
Dimensions

F83 String
Functions

The Multi-tasking Mac!
Machl is 32-bit FORTH-83 for the Mac.
Machl is a complete development system for
writing multi-tasking applications, but it's so
easy to use that it's being used to teach FORTH
and 68000 assembly language at the university
that spawned the Silicon Valley.
For developers, Machl is a multi-tasking
programming environment with 'call' support
for every Toolbox trap. It's subroutine-
threaded for twice the speed of other Forths:

Sieve:
Assembly 2-3 secs
compiled C 6-7 secs
Mach 1 1 3 secs
other Forths 23 secs
Pascal 1 270 secs

With the true assembler that's included,
developers can use their unchanged MDS
code in Forth. You can save progress on a
project with the word 'workspace'. The new
icon on the desktop will boot with all of your
code as you left it. At the end of the project,
the word 'turnkey' will create a stand-alone
application (with only 16k of overhead for the
multi-tasking operating system). Any application
may be sold without licensing fees.

Machl offers a truly interactive Other features: MacinTalk for words that speak,
environment for experimentation with Forth AppleTalk examples, stack notation and
and the Mac. The standard Motorola summary for every trap, headerless code, macro
assembler is interactive, too, so you can also substitution, vectored 110 and ABORT, unlimited
learn the assembly language for the 68000 multi-tasking, named parameters, 400pg manual
from the keyboard. And since Machl uses a
normal editor (on the Switcher if desired),
with floating-point and local variables available, Mach1 is only
you don't have to give up the features that

49 95 wl Switcher and Edit
Order from :

every other programming language has. With
menu-driven templates, you can create new Palo Alto Shipping
tasks, windows, menu bars, and even controls PO Box 7430
as easily as with a resource editor. The Menlo Park, CA 94026
200-page Forth glossary explains each Forth

add $4 for S/H (CA Res add 6.5% sales)
word; one per page with examples. call ~OO/~~-FORTH to place VISAMC orders
(versions for the Arniga and Atari available in early 1986)

FORTH D~menslons 2 Volume VII, No 6

FORTH Dimensions
Published bv the L

Forth Interest Group

Volume VII, Number 6
March/April 1986

Editor
Marlin Ouverson

Production
Cynthia Lawson

Forth Dimensions solicits editorial
material, comments and letters. NO
responsibility is assumed for accuracy
of material submitted. Unless noted
otherwise, material published by the
Forth Interest Group is in the public
domain. Such material may be repro-
duced with credit given to the author
and to the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address and to submit
material for publication, the address is:
Forth Interest Group, P.O. Box 8231,
San Jose, California 95 155.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

FEATURES
10 The Moving Cursor Writes

by Michael Ham
This article describes one approach to selecting from a menu: picking the option
with the cursor and using the resulting option number as an index into an array of
functions. When properly done, this method eliminates the problem of invalid
input, and can greatly improve ease of program use.

15 euroFORML '85
by Robert Reiling
Following the previous year's trip to China, FORML journeyed to West Ger-
many, where that nation's FIG members hosted a symposium of Forth experts
representing most of the European countries. They gathered to discuss develop-
ments in Forth programming techniques and how they are being used around the
world. FIG President Robert Reiling covered the event for Forth Dimensions.

21 Teaching Forth: Let's Keep It Simple
by Ronald E. Apra
The IF THEN ELSE construct has boggled the minds of many young, aspiring
programmers. This teacher of elementary and secondary students has a phil-
osophy that guided him to find a logical way to introduce the control structure's
concept in his classes.

23 F83 String Functions
by Clifford Kent
This article presents a string package in support of the F83 public-domain Forth
model. It brings to Forth the ease of text handling usually found in languages like
Pascal or BASIC, making use of a string stack as earlier described by Cassady.

Advanced; requiringstu-
dy and a thorough under-
standing of Forth.

I 9 Editorial

Code and examples con-
form to Forth-83 stand-
ard.

DEPARTMENTS
5 Letters
9 Advertisers Index

Code and examples con-
form to fig-FORTH.

Code and examples con-
form to Forth-79 stand-
ard.

- -

Volume VII. No. 6 3 FORTH D~mens~ons

. - - - - . . -. -

34 FIG Chapters

19 Rochester
Forth Conference

June 11-14, 1986 University of Rochester Rochester, New York

The sixth Rochester Forth Conference is sponsored by the Institute for Applied b r t h Research, Inc. in
cooperation with the IEEE Computer society and the Laboratory for Laser Energetics of the College of Engineering at the
University of Rochester.

The focus of the Conference is on real-time artificial intelligence, systems and applications. The invited
speakers will discuss the implementation of a variety of expert systems and their applications, a commercially available
data base query system and a real-time version of OPSl5. The performance of high speed Forth engines and moderately
parallel execution of rule-based systems will be covered. In addition, presented papers will cover many aspects of
implementing and applying Forth and Forth-like languages. These include image processing, instrumentation, robotics,
graphics, process control, space-based, medical and business systems. Forth novices, programmers, implementors, and
project managers will find these presentations useful and pertinent to their work.

The final day of the Conference will be open to the public, and dwoted to tutorials, demonstrations,
panel discussions, Forth vendor presentations and poster sessions. All those interested in learning about Forth, or in
seeing the most current Forth products available are invited to attend this day at no charge.

The registration fee includes all sessions, meals, and the Conference papers. Lodging is available at local
motels or in the UR dormitories. Registration will be from 3-11 pm on Tuesday, June 10th in Wilson Commons, and
from 8 am Wednesday, June 11th in Hutchison Hall. There is an hourly shuttle to the airport during registration and
checkout. Sessions will be held in Hutchison Hall, and the open day will be in Wilson Commons.

For more information, call or write to Maria Gress at the Institute, 478 Thurston Road, Rochester, New York
14619. Phone: (7l6)-235-0168.

. ~ ~ - - ~ - - ~ - ~ ~ ~ - - - ~ ~ ~ ~ ~ ~ ~ - - ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ 0 ~ ~ ~ 0 0 ~ ~ ~ 0 ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ .

Registration Form

Name

Address

Telephone

Registration fees: $325

$275 UR staff, IEEE members

$200 Full time students

Dormitory housing, 5 nights: $100 Single, $75 Double

Amount enclosed: $-

- Vegetarian meal option - Non-smoking roommate

Please make checks payable to the Rochester Forth Conference. Mail your registration by May 15th
to the Rochester Forth Conference, 478 Thurston Rd., Rochester, NY 14619 USA.

FORTH D~rnens~ons 4 Volume VII. No 6

- -- -

Volume VII. No 6 5 FORTH D~rnens~ons

,

-
Quirkless CASE?

Dear Marlin:
I really appreciate the cleverness of

Michael Jaegermann's letter about the
Eaker CASE statement ("A CASE of
Pairs," VII/4). After some thought, I came
up with a variation on Mr. Jaegermann's
idea. His first method required use of a
dummy flag to start the CASE evaluation,
which looked odd. It also did not allow you
to mix tests for ranges and single values.
His second method required explicit know-
ledge of the value of TRUE, and was not
Forth-83 compatible.

The method I present seems to avoid
these quirks. My notation may seem strange
at first, but I am open to suggestion. The
technique is to use MAX or MIN to generate
the proper values to OF. For example, if
MIN(value,limit) = value, then we know
that value < = limit. Screen 13 shows a
simple implementation of four tests, each
of which will work transparently with CASE.
Screen 14 shows a sample word to classify
ASCII characters. Screen 16 shows how this
can be quickly extended to test whether or
not a value falls within a range, inclusively
or exclusively at either boundary.

Thanks,
Tony Sager
Westminster, Maryland

Of Extensions and Hotpatches.. .
Sir:
I would like to add my voice to the opinion
expressed by Mark Smiley in Forth
Dimensions (VII/4) in which he suggests
that if Forth is to be adopted by large
numbers of users, it will have to be supplied
with the facilities that computer users have
come to expect. Although I have been
programming in Forth for well over three
years and have become reasonably facile
with the language, when I recently had to
write a program that opened a file, read it a
line at a time, manipulated these lines (as
strings) and eventually wrote them out a
byte at a time to a random file, I turned to
BASIC. I think there are two separate
questions. First, the Forth Standards Team
should standardize the use of files, strings,
floating-point numbers and other useful
tools. Second, vendors should undertake to
supply these tools. Only then will Forth
have a chance to become the language of
choice for all programming tasks.

Sager Screens

Screen # 13
(v a r i a t i o n on Eaker CASE : 6 : 4 b 12/22/85 !
: TASK ;

: . i \I L -- V L ' ; it i f YIN(V,Lj=V then V(=L
OVER Y I f i ;

: . ,,)= i V i -- V L ' 1 ':. i f f lkI(v,L)=: then V>=L
OVER K G X ;

. ... '. i v L -- v L ') i if [[N[v,L-!)=v then V(L
1- ... i=

; , (V L -- V L ') : if B A l i V ! ? + i i = V the3 ?)L

i t ... '.= ;

\ ate t h a t !%X t l IN g ive a ';i;zedf cooparisor

Screen # 14
i v a r i a t i o n on Eaker CASE

: CLASSIFY (by te --
ZRSE
32 .,.i O F . " C o n t r o l Z h a r a c t e ~ " ENDOF
ASCiI C . . .i OF ." Punctuation" ENDOF
ASC!! 4 ... != aF ." D i g i t " EfiOOF
ASCII @ ... < = oF .' punctaat ionH ENDDF
ASC! I Z . . . (= CF . "pper Case L e t t e r " EFiDOF
ASCII a ... < OF ." Panctc;tion" ENDOF
A S C I I z . . . I= OF . "Licwe; Case L ? ~ ~ E : " E E N O C F
127 ... i OF . V u u n t u a t i o n " Eh!DOF
ti., + q: OF ." Rubjut Character" ENDUF

.'! Hci an fiSCii I'hara~te;"
ENDCASE ;

Screen # 15

r YE;: (b ' 1 1 r D -- .
?C

LK - -.
i 4 - 3 3 5 ~ 4 ~ ~ s 1 2 F;$ 127 MI;; ,;pnCE
I : ; A S S I F ?

;

UBZ FORTH'"
$i4&R*"

L

* FORTH-83
com pati ble

*32 bit stack
*Multi-tasking
*Separate headers
*Full screen editor
*Assembler
*Amiga DOS support
*Intuition support
*ROM kernel support
*Graphics and sound

support
*Complete

documentation
*Assembler source

code included
*Monthly newsletter

I I

$85
Shipping included
in continental U.S.
(Ga. residents add sales tax)

UB-
(404)-948-4654

(call anytime)
or send check or money order to:

us2 s*
395 St. Albans Court
Mableton, Ga. 30059

'Amiga is a trademark for
Commodore Computer. UBZ FORTH
is a trademark for UBZ Software.

f

Scr-een # 16
i RAf;!E TESTS CgSE i b :4b 12/23/35)

. fi [v ;; [,;! :; ' ; . j. 2 i v - I , $fi;f!J.! , L L ! I ! - % S A l i v - , i i ' * i ! Y L 1 ;&.-.- i i ie,#

;q OVER fig1 :; ~ i $ j . . LL ! I '- :>j < = jj:

i j i t4 ~t UL -- v i, i \ i i ~$X(V3L!+lj=fi~j(V,3L-!l t h ~ g
,j3 3CER i + R$X R: i - yI!{ ; \ LL < 8; < gk

: ; I (I$ LL 2; -- \; k ' ! i f ~ F ~ < V , L I L , \ - r r q ' ~ , ~ i - : ! - , g ' , < , L' L ~ E P

::.R :I;IER ,qax: F;:, 1- z i x ; , LL :I v r u t

; i: v i; ;t - - v t r ! \ ; L A (E A ~ : : : l.v,iL+1)=#!)4iV,UL) tbpc
jp CVER I + 3) ; i I 1 ..: :I ..!-

LL %. " ,.- EL

Screen # 17
: .;ariat i35 27 Eaker "Ac' b .k l t : 4 6 4 . 7 ' - 7 i ~ r t ii: i.31 b.l

c CiASBi iy? tytf -- !
:ASE
3 1 .; i . . .! OF . " Cont ro l C h a r a c t ~ r " ENCOF
9 2 ~ 1 : . . . i ZF . V m c t t u a t i o n " E%l?OF
ASCII 6 ASCII 9 OF . * D i g i t " EICSOF
ASCII 2 . .. T - %.- CF , !! pu7 , ~ i l d l ~ n " t - t . EfifDCF

ASCII A ASC:! Z :I OF ." Cpper Case L e t t e r V E N D O F
ASCII a .,.: OF ." Pt iqc tua t ion" E#DOF
ASCI! a ASC! I 2 f ! OF . V o o e r Zase L e t t e r V E N O F
127 . .,(CF . "Puunc tua t ion" EE!.?OF
l 2 i OF . "ubbot Charac te r " iNgi!F

. " N o t an 4SCII Charac te r "
EHDCCISE ;

Screen # 18
i

: YEST2 (h i 10 -- '
DO

CR
I 4 .R 3 SPACES : 32 H4X 127 $ I # EHI: SPACE
1 ELRSSIFY?

ii;OFi :

End Sager Screens

FORTH Dimensions 6 Volume VII, No. 6

Barr Screens

S c r e e n # 22
17 i subst HB 12220i85 1

t (Use i n the form SOBST YOFDl WORD? t o s u b s t i t u t e YOFDl +or
2 8OPDT. The t r o nords Ray have the same nane.!
'I : sues1
4 ?E)IEC i Check i f ~{ecutinu;
5 I 6et compi!atioa a d i r ~ s s o t r o r d l i
6 DUP)NBHE DUP 32 TO66LE i Srudqe wordl i ..

i 6et coir ip i lat ion address of word2i
8 SWAP 32 TOG6LE i Unsaud~e wardt i
9)BODY SWkP OVEP i put c f a o i woral into wora2)

10 2+ [' I EXIT SYAP i put c f a o f E t i i i b t o word2)
11 ;
12

Screen # 2.3
0 i Test of subst 12/??!85 i
i : TESTA CF .!' i e s t A" CR :
2 : TESTP CR . "leest 0-FR ;
3 : TEST TESTA ;
4 TEST i P r i n t s "Test 9 " i
5 SUBST TEST0 TESTA
b ?EST (P r i o t s "Test B'i
i : TESTA CR ." New t e s t A' CF ;
8 Cfi ! P r l n t s "TESTA i~ redef ined")
F S C W TESTA TESTA

10 TEST i P r i n t s Veer test k ")
11
12

S c r e e n # 24
4 i f lc tual recurs ion t e s t 1'2l i i l i85 i
1 : A NOOP :
2 : B ?DIIP I F 1- DUP A 2 t SYAP MYSELF + -
.> ELSE 1
4 THEM :
5 : A 'DUP IF 1- BUP A SYAP B +
5 ELSE 1 . THEN :
8 SUBST B 4
9

10
I !

End Barr Screens

I found the idea of redefining words by
Phil Koopman, Jr. a very interesting and
useful one. When I had difficulty adapting
it to my Forth-83 system, I rewrote it to be
simpler and more useful (see listing). It is
still subject to the limitations mentioned in
Mr. Koopman's article: it can be used to
redefine colon definitions only, and there
must actually be an entry in the word. On
the other hand, an unlimited number of
words can be redefined, unlike Mr. Koop-
man's limitation to just one. Also, the
syntax is much simpler; you need only type
sues1 WORD^ WORD2 to change all occur-
rences of WORD2 to WORD1. The two words
can even have the same name. In that case,
the latest definition is substituted for the
penultimate one. Although the word is
intended to be used primarily for debug-
ging, there is nothing to stop it from being
used, for example, to achieve mutual recur-
sion, as illustrated in the accompanying
listing. The words A and e generate all the
pairs of positive integers for which I B ~ -
2*A2) = 1, whose ratios are the best ap-
proximations to the square root of two.

The definition uses three words that are
not Forth-83 Standard. ?EXEC merely
checks to see if the system is executing, and
may be omitted. Lines 6 and 8 use the
words <NAME an'd TOGGLE that are not
standard and that assume words can be
smudged to make them invisible to (tick).
If these three lines are omitted, SUBST will
work only if WORD1 and WORD2 have
different names.

Sincerely yours,
Michael Barr
Montreal, Quebec
Canada

Unraveling TI-Forth

Dear Mr. Ouverson:
In Forth Dimensions VI/6 (March/April

1985), you published a TI-99/4A screen
dump by Howard H. Rogers. I was happy
to see some TI-related contributions in
Forth Dimensions, and noted that you
indicated the desire to receive more useful
TI utilities to publish.

I gladly offer you this little TI-Forth
decompiler program, which is only three
screens and not too intimidating for some-
one to enter by keyboard. Since TI-Forth is
an extension of fig-FORTH, I suspect it will
work with little or no modification on most
such systems.

Some areas that might be implementation
dependent are words like (1") and (F-D"). But
those lines can simply be removed for use
on another system that doesn't have them.

Volume VII, No. 6 7 FORTH D~mens~ons

MCOMCILE < word name >

Using the DECOMPILER could hardly be
easier. You simply load it and then enter:

and let it rip! It prints the dictionary ad-
dress of the various component word CFAs
and the contents of those words, followed
by the symbolic decompilation of the word.
I find it very useful to discover just how a
lot of the underlying TI-Forth kernel words
are implemented.

As an example the readers can easily
check out, I have included a printout of the
DECOMPILER'S output while decompiling
one of its own component words.

LeBlanc Screens

Sincerely,
Rene LeBlanc
Scottsdale, Arizona

ol
DECOMFILE L S T I D

D e c o m p l l i na: L S T I D

P ~ P S S a n y L e y t o togg le

PAUSE/START.

P r e s s f c t n 4 (RREAk)
t o terminate.

ERE8 A 2 5 2 CK
EBEA A 5 3 E DUP
EHEC F Z 7 6 U.
EREE GJZE DUF
ERFO A 5 7 4 @
E B F 2 H 7 6 U.
EHF4 A 5 3 E DUF
E B F 6 A 5 7 4 B
ERFB A5HE 2+
CRFA AA4C NFG
ERFC A F 2 4 I D .
EHFE A 4 4 6 : S
cl

DECOMPILE DECOMPILE

D e c o m p l 1 i n g : DECOMPILE

F r e s s a n y I ey t o t o g g l e
PAUSE/STAF.T.

P r e s s f c t n ' 4 (BREGk)
t o t e r m i n a t e .

E E 2 8 AE9E - F I N D
EE2A AO6CF OBRANCH A
E E 1 E A51C ZFOF
E E X ECUE (DECOMPILE)
EESZ A 0 5 0 BRANCH 1 E
E E Z 6 A 2 5 2 CF.
EEZB ADA6 (. ")

W o r d not III d A c t i o n a r y
E E T 2 A 2 5 2 CR
E E 5 4 A 4 4 6 : S
ol

End LeBlanc Screens

k

FORTH D~mens~ons

SCR # I 5 4
CI (71-FORTH DECOMPILE (DECOMPILE w o r d)

1 0 CLOAD DECOHF'ILE BASE- ;F: DECIMAL
2 : L S T I D CR CUP U. DUP I?? U. DUP @ 2+ NFA I D . :
Z : (DECOMPILE) (p f a CCOMPILEI RASE--:-:+: HEX CH
4 DUF NFA CR ." D e c o m p i l i n g : " I D . CR CR
=
4 ." P r e s z any i:ey t o toqq le FAUSE/START. " CR
b ." P r e s s . f c t n 4 (HREAI:) t o t e r m i n a t e . " CR CR
7 B E G I N ?KEY U N T I L
8 DUP 2 - @ C ' CONSTANT 6 + I L I T E R A L 5
9 I F DUP U. DUP @ U. ." CONSTANT " N F 6 I D . E L S E

1 0 DUP 2- @ C - V A R I A B L E 6 + 3 L I T E R A L =
1 1 I F DUP U. DUP B U. . " V A R I A B L E " NFA I D . E L S E
12 DUP 2- 12 C ' USER 6 + 1 L I T E R A L =
1 : I F DUP U. DUP @ U. ." USER " NFA I D . E L S E
1 4 DUP 2- @ C ' VOCABULARY 30 + I L I T E R A L =
15 I F DUP U. ." VOCQBULARY " NFA I D . E L S E C --:

SCR # I 5 5
O (T I -FORTH GECOMPILE - cont.)

1
2 I B E G I N D U P @ 2 + C ‘ ; S I L I T E R A L = PAUSE OH NOT - W H I L E DUP E! 2+ C ' L I T 3 L I T E R A L =
4 OVER 13 2+ C ' OBKANCH I L I T E R A L = OR
c z OVER @ 2+ C ' BRANCH 3 L I T E R A L = OR
6 OVER e 2 + c - (LOOP) I LITERAL = OR
7 OVER @ 2+ C ' (+LOOF') I L I T E R A L = OR
8 OVER @ 2 + C ' (OF) 7 L I T E R A L = OR C -->
9

1 0
11
1 2
17,
1 4
15

SCR # I 5 6
C) (T I -FORTH DECOMPILE - cont.)

1 1 I F L S T I D 2+ DUP @ .
2 E L S E D U P @ 2 + C ' (.") 3 L I T E R A L =
7 -. OVER @ 2+ L ' (F-D") I L I T E R A L = OR
4 O V E R @ 2+ C ' (! ") 7 L I T E R A L = OR
5 I F L S T I D 2+ DUP
6 COUNT SWAP OVER TYPE A S C I I " E M I T
7 SPACE + I - =CELLS
8 E L S E L S T I D THEN THEN 2+
9 REPEAT L S T I D DROP

10 THEN THEN THEN THEN C C O M P I L E I R-;BASE :
11
1 2 : DECOMPILE - F I N D I F DROP (DECOMPILE) E L S E
13 CR ." W o r d not i n d i c t i o n a r y " THEN CR :
1 4
15 R->RASE

8 Volume VII, NO. 6

Subjective Benchmark

The last issue in our membership year is
only a subjective sort of benchmark, at
least insofar as it affects the publishing
schedule. (The next issue will, after all,
show up in another two months as usual.)
But it is a good time to work in a little self-
analysis between reviewing manuscripts,
copyediting, keyboarding, uploading files
to the typesetter and managing the process
of producing Forth Dimensions. And it's a
great time to thank our authors and all FIG
members for their unflagging support and
contribution, be it in the form of articles,
criticism or just appreciation.

Some truly fine articles are already on file
for upcoming issues, and we look forward
to reviewing many new manuscripts from
our readers. We plan to continue the fine
tutorials by Michael Ham, John James and
others. Users of TI-Forth will be seeing
some material specific to their systems,
thanks to recent contributions. Of course,
the emphasis will continue to be on code in
Forth-83 and Forth-79, with some fig-
FORTH material as well.

We look forward to hearing from many
of you in the coming months. Forth
Dimensions is very much "by and for" FIG
members, and you can keep it that way with
your active participation. Keep those letters
and articles coming!

-Marlin Ouverson
Editor

(with LMIFORTHTM 1

1 For Programming Professionals: /

,

.

an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

Index to Advertisers

Bryte - 27
Computer Cowboys - 16
Creative Solutions - 14
Dash, Find & Associates - 11
Forth, Inc. - 11
Forth Institute - 4
Forth Interest Group - 17-20, 36
Harvard Softworks - 25
HiTech Equipment - 12
Laboratory Microsystems - 9
Miller Microcomputer Services - 24
Mountain View Press - 24
Next Generation Systems - 11
Palo Alto Shipping Company - 2
SOTA - 24
Software Composers - 22
Talbot Microsystems - 16
UBZ Software - 6

For Development:
Interactive Forth-83 InterpreterICompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-80, 8086, 68000, and 6502
No license fee or royalty for compiled applications

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prlces. Consulting and Educational Services
available by special arrangement.

m~aboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systeme Angellka Flesch, D-7820 T~tisee-Neustadt
UK: System Science Ltd.. London E C l A 9JX
France: Micro-Sigma S.A R.L., 75008 Paris
Japan: Southern Pacific Ltd., Yokohama 220
Austral~a: Wave-onic Associates, 61.07 W~lson. W.A.

9 FORTH Dimens~ons

The Moving Cursor Writes
And, Having Writ, Moves On. . .

Michael Ham
Santa Cruz, California

But if you press the up-arrow,
It goes back and rewrites the line.
(Apologies to both Omar Khayyam and
Edward FitzGerald.)

Items are usually selected from a pro-
gram menu in one of two ways: by the user
entering some identifying information (e.g.,
the first character of the option selected, or
the option number), or by the user moving
the cursor to the desired item and then
pressing carriage return or "enter" (or that
odd little symbol that made so much sense
to IBM, displayed on the screen by the
sequence 17 EMIT 196 EMIT 217 EMIT).

The word that accommodates the selec-
tion normally returns an option number,
which is used by the program to execute the
proper function. This article describes one
approach to selecting from a menu: picking
the option with the cursor and using the
resulting option number as an index into an
array of functions.

Because the elements of this task are
specific to the machine and the Forth used,
you may have to translate some of the terms
to match your particular resources. For
example, the IBM does not deliver cursor
key information the same way the Apple I1
does; and the command' for cursor
placement is not the same in PC/Forth (by
Laboratory Microsystems, Inc.) as it is in
polyFORTH (by FORTH, Inc.). The code
shown in this article was written in PC/
Forth for an IBM PC or compatible.

Block 1

Block 1 defines the true/false constants
and redefines two of PC/Forth's words.
PCKEY works like KEY for all the regular
ASCII keys, leaving their ASCII value on
the stack. For the special keys (the function
and cursor keys), PCKEY leaves a fdse flag
on top of the stack and the IBM key value
of the special key beneath. For example,
PCKEY leaves 75 0 on the stack if left-arrow
is pushed.

Because 1 generally prefer that a word
return always the same number of argu-
ments on the stack, I defined MYKEY to
leave a true flag above the normal ASCII
keys. The word o< > converts any non-zero
value to a true flag, leaving a zero (false
flag) unchanged.

The cursor-placement word in PC/Forth
is GoTOXY, which expects the column num-
ber (the x-coordinate) followed by the row
number (the y-coordinate) - that is, the
row number on top of the stack. This
approach doubtless satisfies half the users,

but the other half will agree with me that
row number first, then column number, is
clearly the natural order. I thus define my
own cursor placement word, mimicking the
polyFORTH word in action as well as
name. The ability to "fix up" native com-
mands to meet one's own needs (prejud-
ices?) is one of the most attractive features
of Forth.

Your Forth probably has some way to
turn the (actual) cursor off. Normally you
don't want the cursor blinking away wher-
ever it last landed, while the user contem-
plates the menu. Some Forths automatically
extinguish the cursor while KEY waits for a
key; others provide an explicit cursor
attribute word. PC/Forth's SET-CURSOR
allows you to define the height of the
cursor. -CURSOR uses SET-CURSOR to define
the height away altogether, so that the
cursor vanishes. +CURSOR restores the cur-
sor on exit.

BELL is my idea of how the "error" bell
should sound. You can tune it to your own
taste by changing the parameters given to
the PC/Forth word BEEP.

Block 2
The cursor location can be shown by any

of several tactics: a "pointer" character
(the IBM has various character symbols
useful for this purpose), underlining or
inversing the current option (returning it to
normal mode when the cursor moves on),
changing the color of the current option,
and so forth.

Since any of the options can be selected
and thus can differ from the others, you
must be able to write each option by itself.
Block 2 contains a collection of words to
write each option. An additional space is
included before and after the text in each
option because I used inverse video to show
the selected option, and the extra space
makes the inverse look better, particularly
if you are using the IBM color graphics
adapter.

The header OPTIONS is put into the dic-
tionary with CREATE, and then 1 is used to
turn the compiler on. We use the compiler
to put the compilation address of each of
the following words into the dictionary. [
turns the compiler off again. The effect is
the same as if the 1 and [had not been used
and instead we had ticked and comma'd
each word into the dictionary:

CREATE OPTIONS ' "1 , "'2 , "'3 ,

But 1 and [take less room, look better and
are easier to read. OPTIONS names an array

of compilation addresses: the addresses of
the words that write the various options to
the screen.

Block 3

Block 3 contains words to manipulate the
options and the option numbers. Given an
option number, COLI? and COLE tell wheth-
er the number is in column one or column
two by comparing the number of the option
against half the number of options. This ex-
ample has six options, numbered zero
through five; three (one-half of six) is the
option number of the first option in the
second half - that is, the first option in the
second column.

CLIP uses MOD to coerce any number into
the range of legal option numbers - 6 CLIP
produces a zero; -1 CLIP produces a five. As
we add to or subtact from the option
number on the stack, we can CLIP the result
to make it the appropriate option number
within the legal range (for this example) of 0
through 5.

PLAIN, given an option number, dips into
the array OPTIONS and executes the word
that displays that option. The option num-
ber is multiplied by two because each ad-
dress in the OPTIONS array is two bytes long.
Because the sequence @ EXECUTE is so
common, many Forths provide some specif-
ic word for it. PC/Forth has PERFORM and
polyFORTH has @EXECUTE (spelled with-
out the space).

INVERSE distinguishes the choice of the
moment in inverse video through the use of
the PC/Forth word REVERSE. You can
redefine INVERSE to distinguish the chosen
option in whatever way you prefer: color,
underline, capitalization vs. lower-case, etc.

SHOWALL displays all the options, with
option 0 shown as the current choice.

COLSWAP, given the option number of the
currently selected option, first redisplays
that option in the PLAIN format (in effect
unselecting it) and then converts the num-
ber to the number of the option in the same
position in the other column. This option is r

then displayed by INVERSE as the current
choice.

i
Because there are only two columns in I

this example, we can move from one col- r
umn to another simply by adding the
column length (which is one-half the num-
ber of options for the two-column case) to
the option number. If there were more than
two columns, we would have to decide
whether to subtract the column length (to
move left) or add the columnn length (to
move right). After adding, CLIP insures that I

the sum is a legal option number.

FORTH D~rnens~ons 10 Volume VII. No. 6

DASH, FIND
& ASSOCIATES

OUT Company, DASH. FlND & ASSOCIATES.

is in the business o f placing FORTH Program-

mers in positions suited to t h e ~ r capabilities.

We deal only with FORTH Programmers

and companies using FORTH. II you would

like to have your resume included in our

data base, or i f you are looking for a

FORTH Programmer, contact us or

send your resume to:

DASH. FlND & ASSCX'IATES

808 Dalworth. Suite B
Grand Pra~r ie TX 75050

(214) 642-5495

rn
Committed to Exsellense

REAL-TIME
SOFTWARE

DEVELOPERS. . .

NOW CUT
DEVELOPMENT

COSTS
4 TO 10 TIMES

WITH
polyFORTH

The Total Programmin
Environment For 8 to 3
Bit CPU's

S
If you utllize any other operating

system/language on your microcom-
puter, chances are it's taking 4 to 10
times as long to develop the same pro-
gram. polyFORTH is a totally integrated
software environment that unleashes
the power of 8 to 32 bit CPU's and best
supports multi-tasking and multiple
users for real-time applications.

Just imagine, with polyFORTH you
can run 2 0 0 tasks concurrently on an
LSI-11 system. If you have an 8086/88
system, you can now support 8 users
with no degradation. But whatever your
micro or your application, polyFORTH IS
your best ally in cutting development
costs and gett~ng total control over your
hardware.

polyFORTH has all the programming
tools you need-multlprogrammed OS,
FORTH compiler and assembler, editor,
over 4 0 0 primitives and debugging
aids-all resident, ready to use, and
taking less memory than you dreamed
possible. polyFORTH is ideal for robotics,
instrumentation, process control, graph-
ics, data acquisition/analysis, scientif~c
and medical instrumentation,or when-
ever software development time is a
consideration.

For more information on polyFORTH
and our comprehensive support pro-
grams, contact FORTH lnc. today.

111 No. Sepulveda Blvd.
Manhattan Beach. CA 90266
Phone (213)372-8493

NGS FORTH
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-ms COMPATIBLES.

STANDARD PEATURES
INCLUDE:

a79 STANDARD

.DIRECT 1/0 ACCESS

a m ACCESS TO MS-DOS
FILES AND FUNCTIONS

aENVIRONMmr SAVE
& IDAD

@MULTI-SE-D FOR
LARGE APPLICATIONS

*EXPENDED ADDRESSING

MEMORY ALJDCATION
CONFIGURABLE ON-LINE

.AUTO IDAD SCREEN BOOT

.LINE & SCREEN EDITORS

*DECOMPILER AND
DEBUGGING AIDS

a8 08 8 ASSEMBLER

.GRAPHICS & SOUND

aNGS ENHANCEMENTS

.DETAILED MANUAL

aINEXPENSIVE UPGRADES

aNGS USER NEWSLETTER

A COMPLETE F O # r H
DEVEU)PMENT SYSTEM.

PRICE8 START AT $70

NEW+HP-lSC) C HP-110
VERBIONS AVAILABLE

fliil
NEXT GENERATION SYSTEMS
PoOoBOX 2987

CLARA, CA. 95055
(408) 241-5909

Volume VII. No 6 11 FORTH D~rnens~ons

The ~orthcard'"
STAND ALONE OPERATION

STD BUS INTERFACE
Evaluation Unit $299
Part #STD65F11-05 includes.

EPROMIEEPROM
ForthCard, Development

PROGRAMMER
ROM, 8Kbyte RAM, Manuals

RS-232 I10 OEM Version as low as

PARALLEL 110
Part #STD65F 1 1-00 $
does not include
memory or manuals

199
ROCKWELL FORTH CHIP

The Forthcard prov~des OEMs and end NEW! Options and Application Notes
users with the ability to develop Forth and
assembly language programs on a s~ngle Electr~cally Eraseable PROMS (EEPROMs)
STD bus compatible card

FREEZE the dictionary in EEPROM (save in
Just add a CRT terminal (or a computer non-volatile memory, to be restored on
with RS-232 port), connect 5 volts and you power up)
have a self contained Forth computer.
The STD bus interface makes it easy to Download Software for your IBM PC or CP/M
expand.

Non-Volatile CMOS RAM with battery 2K,
Download Forth source code using the 8K, optional Clock/calendar
serial port on your PC. Use the onboard
EPROMIEEPROM programming capability Fast 2MHz clock (4MHz crystal)
to save debugged Forth and assembly
language programs. Standard UV erasable Disk Controller Card (5%")
EPROMs may also be programmed with
an external Vpp supply. Self Test Diagnostics

Parallel printer interface

Ask about our ForthBoxTM
A complete STD bus oriented system including
the ForthCard, Disk Controller, Disk Drive(s),
STD Card Cage, Cab~net and power supply

CALL TODAY FOR COMPLETE INFORMATION!

H!UBG~ EquipmmQ G ~ r p ~ u a Q b m
9560 Black Mountam Road

Sun D~ego, CA 92126
(6 1 9) 566- 1 892

FORTH D~mens~ons 12 Volume VII, No 6

- - - - -- - -- - - - - - -- - - --

Block 4

This block contains constants that cor-
respond to the values returned by the keys
of interest: up, down, left, right, and car-
riage return. MYKEY leaves two numbers on
the stack (the key value and the flag); I treat
them as one double-precision number.

Block 5

GETOPTION is a long word with a simple
structure. I could have used PC/Forth's
CASE statement to make it easier to read,
but the function would be the same. The
word CLS-clears the screen.

The program comments note that this
version allows the cursor to wraparound in
the up-down movement, but not in the left-
right direction. This inconsistency was to
illustrate both options; it would be removed
in any actual application.

You can allow left-right wraparound by
making the changes noted in the comments.
As an exercise, try revising the word to
eliminate wraparound in the up-down dir-
ection. This can be a little tricky, depending
on how you decide you want it to work.
You might want the up key, for example, to
produce a bell but n o movement if the
cursor is on option number 0 or option
number 3. Obviously, you should imple-
ment the restriction by reference to the
contents of the variable #OPTIONS rather
than to a numeric literal.

Block 6

Block 6 creates another set of words.
OPTn is a placeholder for the task accom-
plished by option number n. The last op-
tion, the "quit" choice, probably would be
BYE (which leaves Forth and returns to the
operating system) in the final program, but
during development ABORT is more con-
venient; you also need to relight the cursor.
(In some IBM clones, the cursor automati-
cally reappears when the program exits to
DOS; in others, not.)

In TASKS we see another array of words;
R U N (the final program word) uses the
option number (left on the stack by
GETOPTION) to pick from TASKS the approp-
riate word to execute. Note the similarity of
the function done by TASK and OPTIONS:
both are used as headers at definition time
and later, a t run time, both find themselves
involved in the same sort of computation: a
computation involving 2 * + @ and puts the defined word's address on the defining word.
EXECUTE. This suggests a defining word; the stack at run time, so that you will need a Because R U N ends with F UNTIL, complet-
CREATE part is simple, and the DOES> part SWAP before the 2'. As is often the case, the ing a task returns t o the main menu. (Most
should also be easy. Remember that DOES> tricky part is finding a good name for the Forths, including PC/Forth, provide the

B l o c k 1
O (B a s i c t oo l s Ham 1 0 : 2 7 02/08/86)

1
L O CONSTANT F - 1 CONSTHNT T
3
4 : MYKEY (- c f) (f T i f A S C I I c h a r a c t e r , F i f s p e c l a 1)

5 PCC:EY ?DUP O< > ;
I 5

7 : TAB (c o l # r o w # -) SWAP G070XY : (pos i t ions c c t r 5 o r -
8
o : -CURSOF: 1 4 O SET-CURSOR : i r e m o v e s c u r s o r)

1 0
1 1 : +CURSOR 6 7 SET-CL!RSOR : (rett.trns c!.trrcvr)

12
1 3 : HELL 512 (f r e q) B (d u r a t i o n) REEF' : (c a n he tuned)

14

R l o r l : : 2

O (S a m p l e opt ion s e l e c t inn Ham 10 : 2H c(I?/OR/Hh)

t
2 : "1 5 1 5 TAB . " F i r s t o p t i o n " :
7 : "2 7 15 TAB . " S e c o n d ep t ion " :
4 : "3 9 1 5 TAB ." T h l r d n p t t n n " ;
5 : "4 5 50 TAR . " F e c ~ r t h o p t i o n " ;
6 : "3 7 50 TAB ." F i F t h o p t i o n " :
7 : " 6 s S S , T A R ." @I-JIT or.,tion " : (a l w a v s ~ , f f e r r w . 3 ~ ol.tf)

R
9 (:REFITE OPTIONS 7 " 1 "7 "-< " 4 "3 " A r,

1 0
1 1 VAR1HBI.E #OPTIONS (t r o l d s r i r t m b ~ r rlf o p t 1 onc)

1 2

B l o c k ; 3

0 (O p t i o n a r l t h e m t i c Ham 1 0 : 3 4 t:)2/i:)R/RA)

1.
? : COL.17 (# - f) (T = optn i n l e f t c o l) WOPTIONS e 2/ ,' :
>

4 : C O L P (# - f (T = o p t n i n r l q h t c o l) COL17 NO7 :
5
h : CL.IP (W - # ') #OPTIONS @ MOD : (k e ~ p s no. i n l e q a l r a n q e)
7
8 : P L A I N i # -) 2 x OPTIONS + I EXECIJTE : (p r i n t s opt ion)

9
10 r INVEHSE (# -) REVERSE P L A I N REVERSE : o p t i o n i n v e r s e d)

11
1 2 : SHOWALL i:) INVEHSE #OPTIONS @ 1 DO I P L A I N LOOP ;
1 3
1 4 : COLSWAP (W - # ') DUP P L A I N *OPTIONS @ 2 / + C L I P DUF' INVERSE :
15

R l o c k 4

0 (Key i d e n t i f i c a t i o n Ham 10 : 2 7 0 2 / 0 R / R 6)

1
2 (T h e 75, 7 7 , 7 2 , a n d 80 a r e the key n u m b e r s returned by the
3 IRM, T h e f a l s e f l a g on t o p i n e f f e c t m a k e s the n u m b e r double
4 p r e c i s i o n . -65523. is s h o r t h a n d f o r 1 3 under a t r u e f l a g .)

5
6 : L? (d - f) 7 5 . D = ; (T i f l e f t a r r o w pressed)

7 r R 3 (d - f) 7 7 . D = : (T i f r i q h t a r r o w p r e s s e d)

8 : UP? (d - f) 7 2 . D m : (T i f up a r r o w p r e s s e d)

9 : DN? (d - f) 80. D- ; (T i f d o w n a r r o w p r e s s e d)

10 : CK? (d - f) -65523. D= ; (T i f c a r r i a q e r e tu rn pressed)

1 1

Volume VII. No 6 FORTH D~rnens~ons

word AGAIN as a synonym for F UNTIL.) The
program repeats until the user selects the
"quit" word, which breaks out of the loop.
(Another approach is to end the loop by
fetching a value from a variable - e.g.,
SWITCH @ UNTIL - and have the "quit"
task's sole job being to store a "true" (-1)
into the variable SWITCH.)

The approach illustrated in this example
can be used for a wide variety of menu-
based programs. The separate individual
tasks can, of course, present their own
menus, with subtasks associated with each
of those menu options. As an exercise,
revise GETOPTION so that it can be used by
these subsidiary menus as well as by the
main menu. Some of the revisions you will
want to consider are controlling the number
put into #OPTIONS (so that each subsidiary
menu can initialize it to the appropriate
value before calling GETOPTION) and altering
PLAIN (SO that it does not assume a
particular array but instead takes the array
address from a variable).

Michael Ham is a freelance programmer,
systems designer and writer in Santa Cruz,
California. This article is from a book in
progress. Copyright O 1986 by Michael Ham.

7

P l o r k 5

0 (S a m p l ~ o p t ~ o n s ~ l t - r t i o n Ham 113:34 O?/OR/Rh)

1
2 : GETPF'TTON (- #) 4 #OPTIONS ' C L S -CCIPSOR SHOWALL 0 H F G I N
3 M f k E Y 2DUP 1JP" I F 2DRrlP DlJP PL-AIlrl 1- TLLIP @UP INOFHSF F
4 EL SE ~ D ~ I P DM-' IF ZDPOF' DUP PC A IN 1 + r L JP DI IP I NVEKSE F
7 FI S F ZDIJP L I F 2DRl lP Dl lP r C l l 1 r' I F RF 1 L FI St? T(1L SWAP THFN F
A ELSE WUP FP IF TDK~IF' IYJP roL :'- IF RELL EI C;E TOI SWRP THEN t-
7 F L S F D l l P (' P 3 1 F r) R O P (w h a t 9 l ~ f t w l l l a c t a 3 t r t 1 e f l a q)
A FLSF .'DROP RFI I f THEN THFN THFN THFN THEN IJNTIL :
9

1 0 (l r a v ~ s o p t i o n # on star!; f ~ r s t npticln lc c p t ~ o r l ft 0)

I 1
12 T h ~ s v e r s l o n = o ~ t n d s a h r l l i f Llsvr a t t e m p t 5 t o m n v e l e f t
13 a n d i s ~n l e f t r o l t r m n . I t c o ~ t l d i n s t e a d w r a p t h e cursnr
1 4 b y r e p l a c - ~ n q ~ ~ L l ' I F R F I L E L S E C O L S W A P T H F N w ~ t h C C ~ l S W A P)

R l o c l 6
0 (nptions jobs Ham \0 :14 0 2 / C) R / R 6)

1
2 : OPTSTFITEMFNT (n - CL 5 -CCIHSOR 10 3 6 TAR . " O p t i o n " .
3 1 2 7 4 T A R . " P r e s s n b e y . " A F l L C F Y D R O P 1
4
5 r O P T l 1 OPTSTATEMENT : (f a C e jobs f o r I 1 1 c t s t r a t 1 on)

6 : n P T 2 2 OPTSTATEMENT :
7 : OPT7 3 OPTSTATEMENT ;
8 : O F 1 4 4 OPTSTATEMENT 8
9 : OPT5 5 OPTSTATEMENT ;

10 : n P T 6 +CURSOH BYE (lase +CURSOR AROHT d l ~ r i n g d e v e l o p m e n t) ;
1 1
12 CREATE TASKS 3 O P T l OPT2 OPT3 OPT4 OPT5 OPT6 C
1 3
1 4 : HUN B E G I N GFTOPTION 2s TASKS + @ EXECUTE F U N T I L ;

Public Forum on CompuServe! ! !

MacFORTHTW & Multi-FORTHTM support

Data Libraries with lots of public domain software

Guest speakers on Forth

General Forth Interest Topics

Auto Membership Logon

Three easy pieces; a modem, a telephone & a terminal

After you enter CompuServe type in: GO FORTH

Products:
Multi-FORTH- Commodore Amiga Version

Atari ST

HP Series 300 (~ 1 6 8 0 2 0 processor)

c&! 5- I*. 470 l Randolph Rd. Suite 12 Rorkville, Md. 10852
(301) 984-0262

FORTH D~mens~ons 14 Volume VII. No. 6

euroFORML
Robert Reiling, President

Forth Interest Group

-Stetlenfels Castle A castle in West Ger-
many was the location of the International
euroFORML Conference held October 25
through 27, 1985. Attending the conference
were sixty-six people from ten countries. All
the sessions were conducted in English in
order to provide a common language for this
diversified group. Of course, Forth was the
common computer language. The confer-
ence agenda included conference papers,
workshops, poster sessions, a panel discus-
sion, hardware and software demonstra-
tions, and time for independent discussions.

Stettenfels Castle is located near
Heilbronn in southern Germany, overlook-
ing agricultural land that is predominantly
vineyards. Gardens about the castle are
attractive and offered the opportunity for a
pleasant walk during breaks in the con-
ference program. The castle has sleeping
accommodations, and many conference
attendees stayed there throughout the
event. All meals were prepared by the castle
staff and were served in the dining hall.
Late-night discussion groups met in front
of the fireplace in the castle tower.

Klaus Schleisiek and other dedicated
Forth enthusiasts in Germany organized the
euroFORML Conference. They sent promo-
tional material throughout Europe, which
resulted in over fifty attendees from Europe
registering for the conference. Thirteen
registered from the United States. Klaus
appointed Michael Perry, from the United
States, to moderate the conference.

Conference papers were interesting and
informative. A brief look at these papers
follows.

English as a Second Language for Forth
Programmers
Wil Baden

There is a difference between spelling a
word and saying a word. With this state-
ment as an opening remark, Wil Baden
presented his ideas about "saying" such
Forth words as #, a, !, +!, 1, C! and others.
Baden suggests that C! should be pronoun-
ced "byte set"; @ would be "value." These
are only examples of Baden's proposal.
This paper caused a great deal of discussion
among the attendees.

Interpretive Logic
Wil Baden

This paper presents a method for condi-
tional execution, conditional compilation
and text editing, which extends Forth to be

responsive to modern system requirements.
Forth source screens are included to demon-
strate the principles he proposed.

Data Collection in Elementary Particle
Physics with 32-bit VAX/68K Forth
R. Haglund

Forth is used to control large-scale data
collection systems. This paper discusses the
application and then explains why Forth is
suitable for applications in physics. Hag-
lund points out that one can optimize both
development and execution speed to the
most suitable level.

In-Situ-Development: The Ideal ~Comple-
ment to Cross-Target-Compiling
A.P. Haley
H.P. Oakford
C.L. Stephens

This paper describes a package called
"In-Situ-Development," which aims to
provide an easily implemented technique to
a l l o w d e v e l o p e r s o f s t a n d - a l o n e
applications hardware and software to take
advantage of cross- target-compilers
without losing direct contact with their
hardware.

Forth and Artificial Intelligence
Robert LaQuey

This is a progress report on work with
Forth to implement the minimum set of
concepts needed for the support of artificial
intelligence. Several screens of Forth code
demonstrate the progress in this effort.

A Forth-Driven Network System for Ap-
plied Automation
D.C. Long

The availability of low-cost, single-board
computers and intelligent input/output
systems provides exciting new capabilities
for the automation of systems and entire
facilities. This paper describes an applica-
tions command language, implemented in
Forth, known as the "Master Control Pro-
gram." Supported hardware presently in-
cludes the Optomux family of intelligent
interface boards.

Performance Analysis in Threaded-Code
Systems
M.A. Perry

Perry states that a good rule of thumb is
that a program spends ninety percent of its
time executing ten percent of the code.
When some performance goal must be met,
it is necessary to find those routines in
which most time is spent and make them
run faster. Forth encourages modular pro-

gramming, and it is easy to replace a slow
routine once it has been found. Several
techniques for performance analysis in
Forth systems are described in this paper.

Generic Operators
T. Rayburn

The paper presents techniques for writing
Forth programs that have resulted in dra-
matic improvement to the readability of
code. Presented are current implementa-
tions and some ideas for future work.

Control Simulation for a Tape Deck
L. Richter-Abraham

The code for control of a stereo tape deck
is developed in this simulation example. A
"virtual tape deck" is used to check the
code. The ideas presented in this paper
could be used to develop a training program
for control simulation.

Preliminary Report on the Novix 4000
C.L. Stephens
W.P. Watson

The Novix 4000 is a true Forth processor
and is capable of ten million Forth instruc-
tions per second. It is implemented as a gate
array. This paper introduces the architecture
of the chip, its hardware configuration and
the software support provided with i t . Ap-
plication areas are suggested for the chip.

A Set of Forth Words for Electrical Net-
work Analysis
J . Storjohann

The program presented in this paper uses
a simple approach to describe components
and networks, and to immediately invoke
suitable arithmetic operations. This ap-
proach avoids the numbering of nodes and
the storing and inverting of large matrices.
The whole system, including the complex
floating-point words, occupies about two
kilobytes.

Forth Language Extension for Controlling
Interactive Jobs on Other Machines
D.K. Walker

A Forth application on an 1BM PC/XT is
described for 1) collecting, editing and
generating input for a large model of the
Norwegian economy used by the Norweg-
ian government; 2) transferring this infor-
mation to a mainframe; and 3) running
interactive jobs which check the input,
process it further and send it on to another
mainframe where the economic model equa-
tions are solved and result tables are written.
The application emulates a person operating

VolurneVII, No 6 15 FORTH D~rnens~ons

FORT 'Hkit

Parts

Instructions

Software

t o build your own
Computer

Novix NC4000

4x6" mother-board
P r e s s - f i t sockets
2 4Kx8 PROMS
cmFORTH
Brod ie on NC4000
A p p l i c a t i o n Notes

You provide:

Host computer
S e r i a l l i n e
I n t e r f a c e program
Power supply
6 RAM c h i p s
Misc . p a r t s
4 hours

You get:

4MHz Fo r th computer
Pin&socket busses
Simple i n t e r f a c i n g
Mu l t i -p rocessor

a r c h i t e c t u r e

$400, Complete!

COMPUTER
COWBOYS

410 Star H i l l Road
Woodside, CA 94062

6809 Systems available for
FLEX disk sustems $150

. 0S9/6809 $150
680x0 Systems available for

. MAC HTOSH $1 25
CP /M-68K $1 SO

I tFDRTH/2O for 68020
Single Board Computer I
Disk based development system

. . . under OS9 /68K $290
EPROM set for complete stand-

alone SBC. $390
Forth Model Librrru - List

handler, spreadsheet, Automatic
. . . . structure charts each $40

Tbl bot tlicrosystems 1 1927 Curtis A r e I
Redondo Beach

CA 90278
(2 13) 376-9941 I

68020 SBC , 5 1 I4 " fbppy size

board with 2MB RAM, 4 x 64K

EpROM sockets, 4 RS232 ports,

Centronics paral l~ l port, timer,

battery backed date/tirn?,

interface to 2 5 1 14" floppies

and r S AS1 interface to 2
winchester disks $2750
68881 flt pt option. $500

OS9 muititask&user 0s. . f 350 I F A ST! h t . benchmarks

speeds are I

a computer terminal. Forth techniques il-
lustrated include a finite-state, description-
language extension for controlling general,
interactive jobs on other machines.

RTDF: A Real-Time Forth System Includ-
ing Multi-tasking
H.E.R. Wijnands
P.M. Bruijn

This paper outlines a real-time Forth sys-
tem intended for use as a development tool
for single-processor control systems. Due to
the general language concepts applied, it
has also proved useful for discrete system
simulation and other concurrent program-
ming needs. It offers multiple task declara-
tion, initiation and priority assignment.

Event-Driven Multi-tasking: A Syntax
J . Zander

In this paper situations are investigated
where, for various reasons, interrupts can-
not be used. An example is when the condi-
tion tested is a very complex one. A Forth
syntax for general event handling is pro-
posed, including the structures EVERY,

... AFTER and WHENEVER PERFORM. An
implementation for (time-shared) multi-
tasking Forth is sketched.

AN of the euroFORML papers described
above and the complete 1985 FORML
papers from the USA conference at Asil-
omar, are included in the 1985 FORML
Proceedings. This book is available from
the Forth Interest Group.

FORTH Dimensions 16 Volume VII. No. 6

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

I IN THE FORTH INTEREST GROUP I
107 - MEMBERSHIP in the FORTH INTERESTGROUP &Volume8

of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth Interest Group is a worldwide non-profit member-supported
organization with over 4,000 members and 90 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $30.00 per year for USA, Canada & Mexico; all

other countries may select surface ($37.00) or air ($43.00) delivery.

The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated for
the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receivea membership card and number which entitles you to a
10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM
1. E a c h i t e m y o u w i s h t o o r d e r l i s ts t h r e e d i f f e ren t P r i ce ca tego r i es :

C o l u m n 1 - U S A , Canada , M e x i c o
C o l u m n 2 - F o r e i g n Su r face M a i l
C o l u m n 3 - F o r e i g n A i r M a i l

2. Se lec t t h e i t e m a n d n o t e y o u r p r i c e i n t h e s p a c e p r o v i d e d .

3. A f t e r c o m p l e t i n g y o u r se lec t i ons e n t e r y o u r o r d e r o n t h e f o u r t h p a g e o f t h i s f o r m

4. D e t a c h t h e f o r m a n d r e t u r n it w i t h y o u r p a y m e n t t o The Forth Interest Group.

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May -Apr i l)

101 - Volume 1 FORTH Dimens~ons (1979180) $15116118

102 - Volume 2 FORTH Dimensions (1980181) $15116118 - - - -_

103 - Volume 3 FORTH Dimens~ons (1981182) $15116118 _ _ _ _ _ -

104 - Volume 4 FORTH Dimensions (1982183) $15116118 ___--_

105 - Volume 5 FORTH D~mensions (1983184) $15116118 _-___-

106 - Volume 6 FORTH Dimensions (1984185) $15116118 - _ - - _

107 - Volume 7 FORTH Dimensions (1985186) $15116118 -

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-Forth for specific CPUs and
machines with compiler security and variable length names.

514 - 65021SEPT 80 . $15116118

515 - 6800lMAY 7 9 . . . $15116118 --_-

516 - 6809lJUNE 80 . $15116118

517 - 8080lSEPT 79 . $15116118

518 - 80861881MARCH 81 $15116118

519 - 9900lMARCH 81 . $15116118

520 - ALPHA MICROISEPT 80. $15116118

521 - APPLE IIIAUG 81.. $15116118

522 - ECLIPSEIOCT 8 2 $15116118

523 - IBM-PCIMARCH 8 4 $15116118

524 - NOVAIMAY 81 . $15116118

525 - PACEIMAY 79 . $15116118

526 - PDP-11IJAN 80 . $15116118

527 - VAXIOCT 8 2 . . . $15116118

528 - Z801SEPT 82 . $151 16118 --

Volume Vii . No. 6 17 FORTH Dtrnens~ons

BOOKS A B O U T F O R T H
200 - ALL ABOUT FORTH $25126135 -__

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard
Forth.

205 - BEGINNING FORTH $17118121
Paul Chirlian
Introductory text for 79-Standard.

215 - COMPLETE FORTH $16117120 - -

Alan Winfield
A comprehensive introduction including problems with
answers. (Forth 79)

220 - FORTH ENCYCLOPEDIA $25126135 -----
Mitch Derick & Linda Baker
A detailed look at each Fig-Forth instruction.

225 - FORTH FUNDAMENTALS, V. 1 $16117120 _--_--

Kevin McCabe
A textbook approach to 79-Standard Forth.

230 - FORTH FUNDAMENTALS, V. 2 $13114116
Kevin McCabe
A glossary.

232 - FORTH NOTEBOOK $25126135 -
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice
is included. Code is well documented.

233 - FORTH TOOLS . $20121 124 _ _ - _ - _

Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 - INSIDE F 83 . $25126135 -_----
Dr. C. H. Ting
Invaluable for those using F-83.

237 - LEARNING FORTH.. $17118121 ------
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of
Forth. Includes section on how to teach children Forth.

240 - MASTERING FORTH $18119122
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands
of the Forth-83 International Standard; with utilities,
extensions and numerous examples.

245 - STARTING FORTH (soft cover) $20121 124
Leo Brodie
A lively and highly readable introduction with
exercises.

246 - STARTING FORTH (hard cover) $24125129 ------
Leo Brodie

255 - THINKING FORTH (soft cover) $16117120
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 - THREADED INTERPRETIVE LANGUAGES$23125128 --_---
R.G. Loeliger
Step-by-step development of a nonstandard 2-80 Forth.

270 - UNDERSTANDING FORTH $3.501516 ------
Joseph Reymann
A brief introduction to Forth and overview of its
structure.

FORTH D~rnens~ons

I F O R M L CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is an
informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORMLis part of the Forth
Interest Group

310 - FORML PROCEEDINGS 1980 $30/33/40 -
Technical papers on the Forth language and extensions.

. 31 1 FORML PROCEEDINGS 1981 (2V) $45148150 -
Nucleus layer, interactive layer, extensible layer,
metacompilation, system development, file systems,
other languages, other operating systems, applications
and abstracts without papers.

. 312 FORML PROCEEDINGS 1982 $30133140 -
Forth machine topics, implementation topics, vectored
execution, system development, file systems and
languages, applications.

. 313 FORML PROCEEDINGS 1983 $30133140 -
Forth in hardware, Forth implementations, future
strategy, programming techniques, arithmetic & floating
point, file systems, coding conventions, functional
programming, applications.

. 314 FORML PROCEEDINGS 1984 $30133140 -
Expert systems in Forth, using Forth, philosophy,
implementing Forth systems, new directions for Forth,
interfacing Forth to operating systems, Forth systems
techniques, adding local variables to Forth.

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research. Inc. is anon-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.

321 - ROCHESTER 1981 (Standards Conference) $25128135 __. _ _ _
79-Standard, implementing Forth, data structures,
vocabularies, applications and working group reports.

322 - ROCHESTER 1982
(Data bases & Process Control). $25128135 __-.-_

Machine independence, project management, data
structures, mathematics and working group reports.

323 - ROCHESTER 1983 (Forth Applications) . $25128135 _.-__-

Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like
languages, new techniques for implementing Forth and
working group reports.

324 - ROCHESTER 1984 (Forth Applications) . $25128135 _ _ _ _ _ _
Forth in image analysis, operating systems, Forth chips,
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 - ROCHESTER 1985
(Software Management and Engineering)$20121124 -
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport,
development of MAGICIL, and a Forth-based business
applications language, includes working group reports.

-

18 Volume VII, No 6

THE JOURNAL OF FORTH APPLICATION 81 RESEARCH
A refereed technical journal published by the Institute for Applied Forth
Research. Inc

401 - JOURNAL OF FORTH RESEARCH V . l #1 $15116118
Robotics.

402 - JOURNAL OF FORTH RESEARCH V . l #2 $15116118 _ -
Data Structures.

403 - JOURNAL OF FORTH RESEARCH V.2 #1 $15116118
Forth Machines.

404 - JOURNAL OF FORTH RESEARCH V.2 #2 $15116118
Real-Time Systems.

405 - JOURNAL OF FORTH RESEARCH V.2 #3 $15116118
Enhancing Forth.

406 - JOURNAL OF FORTH RESEARCH V.2 #4 $15116118 ---__-
Extended Addressing.

407 - JOURNAL OF FORTH RESEARCH V.3 #1 $15116118 _--_--
Forth-based laboratory systems and data structures.

REPRINTS
420 - BYTE REPRINTS . $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte magazine.

421 - POPULAR COMPUTING 9183 $51617 --_---
Special issue on various computer languages, with an
in-depth article on Forth's history and evolution.

DR. DOBB'S JOURNAL
This magazine produces an annual special Forth issue which includes
source-code listings for various Forth applications.

422 - DR. DOBB'S 9182.. $51617

423 - DR. DOBB'S 9183.. $51617

424 - DR. DOBB'S 9184.. $51617
425 - DR. DOBB'S 10185 $51617 -

HISTORICAL DOCUMENTS
501 - KlTT PEAK PRIMER.. $25127135

One of the first institutional books on Forth. Of his-
torical interest.

502 - FIG-FORTH INSTALLATION MANUAL . . $151 16118
Glossary model editor - We recommend you purchase
this manual when purchasing the source-code listings.

503 - USING FORTH . $20121123
FORTH. Inc. -

REFERENCE
305 - FORTH 83 STANDARD $15116118 -

The authoritative description of 83-Standard Forth. For
reference, not instruction.

300 - FORTH 79 STANDARD $15116118 -
The authoritative description of 79-Standard Forth. Of
historical interest.

316 - BIBLIOGRAPHY OF FORTH REFERENCES
2nd edition, Sept. 1984 $15116118 -
An excellent source of references to articles about
Forth throughout microcomputer literature. Over 1300
references.

MISCELLANEOUS
601 - T-SHIRT SIZE

Small, Medium, Large and Extra-Large.
White design on a dark blue shirt. $10111112 -

. 602 - POSTER (BYTE Cover) $15116118 -

I 616 - HANDY REFERENCE CARD FREE _
. 683 FORTH-83 HANDY REFERENCE CARD FREE -

FORTH MODEL LIBRARY
The model applications disks described
below are new additions to the Forth
Interest Group's library. These disks are
the first releases of new professionally
developed Forth applications disks.
Prepared on 5 114"disks , they are IBM MS
DOS 2.0 and up compatible. The disks are
compatible with Forth-83 systems currently
available from several Forth vendors.
Macintosh 3 1/2"disks are available for
MasterFORTH systems only.

Forth-83 Comsatibilitv ISM MS DOS
LaxenIPerry F83 LMI PCIFORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
POI~FORTH@II

Forth-83 Comsatibilitv Macintosh
MasterFORTH

ORDERING INFORMATION

701 - Volume 1 - A Forth List Handler
by Martin J. Tracy $40143145
Forth is extended with list primitives to
provide a flexible high-speed environment
for artificial intelligence. ELlSA and Winston
& Horn's micro-LISP are included as
examples. Documentation is included on
the disk.

702 - Volume 2 - A Forth Spreadsheet
by Craig A. Lindley $40143145
This model spreadsheet first appeared in
Forth Dimensions Volume 7, Issue 1 and 2.
These issues contain the documentation for
this disk.

703 - Volume 3 - Automatic Structure
Charts by Kim R. Harris

$40143145
These tools for the analysis of large Forth
programs were first presented at the 1985
FORML conference. Program
documentation is contained in the 1985
FORML Proceedings.

' Please s~ec i fv disk size when ordering.

Volume VII. No. 6 19 FORTH D~rnenslons

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668 I

Name

Title

Company

Address

City

State/ Prov. Zip

Country

Phone

SUBTOTAL

ITEM

107

VISA MASTERCARD

Card #

TITLE

MEMBERSHIP

Check enclosed (payable to: FORTH INTEREST GROUP)

SUBTOTAL

CA. R E S I D E N T S S A L E S T A X

10% M E M B E R D I S C O U N T

MEMBER +t

1 Expiration Date
HANDLING FEE $2.00

Signature

I ($15.00 minimum on charge orders) NEW RENEWAL $30137143

AUTHOR

I

1 PAYMENT MUST ACCOMPANY ALL ORDERS

QTy

4/86

FORTH D~rnens ions 20 VolurneVl l N o 6

I I

UNIT
PRICE

)

TOTAL

SEE BELOW

MhlL ORDERS
Send to
Forth Interest Group
P 0 Box 8231
San Jose CA 95155

PHONE ORDERS
Call 4081277 0668 to place
credit card orders or for
customer servlce Hours
Monday-Frtday 9am 5pm
PST

SALES TAX
to

Contra
LosAnge'es-

Cruz Count1es3
add "'% 'Iara
Countyt add 7%, Other
Ca l~ fo rn~a Count~es
add 6%

SHIPPING TIME
Books in stock are shlpped
wlthin f ~ v e days of receipt
of the order Please allow
4 6 weeks for out of-stock
books (delivery ~n most
cases will be much sooner)

PRICES
All orders must be prepa~d Prlces are
subject t o chaiige wlthout notice Credit
card orders will be sent and b~ l led at
current prices $15 mlnlmum on charge
orders Checks must be in US$ drawn
on a US Bank A $10 charge wll l be
added for returned checks

POSTAGE & HANDLING
Prlces Include shlpplng A
$2 W handllng fee e
required wlth al l orders

Teachina Forth:

Let's Keep It Simple
Ronald E. Apra challenge the Forth community to see what the parts of the conditional should go.

San Jose, California they can come up with. When a student gets some practice with the

For as long as I have taught beginning
programming to elementary and secondary
students, the IF THEN construct has been a
source of confusion and frustration for
beginning students. The problem is further
compounded when you introduce the ELSE
statement along with IF THEN. Students
who have taken geometry before taking
programming seem to handle this construct
much better due to their experience with IF
THEN statements in formal proofs. How-
ever, if geometry is made a prerequisite for
programming, you limit the number of
students who can take programming.

I feel that the source of this confusion lies
partly in the syntax of the IF THEN ELSE
phrase (BASIC, Logo and Pascal) or the
more mind-boggling IF ELSE THEN
expression used in Forth. Apple Logo and
IBM Logo offer two interesting ways to
deal with the problem. In the first method,
the operation IF is followed by a test that
produces a true or false flag followed by
one or two instruction lists. If the flag is
true the first instruction is executed, and if
the flag is false the second instruction is
run. This method eliminates the words
THEN and ELSE. In the following Logo
procedure,

TO DECIDE
OUTPUT IF 0 = RANDOM 2 ["YES]

["NO]
END

the 0 = RANDOM 2 after the IF produces
a "TRUE flag if RANDOM 2 is 0 and the
procedure will OUTPUT the message YES.
If 0 = RANDOM 2 is "FALSE, then the
procedure will run the second list, which is
equivalent to the ELSE phase of a condi-
tional. In the second method, the Logo
commands TEST, IFTRUE and IFFALSE
can be used to write the procedure DECIDE
in the following way:
TO DECIDE
TEST 0 = RANDOM 2
IFTRUE [OUTPUT "YES]
IFFALSE [OUTPUT "NO]
END
where a very readable procedure is
produced. TEST yields a "TRUE or
"FALSE flag for IFTRUE and IFFALSE.

Since some of my students do program in
Forth, it would be a good exercise for them
to see if they could come up with a con-
struct in Forth that would work similarly to
the above Logo procedure. I am not at this
time proposing that the standard IF ELSE
THEN construct in Forth be changed, but I

In playing around with this problem in TEsTlT IFTRUE IFFALSE construct, he can
Forth, I have written the four simple words better understand the IFTRUE ELSE ENDlT Or
TESTIT, IFTRUE, IFFALSE and ENDIT. TESTIT is IFFALSE ELSE ENDlT structure in EXAMPLE2

defined simply as and EXAMPLE3 of screen 95.

: TESTIT (n -- n n) DUP ;

and can be used to duplicate a flag or some
number on the stack that is about to be
tested. In EXAMPLEI on screen 95, TESTIT is
duplicating the flag produced by O = and in
EXAMPLE4 on screen 96, TESTIT is duplicat-
ing the number on the stack that is about to
be tested by 1 = . IFTRUE is a new name for
IF, and ENDIT is a new name for THEN (see
Forth Dimensions VI/l, page 26, for a
different version of ENDIT). I defined IFTRUE
and IFFALSE as follows:

: IFTRUE (flag --) [COMPILE] IF ; IMMEDIATE

: IFFALSE (flag --) [COMPILE] THEN ; IMMEDIATE

On screen 95, EXAMPLEI resolves an IF
ELSE THEN condition with a TESnT IFTRUE
IFFALSE structure. By the nature of the
syntax, the student can point out the o= test
of n and knows, if the flag is true, where the
true condition will be executed. For
beginning students, the IF ELSE THEN
syntax does not leave enough clues to where

On screen 96, EXAMPLE4 can produce
some interesting results where TESTIT is
duplicating the input to be tested by i =.
See if you can explain why 3 EXAMPLE4
outputs "twothreefour" and then create
your own crazy EXAMPLE. I bet there are
some interesting things that can be done
with TESTIT and multiple IFTRUE and IFFALSE
statements. In EXAMPLES. the words TESTIT.
IFTRUE and ENDIT seem to improve the
readability of the nesting, but 1 try to
encourage students to avoid nesting if at all
possible.

I stress "keep it simple" in my program-
ming philosophy, but most beginning stu-
dents are overwhelmed by the articles that
appear in Forth Dimensions. For example,
the "Techniques Tutorial" department
seemed to be a showcase for the skills of
some truly great programmers, but it was
over the heads of many beginners. I hope
this article will stimulate more thought
along the lines of "keeping it simple."

2 : TEST IT (r! -- rt r~ j DUP ;
3 : ENDIT CCOMPIL-E:: 'THEN ; 1MME:DIFhTE
4 : IFTRUE (f l a q -- i CCUMPILE3 I F : ImVEDiiATE
5 : IFFRLSE: (f i a q --) COMPILE NOT CCOMPILEI I F : IMMEDIRTFE
6,
7 : EXRMPLE1 (n --)

0 a= TEST IT
3 IFTRUE . " t r u e " END>: I'

1 i3 IFFFlLSE . " faise" Ei\iDi'S :
1 1.
12 : EXRMPLE2 (ri --) i3= IFT'RLIE . I ' tt-i.te" Cii-SE '' f a l s e " EhiDj-r ;
13
14 : EXREPLEA (n -- O= I F F G I S E . " f a i s e " ELSE . " t r u e " EIXDIT :

5CR ~ 4 6
IZI (TESTIT, IFTRLJE, IFPLSE, E.NDIT ra/EJct/85)

1
? : EXRMPLE4 (r~ --)

3 TEST IT 1 = IFTRUE . " o n e " ENDIT
4 TEST IT :: = I F F R i S E . " t w o " E h D i T
r TEST IT 3 =' IFTRUE . " t h v e e " EhiDIT
6 TES'TIT 4 = IFFRLBE . " fo~.{r" ENIII':
7 DROP ;
8
9 r EXRMPLES (n --)

18 TEST IT I = IIFTRIJE . " o r ~ e " ELSF
1 1 TEST IT P = IFT'RUE . " ,two" ELSE
12 TEST IT 3 = IFTRUE . " t h r ~ e c " ELSE
13 TEST IT 4 = IFTRUE . " four.." ELSE
14 E.NDIT ENDIT ENDIT ETNDIT DROP ;

Cili
1 EXQllirriE4 or~etwt:four-
2 EXRYPLE4 .ftir.\r
3 EXi3lriPLE4 i w o t h r e e f ~ : . , ~ c r
4 E:XAMPLE.4 two'

Volume VII. No. 6 21 FORTH D~mensions

SOFTWARE COMPOSERS

DELTA BOARD
DELTA EVALUATION SYSTEM

DELTA MEMORY AND BACKPLANE
The Delta Evaluation System - $895
4 MHz Delta Board with Novix NC4000 Forth Chip on board.
cmFORTH programming language interpreter and compiler in EPROM.
User manual, board schematic, and user bulletin board support.
4K 16 bit words of static RAM and 4K words of EPROM.

8 selectable 256 word data stacks and return stacks for multi-tasking.
2 1 independently programmable single bit I10 ports.

4 112" x 6 112" board with 72-pin edge-connector bus with all major NO\
signals.
Delta Regulator Base with attached connector and single 5-volt wall
mount pbwer supply.

Reset switch and serial port on board with RS232 connector and cable.
Novix chips available to Delta Board customers.
90 day warranty.

Ful ly assembled, tested, and ready to use.

DELTA EVALUATION SYSTEM

I'm delighted to see Software Composers' board on the market. It provides
incredible capability and versatility with minimal parts, size and price. An
excellent introduction to the new generation of hardware and software.

Chuck Moore, November 1985

For product information or for information on how to order, write:
Software Composers

210 California Avenue #F
Palo Alto, CA 94306

(415) 322-8763

For a copy of the Delta User's Manual, enclose a check for $35.00 to Software Composers,
(If you later purchase a Delta Board Evaluation System, a Delta Board, or the Delta Board
Kit, the price of the manual will be deducted from your bill).

COMING SOON!
THE DELTA DEVELOPMENT SYSTEM

SCFORTH DEVELOPMENT LANGUAGE
Software Composers is an authorized Novix Distributor

FORTH D~rnens~ons 22 Volume VII. No. 6

F83 String Functions
Clifford Kent

Mottville, New York

I was drawn to the Laxen and Perry F83
public-domain Forth model by its meta-
compiler, full source code and many in-
novations. The following is a language
extension in support of that model, for use
when programming time is more important
than program execution speed.

The string functions that follow were
developed from those presented in BYTE
by John Cassady ("Stacking Strings in
Forth," 1980, reprints available from the
Forth Interest Group). Those interested in a
more complete description of how a string
stack works should see that article. While
some words are taken directly from that
article, others have been changed to use the
facilities of F83, and many new functions
have been added. This string function pack-
age brings to Forth the ease of text handling
usually found in more limited (or is it
limiting?) languages like Pascal or BASIC.

Three forms of string storage are used.
String constants can be compiled into the
Forth dictionary for use at run time. String
variables compile named buffers into the
dictionary. A string stack is located in high
memory outside the Forth dictionary, be-
tween the dictionary top and the parameter
stack, for use in manipulating strings. As
strings are added, it grows downward
toward the dictionary.

The action of the string stack is parallel
to the action of the parameter stack. I have
made a conscious effort to keep these string
functions consistent with their numeric
equivalents. All string functions are direc-
ted at the top of the string stack and/or the
top of the parameter stack. A string con-
stant places its characters on the string stack
just as a numeric constant places its value
on the parameter stack. The run-time
action of a string variable is to place an
address on the parameter stack. When you
fetch a string variable, its characters are
copied to the string stack top. When the top
string is saved in a string variable, it is also
removed from the string stack. String con-
stant arrays and string variable arrays ex-
pect a zero-based index on the parameter
stack. The string variable array returns an
address. A string constant array moves the
string constant to the string stack.

In order to store variable-length strings
on the string stack, each string of characters
on the string stack is preceded by a sixteen-
bit string length. This limits maximum
string length to 65,535 characters. Some of
the functions in the package assume signed

integers in their error testing; these
functions will only operate correctly with
strings of less than 32,765 characters. I have
not found this to be a problem. Since there
are no checks of the contents of the strings
handled by these words, they may also be
used to manipulate data records of any data
type. For example, if a temporary array is
needed, just use SCHRS to create a string of
the correct length, filled with any character.
Use SP@ 2 + to find the address of the first
byte in the array. SDROP reclaims the space
when done.

Many words specific to the Laxen and
Perry F83 Forth Model have been used
here. While performance is quite good,
these words are not extremely portable. The
smart MOVE is used where needed to avoid
problems with overlap. LENGTH is the
sixteen-bit equivalent of COUNT. SCAN
searches for the first occurrence of a char-
acter. UPPER converts lower case to upper
case. TUCK can be replaced by
DUP ROT SWAP. BETWEEN does a ranged
test. NUMBER? converts a string to a double
number and a success/failure flag.
COMPARE does a < = > test of two strings.

A glossary, full source code with shadow
screens and an index to the source are
included here.

The CP/M version of F83 positions the
block buffers, return stack and parameter
stack in memory each time it is loaded from
disk. (See KERNEL80.BLK screen 85 for
the F83 cold-start code.) In order for pre-
compiled systems using a string stack to be
portable, the string stack must be positioned
relative to the parameter stack each time it
loads. SP-lNrr does this initialization. It should
be included as part of the system or applica-
tion initialization. (See EXTEND80.BLK
screen 2 for the word HELLO.) I normally
allow 512 bytes for the parameter stack; to
allow more or less space, change the defi-
nition of SP-INIT in screen 16.

TOPS and sect are very handy for adding
new string functions. They include error
checking, and return an address and length
suitable for use by S@, TYPE, CMOVE,
CMOVE> or MOVE.

The sub-string functions S w s , $DELETE
and SCOPY use one (not zero) to point to the
first character in a string. This, along with
the testing done by SDELETE and $COPY,
allows the results of a SPOS search to be
used directly, without IF THEN statements,
to trap errors. For example,

ASCll , SPOS
1 SWAP SCOPY

will search the top string for a comma and
copy all characters up to and including the
comma to a new top string. If no comma is
found, a null string will be created. Or, you
could use:

ASCII , SPOS
PDUP IF
I SWAP SCOPY THEN

to avoid the creation of the null string.
SIN needs a maximum string length on the

parameter stack. It uses EXPECT to get a
string from the terminal and pushes it onto
the string stack. The F83 version of EXPECT
is unusually flexible: it uses an execution
array to decode control characters. The
variable cc holds a pointer to this array, so
the editing functions available can be
changed by creating a new execution array
and changing cc. In this way, the action of
SIN can be redefined as required for dif-
ferent functions.

String variables store the buffer size when
compiled. ~ V A R ! uses this number when
saving a string. The actual string length is
saved for use by WAR@. Thus, strings are
only stored to the length of the variable's
buffer, and are fetched in their original
length if the string was shorter than the
variable's buffer. Note that the string
variable buffer is cleared to blanks in
preparation for each string save. This al-
lows alternate versions of S V A R ~ to fetch
fixed-length strings for output in fixed-
length fields. It also allows an entire data-
base record to be assembled in a string
variable's buffer.

Nearly all of the standard Forth number-
printing words have been translated to
create strings instead. Their use should be
clear. $DOLLARS is a useful, special-case
word. It converts a double number (as-
sumed to be dollars x 100) into a right-
justified string of specified length with a
leading dollar sign. It calls the more general
number formatter (declmalSD.R) that can be
used to create other specialized number
formats.

The word S= uses the F83 word COMPARE
to test the top two strings up to the length
of the shorter string. CAPS is tested before
each string compare. If CAPS is true, both
strings are converted to upper case before
comparing the strings.

There is only a little error checking in
these words, but it is generally adequate to
prevent total system destruction. For those
who want no error trapping:

Volume VI I No 6 23 FORTH D~mens~ons

When you order from SOTA. both the fig
model and 79 standard come complete
with the following extra features a t no

additional charge:
full featured string handling assembler

screen editor floating point double word
entension set relocating loader beginner's
tutorial comprehenstue programmer's guide

enhaustiue reference manual unparalleled
technical support source listings

unbeatable price

PleeSe bill my 0 VISA 0 MeSterCerd
for $89 95 l Piease send me 79 5tandwd FORTH f l g ~ O R ~ k ~ ~ 1
for the

IBM PC XT o AT (and companbles)
TRS-80 Model 1 Model I l l 0 Model 4 0 Model 4P
CP/M version z x CP/M PIUS (Vers~on P x)
For CP/M versions please note 5 1/4 formats only and
pleese specify computer type

I I
IlRmE:
STREET:
CITY/TOWn:
STRTE: ZIP:
CRRD TYPE: EXPIRY: -
CRRD no:

- --
FORTH D~menslons Volume VII. No. 6

COMBINE THE
RAW POWER OF FORTH

WITH THE CONVENIENCE
OF CONVENTIONAL LANGUAGES 1

STRINGS Vocabuiam not for maximum execution s ~ e e d . 1 have

Fifty-one names have been defined: tried to maintain functional grouping with-
in the source so that parts of the package

I' in: TOOLS.8LK screen: 1 7
I" in: T O O L S . 8 L K screen: 2 1
I t in: TOOLS.BLK screen: 1 8
I. in: TOOLS.BLK screen: 1 8
$= in: TOOLS.BLK screen: 3)
t e ln: TOOLS.BLK screen: 1 7
I C H R S ln: TOOLS.BLK screen: 1 9
ICONST-ARRAY in: T O O L S . 8 L K screen: 2 4
I C O N S T A N T in: T O O L S + B L K screen: 2 4
$COPY in: TOOLS.8LK screen: 2 0
I D . in: TOOLS.8LK screen: 2 5
I 0 . L in: TOOLS.BLK screen: 2 5
I 0 . R in: TOOLS.BLK screen: 2 5
I D E L E T E rn: T O O L S . 8 L K screen: 2 0
I D O L L A R S in: TOOLS.8LK screen: 2 6
I D R O P in: TOOLS.8LK screen: 1 7
SOUP in: T O O L S . 8 L K screen: 1 8
I I N in: T O O L S . 8 L K screen: 2 1
I L C - > U C in: TOOLS,BLK screen: 2 7
I N . in: TOOLS.BLK screen: 2 5
$N,L in: T O O L S . 8 L K screen: 2 5
I N . R in: TOOLS.BLK screen: 2 5
I O V E R in: TOOLS.BLK screen: 1 8
I P in: TOOLS,BLK screen: 1 6
I P ! in: T O O L S . 8 L K screen: 1 6
I P - I N I T ~ n : T O O L S . 8 L K screen: 1 6
$PO ~ n : T O O L S . 8 L K screen: 1 6
I P O I P ' in: TOOLS.BLK screen: 1 6
I P 2 e in: TOOLS.BLK screen: 1 6
$ P e in: T O O L S . 8 L K screen: 1 6
I P O S in: TOOLS.BLK screen: 1 9
I S T R I P in: T O O L S . 8 L K screen: 2 8
I S Y A P in: TOOLS.BLK screen: 1 9
I T R I M in: T O O L S . 8 L K screen: 28
I U . in: TOOLS.BLK screen: 2 5
I U C - > L C in: TOOLS.8LK screen: 2 7
I V R L in: TOOLS.8LK screen: 2 9
P."JR! in: TOOLS.8LK screen: 2 3
IVAR-ARRAY in: TOOLS.BLK screen: 2 2
I U A R e in: T O O L S . 8 L K screen: 23
I V R R F I L L in: T O O L S . 8 L K screen: 2 3
I V R R I A B L E in: TOOLS,BLK screen: 2 2
I s t t in: TOOLS.BLK screen: 2 5
Ivar-build in: T O O L S . 6 L K screen: 2 2
(char-test) in: TOOLS.BLK screen: 2 0
(decinalS0.R) ~ n : TOOLS.BLK screen: 26
7 i $ p e in: TOOLS.BLK screen: 16
7 2 I P e in: T O O L S . 8 L K screen: 1 6
S e c I in: TOOLS,BLK screen: 1 7
T O P I in: TOOLS.8LK screen: 1 7
[" I in: TOOLS.BLK screen: 2 1

C

could be used when dictionary space is
tight.

Finally, I would like to express my thanks
to Hank Fay and the members of the
Central New York FIG Chapter for their
encouragement and constructive criticism.

Glossary

SPO (S -- addr)
A constant that points to the string stack
base. I normally allow for 512 bytes of
stack RAM. Some applications will need
more, others less.

Sp (S -- addr)
A variable that holds the address of the
current string stack top.

String stack initialization routine. Make
this word part of your system or application
startup. This is needed because F83
positions the block buffers, return stack
and parameter stack in memory each time it
loads. SP-INIT positions the string stack by
checking the stack pointer base. To change
the size of the parameter stack, change the
512 in this word to the stack size needed.

SPOSP! (S --)
Clear the string stack by resetting the string
stack pointer.

SP! (S addr --)
Save a new string stack pointer.

replace ?I~P@ and ?~SP@ with SP@ and Sp@ (S -- addr)
SP2@. Fetch the string stack pointer. Returns the
remove (char-test) from $DELETE and address of the length of the top string.
SCOPY.

be very careful when running new code.

I have also included my string stack
debugging tools in screen 35. For a clear
understanding of the string stack in opera-
tion, I suggest using each word in a simple
example, then dumping the string stack or
string variable to see what has happened in
memory.

The functions presented here are by no
means a complete set, and additions will be
welcomed. These words are compiled in
1813 bytes by F83. As presented here, the
code is optimized for size and ease of use,

SP2@ (S -- addr)
Fetch a pointer to the second string.
Returns the address of the length of the
second string.

?tSp@ (S -- addr)
Fetch the string stack pointer. Aborts with
an error message if the string stack is
empty.

?2SP@ (S -- addr)
Fetch the pointer to the second string.
Aborts with an error message if the string
stack does not contain two strings.

Why HS/FORTH? Not for speed
alone, although it is twice as fast as
other full memory Forths, with near
assembly language performance
when optimized. Not even because
it gives MANY more functions per
byte than any other Forth. Not be-
cause you can run all DOS com-
mands plus COM and EXE programs
from within HS/FORTH. Not be-
cause you can single step, trace, de-
compile &dissassemble. Not for the
complete syntax checking 8086/
8087/80186 assembler & optimizer.
Nor for the fast 9 digit software float-
ing point or lightning 18 digit 8087
math pack. Not for the half mega-
byte LINEAR address space for
quick access arrays. Not for com-
plete music, sound effects & graph-
ics support. Nor the efficient string
functions. Not for unrivaled diskflex-
ibility - including traditional Forth
screens (sectored or in files) or free
format files, all with full screen edi-
tors. Not even because I/O is as
easy, but far more powerful, than
even Basic. Just redirect the charac-
ter input and/ or output stream any-
where - display, keyboard, printer
or corn port, file, or even a memory
buffer. You could even transfer con-
trol of your entire computer to a
terminal thousands of miles away
with a simple >COM <COM pair.
Even though a few of these reasons
might be sufficient, the real reason
is that we don't avoid the objections
to Forth - WE ELIMINATE THEM!
Public domain products may be
cheap; but your time isn't. Don't
shortchange yourself. Use the best.
Use it now!
HS/FORTH, complete system: $395.
with "FORTH: A Text & Reference"
by Kelly and Spies, Prentice-Hall
and "The HS/FORTH Supplement"
by Kelly and Callahan

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

Volume VII, No. 6 25 FORTH Dirnens~ons

SDROP (s -- 1
Drop top string.

S@ (S addr len --)
Fetch to the string stack the string whose
address and length are on the parameter
stack.

TOPS (S -- addr len)
Returns the address of the first character
and the length of the top string.

SecS (S -- addr len)
Returns the address of the first character
and the length of the second string.

S! (S addr --)
Pop the top string to the address on the
parameter stack. The string length is not
moved with the string. This is not for use
with string variables.

S. (S -- 1
TYPE the top string to the current output
device. Like a number on the parameter
stack, the top string is lost.

SDUP (s -- 1
Duplicate the top string.

S + (S --) .
Combine the top two strings into one
string. The second string will be added to
the end of the top string.

SOVER (s --)
Copy second string and push it on the string
stack.

SSWAP (s -- 1
Swap the top two strings.

SPOS (S c -- pos I 0)
Search the top string for the character on
the parameter stack. If not found, return a
zero; if found, return the position of the
character. The first character is number one
(not zero). The output of SPOS may be used
directly by $DELETE and SCOPY.

SCHRS (S len c --)
Makes a new string of specified length,
filled with character c. (This need not be a
printable character.)

(char-test) (S pos cnt -- post cnt')
Error trap routine used by SDELETE and
$COPY. This will prevent most big errors by
changing pos and cnt to legal values for the
current top string.

SDELETE (S ~ O S cnt --)
Delete cnt characters from the top string,
starting at pos. The input string is destroy-
ed. Impossible input will result in no change
to the string. The string's characters are
numbered starting at one (not zero).

SCOPY (S pos cnt --)
Make a new string at the top of the string
stack by copying part of the old top string.
The copied string starts at pos and includes
cnt characters. The old top of string stack is
not changed. Impossible input creates a null
string. The string's characters are numbered
starting at one (not zero).

SIN (S n --)
A simple input line editor that gets a string
of maximum length n from the terminal and
leaves it on the string stack. This uses the
F83 version of EXPECT, which can be re-
defined to change the functions of the input
editor by changing the execution array
pointed to by the variable cc or by changing
cc to point to a different execution array.

$VARIABLE (S compile: $len --)
(S run-time: -- addr)

Used in the form

1s $VARIABLE < name >

to create a new string variable with space
for fifteen characters. When <name> is
executed, it returns the address of the
length (sixteen bits) of the currently stored
string. The maximum length of a string
variable's buffer is stored at addr-2.

SVAR-ARRAY (S compile: $len size --)
(S run-time: n -- addr)

Used in the form

1s 8 SVARIABLE < name >

to create a new array of string variables
<name> with space for eight strings of
fifteen characters each. When <name> is
executed, it converts element number n to
the address of the length (sixteen bits) of the
currently stored string. The maximum
length of each of the string array variable's
buffers is stored at addr-2.

SVARFILL (S addr c --)
Fill the string variable at addr with
character c.

WAR@ (S addr --)
Fetch the string at addr and push it on the
string stack. Since the string's actual length
is stored with the characters, only the
characters originally saved will be returned.
If the string variable is empty, a null string
will be returned.

SVAR! (S addr --)
Pop the top string from the string stack and
save it in the string variable at addr. The
string variable's buffer is first cleared to
blanks. The actual string length is saved
with the characters for later use. If the top
string is too long for the string variable's
buffer, it will be truncated on the right.

["I (S -- 1
Used by 91 to move an in-line compiled
string to the string stack.

S" (S -- 1
If compiling, compile the string that follows
in-line to be moved to the string stack at
execution time. If executing, put the
enclosed string on the string stack. Used in
the form:

(5" File not found")

$CONSTANT (S compile: --)
(S run-time: --)

A defining word that compiles named string
constants. At compile time, create an
initialized string constant. At run time,
move the constant to the string stack top.
Example:

S CONSTANT TITLE "Annual Reportg3

where TITLE would place 'Annual Report'
on the string stack. Note: Use one blank
followed by a double quote after the name
of the SCONSTANT. WORD is used to compile
the string up to the second double quote,
and WORD is very picky about leading
blanks and delimiters. However, this allows
blanks to be compiled into the array. Be-
cause WORD returns an eight-bit length, the
maximum length of a string constant is 256
characters.

SCONST-ARRAY (S compile: $len --)
(S run-time: n --)

A defining word that compiles a named
array of string constants. At compile time,
create an initialized array of string con-
stants. At run time, move element n to the
string stack top. Example:

FORTH D~mens~ons Volume VII, No. 6

6 SCONST-ARRAY
NAME "Cliff Janet LaurenKent

where 1 NAME would put 'Janet' on the
string stack. Note: Use one blank followed
by a double quote after the array name.
WORD is used to compile the string up to the
second double quote, and WORD is very
picky about leading blanks and delimiters.
However, this allows blanks to be compiled
into the array. Because WORD returns an
eight-bit length, the maximum length of a
string constant array is 256 characters.

The following words parallel the stan-
dard Forth number formatting words. Each
creates a string on the string stack. If the
field width specified will not contain the
number, the string will be longer than
specified; no data is lost.

Stack for following: (S d field --)
SD.L 32-bit left justified
SD.R 32-bit right justified

Stack for following: (S d --)
SD. 32-bit signed

STRIM (s --)
Remove trailing blanks from top string.
This is the string stack equivalent of
-TRAILING.

$STRIP (s -- 1
Remove leading blanks from top string.

Converts the top string to a double number,
using the current system base. The string is
lost. A leading minus sign is allowed. Lead-
ing and trailing blanks are also allowed;
however, no blanks are allowed between a
minus sign and the number that follows.
The system variable DPL will contain the
number of characters to the right of the
decimal, if any. The flag at TOS indicates
the success or failure of the conversion.

Compare the two top strings to the length
of the shorter string. The flag may take any
of three values:

0 - the strings are equal
Stack for following: (S n field --) 1 - the top string is shorter
SN.L 16-bit left justified
SN.R 16-bit right justified - 1 the top string is longer

Neither string is lost or altered.
Stack for following: (S n --)
SU. 16-bit unsigned
SN. 16-bit signed The following words have been handy while

writing string handling routines. They are
normally excluded from the run-time system.

(decirnrlS0.R) (S d-num field places --)
CLRSS (s --)

Convert a double number to a right- Clears the top 256 bytes of the string stack
justified string with 'field' characters and to ,eroe=, making debugging with .SS easier.
'places' digits after the decimal.

.SS (S -- 1
SDOLLARS (S d-num field --) A non-destructive dump of the top 256

bytes of the string stack area in hex format.
Using width at 'Onvert the This will show string contents, string order
double number/100 to a string as dollars and the string lengths. and cents. Note that the dollar sign and
decimal point are included in the character
count, so there are two digits less than the .Sv (S addr --)

field width. ~f the field width will not Displays a string variable in memory.
contain the number, the string will be
longer than specified; no data will be lost.

$LC- > UC (S --)
Replace all lower case with upper case.

SUC- > LC (S -- 1
Replace all upper case with lower case.

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machrne

code interrupt handlers
-System timekeep~ng maintams

time and date w ~ t h leap
year correction

-Supports ROM-based self-
starting appllcatlons

COST
130 page manual -S 30.00
8K EPROM w~ th manual-S 100.00

Postage pa~d In North Arnerlca
lnqu~re for l~cense or quanrlty prlclng

Bryte Computers, Inc.
P.O. Box 46. Augusta. ME 04330

(207) 547-32 18

Volume VII, No. 6 27 FORTH D~rnens~ons

- -

T

15 66
0 \ Load String Stack 05/10/ECk. 03/26/ECk,
I The basis for this is an article in BYTE .by Johr~ Cassady.
2 M O F F tiany uords are td.en f r m that article, The action of these
3 DECMIL string words is parallel to the action of F(IRTH1s parwreter
4 5 V I M I ! stack uords. Strings are brwqht to the $stack for use,
5 CFI ,(String Stack =) HERE Funtions are directed a t the top of the $stack, There is very
6 ONLY FORTH ALSO DEFINITIONS VOCAeClWlY STHIHCS l i t t l e error checking i n these words, but for those uho uant
7 STRINGS ALSO DEFINITIONS m, replace ?1UQ ard ?2W@ rith IPe and WE, Since there
8 1 1 5 +THRU (Basic stririg stack words) are no c M , s on the m t e r ~ t s of the 'strings' hardled by these
9 HERE W - U, words, they HJY also be used to mipulate data records of any

10 \ 35 LW\D CR ,(Strinq ti-w uords loaded,) data type, The mart CmWE is used here to avoid problem with
11 CAPS ON overlap. Irt addition, nwrj words specific to the Laxerr 8 Perry
12 \S F83 FORTH MODEL haw beer, used. While p e r f o r m has been
13 enhanced, this versiw~ is not as portable as the fiq-FORTH
14 wrsiwr,
15

16 67
0 \ k i c stack, words 05/08/85ck 05/08/85ck
1 0 CONSTANT WO PO - m t a r ~ t returning the address of the $stack base.
2 WIWE W W - variable holding the address of the Istack. top
3 : W-IHIT (S --) W-INIT - positions the)stack 512 bytes below parameter st&..
4 9'0 @ 512 - ['I WO >BODY ! WO $P ! ; BOP! (S -)

5 : WOW' WO W ! ; (S --) Clear the $stack by resetira the $stack pointer.
6 : $ P ! W ! ; (S addr --) W! (Saddr--)

7 : W W e ; (5 -- addr) 5aw a reu $st&, top address.
8 : W @ (S - -addr) We (S --addr)
9 W@LEH€TH+; Fetch the $st&. top address.

10 : ?1W (S -- addr) 1 ~ 2 e (S - addr
11 W e DW PO U>= Fetch the address of the 2nd string,
12 E POP! ," Strinq Stack Enpty," MORT THEN ; ? 1 M (S - -addr)
13 : ?2$P@ (S --addr 1 Fetch the Atack top address - error if m strira,
14 W?e W PO U)= ?2We (S - -addr)
15 IF WOW! ," Need Tuo Strings," MORT THEN ; F e w the address of the 2rd string - error if not 2 strings,

17 68
0 \ basic std words 03/25/8'XK 03/2S/W,
1 $DROP (S --)

2 : m ~ (S -- 1 Drop top string,
3 ? 1) P e W P e + 2 + W ! ; $@ (S addr len -)

4 : Q (S addr lert --) Fetch the 5tring uhose address and l a t h are on the P-stack
5 w x wesw- S W ~ V E R R ~ E Y W E to the $stack.
b 2 - R > W E f i ! W ! ; Tops (S - addr lert)

7 : TOP$ (S -- addr len) Retmm the address and l m t h of the top string.
8 ? 1 W LENGTH ; Set$ (S - addr len
9 : Set$ (S -- addr len) Returns the address ard length of the second string,

10 ?2We LENGTH ; $! (S addr -)

11 : $! (Saddr--) Pop the top string to the address on the P-stack, The string
12 TOP* ROT W HOVE $DROP ; l a t h is not mwed with the string. This is rot for me
13 with string variables,
14
15

FORTH Dimens~ons 28 Volume VII. No. 6

18 69
0 \ basic stack uords 03/26/85ck 03/25/83X
1
2 : $1 (S --) $I (S -)

3 TOPI TVf WRW : O~tput the top string to the current &ice+ Like a h r
4 on the P-stack., the top string is lost,
5 : m (S --)

6 Top$)(! ; UXlP (S --)

7 Duplicate the tap string.
8 : F+ (S -)

9 SecI Top$ ROT OVER t :a I + (S - 1
10 D V E R 2 + W c m w D M i n e the tuo top strinqs into one string. The secord
11 OROP %'@2+R! D M ? ! ; strinq rill be added to the end of the top strirq.
12
13 :)(xIER (S - ! $Om (S -)

14 S e c $ @ ; Copy second string and push it on the Istack.
15

19 70
O \ ~ S W A P ~ S C H i S 06/1VW, 05/07/65&.
1
2 : I W (S --) IW (S -)

3 MWI TOPI WP 2+ SecI W OROP + 4 + Suap the top tuo strinqs. First the second strirrq is copied
4 W2-DUPR@+ROTCmwD SP@R>+W! ; t o the top, ther\W two top s t r i rm are rmred in m r y to
5 pack the stack, then the $pointer is corrected for the now.
6: WOS (S c -- pos I 0)

7 Top) WP >R ROT SCM ?DW (WS (S c -- pos I 0)

8 IF R > W - l + WOROP Search the top string for the character on the P-stack. Sf
9 ELSE D2DROPFALSE not f d return a 0, if fowd return the position of the

10 m ; character The f i r s t character is nvrber 1 (not 0). The
11 o u t p u t of IPOS w be used directly by $DELETE and WY,
12 : KtfE (S 1w1 c -- 1
13 SWAPOMX WSPe W - 2 - U J ! KtRS (S l m c - -)

14 S P e ! CPeLENGTHROTFIlL; Elak.es a neu strinq of specified lwlgth, filled with
15 character c.

20 71
O \ ~ ~ Y 05/13/85ck 05/07/85ck
1
2 : (char-test) (S pas m t - post mt' (char-test) (S pos cnt -- post cnt')

3 ? ? D (O U G H m?l%'@e> Error trap rcutine by $WITE and WY. This u i l l
4 IF DROP0 TIEN prevent mst bis errors by charging pos and m t to legal
5 O V E R % ' @ ~ W - ~ + ~ ~ I N O M X ; values.
6
7 : m (S pos m t --) UIELETE (S pos m t --)

8 (char-test) WP X W it >R Delete cnt characters fron the top string, starting at pose
9 %'@WPROT+DclIRO The input string is destroyed,

10 R>DUPP+! %'Pew-%'@!;
11 scwy (S ~ O S m t -)

12 : ICOW (Spos m t -) M e a new string a t the top of the Istack k copying part of
13 (char-test) the old top. The m i e d string s tar ts a t pos and inclides m t
14 W%'@l++ W I ; characters. The old top of $stack is not changed. Mossible
15 iwut creates a w l l string.

i

Volume VII. No. 6
- -

FORTH Dimens~ons

21 72
0 \ $" $IN 05/07/85ck 05/07/BW.
1
2 : C"1 (S -) C"1 (S -)

3 R ~ W P ~ + S C ~ A P ~ w ~ + R > + > R @ ; tbwi irrline string to $stack,
4
5 : 1" (S --) C" (S --)

6 Am3 " STATE P If corrpiling enplace an in-line string to be mwd to string
7 IF WILE C"1 0 C, stack at execution tine, else put wlclosed string on string
8 ilORD Ce -1 U O T W WOT stack. Used irt the forn: $" File not fou-d"
9 ELSE 0 C t WOW) Ce -1 &LOT HERE !

10 H A E W P ~ + W ~ @ $IN (S n -)

11 Tm ; MW)IATE A s iwle input line editor that get a string of naxinun
12 length n and leaves it on the $strirq, This fornat uses
13 : $IN (S n -) F a ' s version of EXPECT uhich can be redefined to change the
14 PAD W ROT MPECT SPAN @ $@ ; f w t i a h of the keys by chweing the ~xecution array
15 pointed to ty the variable CC.

2.2 73
0 \ CVllRIABLE S V A R W Y 05/10/85ck 03/26/85ck
1 WKUELE (S m i l e : llen -)

2 : Svar-build (S $len - $ 1 ~) (S run: - addr
3 W , O , W P H E R E W W WUOT; Used i n the forn 15 W W irw> to create a raw strirtq
4 variable haw> uiUl space for 15 characters. CBrwl irw>
5 : WRM4.E is execl~ted it returns the d r e s s of the lenqth (16 bits)
6 CREATE (S m i l e : Slen--) of the currently stored string. The naximm lwtqth of a
7 $var-build DROP string variable's M f e r is stored at addr-2.
8 DOES> 2+ ; (S run: - addr) SM-AARAY (S m i l e : Ilen size -)

9 (S run: n - addr)

10 : M*Y Used in the forn 15 8 $VCIKIABLE .haw> to create a raw array
11 CREATE (S m i l e : $ l a size --) of string variables ,haw> uith space for 8 strinqs of 15
12 0 DO Ivar-build characters each. Whwl irehe> is ~xecuted it nxlwrts the
13 LW DROP elenmt nunber n to the address of the lweth (16 bits)
14 WES) (S rurt: n - a d d r) of the C + - T ~ K I ~ ~ Y stored string. The wxirwcr lwtqth of a
15 S W A P W E R ~ ~ + X + ~ + ; string array variable's buffer is stored a t addr-2,

23 74
O\IWM! $'#KILL 05/13/85ck 03/26/BW.
1 WARFILL (S a d d r c -)

2 : W H I I . L (S addr c --) F i l l the (variable at address uith the character c.
3 OVER 2- @ ROT 2+ W ROT FILL ;
4 W M (Saddr--)

5 : M (S addr --) Fetch the string a t a r e s 5 ard push it or1 the $stack., k l y
6 W P ~ + S W A P ~ R ; the character originally saved uil l be returned, If the
7 kariable is enpty, a w l l string u i l l be returned.
8 : I M ! (S a - 1
9 WP>R w B L w m S M ! (Saddr-)

10 WP 2+ SWAP 2- e 7 1 ~ e HIN wp >R Pop the top string f r m the $stack wrd save it in the
11 (Pe 2+ ROT ROT mWE Svariable a t d r e s s , The actual s t r i re lenqth is saved with
12 I U D ! the characters for later use. If the top string is too long
13 (OROP; it u i l l be t rvr tated on the right.
14
15

*

FORTH D ~ r n e n s ~ o n s 30 Volume VII. No. 6

Volume VII. No 6 31 FORTH D~mens~ons

I

24 75
0 \ ICONSTdRREIY 05/10/85ck 05/10/85ck.
1 EONST-MY (S conpile: $ lw -)

2 : KONST-EIRRAY (S run: n --)

3 CREATE (S cmpile: $len - 1 Create 8 access an initialized array of string constants,
4 C, MI1 " WORD C@ l+ WOT Because WOW) returm an 8 bit length, the maxinun lwqth
5 DOES> (S I n --) of a string writant array is 256 characters.
6 W C ~ W N NOTE: use only one bl* after the array narre.
7 ROTx+?+ R> @ ; ~ ~ w l p l e : 6 EONSTdRWlY NME "Cliff Janet Laurdmt "
8 &re: 1 NAm wwld p u t 'Janet ' on $stack,
9 : ICONSTM

10 CREATE (S m i l e : --) KONSTIKCT (S conpile: --)

11 ASCII " WORD Ce l + ALLOT (S rm: --)

12 WES> (S run: - 1 Create 8 wwss an initialized string c m t a n t ,
13 W 1 + SWAY@ @ ; NOTE: IJW ally one blank. after the $CONSTANT'S naw,
14 exwlple: (CONSTEWINME "Cliff"
15 uhere: HCYY wwld prrt 'Cliff' MI $st&.

3 76
O \ nurber to string conversion 03/26/85ck 03/26/aCk,
1 These wrds parallel the standard FORTH r w b r printing wrds.
2 : k t r W M - E L ~ ~ R ~ $ ~ ; Each creates a string on the (stack, If the field uidth ui l l not
3 contain the nmkr the string u i l l be tw l a ; no data is lost.
4 \ stack, for follouing uords: nn field --
5 : W,L >R (D.) R> (str $+ ; Stack for follouing wrds: d field --
6 : WPR ?R (D.) R> k t r $W $+ ; $D1L 32 bit l e f t justified
7 : U(+L ?R (,) R) $str $+ ; WtR 32 bit right justified
8 : SN.R X (+) R>$str S W $ + ; Stack for follouirq wrd: d --
9 W. 32 bit signed

10 \ stack for follcuirq uords: nun - Stack for follaring wrds: n field --
1 (D ,) i e ; U(.L 16 bit lef t justified
12 : (U, (U,) @ ; U I t R 16 bit right justified
13 : (N, (,) $@ ; St&. for following wrds: n --
14 (U. 16 bit ~miqnd
15 U(. 16 bit sisrnd

26 n
0 \ $DOLLMS 05/10/85ck 03/26/85ck
1
2 : (decima1W.R) (S bnrr field places --) (decima1W.R) (S bnrr field places -- I
3 W N N W,WlBS<# Convert a double nwber t o a right justified string uith
4 B 0 'field' characters ard 'places' diqits after the decimal.
5 ? W # L W P mII,HOU)

6 $5 ROT SIGN #>
7 D O V E R - B L W $ @ $ W $ + ; UUKLARS (S bnrr field -)

8 Using field uidth a t TOS, convert the d-wdxr / 100 ta a
9:UUKLARS (S d - w n f i e l d -) string as dollars ard cents. Note that the dollar sign ard

10 1- 2 (decima1W.R) the decimal point are irlclucW in the character count, so
11 l W I I $ W W ; that there are 2 digits less than the field uidth. If the
12 field uidth ui l l not contain the &r, the string will be
13 too lor& no data u i l l be lost.
14
15

d

+

27 78
0 \ KC-MJC (UC-XC 05/10/85ck 03/26/85ck
1
2 : CLC-MJC (S -) KC-MJC (S -)

3 TOP) UPPER ; Replace a l l lower case uith upper case.
4
5 : (UC-XC (S -)

6 TOPS
7 m + w w-XC (S --)

8 ?W ICeW Replace a l l upper case uith louer case,
9 ASCIIbASCIIZBrmW
10 IF 32+1C!
11 ELSE DRiYf'
12 TEN
13 LWP ;
14
15

28 79
0 \ S T l m $STRIP 03/26/85ck 03/26/85ck
1
2 : l T R M (S -) STRIH (S -)

3 Top$ -WILING R m trailing blanks f r m tap string, This is the kt&.
4 re IsWAP (DROP; equivalant of -TRAILING.
5
6 : $STRIP (S --)

7 TOPS W lSTRIP (S -)

8 OMRO Remove leadirtq b1ark.s f r m tap string,
9 ?W WCeBL=
10 F I+ w 1- w
11 ELSE LEAK
12 TEN
13 LOW
14 S C I I \ P ~ $ W r o R o p ;
15

29 80
O\W 05/13/85ck 03/26/85ck
1
2:W (S - - d f) S W (S - d f)
3 $STRIP KC->UC Converts the tap string to a double nunber, using the current
4 me PM>R s s t e n base. The string is destroyed, A leading ninirs sign
5 WP 2+ ~e SWllP 8WM is alloued, Leading and trailing blarks are also alloued,
6 Re C! harewr no blwks are all& between a sinus sign and
7 Re 1+ $! the rrwrber Uwt follars. The srsten variable OPt uil l
8 IUNUIBER?; contain the nunber of characters to the right of the decinal,
9 if awl The flaq a t TOS indicates the success or fai lwe
10 of the anvers im~
11
12
13
14
15

FORTH D~mens~ons 32 Volume Vl l No 6

-- -- - - -- - - -

Volume VII. No. 6 33 FORTH Dimensions

30 81
O \ $ = 03/26/85ck 03/26/85ck
1
2 : e (S - f) C- (S - f)
3 Taps M a r e the tuo top strings, to the lenqth of the shorter
4 SecS string. The flaq nay take any of three values:
5 ROT KM 0 - the strings are equal
6 COWARE; 1 - the top string is less that the sword
7 -1 - the top string is greater thar~ the secord
8 Neither string is lost or altered,
9

10
11
12
13
14
15

35 86
0 \ %stack impectiwt 06/12/85ck 06/12/85ci(.
1 HW
? : CLHIS CLMS clears the top 256 tytes of the %stack. to zeros to d..e
3 (P O 100 - 100 ERASE HI1 x (P O C! ; debcqing with .SS easier,
4
5 : ,SS (P O FO - 100 W .IS is a rnm destructive dm of the top 256 bytes of the string
6 CR ." Current top: " stack area in hex format, This ui l l show string m t e r ~ t s ,
7 WSE e EX Pe U. ."hex strins order and the string lenqths.
8 WSE ! ;
9

10 : ,SV (S addr --) , SV (S addr -)

11 10- S O W ; Displays a string variable i n m r y ,
12 D E C M
13 \S
I+
15

0 0
0 05/07/85ck 05/07/85dr
1
2
3 TWLS*BU(TWLS,BU(
4
5 Extentiom to the Laxen 8 Perry F83 Wl Extentiom to the Laxen 8 Perry F83 Wl
6
7 1985 Clifford Kent 1985 Clifford Kent
8
9 KEM ENGINEERIN 8 DESIGN KENT EMGINEERM 8 DESIGN

10 PIO* Box 178 Plot BOX 178
11 Hottville NY 13119 Hottville NY 13119
12 (315)685-8237 (315)685-8237
13
14
15

i A

U.S.

ALABAMA
Huntsville FIG Chapter
Call Tom Konantz
205/88 1-6483

ALASKA
Kodiak Area Chapter
Call Horace Simmons
907/486-5049

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678
meson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

ARKANSAS
Central Arkansas Chapter
Twice Monthly, 2nd Sat., 2p
4th Wed., 7 p.m.
Call Gary Smith
501/227-7817

CALIFORNIA
Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253
Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst
Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784
Sacramento Chapter
Monthly, 4th Wed., 7 p
1798-59th St., Room A
Call Tom Ghormley
916/444-7775

Bay Area Chapter
Silicon Valley Chapter
Monthly, 4th Sat.
FORML 10 a.m., Fig 1 p.m.
H-P Auditorium
Wolfe Rd. & Pruneridge,
Cupertino
Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668

Stockton Chapter
Call Doug Dillon
209/931-2448

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

FLORIDA
Orlando Chapter
Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790

Southeast Florida Chapter
& Monthly, Thurs., p.m.

Coconut Grove area
Call John Forsberg
305/252-0108
Tampa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

GEORGIA
Atlanta Chapter
3rd Tuesday each month, 6:30 p
Computone Cottilion Road
Call Ron Skelton
404/393-8764

ILLINOIS
Cache Forth Chapter
Call Clyde W. Phillips, Jr.
Oak Park
312/386-3 147
Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150
Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242
Rockwell Chicago Chapter
Call Gerard Kusiolek
3 12/885-8092

INDIANA
Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

Fort Wayne Chapter
Monthly, 2nd Wed., 7 p.m.
Indiana/Purdue Univ. Campus
Rm. B71, Neff Hall
Call Blair MacDermid
219/749-2042

IOWA

Iowa City Chapter
Monthly, 4th 'Ibes.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853
Central Iowa FIG Chapter
Call Rodrick A. Eldridge
515/294-5659
Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
3 16/267-8852

LOUISIANA
New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS
Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria

.m. Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MICHIGAN
Detroit Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz
313/562-8506

MINNESOTA
MNFIG Chapter
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
612/588-9532

MISSOURI
Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Call Linus Orth
913/236-9189

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.
Ellisville, MO 6301 1

NEVADA
Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
John Bryon
Call 505/298-3292

NEW YORK
FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/5 17-9429

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Rockland County Chapter
Call Elizabeth Gormley
Pearl River
914/735-8967

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
3 15/46-4600

OHIO
Akron Chapter
Call Thomas Franks
216/336-3167
Athens Chapter
Call Isreal Urieli
614/594-3731
Cleveland Chapter
Call Gary Bergstrom
21 6/247-2492
Cincinatti Chapter
Call Douglas Bennett
513/831-0142
Dayton Chapter
m i c e monthly, 2nd 'Ibes., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612

FORTH D~mensions 34 Volume VII. No. 6

Dayton, OH VIRGINIA
Call Gary M. Granger
513/849-1483

OKLAHOMA

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m. Potomac Chapter
Health Tech. Bldg., OSU Tech. 2nd Tues., P.m.
Call Larry Somers Lee Center
2410 N.W. 49th Lee Highway at Lexington St.
Oklahoma City, OK 73112 Arlington, VA

Call Joel Shprentz
OREGON 703/860-9260

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-28 1 1

PENNSYLVANIA
Philadelphia Chapter
Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall
Call Melanie Hoag or Simon Edkins
215/895-2628

TENNESSEE

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Call Donald A. Full
804/739-3623

WISCONSIN
Lake Superior FIG Chapter
Monthly, 2nd Fri., 7:30 p.m.
University of Wisconsin
Superior
call Allen Anway
715/394-8360

East Tennessee Chapter Milwaukee Area Chapter
Monthly, 2nd 'he., 7:30 p.m. Call Donald H. Kimes
Sci. Appl. Int'l. Corp., 8th F1. 414/377-0708
800 Oak Ridge lhrnpike, Oak Ridge
Call Richard Secrist MAD Apple Chapter
615/483-7242 Contact Bill Horzon

129 S. Yellowstone

TEXAS Madison, WI 53705

Austin Chapter FOREIGN
Contact Matt Lawrence
P.O. Box 180409 AUSTRALIA

Austin. TX 787 18 Melbourne Chapter - . , - - - -

Dallas/Ft. Worth Monthly, 1st ~ r i . , 8 p.m.
Contact Lance Collins

Metroplex Chapter 65 Martin Road
Monthly, 4th Thurs., 7 P.m. Glen Iris, Victoria 3146
Call Chuck Durrett 03/29-2600
214/245-1064
Houston Chapter

Sydney Chapter
Monthly. 2nd Fri.. 7 v.m.

Call Dr. ~ o s e p h Baldwin John ~obdse l l ~ l d ~ . '

713/749-2120 Rm. LG19

Periman Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT
Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Don VanSyckel
802/388-6698

Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

BELGIUM
Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

CANADA
Alberta Chapter
Call Tony Van Muyden
403/962-2203

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 3 12
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5J2

COLOMBIA
Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

ENGLAND
Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
D. J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FRANCE
French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

GERMANY
Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

HOLLAND
Holland Chapter
Contact: Adriaan van Roosmalen
Heusden Houtsestraat 134
48 17 We Breda
31 76 713104

FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely
50 57 0280

IRELAND
Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 051/74124

ITALY
FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

JAPAN
Japan Chapter
Contact Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 1 1 ext. 7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas
Hallskaret 28
Ulset
+ 47-5- 187784

REPUBLIC OF CHINA
R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWEDEN
Swedish Chapter
Hans Lindstrom
Gothenburg
+46-31-166794

SWITZERLAND
Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS
Apple Corps Forth Users
Chapter
m i c e Monthly, 1st &
3rd 'hes., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
41 5/626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

FORTH D~rnens~ons

Amm~umeimg e,

Forth Model Library TM

Forth-83 model applications programs on disk

Volume 1 - A Forth List Handler
by Martin J. Tracy

$40

volume 2 - A Forth Spreadsheet
by Craig A. Lindley

$40

Volume 3 - Automatic Structure Charts
by Kim R. Harris

$40

Forth-83 Com~atabilitv
Laxen/Perry F83 LMI PCIFORTH 3.0 Master FORTH 1.0 TaskFORTH 1.0 PO~~FORTH@ I1

All on IBM 5 114 " disk, MS DOS 2.0 up. Macintosh 3 112 disk for MasterFORTH 1.0.

Ordering details on the enclosed Forth Interest Group Order Form

FORTH INTEREST GROUP BULK RATE
U S POSTAGE

P. 0. Box 8231 Perm~t No 3107

Sari Jose, CA 95155 San Jose CA

Address Correction Requested

