
Dimensions

Mailboxes
& Multi-Tasking

FORTH
IS NOW

.Sieve 1.3slpass

.Compile 300 screens lminute

.Drop 1.82 us

.Concurrent 110 @ 250K b a u d

DEVELOP YOUR
APPLICATIONS IN
A TOTAL FORTH
ENVIRONMENT.

MICROPROGRAMMED BIT SLICE
FORTH ENGINE
.Microcoded forth kernel
.Microcoded forth primitives
.Multi-level task switching architecture
for real t ime appl ica t ions
.Optional writable control s tore

H.FORTH OPERATING SYSTEM
.Hierarchical file system
.Monitor level for program d e b u g
.Multi-user multi-tasking
.Target compi ler
,110 managemen t
.Forth 8 3 Compat ib le

H4THlOI OEM SINGLE BOARD
.Floppy disk controller
.2 channel SIO t o 38.2K b a u d
.Calendar clock-4HR backup

.44K Byte ram 200NS

.32K Byte EPROM opera t ing system

. l K X 32 microprogram memory 70ns

H4THIIO DESKTOP
.Dual 0.8m Byte floppys
.H4THIOI processor
.Three user s lo ts
.Two expansion slots
.Power & cooling

H4TH120 DESKTOP
. I0 m Byte Winchester
.0.8 m Byte floppy
.H4THIOI processor
.300K byte RAM expandab le 2m byte
.Three user slots
.One expansion slot
.Power & cooling

A forth-engine consisting of a state-of-the-art integrated hard~varelsoftware
system giving unsurpassed performance for professionals and their applications
from a company that is totally dedicated to the forth concept and its implementation.

HARTRONIX, Inc. 1201 North Stadem Drive Tempe, Arizona 85281 602.966.7215
FORTH Dimensions 2 Volume VII, No. 4

FORTH Dimensions I

Marlin Ouverson

Production
Cynthia Lawson Berglund

Forth Dimensions solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material published. Unless noted
otherwise, material published by the
Forth Interest Group (a non-profit
organization) is in the public domain.
Such material may be reproduced
with credit given to the author and to
the Forth Interest Group.

Subscription to Forth Dimensions
is free with membership in the Forth
Interest Group at $20 per year ($33
foreign air). For membership, change
of address and to submit material for
publication, write to: Forth Interest
Group, P.O. Box 8231, San Jose,
California 95 155.
ISSN NO. 0884-0822

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

I Advanced; requiring stu-
dy and athorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

FEATURES
10 Word Indexer by Mike Elola

B This programming aid locates all occurrences of a specified variable or Forth
procedure call. It can help you locate references to a target word within all other
application words and locate references to a target variable within application
words.

12 F83 Word Usage Statistics by C.H. Ting
Access to good statistics about frequency of word use can lead to better design
and to the optimization of Forth systems. This utility is specific to the F83
implementation of Forth-83, and may provide some good ideas to users of other
systems as well.

16 Benchmark Readability by Victor H. Yngve

B A frequently used timing benchmark is the Eratosthenes Sieve. This final
installment in the "Synonyms and Macros" series provides a convenient test bed
for illustrating special uses of the tools presented previously.

25 Extending the Multi-Tasker: Mailboxes by R.W. Dobbins

I The Laxen multi-tasker is an excellent tool to harness the full power of Forth and
to enable independent tasks to exchange information. In this article, some ideas
are presented on how the multi-tasker can be extended to incorporate inter-task
communication and cooperation.

28 - Atari Painting Forth by Stephen James
"Paint with the power of Forth. Splash vivid hues with your Atari. Create alien
worlds and magical kingdoms - quickly and colorfully." The Forth code
includes various pens and brushes for designing graphic art.

36 Redefining Words by Phil Koopman, Jr.

0 Recompilation of the dictionary after a redefinition can often take several
minutes for a large application. This article discusses a simple method to
eliminate the time-consuming recompile step after making a minor change to your
code. No changes to the Forth compiler or dictionary structure are required.

38 Forth Component Libraries by John S. James
This proposal addresses the need to transport large pieces of programs from one
developer or installation to another, and the ability to purchase software
packages "off the shelf" that will run identically on Forth-83, Forth-79 or any
vendor's Forth system.

41 1985 Forth National Convention by Marlin Ouverson
This year's convention hosted by the Forth Interest Group provided a show-case
for some of today's most exciting developments and applications of Forth. This
brief summation touches the tip of the iceberg.

DEPARTMENTS
5 Letters
7 Editorial: "Leaders' Edge"
8 Application Tutorial: "Wordwrapping Tool" by Michael Ham

40 Advertisers Index

I
42 FIG Chapters

Volume VII, No. 4 3 FORTH Dimensions

Now You Can Add

ARTIFICIAL
INTELLIGENCE

To Your Programs Using a Powerful Corn bination

By Elliot Schneider 8 Jack Park

Heres Your Chance to Profit by being on
the Forefront, Write 5th Generation Software

Learn How To: Easy Graphics & Sound Words
Create Intelligent Construct Hires Plotting 0 Turtle Graphics

Programs Rule Bases Windows Koala Pad Graphics
Build Expert Systems Do Knowledge Split Screen Integrator
Write Stand Alone L i ~ e n s e Engineering Printer/Plotter Ctrl Hires Circle, Line, Arc

Free Programs Use Inference Engines * Sprite & Animation Music Editor

Write Intelligent Programs For: Editor Sound Control
Home Use Data Analysis Easy Control of all 110 ...
Robotics Business RS232 Functions Interrupt Routines
Medical Diagnosis Real Time Access all C-64 Peripherals
Education Process Control
Intelligent CAI Fast Games Utilities
Scientific Analysis Graphics Interactive Interpreter Interactive Compiler
Data Acquisition Financial Dec~sions Forth Virtual Memory Romable Code Generator

Full Cursor Screen Editor 40K User Memory
Extended Math Functions Full String Handling All Commodore File Types

Fast ML Floating Point & Integer Math Trace & Decompiler Conversational User
Double Precision 2E+38 with Auto. Sci Not. Conditional Macro Defined Commands
n'e" Logx Loge Sin Cos Tan SQR 1/X. . . Assembler
Matrix and Multidimensional Lattice Math
Algebraic Expression Evaluator

SUPERFORTH 64+AI

01 I'ASCAL
C
m H C C
J

f I IRTRAh

4S\f MALf I?

Power of Languages Constructs

Su[x,rForth 63 is m o r e
p o ~ ~ e r i i ~ l :llCln most o t h i ~ r

Other

Proqramrn~nq Time

SuperFor th 64 Saves You
T ~ m e and Money

Great Documentation
Easy to Read 350 pg.
Manual with Tutorials

Source Screen Provided
Meets all MVP Forth-79
Industrial Standards

Personal User Support

A Total
Integrated Package

for the Commodore 64

Order~ng Information: Check Money
Order (payable to MOUNTAIN VlEW
PRESS INC i VISA Mastercard

SPECIAL
Arner~can Exoress COD s ~5 00 extra INTRODUCTORY OFFER
No billhng or unpaid PO s Ca l~ forn ia
residents add sales tax Shipping costs
in LJS included In price Fo re~qn orders
pay i r ~ US funds on US b a n i Include
for hand inq and shpp ing $10

' Parsec R ~ s o a r c h
Cornrnodorp 64 TM o f Coriirnodore

only $990°
203" Value

Limited T ~ m e Offer

Call:
(415) 961-4103

MOUNTAIN VlEW PRESS INC
PO. Box 4656

Mt. View, CA 94040
Dealer for

PARSEC RESEARCH
[>r:rner 1776. Fremont. C'A 94538

Multiply, Divide and Conquer

Dear Marlin,
I enjoyed Craig Lindley's Forth

spreadsheet (Forth Dimensions VII/ 1,
2) with his application of Michael
Stolowitz's algebraic parser (V1/6). He
has aptly demonstrated how Forth con-
cepts readily lend themselves to exten-
sions.

However, the double number multi-
ply and divide he offered on screen 30
are, in fact, mixed operators. Not only
is the naming of these operators techni-
cally incorrect, but a limitation has
also been introduced. The limitation is
that mixed operators cannot be used in
formulas to operate on data from two
elements, since all data is stored as
double numbers. I.e., a[1 A * 2 a]a
would fail.

I have enclosed code with double
number operators. Using these
operators will require that all numbers
used in formulas will have to be ex-
pressed as double numbers. E.g., a[3
A * 5.]a

Zafar Essak, M.D.
Vancouver, B.C.
Canada

In Praise of Libraries

Dear Editor,
I attended the recent FIG convention

in Palo Alto. It was a wonderful
chance to listen to professional Forth

programmers, as well as to meet with
others in various stages of understand-
ing. 1 enjoyed meeting with many
Forth celebrities: the energetic Ting,
the pleasant Hall and the felt-hatted
Moore.

There is one point, however, I feel
must be raised. It seems to me that all
over the world, Forth programmers are
coding such things as: full-screen ed-
itors, turtle graphics, string words,
floating point and extended addressing
versions of Forth. While it is certainly
an excellent learning experience to
write such programs, why not make
some of the best versions readily avail-
able to the public through FIG? The
difficulty in obtaining such programs
forces programmers to constantly "re-
invent the wheel." Forth needs to
progress continually. Once there is a
common point for exchange of pro-
grams, people can concentrate on de-
veloping new applications, rather than
reiterating old ones.

Lawrence Forsley, the convention
banquet speaker, claimed the reason
BASIC, Pascal and C have become so
popular is that inexpensive versions
were offered to schools and universities
early. I envision a full-function pack-
age for Forth to rival GWBASIC,
Thrbo Pascal and C. Why not? Forth is
a better language than any of the
others.

This package would come complete
with a full-screen editor, floating-point

support, graphics, music and program-
ming tools such as a cross-reference
utility (how many people out there
know such a program already exists in
the public domain?). This Forth would
use extended addressing (on PCs) to
give the programmer the use of all
available memory without the corres-
ponding loss of speed associated with
thirty-two-bit Forths on sixteen-bit
machines. Some people at the F83
meeting asked to see a Forth program
that took more than 64K. My reply is
that once you load the full-screen ed-
itor, the programming tools, turtle
graphics and floating point (preferably
done on a math chip like the 8087),
there is little room for programs. In-
deed, I have already had trouble with
overwriting the system that way. Some
of these words, like the editor vocabu-
lary, could reside in another segment
and pop down only when necessary.

This package, or library, would be
developed in the public domain, there-
fore satisfying universities' need for
software in microcomputer labs that
they can offer freely to students.
(Many are doing this with programs
such as PC Write and PC File.) Since
Forth-83 is the new standard, and
because it is such a clean implementa-
tion, FIG should adopt Laxen and
Perry's F83 as the main version for this
package. F83 is also well documented
and so is perfect for students. Such an
investment in education would yield

(DHt Dt Double number 0 5 0 0 0 5 ~ I DECIHAL (DHlMD D l DHOD Double number 8 5 0 8 0 5 ~
: DHlHOD (d l , u - - d m , dquot

: DHt (d1,u--dprodI SWAP OVER /HOD >R SWAP UH/HOD >R 0 R> R> ;
PUP ROT t ROT ROT unt ROT t ;

: D/ (dl,d2--drem,dquotI 2DUP 0 0 D(>R
: Dt (dl,d2--dprod) 2DUP DABS SWAP DROP

2DUP 0 0 D()R DABS I F Re
DABS >R >R 2DUP R) DHt I F >R >R DNE6ATE R> R> DNE6ATE
R> ROT ROT >R >R DHt 32760 DHt 2 DHt THEN SWAP >R /HOD R> S M P >R
R> R) D+ R> I F DNE6ATE THEN ; 0 ~e S->D ~t D- R) S->D

ELSE Re
I F >R >R DNE6ATE R> R>
THEN DROP ABS DHlHOD

THEN R) I F >R >R DNE6ATE R> R) THEN ;

: DHOD (dl,d2--drem) D l 2DROP ;

Volume VII. No. 4 5 FORTH Dimensions

high rewards in the use and acceptance
of Forth in the future; it would benefit
Forth programmers everywhere. Even
the vendors would benefit, because as
students found the need for the in-
creased speed of Forths implemented in
assembler, as well as target compilers,
they would seek out FORTH Inc., or
Laboratory Microsystems or one of the
other vendor-supported Forths.

One interesting idea discussed at the
meeting was the possibility of a FIG
bulletin board to distribute Forth pro-
grams. This is an excellent idea which
should be implemented as soon as
possible. Yet, many programmers have
no access to modems and could not
benefit. Why not add to FIG'S mail
order service? BASIC programs (as
well as programs in some other lan-
guages) are distributed by organiza-
tions like PC-SIG. Why should Forth

lag behind? Let other programmers
know how good Forth is - display
your quality programs!
Forthfully yours,

Mark Smiley
Montgomery, Alabama

A CASE of Pairs

Dear Marlin,
Despite the valiant efforts of Henry

Laxen ("YACS," Forth Dimensions
VI/6 and VII/l), the case of CASE by
Dr. Charles Eaker achieved what you
may call a "semi-standard" status.
Recent evidence is provided by the
"Forth Spreadsheet" by Craig A.
Lindley. Besides, many Forth imple-
mentations include the earlier CASE
among their system extensions. In par-
ticular, my TI Forth system provides

J

HEX
1 CONSTANT TRUE system dependent
: BELOW1 SWAP DROP ',.. drop f l a g f rom t h e o rev ious t e s t

s3VEH :.TRUE : i n f l a g l i m i t - - - n f l a g l f l a g 2 i
: CLASSIFY1 (b y t e --)

1:) CASE \. l eave dummy f l a g on stack:: any th i ng w i l l do
20 BELOWl OF . " Cont ro l cha rac te r " ENDOF
3:) BELOW1 OF . " F'ccnctiiation" ENDOF
3A BELOW1 OF . " D i g i t " ENDOF
41. BELOW1 OF . " F'unctuat ion" ENDOF
5B BELOW! OF . " Upper Case L e t t e r " ENDOF
61 BELOW1 OF . " F'unctuat ion" ENUOF
?B BELOWl OF . " Lower Case L e t t e r " ENDOF
7F BELOW1 OF . " F'unctuati on" ENUOF
E0 BELOW! OF . " Con t ro l cha rac te r " ENDOF . " Not ASCII cha rac te r "

ENDCASE DROP : \, drop an o r i g i n a l value: unused
f 1 ag r e m o v d by ENDCASE

Figure One

: BELOW: (n 1 i m i t -- n m) OVER 1+ .< OVER + :
: CLASSIFY2 ! b y t e -- !

CASE
20 BELOW2 OF . " Cont ro l cha rac te r " ENDOF
3Cl BELOW2 OF . " Punc tua t ion" ENDOF
JA BELOW2 OF . " D i g i t " ENDOF
41 BELOW1 OF . " Punc tua t ion" ENDOF
5B BELOW? OF . " Uoper Case L e t t e r " ENDOF
61 BELOW2 OF . " Punc tua t ion" ENDOF
7 B BELOW? OF . " Lower Case L e t t e r " ENDOF
7F BELOW? OF . " Punc tua t ion" ENDOF
80 : TRUE OF . " Cont ro l cha rac te r " ENDOF . " Not A s 1 1 cha rac te r "

ENDCASE :
Figure 'bvo

such an example. But quite often one
would like to have a case statement
which is more powerful than the stand-
ard usage of Dr. Eaker's CASE. And
for many reasons, I do not like un-
necessary expansions of my system.
But the situation is far from being
hopeless.

Let me show that the old CASE is
much more flexible than it appears at
first glance. The point is that OF ex-
pects on the stack a pair of numbers. If
they are the same, then both will be
consumed and a whole clause between
OF and ENDOF will be executed, fol-
lowed by ENDCASE. Otherwise, the top
value will be dropped and execution
will continue with the statement past
ENDOF. Nothing prevents us from sup-
plying the numeric pair for OF during
run time. This simple remark extends
enormously a range of applications.
Using the above as a guiding principle,
let's rewrite an example provided in
"YACS, Part Two" (VII/l, p. 39).
Please refer to the code in figure one.

Actually, for range classifications
like the one presented here, I prefer a
slightly different approach. Instead of
checking an original condition, one
may use a negation of it. So the flag
will be zero if the original one was
satisfied, and some non-zero value
otherwise. Therefore, OVER + will
provide a numeric pair suitable for OF.
See figure two for a demonstration of
this.

The demonstrated technique, though
implicit in the definition, does not
seem to be very well known.

Sincerely yours,
Michael Jaegermann
Edmonton, Alberta
Canada

Errata
In our last issue (VZZ/3), the illustra-

tions for figures one and two on page
thirteen were accidentally switched.
Our apologies go to Professor Yngve
and to readers who may have been
con fused by the error. Also, as author
Schmauch points out in his "Pseudo-
Interrupts" article in the same issue,
his code is in Forth-79 and not
Forth-83, as it was labelled. -Ed.

FORTH Dimensions 6 Volume VII, No. 4

Leaders' Edge
We recently received a call from

Dennis Wilson, the local FIG Chapter
Coordinator in Phoenix, Arizona. He
asked if we would communicate to all
concerned that Charles Moore, the
inventor of Forth, is scheduled to
speak at a dinner and conference at the
Arizona Biltmore Resort on December
6th. If you plan to be in the area and
would like more information, call Den-
nis at 602-957-0469.

It has become apparent that, at least
to a few, there is still some confusion
between the Forth-83 Standard and
F83. For those who aren't absolutely
clear as to the distinction, here goes:
Forth-83 is the set of standard Forth
words arrived at by the Forth Stan-
dards Team. That team is composed
of various vendor representatives, sys-
tems and application programmers
and, generally, Forth experts. Their
opus became the fundamental instruc-
tion set that is Forth-83 and was in-
tended as an improvement over
Forth-79 and the earlier fig-FORTH.
This word set had to be defined at a
level of generality which covers all
computers, and thus could not include
anything specific to any single piece of
hardware. It is comprised of specific
operators and does not touch on, for
example, extensions such as an editor,
graphics or even cursor positioning; it
does include all the principle operators
and what their effects must be, but not
how they should work internally.

F83, by contrast, is the name of a
public-domain implementation based
on Forth-83 and was developed by
Henry Laxen and Michael Perry. It
also contains a number of non-stand-
ard words and extensions, but no sup-
port. Whether these make F83 usefully
complete with tools and source code,
or overly complex and memory inten-
sive, appears to be a matter of personal
taste and system constraints. Some
people, unfortunately, have come to
believe that F83 is the only implemen-
tation of the Forth-83 Standard. This
is not the case, as there are systems
available commercially, with full ven-

dor support, that comply with
Forth-83 (e.g., Laboratory Microsys-
tems and MicroMotion).

When it gets down to the nitty-gritty,
often there are logical choices about
how to implement any language - a
standard only requires that the words it
contains behave in standard ways, but
does not address how an implementor
makes them perform in that manner.
The differences among implementa-
tions are in part the natural result of
developers making decisions based on
their own priorities, convictions and
techniques. Along with documenta-
tion, support and price, the result is
healthy competition between vendors
in the growing Forth market. Which, in
turn, should result in continually
improving products and services.

The Forth Interest Group has not
endorsed any Forth implementation
since those old days when the only way
to get the language onto a microcom-
puter was to order a fig-FORTH listing
and install it manually. Nor has FIG or
the Forth Standards Team yet under-
taken to certify systems as conforming,
or not, to the standard. But with dili-
gent comparison of the Forth-83 Stan-
dard document (available on the FIG
order form) and a particular Forth
system's documentation, and by using
vendor-provided support channels,
an educated consumer can determine
whether an implementation operates in
accordance wiih the standard, and can
estimate closely whether it will meet the
requirements of a particular operation
or project.

There are probably fifty or more
Forth vendors, of which about a half
dozen are leaders in the field. They
represent a wide variety of business
and programming practices which
serve the diverse needs of the market-
place. And how that marketplace has
changed over the years! Forth may
have been something of a novelty in the
beginning, appealing mostly to lan-
guage buffs and people trying to hack

their way out of pure assembly code,
but evolution continued and Forth
slipped through the doors of the For-
tune 500. Now it appears that profes-
sionals are in the majority, using Forth
in corporations that sometimes treat it
like a trade secret, a hidden advantage
over their competitors. We find Forth
at IBM, AT&T, Kodak, Hewlett-Pack-
ard and Lockheed, among many other
notable companies.

Sometimes we all need to step back
and get a large view of where we stand
in relation to the world around us. This
is a time of opportunity in which al-
most anything can happen. Bill Rags-
dale, FIG'S founding president, often
speaks of leadership and its importance
to vendors' success. That trait applies
at the level of the individual as well.
And what is a leader but someone with
a vision of the broad scheme of things,
the flexibility to adapt to changing
conditions without becoming dogmat-
ic, the imagination to see the hidden
potential in anything and the courage
needed to define and achieve specific
goals?

Think of the Forth Interest Group as
an association of actual and potential
leaders. The possibilities are immense!

-Marlin Ouverson
Editor

Volume VII, NO. 4 7 FORTH Dimensions

Application Tutorial

Wordwrapping Tool
Michael Ham

Santa Cruz, California

Forth vendors must steer a course
between the Scylla of an absolutely
minimal system and the Charybdis of a
full-blown maximal system. In the
minimal system, the Forth contains as
little beyond the standard requirements
as is necessary to have a system that
runs at all. The amount of free memo-
ry is enormous, but the user must
create the entire range of developmen-
tal tools. The maximal system, on the
other hand, includes every conceivable
tool a user could want, but available
memory shrinks to the size of a pea.

Most vendors approach the solution
by including in the core system the
factored-out essentials for a variety of
useful tools, and providing as optional
extensions or overlays those more com-
prehensive facilities likely to be useful
in some, but not all, applications.
Double-precision and floating-point
operations, for example, are often pro-
vided as separate files; a screen editor
and graphics operators might be sup-
plied as precompiled overlays, loaded
only when needed.

In my current project, I am using
PC/Forth (Laboratory Microsystems,
Inc.). As the name implies, this is a
Forth specifically designed to exploit
the powers and peculiarities of the IBM
PC and its clones. To that end, PC/
Forth provides, in addition to the
Forth-83 Standard word set, various
tools that make the developer's life
easier in this particular environment.

Some of these are complete overlays,
such as the DOS interface, which al-
lows the developer to read and write
regular DOS files, in addition to the
words that permit the usual Forth oper-
a t ion~ (BLOCK, FLUSH, UPDATE, etc.) on
DOS-formatted screen files. Others are
proto-tools: for example, variables
that can be used in the creation of
various helpful tools. The variable
COMPAQ, for example, gives the pro-
gram a way to know whether the com-
puter is a Compaq or not, which can be
useful in controlling the screen display.

The variable OUT in PC/Forth tells
you how far you have gone in the
output line. This is useful in various
situations. For example, you might
type something whose length you can-
not predict, but from which you need
to tab to another specific location.
PC/Forth7s word .FILENAME, for ex-
ample, prints the name of a file. In
PC/MS-DOS, however, the length of a
filename can vary considerably, par-
ticularly when (in PC-DOS 2.x and
later) the name printed by .FILENAME
includes a long string of directories and
subdirectories: FORTH DEVEL EA
MAIN.SCR is a not-too-fanciful ex-
ample.

By using OUT, however, you can
readily create a word that will tab to a
specific position on the line, even after
output of unpredictable length:

: TAB (n ---) (tabs to designated
position)
OUT @ - SPACES ;

(The PC/Forth SPACES includes, in
effect, a 0 MAX so that negative argu-
ments produce no spaces.) OUT is incre-
mented by all the output words (EMIT,
TYPE, SPACE and SPACES), updated
whenever the cursor is repositioned,
and zeroed by CR. The user can alter as
well as examine OUT, should that prove
useful in some situation. You can read-
ily define OUT in other Forths by redef-
ining the appropriate words:

VARIABLE OUT
: TYPE (a #---) DUP OUT +! TYPE ;
: CR OUT OFF CR ;

etc. The definitions in PC/Forth are,
of course, written in code for speed.

Here is a slightly more ambitious
application of the use of OUT:
CAREFULTYPE, a version of TYPE that
observes a specified margin, does not
break words, and indents each line a

specified amount. The definition uses
another vendor-supplied tool word,
SCAN.

SCAN searches for the first occur-
rence of a given character in a string (in
this case BL, a constant equal to the
ASCII value for a blank). Given the
address and the length of a string,
SCAN searchs for the first instance of a
specified character and returns the ad-
dress of the character and the remain-
ing length of the string. If the character
is not found, the address returned is of
the byte immediately following the
string and the length returned is zero.

Two different high-level definitions
of SCAN are shown. (PC/Forth's SCAN
is in code for compactness and speed.)
One definition uses a countdown loop
based on the length as index; the other
definition uses an indefinite loop and
avoids the use of a variable at the cost
of some stack-thrashing. (Because PC/
Forth is 83-Standard, the LEAVE in the
first definition jumps to the end of the
loop; this action can be mimicked in
79-Standard systems with an IF ELSE
THEN construct.)

In writing a definition dealing with
strings, most of us aren't sure whether
a given index is okay as is, or whether it
should be bigger or smaller by 1. In
writing the first definition of SCAN, for
example, I didn't know offhand
whether the value left on the stack
should be I, or 1 less than I, or 1
greater. The nice thing about Forth is
that such questions can be more quick-
ly and more easily (and, for me at least,
more accurately) answered through ex-
periment than through analysis. The
use of experiment is especially straight-
forward in the case of SCAN, which was
written to mimic an existing word. The
same method also worked in defining
CAREFULTYPE to arrive at the 1- in lines
9 and 13 and the subtraction in line 10
(where I didn't know at first whether
the difference itself was the number I
wanted, or whether I needed to adjust
it by 1 in one or direction or the other).
In both words, in fact, my initial guess-
es were wrong, but I readily corrected
the definitions on the spot.

FORTH Dimensions 8 Volume VII, No. 4

Which definition is faster? Such
questions are again best resolved
through a quick experiment. A couple
of test loops will provide the answer
for your own system.

The WHILE clause in CAREFULnPE
contains the actions needed to set the
loop up for another repetition (in this
case, the action is to increment the
address to point SCAN at the address of
the byte immediately following the
blank it found the previous time).

Because SCAN returns the bytes re-
maining in the string, the 1- in line 10
of CAREFULTYPE'S definition decre-
ments the bytes remaining, thus direct-
ing SCAN'S attention one position to the
right. CKMARGIN uses OUT to determine
where we are, and to start a new line if
the current word would have taken us
past the right margin. The various
stack manipulations jockey the ad-
dresses and the counts to the appro-
priate positions. Because SCAN finds
each blank, a series of multiple blanks
in the input are faithfully reproduced
in the output, as shown by the demon-
stration.

The word 6 r used in TESTSTR of the
screen is delimited by the following 9 9

and stores the defined string in the
dictionary, preceded by a count byte.
When the word TESTSTR is executed,
the address of the count byte is left on
the stack. Other Forths have other
ways of defining strings; for this de-
monstration, you need only find some
way to put the address and count on
the stack.

Any particular user, of course, will
always want the vendor to steer a bit
closer to Charybdis and include the
special feature the user wants. For
example, I would like to have a word
L E ~ that would put a true flag on the
stack if the last loop were exited by
LEAVE and a false flag.if the loop ran to
completion. LEFT? would obviate the
need for such variable switches as seen
in the definition of SCAN. But vendors
certainly know by now that users -
particularly Forth users - are never
satisfied. Forth's particular strength is
that dissatisfied users can seek satisfac-
tion by adding their own commands to
the language.

0. (High-level SCAN, definit ion 1 Ham 11.1509/12/'85;
1 :
2. VARIABLE TSW (F i f loop exited vla LEAVE 1
3:
4: : SCAN (adr len char --- char-adr len-remaining)

5. TSWON
6: 0 ROT DO OVER C@ OVER = (Same as char?)

7. IF DROP (char I (len remaining) TSW OFF LEAVE
8: THEN SWAP 1 + SWAP (incr address)

9: - I +LOOP (decr length remaining)
10: TSW @ IF DROP (char 1 0 (not found 1 THEN ,
I I

0: (High-level SCAN, definit ion 2 RGD 23:49 03/04/85)

I :
2: (adr len char --- adr' len')
3:
4 : SCAN >R 0 (adr len count)

5: BEGIN 2DUP o (adr len count f lag)
6: 3 PICK C@ (inspect char from str ing)
7: R@ (check fo r match)
8: AND (or st r ing exhausted)
9: WHILE 1 + ROT I + ROT ROT (no, inc count&adr
10: REPEAT R> DROP - ; (return adr' len')
I I :

0: (Str ing print ing word Ham 11:l 1 09/11/85)
1 :
2: 5 CONSTANT INDENT (amount each line indented
3: 70 CONSTANT RTMARGIN
4:
5: : CKMARGIN (* -1 OUT @ + RTMARGIN > IF CR INDENT SPACES THEN ;
6:
7: : CAREFULTYPE (adr * - \ adr=l s t char of string; *=its length)
8: BEGIN 2DUP BL SCAN (leaves adr and amount of st r ing le f t
9: DUP IF (inside str ing) 1 - (move past the blank 1 THEN
10: ROT OVER - (gives count of word+blank 1
I 1 : DUP CKMARGIN (CR i f needed 1
12: 3 ROLL SWAP TYPE ?DUP (any str ing l e f t ? 1
1 3: WHILE SWAP I + SWAP (move adr past the blank 1
1 4 REPEAT DROP (adr) .
15:

0 (Demonstration of CAREFULTYPE Ham 16:0t3 09/ 1 1 /85)

1 :
2: . TESTSTR " This i s a str ing long enough to wrap around Don't
3: forget that strings longer than 256 need special treatment; the
4 . coun the re i s l im i ted toa b y t e " ,
=. -.

6. TESTSTR COUNT ! prodclcei ..vrrect adt 5, i ~ u n t CAREFULTYPE
7.

Volume VII, No. 4 9 FORTH Dimensions

Word Indexer
Mike Elola

San Jose, California

Users of programming languages
often make use of programming aids.
One such aid automatically locates all
ocurrences of a specified variable
throughout a program. Since Forth
variables are not very different from
Forth procedure calls, just one utility
could be used to perform two func-
tions: locate references to a target word
within all other application words, and
locate references to a target variable
within application words. The words
CALLOUT and CALLOUTS provide func-
tions similar to these for the Forth lan-
guage. They are defined in the three
accompanying screens and adhere to
the Forth-79 Standard, so should work
"as is" on most Forth systems.

The uses I have found for these
words are numerous; many were not
even anticipated. If you wish to locate
all the words which make use of a non-
standard Forth word, you can do so. If
you wish to see any of the places you
may have used slow or tricky words
like DEPTH or PICK, you can do so. If
you would like an example of the usage
of an unfamiliar word, you can query
the words already in the dictionary.
And even if you would just like to
change the name of a word, you can
locate the places where corresponding
changes are required.

Originally, I wanted to see how the
effects of a substantial change to a low-
level word would ripple through a com-
pleted application. I needed to know
how many other words would be im-
pacted by the change. Rather than
search for ocurrences of the word in
listings of my application, I used
CALLOUT. You might want to use these
aids for still other purposes, e.g.,
streamlining applications and enhanc-
ing documentation.

CALLOUTS can help you to break
down an application into discrete com-
ponenets. Leo Brodie introduces the
concept of components in his recently

published Thinking Forth. Document-
ing the components in your application
can be a valuable exercise, especially if
you want to be able to make changes
later.

The elective words not referenced by
your application are good candidates
for removal. CALLOUTS shows these
words as well as those that are referen-
ced. It can also show where elective
words are used in other elective words.
While you might know that a partic-
ular elective is being used, you may not
know the other electives it may rely up-
on.

Even the words in the non-elective
part of Forth can be analyzed with
these utilities. This provides you with
additional documentation regarding an
implementation of the Forth language.
Once you know the components within
your implementation of Forth, you can
more deliberately avoid or engage them
in your own program.

Those components you cannot com-
pletely avoid, you can prepare to for-
get. Identify the words you wish to
preserve and include definitions of
them at the start of the new applica-
tion. Then you can safely "forget" the
larger component from which they
came.

How It Works

Word cross-references are found by
searching a certain portion of the Forth
dictionary for the code field address
(CFA) of the query word, or current
query word. The search starts at the
top of the dictionary and proceeds
down to the query word itself, so that
recursion is detected. In the case of
CALLOUT, the query word is the word
you specify. However, with CALLOUTS,
the query words are those starting with
the most recent dictionary entry and
proceeding down to the dictionary
word that you specify.

Floor Enhancement

Normal operation of CALLOUT and
CALLOUTS can be modified through the
use of FLOOR. FLOOR allows specifica-
tion of an alternate search limit, rather
than the query word itself. You specify
the new search limit with an existing
word. Thereafter, any references to the
current query word are only recognized
if made froin the part of the dictionary
above the "floor" word. Often, re-
sponse time improves dramatically
when you specify a floor word.

Such a search limit is needed before
you can request a report showing all
the words which are directly referenced
in your application. For example, if the
first word loaded in your application is
START, use the following commands:

FLOOR START 0k
CALLOUTS !
CALLOUTS

........................... CALLOUT
< CALLOUT> . . . CALLOUTS CALLOUT
FLOOR
etc.

Assuming ! is the first word in the
dictionary, all the words in the diction-
ary eventually become query words,
but only those instances of the query
words that occur within START, and
more recent words, will be reported.

A similar report is obtained by using
the first of any elective words as the
argument to CALLOUTS, after you have
set FLOOR as described above. Once
CALLOUTS reaches the elective words, it
reports them only if they are directly
referenced from your application.
(References to them that are not direct-
ly made from your application are
ignored.)

To deactivate FLOOR, use FLOOR with
! as its argument. The floor search limit
is only active when it is higher than the
current query word. So, the request

FORTH Dimensions 10 Volume VII, No. 4

FLOOR ! (presumably) sets a minimum
floor value that no longer affects the
functions of CALLOUTS and CALLOUT.

To sum up, the utilities presented in
this article allow you to easily find the
interrelationships among dictionary
words. Occurences of a given word in
the definitions of other dictionary
words can be found with CALLOUT. By
using CALLOUTS with the FLOOR option,
almost any subset of dictionary words
can be located within other subsets of
dictionary words - the most useful of
which are listed following:

application words in context of
other application words

application words against the en-
tire dictionary

application words against them-
selves and the electives only

elective words in context of
other elective words

SCREEN # 6 0
0) (FLOOR* PREVNFA UPNFA UMAX DOTS L E A D I D .)

1 V A R I A B L E FLOOR' V A R I A B L E U P N F A
2) : PREVNFA (H E R E / N F A -- PREVNFA)

3) DUP HERE = I F DROP L A T E S T E L S E P F A 4 - @ THEN ;
4) : UMAX DDUP U < I F SWAP THEN DROP ;
5 1
6) : FLOOR (<WORD> (--
7) - F I N D O= I F CR . " BAD WORDY ABORT
8) THEN DROP FLOOR' ! ; FLOOR !
9)

1 0) : DOTS (COUNT --)

1 1) 0 DO 46 E M I T LOOP ;
1 2)
1 3) : L E A D I D . (N F A -- N F A)

1 4) DUP I D . 20 OVER C@ 3 1 AND -
1 5) 4 MAX DOTS ;

SCREEN # 6 1
0) (< C A L L O U T >)

1) : < C A L L O U T > (C F A --
2) HERE UPNFA !
3) BEG I N
4) U P N F A @ DUP PREVNFA P F A DO (C F A --)

5) DUP 1 2- @ DUP C * < . "> C F A I L I T E R A L =
6) I F (S K I P S T R I N G D A T A)

7) I DUP C@ + l + R > DROP >R
8) THEN C ' < L I T > C F A 3 L I T E R A L =
9) I F (T E S T FOR P F A 2 + THEN

1 0 1 I @ = I F (EUREKA ! !)
1 1) U P N F A @ PREVNFA I D . 2 SPACES
1 2) LEAVE THEN (C F A - -)

1 3) LOOP UPNFA DUP @ PREVNFA SWAP !
1 4) UPNFA @ OVER FLOOR' @ UMAX U <
1 5) U N T I L (C F A -- DROP ;

SCREEN # 6 2
0) (CALLOUT C A L L O U T S
1)
2) : CALLOUT (<WORD> (--)

3) - F I N D O= I F CR ." BAD WORD" ABORT
4) THEN CR DROP DUP N F A
5) L E A D I D . DROP C F A < C A L L O U T > i
6)
7) : C A L L O U T S ((BOTTOM. WORD> (- -)

8) - F I N D O= I F CR ." BAD WORD* ABORT
9) THEN DROP CR CR N F A PREVNFA HERE

1 0) B E G I N (BOTTOM.NFA N F A - -)

1 1) PHEVNFA DDUP U< W H I L E
1 2) L E A D I D .
1 3) DUP P F A C F A < C A L L O U T > CR
1 4) REPEAT DDROP ;
1 5)

VolumeVII, No 4 11 FORTH D~mensions

-- - -

F83 Word Usage
C.H. Ting

San Mateo, California

How often various Forth words are
used is a question interesting to most
Forth programmers because this type
of information can lead to better de-
sign and to the optimization of Forth
systems. Most frequently used words
should be coded in machine language
for execution speed. They should also
be at the top of the dictionary to
minimize the time for interpretation
and compilation.

A number of years ago, Don Col-
burn mentioned at a FORML meeting
in Hayward, California that he used an
extra cell in a word's header to ac-
cumulate statistics of word usage,
either during compilation or during
execution. He also mentioned that the
most often used Forth word was (for
comments, which was rather unexpec-
ted at the time. Since I haven't the

VIEW FlELD

LINK FlELD

NAME FlELD

CODE FlELD .

PARAMETER FlELD

luxury of metacompiling my own sys-
tem with that type of flexibility, this
concept remained a distant curiosity
for me.

After plunging into the F83 system
produced by Mike Perry and Henry
Laxen, I found a ready solution to
analyze Forth word usage without
much hard work. The secret is in the
extra cell used in F83 to store the "view
file" information. As shown in figure
one, Forth words in F83 are laid out in
the dictionary with five fields.

The view field stores a file number in
its upper four-bit subfield and a block
number in the lower twelve-bit sub-
field, allowing the source screen con-
taining the word definitions to be re-
trieved from the disk and viewed by the
user. If I am not going to use the view
field for viewing purposes, I am free to
use it for whatever I wish to do with it.
Why not use it to accumulate the statis-
tics of Forth word usage?

To use the view field for this pur-
pose, I must do it in the following
sequence:

1. Clear the view fields of all words in
the dictionary.

2. Build a word processor which will
scan a screen of code and incre-
ment the view field when the cor-
responding word is found in the
screen.

3. Tabulate the statistics.

The program shown in the accom-
panying screens performs these func-
tions. It looks extremely simple be-
cause it utilizes many powerful and
interesting F83 features which require
some explanation.

The most important feature I make
use of is the vectored execution proced-
ures, which allow me to assign a num-
ber of tasks to a single word. For
example, I want to scan the dictionary
and clear all the view fields before
analyzing word usage. After the statis-

Figure One-Forth word layout in F83 tics are collected, I want to scan the

dictionary and print the contents of the
view fields. The scanning operations in
both cases are identical. The difference
is the actions I have to take after I find
a view field. Anticipating that different
actions are to be taken, I defined a
vectored word WORK as a DEFER^^^
word, and use it in the definition of the
scanning word WORKS, which follows
the dictionary link to locate every word
in the dictionary and perform WORK on
each of them.

WORKS is complicated by the fact
that F83 hashes the dictionary linkage
into four threads, and all four threads
have to be scanned when traversing the
dictionary. The definition is very simi-
lar to the word DEFINED which does the
dictionary search for the text interpret-
er in F83. It scans all four threads and
processes the one with the highest link
field address. The process continues
until all four link addresses are reduced
to zero, indicating the end of the
threads. The scanning is performed
only on the FORTH vocabulary, in
which all the primitive Forth words
reside. (Usage of words in other vocab-
ularies is much less frequent and the
statistics are less significant than those
of the words in the Forth vocabulary.)

After INIT-VIEW is defined to clear the
view field, given a link field address,
we can zero the view field of all the
words in the FORTH vocabulary by
vectoring WORK to INIT-VIEW and exe-
cuting WORKS. After the statistics are
accumulated in all the view fields, we
will vector WORK to PRINT-VIEW and
then execute WORKS. This time, WORKS
will print the contents of the view fields
with the corresponding word names.

ACCUMULATE in screen 19 is the
word processor which processes source
screens very much like INTERPRET. If a
word is found in the dictionary by
DEFINED, the view field of this word is
incremented. If a word is not found in
the dictionary (actually, in the FORTH
vocabulary), it is simply skipped. I
couldn't care less if it is a number,
which will be ignored also, unless it is
0 , I , 2 or 3, which are Forth words.

In F83, WD is also a vectored word.
I define [LOAD] to use ACCUMULATE to

FORTH Dimensions 12 Volume VII, No. 4

NEW MICROS, INC. announces its "Generic Target C~mpute r "~ .~ .
with new industrial-grade enclosure.

FORTH IN A NEMA 12 BOX

I "Generic Target C o r n p ~ t e r ~ ~ ~ . ~ . with NEMA 12 Case - $1 16.00 I
The NMIT-0012 "Generic Target Computer"' " is a digital single board computer with 5
parallel ports, 1 serial channel, 2 counter/timers, RAM, 3 JEDEC sockets, expandable,
operating system and FORTH supported. Euro card format. The GTC is a minimum part
configured version of the "100 Squared"'"

I Other processors and configurations available as low as $65. I
I OEM Configured $230. OEM with case $255. (as shown above). I

Development configured $290.

New Micros Inc.
808 Dalworth
Grand Prairie, Texas 75050
21 41642-5494

VolumeVIi. NO 4 13 FORTH Dimens~ons

EMPTY
MARt ' L

HELLO - L

RACt GROUND: 3
ACTIVATE 3
SET-TAB) 5
TASt : 1
KESUME
DEBUG 2
L I S T I f v G c

SHOW 2
sSEMIT) 7

(FAGE) '
FOKM-FEED 1V
PAGE 1
WAGE 1
LOGO 1
L IPAGE 5
FOOT I NG

-
IN IT -PR =

EFSON 1
SEE

-
(SEE)

ASSOCIATIVE: 2
CASE: 4
MAP 3
OUT 4
DL 3
DU I)

DUMP 4
.HEAD =

'.A 1 '. N
DLN 4
EMIT. -
0.2 '
. 2 4
A 1
SHADOW
(WHERE) "

F I X B
E D I T 7

ED 7

DONE 1
ED I TOR 1
DAKt. 1
AT ' -
- L I N E
BLOT 4
REFLCICE

-
INSERT 8
DELETE

-
SEAKCH ' L

SCAN-IST 2
FOUND 1
TO d

CONVEY

(CONVEY '
A

. TO
HOF 2 8
CONVEY-COPY 2
U/D ?

HOPPED 2
VIEW '
OVIEW 4
COPY =
(COPY) - L

ESTARLISH 6
L
R 1
N 1 1
MANY 1
TIMES 1
#TIMES 1
WORDS 7

LARGEST 9
I ND 7

INDEX 1 6
.L INE<) c

TR I AD 7
L I S T 9 . SCR 7 2 4
'CR 1 5
-L INE 4

2 7 RMAKG I N -
LMARGIN 1
HIDDEN 0
0 = 2
0 ,= CI

)= 1 9 - - 4
U I = 4
U' = ' L

MS 3
FUDGE 7

P ' 4
P C ' -
P a
F c a =
MULTI 8
SINGLE a . STOF 6 5
WAC E -
SLEEF 4
'LINI. 1 4
OLINt 6
LOCAL 1 1 4
INT#
RESTART 4
(PAUSE) '

UNHUG 9 1
BUG 2 1
DOES7 7c - J

DOES-SIZE
DOES-OF
LAPEL
U T I L I T Y . R L h
~ ~ ~ 8 0 8 4 . BLK
EXTEND&. RLh
k ERNEL86. RLk
VIEWS
VIEW-FILES
SAVE-SYSTEM
FROM
OF EN
DEFINE
R:
A:
DRIVE7
D I R
CREATE-FILE
MORE
ROOT
-- >

+THRU
THRU
"ENOUGH
7

(S
\
L/SCR
C / L
RECURSE
B
0
DUMF
. I D . s
DEF TH
RYE
START
OC
I N I T I A L
COLD
WARM
BOOT
OUIT
RUN
I S
(I S)
: I S
USER
#USEK
CODE
AVOC
?VARIABLE
?CONSTANT
DEFIN IT IONS
VOCABULARY
DEFEK

VAK I A6LE
CONSTANT
KECURSIVE

I
C
DOES
:CODE
(:CODE)
:USES
ASSEMBLER
< :USES)
KEVEAL
H IDE
'CSP
' CSF
CKEATE
"CREATE
,VIEW
WHILE
ELSE
I F
KEFECIT
AGAIN
U N T I L
+LOOP
LOOP
'DO
DO
THEN
BEGIN
'LEAVE
LEAVE
" KESOLVE
" MARh
' ,RESOLVE
7,MARI - RESOLVE
<MARh
>RESqLVE
>MARY
-'CONDITIOh
ABOKT
ARORT"
(ABORT")

(-ERROR)
7EKROK
WHEhE
FORGET
(FOKGET)
TRIM
FENCE

(. , ' I

(") 1
CCOMFILEI :
C 3 1 3

1 7
'MISSING 3
CKASH -
CONTROL 7
A S C I I -
DLITERAL 2
L I T E K A L 1 4
IMMEDIATE 1 s
COMPILE 5
EVEN 4 8
ALIGN 7

C. 8
8

ALLOT 7
INTEKFRET 1 2
STATUS 2
"STACY 3
DEFINED 2
'UFFERCASE 2
F I N D 4
#THREADS 4
(F IND) 2 5

HASH 3
VIEW, 7

.VIEW 3
r L I NC 7
>NAME 4
>BODY 3

L I N K 3
NAME> 1 2
BODY -

a
L >NAME T

N,LINh -
FORTH-BS 2
DONE" 1
TRAVERSE 4
\ s -
(2 . (4
.TYPE 3 2
WORD 1 3
'WORD 4
PARSE 4
PARSE-WORD 5
SOURCE 4
(SOURCE) 5

FLACE 1 4
/STRING 5
SCAN 9
Sk I P 7 u

D.R 8
D. 4
(D.) 4
UD.R 1 0

LID.
(UD. . R

(.)

U. R
U.
(U.)

OCTAL
DECIMAL
HEX
YS

SIGN
Y i
.I)

HOLD
NUMBER
(NUMBER)
NUMBER7
(NUMRERTi
CONVERT
DOUBLE?
D I G I T
LOAD
(LOAD)

DEFAULT
VIEWY
FLUSH
SAVE-BUFFERS
EMFT,Y-BUFFERS
IN-BLOCY
RLOCI:
(BLOCK)

RUFFER
(PUFFER)

MISSING
D I SCARD
UPDATE
ABSENT?
LATEST?
CAPACITY
DOS
SWITCH
F I L E ?
. F I L E
WRITE-RLOCK
READ-BLOCK
:,UPDATE
PUFFERY
)END
,BUFFERS
I N I T - R 0
F I R S T
>S IZE
L I M I T
D I Sk -ERROR

RECIBLG
H/KEC
R iRUF
#BUFFERS
QUERY
T I P
EXPECT
CC-FORTH
CC
DEL-IN
CHAR
(CHAR)

CR- I N
F - I N
RES-IN
RACP -UP
(DEL- IN)
B S - I N
BEEP
BACYSPACE
SPACES
SPACE
TYPE
CRLF
(EMIT)
(PRINT)

FR-STAT
CR
KEY
KEY?
(CONSOLE)
(KEY)
(KEY?)
BDOS
COMPARE
CAPS-COMP
COMP
-TRAIL ING
PAD
HERE
UPPER
UPC
MOVE
LENGTH
COUNT
RLANC.
ERASE
F I L L
CAPS

SPAN
> I N

PI. I. 4
Vi jL-LINI 10
WIDTH 02
' T I R 3 8
CONTEXT 1 5
#VOCS 1 8
CURRENT 2
CSF =

LAST 7

RY 8
DPL 1 1
X4RNIIJG 1 1
SI-ATE =
FRIOR 1 3
SCR 2
EMIT 7
FRINTI IJG 47
I N - F I L E 1 7
F1L.E 5
HLD 1 4
RASE 4 0
OFFSET 7
YL. I NE 1
#OUT 7
DF 2 1
RPO 2 5
SF0 4 5
L I N K 6 1
ENTRY 5
TD9 I
$ / 3
*/NOD 3 7
MOD 3 9
/ 5B
/MOD 1 0 3
t 2 4 1
MU/MOD 3 0
M/flOD 4
t D 7C$
DMAX B
D f i l N 1 4 0
D: 5 4
D< 2 7
DU< 1
D= 1
DO= 7
TDNEGATE 1 8
D- 30
D2 I 3 8
czr 11
DABS 5 1
S >D 6 0
DNFGATE z
D+ 8
2RCJT 2 1
4DLJP 5 0
3DLIP 5 9

=OVER
2SWAP
ZDUP
2DROF
' I

20
WITHIN
RETdEEN
MAX
M I N

<
U
ui
?NEGATE

- -
3 . r
Lb ,
0 '
0=
UM/MOD
U I D
UMI
2-
1-
2+
I +
8 t
U2/
2 /
2 %
7

2
1
0
+ '
ABS
-
NEGATE
+
OFF
ON
CTOGGLE
CRESET
CSET
FALSE
TRUE
NOT
XOR
OR
AND
ROLL

111 'DUF
2 F L I P

1 9 -ROT
4 1 ROT
23 N I P

7 TUCC.
l 0 L l OVEK
1 5 3 SWAP
2 4 2 DUP
1 0 9 DROP

2 R F '
1 RFO
2 SF '
7 s p a
7 CMOVEi

2 4 CMOVE
1 8 C '
5 8 CO

1 4 5 '
3 0 1 O

3 ("LEAVE)
3 (LEAVE)
2 J

5 0 I
1 4 PAUSE

2 4 1 NOOF
1 GO
7 PERFORM
7 EXECUTE

1 4 >NEXT
1 2 ROUNDS

4 (-DO)
4 (DO)
4 (+LOOP)
4 (LOOF)
4 ?BRANCH
4 BRANCH
6 (L I T)

1 7 UP
6 UNNEST

1 5 E X I T
8 0 FORTH ok

I I
Figure Two

analyze the contents of a screen. After
LOAD is vectored to [LOAD], LOAD^^^ a
screen will accumulate counts to words
which appear in this screen. THRU can
be used to analyze a range of screens in
a file. Running a large number of
screens through, we can get fairly rep-
resentative statistics for all the com-
monly used Forth words.

F83 is very large, consisting of many
system and application programs. It
serves very well as a data base for the
purposes of statistical analysis. Using
the above technique, I ran all the
source screens through this word pro-
cessor, including seven F83 source files
with 230 screens of code. There are 555
words in its FORTH vocabulary, and
total occurrences of these words is
10,603. The result is tabulated in figure
two. The words which occur most
often - those counted thirty or more
times - are listed in figure three.

The most obvious utility of the
above analysis is that if we can arrange
the dictionary so that the most fre-
quently used words are at the very top,
the speed interpretation and compila-
tion will be significantly improved,
because the dictionary searching time
would be reduced. Another interesting
observation is that comments were
heavily used in the F83 system, using
(s, \ and (. This is, of course, dictated
by good programming style and in-line
documentation.

d

I S 726 CR €3 6 OR 1: J 1 . . 7 12 FORTH 8 C3 ASSEMBLER 50
71 1 V A R I A B L E 7 9 ::I. R %J(-J

C' -.

'\ 475 HERE ./ .:* I -f C -. a i-r
;3 -7 - .2-V 1 -. 70 I M M E D I A T E 4f3
i 2 5 ~ CONSTANT 69 - 4 7 -

PUP 243 # b 8 D O 46
0 24 1. LOOP h 7 7 L .+ 11 5
N13OFz' 24 1 67 ROT 4 1 I I

I F --,--,r
i i . J [: 6 6 0 = 40

Tt-IEiJ 3 3 "T
i L . - l I h 5 EEC; I N i$ i2

SWAI-' 153 I S 6 5 - . . -.. ..:. 9
I 145 2DCJP 6 2 NOT :: u
+ 14ij 1 + 6 1 2DROF' 3 8
C.ODE 116 CI 1 2 y #, .5 ..- .:, /

?'MISSING 113 AND 6 i:) DEFTER c.5
DROP 109 R :::. 5 9 A S C I I - c .:. -,
1 1 ci3 c ;3 5 U SPACE -.. ,- .,:, ,2.

.I 103 .i 58 I x l S ,-, 3 2

OVER 1 Oi'j C , -I / .A 1 c- C.Hc?R -..
E L S E 1 00 0F:'F 5 4 :::,BODY 7 -

.:.(-i

D E F I N I ~ f ' I O N S CREATE a .:& + ! 3 i:i c-

9 1 TRUE 3 i:) Figure Three

0 I.:
18 LIsr I=? LIST
S c r # 1El R: ME1 A 8 6 . BLi:.

0 \ S t a t i s t i c a l a n a l y s i s o f w o r d s 2 h J A N 8 S C H T
1 DEFER W0F:t::. (S 1 ink: . t o d o m 1 . s ~ . w o r b . ~ o n v o c a b u a l r v w o r d s)
7 1 NOOP I S WORt.;
.: : WORC:S (S s c a n v o c a b u l a r y a n d WIIRC.. o n e a c h w o r d)
4 CONTEXT @ HERE #THREADS 2): C O V E
5 RECj IN HERE #THREADS LARGEST PUP
6 WHIl-E DUF:' WOKt:.: 3 SWAP ' RIEF'EAT 2DROF' :
7 : I N I T - V I E W (S l i n k . , c l e a r a wo r -d i z o u n t e r .)
8 2- OFF :
9 : P R I N T - V I E W i S l ink, . p r i n t o n t e n t s o f a w ~ r d c o ~ ~ n t e r .)
10 CR DUP 2 - @ t, . R Z SPACES !-'::.NAME . I G ;

1 1 E X I T
12 ' I N I T - V I E W IS WOFiK WURt;S i I n l t i a l l r e all w o r d c o u n t e r s]
11. ' P R I N T - V I E W I S WIICI'C.. WDRk..S (F - ' r i n t a i l w o r d c o u n t e r - s)
14
15

S c r # lC? B: METAB&. R L K
O \ New l o a d f o r s t a t i s t i c s zZJ f iN85CHT
1 : ACCUMULATE (S - -- . t e x t i n t e r p r e t e r t o i n c r - e m e n t c o u n t e r s)
2 BEGIN DEFINED IF .:.VIEW I swnv + I ELSE DROP THEN
1. F A L S E DONE? U N T I L :
4 : [LOAD3 (S n . interpret b l o c k . . n, 1 i h . e LOAD >
5 F I L E 3 :,.R RLC, .3 .:.R : I N : ; ::.R
C. 64 . : I N ! (S I : l p i - l t h l i n e t o a v o l d w r a p - . . a r o ~ ~ n d .)
7 H L K ! I N - F I L E .3 F I L E ! ACCIJMIJLATE. R;.. . . : IN ' R':. R L t !
8 I?::. ! F I L E S :

E X I T
10 ' CLOADI I S LOAD i U s e CL-UAUI t o dc? t h e WCJRC-SI
1 1 CAPS OFF i D o c a s e sensitive c o m p a r e a n d c o u n t i n g .)
12 OPEN .-:file.': (! ; e l ec t a s o u r c e f i l e t o a n a l y z e .)
1J 1 10 THRU (A c c u m u l a t e w o r - d statistics.)
14 ... (R e p e a t f o r a 1 1 s o u r - c e f 1 l e s .)
15 ' P R I N T - - V I E W I S WORC:. WORt:..!; (F ' r - i n k r e s u l t s .)
0 k

Volume VII, NO. 4 15 FORTH Dimensions

Synonyms and Macros, Part 3

Benchmark Readability
Victor H. Yngve
Chicago, Illinois

One of the most frequently used
timing benchmarks is the Eratosthenes
Sieve program for calculating the
prime numbers between three and
16,384. This program provides a con-
venient test bed for illustrating the use
of the synonyms and macros presented
in the previous articles in this series1.
There are a number of special circum-
stances where synonyms and macros
should be used instead of colon defini-
tions. Two of these special circumstan-
ces will be illustrated in this article,
which focuses on trying to improve the
readability of the Sieve program.

The Sieve program operates with an
array of byte flags initialized to true to
represent the odd numbers in the given
range. Starting with the flag for 3, a
prime, the program tests each flag in
succession. When it finds a flag that is
true, that number is a prime. For each
prime found, the program sets the flags
to false for all succeeding odd multi-
ples of that number, to indicate that
they are not prime, and it then incre-
ments a counter that accumulates the
total number of primes found. This
total is then printed. Benchmark times
are usually given for ten iterations of
this program.

Screen 14 shows a Forth program for
this benchmark that has been widely
circulated outside of the Forth com-
munity, it having appeared at least
twice in BYTE^.^. Call this version A.
Please examine this program carefully.
Note that even with the above explana-
tion of what it is supposed to do, it
would generally be judged as rather
unreadable, if not opaque, even by
someone with a knowledge of Forth. If
you don't think so, try to find where to
place a print word to ,print out the
successive primes.

The reason for the obscurity of the
program is not hard to find: It has been
optimized for speed at the expense of
readability. It transgresses the usual
canons of good Forth programming
style. In the interest of speed it puts
everything in the one long word DO-
PRIME, instead of using a number of

shorter nested definitions carefully
named to indicate their function in the
program. With examples of Forth pro-
gramming like this being widely circu-
lated to the computing public, it is little
wonder that Forth has sometimes been
accused of being an unreadable lan-
guage. In reality, when written in the
recommended style that optimizes
readability, it is among the most
readable of languages.

A general method for writing read-
able Forth programs is to program the
algorithm in words chosen to bring out
how it works, thus words which refer
to the concepts of the algorithm rather
than to the details of its implementa-
tion in Forth. These application-spec-
ific words are then defined ultimately
in terms of standard Forth words on
earlier screens. This separates the pro-
gram into an algorithmic part pro-
grammed largely in its own vocabu-
lary, and an implementation part or
preamble, which specifies how the
named application-relative words are
realized in terms of the Forth givens.

Please look now at screen 50, in
which the benchmark is rewritten in
words selected to indicate their func-
tion in executing the Sieve algorithm.
This screen would undoubtedly be
judged as quite readable by people
curious to see what Forth code looks
like. The preamble giving the Forth
implementation of these words is on
screen 49. Note that PRINT-PRIME can
be changed from DROP to a print word
for debugging purposes. This is version
B.

For many programs we would be
done at this point, but in this case we
run into a special circumstance. There
is the problem that version B will not
run, as it contains errors. The defini-
tions for GET-FLAG, PRIME and FIRST-
MULTIPLE will not work as intended
because the word I that they contain
cannot be used to obtain the loop index
when something else has been placed
on the return stack, here the return
from a colon definition. In fact, FIRST-
MULTIPLE finds two returns covering up
the index on the return stack.

To make the program work, these
definitions must be deleted or com-

mented out as shown on screen 54, and
the words they contain returned to
their original place in the loop, as
shown on screen 55. This moves back
into the loop some of the confusing
low-level clutter that we had been
trying to clear out, and consequently
compromises its readability. But this
version will run. Call it version C.

Or the words GET-FLAG, PRIME,
FIRST-MULTIPLE and CANCEL-MULTIPLES
could be coded as macros instead of
colon definitions. Simply replace the
colon in each by MACRO and the semi-
colon by END-MACRO. This is one of the
reasons for using macros: to allow
removing material from a loop in a
way that will not add a return to the
return stack. We will code these words
as macros in version D.

Of course version C will also run
slower because of the nesting and un-
nesting involved in calling the colon
definitions. On a 4 MHz 280 system it
run in 106 seconds instead of the 71
seconds for version A, the original
benchmark program, about 50% slow-
er. This is a large difference for a speed
benchmark. The program would have
run even slower if we had been able to
retain all of the colon definitions -
about 60% slower than version A. This
is a powerful disincentive operating
against the use of good Forth program-
ming style.

Something can be done, however, to
overcome the slowness. This is the
second special circumstance where syn-
onyms and macros are useful. Suppose
we replace the rest of the colon defini-
tions on screen 49 by equivalent syno-
nyms and macros, as shown on screens
56 and 57. This is version D. Version D
runs in 71 seconds, the identical timing
for version A, the original unreadable
benchmark program. This is because
version D compiles run-time code that
is identical to that compiled by version
A.

This means that a judicious use of
synonyms and macros allows one to
optimize simultaneously for speed and
for readability - they provide both the
speed of in-line code and the readabil-
ity of colon definitions. This is another
important use of synonyms and mac-

FORTH Dimensions 16 Volume VII, No. 4

J

Screen # 14
0 (Eratosthenes sieve benchmark program VERSION A)
1
2 8190 CONSTANT SIZE
3 CREATE FLAGS SIZE ALLOT
4 : DO-PRIME FLAGS SIZE 1 FILL
5 0 SIZE 0
6 DO FLAGS I + C@
7 IF I DUP + 3 + DUP I +
8 BEGIN DUP SIZE <
9 WHILE 0 OVER FLAGS + C! OVER +
10 REPEAT DROP DROP 1 +
1 1 THEN
12 LOOP
13 . .I1 Primes I' ;
14 : 10-TIMES 10 0 DO DO-PRIME LOOP ;
15

Screen # 49
0 (Colon sieve 1 PREFACE VERSION B *errors* 2/23/85 vhy)
1 81 90 CONSTANT SIZE CREATE FLAGS SIZE ALLOT
2 : FLAG-LIMIT SIZE ;
3 : FIRST-FLAG 0 ;
4 : OCOUNT 0 ;
5 : INC-COUNT 1+ ;
6 : PRINT-COUNT . ;
7 : SET-TRUE (addr -- 1 SIZE 1 FILL I

8 : GET-FLAG (-- flag 1 FLAGS I + C@ ; (error)
9 : PRIME (- - P I I DUP + 3 + ; (error)
10 : PRINT-PRIME DROP ;
1 1 : FIRST-MULTIPLE (p -- p m) DUP I + ; (error)
12 : SIZE< (m -- m f) DUP SIZE < I

13 : SET-FALSE (m - - m) 0 OVER FLAGS + C! ;
14 : NEXT-MULTIPLE (p m -- p m') OVER + I

15 : DROP-MULTIPLE DROP ;

Screen # 50
0 (Colon Sieve 2 ALGORITHM VERSION B *errors* 2/23/85 vhy)
1
2 : CANCEL-MULTIPLES (prime -- prime)
3 FIRST-MULTIPLE (error)
4 BEGIN SIZE< WHILE SET-FALSE NEXT-MULTIPLE REPEAT
5 DROP-MULTIPLE ;
6
7 : DO-PRIME FLAGS SET-TRUE OCOUNT
8 FLAG-LIMIT FIRST-FLAG
9 DO GET-FLAG (error)
10 IF PRIME CANCEL-MULTIPLES PRINT-PRIME INC-COUNT THEN (")
1 1 LOOP PRINT-COUNT ." Primes " ;
12
13 : 10-TIMES 10 0 DO DO-PRIME LOOP ;
14
15

Screen # 54
0 (Colon sieve 1 PREFACE VERSION C 2/23/85 vhy)
1 8190 CONSTANT SIZE CREATE FLAGS SIZE ALLOT
2 ' : FLAG-LIMIT SIZE ;
3 : FIRST-FLAG O ;
4 : OCOUNT 0 ;
5 : INC-COUNT I + ;
6 : PRINT-COUNT . ;
7 : SET-TRUE (addr --) SIZE 1 FILL ,
8 \ : GET-FLAG (-- flag) FLAGS I + C@ 1

9 \ : PRIME (- - P) I DUP + 3 + I

10 : PRINT-PRIME DROP ;
1 1 \ : FIRST-MULTIPLE (p -- p m) DUP I + I

12 : SIZE< (m - - m f) DUP SIZE < t

13 : SET-FALSE (m - - m) 0 OVER FLAGS + C! ;
14 : NEXT-MULTIPLE (p m -- p m') OVER +

1
15 : DROP-MULTIPLE DROP ;

C

FOR tRS-80 MODELS 1,3,4,4?
IBM PC/XT, AT&T 6300, ETC.

COMMERClAL
SOFTWARE

DEVELOPERS
and

INDIVIDUAL

appreciate MMSFORTH for its: . -
Power
Flexibility

* Compactness
@ Development speed
@ Execution speed

1 @ MaintainabBity.
I

When you want to create the
uitimate:

@ Computer Language
@ Application

Operattng System
@ Utility,

1 BUILD /Tin

Volume VII, No. 4 17

with LMI FORTH"

/ For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compllers

1Gb1t and 32-bll lmplernentatlons
Full screen edltor and assembler
Uses standard operatlng system flies
400 page manual wrltten In plaln Engl~sh
Opt~ons lnclude software l loat~ng polnt, arlthmetlc
coprocessor support, symbollc debugger natlve code
compllers, and graphlcs support

For Applications: Forth43 Metacompiler
Unique table-drlven multl-pass Forth compller
Cornplles compact ROMable or d~sk-based appllcatlons
Excellent error handllng
Produces headerless code, complles from ~ntermed~ate
states, and performs cond~t~onal compilat~on
Cross-comp~les to 8080. Z-80, 8086, 68000, and 6502
No llcense fee or royalty for comp~led appllcatlons

Support Services for registered users:
Technical Ass~stance Hotllne
Per~od~c newsletters and low-cost updates
Bullet~n Board System

Call or write for detalled product lnformatlon
and prices. Consultlng and Educational Services
available by special arrangement.

l ~abora tory Mlcrosystems Incorporated
Olhce Box 10430. Marma del Rey. CA 90295

Phone cre<l,r card orders to (213) 306-7412

0wm.1 Msldbulon.
Germany Forth~Syrleme Angellka Flesch 0-7820 Tlllree-NeuStadl
UK System S C I P ~ C ~ Lld . Lonoon EClA 9JX
France Micro-Sigma S A R L . 75008 Paris
Japan Southern Par i l l c Lld . Yokohama 220
Au~l ra i8a Wave-onlr Assoc8ates 6107 W8lson W A

.~- I

ros: They should be used in place of
colon definitions in programs or parts
of programs where speed is critical and
where the extra memory requirements
over colon definitions are of secondary
importance. A speed benchmark pro-
gram is a prime example. Other ex-
amples are the time-critical parts of
programs that spend most of their time
in inner loops.

How much extra memory is needed?
Often it does not matter, because many
Forth programs never find themselves
bumping their heads against a memory
limit. But sometimes it does matter.
Exclusive of the 8190 bytes ALLOT^^^
for the array, the original benchmark
program, version A, compiles in 162
bytes. Version B, the one with colon
definitions that doesn't run, compiles
in 455 bytes. The difference of 283
bytes, about 175% extra, represents
the memory cost of readability for
examples such as this. It amounts to an
overhead for each extra colon defini-
tion of seven bytes plus the number of
characters in the name, and an extra
two bytes for each time the definition is
used. It is the small cost that we usually
gladly pay for the advantages of clarity
of style, ease of programming, ease of
checkout, ease of making modifica-
tions, self-documentation, and so on.
Version C , which runs, compiles in 391
bytes, a difference from version A of
229 bytes, about 140% extra.

Now how much extra memory is
needed for version D, the version with
macros and synonyms? This version
compiles in 493 bytes, giving an in-
crease of only forty-eight bytes or 1 1 %
over version B, the equivalent version
with colon definitions (that does not
run). This is the approximate extra
memory cost of using synonyms and
macros instead of colon definitions in
programs like this where no macro is
used more than once and the macros
are nested no more than two deep.

As can be calculated from the infor-
mation given in the earlier articles, the
cost of a synonym is two bytes less than
the cost of a colon definition with one
word in it, and the cost of a macro
definition in an eight-bit system is one
byte less than a colon definition, but
each use of a macro costs an additional

amount equal to two bytes less than the
number of bytes needed for compiling
the words in the macro.

Thus, for compactness one would
normally use synonyms in place of
colon definitions with one word in
them, and for other words, one would
normally use colon definitions instead
of macros. Macros should be used in
place of colon definitions where their
benefits of speed and noninterference
with the return stack are particularly
important.

A programming style that separates
the algorithmic part from the imple-
mentation part of a program has other
advantages besides readability. Note
how easy it would now be to change the
program, for example to try a 16K
array, or a bit array, or the use of
variables instead of the stack to see
how much slower they would be, or to
trv some of the schemes that have been
siggested for speeding up this bench-
mark.

The use of comments is often recom-
mended to improve the readability of
programs, and they can be helpful. But
note that version D is quite readable
without any comments except the stan-
dard stack diagrams. This shows off
the self-documenting ability of Forth.

The word "readability" is actually
misleading because it may lead one to
think of it as an absolute attribute of a
programming language. In reality it is
a relation between a particular pro-
gram and a particular reader, and it
depends on both. For example, the
definitions in the implementation pre-
amble of version D may be eminently
readable by Forth programmers who
understand how the algorithm is being
implemented, but they are probably
not as readable by members of the
wider computing public who know
little about Forth. The algorithm part,
however, is readable to the larger audi-
ence because it does not require as
much knowledge of Forth, but only of
the Sieve algorithm. And it is more
readable to Forth programmers as well,
because its understanding requires
primarily a knowledge of the Sieve
algorithm, and not of the particulars of
how it happens to be mapped onto
Forth.

FORTH Dimensions Volume VII, No. 4

Actually there is a moveable line
between the algorithm and the imple-
mentation part of a program, and it
can be moved to accommodate the
intended audience for the program.
Our published examples of Forth code
should be optimized for readability by
a wider audience. This means that we
should be more strict in removing the
details of the Forth implementation
from the algorithm section than in a
program written for our own consump-
tion. As in prose writing, one should
write for one's audience. For example,
FLAG-LIMIT FIRST-FLAG DO adds to the
readability of the above program for
the general computing public, but for
Forth programmers familiar with ar-
rays and the order of loop arguments
in Forth, SIZE 0 DO might be quite
acceptable instead.

Perhaps someone would like to chal-
lenge other languages to a comparison
of readability benchmarks. Forth
would come out quite well. The prob-
lem is, of course, that subjective judg-
ments are involved, and such judg-
ments depend strongly on what other
languages the reader is already familiar
with. But any argument that Forth has
an unfair advantage because synonyms
and macros are not part of the stan-
dard language, would be overlooking
an important feature of Forth, its ex-
tensibility. And any argument that
SYNONYM, MACRO and END-MACRO real-
ly constitute new system words like
colon and semi-colon, and therefore
are not fair, overlooks another impor-
tant feature of Forth - the lack of a
strong or impenetrable wall between
the system program and the user pro-
gram. SYNONYM is programmed in
standard Forth-83; and the macro fac-
ility, though implementation specific,
is the sort of thing that any average
Forth programmer can easily add to a
system. Unlike most other program-
ming languages, Forth is a dynamically
evolving language like English. And
unlike some other programming lan-
guages, Forth does not erect barriers
nor provide a single prescriptive way of
programming that would limit freedom
and discourage creativity.

References

I

1. Yngve, Victor H. "Synonyms and 3. Tello, Ernie. "polyFORTH and
Macros," parts 1 and 2. Forth PC/FORTH." BYTE Vol. 9, No.
Dimensions VII/3 (September/ 12, p. 303 (November 1984).
October 1985).

Screen # 55
0 (Colon sieve 2 ALGORITHM VERSION C 2/23/85 vhy)
1
2 : CANCEL-MULTIPLES (prime -- prime)
3 (D U P I +)
4 BEGIN SIZE< WHILE SET-FALSE NEXT-MULTIPLE REPEAT
5 DROP-MULTIPLE ;
6
7 : DO-PRIME FLAGS SET-TRUE OCOUNT
8 FLAG-LIMIT FIRST-FLAG
9 DO FLAGS I + C@
10 IF I DUP + 3 +
1 1 DUP I + CANCEL-MULTIPLES PRINT-PRIME INC-COUNT THEN
12 LOOP PRINT-COUNT ." Primes " ;
13
14 : 10-TIMES 10 0 DO DO-PRIME LOOP ;
15

Screen # 56
0 (Macro Sieve 1 PREFACE VERSION D 2/23/85 vhy)
1 81 90 CONSTANT SIZE CREATE FLAGS SIZE ALLOT
2 SYNONYM FLAG-LIMIT SIZE
3 SYNONYM FIRST-FLAG O
4 SYNONYM OCOUNT 0
5 SYNONYM INC-COUNT I +
6 SYNONYM PRINT-COUNT .
7 MACRO SET-TRUE (addr --) SIZE 1 FILL END-MACRO
8 MACRO GET-FLAG (-- flag) FLAGS I + C@ END-MACRO
9 MACRO PRIME (- - P) I DUP + 3 + END-MACRO
10 SYNONYM PRINT-PRIME DROP
1 1 MACRO FIRST-MULTIPLE (p -- p m) DUP I + END-MACRO
1 2 MACRO SIZE< (m -- m f) DUP SIZE < END-MACRO
13 MACRO SET-FALSE (m - - m) 0 OVER FLAGS + C! END-MACRO
14 MACRO NEXT-MULTIPLE (p m -- p m') OVER + END-MACRO
15 SYNONYM DROP-MULTIPLE DROP

Screen # 57
0 (Macro Sieve 2 ALGORITHM VERSION D 2/23/85 vhy)
1
2 MACRO CANCEL-MULTIPLES (prime -- prime)
3 FIRST-MULTIPLE
4 BEGIN SIZE< WHILE SET-FALSE NEXT-MULTIPLE REPEAT
5 DROP-MULTIPLE END-MACRO
6
7 : DO-PRIME FLAGS SET-TRUE OCOUNT
8 FLAG-LIMIT FIRST-FLAG
9 DO GET-FLAG
10 IF PRIME CANCEL-MULTIPLES PRINT-PRIME INC-COUNT THEN
1 1 LOOP PRINT-COUNT ." Primes " ;
12
13 : 10-TIMES 10 0 DO DO-PRIME LOOP ;
14
15

2. Gilbreath, Jim. "A High-Level
Language Benchmark." BYTE
Vol. 6, No. 9, p. 180 (September
1981).

Volume VII, No. 4 19 FORTH D~mensions

The Forthcard
STAND ALONE OPERATION

STD BUS INTERFACE

EPROMIEEPROM
PROGRAMMER

PARALLEL I10

ROCKWELL FORTH CHIP

The Forthcard provides OEMs and end
users with the ability to develop Forth and
assembly language programs on a single
STD bus compatible card.

Just add a CRT terminal [or a computer
with RS-232 port), connect 5 volts and you
have a self contained Forth computer.
The STD bus interface makes it easy to
expand.

Download Forth source code using the
serial port on your PC. Use the onboard
EPROMIEEPROM programming capability
to save debugged Forth and assembly
language programs. Standard UV erasable
EPROMs may also be programmed with
an external Vpp supply.

Evaluation Unit $299
Part #STD65F11-05 includes:
ForthCard, Development
ROM, 8Kbyte RAM, Manuals

OEM Version as low as
Part #STD65F11-00 $
does not include 199
memory or manuals

NEW! Options and Application Notes

Electrically Eraseable PROMS (EEPROMs)

FREEZE the dictionary in EEPROM (save in
non-volatile memory, to be restored on
power up)

Download Software for your IBM PC or CP/M

Non-Volatile CMOS RAM with battery 2K,
8K, optional Clocklcalendar

Fast 2MHz clock (4MHz crystal)

Disk Controller Card (5%")

Self Test Diagnostics

Parallel printer interface

Ask about our ForthBoxTM
A complete STD bus oriented system including
the ForthCard, Disk Controller, Disk Drive(s),
STD Card Cage, Cabinet and power supply.

CALL TODAY FOR COMPLETE INFORMATION!

9560 Black Mountain Road
Sun Diego, CA 92126
(6 19) 566- 1 892

FORTH Dimensions 20 Volume VII, No. 4

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

IN THE FORTH INTEREST GROUP I
107 - MEMBERSHIP in the FORTH INTEREST GROUP & Volume 7

of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth lnterest Group is a worldwide non-profit member-supported
organization with over 5,000 members and 80 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $20.00 per year for USA, Canada & Mexico;

all other countries may select surface ($27.00) or air ($33.00) delivery. I
The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you wil l receive issues that have already been circulated
for the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receive a membership card and numberwhich entitles you to
a lOD1o discount on publications from FIG. Your member number wil l be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM
1. E a c h i t e m y o u w i s h to o r d e r l i s t s t h r e e d i f f e r e n t P r i ce ca tego r i es :

C o l u m n 1 - U S A , C a n a d a , M e x i c o
C o l u m n 2 - F o r e i g n S u r f a c e M a i l
C o l u m n 3 - F o r e i g n A i r M a i l

2. Se lec t t h e i t e m a n d n o t e y o u r p r i c e in t h e s p a c e p r o v i d e d .

3. A f t e r c o m p l e t i n g y o u r se lec t i ons e n t e r y o u r o r d e r on t h e f o u r t h p a g e o f t h i s f o r m

4. D e t a c h t h e f o r m a n d r e t u r n it w i t h y o u r p a y m e n t to The Forth Interest Group.

101 - Volume 1 FORTH Dimensions (1979180) $15116118

102 - Volume 2 FORTH Dimensions (1980181) $15116118

103 - Volume 3 FORTH Dimensions (1981182) $15116118

104 - Volume 4 FORTH Dimensions (1982183) $15116118

105 - Volume 5 FORTH Dimensions (1983184) $15116118 -

106 - Volume 6 FORTH Dimensions (1984185) $15116118 -

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS

. 514 - 65021SEPT 80 $15116118 __-

. 515 - 68001MAY 79 $15116118 ___

Assembly Language Source Listings of fig-Forth for specific CPUs and
machines with compiler security and variable length names.

517 - 8080lSEPT 79 . $15116118 ___

518 - 8086188lMARCH 81 $15116118 ----

519 - 9900lMARCH 81 . $151 16118 --

520 - ALPHA MICROISEPT 80. $15116118 __--

521 - APPLE IIIAUG 81.. $15116118

522 - ECLIPSEIOCT 8 2 $15116118 --

523 - IBM-PCIMARCH 84. $151161 18

524 - NOVAIMAY 81 . $15116118 - -

525 - PACEIMAY 79 . $15116118 --

526 - PDP-111JAN 80 . $15116118 --

527 - VAXIOCT 82. $15116118 --

528 - Z80lSEPT 82 . $15116118 -

Volume VII, No. 4 21 FORTH D~mens~ons

B O O K S A B O U T F O R T H
200 - ALL ABOUT FORTH $25126135 -

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard
Forth.

. 205 - BEGINNING FORTH $17118121 -
Paul Chirlian
Introductory text for 79-Standard.

215 - COMPLETE FORTH $16117120 -
Alan Winfield
A comprehensive introduction including problems with
answers. (Forth 79)

220 - FORTH ENCYCLOPEDIA $25126135 -
Mitch Derick & Linda Baker
A detailed look at each FIG-Forth instruction.

. 225 - GORTH FUNDAMENTALS, V. 1 $16117120 -
Kevin McCabe
A textbook approach to 79 Standard Forth.

230 - FORTH FUNDAMENTALS, V. 2 $13114116 -
Kevin McCabe
A glossary.

232 - FORTH NOTEBOOK $25126135 -
Dr. C. H. Ting
Good examples and applicatoins. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice
is included. Code is well documented.

233 - FORTH TOOLS . $19121 123 -
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 - INSIDE F-83.. $25126135 -
Dr. C. H. Ting
Invaluable for those using F-83.

237 - LEARNING FORTH.. $17118121 -
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of
Forth. Includes section on how to teach children Forth.

240 - MASTERING FORTH $18119122 -
Anita Anderson & Martin Tracy (MicroMotion)
A step-by-step tutorial including each of the commands
of the Forth-83 International Standard; with utilities,
extensions and numerous examples.

245 - STARTING FORTH (soft cover) $20121124 -
Leo Brodie (FORTH, Inc.)
A lively and highly readable introduction with
exercises.

246 - STARTING FORTH (hard cover) $24125129 -
Leo Brodie (FORTH. Inc.)

255 - THINKING FORTH (soft cover) $16117120 -
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 - THREADED INTERPRETIVE LANGUAGES$23125/28 -
R.G. Loeliger
Step-by-step development of a non-standard 2-80 Forth.

270 - UNDERSTANDING FORTH $3.501516 -
Joseph Reymann
A brief introduction to Forth and overview of its
structure.

FORTH Dimensions 22

F O R M L CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) isan
informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
Interest Group

310 - FORML PROCEEDINGS 1980 $25128135 -
Technical papers on the Forth language and extensions.

. 311 - FORML PROCEEDINGS 1981 (2V) $40143145 -
Nucleus layer, interactive layer, extensible layer,
metacompilation, system development, file systems,
other languages, other operating systems, applications
and abstracts without papers.

. 312 - FORML PROCEEDINGS 1982 $25128135 -
Forth machine topics, implementation topics, vectored
execution, system development, file systems and
languages, applications.

313 - FORML PROCEEDINGS 1983 $25128135 -
Forth in hardware, Forth implementations, future
strategy, programming techniques, arithmetic & floating
point, file systems, coding conventions, functional
programming, applications.

. 314 - FORML PROCEEDINGS 1984 $25128135 --
Expert systems in Forth, using Forth, philosophy,
implementing Forth systems, new directions for Forth,
interfacing Forth to operating systems, Forth systems
techniques, adding local variables to Forth.

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is anon-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.

321 - ROCHESTER 1981 (Standards Conference) $25128135
79-Standard, implementing Forth, data structures,
vocabularies, applications and working group reports.

322 - ROCHESTER 1982
. (Data bases & Process Control). $25128135 -

Machine independence, project management, data
structures, mathematics and working group reports.

323 - ROCHESTER 1983 (Forth Applications) . $25128135 -
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like
languages, new techniques for implementing Forth and
working group reports.

324 - ROCHESTER 1984 (Forth Applications) . $25128135 -
Forth in image analysis, operating systems, Forth chips.
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 - ROCHESTER 1985
(Software Management and Engineering) $25128135-
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport,
development of MAGICIL, and a Forth-based business
applications language, includes working group reports.

Volume VII. No. 4

THE JOURNAL OF FORTH APPLICATION & RESEARCH
A refereed technical journal published by the Institute for Applied Forth
Research, Inc.

401 - JOURNAL OF FORTH RESEARCH V. l # l $15116118
Robotics.

402 - JOURNAL OF FORTH RESEARCH V . l #2 $15116118 -
Data Structures.

403 - JOURNAL OF FORTH RESEARCH V.2 #1 $15116118 -
Forth Machines.

404 - JOURNAL OF FORTH RESEARCH V.2 #2 $15116118
Real-Time Systems.

405 - JOURNAL OF FORTH RESEARCH V.2 #3 $15116118 ___
Enhancing Forth.

406 - JOURNAL OF FORTH RESEARCH V.2 #4 $15116118
Extended Addressing.

407 - JOURNAL OF FORTH RESEARCH V.3 #1 $15116118 -
Forth-based laboratory systems and data structures.

REPRINTS
420 - BYTE REPRINTS . $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte magazine.

421 - POPULAR COMPUTING 9183 $51617 -
Special issue on various computer languages, with an
in-depth article on Forth's history and evolution.

DR. DOBB'S
This magazine produces an annual special Forth issue which includes
source-code listings for various Forth applications.

422 - DR. DOBB'S 9/82. . . $51617

423 - DR. DOBB'S 9183.. $51617 -

424 - DR. DOBB'S 9184. $51617 -

HISTORICAL DOCUMENTS
501 - KlTT PEAK PRIMER.. $25127135

One of the first institutional books on Forth. Of his-
torical interest.

502 - FIG-FORTH INSTALLATION MANUAL . . $15116118 -
Glossary model editor - We recommend you purchase
this manual when purchasing the source-code listings.

503 - USING FORTH . $20121123
FORTH, Inc. -

REFERENCE

305 - FORTH 83 STANDARD $15116118 -
The authoritative description of 83-Standard Forth. For
reference, not instruction.

300 - FORTH 79 STANDARD $15116118 -
The authoritative description of 79-Standard Forth. Of
historical interest.

316 - BIBLIOGRAPHY OF FORTH REFERENCES
2nd edition, Sept. 1984 $15116118
An excellent source of references to articles about
Forth throughout microcomputer literature. Over 1300
references.

MISCELLANEOUS
601 - T-SHIRT SIZE

Small, Medium, Large and Extra-Large.
White design on a dark blue shirt. $10111/12 -

602 - POSTER (BYTE Cover) $15116118 -

616 - HANDY REFERENCE CARD FREE -

683 - FORTH-83 HANDY REFERENCE CARD FREE -

SELECTED PUBLICATIONS
The following publications are NEW add~tions to the Forth Interest Group
Order Form as selected by the FIG Publications Committee.
FORTH NOTEBOOK by Dr. C. H. Ting.
Good examples and applications. Great learning aid. PolyFORTH
is the Forth dialect used. Some conversion advice is included in
this book. Code is well documented. The first part has 10 games
written in FORTH. It includes some tools for control applications.
There is a section on image processing and then other forms of
utilities. It includes a general tutorial on Forth which may be
shown on an overhead projector and used with lecture notes.
INSIDE F-83 by Dr. C. H. Ting
Invaluable for those using F-83, this is the only documentation
for the F-83system. The book includes 4sections: 1) atutorial to
the F-83 system; 2) detailed discusion of the Forth kernel; 3)
Program run utilities; and 4) 8086 specific utilities. This edition
was published in June, 1985.
1984 ROCHESTER CONFERENCE PROCEEDINGS
(Software Management and Engineering)
The fifth annual Rochester Forth Conference was held June 12-15,
1985at the University of Rochester in New York. The Proceedings
appear as a special 266 page issue of Volume 3 of the Journal of
Forth Application and Research. A focus of the conference was
on how to improvesoftware productivity. Invited papers discuss
the use of Forth in a space shuttle experiment, using Forth in the
automation of an airport, Forth in the development of MAGICIL
and a Forth-based business applicatoins language. The Proceed-
ings incudes 50 papers and working reports.

JOURNAL OF FORTH APPLICATION AND RESEARCH V. 3. #1
This is the latest issue ol the Journal and features Forth-based
laboratory systems and data structures.
FORML CONFERENCE PROCEEDINGS, 1980 through 1984
Prices as shown on this order form will increase by $5.00 as of January
1, 1986. Order now and save on items 310 - 314.

PUBLICATIONS SURVEY
If you would like to suggest any other publication for review by
the FIG Publications committee for inclusion in the Forth Interest
Group Order Form, please complete the information below and
return to FIG.

Title:

I Author: -_ -.Publisher: - - -

Comments: -- - - - - - -

-- -up

Your comments on any of the publications wecurrently carry are
most welcome, please complete information below.

Comments: _ - _ _ _ _ - _ _ _

VolumeVII, No. 4 23 FORTH D~rnenstons

FORTH INTEREST GROUP 1
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668

Name

Company

Address

City

State/Prov. ZIP

Country

Phone

Check enclosed (payable to: FORTH INTEREST GROUP)

I3 VISA I3 MASTERCARD

Card #

Expiration Date

Signature

ITEM

107

M E M B E R S H I P F E E ,$20/27/33 1 L N E W R E N E W A L

TITLE

MEMBERSHIP

SUBTOTAL

10% M E M B E R D I S C O U N T

M E M B E R #

C A . R E S I D E N T S S A L E S T A X

HANDLING FEE

TOTAL I

$2.00

PAYMENT MUST ACCOMPANY ALL ORDERS

AUTHOR

FORTH D i m e n s i o n s 24 VolumeVI I , No. 4

QTy

I

UNIT
PRICE

)

SALES TAX
California dellverles
add San Francisco
Bay Area add 7010

TOTAL

SEE BELOW

11/85

SHIPPING TIME
Books In stock are sh~pped
w ~ t h ~ n f ~ v e days of receipt
of the order Please allow
4-6 weeks for out-of-stock
books (dellvery ~n most
cases will be much sooner)

MAIL ORDERS
Send to
Forth Interest Group
PO Box 8231
San Jose CA 95155

PHONE ORDERS
Call 4081277.0668 to place
c r e d ~ l card orders or fo r
customer servlce Hours
Monday-Fr~day 9am-5pm
PST

PRICES
All orders must be prepa~d Pr~ces are
subject to change wlthout notlce Cred~t
card orders will be sent and b~ l led at
current prlces $15 min~mum on charge
orders Checks must be ~n US$ drawn
on a US Bank A $10 charge w ~ l l be
added for returned checks

POSTAGE &HANDLING
Pr~ces Include shlpplng A
$2 00 handllng lee 1s
requ~red wlth all orders

Extending the Multi-Tasker

Mailboxes
R. U.: Dobbins

Columbia, Maryland

The multi-tasker presented by H.
Laxen' is an excellent way to harness
the full power of Forth, particularly
for real-time applications. It is also an
adequate starting point for more com-
prehensive multi-tasking schemes. A
need often arises in such systems for
independent tasks to exchange infor-
mation. In this article, some ideas are
presented on how the multi-tasker can
be extended to incorporate inter-task
communication and cooperation.

Communication by Mailboxes

Tasks can communicate in various
ways. The most obvious method is to
have one or more common variables
which tasks use to pass information.
This would be analogous to using vari-
ables rather than the stack to pass pa-
rameters between words. Apart from
negating much of the true usefulness of
Forth, this approach causes other dif-
ficulties: words are difficult to test or
modify, since dependencies buried in
the data may be obscure. With multi-
tasking, these problems become even
more significant, so a more structured
approach must be sought.

The method chosen here uses "mail-
boxes" to allow tasks to communicate
in a simple and straightforward fash-
ion. Assume that a mailbox is initially
empty and that task A wants to send
messages to a receiving task B. Ideally,
each time A sends a message the mail-
box is empty, while there is always a
message in the mailbox when B at-
tempts to fetch one. Unfortunately,
things rarely work out this well in prac-
tice. Either A will produce messages
faster than they can be consumed by B,
or B will try to fetch messages faster
than A can produce them. Let us con-
sider how each of these problems can
be dealt with.

If B finds the mailbox empty, it must
somehow wait until a message arrives
from A. This is where the original
multi-tasker comes into play, since we
can make use of the word PAUSE to
have B temporarily relinquish control

until A has deposited a message in the
mailbox.

What if A finds a message already in
the mailbox when wanting to send
another message? There are several
possible ways to deal with this prob-
lem :

the sending task pauses until the
mailbox is cleared

the new message replaces the old one

messages are stacked in the mailbox

Each of these strategies may be valid
in a particular situation and there is no
clear choice as to which one is "cor-
rect." However, we will describe the
first method, since there are some im-
portant advantages, viz. :

simplicity, as demonstrated by the
listing

efficiency; especially if rewritten in
assembly language, the overhead
involved in polling the mailbox is
very small

sage has arrived before returning with
the message on the stack. Note that a
message is "removed" from the mail-
box, not simply read, so it is not
possible for a task to mistakenly read
the same message twice.

Now, to see these words in action
consider the following simple but rep-
resentative problem. You are to sample
an eight-bit analog-to-digital converter
(ADC) ten times per second and collect
approximately 10,000 readings on disk.
Assume that the word READ has al-
ready been defined to fetch a value
from the ADC after a 100 millisecond
delay. First of all, the following single-
task solution will not work correctly,
which is why we are considering multi-
tasking in the first place.

1 CONSTANT DATA (disk block to
store data)

10 CONSTANT LAST (last disk
block)

no elaborate data structures, just a : SAMPLER

. single word in memory, so the LAST 1 + DATA DO I BLOCK

technique can be easily applied in 1024 OVER + SWAP

many different situations, even in DO READ I C!

the direct control of I/O devices LOOP UPDATE LOOP ;

In short, the Forth approach has
been adopted. Implementations of the
other schemes are straightforward ex-
tensions of the basic method.

: MAILBOX (define a mailbox variable
and initialize it)

CREATE 0 , DOES> ;
: SEND (n MAILBOX ---)

BEGIN PAUSE DUP
AT O= UNTIL ! ;

: RECEIVE (MAILBOX --- n)
BEGIN PAUSE DUP AT
?DUP UNTIL 0 ROT ! ;

MAILBOX is really just a variable
which holds the message, initially zero.
SEND waits until the mailbox has been
cleared, then deposits the new
message. RECEIVE examines the mail-
box and waits until a (non-zero) mes-

The difficulty with this solution is
that at the end of the loop, data has to
be written to disk. Quite likely, this will
take longer than the required 100 mil-
lisecond sampling period. In fact,
worse still is that since READ has a
built-in delay, this solution only works
if t h e d isk access r equ i r e s
approximately zero time! So it is
apparent that some data will be lost
with this method and another
approach must be found.

In the multi-tasking solution, one
would have a task to sample the ADC,
while a second task would handle the
formatting and writing of the data to
disk. This approach does not suffer
from the above problem because while
the WRITER is busy updating the pre-
vious disk block, SAMPLER is gathering
the next sample in parallel:

Volume VII, NO. 4 25 FORTH Dimensions

ATTENTION FORTH AUTHORS!
Author Recognition Program

To recognize and reward authors of Forth-related articles, the
Forth lnterest Group adopted the following Author Recognition
Program, effective October 1, 1984.

Articles
The author of any Forth-related article published in a periodi-

cal or in the proceedings of a non-Forth conference is awarded
one year's membership in the Forth lnterest Group, subject to
these conditions:

a. The membership awarded is for the membership year
following the one during which the article was published.

b. Only one membership per person is awarded in any year,
regardless of the number of articles the person published in
that year.

c. The article's length must be one page or more in the
magazine in which it was published.

d. The author must submit the printed article (photocopies
are accepted) to the Forth lnterest Group, including identifica-
tion of the magazine and issue in which it appeared, within
sixty days of publication. In return, the author will be sent a
coupon good for the following year's membership.

e. If the original article was published in a language other
than English, the article must be accompanied by an English
translation.

f. Articles are eligible under this program only if they were
first published after October 1, 1984.

Letters to the Editor
Letters to the editor are, in effect, "mini-articles," and so

deserve recognition. The author of any Forth-related letter to an
editor published in any magazine except Forth Dimensions, is
awarded $10 credit toward FIG membership fees, subject to
these conditions:

a. The credit applies only to membership fees for the mem-
bership year following the one in which the letter was
published.

b. The maximum award in any year to any person will not ex-
ceed the full cost of the membership fee for the followjng year.

c. The author must submit to the Forth lnterest Group a
photocopy of the printed letter, including identification of the
magazine and issue in which it appeared, within sixty days of
publication. The author will then be sent a coupon worth $10
toward the following year's membership.

d. If the original letter was published in a language other
than English, the letter must be accompanied by an English
translation.

e. Letters are eligible under this program only if they were
first published after October 1, 1984.

PRIME FEATURES 1
Execute DOS level commands
in HSIFORTH, or execute DOS
and BlOS functions directly.
Execute other programs under
HSIFORTH supervision.
(editors debuggers file managers etc)
Use our editor or your own.
Save environment any time
as .COM or .EXE file.
Eliminate headers, reclaim
space without recompiling.
Trace and decompile.
Deferred definition,
execution vectors, case,
interrupt handlers.

Full 8087 high level support.
Full range transcendentals
(tan sin cos arctan logs exponentials)
Data type conversion and
I/O parselformat to 18
digits plus exponent.
Complete Assembler
for 8088,801 86, and 8087.
String functions -
(LEFT RIGHT MID LOC COMP
XCHG JOIN)
Graphics & Music
Includes Forth-79 and Forth-83
File and/or Screen interfaces
Segment Management
Full megabyte - programs or data
Fully Optimized & Tested for:
IBM-PC XT AT and JR
COMPAQ and TANDY 1000 8 2000
(Runs on all true MSDOS
compatibles!)
Compare
BYTE Sieve Benchmark jan 83
HSIFORTH 47 sec BASIC 2000 sec
with AUTO-OPT 9 sec Assembler 5 sec
other Forths(mostly 64k) 55-1 40 sec

FASTEST FORTH SYSTEM
AVAl LABLE.

TWICE AS FAST AS OTHER
FULL MEGABYTE FORTHS!

(TEN TIMES FASTER WHEN USiNG AUTOOFT)

HS/FORTH. complete system only: $270.
Visa Mastercard I=

HARVARD
SOFTWORKS

P.O. BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

FORTH Dimensions 26 VolumeVII, No. 4

MAILBOX SAMPLE
400 TASK: SAMPLING
400 TASK: WRITING
: SAMPLER

SAMPLING ACTIVATE
BEGIN READ SAMPLE SEND
AGAIN ;

: WRITER
WRITING ACTIVATE
LAST 1 + DATA
DO I BLOCK
1024 OVER + SWAP
DO SAMPLE RECEIVE
I C! LOOP UPDATE
LOOP STOP ;

Another benefit of multi-tasking lies
in the fact that each task can be run
separately in typical Forth modular
style, and can thus be tested more easi-
ly. We can run the SAMPLER to make
sure that it reads samples correctly, by
examining the value in SAMPLE from
the keyboard. Next, WRITER could be
run and tested on its own. Dummy
data could be supplied from the
keyboard and the correct disk access-
ing could be observed and checked.
Finally, we can connect the two work-
ing tasks together via the mailbox and
we have a working system. Contrast
this with the original version of
SAMPLER, which would have been more
difficult to verify. Bear in mind that
this is a rather trivial example. In a
more realistic application, the benefits
of multi-tasking in the testing and
debugging process would become even
more marked.

References

I. Laxen, H. "Multi-tasking," Forth
Dimensions V/4,5 (November/De-
cember 1983 and January/Febru-
ary 1984).

2. Brinch-Hansen, P. Operating Sys-
tem Principles, Prentice-Hall,
1973.

Mulituser/Multitasking
for 8080, 280, 8086
n

Industrial (@ /\ I
Strength

The First
Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:
+ Unlimited number of tasks
+ Multiple thread dictionary,

superfast compilation
+ Novice Programmer

Protection Package TM

+ Diagnostic Tools, quick and
simple debugging

+ Starting FORTH, FORTH-79,
FORTH-83 compatible

+ Screen and serial editor,
easy program generation

+ Hierarchical file system with
data base management

' Starter package $250 Full package $395
Slngle user and commerc~al llcenses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8" or 5% " disk
in various formats under
CP/M 2.2 or greater and

5%" MS-DOS

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED

DEALER [-I INQUIRIES m] - INVITED
Shaw Laboratories, Ltd.
24301 Southland Drive, # 2 16

Hayward, California 94545
(4 15) 276-5953

Llmlted lets

the versawe

Each verslon baslc FORTH

-- --
comptter system - SOTA 1s the
running CP/M - -- -@ FORTH of
(verslon 2 x) 2 *- F- cholce tor bowl
or CP/M Plus ===?= the nuvlce and --- - -

(ver61on 3 x) exper~enced
What s more. TRs-80 programmer
SOTA dnesn t Make ~t your

E%ZrL% any awkward ((JpDm 't;Z YZ;
copy today

When y o u o r d e r f r o m SOTA, b o t h the f l g
m o d e l a n d 79 s t a n d a r d c o m e c o m p l e t e
w i t h the f o l l o w i n g e x t r a f e a t u r e s a t n o

a d d i t i o n a l c h a r g e
full featured string handling assembler

screen editor floating point double wurd
entension s e t relocating loader beginner's
tutorial comprehensive programmer's g u ~ d e

enheustive reference manual unparalleled
technical support source Ilstings 0

unbeatable price

for $89 95
Please send me 79 Standard FORTH

I B M ~ P C X T AT !and cornpat~bles)
TRS-80 Model 1 Model 1 1 1 Model 4 Model 4P
CP/M Version 2 x CP/M Plus (Version l xl
For CP/M verslons lease note 5 1 / 4 " formats only and

I I please specsn comiuler type

1

Volume VII, No. 4

I

1

27 FORTH Dimensions

I I

n R m E :
STREET:
CITY/TOWn:
STRTE: ZIP:
CRRD TYPE: EXPIRY.
CRRD n o :

Atari Painting Forth
Stephen James

Ventura, California

Paint with. the power of Forth.
Splash vivid hues with your Atari.
Create alien worlds and magical king-
doms - fast and colorful. With the
Forth source code in this article, you -
the computer artist - will draw and
paint beautiful graphics in Atari modes
3, 5 and 7. Soon you'll find yourself
composing multicolored displays for
an adventure game, slide show or ar-
cade screen. The Forth code includes
various pens and brushes for designing
complex graphic art. Pens sketch fine
lines and brushes add color texture, in
an infinite variety of color combina-
tions.

Where's the Tip?

Instead of using a camel-hair brush
to compose dungeon scenes or space
art, you use the computer's cursor and
a joystick plugged into port one. An
artist sets up his drawing board and
places his pens and brushes in a favor-
ite spot. Similarly, as you turn on your
computer easel, the cursor lies in the
upper left-hand corner of the monitor,
coordinates 0,O. If this location is not
handy, change the coordinates in the
code.

After setup, the artist might sketch
or paint a mountain peak in the back-
ground and a wind-swept lake in the
foreground. But always, at some point,
the artist lifts the tip of the pen or
brush from one spot and moves it over
the art to another spot. If he didn't lift
the tip, the picture would be ruined.
Likewise, your computer tip, displayed
as a cursor, must sometimes be seen
but not felt. In other words, you must
be able to see the tip and move it on the
monitor, but it must not leave any
marks.

This is accomplished by plotting the
tip's position with a non-background
color to visibly locate the tip's posi-
tion. Before the tip moves to its new
position, its old position is erased: the
original color is restored.

This type of plotting/erasing works
as long as the plotted color is not the
same as the position's original color.
But this is not always the case. When
the plotted color duplicates the color of
an underlying forest, stream or build-
ing, the tip's position hides.

A flashing technique eliminates this
problem. Plotting the tip's position
with one color, then another, and so
on, produces multiple blinking colors.
Therefore, it doesn't matter what the
original color is, because at some time
during the flashing cycle the cursor's
color does not match the underlying
color or texture.

With the tip's position being com-
pletely defined, now you can answer,
"Where's the tip?'' v p e in the Forth
word TIP. Use the joystick to move the
tip across the monitor without leaving
a trace. Then, like an artist, find a spot
to draw that lake, and set the tip down
by pressing the joystick's button.

A Fine Line

Although it belongs with your art
supplies, TIP does not draw. But its
code serves as a seedling for the Forth
word PEN, which lets you draw with a
fine line.

You draw by plotting the tip posi-
tion, as previously explained, but with-
out erasing any position to which it
moves. That way, the plotted color
remains. By using the joystick, you
sketch various scenes with vivid color.
However, as your artistic talent comes
to life, there will be an abundance of
color on the screen, making the pen's
position invisible.

If you stop drawing for a moment, it
is hard to determine where the pen is.
Though you see the moving pen, the
pen hides when at rest - especially if it
intersects a line of the same color.
Therefore, even PEN uses the flashing
technique to show the cursor's posi-
tion.

In graphic modes 3, 5 and 7, you
draw with four colors stored in the
computer's color registers. These are
accessed by PEN. Precede PEN with reg-

ister number 0, 1, 2 or 3, remembering
that register zero controls background
color.

With PEN, you soon find yourself
drawing monsters and space stations.
Like TIP, PEN disengages when you
press the joystick trigger.

A Wider Spread

As a computer artist, you fill in
oceans with shades of blue, grass with
shades of green and hills with shades of
brown. But filling shapes with a fine
line is too slow. A wider spread is
needed.

With Forth, you simply trade PEN
for BRUSH, and splash paint on the el-
ectronic canvas, using wide strokes. By
expanding PEN into BRUSH, scenes fill
in fast. Four pixels (the tiny points of
light on a tv screen) are plotted, instead
of only one. Thus, BRUSH leaves a trail
the size of four pixels: two pixels high
and two pixels wide, twice the width
and height of the PEN line. Note that
pixel size varies with each graphic
mode, so fastest filling is done in mode
3.

Holding your brush with the key-
board, you now fill your palette with
various textures or color patterns. You
create each texture by placing different
plot structures within a matrix of pix-
els, the patterns ranging from subtle to
vibrant. The images in Figure One
show sample combinations, although
an infinite variety is available.

Along with differing texture struc-
tures, numerous combinations of the
four available hues add variety:

Combination Color Values

1 0 and 1
2 0 and 2
3 0 and 3
4 1 and 2
5 1 and 3
6 2 and 3

Thus, if green is stored in color value
1 and brown is stored in 2, a color mix
of greedbrown squeezes out of a
Forth paint tube.

FORTH Dimensions 28 Volume VII. No. 4

SAMPLE

THE ERASER

DIAGONAL
(XBRUSH)

HORIZONTAL
(HBRUSH)

la
BLOCK

To experiment, type 1 2 XBRUSH For example, typing 2 2 XBRUSH
while in graphic mode 3, and examine spreads a solid color consisting of the
the texture. Next, press the joystick hue stored in color register 2, whereas
trigger and examine the texture in other typing 3 3 XBRuSH produces pure regis-
modes. Then change the color registers ter 3.
preceding XBRUSH. After you have seen Besides solids and two-color tex-
various color combinations, replace tures, combining three or four colors
the Forth word XBRusH with VBRUSH with unique pixel matrices gives your
or HBRUSH to see other textures. art an added touch. There are endless

Solid color spreads are also possible. possibilities, only one of which is
They are a subset of textures, since shown in Figure Two.
painting with one hue requires a tex-
ture Forth word. However, the color The Eraser
combination consists of duplicate
colors: Unlike a water colorist, you will

Combination Color Values erase not only pen marks, but brush
strokes, too. This is an added benefit

7 0 and 0 of computer painting. Just type 0 PEN
8 1 and 1 and use the joystick to erase details;
9 2 and 2 otherwise, use 0 0 XBRUSH to erase
10 3 and 3 large sections.

NGS FORTH
A FAST MIRTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

INCLUDE:

079 STANDARD

I .DIRECT 1/0 ACCESS I
I @FUI;L ACCESS TO MS-DOS

F I L E S AND FUNCTIONS

0ENVIRONMENT SAVE I & LOAD

.MULTI-SEGMENTED FOR I LARGE APPLICATIONS I
I .E=ED ADDRESSING I

.MEMORY ALLOCATION (CONFIGURABLE ON-LINE I

.AUTO IDAD SCREEN BOOT

@LINE & SCFtEEN EDITORS

ODECOMPILER AND
DEBUGGING AIDS

1 08088 ASSEMBLER I
.GRAPHICS & SOUND

eNGS ENHANCEMENTS

I oDETAIIZD MANUAL I
.INEXPENSIVE UPGRADES

ONGS USER NEWS-

I A COMPLETE FORTH
DEvEIL)- SYSTEM. I I PRICES START AT $70 I
NEWeEP-150 & EP-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEM8
PoOoBOX 2987
8ANTA CLARA, CAo 95055
(408) 241-5909

Volume VII, NO. 4 29 FORTH Dimensions

Paint Source Code

With the Forth Paint source code
listings, you have the foundation for a
digitized Rembrandt. Venture beyond
the limits.

Screen 10 defines various joystick
constants. Instead of using actual
numeric values, constants are used to
increase speed. Lines 2 - 12 correspond
to the direction values seen in joystick
hardware register 632. Push the joys-
tick up while fetching the value from
632, and the result will be 14.

Screen 1 1 defines words that will au-
tomatically fetch values from the com-
puter. Even-numbered lines from 2 - 8

L

L

fetch values related to a joystick's
column - what direction it leans.
Odd-numbered lines from 3 - 9 fetch
numbers that determine whether or not
the respective joystick triggers are
pressed.

Screen 12 sets a time delay. MSEC
equates to a fraction of a second. Line
3 enables the time delay to be a func-
tion of a user-supplied value placed on
the stack. Execute 25 MSEC and then
250 MSEC, and you should be able to
notice the difference in time delay.

Screens 13 and 14 provide input for
updating the x,y coordinates of a joys-
tick. When this data is any number
other than zero, the cursor - tied to
the joystick - moves. Line 3 places a

The

FORTH
SourceTM

The computer
language for

increased.. .
EFFICIENCY

reduced.. . . .
MEMORY

higher.
SPEED

Send for your

F R E E
CATALOG

Largest selection
o f FORTH.. .
Books

Manuals

Source Listings

Sof tware

Development
Systems

Expert Systems

C a l l or write

MOUNTAIN VIEW
PRESS

PO BOX 4656
Mountain View, CA 94040

(4 1 5) 961 -4 1 03

S c r # 1 0
0 (s t i c k c o n s t a n t s 1
1
2 1 5 CONSTANT STOP
3 1 4 CONSTANT FD (f o r w a r d
4 1 4 CONSTANT UP
5 13 CONSTANT BD (b a c k w a r d)
6 13 CONSTANT DN
7 7 CONSTANT RT (r i g h t 1
8 11 CONSTANT LT (l e f t 1
9 6 CONSTANT FDRT (f w d - r g h t)

1 0 5 CONSTANT BDRT (b c k - r g h t)
11 1 0 CONSTANT FDLT (f w d - l e f t)
1 2 9 CONSTANT BDLT (b c k - l e f t)
13
1 4
1 5 -->

S c r # 11
0 (j o y s t i c k u t i l i t i e s
1
2 : OSTICK 6 3 2 C@ ;
3 : OSTRIG 6 4 4 C@ ;
4 : lSTICK 6 3 3 C @ ;
5 : lSTRIG 6 4 5 C@ ;
6 : 2STICK 6 3 4 C@ ;
7 : 2STRIG 6 4 6 C@ ;
8 : 3STICK 6 3 5 C@ ;
9 : 3STRIG 6 4 7 C@ ;

1 0
11
1 2
13
1 4
1 5

FORTH Dimensions 30 volume VII, No. 4

fetched joystick value on the Forth
return stack. Line 4 checks for a joys-
tick that is in the straight-up position.
This indicates to the computer that the
operator wants the cursor movement to
halt. Thus, when this condition is true,
the next input for processing is 0,O.
The cursor moves neither left, right, up
nor down. Line 5 checks for a forward
joystick movement. If valid, the y
coordinate changes so that the cursor
moves straight up the screen.

Continuing on screen 14, lines 2 - 8
are like the conditional statements of
screen ' 13, except diagonal directions
are checked. Lines 9 - 10 end the IF
ELSE statements. Finally, the original
joystick value is pulled off the return
stack and dropped.

Screen 40 defines the paint variables.
In lines 2 - 3, STKX and STW corres-
pond to the x,y coordinates of the
joystick's position. They are set to
x = 0 and y = 0 when the screen is first
loaded. Lines 5 - 6 define CLRA (color
A) and CLRB (color B). CLRA is the vari-
able which stores the value of the
chosen pen color. CLRB is a variable
which stores the second color when
multi-colored brush textures are used.
Line 8 defines the variable LOCCLR
(color location). It stores the value of
the color pixel that the tip is over.
Then, when the flashing tip moves to
another pixel, the original pixel color
returns. Line 10 defines the word that
will place the cursor in the upper-left
corner of the screen. It is a good idea to

S c r # 12
0
1
2 : MSEC
3 () O D 0
4 LOOP ;
5
6
7
8
9

10
11
12
13
14
15

S c r # 13
0 (f e t c h j o y s t i c k c o o r d i n a t e s)
1
2 : OSTKXY (--- x y)
3 OSTICK > R
4 R STOP = I F 0 0
5 ELSE
6 R F D = I F 0 -1
7 ELSE
8 R R T = I F 1 0
9 ELSE

1 0 R B D = I F 0 1
11 ELSE
1 2 R L T = I F -1 0
13 ELSE
14
15 ==>

the oierating system and
programming language for

real-time applications involving
ROBOTICS, INSTRUMENTATION,
PROCESS CONTROL, GRAPHICS

and more, is now available for.. .

PolyFORTH II offers IBM PC
users:
a Unlimited control tasks
a Multi-user capability
a 8087 mathematics co-

processor support
a Reduced application

development time
a High speed interrupt

handling
Now included at no extra cost:
Extensive interactive GRAPHICS
SOFTWARE PACKAGE! Reputed
to be the fastest graphic package
and the only one to r u n in a true
multi-tasking environment , it
offers point and line plotting,
graphics shape primitives and
interactive cursor control.
PolyFORTH I I is fully supported
by FORTH, Inc.'~:

Extensive on-line
documentation
Complete set of manuals
Programming courses
The FORTH, Inc. hot line
Expert contract programming
and consulting services

From FORTH, Inc., the inventors
of FORTH, serving professional
programmers for over a decade.
Also available for other popular
mini and micro computers.
For more information contact:

FORTH. Inc.
2309 Pacific Coast Hwy.
Hermosa Beach,
CA 90254
21 31372-8493
RCA T E L E X : 275182
Eastern Sales Office
1300 N . 17th St.
Arlington, VA 22209
7031525-7778
'IBM PC IS a registered trademark of lnternat~onal
Business Machines Corp.

VolurneVII. NO. 4 31

FIG-Forth for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later.
uses standard DOS files.

Full-screen editor uses 16 x 64
format. Editor Help screen can be
called up using a single keystroke.

Source Included for the editor and
other utilities.

Save capablllty allows storing Forth
with all currently deflned words
onto disk as a .COM file.

Deflnitlons are provided to allow
beginners to use Starting Forth
as an Introductory text.

Source code Is available as an
option

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth. Application code
can be Metacompiled with Forth
to produce a target application
PROM. $280

FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45

An all CMOS processor
board utilizing t h e 6303.
Size: 3.93 x 6.75 inches.

Uses 1 1-25 volts at 12ma,
plus current required for
options. $240 - $360

Up to 24kb memory: 2kb to 16kb
RAM, 8k PROM contalns Forth.
Batte backup of RAM with off
boardTattery .
Serial port and up to 40 plns of
parallel 110.

Processor buss avallable at
optional header to allow expanded
capability via user provided
Interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-61 64

Foreign orders add 55 shlpplng and handling.
COnnectlcut rn ldmts add s a l n tax.

use ZERO after initializing any graphic
mode.

On screen 41, FLASHSTK flashes the
tip's position on the monitor. Line 2
gathers the color that the tip is over by
using the BASIC-like command
LOCATE. This color is stored in the vari-
able LOCCLR. Lines 3 - 9 plot a dif-
ferent color after a twenty-five mil-
lisecond delay (see MSEC defined in
screen 12). This delay is necessary,
otherwise the color change would be
too fast for the eye. Lines 10 - 12 en-
sure that before F L A S H S ~ ends, the
original color stored in LOCCLR is

returned (plotted). That way, when
you exit from any paint routine, the
original color is not altered.

Screen 42 defines TIP (tip position),
which moves the tip on the monitor,
corresponding to the joystick. Line 3
begins a loop which will continue UNTIL
(line 8) the trigger is pressed (line 7).
FLASHSTK flashes the tip's position, as
already defined. Line 5 fetches the last
position of the tip. OSTK leaves the
latest joystick values on the stack. Line
6 rotates the stack values for ease of
manipulation and stores the new joys-
tick coordinates in STKX and STW.

FORTH Dimensions 32 Volume VII, No. 4

S c r # 14
0 (c o n t i n u e 1
1
2 R F D R T x I F 1 -1
3 ELSE
4 R BDRT = I F 1 1
5 ELSE
6 R BDLT - I F -1 1
7 ELSE
8 R FDLT = I F -1 -1
9 THEN THEN THEN THEN THEN

10 THEN THEN THEN THEN R> DROP ;
11
1 2
13
14
15

S c r # 40
0 (P a i n t v a r i a b l e s
1
2 0 VARIABLE STKX
3 0 VARIABLE STKY
4
5 0 VARIABLE CLRA
6 0 VARIABLE CLRB
7'
8 0 VARIABLE LOCCLR
9

10 : ZERO
11 0 STKX !
12 0 STKY ! ;
13
14
15 -->

? 6

Screen 43 defines PEN. Graphic
modes 3, 5 and 7 give four colors from
which to choose. This allows four color
pens for drawing. Note: the color
value, 0 - 3, must be placed on the
Forth stack prior to execution of PEN.

Screen 44 is left blank, for growth
purposes. Add your own texture words
here.

Screen 45 defines the first textured
brush stroke, XBRUSH. Instead of one
value required on the stack (as with

PEN) two values are needed prior to
executing XBRUSH. Line 1 stores the
colors in the associated variables CLRA
and CLRB. Lines 2 - 15 consist of a
loop. Lines 3 - 10 plot the two colors in
alternating sequence, flash the brush's
position and update the joystick's posi-
tion for movement. All this is perform-
ed UNTIL the trigger is pressed (lines 14
and 15).

Screen 46 is left intentionally blank,
like screen 44.

4

S c r # 4 1
0 (f l a s h i n g s t i c k ' s p o s i t i o n)
1
2 : FLASHSTK
3 STKX @ STKY @ LOC. LOCCLR !
4 1 COLOR STKX @ STKY @ PLOT
5 2 5 MSEC
6 2 COLOR STKX @ STKY @ PLOT
7 2 5 M S E C
8 3 COLOR STKX @ STKY @ PLOT
9 2 5 MSEC

10 LOCCLR @
11 COLOR STKX @ STKY @ PLOT
1 2 2 5 MSEC ;
13
1 4
15 ==>

S c r # 4 2
0 (moving t i p w i t h o u t mark ing)
1
2 : T I P
3 BEGIN
4 FLASHSTK
5 STKX @ STKY @ OSTKXY
6 ROT + <ROT + STKX ! STKY !
7 OSTRIG 0 =
8 UNTIL ;
9

10
11
1 2
13
1 4
1 5 -->

INTEL
8031

FEATURES
-FORTH-79 Standard Sub-Set
-Access t o 8031 features
-Supports FORTH and rnach~ne

code Interrupt handlers
-System t~rnekeeping rnalntains

time and date w i th leap
year correction

--Supports ROM-based self-
start~ng applications

corn
130 page manual - S 30.00
8K EPROM w ~ t h manual-$100.00

Postage pa~d In North Amer~ca
lnqu~re for l~cense or quantlty priclng

. Bryte Computers, Inc.
8 P.O. Box 46. Augusta, ME 04330 .f'
,-:* (207) 547-32 18

VolumeVII. No. 4 33 FORTH Dimensions

Screens 47 - 48 are similar to each
other and to XBRUSH, but each
produces different color textures:
horizontal and vertical, respectively.
HBRUSH differs from XBRUSH in the
absence of lines 5 and 9. VBRUSH dif-
fers from XBRUSH in the color used in
lines 7 and 9.

Let's Paint

To paint, first load the screen and
initialize an Atari graphic mode. 5 p e
ZERO to place the cursor in the upper-
left corner of the screen. Type TIP and
move it around with the joystick.
When finished, press the trigger. Now
execute 2 PEN or another color para-
meter, and draw on the screen. Again,
press the trigger when finished with
this mode. By typing 1 3 XBRUSH, 2 1
VBRUSH or 2 3 HBRUSH, you can experi-
ment with the various textures.

Create worlds filled with fantasy and
bewilderment. Use the Forth art tools
as a springboard, and develop new
color patterns. Expand and imagine!

S c r # 4 3
0 (d r a w i n g with a p e n
1

1

2 : PEN (c o l o r --- 1
3 (#) CLRA !
4 CLRA @ COLOR
5 BEGIN
6 STKX @ STKY @ PLOT
7 FLASHSTK
8 STKX @ STKY @ OSTKXY
9 ROT + <ROT + STKX ! STKY !

1 0 OSTRIG 0 =
11 UNTIL ;
1 2
13
1 4
15 ==>

S c r # 4 4
0
1
2 (INTENTIONALLY LEFT BLANK)
3
4 (FOR FUTURE GROWTH)
5
6
7
8
9

1 0
11
1 2
13
1 4
1 5 -->

S c r # 4 5
0 : XBRUSH (clrA c l r B ---
1 (#) (#) SWAP CLRA ! CLRB !

1

2 BEGIN
3 CLRA @ COLOR
4 STKX @ STKY @ PLOT
5 CLRB @ COLOR
6 STKX @ 1 + STKY @ PLOT
7 CLRB @ COLOR
8 STKX @ STKY @ 1 + PLOT
9 CLRA @ COLOR

1 0 STKX @ 1 + STKY @ 1 + PLOT
11 FLASHSTK STKX @ STKY @
1 2 OSTKXY 2 * SWAP 2 * SWAP
13 ROT + <ROT + STKX ! STKY I
1 4 OSTRIG 0 =
15 UNTIL ; ==>

FORTH Dimensions 34 Volume VII, No. 4

DASH, FIND
& ASSOCIATES

Our company. DASH. t l N D & ASSOC14TtS.

is in the busmess of placlng FORTH Program-

mers in positions su~ted to thelr capabilities.

Wc deal only with FORTH Programmers

and companler using ~ORTII . I t ' you would

l ~ k e to havr your r rsumi lncluded in our

data bare, or ~f you arc looklng for a

FORTH Programmer, contact us or

send your resumt. 10:

DASH, FIND & ASSOCIATES

8011 Dalworth. Su~ te B

Grand Prairie TX 75050

(214) 642-5495

7m
Committed to Excellence

.

Volume VII, NO. 4 35

2

S c r # 4 6
0
1
2 (INTENTIONALLY LEFT BLANK)
3
4 (FOR FUTURE GROWTH)
5
6
7
8
9
10
11
1 2
13
1 4
15 -->

S c r # 4 7
0 : VBRUSH (clrA c l r B ---
1 (#) (#) SWAP CLRA ! CLRB !

1

2 BEGIN
3 CLRA @ COLOR
4 STKX @ STKY @ PLOT
5 CLRB @ COLOR
6 STKX @ 1 + STKY @ PLOT
7 CLRA @ COLOR
8 STKX @ STKY @ 1 + PLOT
9 CLRB @ COLOR

10 STKX @ 1 + STKY @ 1 + PLOT
11 FLASHSTK STKX @ STKY @
1 2 OSTKXY 2 * SWAP 2 * SWAP
13 ROT + <ROT + STKX ! STKY !
1 4 OSTRIG 0 =
15 UNTIL ; =->

S c r # 4 8
0 : HBRUSH (clrA c l r B ---
1 (#) (#) SWAP CLRA ! CLRB !

1

2 BEGIN
3 CLRA @ COLOR
4 STKX @ STKY @ PLOT
5
6 STKX @ 1 + STKY @ PLOT
7 CLRB @ COLOR
8 STKX @ STKY @ 1 + PLOT
9

10 STKX @ 1 + STKY @ 1 + PLOT
11 FLASHSTK STKX @ STKY @
1 2 OSTKXY 2 * SWAP 2 * SWAP
13 ROT + <ROT + STKX ! STKY !
1 4 OSTRIG 0 =
15 UNTIL ;

8

- - --

FORTH Dimens~ons

Time-Saving Debugger

Redefining Words
Phil Koopman, Jr.

FPO San Francisco, California

One of the biggest time wasters in
writing large Forth programs is the
compiling delay that occurs whenever a
word defined near the beginning of the
dictionary must be changed. The re-
compilation of the dictionary after a
redefinition can often take several min-
utes for a large application. Numerous
methods have been tried to reduce this
delay, typically addressing methods to
speed up the Forth compiler. Most
methods involve large numbers of ex-
tra word definitions and significant
changes to the dictionary structure of
Forth.

This article discusses a s i m ~ l e meth-
od to eliminate the time-consuming
recompile step after making a minor
change. Only one screen of source code
is used, and absolutely no changes to
the Forth compiler or dictionary struc-
ture are required.

The Method

When a small bug is corrected (us-
ually involving the definition of only
one word) all that is needed to make
the entire program correct is to compile
the revised definition and somehow
ensure that all references to the old
definition are changed to reference the
revised definition.

The first way that comes to mind to
compile the new word is just to compile
it to the end of the dictionary. This will
mean that any new word defined will
use the revised definition, but no previ-
ously defined words will do so. This
method fails when the word being
revised is used by any previously com-
piled word.

Another method might be to compile
the revised definition directly into the
memory used by the old definition in
the dictionary. This eliminates all need
to change words that use the revised

The solution presented in screen 180
is a combination of the two above
methods. The technique used is to
define the revised word at the end of
the dictionary, then modify the old
definition so that it merely executes a
jump to the revised definition.

How It Works

The redefinition process is in three
Steps: using REDEFINE to alert the sys-
tem that a word is to be redefined,
redefining the word and then using the
word PATCH to actually put the new
definition into effect.

REDEFINE alerts the system that a
word is about to be redefined. It is used
in the format

REDEFINE < name >
where <name> is the word name to
be redefined. It saves the PFA of the
old definition of <name> in the
variable PATCHADDR.

The second step of the redefinition
process is to define the revised defini-
tion of < name > . This is usually by
means of a LOAD, but any means may
be used. Note that no special words
within the definition are needed, and
no editing of screens is required.

The third step of the redefinition
process is to use the word PATCH to
actually patch the old definition to
point to the revised definition. PATCH is
used in the format

where <name> is the name of the
revised definition. The name used with
PATCH is usually the same as the name
used with REDEFINE, but does not have
to be. PATCH uses the factored word
MAKE-PATCH to compile the run-time
action word <PATCH> into the first cell

<PATCH> removes the pointer to the
old definition from the return stack
and replaces it with a pointer to the pa-
rameter field of the revised definition.
This ensures that any remaining words
in the parameter field of the old defini-
tion are ignored, and that the return
stack is not cluttered up with another
return address (in case the revised word
uses an unusual exiting technique or is
otherwise expecting certain values on
the return stack).

Screen 181 shows a very simple test
that illustrates the ease of use of this
redefinition facility. First, the words
ATEST, BTEST and TEST are defined and
used. Then the word ATEST is redefined
and incorporated into the dictionary
without having to redefine BTEST and
TEST. Note that the return stack con-
tents are identical for both the old and
new versions of ATEST.

Limitations

First, this facility is not designed to
be very "smart." It will be perfectly
happy to crash if the exact sequence of
REDEFINE . . . LOAD . . . PATCH is not
properly used. Also, it only works for
high-level definitions and will not work
for code words, constants, variables or
the like.

Another limitation is that the word
redefined must have at least two cells in
its parameter field. This means that a
null definition cannot be redefined
with this system (a null word is in the
form : NULL ;). Only one word may
be redefined in any REDEFINE . . . LOAD
. . . PATCH sequence.

~ 0 ~ ~ E T t i n g the redefined word with-
out also ~ 0 ~ ~ E T t i n g the original defin-
ition can cause the system to crash.

<PATCH> may have to be redefined
on systems that pre-increment the IP
instead of post-incrementing it. The
change is simply:

word, since the location of the defini- of the old definition's parameter field.
tion does not change. This method The PFA of the revised definition is
works fine unless the revised definition stored in the second cell of the old : <PATCH>
is larger than the original definition, definition's parameter field. R> 2 +
and therefore will not fit into the dic- At run time, the word <PATCH> is @ > R ;
tionary in the old definition's spot. executed by the old definition. for a sixteen-bit cell size.

FORTH Dimensions 36 VolumeVII, No. 4

On the Bright Side

The words REDEFINE and PATCH pro-
vide a very quick way to change a word
definition and examine its results with-
out recompiling the whole dictionary.
No change is made in the dictionary
structure. When the application is fully
debugged (or when a substantial num-
ber of bugs have been corrected), the
application can be recompiled one time
to clean it up and free the extra space
used by word redefinitions. Addition-
ally, multiple redefinitions of the same
word can be written and quickly tested
in the context of the entire system
without recompiling.

Summary

The words REDEFINE and PATCH pro-
vide an extremely simple yet effective
way to practically eliminate recompile

time during debugging. This technique
has provided substantial time savings
while developing a hotel cash reg-
ister/control system. The program was
developed on ECS MVP/FORTH (a
Forth-79 compatible system) running
on a well-known 8088-based personal
computer system.

Further investigations of redefining
words might include greater safeguards
against accidental misuse and simul-
taneous multiple-word redefinitions.

Editor's note: This technique is some-
times referred to as "hotpatching" and
must be used very carefully, due to the
problems that can arise when the
source and object code versions of a
program differ.

SCREEN # I 8 0
O \ DEBUGGING PATCH WORDS P. k::OOPMAN JR. 28DEC84
1 DECIMAL \ D E F I N I T I O N S I N THE P U B L I C DOMAIN
2 VARIABLE PATCHADDR \ PFA FOR REDEFINE, USED BY PATCH
-7
3

4 : .:PATCH:> (-:>) (ACCEPTS I N - L I N E PFA FROM DICTIONARY)

5 R > @ > R ;
6
7 : MAKE-PATCH (PFA-NEW PFA-OLD ->)

8 ' <PATCH> CFA OVER ! 2+ ! ;
9

10 : REDEFINE (-) (USAGE: REDEFINE n a m e)

11 CCOMPILEI ' PATCHADDR ! ;
1 2
13 : PATCH (-:>) (USAGE: PATCH n a m e)

1 4 CCOMPILEI ' PATCHADDR @ MAKE-PATCH ;
15

SCREEN # I 8 1
0 \ TEST SCREEN FOR PATCHING P J K 28DECB4 MVP FORTH
1 DECIMAL
2 I ATEST ." TOP OF RETURN STACK=" RCJ U. CR ;
5 : BTEST ." BTEST I S AN UNCHANGING WORD I N D E F I N I T I O N " CR
4 : TEST CR CR ATEST BTEST CR ;
5
6 TEST
7
8 REDEFINE ATEST
9 : ATEST ." T H I S I S A REDEFINED ATEST. R@=" R 3 U. CH ;

10 PATCH ATEST
11
12 TEST
13
1 4
15

Volume VII, No. 4 37 FORTH Dimensions

-

L

1986
Rochester

Forth
Conference

June 10-14, 1986
University of Rochester
Rochester, New York

The sixth Rochester Forth
Conference will be held at
the University of Rochester,
and sponsored by the Institute
for Applied Forth Research,
Inc. The focus will be on
Real-Time Artificial Intelli-
gence, Systems and Applica-
tions.

Call for Papers

There is a call for papers on
the following topics:

*Real-Time Artificial Intelligence

*Forth Applications, includ-
ing, but not limited to: real-
time, business, medical,
space-based, laboratory and
personal systems; and Forth in
silicon.

*Forth Technology, including
meta-compilers, finite state
machines, control structures,
data structures, Forth imple-
mentations and hybrid
hardwarelsoftware systems.

Papers may he present~d In either plat-
form or poster sessions. Please submit
a 200 word abstract by March 3151, 1986.
Papers must be received by April 30th,
1986, and are limited to a maximum of
four single spaced, camera-rvady pages.
Longer papers may be presented at the
Conference but should be submitted to
the refereed journal of Forth Application
and Research.

Abstracts and papers should be sent to
the conference chairman: Lawrence P.
Forsley, Laboratory for Laser Energetics,
250 East River Road, Rochester, New
York 14623. For more information, call
or write Ms. Maria Gress, Institute for
Applied Forth Research, 478 Thurston
Road, Rochester, New York 14619
(716) 235-0168.

A Proposal

Forth Component Libraries
John S. James

Santa Cruz, California

Forth's greatest need is for a clean
way to transport large pieces of pro-
grams from one developer or installa-
tion to another. For example, if you
want to support a particular local-area
network, or need a file editor, or a
quicksort, or a B-tree implementation
for a database, you should be able to
buy these packages off the shelf. They
should run identically on Forth-83 or
Forth-79 or on any system from any
vendor; and they should be as efficient
as hand-coded versions, load in a com-
pletely s tandard way with n o
"funnies," and never require you to
see or know their internals.

This article outlines one approach
toward this goal of interchangeable
Forth components. It looks not only at
sharing code within Forth, but also at
having Forth programs cooperate with
those written in other languages, such
as C. It sketches not only a technology,
but also standards and conventions
and business planning necessary to get
from here to there.

Readers should note that this article
presents new work subject to change,
not a finished product. We consider
only source-code modules; object-code
systems such as virtual execution are
beyond the scope of this article, al-
though nothing presented here would

standard input stream of another. In-
put or output can come from or to
another program, or from a file or
from the terminal, with no change to
the program. Developers can use pipes
to string together small programs into
useful systems, even if the programs
are written in different languages.

UNIX has long used pipes as a major
basis for the library of modules and
tools which has been largely respon-
sible for its success. More recently,
MS-DOS for the IBM P C and
compatibles has added redirection and
pipes (version 2.0 and greater). This
facility can help us not only to
modularize Forth programs, but also
to use the great body of software
already available in other languages. It
can support development and testing
even when the final product will run in
a target environment without an
operating system.

Forth offers important advantages
within non-Forth environments. Com-
pared to C and other general-purpose
languages, Forth allows software de-
velopers to get results faster and less
expensively. The programs are highly
efficient and reliable. Interactive ac-
cess, fast development speed, and com-
plete control of the system at low or
high levels give Forth important ad-
vantages for the job of combining the
often-incompatible pieces of existing
software into useful systems.

listings of software which might use
almost any of them. Using modules
cleans up glossaries by eliminating
most of these words, helps standardize
some of the words which do remain,
and makes listings more readable by
controlling the proliferation of names
which programmers must remember.

But most important of all, removing
unwanted heads forces developers to
think through exactly what facilities
they want to provide to their users.
They must offer a complete, explicit set
of capabilities for some purpose, since
users will not normally make any
changes to the source or even look at it.
No longer can programmers get away
with half-baked software which re-
quires tinkering to do anything useful,
or even to load on someone else's
system.

The module compiler separates the
interface to the world from anything
that happens inside. The interface must
be fully documented in a spec sheet for
the module. Usually this spec sheet will
be identical for all CPUs, and for all
versions of Forth and all vendors'
systems. But within each implementa-
tion, the developer has complete free-
dom to use all facilities available to get
the most efficient code, as long as the
results match the specifications.

Modules can call other modules, of
course. Any such dependencies must be
documented in the spec sheet.

prevent their use. Readers should also
note that this system is not technology- 2 . A module compiler which elimi- 3. Generic "lrware design when

intensive; rather, it uses a little technol- nates heads not used outside the propriate-

ogy to support social conventions and
practices, which do the main job.

Technical Basis: Three Legs of a
Tripod

The three main technical compon-
ents of this system are:

1 . 1 / 0 redirection and pipes, provid-
ed by standard operating systems.

"Pipes" allow the standard output
stream of one program to become the

module.

To start with the smallest advantage,
eliminating heads saves memory with-
out the need for target compilation.
It's just not true that because chips are
cheap, memory efficiency doesn't
count any more. Many developers are
still running up against memory limita-
tions, for all sorts of reasons.

This module compiler also helps by
reducing the confusion caused by too
many names in the dictionary. When a
program reaches the size of a thousand
words or so, it becomes hard to keep
track of them all, and hard to read

Forth encourages "generic" mod-
ules which can operate on any data
structures. For example, a generic
quicksort can take as arguments the
address of a Compare operation, the
address of an Exchange operation, and
the number of items to be sorted. It can
then sort any data whatever on which
these operations can be defined, with
no change at all to the program. The
generic design completely separates the
quicksort logic from everything else -
the data structures, the operations on
them, memory management, and so
on.

FORTH Dimensions 38 Volume VII. No. 4

This particular example, the generic
quicksort, is good enough for most
sorting tasks on randomly-accessed
data. (MS-DOS and other operating
systems already have sort utilities for
text files with variable-length records,
for which it would be hard to define
efficient Compare and Exchange oper-
ations.) The Forth quicksort can hand-
le any data types in key fields and
subfields; sort in ascending, descend-
ing, or mixed sequences; and sort data
on disk as well as in memory. Thanks
to the module compiler, this useful
facility only adds one word, SORT, to
the dictionary.

Overcoming the Dialect Problem

Despite the Forth-83 Standard, the
fact is that not all Forths are the same.
And since the standard doesn't cover
everything, there can be incompatibil-
ities even within it.

Of course, the module library cannot
abolish these difficulties. But it can be
independent of them in every major
way. Each important module in the
library will have to be modified for
each different Forth system: Forth-83
and Forth-79 and, for optimum per-
formance, for each vendor's system
and CPU. Usually only minor changes
will be required; the developer of the
module, the Forth system vendor, or a
user can make them. The library,
which will exist as a set of files, will
have a different version for each sup-
ported Forth system; whoever orders a
module (or the whole library) will need
to specify which Forth they want it for,
admittedly an inconvenience.

But what counts more is that almost
all modules will have exactly the same
behavior across all different Forths.
Each module will have only one spec
sheet, identical for all kinds of Forth,
blind to all versions or variations. The
module compiler separates the inter-
face from the insides of the module; it
lets developers hold the interface con-
stant, while at the same time coding the
internals for maximum efficiency.

The internal coding of a module
need not follow any standard, even if

the module is to run on standard sys-
tems. Instead, the developer can do
anything for performance - including
use of code, of course. It may be
convenient to follow the standard
when feasible, in order to ease or
eliminate any changes required to
make the module run on different
vendors' implementations of the stan-
dard. It may also be convenient to
define a standardized library of code
modules as they are needed, so that
most other modules will not need to
use any code and can be CPU indepen-
dent without loss of performance.

On Separate Compilation

Forth provides separate compilation
of program components in a way dif-
ferent from most languages. Normally,
a compiler produces relocatable mod-
ules, and a linker combines them into
an object module. Separate compila-
tion saves compile time, enforces sepa-
ration between a module's interface
and its internals, and allows modules
written in different languages to be
combined into one program.

Forth with a module library provides
these advantages in a different way,
without the inconvenience and over-
head of linking relocatable modules. A
compiled Forth module does not be-
come a relocatable file, but instead it
becomes part of the system itself and
can be saved with the system, to be
loaded automatically with it in the
future. The disadvantage is that you
cannot rearrange modules into a new
system without going back. to the
source code. The advantage is that the
system which includes the compiled
module can be an interactive environ-
ment which can continue to grow.

Programs written in different lan-
guages can be combined in several
ways. Code subroutines in Forth have
always been common. Pipes and com-
mand files (batch files) can combine
separate programs written in different
languages. And Forth itself can look
like an ordinary assembly-language
program to the operating system and
call subroutines written in other lan-
guages - not yet a common practice,

but sometimes a particularly valuable
one because it can give interactive ac-
cess to software not otherwise interac-
tive. I believe it will be more productive
to use standard linkers to combine
Forth with software components writ-
ten in other languages, rather than
providing separate compilation of
Forth modules into relocatable object
programs.

The Library in Business:
Getting from Here to There

Forth differs from other program-
ming languages in that it has only
rarely had significant institutional
backing, either from academic or com-
mercial institutions, but has kept grow-
ing on its own. Much of the existing
body of work has been contributed to
the public domain, often by computer
professionals working on Forth as a
sideline or by academics in depart-
ments other than computer science.
Often this work has good quality in-
side, but lacks full development as a
product. Hence the hobbyist image
which has hindered Forth; hobbyists
don't mind chewing on unfinished
work, because they don't put a price on
their time.

Meanwhile, vendors find it hard to
make much profit on the sale of Forth
systems. Many users who would gladly
pay for productization and support
choose public-domain systems instead,
in order to get complete source code
and control of their tools, with no
strings attached. The lack of profit to
vendors further impedes the develop-
ment of polished, easily-used tools,
completing a vicious circle which has
slowed the development and accep-
tance of Forth.

A module library system can help us
break out of this dilemma. It allows
developers to sell application support
to a larger potential market than other-
wise, because their work can run
uniformly and with no tinkering on
anybody's Forth system. It allows ven-
dors to compete in the tools and com-
ponents for building applications, in-
stead of competing either in raw Forth

Volume VII, No. 4 39 FORTH Dimensions

systems or in finished end-user pro-
ducts, which is not the right business
for everyone.

I'm leaning toward the following
three-tier pricing structure for a soft-
ware-component library. The module
com~iler itself (about five screens of

system, or comprehensive support for
the special features of a new computer.
Each of these modules might cost sev-
eral hundred dollars, with licensing
available for unlimited site use, or for
per-copy or unlimited distribution of
object code.

source code), and perhaps some basic P~tent ial customers for these pack-
support for pipes and I/O redirection, ages will know what they want, have a
should be public domain, so that ven- commercial need for it, be able to get
dors can distribute it freely to their complete information from the spec NEW FIG T-SHIRT!
existing and future customers. These sheet, and be able to try out the soft-
parts of the library will need some ware at a reasonable cost. Note that
systems work to interface them to ex- anvone could deve lo~ and sell these
&ing Forth implementations. The ven-
dors are in the best position to main-
tain that code, so it should be as easy as
possible for them to do so. Forth
vendors usually own all parts of their
systems; few would change this policy
and build in a piece of code owned by
someone else.

At the next price level would be a
package of short, immediately-useful
modules such as a quicksort, string
handling, good file-and-directory sup-
port, and general interface to other
operating-system facilities such as

modules directly to uskrs, with or with-
out going through Forth system ven-
dors or any central library administra-
tion.

If you have any suggestions and/or
want to be included on a mailing list
for news about this system as it devel-
ops, write to me at P.O. Box 486,
Santa Cruz, California 95061 USA.

ORDER YOURS TODAY1

clock/calendar, or obtaining multiple
arguments from the program's com-
mand line. These modules will handle
the oddities of the operating system, so
that users will not need to know about
them. This package of routines would
be low priced, perhaps in the fifty to a
hundred dollar range to the end user
and with no charge for distributing
object code, so that it would be avail-
able to hobbyists and also as an out-of-
pocket purchase by professionals not
yet able to justify a significant expense
to their managements. It could be lic-
ensed and distributed by vendors, and
would usually serve as the introductory
package to the library. Forth might
develop a standard library of tools
available across different implementa-
tions, like the standard library of C.

At the high-price end would be pro-
fessional, application-oriented mod-
ules such as support for a particular
local-area network, an optimized
B-tree or relational database-access

Advertiser's Index
Bryte 3 3
Dash, Find & Associates 3 5
Forth Interest Group 21-24, 26, 44
Forth Inc. 3 1
Forth Institute 37
Hartronix 2
Harvard Soft Works 26
HiTech Equipment 20
Laboratory Microsystems 18
MCA 32
Miller Microcomputer Services 17
Mountain View Press 30
New Micros 13
Next Generation Systems 29
Parsec Research 4
Shaw Labs 27
SOTA 27

ORDER FORM ON PAGE 2 3

FORTH Dimensions 40 Volume VII, No. 4

1985 Forth National Convention
The Forth Interest Group held its

seventh annual National Convention
on September 20-21, 1985. The theme
of the event was "The Forth Elements:
Earth, Aerospace, Fire and Water."
Of particular interest to the more than
five hundred attendees were presenta-
tions focusing on the current use of
Forth in space exploration and re-
search, and in fusion technology.

The convention began with a panel
whose members outlined the exciting
uses of Forth in the aerospace industry.
Elizabeth Rather of Forth Inc. first
approached the FIG program commit-
tee with the idea for this panel, then
coordinated the speakers with the assis-
tance of Mary Lindsay and chaired the
very successful session. Interestingly, a
large percentage of the audience had
used Forth professionally within the
aerospace industry.

Robert Wood spoke at some length
during the aerospace portion of the
program about his training as a space
shuttle "programmer in space."
Forth's interactive nature and useful-
ness in process control has been key to
the successful completion of certain
experiments on past shuttle missions,
and the mission on which he is sched-
uled to fly will benefit from the im-
mediacy of having a Forth programmer
in orbit with the experiments. While
the exact nature of the mission is
confidential, positive results are expec-
ted to make financially feasible the
production of specific substances too
costly to obtain in quantity on the
earth's surface. We will be counting
down with Robert this Spring, and
wish him a successful flight.

Fellow panel members included Hen-
ry Harris, a missions design and
operations manager at the Pasadena-
based Jet Propulsion Laboratory, and
Greg Schmidt, whose Forth expertise
has been put to use on the space tele-
scope. Mr. Harris, who also spoke at
this year's Rochester Forth Confer-
ence, detailed a ground-based opera-
tion controlling instrumentation in the

space shuttle's cargo bay, principally
the Shuttle Imaging Radar. The project
used Forth on six IBM XTs linked via
Ethernet to provide integrated control
of the mission. The speaker credited
Forth as essential to operating in de-
manding conditions and adjusting
quickly to critical hardware failures,
and pointed to the success of the mis-
sions as a testimony to Forth. When
the future brings a manned scientific
platform in space, its roots will at least
partly lie in this important work.

Paul Heckel. president of Ouick-
View Systems and author of he Ele-
men ts of Friendly Soft ware Design,
intrigued convention attendees with the
new software metaphor he has devel-
oped. His "Zoomracks" concept at-
tempts to bring to the microcomputer
industry an infusion of vitality much
like that created by the "electronic
spreadsheet" metaphor some years
ago. Like many fundamentally new
concepts, this one lures the casual ob-
server to get hands-on experience, to
develop a "feel" for the idea's utility.

A featured event of every year's
National Convention is the evening
banquet. This year's keynote speaker
was Lawrence P. Forsley, editor-in-
chief of The Journal of Forth Applica-
tion and Research and computer sys-
tems group leader at the Laboratory
for Laser Energetics, where he and the
staff have used Forth for over nine
years. He spoke at length on the con-
trol of a tmknty-four beam laser used in
fusion research, and showed how Forth
can be managed on large-scale
projects. He went on to address Forth's
viability. Larry pointed out , in
particular, that Forth's continued pop-
ularization in coming years will dep'end
to a great extent on its penetration into
academic settings. Others have echoed
his sentiment that a full-featured Forth
package should be made available to
colleges, in particular to engineering
departments, at a reasonable price.
Forth has always excelled in such en-
vironments (witness Stanford Univers-
ity's engineering course using Forth)

but it will require a concerted effort to
reach the needed scale.

At the same banquet, FIG Secretary
Kim R. Harris presented the annual
FlGGY award. Previous recipients of
the award selected Thea Martin as the
individual whose volunteer work on
behalf of the Forth community during
the year most deserve FIG'S recogni-
tion and gratitude. Thea is the publish-
er of The Journal of Forth Application
and Research and serves as a member
of the board of directors of the Forth
Interest Group.

In addition t o the well-attended lec-
ture series, special events at this year's
convention brought together special
users groups (e.g., F83, Forth Inc. and
Mountain View Press), and small
group discussions about FIG Chapters,
Forth vendors and establishing Forth
as a special interest group on a large-
scale commercial data-base service.
Frequent tutorials, vendor exhibits and
hours of informal networking and
technical discussions rounded out the
two-day affair.

-Marlin Ouverson

Volume VII, No. 4 41 FORTH Dimensions

U.S.

ALABAMA
Huntsville FIG Chapter
Call Tom Konantz
205/881-6483

ALASKA
mbKodiak Area Chapter
Call Horace Simmons
907/486-5049

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

lbcson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

ARKANSAS
Central Arkansas Chapter
Twice Monthly, 2nd Sat., 2p.m. &
4th Wed., 7 p.m.
Call Gary Smith
501/227-7817

CALIFORNIA
Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
40W633-3253

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst

Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
7 14/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3 100 ext. 4784

Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Room A
Call Tom Ghormley
91 6/44-7775

Bay Area Chapter
Silicon Valley Chapter
Monthly, 4th Sat.
FORML 10 a.m., Fig 1 p.m.
ABC Christian School Aud.
Dartmouth & San Carlos Ave.
San Carlos
Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668

Stockton Chapter
Call Doug Dillon
209/931-2448

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

FLORIDA
Orlando Chapter
Everv two weeks. Wed.. 8 D.m. . .
Call Herman B. ~ i b s o n
305/855-4790

Southeast Florida Chapter
Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305/252-0108

Tampa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

GEORGIA
Atlanta Chapter
Call Ron Skelton
404/393-8764

ILLINOIS
Cache Forth Chapter
Call Clyde W. Phillips, Jr.
Oak Park
312/386-3147

Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150

Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242

Rockwell Chicago Chapter
Call Gerard Kusiolek
312/885-8092

INDIANA
Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

Fort Wayne Chapter
Monthly, 2nd Wed., 7 p.m.
Indiana/Purdue Univ. Campus
Rm. B71, Neff Hall
Call Blair MacDermid
219/749-2042

IOWA

Iowa City Chapter
Monthly, 4th lbes.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
515/294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8: 15 p.m.
Call Gurdy Leete
51 5/472-7077

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
3 16/267-8852

LOUISIANA
New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS
Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MICHIGAN
Detroit Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz
313/562-8506

MINNESOTA
MNFlG Chapter
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
612/588-9532

MISSOURI
mbKansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Inst.
Mag Conference Center
Call Linus Or th
8 16/44-6655

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.
Ellisville, M O 6301 1

NEVADA
Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Call Rick Granfield
505/296-8651

NEW YORK
FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/517-9429

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Rockland County Chapter
Call Elizabeth Gormley
Pearl River
914/735-8967

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
3 15/446-4600

OHIO
Athens Chapter
Call Isreal Urieli
614/594-3731

Cleveland Chapter
Call Gary Bergstrom
216/247-2492

Cincinatti Chapter
Call Douglas Bennett
513/831-0142

Dayton Chapter
m i c e monthly, 2nd lbes., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612
Dayton, OH
Call Gary M. Granger
513/849-1483

FORTH Dimensions 42 Volume VII, No. 4

OKLAHOMA

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers
2410 N.W. 49th
Oklahoma City, OK 731 12

OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-28 1 1

PENNSYLVANIA

Philadelphia Chapter
Monthly, 4th Sat., 10 a.m.

VIRGINIA CANADA FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely
50 57 0280

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665 Potomac Chapter

Monthly, 2nd Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/860-9260

IRELAND

Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 051/74124

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 3 12
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Call Donald A. Full
804/739-3623

ITALY

FIG ltalia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5J2

Drexel University, Stratton Hall . WISCONSIN
Call Melonie Hoag
21 5/895-2628 Lake Superior FIG Chapter

Call Allen Anwav
JAPAN

TENNESSEE
Japan Chapter
Contact Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 ext. 7073

East Tennessee Chapter MAD Apple Chapter
Contact Bill Horzon

Monthly, 2nd Tue., 7:30 p.m.
Sci. Appl. Int'l. Corp., 8th Fl. 129 S. Yellowstone

800 Oak Ridge nrnpike, Oak Ridge
Madison, WI 53705

COLOMBIA

Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

Call ~ichard-Secrist
615/693-7380

FOREIGN
TEXAS

mbAustin Chapter AUSTRALIA
REPUBLIC O F CHINA

R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

ENGLAND
Contact Mat t Lawrence
P.O. Box 180409
Austin, TX 78718

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Periman Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600

Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. GO8
Polytechnic of South Bank
Borough Rd., London
D. J . Neale
58 Woodland Way
Morden, Surry SM4 4DS

SWITZERLAND

Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-lndustrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

SPECIAI, GROUPS

UTAH BELGIUM
GERMANY

Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

Apple Corps Forth Users
Chapter
Twice Monthly, 1st &
3rd Tues., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
'41 5/626-6295

Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT

Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m. Southern Belgium FIG Chapter . Baton Rouge Atari Chapter

Call Chris Zielewski
504/292-1910

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

Vergennes Union High school Contact Jean-Marc Bertinchamps Holland Chapter
Rm. 210, Monkton Rd. Rue N. Monnom, 2 Contact: Adriaan van Roosmalen
Vergennes, VT 8-6290 Nalinnes Heusden Houtsestraat 134
Call Don VanSyckel Belgium 4817 We Breda
802/388-6698 071/213858 31 76 713104

Volume VII, NO. 4 43 FORTH Dimensions

NOW AVAILABLE

92000

FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP
BULK RATE

U.S. POSTAGE

P. O. BOX 8231 Permit NO. 3107

Sari Jose, CA 95155 San Jose, CA

Address Correction Requested

