Unlimited multi-tasking--any number of backgroundherminal tasks are allowed.

Local variables for readable, recursive, re-entrant programming.

Standard text files--Any text-only editorlword processor may be used.

A STANDARD Motorola 68000 assembler (infix) which supports

EASY creation of stand-alone applications
Complete toolbox support (including
Mac Plus routines)
Macintalk speech driver support
Redirection of 110 to serial ports/devices 5
Graphics printing support

EASY creation of stand-alone applications
Full GEM and DOS support
Integrated GEM editor
68020 compatible

Comes with 300 page manual

(Available immediately on Gespac G-64 68000 board)

16K FORTH Kernel
16K 68000 Assembler
16K DissassemblerlDebugger
Call for source licensing arrangements.. . .

Executes sieve on 16MHz 680

Palo Alto Shipping company P.O. Box 7430 Menlo Park, California 94026
(800) 44FORTH - Sales (415) 854-7994 - Support

VISAIMC Accepted Include S/H on all orders ($5 USICanada, $1 0 overseas) CA res. add 6.5'10 tax
L I

FORTH Dimensions 4 VolumeVIII, No. 2

Saddled With Benchmarks

Dear Mr. Ouverson:

Now that Mach1 (our Forth compiler) is
becoming a rather efficient development
system, we are somewhat concerned with
the benchmarks that Forths are saddled
with when comparing them to other lan-
guages. The only sieves we've seen people
use must be corrupt versions of those called
"BYTE" and "Colburn" sieves. They are
not only wrong (there are 1028 primes
between zero and 8192, not 1899) but,
judging from the stack manipulations, were
perhaps rewritten by people who were un-
familiar with, or unfriendly to Forth. Has
someone pirated our benchmarks?

When a person truly wants to find prime
numbers (and, indeed, our customers are
always asking us for the higher primes),
he'd like to do it simply, efficiently and
correctly. Could you please publish the
correct "BYTE" and "Colburn" sieves,
and this Forth-83 sieve as ones which do
just that?

Thank you,

Terry Noyes
Palo Alto Shipping Co.
Menlo Park, California

Public-Domain Floating Point
and Double/Quad Precision

*

Dear Marlin,

DEC I tlRL

8192 CONSTANT s ize
size SQRT 1+ CONSTANT f l i c k l i m i t (i f you don't have SQRT, just use 4 / to be safe)
UARIRBLE flags s ize UALLOT

: primes (--number of primes) (does the primes once)
flags s ize 01 FILL i n i t i a l i z e the array)
0 (prime counter)
size 2 t range of numbers to check)
DO

flags I + C@ (see i f I i s a prime)
IF
I f l i c k l i m i t r C no need to t ry and f I ick flags once

you get past s izeA0.5 , just keep adding
up the primes)

IF
1 (t h ~ s is a prime. Used to increment the +loop)

flags size + flags I + I + (range of addresses to tag)
DO
0 I C! DUP C f l i c k flags a t multiples of I)

+LOOP
DROP (drop the I that was used for +LOOP)

THEN
1 + i increment the prime counter)

THEN
LOOP ;

How it works: Initialize an array to all ones. Start with the first prime number, which
is two. Clear all bytes in the flags array that are multiples of two. Then do it for the
threes. The fourth byte in "flags" is a zero, so skip to five. Since four is non-prime,
all of its multiples were handled by another number, two in this case. You only have
to continue this process up to the integer square root of the array size, since in this
case 91*91 is not in the array and the 91*90 spot was already zeroed by a previous
prime number. If you dump the array, you'll see that bytes 2, 3,5,7, 11, 13, etc., are
marked with ones, and the others have been zeroed. (While this program runs, it
counts all the prime numbers it finds.)

i

Forth has gone too long without a com-
plete, standard wordset for extended arith-
metic functions! Instead of continually rein-
venting the wheel with hardwaredependent
math packages and spending time writing
yet another version of D*, the Forth com-
munity needs to expend its energy address-
ing new horizons.

In order to foster the rapid growth of a
standard, I am placing my book, MVP-
FORTH Integer and Floating-Point Math
(MVP book series, volume three), in the
public domain. This book contains a com-
plete, machine-independent, high-level
MVP-FORTH glossary and implementa-
tion for thirty-two-bit integer math, sixty-
four-bit integer math and thirty-two-bit
floating-point math with transcendental
functions. The book also includes as-
sembler source code for critical words on
popular CPUs, to give execution speeds
comparable to other high-level languages.

The math package included with the
book has been stable and in active use for
several years. The word definitions are
similar or identical to many of the other
proposed "standards." However, this
wordset has the advantages of machine
independence and public-domain imple-
mentation. The book and source code on
disk may be ordered from Mountain View
Press.

I think that a standard for Forth arith-
metic will only emerge from the evolution
of a public-domain implementation in com-
mon use. I encourage anyone with com-
ments on, or improvements to the imple-
mentation described in my book, to write
me in care of Mountain View Press.

Phil Koopman
North Kingstown, Rhode Island

Dictionary Magic

Dear Marlin:

Here is a bit of magic for those who need
to generate more dictionary space without
reducing the number of options they are
loading.

The method requires that there be some
space available elsewhere, large enough to
be useful. I use what would otherwise be a

r
Volume VIII, NO 2 5 FORTH Dimensions

FORTH
The computer

language for
increased.. .

EFFICIENCY
reduced.

MEMORY
higher.

SPEED
MVP-FORTH
SOFTWARE

Stable.. .Transportable.. .
Public Domain.. .Tools

MVP-FORTH
PROGRAMMER'S KIT

for IBM, Apple, CP/M,
MS/DOS, Amiga, Macintosh

and others. Specify computer.
$1 75

MVP-FORTH PADS,
a Professional Application

Development System. Specify
computer.

$500
MVP-FORTH EXPERT-2

SYSTEM
for learning and developing
knowledge based programs.

$1 00
Word/Kalc,

a word processor and
calculator system for IBM.

$1 50
Largest selection of FORTH

books: manuals, source listings,
software, development systems

and expert systems.

Credit Card Order Number:
800-321 -41 03

(In California 800-468-41 03)
Send for your

I FREE
FORTH

1 CATALOG

MOUNTAIN V I M
PRESS

PO BOX 4656
Mountain View, CA 94040

fifth disk buffer. Four buffers are adequate
- so much so that I am considering a
reduction to three of them.

Here is an example of how to use the
highest-numbered disk buffer for diction-
ary space.

First, crowd (yes, crowd) as many defini-
tions as possible into a screen. I used all of
the system variables and constants. Test
free space (so @ HERE - .) and compile.
Retest free space to find out how many
bytes are required for the compiled screen.
For a 1024-byte buffer, I wouldn't accept
anything less than 975 bytes.

Second, set up to load the screen as soon
after the kernel as possible, followed by all
of the other screens which you routinely
load. For example, suppose you load
screens 4 - 10 before each session, and that
the new screen is screen 11. Your loading
screen (boot screen?) would contain the
following:

HERE LIMITS Q BIBUF

I I - DUP LIMITS I DP I

11 LOAD DPI 410THRU

There are ways to enhance this proce-
dure. In my case, screens 4 - 11 would be
coming in as a binary image. To make
screen 11 an instant load, I first MOVE^ the
contents of the buffer that screen 11 was
compiled into back to screen 11 as a binary
image. I then altered the loading screen to
reverse the process, ~0VEing the image on
screen 11 into the buffer area, followed by
my BLOAD of the remaining options. It
works just great.

I I Sincerely,

Gene Thomas

I I Dear Mr. Ouverson,

In writing words to read the clock on my
AST board from F83, I ran into all the
problems Laughing Water referred to in his
letter, "You Screen, I Scream" (VII/2).
Adding definitions to the existing code
immediately filled up a screen, then what
do you do? Also, keeping shadow screens
lined up is difficult.

In good Forth programming practice,
each word should do one job and do it well.
Then the next higher level word does not
have to concern itself with the details of

how the lower-level word works. This prin-
ciple of hiding complexity is fundamental to
modular programming.

Then there is the Forth editor! It hides
nothing. The programmer must keep track
of screen numbers, line numbers, line
length and a host of other items. If a screen
is full and an additional definition is
needed, the screens must be moved manual-
ly. Any reasonable text editor will insert
text anywhere in a file, moving the rest
down to make room. Also, my screen is
eighty columns wide and it is all too easy to
enter a definition that is sixty-five charac-
ters long and lose the last word.

I propose that the editor and the loading
of definitions be modified to hide the 1K
screen limit. The Forth editor should work
like a standard text editor. Comments and
definitions can be entered anywhere in the
file. To maintain compatibility with block-
oriented systems such as polyFORTH, each
1K block could be treated like a page. User
variables could be defined that would limit
the maximum range the editor could use, to
avoid overwriting the wrong blocks. In a
system that runs under a host operating
system, such as F83 under DOS, these
"pages" or screen numbers would maintain
compatibility with the VIEW command. The
programmer does not have to keep track of
these screen numbers while programming.

Since this is a major change to the current
Forth editor philosophy, it may not be
acceptable. May I suggest that at the mini-
mum, an editor should be free format, lines
terminated with CR-LF and not displayed
with line numbers. Even if restrained to the
1K limit, this would be much better than the
standard Forth editors. If implemented
with a multi-line move command with a
large enough buffer to hold a definition
when it becomes necessary to move it to the
next screen, it would be a great improve-
ment. Then a few words would automate
the screen copy or convey, and would move
screens as required to make space for new
definitions.

If any FD reader has a program to read
and compile F83 Forth programs from a
DOS text file for the IBM-PC, please write
to me. I would also like to know if anyone
has implemented a Forth editor that uses
the IBM-PC cursor keys and produces a
straight ASCII text file or the screens as I
have outlined above.

Sincerely,

Ramer W. Streed
North Mankato, Minnesota

-I Dimensions Volume VIII. No. 2

An invitation to attend the eighth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving
November 28 - 30, 1986

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California

Theme: Extending Forth towards the 87-Standard
FORML isn't part of the Standards Team, but the conference is an opportunity to present
your ideas for additions to the Forth standard. Papers are also welcome on other Forth
topics. Meet other Forth professionals and learn about the state of the art in Forth
applications, techniques, and directions.

To get your registration packet call the FIG Business Office (408) 277-0668
or write to: FORML Registration, Forth Interest Group, P. 0. Box 8231,
San Jose, CA 95155.

Registration: $275 Double Room

$3 25 Single Room (Limited availability)

I $1 50 Non-conference guest (Share a double room)

/ Registration includes room, meals, conference materials, and social events.

Registration and abstracts are due
September 1, and final papers are due

October 1, 1986. Make your
reservation now and get your

registration packet.
Space is limited,

advance registration
is required.

Volume VIII, No. 2 7 FORTH Dimensions

Conditional Teaching

Dear Marlin,

This letter is inspired by Ronald Apra's
article on teaching Forth. I've been teaching
Forth for several years. My situation is
different from Mr. Apra's: I'm teaching
university students who already know some
other language. Several years ago, however,
my wife and I worked with some elementary
school students in BASIC, and she has also
taught BASIC and Pascal to adults.

Conditional structures, no matter what
the language, create a problem for begin-
ners. A student's first language is a barrier.
Teaching is often inefficient because we are
trying to give students the answers to ques-
tions they have never asked. The question
in the students' minds is, "Why are we
doing this?" My wife suggested to a group
of upper elementary students that they
write programs to do something they would
like to do. One girl wanted an "address
book." One boy wanted to write a video

tennis game (it was suggested that he first
try to get a "ball" to bounce back and forth
on the screen). Both of these students
accomplished their goals. In the process,
they had to deal with "How can we do
this?" and, as you'd expect, they both came
to understand looping and conditional
structures quite well. The teaching of
computer programming at all levels would
benefit by the production of a collection of
interesting tasks that develop a need for
certain constructs.

"Keep it simple" is indeed a hallmark of
Forth. Forth is perhaps the only language
whose implementation is simple enough
that the language can be learned semanti-
cally instead of syntactically. The major
unifying principle is "action": each word
has an action which it performs when the
word is executed. This unifying principle
explains why it is desirable that arguments
on which the word acts be available before
it executes (i.e., reverse Polish syntax). The
conditionals can be understood in terms of
their action during compilation. A decom-

piler is an important tool at this stage. If
students already know why an IF . . . THEN
construct is needed, and they see how IF
compiles a conditional branch and THEN
resolves the displacement, they automati-
cally understand the Forth syntax. fig-
FORTH, it should be noted, is advan-
tageous for this approach because system
words (like OBRANCH) are named and full
word names are stored (facilitating decomp-
ilation). A student who learns Forth in this
way develops a mental image of what each
word does - and this eliminates the need to
memorize syntax rules.

I repeat again that I'm working with
university students with prior programming
experience. I'm not sure how far "down"
this approach would extend. I am sure,
however, that the conceptual simplicity
which Forth offers is an important com-
ponent of its power. I would hate to see
"progress" in the direction of words doing
a lot of "under the table" manipulation,
even if this would provide a superficial
simplicity in syntax. I do see potential in

(Letters continued on page 33)

THE TOOLS GROUP
66230 Forth Street

Do you use Forth professionally?

Do you ever wish that you were
- - - .

Desert Hot Springs, CA 92240 working in an organization large

6 191329-4625 enough to have a full time software
tools group?

The Tools Group subscription support service is available to any Forth programmer.
Tools are available for the 280 and MC680x0 environments, running either CP/M
2.2, TPM 111, or GEMDOS. iAPX 8x128~ and NS32x32 versions will be ready soon.

Access to the Tools Group programmers and library is through a Hartronix multiuser
bulletin board system. Soon, the service will be available world wide through an X.25
based public data network at very low cost.

The Tools Group library is extensive, including tools like a 64 bit IEEE floating point
package, transportable code between different operating systems, ASCII file support,
automatic librarymanager, and much more. If the tool you need is not in the library,
we will work with you to develop it.

Our motives are simple. We enjoy building real tools for real programmers. We want
to help you. For a small annual fee, you may freely use our tools without royalties.

You don't need to tell anyone that you have a tools group -- you can just let them think
you are Superprogrammer.

FORTH Dimensions 8 Volume VIII, No. 2

XMODEM Tutorial
John S. James

Santa Cruz, California

The publicdomain XMODEM (MODEM?
protocol has come into widespread use for
error-free data transfer among personal
computers. It has other commercial uses
besides, although it is less than ideal for
communicating with mainframes over packet-
switching networks, a task for which it was
not designed. We are publishing this im-
plementation as a tutorial on Forth pro-
gramming, and also for its practical useful-
ness. It is not the only XMODEM imple-
mentation published in Forth (see references
below).

In addition, this two-part article will
touch on the philosophy of designing soft-
ware modules for effective use in libraries.
We will also look at compatibility among
Forth systems, and at the marketing issues
raised by the question of why this author
uses the public-domain F83 implementation
as a publication language, while using pro-
prietary systems purchased from others for
many software-development projects.

Overview

Implementing XMODEM is not as easy
as might be assumed. Because of the
various states in the execution of the pro-
gram and their associated timeouts, it may
not be obvious at first how to organize the
algorithm gracefully in a structured lan-
guage.

Concerning timeouts, the program should
be less strict than the traditional XMODEM
when it is used for communicating with
mainframes (e.g., services like Compu-
Serve, which supports XMODEM). Since
these longer timeout values probably will
not interfere with micro-to-micro commun-
ication, except to cause some additional
delay in recovering from certain errors, we
have used them here, with the original
XMODEM timeouts in comments.

One challenge for this particular imple-
mentation was to make the CRC option
efficient in high level. CRC (cyclic redun-
dancy code) was not part of the original
XMODEM protocol, but was added later
for improved error control. The problem
for us is that the CRC algorithm involves
much bit shifting, and standard Forth
doesn't include efficient shifting. Ordinari-

ly, one would write a code word to do the
shifting, but for this example we want to
avoid using code in order to run on dif-
ferent computers. So we used some pro-
gramming tricks, explained below, to imple-
ment the CRC efficiently.

This software accumulates the CRC while
the characters are coming in, so it must
keep up with the characters. But note that
the program could be designed to not have
to keep up: XMODEM always sends blocks
with 128 bytes of data, and reasonable
delays between the blocks are allowed. If
you have a very slow computer and a very
fast modem, you might need to change this
program to simply store the characters as
they come in, then compute the error check
later. The price would be a small but
noticeable slowdown in receiving files.

One more challenge in implementing
XMODEM is to make it work gracefully
with the different variations which exist.
Some existing implementations do not talk
to some others, mainly due to the timeout
differences mentioned above.

What is XMODEM?

XMODEM was developed by Ward
Christensen, and has been extended by
others. It has been used on bulletin boards
since around 1980.

In XMODEM, all data is 'transmitted in
128-byte blocks. Each block also contains a
few bytes of header and error-test informa-
tion. The receiving program must test each
block, and send either an ACK (acknow-
ledge, ASCII 06) to indicate a correct block
received, or a NAK (negative acknowledge,
ASCII 21 hex) to indicate error. If it sends
the NAK, the sending program will retrans-
mit the block.

Each block contains:

A start-of-header byte, ASCII 01.

The record number mod 256, starting at 1.

The ones complement of the record
number.

128 bytes of data.

CRC high and low bytes (or a one-byte
checksum, if CRC is not used).

The conversation between the computers
is receiver driven. This means the sender
doesn't do anything until asked by the
receiver (except to time out eventually, if
the receiver doesn't work properly).

To start the process, both computers
must be made ready, one to send and the
other to receive. At first, nothing happens.
Then the receiver times out, because it
failed to get any record; when it times out,
it sends a NAK. The NAK tells the sender to
retransmit - in this case, to transmit the
first record. The receiver ACKs or NAKs it;
the transfer process has now started. (If
CRC is used, the receiver must send a C the
first time - ASCII 43 hex - instead of
NAK, in order to tell the sender to use
CRC. In either case, the receiver doesn't
actually have to wait for the first timeout,
but can send the C or the NAK earlier.
Some programs try C a few times, and if the
sender doesn't respond, they try NAK, in
case the sender doesn't support CRC.)

After the file has been transmitted, the
sender sends a single character, EOT (end
of transmission, ASCII 04). If the receiver
gets it, it sends an ACK, and the file
transfer is finished.

Unusual Situations

If a NAK gets garbled, the sender won't
do anything - until the receiver times out
and sends another NAK.

Sometimes an ACK gets garbled. Then
the sender will re-transmit a valid record.
The receiver, which always tests the record
number, throws away the extra copy.

The sender should not treat any non-
ACK as a NAK. Especially it should not
treat control-S or control-Q, which the
receiver may send to ask for a pause in
transmission, in this way. If the sender does
honor control-S and control-Q (not strictly
necessary, since retransmission can take
care of most problems), the control-Q to
restart transmission may occasionally get
lost. Both sides can be designed to handle
this case, even if the other side would wait
forever, but we haven't done so in this
tutorial.

If the record number on a received block
is neither the expected one nor a repeat of
the previous one, a fatal synchronization
error has occurred, and transmission must
be terminated. A transmission error in the

Volume VIII, No. 2 9 FORTH Dimensions

i.'
f.'

5-

f.' MICRO-
?..

& .5 ...
0%'
,t.' P.. r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i
f Z ,?.'
::$
f..

A
,*.'
.A.

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and mach~ne

code Interrupt handlers
-System timekeeping rnainta~ns

time and date w~ th leap
year correction

-Supports ROM-based self-
startlng applicatrons

COST
130 page manual -S 30.00
8K EPROM with manual-S1W.W

Postage pa~d In North Arner~ca
lnqu~re for l~cense or quantlty prlclng

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330

(207) 547-32 18

Scr U 1 A : XMODEM .
0 \ Compatibility and load acreen 2-17-8655
1
2 \ These may be needed for other Forth 8 3 ayatems. not for F83.
3 \ : T R U E - 1 :
4 \ : FALSE 0 :
5 \ : KEY? ?TERMINAL : \ Thia word ia not part of Forth 8 3 std
6 \ Deflne different spelling of NEXT for some assemblers
7 \ ASSEMBLER DEFINITIONS : NEXT NEXT, : FORTH DEFINITIONS
8
9
10 \ Load the aource code
11 : XX 1 3 2 D O I . I L O A D L O O P : XX
12
13
14
15

Scr U 2 A : XMODEPI .
0 \ Port 1/0 (IBM-PC-compatible BIOS) 2-17-8655
1 HEX
2 CODE CALL-SERIAL \ xl n - - x2 Asynchronous DOS call
3 DX POP AX POP 14 INT AX PUSH NEXT END-CODE
4 : CALL-PORT1 \ xl -- x2 Call to Port 1
5 0 CALL-SERIAL ;
6 : MINITIALIZE \ nspeed - - Initialize port
7 \ nepeed = 300 or 1200, no parity, 1 stop bit. 6 data bits
8 12C ('300' in hex) = IF 43 ELSE 8 3 THEN
9 CALL-PORT1 DROP : \ Easily extended to 2400
10 : MWRITE \ c -- Write one character t o modem
11 100 + (AH=l) CALL-PORT1 DROP :
12 DECIMAL
13
14
15

Scr U 3 A : XMODEM .
0 \ Read a character, using variable timeout 2-17-6655
1 HEX
2 : MREAD \ ntimeout - - c Read one character from modem
3 -1 < Default, returned if timeout) SWAP i PIAX 0 DO
4 300 CALL-PORT1 C Status) 100 AND IF \ Data ready
5 DROP 200 CALL-PORT1 (Data > FF AND LEAVE
6 THEN
7 9 0 DO LOOP \ Delay - a d ~ u S t for your CPU
6 LOOP :
9 DECIMAL
10
11
12
13
14
15

Scr U 4 A : XMODEM .
0 \ Save all modem I/O, as a record of the session 2-17-6653
1 4000 CONSTANT SAVE-SIZE \ Size of the terminal save area
2 CREATE TSAVE SAVE-SIZE ALLOT \ Save terminal seseion for test
3 VARIABLE SAVE-&DDR \ Pointer in the save area
4 : SAVE-INIT TSAVE SAVE-ADDR I TSAVE SAVE-SIZE 0 FILL ;
5 SAVE-INIT \ At compile tine, for convenient testing
6 : UMIN \ ul u2 - - u Unsigned minimum
7 OVER OVER U< IF DROP ELSE SWAP DROP THEN :
6 : S A V E \ c - - Save a character ln memory
9 SAVE-ADDR 0 C1 SAVE-ADDR d l* TSAVE SAVE-SIZE 1- UMIN
10 SAVE-ADDR 1 :
11
12

FORTH Dimensions 10 VolumeVIII, No. 2

block number will not cause this situation, this example - fortunately, since there are
because the header number and its ones many incompatible modems.
complement must correspond; if they You might want to change the speed from
don't, the record will be discarded im- 300 to 1200, in screen 5.
mediately, before being checked for the (3) When you get a good execute '
fatal error. T, the dumb-terminal program. Now you

Timeouts and retries must keep either are talking to the
computer from hanging indefinitely, If the system seems to have crashed, it's
matter what the other does or doesn't do. probably because the modem isn't echoing
XMODEM Tecifies that the timeout be- your characters or saying anything else back
tween blocks is ten seconds, and within a to you. You might type a control-^, which
block the timeout between characters is one ,,its from the dumb-terminal program, to
second. (We use twenty seconds and ten make can get back to Forth in

as recommended for order to check that the program hasn't
CompuServe, to assist communication with really crashed.
busy mainframes Over packet-switched net- Get back into the terminal mode, and use

where Over a are whatever character or sequence your mod-
common.) If an error occurs, it should be ,, needs to get its attention and into
retried for a total of ten times before the command mode. ~ ~ ~ ~ l l ~ it,s possible to
program gives up. talk to the modem and get something back

from it - an "OK," a status report or
whatever - before even connecting the
telephone. This way you can make sure that

Using the Code everything is working so far, before intro-
ducing the added complexity of the remote

Part I of this two-part article implements computer.
the heart of the Process. This code lets you (4) N~~ use the terminal program to talk to
receive a record, using the CRC. (The code a remote Most modems these
presented here also includes a dumb-termi- days are auto-dial - you can type in the
rial Program, named T, to let You log On to phone number as part of a command. In
the computer and do whatever is either case, follow the instructions for your
necessary to tell it to start sending a file particular modem (often easier said than
using XMODEM.) done).

Before describing how the code works,
we'll explain how to use it. (5) To test the XMODEM record-receive

software, call up a bulletin board or a
(1) Make sure it compiles. The code runs on which supports X ~ ~ ~ ~ ~ . Do
the public-domain F83 implementation whatever commands are necessary to tell it
the Forth-83 Standard; and screen 1 con- to start sending a file with X ~ ~ D ~ ~ .
tains some simple name changes to adapt it N~~~ that for testing this code (in Part I of

a Standard imp1e- this article), you need to call a system which
mentation from Laboratory Micros~stems, support the CRC error check. (part 11
Inc. These changes in screen may apply will include code for the simple
other Forth-83 Standard systems also. also.)

If your system has a different assembler, If you use CompuServe or a similar
the word may need be re- system for the test, make sure to ask for a
written; or perhaps your system already has not ,,binary,9 file, Many main-
such a word. frames have a thirty-six-bit word and nor-
(2) If you have a different microprocessor, mally store text in seven bits per character;
or have one of the few semi-PC-compati- so if they must store eight bits, as when
bles which don't support the BIOS calls, saving object programs for micros, they use
you will have to rewrite MINITIALIZE, MREAD a special translation such as Intel hex for-
and MwRlTE for your equipment. (Note that mat, which will look like garbage if you
these words actually refer to the port, not receive it.
the modem.) Your modem too may need Once the remote program is in XMODEM
some initializing - for example, a dial and waiting to send data, you have a rea-
command and the phone number to dial - sonable timeout period, probably at least a
but with most modems you can provide minute, to ask it to start. Get out of the
these manually by simply typing the charac- dumb-terminal program and back to Forth
ters after you have executed the dumb- with the control-2. You're still online with
terminal program and are talking to the the remote computer, and can execute T
modem. We didn't need to build the again later to get back into the terminal

UBZ FORTH^"

* FORTH -83
corn pati ble

"32 bit stack
* Multi-tasking
*Separate headers
* FU J J Screen editor
* Asse m b 1 e l
*Amiga DOS support
*Intuition support
* ROM kernel support
*Graphics and sound

support
*Complete

documentation
*Assembler source

code included
* M On f h 1)' new Sl etter

I

$85
Shipping included
~n continental U.S.
(Ga. residents add sales tax)

(404)-948-4654

(call anytime)
Or send check O r Order

UBZ s*
395 St- Albans Court
Mableton, Ga. 30059

'Amiga is a trademark
modem's initialization into the program, in mode. Commodore Computer. UBZ FORTH

is a trademark for UBZ Software.

VolurneVIII. No 2 11 FORTH Dirnens~ons

FORTH kit
Assemble a 4 Mips

Computer !

PARTS
4MHz Novix NC4000
4 x 6 mother-board
Press-fit sockets
2 4kx8 PROMS

INSTRUCTIONS

cmFORTH listing
Application Notes
Brodie on NC4000

ASSEMBLY
Buy 6 RAMS

Misc. parts
Press 360 sockets

Soldeer 3 capacitors
2 resistors

Attach 200mA @ 5V
RS-232 cable

Insert 11 chips

Program host as
terminavdisk

(1 screen of Forth)

LEARN

Modern technology
Interface design

EXPLORE
High-speed Forth
On-board interfaces

16-bit parallel
video
floppy
printer

Plug-in interfaces
4 pin/socket busses
Battery power (6V)

$400
Inquire for details

Chuck Moore
COMPUTER COWBOYS

41 0 Star Hill Road
Woodside, CA 94602

(41 5) 851 -4362
_1

To start the remote system, send the letter
C (ASCII 67 decimal). Since the data may
start coming quickly, the command to
receive it should be on the same line, as in

67 MWRITE XGET

XGET is a short test word defined on
screen 12. It prints the number of charac-
ters read (should be 133), and a flag
(0 =good, 1 = end-of-file, 2 =an error such
as too few characters or bad CRC).

The record transmission will take a little
over one second at 1200 bps, four seconds
at 300. If everything worked, XGET will
print 133 and zero. Dump some bytes from
DATA to see if you got the start of header
(Ol), the record number (Ol), its ones com-
plement (FE hex) and the data. Or just use
DATA 3 + 128 TYPE to see the text. (Some
Forth systems will TYPE carriage returns and
line feeds as control characters, others will
perform them instead.)

If you got 133 bytes but an error, it is
possible that the software is working prop-
erly and XMODEM detected a transmission
error, as it should. If it seemed that nothing
happened, wait half a minute or so for any
possible timeout, and then check the results
from xGET. If one or two characters are
missing, there may have been transmission
errors. If no characters were received,
perhaps the remote system does not support
CRC; try

< NAK> XWRITE XGET

and see if 132 characters are received; there
will be timeout and an error because the
code given here does not support the simple
checksum, only the CRC.

To try for another record, use

ACK XGET to get the next one, or

NAK XGET for retransmission of the last
record received.

There is another way to check what has
happened. The dumb-terminal program
keeps a record of your session - all charac-
ters sent both ways - at TSAVE. If things
don't work, you can dump that data.
(6) To end the test, it's helpful to get back
to the terminal mode and log off the remote
system. But if you haven't reached the end
of file, it may be hard to get the sending
program to abort the transmission. If noth-
ing else will do, unplug the phone.

How the Code Works

Screens 2 and 3 provide the low-level I/O
- MINITIALIZE, MREAD and MWRITE - to
initialize, and to read and write characters.
As explained above, you may need to
rewrite these words.

Note that MREAD accepts a timeout value
in milliseconds. You may want to adjust the
delay loop in screen 4 to make the values
relatively accurate for your computer.
There are better ways to handle timing, of
course, but we kept it simple for this
tutorial.

Screen 4 defines words to save a record of
the session - a copy of all I/O - in a
memory area which can be examined later
to trace problems.

Screen 4 illustrates that comparisons of
addresses must be unsigned - using the
Forth-83 Standard word U< . Otherwise,
the result would be correct only if both ad-
dresses were on the same side of the 32K
boundary (in a 64K system). A program
could work perfectly until a recompilation
just happened to cause a buffer to span that
boundary. So instead of using MIN to get a
minimum, as part of the process of prevent-
ing the trace of the session from overflow-
ing its save area, we defined UMIN, an
unsigned minimum, and used it instead.

Screen 5 implements a dumb-terminal
program, T. We use a short name to make it
easy to get into and out of terminal mode
(control-Z gets out of the terminal mode
and back to Forth). T includes the machin-
ery to save the record of a session - all
characters sent either way. Note that SAVE-
INIT is executed at compile time; otherwise it
would be easy to forget when testing. In a
product, T would execute SAVE-INIT; but
here that wouldn't be appropriate, because
during testing you should be able to get into
and out of terminal mode without wiping
out the record of the session so far.

Screen 5 also redefines MREAD and
MWRlTE, to create new versions which save a
copy of the data they transfer. Note that we
could not use these redefinitions in T,
because T is constantly doing MREAD which
times out; it would fill the session-save area
with garbage.

Screen 6 sets up constants and variables
for the XMODEM code itself.

Screen 7 does the "line purge" - waiting
until the sender stops transmitting - which
XMODEM requires before a NAK, to
avoid possible confusion.

Screens 8 and 9 are the hard part -
computing the CRC, and doing so efficient-
ly in high level.

Here is the algorithm. Start with a 16-bit
accumulator set to zero. Take the 128 data

FORTH Dimensions 12 Volume VIII, No. 2

+

Scr Y 5 A: XMODEM.
0 \ Dumb terminal. for teat. 'T' to run, control-Z exit 2-17-8655
l : T \ - - Dumb terminal program
2 300 MINITIALIZE \ 300, 1200. or other
3 FALSE \ Loop control - set to TRUE to exit
4 BEGIN
5 0 MREAD \ No need for tireout delay here
6 DUP -1 = IF DROP ELSE 127 AND DUP SAVE EMIT THEN
7 KEY? IF \ If key typed, send it, unleaa control-Z
8 KEY DUP 26 = IF DROP DROP 1 \ Exit
9 ELSE DUP SAVE UWRITE THEN
10 THEN
11 DUP UNTIL DROP :
12
13 \ Apply SAVE to later 1/0 - can't uae this in T, due to timeout
14 : MREAD HREAD DUP SAVE :
15 : MWRITE DUP SAVE MWRITE :

Scr Y 6 A: XMODEM.
0 \ XMODEM vsriablea and constante 2-17-6653
1 VARIABLE ARECORD \ Addrers of 133-byte ares
2 VARIABLE NCHAR \ Number of charactere tranamitted
3 VARIABLE XTIMEOUT \ Timeout value for read, in milliaeconda
4 VARIABLE DATA-BYTE \ Used in CRC
5 1 CONSTANT <SOH>
6 4 CONSTANT <EOT>
7 6 CONSTANT <ACK>
8 21 CONSTANT <NAK>
9 10000 CONSTANT CTIMEOUT \ 10 aec, timeout between charactera
10 20000 CONSTANT BTIHEOUT \ 20 aec. tiheout between blocks
11 \ In traditional XMODEM, above tineouta are 1 sec and 10 see
12 1000 CONSTANT PTIUEOUT \ Try 1 aecond to purge the line
13
14
15

Scr * 7 A: XMODEM.
0 \ Purge the line (wait for trsnamiaaion to atop) 2-17-8653
1 : XPURGE \ - - Wait till trananiaaion atopa
2 BEGIN
3 PTIMEOUT MREAD \ Wait till no more characters
4 -1 = UNTIL :
5
6
7
8

Scr Y 8 A: XUODEM.
0 \ Compute CRC 2-17-6655
1 HEX
2 : 1BIT \ xaccuml maak -- xaccum2 Apply 1 bit of DATA-BYTE
3 SWAP < Save mask) DUP 8000 AND IF \ Bit to shift out
4 DUP * \ Shift left
5 SWAP DATA-BYTE t3 AND (Apply mask) IF 1+ THEN \ "Shift"
6 1021 XOR \ CRC polynomial
7 ELSE \ Same thing, only don't do the CRC
8 DUP *
9 SWAP DATA-BYTE B AND IF 1+ THEN
10 THEN ;
11
12
13
14
15 DECIUAL

DASH, FIND
& ASSOCIATES

Our company, DASH. FlND & ASSOCIATES.

is in the business of placing FORTH Program-
mers in positions suited to their capabilities.

We deal only with FORTH Programmers
and companies using FORTH. If you would
like to have your resumt included in our

data base, or if you are looking for a
FORTH Programmer, contact us or

send your resum6 to:

DASH. FlND & ASSOCIATES

808 Dalworth. Suite B
Grand Prairie TX 75050

(214) 642-5495 m
Committed to Excellence

Volume VIII, No. 2 13 FORTH Dimensions

1 with LMI FORTHTM 1

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth.83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-60, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 306-7412

Overseas Distributors.
Germany. Forth.Systeme Angel~ka Flesch, Titisee.Neustadl, 7651-1665
UK: System Science Ltd., London. 01.248 0962
France: Micro-Sigma S.A R.L., Paris. (1) 42.65.95.16
Japan: Southern Pacific Ltd.. Yokohama. 045-314-9514
Australia: Wave.onic Associates. Wilson, W.A., (09) 451-2946

bytes, and shift each bit (high bit first) of
each byte into the accumulator. Throw
away anything shifted out of the accumu-
lator - but whenever a 1 bit is shifted out,
exclusive-or the accumulator with the magic
number 1021 hex (a number specified in the
CCITT CRC-16 standard).

We will do this with the 128 data bytes as
they come in. The algorithm also requires
two zero bytes to be put through at the end.
The final value in the accumulator should
match the CRC bytes which were transmit-
ted.

How do we do all this efficiently without
an efficient shift - except a left shift by
adding a number to itself, which doesn't
even keep track of anything shifted out?

This program keeps the accumulator on
the stack. UPDATE-CRC, on screen 9, takes
advantage of the fact that the data byte
need not be physically shifted, if eight
different masks are applied to see if there is
a bit in the position from which it would
have been shifted out. If so, a bit is simply
added to the accumulator (after the ac-
cumulator has been "shifted" by adding to
it a copy of itself). The 1 + in IBIT causes the
effect of shifting a 1 into the accumulator.

To get around the fact that + doesn't
keep track of overflow, simply test the high
bit of the accumulator with 8000 AND (hex)
before adding to itself.

The result of this test needs to be used
later - after the rest of the work on the
accumulator. To save a little time, lelT
doesn't store that result, but instead has
parallel code sequences - in effect, "stor-
ing'' the bit shifted out in the control of the
program itself.

In screen 9, GET-CRC puts only the 128
data bytes (of the 133 bytes transmitted)
and the two required zeros into the CRC.
(We don't actually use GET-CRC here, since
we accumulate the CRC while the charac-
ters are being received; but the word can be
handy for testing.)

Note that CRGBAD? in screen 9 picks up
the transmitted CRC byte-by-byte, not with
a , to avoid byte-order dependency which
would cause the program to fail on some
CPUs. The rule is that a should not pick up
what I did not put down; ca is always okay,
however. Forth programmers seldom have
to worry about byte order - unless the data
has come in from another computer, as
here.

The rest of the code is fairly straightfor-
ward. XREAD reads n characters, or until

FORTH Dlmenslons 14 Volume VIII, No. 2

timeout. XCHECK tests the data received.
XGET, ACK and NAK are convenient test
words to run from the terminal.

Notes on the Code

The code example will not work with
some external modems due to RS-232 in-
compatibilities. MREAD and MWRITE will
tirneout in one second and not transfer any
data. You may be able to avoid the problem
by setting switches on the modem, or by
using a special cable.

Or you could patch MREAD and MWRITE to
bypass the operating system and access the
port directly. Replace the definition of
MWRITE with:

where PCI writes one byte to a port. In
MREAD, replace 200 CALL-PORTI with 3 ~ 8
PC@. (Some systems may need one of these
patches without the other, or may need a
more elaborate MREAD.)

Also note that the crude dumb terminal
program T may lose characters between lines,
while the screen is scrolling. XMODEM is not
affected, however; the dumb terminal is
used only to navigate through the remote
system to get its XMODEM started. We
chose not to complicate the article with the
buffered version of a word used only for
testing.

Discussion - Forth Libraries

I am implementing a Forth library system
to allow developers to use off-the-shelf
modules (see "Forth Component
Libraries," reference below). The code here
does not use the library facilities, since they
are not yet available; but this code was
designed to be adapted and used in the
library.

The library will hide the internals. It will
show the XMODEM words to the outside
world on three different levels. The low
level will be MINITIALIZE, MREAD and MWRITE
- not really XMODEM at all. The middle
level will have words like XGET which read
and write records. The highest level will
receive and send whole files, creating, open-
ing and closing them, etc.

Note:
(1) The low-level words don't take a full set
of all possible transmission options. For
example, MlNlTlALlZE takes advantage of the
fact that XMODEM specifies no parity,
eight data bits and one stop bit; usually
these values will work for other purposes

Scr U 9 A : XMODEM .
0 \ Compute CRC 2-17-8655
1 HEX
2 : UPDATE-CRC \ xaccauml byte - - xaccun2
3 DATA-BYTE !
4 80 lBIT 40 lBIT 20 lBIT 10 lBIT \ Apply each bit
5 08 lBIT 04 lBIT 0 2 lBIT 01 lBIT ;
6 DECIMAL
7 : GET-CRC \ arccord -- xcrc Test only - compute it
8 0 \ Start CRC accumulator
9 SWAP 3 * 128 OVER * SWAP DO I C0 UPDATE-CRC LOOP
10 0 UPDATE-CRC 0 UPDATE-CRC ;
11 : CRC-BAD? \ xcrc -- f Teat for bad CRC
12 ARECORD B 131 * CB 256 ARECORD B 132 * CB < > :
13 \ Don't juat fetch the CRC, becauae of byte-order dependency
14

Scr # 10 A : XMODEM .
0 \ Teat for garbled data 2-17-8653
1 : GARBLED? \ xcrc ftineout - - fbad Teat for bad record
2 \ Note: doesn't check for unexpected block U :
3 \ do that at higher level.
4 TRUE \ Timed out
5 ARECORD B CB <SOH> <> OR \ No <SOH>
6 ARECORD 0 1+ CB ARECORD 0 2* CB 255 < > OR \ Bad conpl
7 SWAP CRC-BAD? OR :
8
9

Scr #
0 \
1 :
2
3
4
5
6
7
8
9
10
11
12
13
14

11 A: XNODEM.
Read n characters (or leas ~f t~neout) 2-17-8655
XREAD \ nexpected - - xcrc nread Return CRC, # read
ARECORD 0 133 0 FILL \ Avoid confusion with paat data
BTIMEOUT XTIUEOUT ! \ Uae block tineout on firrt tine thru
0 NCHAR f 0 SWAP \ Initial CRC accumulator
(nexpected) 0 DO \ Read the charactera
XTINEOUT B MREAD CTIUEOUT XTIMEOUT ! \ Char. tineout
DUP -1 > IF \ Did not tine out

DUP ARECORD B I * C f \ Store the character
I 3 < I 130 > OR IF DROP ELSE UPDATE-CRC THEN

\ Put only the data bytea into the CRC
I l* NCHAR ! \ Update count of characters

ELSE (timed out) DROP LEAVE THEN
LOOP 0 UPDATE-CRC 0 UPDATE-CRC NCHAR B ;

Scr U 12 A: XMODEU.
0 \ Check the received record 2-17-8655
1 : XCHECK \ xcrc nread -- nflag Flag O=good, l=eof, 2=err
2 DUP 1 = ARECORD 0 CB <EOT> = AND IF \ End of file
3 DROP DROP 1 \ Return result
4 ELSE \ Regular record
5 OVER OVER 133 < (timeout?) GARBLED? IF \ Bad record
6 DROP DROP 2 \ Return rerult
7 ELSE \ Good record
8 DROP DROP 0 \ Result
9 THEN THEN :
10
11 \ Handy words for testing
12 CREATE DATA 133 ALLOT DATA ARECORD ! \ Set up 1/0 area
13 : XGET < - -) 133 XREAD DUP . XCHECK . ; \ Print n, flag
14 : ACK <ACK> UWRITE : : NAK XPURGE <NAK> UWRITE ;
15 \ To atart, use 6 7 MWRITE (decimal)

Volume VIII. No. 2 15 FORTH Dimensions

also. We want to make the words easy to
use for getting in quickly and doing a job.
But what happens when other options are
needed? The central question is how to
expand the software library in a graceful,
upwardly compatible way.

One approach is to define another word,
loaded with stack arguments for all the
options, and then redefine MINITIALIZE in
terms of it. Another approach is to define
an argument-communication area for

MINITlALIZE, and let it default to values
which cause MINITIALIZE to behave the same
unless the programmer does something with
the new word. Either way allows upwardly
compatible inclusion of new options, even
ones not thought of in advance.

(2) It's okay to use temporary storage areas
(variables, here). The library uses a re-
entrant system instead of ordinary vari-
ables, but variables are all right for now.

(3) How should routines handle errors?
They must not print error messages, be-
cause they may be used when no terminal or
at least no person is available. So they must
signal whatever called them, so that the
higher-level, application-oriented logic can
decide on appropriate action.

Routines can pass an error flag to the
stack. But exhaustive error reporting would
make routines too cumbersome for quick
and easy use. For example, MINITIALIZE
could make all kinds of reports, depending
on what status information was returned by
the particular operating system or port.

So we took the easy approach and had
MlNlllALlZE throw the status and error infor-
mation away. Later, it could be generalized
with a new word as explained above, or by
use of an error-communication area, just a
place where routines dump whatever they
want to report, and don't change otherwise.
Higher-level words which call the routine -
can, if they care, first clear the error area to
null (impossible) values, then check it later
to see what happened. But the user of
MINITIALIZE, who doesn't need to know
about any of this, still has an easy and
convenient word for ordinary uses.

Some errors fit naturally at higher levels,
and should not be handled by low-level
routines. For example, the word XCHECK
does test whether a block number and its
ones complement correspond, but it should
not test whether the block number is the
expected one. If it did, it would need to
keep track of what record the application

program was expecting and would have
more complicated arguments.

Discussion - Forth Marketing

Screen 1 includes code to compile this
software on the PC/Forth system men-
tioned above. In fact, I developed this
XMODEM implementation to run on this
LMI Forth, choosing it among many com-
petent systems because it had target com-
pilation and other support for the particu-
lar chip I was using - support which would
have taken weeks to write from scratch.

This example illustrates an important
aspect of the sometimes-troubled relation-
ship between public-domain and propri-
etary Forth systems. Publication and soft-
ware development often have different
requirements.

For publication, while work in any sys-
tem is welcome, it can be helpful to stand-
ardize on a publication language when
possible. A large coding example will need a
few words outside of the Forth standard, as
we saw with KEY? vs. ?TERMINAL here; and
some published papers will want to deal
with internals. It would be helpful to have a
common base to talk from.

It wouldn't be fair to standardize on the
system of one vendor, excluding all the
others. Nor would it be wise to give one
company such control over public dis-
course. Also, the publication language
should have source code available and
permit publication of parts of that code for
teaching examples or in order to discuss
modifications. Even if permission may be
available it presents practical problems,
such as the fact that you may not know
specifically what to ask for until having
already done the work, and then you do not
know how long it would take to get a
response. Using a public-domain publica-
tion language avoids these problems.

But vendors have lost sales due to the
availability of free Forth systems. If they
get hurt, much of the future development
of Forth won't get done. What seems to be
happening is that we have passed the time
when a Forth system by itself, with yet
another competent editor, assembler and
even target compiler, is the heart of a
product. What counts more is the support
of particular application-oriented tasks that
certain users want to do. Potential users
often complain about having to write from
scratch, in Forth, tools which could have
been available off the shelf if they used C.
The need is there.

It is difficult to define these markets,
however. When users are asked what they
would want in Forth, they request vastly
different and often incompatible applica-
tion routines, tools or improvements. It
seems that the future is in discovering
application-oriented niche markets for
which particular vendors can provide solid,
effective support.

References

1. Christensen, Ward. "Modem Protocol
Overview," January 1982, available on
various bulletin boards.

2. Ham, Michael and Michael McNeil,
Stephen Martin, William Lindow. "An
Industry Look at Fifteen Forth,"
Computer Language, Volume 2 , Num-
ber 8, August 1985.

3. James, John S. "Forth Component
Libraries," Forth Dimensions, Volume
7 , Number 4, NovembedDecember
1985.

4. Krantz, Donald. "Christensen Proto-
cols in C," Dr. Dobb's Journal,
Volume 10, Issue 6, June 1985.

5. Taylor, Robert. "SEND and RCV: A
Forth Implementation of the XMODEM
Protocol," Dr. Dobb's Journal, Vol-
ume 8, Issue 9, September 1983.

6 . Author unknown. "XMODEM and
CompuServe," October 1984, avail-
able on CompuServe.

FORTH Dimensions 16 Volume VIII. No. 2

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

MEMBERSHIP
IN THE FORTH INTEREST GROUP I

108 - MEMBERSHIP in the FORTH INTEREST GROUP &Volume 8
of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth lnterest Group is a worldwide non-profit member-supported
organization with over 4,000 members and 90 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $30.00 per year for USA, Canada & Mexico; all

other countries may select surface ($37.00) or air ($43.00) delivery.

The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated for
the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receivea membership card and number which entitles you to a
10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM
1. Each item you wish to order lists three different Price categories:

Column 1 - USA, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

2. Select the item and note your price in the space provided.

3. After completing your selections enter your order on the fourth page of this form.

4. Detach the form and return it with your payment to the Forth lnterest Group.

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)
101 - Volume 1 FORTH Dimensions (1 979180)$15116118 -
102 - Volume 2 FORTH Dimensions (1 980181)$15116118 -
103 - Volume 3 FORTH Dimensions (1 981 182)$15116/18 -
104 - Volume 4 FORTH Dimensions (1 982183)$15116118 -
105 - Volume 6 FORTH Dimensions (1 983184)$15116118 -
106 - Volume 5 FORTH Dimensions (1 984/85)$15116118 -
107 - Volume 7 FORTH Dimensions (1 985/86)$20/21 I24 -

FORML CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is
an informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
lnterest Group.
310 -FORML PROCEEDINGS 1980 $30133140

Technical papers on the Forth language and extensions.

31 1 -FORML PROCEEDINGS 1981 (2V) $45148155
Nucleus layer, interactive layer, extensible layer, metacom-
pilation, system development, file systems, other languag-
es, other operating systems, applications and abstracts
without papers.

312 -FORML PROCEEDINGS 1982 . . $30133140
Forth machine topics, implementation topics, vectored
execution, system development, file systems and lan-
guages, applications.

31 3 -FORML PROCEEDINGS 1983 . . . $30133140
Forth in hardware, Forth implementations, future strategy,
programming techniques, arithmetic & floating point, file
systems, coding conventions, functional programming
applications.

314 -FORML PROCEEDINGS 1984 . . . $30133140
Expert systems in Forth, using Forth, philosophy, im-
plementing Forth systems, new directions for Forth, inter-
facing Forth to operating systems, Forth systems tech-
niques, adding local variables to Forth.

31 5 -FORML PROCEEDINGS 1985 . . . $35138145
Also includes papers from the 1985 euroFORML Con-
ference. Applications: expert systems, data collection,
networks. Languages: LISP, LOGO, Prolog, BNF. Style:
coding conventions, phrasing. Software Tools: decom-
pi ler~, structure charts. Forth internals: Forth computers,

I
floating point, interrupts, mulitasking, error handling.

volume VIII. NO. 2 17 FORTH Dimensions

BOOKS ABOUT FORTH
200 -ALL ABOUT FORTH $25126135

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard Forth.

216 -DESIGNING & PROGRAMMING
PERSONAL EXPERT SYSTEMS . . $1 9120129
Carl Townsend & Dennis Feucht
Introductory explanation of Al-Expert System Concepts.
Create your own expert system in Forth. Written in
83-Standard.

217 -F83 SOURCE $25126135
Dr. C. H. Ting
A complete listing of F83 including source and shadow
screens. Includes introduction on getting started:

218 -FOOTSTEPS IN AN EMPTY VALLEY
(NC4000 Single Chip Forth Engine) $25126135
Dr. C. H. Ting
A thorough examination and explanation of the NC4000
Forth chip including the complete source to cmForth from
Charles Moore.

21 9 -FORTH: A TEXT AND REFERENCE $25126135
Mahlon G. Kelly & Nicholas Spies
A text book approach to Forth with comprehensive referen-
ces to MMS Forth and the 79 and 83 Forth Standards.

220 -FORTH ENCYCLOPEDIA $25126135
Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction.

225 -FORTH FUNDAMENTALS, V.l . . . $1 611 7/20
Kevin McCabe
A textbook approach to 79-Standard Forth

230 -FORTH FUNDAMENTALS, V.2 . . . $1 311 411 8
Kevin McCabe
A glossary.

232 -FORTH NOTEBOOK $25126135
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice is
included. Code is well documented.

233 -FORTH TOOLS $22123132
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 -INSIDE F-83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.

237 -LEARNING FORTH $1 711 8/27
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of Forth.
Includes section on how to teach children Forth.

240 -MASTERING FORTH $1 811 9122
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities,:.exten-
sions and numerous examples.

245 -STARTING FORTH (soft cover) . . . $22123132
Leo Brodie
A lively and highly readable intruduction with exercises.

246 -STARTING FORTH (hard cover) . . $24125129
Leo Brodie

255 -THINKING FORTH (soft cover) $1 611 7/20
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 -THREADED INTERPRETIVE LANGUAGES . . . $25126135
R. G. Loelinger
Step-by-step development of a non-standard Z-80 Forth.

270 -UNDERSTANDING FORTH $3,501516
Joseph Reymann
A brief introduction to Forth and overview of its structure.

FORTH Dimensions

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Ink. is a non-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.
321 -ROCHESTER 1981

(Standards Conference) $25128135
79-Standard, implementing Forth, data structures, vocabu-
laries, applications and working group reports.

322 -ROCHESTER 1982
. . . (Data bases & Process Control) $25128135

Machine independence, project management, data struc-
tures, mathematics and working group reports.

323 -ROCHESTER 1 983
(Forth Applications) $25128135
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like languages,
new techniques for implementing Forth and working group
reports.

324 -ROCHESTER 1984
(Forth Applications) $25128135
Forth in image analysis, operating systems, Forth chips,
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 -ROCHESTER 1985
(Software Management & Engineering) $20121 124 -
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport, development
of MAGICIL, and a Forth-based business applications
language; includes working group reports.

I THE JOURNAL OF FORTH APPLICATION EL RESEARCH
A refereed technical journal published by the Institute for Applied Forth
Research, Inc.
401 -JOURNAL OF FORTH RESEARCH V.l #1

Robotics. $1 511 611 8
402 -JOURNAL OF FORTH RESEARCH V.l #2

Data Structures. $1 511 611 8
403 -JOURNAL OF FORTH RESEARCH V.2 #1

Forth Machines. $1 511 611 8
404 -JOURNAL OF FORTH RESEARCH V.2 #2

Real-Time Systems. $1 511 611 8
405 -JOURNAL OF FORTH RESEARCH V.2 #3

Enhancing Forth. $1 511 611 8
406 -JOURNAL OF FORTH RESEARCH V.2 #4

Extended Addressing. $1 511 611 8
407 -JOURNAL OF FORTH RESEARCH V.3 #1

Forth-based laboratory systems and data structures.
$1 511 611 8 .

REPRINTS
. I 420 -BYTE REPRINTS $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte Magazine.

18 Volume VIII, No. 2

I

DR. DOBB'S JOURNAL (MISCELLANEOUS
This magazine produces an annual special Forth issue which includes
sourcecode listing for various Forth applications.
422 -DR. DOBB'S 9/82 $51617
423 -DR. DOBB'S 9183 $51617
424 -DR. DOBB'S 9/84 $51617
425 -DR. DOBB'S 10185 $51617
426 -DR. DOBB'S 7/86 $51617

HISTORICAL DOCUMENTS
501 -KITT PEAK PRIMER $25127135

One of the first institutional books on Forth. Of historical
interest.

502 -Fig-FORTH INSTALLATION MANUAL $1 511 611 8
Glossary model editor - We recommend you purchase
this manual when wrchasing the sourcecode listing.

503 -USING FORTH
FORTH. Inc.

REFERENCE
305 -FORTH 83-STANDARD $1 511 611 8

The autoritative description of 83-Standard Forth. For
reference, not instruction.

300 -FORTH 79-STANDARD $1 511 611 8
The authoritative description of 79-Standard Forth. Of
historical interest.

316 -BIBLIOGRAPHY OF FORTH REFERENCES
2nd edition, Sept. 1984 $1 511 611 8
An excellent source of references to articles about Forth
throughout microcomputer literature. Over 1300 references.

-~ -- -p~-p - ~-

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-Forth for Specific CPUs and
machines with compiler security and variable length names.
514 -6502lSEPT 80 $1 511 611 8
515 -6800lMAY 79 $1 511 611 8
516 -6809lJUNE 80 $1 511 611 8
51 7 -8080lSEPT 79 $1 511 611 8
518 -8086188lMARCH 81 $1 511 611 8
519 -9900lMARCH 81 $1 511 611 8
521 -APPLE IIIAUG 81 $1 511 611 8
523 -IBM-PCIMARCH 84 $1 511 611 8
526 -PDP-11 /JAN 80 $1 511 611 8
527 - VAXIOCT 82 $1 511 611 8
528 -Z80/SEPT 82 $1 511 611 8

601 -T-SHIRT SIZE
Small, Medium, Large and Extra-Large.
White design on a dark blue shirt. . $1.011 111 2

. 602 -POSTER (BYTE Cover) $51617
. 616 -HANDY REFERENCE CARD FREE

683 -FORTH-83 HANDY REFERENCE CARD . FREE -

FORTH MODEL LIBRARY
The model applications disks described below are new additions to the
Forth Interest Group's library. These disks are the first releases of new
professionally developed Forth applications disks. Prepared on 5 114"
disks, they are IBM MSDOS 2.0 and up compatible. The disks are
compatible with Forth-83 systems currently available from several Forth
vendors. Macintosh 3 112" disks are available for MasterFORTH systems
only.

Forth-83 Compatibility IBM MSDOS
LaxenlPerry F83 LMI PCIFORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
PolyFORTHQ II

Forth-83 Compatibility Macintosh
MasterFORTH

ORDERING INFORMATION
701 - A FORTH LIST HANDLER V.l $40143145

by Martin J. Tracy
Forth is extended with list primitives to provide a flexible
high-speed environment for artificial intelligence. ELlSA
and Winston & Horn's micro-LISP are included as,ex-
amples. Documentation is included on the disk.

702 - A FORTH SPREADSHEET V.2 $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions
Volume 7, Issue 1 and 2. These issues contain the
documentation for this disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 $40143145-
by Kim R. Harris
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program docu-
mentation is contained in the 1985 FORML Proceedings.

Please specify disk size when ordering

Volume VIII, No. 2 19 FORTH Dimensions

8-1 -86

FORTH Dlmenslons 20 Volume VIII. No. 2

t

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668

Name

Member Number

Company

Address

City

Sta te/Prov. ZIP

Country

Phone

ITEM

108

UNIT
PRICE

)

TITLE

MEMBERSHIP

J

TOTAL

SEE BELOW

AUTHOR

$2.00

Check enclosed (payable to: FORTH INTEREST GROUP)

VISA MASTERCARD

Card #

Expiration Date

Signature
($15 00 m ~ f l m U r n on charge orders)

SUBTOTAL

10% M E M B E R D I S C O U N T

, MEMBER #

SUBTOTAL

C A R E S I D E N T S S A L E S T A X

HANDLING FEE

M E M B E R S H I P F E E
N E W R E N E W A L $30137143

PAYMENT MUST ACCOMPANY ALL ORDERS
TOTAL

SALES TAX
Dellverles to Alameda
Conha Costa San Mat=
Lm A- Santa
i"dSanFrmswCarnbes

znyk 2
c ~ J ~ ~ ~ ~ ~ ~ coumes a& 6%

!

MAIL OROERS
Send to
Forth Interest Group
P 0 Box 8231
San Jose CA 95155

PHONE ORDERS
Call 4081277-0668 lo place
credit card orders or for
customer service Hours
Monday-Friday %am-5pm
PST

SHIPPING TIME
Books In stock are shlpped
wlthln flve days of receipt
of the order Please allow
4-6 weeks for out of-stock
books (dellvery ~n most
cases will be much sooner)

PRICES
All orders must be prepald Rlces are
subject to change without notlce Cred~t
card orders will be sent and bllled at
current prices $15 mlnlmum on charge
orders Checks must be ~n US$ drawn
on a US Bank A $10 charge will be
added for returned checks

POSTAGE & HANDLIIC;
Rlces lrclude shlpplng A
$2 a) handllng fee IS

requlred wlth all orders

On-Line Documentation
John J. Wavrik

Solana Beach, California

The best form of documentation for a
Forth application is the source code. Some
Forth systems provide a word LOCATE (or
VIEW) SO that the phrase LOCATE word will
show the screen on which word has been
defined. It is implemented by extending the
headers of dictionary entries to include the
block number on which the word was defined
(and, on some systems, a file identifier).

The LOCATE word itself can be defined in
a system-independent way. It is assumed
that each header has been equipped with a
"screen field" in addition to the usual
name, link, code and parameter fields. SFA
will denote the address of the screen field
for the entry at hand.

Please refer to Figure One. The constant
WALL marks the boundary between the
words which are compiled prior to LOCATE
(those which may not have the additional
field) and those compiled subsequently.
Several system-dependent words must be
loaded before this:

KB? (sfa -- t = defined
from keyboard)

The stored block number for a keyboard
entry will be either 0 or -1 on most systems.

CFA> SFA (cfa -- sfa)

SHOW-SCREEN (sfa --)
This word will typically just list the

screen. The user may choose to also make
the screen available for editing.
SAVE-ENVIRONMENT

RESTORE-ENVIRONMENT

The LOCATE word will use a block buffer
and change the contents of one or more
system variables. If desired, LOCATE can be
made to function transparently and restore
the contents of the buffers, etc.

LOCATE is a word best supplied with the
Forth system. Its ex post facto installation
requires modification of the system word(s)
responsible for making headers, and so a
knowledge of the (system-dependent) pro-
cess by which this takes place. Some ex-
amples will clarify the nature of the task. fig-
FORTH mandates a word CREATE which
produces headers. More recent Forth stan-
dards (Forth-79 and Forth-83) regard the
manner in which headers are produced (and
even the configuration of the header) to be
implementation dependent. Information
about the making of headers must be ob-
tained by examination of the source code for
the system, if it is available, or by decompila-

tion. The standard defining words :, CODE,
CONSTANT and VARIABLE should be decom-
piled to identify the word responsible for
making the header. In some systems, this
word is an orphan (i.e., a word without a
name). It will have to be decompiled using
its absolute code address.

fig-FORTH is a public-domain version of
Forth distributed by the Forth Interest
Group starting in 1979. Its wide availability
for a variety of processors made it a de
facto standard.

fig-FORTH uses the word CREATE to
produce new headers. (The behavior of this
word is different than that in the Forth-79
and Forth-83 Standards.) The definition of
CREATE begins:

: CREATE -FIND IF DROP .

The installation of LOCATE is shown in
Figure Two. When reading from the key-
board, BLK contains zero. We do not restore
the environment after LOCATE.

Forth-79 Systems:
MMS-FORTH V. 2.4

In this system from Miller Microcom-
puter Services HEAD, is the word responsible
for making headers (this word was an
orphan in MMS-FORTH v. 2.0). See Figure
Three-b. For this system, all name fields are
four bytes. The new field is eight bytes
before the code field. When the system
reads from the keyboard, BLK contains
zero. Here we completely restore the envir-
onment after LOCATE (Figure Three-c).

In this system, data about the two buffers
(numbered zero and one) is stored in an
array BUFFDATA. The first two bytes of n
BUFFDATA contain the number of the block
Currently in buffer n. The next byte indi-
cates the order of referencing (two indicates
the next buffer to be loaded). The remain-
ing byte is the update byte (one if the block
is marked, zero otherwise). SCR is a variable
containing the number of the last screen
listed or edited. All of this information is
saved. To return blocks to the original
buffers, we first identify the buffer
containing the screen just listed by LOCATE.
We force the next block to be loaded in this
buffer. We reload the block originally in
this buffer. We restore all the BUFFDATA
information.

This example indicates what could be
required to restore the total environment. It
is more common to restore the environment
only partially. If, in the midst of editing,

LOCATE is used to check a definition, it is
possible to ensure that the current editing
block is restored to memory (but not in the
original buffer and without restoring the
update flag), as in Figure Three-d.

Forth-79 Systems:
MVP-FORTH

The Forth available from Mountain View
Press uses CREATE to make headers (Figures
Four-a and Four-b). This system stores full
names, as in fig-FORTH, and it uses the
fig-FORTH nomenclature for accessing the
fields in a header. When the system reads
from the keyboard, ELK contains zero. We
will make no attempt to restore the environ-
ment after LOCATE. Listing the screen will
automatically make it the current screen for
editing (Figure Four-c).

Forth With a File System:
Kitt Peak VAX-Forth (1 1-NOV-82)

Here, <BUILDS is the word responsible
for making headers. The definition of this
word begins:

: <BUILDS ?ALIGN LATEST , . . .
?ALIGN forces the dictionary pointer to

the next longword boundary. Notice that
Kitt Peak places the link field first, before
the parameter field. This leads to the code
in Figure Five-b.

Kitt Peak VAX-Forth uses the file system
of the underlying operating system. Files
which are being used are assigned positions
in a file descriptor block table containing
the file name, number of blocks, and status
flags for each file. LUN is a variable holding
the logical unit number (position in the
table) of the currently active file. BLK con-
tains the screen number of the current block
within the current file. Both the logical unit
number and the block number are saved
(Figure Five-c).

BLK is -1 when the system reads from the
keyboard. We save and restore only the
current file. Kitt Peak's file loading word LF
can be used to load a file. Its normal action
is to make the file to be loaded the current
file, load the file starting at block zero,
close the file and restore the previous file.
LOCATE requires that any file that has been
used to define new words remain open. This
necessitates that LF be modified not to close
files and that both LF and WAD be modified
to set a file's flags so that the file cannot be
closed. The redefinitions can be found in
Figure Five-d. The only other change is that
THEN must be replaced by ENDlF in LOCATE.

Volume VIII, No. 2 21 FORTH Dimensions

FIG-Forth for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later,
uses standard DOS files.

Full-screen editor uses 16 x 64
format. Editor Help screen can be
called up using a slngle keystroke.

Source included for the editor and
other utilities.

Save capability allows storing Forth
with all currently defined words
onto dlsk as a .COM file.

Definitlons are provided to allow
beglnners to use Starting Forth
as an introductory text.

Source code is avallable as an
option

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth. Application code
can be Metacompiled with Forth
to produce a target application
PROM. $280

FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45

An all CMOS processor
board utilizing the 6303.
Size: 3.93 x 6.75 inches.

Uses 1 1-25 volts at 12ma,
plus current required for
options. $240 - $360

Up to 24kb memory: 2kb to 16kb
RAM, 8k PROM contains Forth.
Battery backup of RAM with off
board battery.

Serlal port and up to 40 pins of
parallel 110.

Processor buss available at
optlonal header to allow expanded
capability vla user provided
Interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-61 64

Forslgn orders add $6 shlpplng and handling.
Connecticut resideots add saka tax.

: WORD. CR 5 SPRCES HERE COUNT TYPE 3
: NOT-FOUND WORD. . " im not in tho dictionary " (

r TOO-ERRLY WORD. ." im dofinod boforo LOCRTE " 1
r KEYBD WORD. ." warn dofinod from tho koyboard ;

HERE CONSTRNT WRLL
: LOCRTE SRVE-ENVIRONMENT FIND

7DUP 0- I F NOT-FOUND ELSE
DUP WRLL U(I F TOO-ERRLY DROP ELSE

CFR)SFR DUP KB? I F KEYBD DROP ELSE
SHOW-SCREEN THEN THEN THEN

RESTORE-ENVIRONMENT ;
Figure One

: XCRERTE BLK O , -FIND 4
FIND XCRERTE 9 CRERTE !

: CFR) SFR 2+ NFA 2- r
I KB? (mfa -- truo if koybd) O 0- ;
: SHOW-SCREEN (mfa --) I? LIST (

I SRVE-ENVIRONMENT (

: RESTORE-ENVIRONMENT ;

Figure Two - Installation of LOCATE in fig-
FORTH

I VRRIRBLE CRERTE 0 , ;
I CONSTRNT HERD, (conmtant-cfa) CF, , LINKLRST ;
a CRERTE HERD, (variable-cfa) CF, LINKLRST ?

Figure Three-a - Decompilation

I HERD, BL WORD DUP CO m m

I XHERD, BLK O , 8 L ((patch into oximting word)

FIND XHERD, , HERD, !
Figure Three-b - Partial definition of
MMS'S HEAD,

I CFR)SFR 8 - 1
: KB? (mfa -- truo if koybd) O 0- 1

r SHOW-SCREEN (of. --) I? LIST ;
1 DRRRRY SVDRTR VRRIRBLE SVSCR

I SRW-ENVIRONMENT 2 0 DO I BUFFDRTR 20 I SVDRTR 2!
LOOP SCR O WBCA ! ;

: RESTORE-ENVIRONMENT SCR O SVSCR O BCR !
0 BUFFDRTR P m I F 0 1 ELSE 1 0 THEN
BUFFDRTR 2+ 1 5WRP C!
DUP BUFFDRTR 2+ 2 SMRP C!
SVDRTR @ DUP 0(NOT I F BLOCK THEN DROP
2 0 DO I SVDCITR 2O I BUFFDRTR 2 ! LOOP i

Figure Three-c

FORTH Dlmenslons 22 Volume VIII, No. 2

Volume VIII, NO. 2 23 FORTH Dimensions

I *

I SRVE-ENVIRONMENT SCR 6 SVSCR ! ;
I RESTORE-ENVIRONMENT SVSCR O DUP SCR ! BLOCK DROP 1

Figure Three-d

I VRRIRBLE CRERTE E RLLOT ;
I CONSTRNT CRERTE , ;CODE . . .
I CODE CRERTE SMUDOE HERE DUP 2- ! ENTERCODE :

Figure Four-a - Decompilation

I CRERTE BL WORD DUP DUP
I XCRERTE ELK 8 , BL 1 (patch into ex i s t ing word

FIND XCRERTE ' CRERTE !

Figure Four-b - Partial definition of
MVP's CREATE

I CFR)SFR 2+ NFR 2- 1
: KB? (sf& -- true i f keybd) Q 0 m 1
I BHW-SCREEN (s f a --) 6 LIST ;
I SRVE-ENVIRONMENT 1
r RESTORE-ENVIRONMENT ;

Figure Four-c

I VRRIRBLE CONSTRNT #CODE ...
r CONSTWT (BUILDS , (CODE . . .
I CODE ?EXEC (BUILDS ; IMMEDIRTE

Figure Five-a - Decompilation

r X(BU1LDS ?RLION LUN Q B, BLK 6 8, 0 B, 0 I(, ;
FIND X(BU1LDS ' (BUILDS !

Figure Five-b - Making headers in Kitt
Peak's file system

r CFRlSFQ IR + PFR)NFR 8 - 1
: KB? (sf . -- true i f koybd 1 1+ 80 255 - 4
I SHOW-SCREEN (.fa -- DUP 00 LUN ! FILE? 1+ BO LIST (

I SRVE-ENVIRONMENT LUN Q 1
I RESTORE-ENVIRONMENT LUN ! 1

Figure Five-c

: "LF LUN 8)R 1 FTU.BIT OR DOFOPEN ?FILE LUN !
CR 0 0 .LINE 0 LORD
LUN Q FFLROS DUP 8 DUP FTU.BIT RND
IF FTU.BIT COM BND ENDIF
3 COM RND 1 OR SWRP ! (R L U N ! 1

I LF (L F filmn&rne) QFN "LF ;
r LORD (# --) LUN 6 FFLRQS DUP 8 1 OR SWRP ! LORD 1

Figure Five-d

Eighth Annual

Forth National Convention
November 21-22,1986

The Doubletree Hotel at Santa Clara Trade & Convention Center
Great America Parkway and Tasman Drive, Santa Clara, California 95050

Conference Program
Forth Engines Research

Learn about the latest advances in Forth hardware and software
from the creators and designers of the modern Forth engines.

Demonstrations New Products Tutorials Chapter Activities

Forth Exhibits
Convention activities start Friday, November 21, at 12 noon.

Convention preregistration $15 Conference and Exhibit Hours
Registration at the door $20 Friday Nov. 21st 12 noon-6 p.m.
Banquet Saturday 7 p.m. $35 Saturday Nov. 22nd 9 a.m.-5 p.m.

Special Convention room rates available at Doubletree Hotel, Santa Clara.
Telephone direct to Doubletree reservations by calling 800 528-0444 or 408 986-0700.
Telex reservation number is 668-309DTI. Request special Forth Interest Group rates.

. 1 m 1 1 1 1 1 I I 1 1 1 1 1 1 I 1 1 I I I I I I m I I I I I m I I I I I I I I m m m ~ 1 ~ ~ - ~ ~ ~ 1 - I ~ ~ ~ m I ~ - ~ m - -

- Yes! I will attend the Forth Convention.
Number of pre-registered admissions X $15 $

I Number of banquet tickets X $35
- Yes! I want to join FIG and receive Forth Dimensions ($30 US, $43 foreign)

~ TOTAL CHECK TO FIG $

I Name
Address
Company

State Zip
P h o n e ()

Return to Forth Interest Group, P. 0. Box 8231, San Jose, CA 95155 408 277-0668

FORTH Dimensions 24 Volume VIII. No. 2

Forth Resources via Modem
Gary Smith

Little Rock, Arkansas

Daily more individuals are joining the
Forth community, and they bring a need for
information. Fortunately, most have
modems and supporting telecommunica-
tions software. For at the same time, more
Forth information than ever before is avail-
able on private and vendor-supported elec-
tronic bulletin boards, and also on some
electronic information services like Compu-
Serve1 and BIXZ.

The following information is intended to
bridge the gap that presently exists between
the user in need and the resource waiting to
serve. I am satisfied that I have not listed all
possible resources and in the dynamic world
being discussed here, there are certain to be
changes. If readers help to supply
additional information, or pose specific
questions about electronic sources of Forth-
related information, this feature can be
updated as required. Just write to Forth
Dimensions in a letter separate from any
other FIG business; and be sure to include

your electronic address, if you have one!
My very sincere thanks to Jerry Shifrin of

the East Coast Forth Board for his help in
compiling and verifying much of the
information published here. His board is
included in the list, and is truly one of the
best of the listed resources.

All that follows was accurate (or reason-
ably so) at the time this article was written.
The author, Forth Dimensions and the
Forth Interest Group assume no respon-
sibility for any omissions, deletions or
errors.

BULLETIN BOARDS

Name/Provider Phone No. Hours Baud/Protocol Comments

The FIG Tree 415/538-3580 24 hours 300 CommuniTree BBS
7 days/wk. 7 bits, even parity Messages only.

Lots of info. Type 2 CRs to begin.

Thousand Oaks 805/492-5472 24 hours parity
Technical BBS 7 days/wk.

Files supported.

East Coast Forth 703/442-8695 24 hours 300,1200,2400 Registration req.,
Board 7 days/wk. 8, 1, none but free. Very full service.

Much from others ported here.

The Forth Source 215/630-9149 2pm-8am EST 300
24 hrs. on weekend

Jon Day (sysop)
Forth conf., but no
up/down load of files.

LMI BBS 213/306-3530 6pm-9am PST 300,1200,2400 Wes Meier BBS
24 hrs. on weekend 8, 1, none Support to users by

Laboratory Microsystems. Others
NOT restricted from use.

Correct Software

The WELL

300,1200 Currently down.
Non-users of Correct products
send $15.00 for registration to:
Rt. 1, Box 140
Black Hawk. SD 57718

415/332-6106 24 hrs. 300,1200,2400 UNlX system conference
7 days/wk. **NOTE: Use lower case!

Gateway to USENET via GO TELE
then choose #13. Have VISA/MC
ready and type newuser (lower)
Mike Ham is Forth Guru here.

Computer Language 41 5/957-9370 24 hrs. 300,1200 FIDO BBS
7 days/wk. Extensive message base. Many files.

Volume VIII, No. 2 25 FORTH Dimensions

'VoliR PROGRAM
FROM CONCEPT

TO REALITY
4 TO 10 TIMES

FASTER

THE ONLY INTEGRATED SOFTWARE
DEVELOPMENT PACKAGE DESJOXED

FOR REAL-TIME APPUCATlONS

If you're a real-tlme software developer,
polyFORTH can be your best olly In
gettrng your program up and runnlng
on tfme In fact, on the average, you
w~ll develop a program 4 to 10 times
faster than wrth traddronol program-
mlng languages

polyFORTH shortens development
tlme by making the best use of y z
t~me There ore no long wads while you
lood edrtors compliers, assemblers, and
other tools, no long warts wh~le they
run- because everything you need IS
In a srngle, easy-to-use, 100% resfdent
system Uslng polyFORTH, you take o
raw tdea to fast, compiled code In
seconds-and then test it lnteractlvely

polyFORTH has everything you need
to develop real-time applcotlons fast
multt-fask~ng, multi-user OS, FORTH
compller, Interpreters, and assemblers,
edttor and utllltles, and over 400 prlmi-
tlvesonddebugglng ards With ~ts unlque
modular structure, poIyFORTH even
helps you test and debug custom hard-
ware ~nteroctwely, and rt IS available for
most 8.16, ond 32-b~t computers

FORTH,Inc also provrdes~tscustomers
wrth such professional support sennces
as custom oppltcatron programmmg,
polyFORTH programming courses, and
the FORTH, Inc 'Hotl~ne"

For more informotion and a free
brochure, contact FORTH, Inc today
FORTH. Inc, 111 N Sepulveda BIvd ,
Manhattan Beach, CA 90266 Phone
(213) 3728493.

FORTH, Inc m

COMBINE THE
RAW POWER OF FORTH

WITH THE CONVENIENCE
OF CONVENTIONAL LANGUAGES

Why HS/FORTH? Not for speed
alone, although it is twice as fast a s
other full memory Forths, with near
assembly language performance
when optimized. Not even because
it gives MANY more functions per
byte than any other Forth. Not be-
cause you can run all DOS com-
mands plus COM and EXE programs
from within HS/FORTH. Not be-
cause you can single step, trace, de-
compile & dissassemble. Not forthe
complete syntax checking 8086/
8087/80186 assembler & optimizer.
Nor for the fast 9 digit softwarefloat-
ing point or lightning 18 digit 8087
math pack. Not for the half mega-
byte LINEAR address space for
quick access arrays. Not for com-
plete music, sound effects &graph-
ics support. Nor the efficient string
functions. Not for unrivaled diskflex-
ibility - including traditional Forth
screens (sectored or in files) or free
format files, all with full screen edi-
tors. Not even because I/O is as
easy, but far more powerful, than
even Basic. Just redirect the charac-
ter input and/ or output stream any-
where - display, keyboard, printer
or corn port, file, or even a memory
buffer. You could even transfer con-
trol of your entire computer to a
terminal thousands of miles away
with a simple >COM <COM pair.
Even though a few of these reasons
might be sufficient, the real reason
is that we don't avoid the objections
to Forth - WE ELIMINATE THEM!
Public domain products may be
cheap; but your time isn't. Don't
shortchange yourself. Use the best.
Use it now!
HS/FORTH, complete system: $395.
with "FORTH: A Text & Reference"
by Kelly and Spies, Prentice-Hall
and "The HS/FORTH Supplement"
by Kelly and Callahan

Visa Mastercard - 0
HARVARD

SOFTWORKS
PO BOX 69

SPRINGBORO, OH 45066
(51 3) 748-0390

Information Systems

CompuSeme (Call 800-848-8990 for infor-
mation.) CompuServe features three con-
ferences with extensive Forth coverage.
Summaries are as follows:

"CLM Conference" Similar to The
WELL and Computer Language's own
BBS, and operated by Computer Language
magazine. DL-7 is the Forth library.

Go CLM at the ! prompt.
"Computer Solutions, Inc." Emphasis

on CSI products MacForth and MultiForth,
but also lots of goodies and discussion for
the general Forth crowd. DL-6 is the Forth
library.

Go PSG-4 or Go FORTH at the !
prompt.

"Dr. Dobb's Journal" This is the newest
entry and is not yet as active as the previous
two. With Ray Duncan and Michael Ham
as sysops, that will change! DL-6 is the
Forth library.

Go DDJFOR at the ! prompt.
The Special Interest Groups for the

Model 100 and Commodore also have some
excellent machine-specific Forth items.
Commodore has Blazin' Forth (a public-
domain Forth-83 implementation) and
M-100 has a public-domain Forth that
supports Model 100s using the Chipmunk
drive.

BIX (Call 800-227-2983 for information.)
BYTE Information Exchange is BYTE
magazine's conference system. One of the
hundred or so sections is the Forth con-
ference with Phil Wasson as sysop. This is a
good source for hot-breaking news. There
is a separate conference area for files.

JOIN FORTH at the : prompt.
There is also considerable Forth discus-

sion in appropriate conferences such as
4TH.GEN.LANGS but it must be sought
out.

References

1. CompuServe
5000 Arlington Centre Blvd.
Columbus, OH 43220
(or inquire at your local dealer)

2. BYTE Information Exchange
70 Main Street
Peterborough, NH 03458

FORTH Dimensions 26 Volume VIII, No. 2

Forth Source Formatter
John Konopka

Mitaka Shi, Japan

It is considered good form in any com-
puter language to keep one's source code
neatly formatted. There are various recom-
mendations about when to indent, when to
start a new line, etc. The problem with this
is that it takes too much effort. It's like
asking a teenager to keep his room clean:
nice in theory, but difficult to implement.
The problem is accentuated for Forth pro-
grammers editing existing source who are
constrained to add code to the fixed size of
one screen. While we don't yet have robots
which will clean our rooms for us, we do
have a robot which can make source code
legible: the computer.

The program presented here will take the
most compact, confusing source code as
input and will turn out a cleanly formatted
listing with new lines for every colon defini-
tion and proper indenting for structured
constructs. A fill algorithm is used to pre-
vent words from running off the right edge
of the page. Parameters are available to
adjust the width and length of the listing to
any printer or terminal. Line feeds are
counted so that form feeds can be generated
at appropriate intervals.

In operation, the program works similar-
ly to a word processor. Instead of adding
"dot commands" to the source to cause
various actions, special Forth words are
interpreted as commands to automatically
cause formatting of the text. The code for
the main loop is in screen #7. It parses one
word of text, then checks if this is a special
word. If it is, then some formatting occurs;
if not, the word is simply typed. To avoid
storing strings of text and doing string
comparisons, FIND is used to get one word
of source then convert this to an address.
This address is compared against the stored
addresses by the word ?? when checking for
special words. Rather than assume anything
about what FIND does to a string or where it
leaves it, the value of >IN is saved before
invoking FIND and then is restored in TYPE-IT
before parsing the word again with WORD.

screen #2 contains the parameters con-
trolling the dimensions of the listing. The
Constants LINE-SIZE and MAX-LINES control
the width and page length respectively. By
changing these, you can match the listing to
your printer or screen size. The constant
OFFSET determines how far the margin is
moved whenever an indent occurs. A value
of three seems good, but you might want to
use two or even one if you work with a very
narrow page. Variable COLUMN is the count-

er containing the current character distance
from the left edge of the page. Variable TAB
is the left margin measured in spaces from
the left edge of the page. Variable LINES
counts the number of lines typed since the
last form feed.

The arrays of stored addresses are held in
screen #3. An array is created for each
action desired. For example, IF and DO both
require an indent and a new line, so they are
placed in the array called INS. If you define
new branching words you can add them to
one of these arrays. The first integer in the
array says how many addresses are in the
array.

INDENT, OUTDENT and NEW-LINE (defined
in screen #4) move the left margin in the
fashion suggested by their names. Two
other special formatting words are defined
in screen #6. These are TYPE-TO- and TYPE-
TPEND-OF-LINE. The first emits words until
it encounters the character it is given on the
stack. It is used to list out a series of words
such as those between quotes or paren-
theses. The second emits text until >IN is an
integer multiple of 64. Its purpose is to list
comments set off by a backslash. This

second word is an exception in that it types
directly out of the text buffer and it does
not check string length before typing. Both
of these words list text without moving the
margin, even though the typed string con-
tains words such as DO, LOOP, IF, THEN, etc.

Two other words, CR? and TYPE-IT
(screens #4 and #5 respectively), are used to
send all text to the output device (with the
one exception noted above). CR? performs a
carriage return and line feed only when
needed, avoiding blank lines in the output.
It also counts the number of line feeds
emitted and emits a form feed when the
number of lines exceeds the value in con-
stant MAX-LINES. TYPE-IT restores > IN from
temporary storage in IX and then parses a
string with WORD. It compares the length of
each word to be typed with the remaining
space on the line, then invokes CR? if there
is insufficient room to type the word. It's
possible to type off the right edge of the
page if there is still insufficient room to type
the word even after invoking CR?. This can
happen with deeply nested IF ELSE THEN
clauses and long names.

Screen #2
1 \ F + L Variables and Constants
2 VARIABLE COLUMN \ Current column pointer.
3 VARIABLE TAB \ Position of left margin.
4 VARIABLE #LINES \Count of lines typed since last FF.
5 VARIABLE FND \Flag indicating currently parsed word was
6 \ found to be a special formatting word.
7 VARIABLE IX \ Temporary storage of value of >IN.
8
9 79 CONSTANT LINE-SIZE \ Column width of output device.

10 65 CONSTANT MAX-LINES \ Lines per page of output device.
1 1 3 CONSTANT OFFSET \ Size of indentation in columns.
12 34 CONSTANT A" \ ASCII value of double quote.
13 41 CONSTANT RPAREN \ ASCII value of right parenthesis.
14
15 FIND \ CONSTANT BSLASH
16 FIND (CONSTANT PAREN

Screen #3
1 \ F+L Arrays of pointers to formatting words.
2 CREATE QUOTES 2 , FIND " , FIND ." t

3
4 CREATE STARTS 2 , FIND : , FIND CODE ,
5
6 CREATE ENDS 3 , FIND ; , FIND NEXT, , FIND END-CODE ,
7
8 CREATE OUTS 5 , FIND UNTIL , FIND LOOP , FIND +LOOP ,
9 FIND THEN , FIND REPEAT ,

10
1 1 CREATE INS 3 , FIND IF , FIND DO , FIND BEGIN ,
12
13 CREATE IN+OUTS 4 , FIND ELSE , FIND WHILE ,
14 FIND DOES, , FIND ;CODE ,
15
16

Volume VIII, No. 2 27 FORTH Dimensions

FORTH Dimensions 28 Volume VIII, No. 2

All the parts needed to make the

SMALLEST
PROGRAMMABLE
FORTH SYSTEM:

+5V (9 mA, typical Q 2 MHz)
TTL Serial In

TTL Serial Out

$50 covers price of parts and manual
in singles, $20 covers cost of chip alone
in 10,000 quantity. $20 gold piece (not
included) shown covering chip to illus-
trate actual size.

The F68HCll features: 2 Serial Chan-
nels, 5 Ports, 8 Channel 8-bit AID, major
timer counter subsystem, Pulse
Accumulator, Watchdog Timer, Com-
puter Operating Properly (COP) Moni-
tor, 512 bytes EEPROM, 256 bytes
RAM, 8K byte ROM with FORTH-83
Standard implementation.

Availability: F68HC11 Production units
with Max-FORTHm in internal ROM avail-
able 4Q186. Volume quantity available
1Q187. X68HC11 emulator with Max-
FORTHm in external ROM available
now. NMIX-0022 68HC11 Development
System boards available now: $290.00.

New Micros, hc .
808 Dalworth

Grand Prairie, TX 75050
(21 4) 642-5494

Text interpretation is halted when the code, particularly when there are nested IF
value of >IN exceeds 1023, indicating that ELSE THEN constructs. Because every colon
all the text from the screen has been used. definition is placed on a new Line, this
You can stop the listing on other conditions program is good for finding those small
by modifying the word DONE7 in screen #5. definitions that sometimes get tucked in the

This program is not infallible. ~t is de- corner of a screen. This code is also very
signed to format "normal" source code. If useful for tracking down mistakes, as a
given source with special words in unusual missing or redundant word such as THEN or
contexts, it will produce unusual results. LOOP causes things to skew unexpectedly. In
Unpaired parentheses or quotes are the valid code, every addition to TAB should be
most troublesome. Using it on screen #3, matched by a subtraction from TAB so that ;
for example, will cause unanticipated re- will fall in the same column as :. If an excess
sults. However, used judiciously, it should of OUTDENT calls tries to move the margin
be a very helpful tool for you. I find it off the left edge of the page, then TAB is
useful to help me understand the flow of clamped at zero and BELL is invoked.

Screen # 4
1 \ F+L CR? INDENT OUTDENT NEW-LINE
2 \ --- Perform a carriage return (maybe) and form feed (maybe).
3 \ Don't do CR on new lines. This avoids blank lines.
4 : CR? COLUMN @ TAB @ > \ Legitimate CR ?
5 IF CR #LINES @ MAX-LINES = \ Do CR, need a FF ?
6 IF SFF 0 #LINES ! \ Do FF
7 ELSE 1 #LINES + ! \ Count lines
8 THEN 0 COLUMN ! THEN ; \Reset column pointer.
9 \ n --- Indent by constant OFFSET times n.

1 0 : INDENT CR? OFFSET * TAB + ! ;
1 1
1 2 \ n --- Move margin left OFFSET times n. Don't move off page.
1 3 : OUTDENT CR? TAB @ SWAP OFFSET * - DUP O <
1 4 IF BELL THEN 0 MAX TAB ! ;
1 5 \ --- Reset left margin and invoke carriage return test.
1 6 : NEW-LINE 0 TAB ! CR? ;

Screen # 5
1 \ F+L DONE? PARSE TYPE-IT SFF
2 \ --- fl Check for end of screen.
3 : DONE? >IN @ 1 0 2 3 > = ;
4
5 \ - - - Place next word at HERE ready for typing.
6 : PARSE IX @ >IN ! BL WORD DROP ;
7
8 \ --- Type one word, first do CR if no room on this line.
9 : (TYPE, COLUMN @ TAB @ < IF TAB @ COLUMN @ - SPACES TAB @

1 0 COLUMN ! THEN HERE COUNT 1 + DUP COLUMN @ + LINE-SIZE >
1 1 IF CR? TAB @ SPACES TAB @ COLUMN ! THEN DUP
1 2 COLUMN +! TYPE - 1 FND ! ;
1 3 \ ---
1 4 : TYPE-IT PARSE (TYPE, ;
1 5 \ --- Emit a form feed.
1 6 : SFF 1 2 EMIT ;

screen #,
1 \ F+L ? ? F+L-INIT TYPE-TO- TYPE-TO-END-OF-LINE
2 \ x y --- x fl Flag true if x found in array at address y.
3 : ? ? 0 SWAP DUP SWAP @ 0 DO 2 + DUP @ 4 PICK =
4 IF SWAP 1 + SWAP LEAVE THEN LOOP DROP ;
s
6 \ n --- m p List block n. Save BLK and >IN, restore later.
7 : F+L-INIT BLK @ >IN @ ROT BLK ! 0 >IN ! 1 #LINES !
8 0 TAB ! 0 COLUMN ! ." Screen # " BLK @ . CR ;
9

1 0 \ n --- Type text till next occurence of n.
1 1 : TYPE-TO- CR? TYPE-IT WORD C@ I+ HERE C! BL HERE DUP C@
12 1 + + C! <TYPE> CR? ;
1 3 \ - -- Type comment line, round up >IN.
1 4 : TYPE-TO-END-OF-LINE CR? TYPE-IT BLK @ BLOCK >IN @ + >IN @ 63

COM AND 6 4 + DUP >R ;IN @ - -TRAILING TYPE CR? R> >IN ! ;

Screen #7
1 \ F+L END
2 \ n --- Formatted listing of screen #n.
3 : F+L F+L-INIT
4 BEGIN 0 FND ! >IN @ IX ! FIND
5 QUOTES ?? IF A" TYPE-TO- THEN
6 DUP PAREN = IF RPAREN TYPE-TO- THEN
7 DUP BSLASH = IF TYPE-TO-END-OF-LINE THEN
8 STARTS ? ? IF NEW-LINE TYPE-IT >IN @ IX !
9 TYPE-IT 2 INDENT THEN
10 INS ? ? IF 1 INDENT TYPE-IT 1 INDENT THEN
1 1 OUTS ? ? IF 1 OUTDENT TYPE-IT 1 OUTDENT THEN
12 ENDS ? ? IF 2 OUTDENT TYPE-IT CR? THEN
13 IN+OUTS ?? IF 1 OUTDENT TYPE-IT 1 INDENT THEN
14 DROP DONE? IF NEW-LINE TYPE-IT CR SFF 1 ELSE 0 THEN
15 FND @ NOT IF TYPE-IT THEN
16 UNTIL >IN ! BLK ! ;

Source code before formatting.

I FORTH-83 STANDARD I

I

I
6809 Systems available for

FLEX disk sustem s f 150
OS9 /6809 $1 50 I

1
2 : EXAMPLE XI X2 = IF Y2 Y3 AND ELSE X3 IF \ DO 210 IF X3 TRUE
3 210 ELSE ERROR THEN THEN ; : TEST 10 XI ! (Std Val) EXAMPLE ;
4 : FINAL (Run Experiment) INIT-ADC TURN-ON-TESTER EXAMPLE ;
5
6
7
8
9
10
1 1
12
13
14
15
16

Screen #8
: EXAMPLE

X1 X2 =
IF

Y2 Y3 AND
ELSE

X 3
IF

\ DO 210 IF X3 TRUE
21 0

ELSE
ERROR

THEN
THEN

,
: TEST

10 XI !
(Std Val)
EXAMPLE

: FINAL
(Run Experiment)
INIT-ADC TURN-ON-TESTER EXAMPLE

I

Source code after formatting.

680x0 Systems available for
MACINTOSH $1 25
CP/M-68K $150 I
I tFORT H/20 for 68020

Singk Board Computer I
Disk based development system

under OS9/68K . . . $290
EpROM set for complete stand-

alone SBC $390
Forth Model Libraru - List

handler, spreadsheet , Automatic
structure charts . . . each . $40

Target compikrs : 6809,6801,
6303,680~0,8088,280,6502 I

1927 Curtis Ave
Redondo Beach

CA 90278
(2 13) 376-9941

68020 SBC, 5 1 14" floppy size

boud with 2MB RAM, 4 x 64K

EpROM sockets. 4 RS232 ports,

Centronics pa ra l l ~ l port, timer,

batter9 backed date/time ,
interface to 2 5 1 /4" floppks

and r SASI interface to 2

winchester disks$2750

68881 flt pt option. $500

OS9 multitask&user 0s . . $350

Volume VIII, No. 2 29 FORTH Dimensions

Dual=CFA Definitions
Mike Elola

Sun Jose, California

Decomposing functions is a critical part
of Forth programming. Dual-CFA defini-
tions provide the benefits of decomposed
functions in situations where decomposi-
tion would not be possible normally. Be-
sides requiring two CFAs, this kind of
functional decomposition is implemented in
reverse of the normal dictionary order.
(Normally, Forth requires a bottom-up
ordering of definitions - child definitions
are compiled ahead of the parent defini-
tions that reference them.)

By first exploring more conventional
Forth programming techniques, various
issues will emerge that showcase the advant-
ages of dual-CFA decomposition.

Illustrative Example

Many dual-CFA definitions could be
replaced with similar definitions that use
vectored execution. Unfortunately, the use
of execution vectors can negate certain
advantages of normal Forth decomposition.

Suppose that you have revectored n p E to
route its output to the printer. A pause is
desired to allow users to insert another
sheet of paper, so you define the following
word:

: FEEPPRINTER (--)

CR ." Insert new sheet. Press any key to
continue."

KEY DROP ;

When run, the message is typed at the
printer rather than displayed at the user ter-
minal. n p E is called by (.'9 which is compiled
by .9* within the definition of FEED-PRINTER.

The source of this problem may be the
decomposition itself. The revectored ver-
sion of n p E shows distinct I/O redirection
behavior. In normal development, the en-
largement of n p a ' s function would be
implemented in a new and separate defini-
tion incorporating n p E . Then, higher-level
words such as FEEDPRINTER could engage
the correct version of NPE upon compila-
tion. There would be no possible chance for
erroneous, surprise behavior.

Including the function of output redirec-
tion within n p E integrates more functional-
ity into the word than was originally intend-
ed. This prevents a more complete factoring
of these related but distinct functions. As
such, TYPE is a poorly decomposed
function. Because of the use of a vector,

less consideration than usual is given to the
decomposition involved. (This is something
to stay on guard for when execution vectors
are used in an application.)

Compensatory code can be formatted to
solve the problems associated with this
example. For instance, FEEDPRINTER can
buffer the contents of the vector variable,
reset it to a value that causes output to the
screen, write the message, then reinitialize
the original vector value.

However, such remedies add complexity
to the task of programming and increase
the chance of programming error. When
the behavior of a word must be variable,
extra code is required each time it is used to
ensure that the correct behavior will be
selected when it is run. Ultimately, a heavy
price is paid when compiling words with
variable (loosely-coupled) actions.

This example is not presented to suggest
that vectored execution is never advantage-
ous. The run-time flexibility of vectored
execution is justification enough for its use.
But when the desired behavior can be selec-
ted at compile time, a better programming
solution is possible.

t

Preferred Forth Style

Forth is at its best when variable-behavior
definitions are avoided. Functions have to
be well decomposed when fixed-behavior
words are used exclusively. Together, such
words impart hardiness to an application by
eliminating dependence on the current
environment.

As an extensible programming language,
Forth can exhibit a wide range of functional-
ity: with each new word added, its functional-
ity is extended. In this way, Forth can provide

a wide range of functions to better deal with a
wide range of programming problems. If the
extensions are fied-behavior words, Forth
offers superior ease of programming as well.

A Forth programming philosophy aimed at
memory compactness, brevity of expression
and ease of use is realiied when words in
higher memory consistently integrate more
functionality than those located in lower
memory. Lower-level words should exhibit
decreasing functional scope. All words should
perform single, fixed behaviors.

To achieve this, each new higher-level defi-
nition should consolidate more functionality.
This way, each word in a common execution
path represents an increment of progress
toward the overall application function. Pro-
gress toward the ultimate goal that is not
incremental may create problems and usually
indicates incomplete decomposition.

Programs developed in this way exhibit
the following characteristics:

.......... CR'S EMIT CR

1. Compactness of compiled code

.........

2. Fewer conditional phrases

1
I I

, I I

/ Child I---/ Parent 1 I
I

I
I

I
I / Child Parent 1 I

Dictionary sequence for standard colon definitions.

3. Single behaviors per word

The following three sections explore the
effectiveness of other, more conventional tech-
niques that in some ways comply or do not
comply with this programming philosophy.

......... C R

Deferred Definitions

Normally, the behavior of a deferred word
is not intended to be variable. Unanticipated
behavior is only possible when deferred
words are incorrectly initialized. Once in-
itialized, deferred words should provide the
same benefits as fixed-behavior words.

I I
I

ITERATOR:

FORTH Dimensions 30 VolumeVIII, No. 2

I I I
I

............. CR'S

I Child I I
I I

+I Parent I
I I I
I Parent I+- I Child I
I I I I
I I I I I I

Dictionary sequence that includes dual-CFA definitions.

Figure One

To ascertain that one word represents
uniformly increasing functionality relative
to others, it is necessary to examine its
relation to other words along the same
execution path. (It is not relevant simply to
compare a word's physical location with
that of its parents.) Consequently, deferred
words and dual-CFA words can both be
used effectively to create a sequence of
words where each subsequent one consoli-
dates slightly more functionality.

Vectored Definitions

Frequently, vectored definitions are em-
ployed to create words with variable be-
haviors. As such, their use should be
avoided if at all possible. The first example
given (FEEDPRINTER) helped demonstrate
the problems that arise when vectored defi-
nitions disguise poor decomposition. Still
other problems are directly associated with
the use of vectored execution (as well as
with other variable-behavior definitions).

While vectored definitions can execute
rapidly, they also create additional work.
An effort must be made to maintain the
correct "current" value of a vector, par-
ticularly when it is dynamically changing.
This usually takes the form of "housekeep-
ing" initializations and finalizations with
each use of the vectored word. The extra
code can obscure the underlying algorithm.

Another problem with vectored defini-
tions is increased vulnerability to error -
particularly when one revectoring word
calls another. Unless a stack is used to help
maintain the correct value of the execution
vector, the higher-level word has no guar-
antee that its initializations of vectors re-
main in effect after other words are called.

Still, memory compactness is sometimes
served best through vectored execution.
Redirection of input or output is a good
example of this. Revectoring EMIT is more
memory efficient than generating custom
versions of EMIT, CR, SPACE and TYPE for
every possible output device.

While vectoring enables run-time flexi-
bility and seems to be the shortest path to a
coded solution, the support required to deal
with the added complexity must be con-
sidered. A variable-behavior EMIT may
create the need for fixed-behavior versions
of output words just to make programming
easier. For instance, if there is a need for
FEEDPRINTER, then it alone is justification
for SCREEN-TYPE, a fixed-behavior word.
Ultimately, a mix of fixed- and variable-
behavior words may prove most effective in
situations like this.

Other Variable-Behavior Definitions

The behavior-binding function of the
Forth compiler is rendered inadequate when-
ever variable word behaviors are allowed.
This is true however the variable behaviors
are ultimately selected. Vectored definitions
are one form of variable-behavior words.
Other kinds of words are also used to im-
plement variable behaviors.

A way to select one of several actions is
through the use of a conditional phrase.
Consider the following definition for TYPE:

: TYPE (add count --)
OUT-DEV IF (printer code. . .)
ELSE (screen code. . .) THEN ;

The behavior of this word is under the
control of the variable OUT-DEV. Now,
before and after each use of TYPE the
programmer must decide how OUT-DEv
should be initialized and finalized. Note
that the same burdens of environmental
maintenance befall the use of this definition
as would a vectored definition. Only now,
OUT-DEV is the environmental variable re-
quiring extra care, instead of a vector-
containing variable.

The following is an attempt to improve
on the previous version:

: TYPE (add count dev --)

IF (printer code. . .)
ELSE (screen code. . .) THEN ;

Now the problems with maintaining the
current environment disappear because the
behavior-selection mechanism is one of
TYPE'S input parameters. The drawbacks
that remain are the extra execution over-
head and memory overhead for the condi-
tional phrase, as well as the extra code
necessary to generate the additional stack
item consumed with every call to TYPE. All
of these drawbacks could be avoided if a
fixed-behavior, screen-oriented TYPE were
available (assuming that it could be selected
at compile time).

(When run-time flexibility is needed,
there is often no choice but to use a
variable-behavior word. Such is the case
when user-selectable actions are desired.
The Forth interpreter manages to
accomplish this admirably, since it is very
compac t a n d employs very few
conditionals.)

(PORTABLE 1
POWER
WITH

-

If you write for yourself,
MasterFORTH w~ll protect
your ~nvestment. If you write
forothers, itwill expand your

marketplace.
Forth 1s ~nteractive -

you have immed~ate feed-
backas you program, every
step of the way. Forth IS

fast, too, and you can CP/M use its bu~lt-~n as-
T~ sembler to make ~t

1

even faster. Master-
FORTH's relocatable utilities and
headerless code let you pack a lot
more program into your memory. The
resident debugger lets you decom-

Whether you program 1 on the Macintosh, the
IBM PC, an Apple II ser-

lM les, a CP/M system, or the
Commodore 64, your ,,
program will run un- =*T
changed on all the rest. ==s'= TM

pile, breakpoint and trace your way
through most programming prob-
lems. A string package, file interface
and full screen editor are all standard
features. And the optional target com-
piler lets you optimize your applica-
tion for virtually any programming
environment.

The package exactly matches Mas-
tering Forth (Brady, 1984) and meets
all provisions of the Forth-83 Standard.

MasterFORTH standard package. $1 25
(Commodore 64 wlth graph~cs) $100

Extensions
Float~ng Polnt.. $60
Graphics (selected systems) $60
Module relocator(with utility sources). . $60
TAGS (Target Applic. Generation System)-
MasterFORTH, target comp~ler and
relocator.. $495

Publications 8 Appl~cation Models
Printed source listings (each) $35
Forth83 International Standard.. $1 5
Model Library, Volumes 1-3 (each). . . . $40

8726 S. Sepulveda BI., #A1 71
Los Angeles, CA 90045

I

Volume VIII , NO. 2 31 FORTH Dimensions

available 11
number of
ular comm
systems '
including
the IBM PC
XT and AT
(or conlpa-
Dbles), the
TRS-80
Model 1 , I I
and 4/4P.
or any

.m, you are
to make as
)any copies
3f the com-
~iled FORTH

system as
you please

and 1
distrrbuk

FORTH (
from

computer system - SOTA IS the
running CP/M , ,- -@ FORTH of
(version 2 x) = = cholce for both
Or CP/M Plus ===Tz the novice and
(version 3 x) experienced
Whats more. TRS-80 programmer
SOTA doesn t Make it your
requrre you , en,, in, @p/m ct:E nyOo'Gi
any awkward copy today
When you order from SOTA, both the fig
model and 79 standard come complete
with the following extra features at no

additional charge:
full featured string handling assembler .

screen editor floating point double word
entension s e t relocating loader beginner's
tutorial comprehensive programmer's guide

enhaustive reference manual unparalleled
technical support source listlngs

unbeatable price

0 Please blll my O VISA 0 Mastercurd
for $89 95 I Please send me 79 Standard FORTH o h e F O R T 3
for the

IBM PC O X T O AT (and compatrbles)
TRS-00 Model 1 Model 1 1 1 O Model 4 Model 4P
CP/M Verslon 2 x 0 CP/M Plus (Versron 3 x)
For CP/M versions please note 5 114 formats only and I please specify computer type
I I
I I

nRmE:
STREET:
CITY/TOWn:
STRTE: ZIP:
CRRD TYPE: EXPIRY:
CRRD no :

Dual-CFA Definitions

Deferred definitions, vectored definitions
and other variable-behavior definitions
have been considered so far. However,
dual-CFA definitions have yet to be
separately presented. For the purpose of
discussion, suppose that a definition of
ITERATOR: already exists, and that it is a
defining word that can be used to produce
dual-CFA definitions. The first CFA com-
piled points at an iteration function that
can be the parent to many similar words,
such as CR'S and SPACES:

ITERATOR: CR'S CR ;

ITERATOR: SPACES SPACE ;

An equivalent colon definition for CR'S is:

: CR'S 0 DOCR LOOP ;

These definitions will help illustrate the
merits of dual-CFA definitions in terms of the
programming philosophy already presented.

The dual-CFA definitions are obviously
much shorter. This is possible because the
common code for CRpS and SPACES has been
factored into the parent defining word
ITERATOR:.

The compactness of the compiled code
for CR9S and SPACES is also an indication
that these definitions are rooted in a consis-
tent philosophy of decomposition.

Since all behaviors have been fixed at
compile time, no intermediary variables are
required. This makes the use of CR'S and
SPACES as straightforward as can be; there
are none of the added complexities de-
scribed for vectored and variable-behavior
definitions.

To illustrate that the dual-CFA imple-
mentation represents more incremental
decomposition, the child-to-parent execu-
tion sequence of the dual-CFA definition is:

CR -- > CR'S -- > ITERATOR:

The child-to-parent execution sequence
of the corresponding colon definition is:

CR -- > CR'S

The dual-CFA definition exhibits more
incremental decomposition (three call lev-
els, opposed to two).

These execution sequences may not be
understood without further explanation.
Although ITERATOR: is the parent of craps, its
run-time code is not callable except through
the child definition. The invocation of the
child word CR'S remains the starting point

for the execution sequence. Its first CFA
calls ITERATOR: which in turn calls the
second CFA of CR'S, which executes the
code specifically compiled for CRS. This
should become clearer when shown in
dictionary order as in Figure One.

Note also that the resulting dictionary
order is consistent: words in higher memory
integrate more functionality than those in
lower memory. For example, CR'S belongs
at a higher position than ITERATOR: because
it integrates more functionality. ITERATOR: is
also positioned correctly - ahead of both
CR*S and SPACES - so that it can be a
reuseable behavior. This ordering of defini-
tions corresponds to a decomposition of
functions that can best leverage one's pro-
gramming effort.

One disadvantage associated with the
dual-CFA implementation is the challenge
posed when trying to formulate the parent
defining word. The second CFA of the child
will always be the top item on the stack
when the parent code executes. For this and
other reasons, the parent definitions are
more difficult to formulate than normal
definitions.

Implementation Details

Providing an easy means for compiling
dual-CFA definitions is another concern.
The Forth resource best suited to the task is
the CREATE DOES> combination.

Listing One shows the necessary support
words needed for both Forth-79 and
Forth-83. These words can be used to
create a dual-CFA defining word such as
the one suggested in the previous examples:

ITERATOR:

CREATE DOCOL , COMPILE-DEF

DOES>

SWAP o (cfaz #times 0 --)
DO DUP EXECUTE LOOP DROP ;

Other support words must be added to
allow recursion within the parent portion of
dual-CFA definitions. Still other support
words, or altogether different implementa-
tions, are needed to support multi-level,
dual-CFA decomposition.

Other dual-CFA defining words I have
found useful include:

TREE-TRAVERSER: (with TREE-BALANCE,
TREEgCAN and TREEPRINT), W C C O U N R ,
CALLME, and RELOCKrABLL.

FORTH Dimensions 32 Volume VIII. No. 2

(Letters continued from page 8) I I
: COMPILE-DEF (Forth-83)

I M P SMUDGE [COMPILE] 1 ;

: COMPILE-DEF (Forth-79)

SP@ CSP I

SMUDGE [COMPILE] 1 ;

: COMPILE-DEF @ CONSTANT DOCOL
(Forth-83)

: COMPILE-DEF CFA @ CONSTANT DOCOL
(Forth-79)

Listing One - Dual-CFA Support Words

Conclusions

The Forth language suggests a philosophy
of decomposition that rewards well those
who find ways to conform with it. Com-
pliance involves compiling fixed-behavior
words. Each new word is defined to con-
solidate slightly more functionality than the
previous one in the same execution path.

Dual-CFA definitions can uphold this
philosophy when other kinds of definitions
do not. Particularly in those situations
where a deviation in dictionary sequence is
required, this technique reaps all the bene-
fits normally reserved for Forth words
implemented in the standard child-before-
parent sequence.

The Forth language generates enthusiasm
among programmers by offering the possi-
bility of very streamlined code. Considering
the prospects for dual-CFA decomposition,
this enthusiasm can be expected to increase.

Mr. Apra's suggestion for experiments with
conditional structures as a source of pro-
gramming exercises for students.

Forth offers a unique choice: one can
choose programming languages that incor-
porate a large number of "features" (which
can't be changed and which may be hard to
use or to remember) or one can choose a
programming language which is (concep-
tually) simple and allows the user to incor-
porate a wide variety of features on his
own. Understanding is a powerful
"handle" which I would not want to trade
for "features." I echo Mr. Apra's "Keep it
simple," but add the words ". . . in
concept. "

Sincerely yours,

John J. Wavrik
U.C. San Diego, California

I Index to Advertisers

Bryte - 10
Computer Cowboys - 12
Dash, Find & Associates - 13
Forth, Inc. - 26
Forth Interest Group - 7, 17-20, 24
Harvard Softworks - 26
Laboratory Microsystems - 14
MCA - 22
MicroMotion - 31
Miller Microcomputer Services - 23
Mountain View Press - 6
New Micros - 28
Next Generation Systems - 33
Palo Alto Shipping Company - 4
Software Composers - 2
SOTA - 32
Talbot Microsystems - 29
Tools Group - 8
UBZ Software - 11

NGS FORTH I
A FAST ImRTIi, I
OPTIMIZED FOR THE IBM
PERSONAL COMFUTER AND
MS-DOS COMPATIBLES.

INCLUDE:

a79 STANI4ARD I
.FULL ACCESS TO MS-DOS
F I m AND FUNCTIONS I
aENVIRoNMEmT SAVE

& LOAD

.MULTI-SEGMENTED FOR
LARGE APPLICATIONS I
*EXTENDED ADDRESSING I
.MEMORY ALLOCATION
CONFIGURABLE 0 N - m I
.AUTO WAD SCREEN BOOT

.LINE & SCREEN EDITORS I
aDECOMPILER AND
DEBUGGING AIDS

a8088 ASSEMBLER I
.GRAPHICS & SOUND

aNGS ENHANCEMENTS

.DETAILED MANUAL I
aINEXPENSIVE UPGRADES

aNGS USER NEWS-

A COMPLETE FOKTH
DEVELO- SYSTEM. I

PRICES START AT $70 I
NEW*Hp.150 & HP-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEMS
P.O.BOX 2987
SAN!L'A CWUZA, CA. 95055
(408) 241-5909

1
VolumeVIII, NO. 2 33 FORTH Dimensions

U.S.

ALABAMA

Huntsville FIG Chapter
Call Tom Konantz
205/88 1-6483

ALASKA

Kodiak Area Chapter
Call Horace Simmons
907/486-5049

ARIZONA

Phoenix Chapter
Call Dennis L. Wilson
602/956-7678
'hcson Chapter
n i c e Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

ARKANSAS

Central Arkansas Chapter
?krice Monthly, 2nd Sat., 2p
4th Wed., 7 p.m.
Call Gary Smith
501/227-7817

CALIFORNIA

Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428
Monterey/Salinas Chapter
Call Bud Devins
408/633-3253
Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst
Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
714/842-3032

San Mego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784
Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Room A
Call Tom Ghonnley
91 6/44-7775

Bay Area Chapter
Silicon Valley Chapter
Monthly, 4th Sat.
FORML 10 a.m., Fig 1 p.m.
H-P Auditorium
Wolfe Rd. & Pruneridge,
Cupertino
Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668
Stockton Chapter
Call Doug Dillon
209/93 1-2448

COLORADO

Denver Chapter
Monthly, 1st Mon., 7 p.m.
Cliff King
303/693-3413

CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/344-99%

FLORIDA
Orlando Chapter
Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790
Southeast Florida Chapter

.m. & Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305/252-0108
'Igmpa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

GEORGIA

Fort Wayne Chapter
Monthly, 2nd Tues., 7 p.m.
IPFW Campus
Rm. 138, Neff Hall
Call Blair MacDermid
2 19/749-2042

IOWA

Iowa City Chapter
Monthly, 4th 'hes.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
31 9/337-7853
Central Iowa FIG Chapter
Call Rodrick A. Eldridge
5 15/294-5659
Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
51 5/472-7077

KANSAS

Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
3 16/267-8852

LOUISIANA

New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS

Boston Chapter
Monthly, 1st Wed.

Atlanta Chapter Mitre carp. Cafeteria
3rd Tuesday each month, 6:30 p.m. Bedford, MA
Computone Cottilion Road Call Bob Demrow
Call Ron Skelton 617/688-5661 after 7 p.m.
404/393-8764 MICHIGAN

ILLINOIS
Cache Forth Chapter Detroit Chapter

Call Clyde W. Phillips, Jr. Monthly, 4th Wed.

Oak Park Call Tom Chrapkiewicz

312/386-3147 31 3/562-8506
Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150
Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242
Rockwell Chicago Chapter
Call Gerard Kusiolek
3 12/885-8092

INDIANA

Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

MINNESOTA

MNFIG Cbapter
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
612/588-9532

MISSOURI

Kansas City Chapter
Monthly, 4th lhes., 7 p.m.
Midwest Research Institute
MAG Conference Center
Call Linus Orth
913/236-9189

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.
Ellisville, MO 6301 1

NEVADA
Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Arrntec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan
Call 505/298-3292

NEW YORK
FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/5 17-9429
Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168
Rockland County Chapter
Call Elizabeth Gormley
Pearl River
91 4/735-8%7
Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J . Fay
3 15/46-4600

OHIO
Akron Chapter
Call ~ h o m a s Franks
216/336-3167
Athens Chapter
Call Isreal Urieli
614/594-3731
Cleveland Chapter
Call Gary Bergstrom
21 61247-2492
Cincinatti Chapter
Call Douglas Bennett
513/831-0142
Dayton Chapter
mice monthly, 2nd ma., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612

FORTH Dimensions 34 Volume VIII, No. 2

Dayton, OH VIRGINIA
Call Gary M. Granger
513/849-1483 First Forth of Hampton Roads

Call William Edmonds
OKLAHOMA 804/898-4099

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m. Potomac Chapter
Health Tech. Bldg., OSU Tech. 2nd nes.l p.m.
Call Larry Somers Lee Center
2410 N.W. 49th Lee Highway at Lexington St.
Oklahoma City, OK 731 12 Arlington, VA

CaU Joel Shprentz
OREGON 703/860-9260

Greater Oregon Chapter Richmond Forth Group
Monthly, 2nd Sat., 1 p.m. Monthly, 2nd Wed., 7 p.m.
Tektronix Industrial Park 154 Business School
Bldg. 50, Beaverton Univ. of Richmond
Call Tom Almy Call Donald A. Full
503/692-28 1 1 804/739-3623

PENNSYLVANIA
Philadelphia Chapter WISCONSIN
Monthly, 4th Sat., 10 a.m. Lake Superior FIG Chapter
Drexel University, Stratton Hall Monthly, 2nd Fri., 7:30 p.m.
Call Melanie Hoag or Simon Edkins University of Wisconsin
215/895-2628 Superior

TENNESSEE
Call Allen Anway
715/394-8360

East Tennessee Chapter Milwaukee Area Chapter
Monthly, 2nd Tue., 7:30 p.m. Call Donald H. Kimes
Sci. Appl. Int'l. Corp., 8th Fl. 414/377-0708
800 Oak Ridge 'Ihmpike, Oak Ridge
Call Richard Secrist MAD Apple Chapter
615/483-7242 Contact Bill Horzon

129 S. Yellowstone

TEXAS Madison, WI 53705

Austin Chapter FOREIGN
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Periman Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT
Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rrn. 210, Monkton Rd.
Vergemes, VT
Call Don VanSyckel
802/388-6698

AUSTRALIA
Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

BELGIUM
Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

CANADA
Alberta Chapter
Call Tony Van Muyden
403/962-2203

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2ES
902/477-3665

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4CSJ2

COLOMBIA
Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

ENGLAND
Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FRANCE
French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

GERMANY
Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

HOLLAND
Holland Chapter
Contact: Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda
31 76 713104

FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely
50 57 0280

IRELAND
Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 051/74124

ITALY
FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

JAPAN
Japan Chapter
Contact Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 ext. 7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas
Hallskaret 28
Ulset
+ 47-5- 187784

REPUBLIC OF CHINA
R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-lhn, Taiwan 325

SWEDEN
Swedish Chapter
Hans Lindstrom
Gothenburg
+46-31-166794

SWITZERLAND
Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-lndustrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS
Apple Corps Forth Users
Chapter
n i c e Monthly, 1st &
3rd Thes., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
415/626-6295
Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910
FIGGRAPH
Call Howard Pearlmutter
408/425-8700

Volume VIII, NO. 2 35 FORTH Dimensions

NOW AVAILABLE
DESIGNING AND PROGRAMMING

PERSONAL EXPERT
SYSTEMS

CARL TOWNSEND AND DENNIS FEUCIiT

I

Hands-on guidance in techniques that can be
used to develop an individualized or expert

F O R T H knowledge system using Forth.
INTEREST
G R 0 U P

$19.00
FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP
BULK RATE

U.S. POSTAGE

P. O. BOX 8231 Permit NO. 3107

Sari Jose, CA 95155 San Jose, CA

Address Correction Requested

