
Dimensions 

The 
Far Right 

Stuff 

I 



FORTH 
IS NOW 
VERYFAST! 
.Sieve I .  3 s/ pass 
.Compile 300 screenslminute 
.Drop 1.82 us 
Concurrent 1/0 @ 250K baud 

DEVELOP YOUR 
APPLICATIONS IN 
A TOTAL FORTH 
ENVIRONMENT. 

MICROPROGRAMMED BIT SLICE 
FORTH ENGINE 
.Microcoded forth kernel 
.Microcoded forth primitives 
.Multi-level task switching architecture 
for real time applications 
.Optional writable control store 

H.FORTH OPERATING SYSTEM 
.Hierarchical file system 
.Monitor level for program debug 
.Multi-user multi-tasking 
.Target compiler 
,110 management 
.Forth 83 Compatible 

H4TH/OI OEM SINGLE BOARD 
.Floppy disk controller 
.2 channel SIO to 38.2K baud 
Calendar clock-4HR backup 

. 4 4 K  Byte ram 200NS 

. 3 2 K  Byte EPROM operating system 

. I K X 32 microprogram memory 70ns 

H4TH/IO DESKTOP 
.Dual 0.8m Byte floppys 
.H4TH/OI processor 
.Three user slots 
.Two expansion slots 
.Power & cooling 

H4TH/20 DESKTOP 
.I0 m Byte Winchester 
.0.8 m Byte floppy 
.H4TH/OI processor 
,300K byte RAM expandable 2m byte 
.Three user slots 
.One expansion slot 
.Power & cooling 

A forth-engine consisting of a state-of-the-art integrated hardwareIsoftware 
system giving unsurpassed performance for professionals and their applications 
from a company that is totally dedicated to the forth concept and its implementation. 

HARTRONIX, Inc. 1201 North Stadem Drive Tempe, Arizona 85281 602.966.7215 



FORTH Dimensions 
Published by the 

Forth Interest Group 
Volume VI, Number 6 

March/April 1985 
Editor 

Marlin Ouverson 

Production 
Cynthia Lawson 

Forth Dimensions solicits editorial 
material, comments and letters. No 
responsibility is assumed for accuracy 
of material submitted. Unless noted 
otherwise, material published by the 
Forth Interest Group is in the public 
domain. Such material may be repro- 
duced with credit given to the author 
and to the Forth Interest Group. 

Subscription to Forth Dimensions is 
free with membership in the Forth 
Interest Group at $15.00 per year 
($27.00 foreign air). For membership, 
change of address and to submit 
material for publication, the address is: 
Forth Interest Group, P.O. Box 8231, 
San Jose, California 95155. 

9 
A 

J 

Symbol Table 

Simple; introductory tu- 
torials and simple appli- 
cations of Forth. 

Intermediate; articles 
and code for more com- 
plex applications, and 
tutorials on generally dif- 
ficult topics. 

Advanced; requiring stu- 
dy and a thorough under- 
standing of Forth. 

Code and examples con- 
form to Forth-83 stand- 
ard. 

Code and examples con- 
form to Forth-79 stand- 
ard. 

Code and examples con- 
form to fig-FORTH. 

Deals with new propos- 
als and modifications 
to standard Forth sys- 
tems. 

FEATURES 
9 

1 
i 

0 

1’ 

11 

i 

21 i 

I 33 

16 

In-Word Parameter Words 
This improvement over Huang’s earlier method (Forth Dimensions V/3) works 
during compilation as well in the interpretive mode. The author is active in the 
FIG Chapter based in Taipei. 

TI W/4A Screen Dump 
This program prints a full-size image from the TI screen in bit-map mode. Reso- 
lution is obtained which matches that of the screen. [Other useful TI utilities are 
wanted for publication. - Editor] 

Mnthquiz 
This application is doubly educational - a good learning tool for beginning 
Forth programmers who have Apple computers, and a patient arithmetic tutor 
for pre-programmers. Let’s see your improvements and modifications! 

Local Definitions 
Are you tired of invoking vocabularies? Of coming up with good, unique names? 
If so, this senior engineer at the Laboratory for Laser Energetics has a fine tonic 
for what ails you. 

Enhanced DO LOOP 
When a simple problem has an overly complex solution, the Forth programmer 
will sometimes end up modifying a recalcitrant control structure. Here is a subject 
for first-time tinkerers and old-timers, too. 

The Far Right Stuff 
“Or, How America Can Stop Worrying and Learn to Love the Computer.” This 
aseasonal pundit presents a short hysteria of passed-modern computing. 

Pollard’s Monte Carlo Factorizer 
Even large numbers can be tested for primality within a reasonable period of 
time. This is a Forth implementation of one proven method for doing so. 

FORML China Tour, Part ”bo 
Coverage of last fall’s FORML conferences in the Far East continues with the 
group’s departure from Honk Kong. Join them in Shanghai, Beijing and other 
centers of budding Forth activity. 

DEPARTMENTS 
5 Letters 
6 Editorial: “Xie, xie” 
7 Ask the Doctor: “Learning Forth ” 

37 Products & Announcements 
38 Techniques Tutorial: “YACS” 
40 
42 FIG Chapters 

Chapter News by John D. Hall 

Volume VI, No. 6 3 FORTH Dimensions 



THE FORTH  SOURCE^" 
MVP-FORTH 

Stable - Transportable - Public Domain - Tools 
You need two primary features in a software development package a 
stable operating system and the ability to move programs easily and 
quickly to a variety of computers. MVP-FORTH gives you both these 
features and many extras. This public domain product includes an editor, 
FORTH assembler, tools, utilities and the vocabulary for the best selling 
book "Starting FORTH". The Programmer's Kit provides a complete 
FORTH for a variety of computers. Other MVP-FORTH products will 
simplify the development of your applications. 

MVP Books - A Series 
0 Volume 1, All about FORTH by Haydon. MVP-FORTH 

glossary with cross references to fig-FORTH, 
Starting FORTH, and FORTH-79 Standard. 2"d Ed. $25 

CPIM" , IBM-PC" , and APPLE" listing for kernel $20 
$1 0 
$1 5 

by Moreton $25 
$1 5 

0 Volume 2, MVP-FORTH Assembly Source Code. Includes 

0 Volume 3, Floating Point Glossary by Springer 
0 Volume 4, Expert System with source code by Park 
0 Volume 5, File Management System with interrupt security 

+&O Volume 8, Expert Tutorial for Volume 4 by M & L Derick 

MVP-FORTH Software - A Transportable FORTH 
0 MVP-FORTH Programmer's Kit including disk, documentation, 

Volumes 1 & 2 of MVP-FORTH Series (All About FORTH, 2"d Ed. 
& Assembly Source Code), and Starting FORTH. 0 CPIM, 
0 CPIM 86, 0 APPLE, 0 STM PC, 0 IBM PCIXTIAT, 
0 PCIMS-DOS, 0 Osborne. 0 Kaypro. 0 H891289, 0 Z1 00, 
0 TI-PC. 0 MicroDecisions, 0 Northstar, 0 Compupro, 
0 Cromenco, 0 DEC Rainbow, 0 NEC 8201, 0 TRS-80l100, 

& OHPI IO.OHP150 $1 50 
0 MVP-FORTH PADS (Professional Application Development 

System) for IBM PCIXTlAT or PCjr or Apple 11, II+ or Ile. An 
integrated system for customizing your FORTH programs and 
applications. The editor includes a bidirectional string search 
and is a word processor specially designed for fast develop 
ment. PADS has almost triple the compile speed of most 
FORTH's and provides fast debugging techniques. Minimum 
size target systems are easy with or without heads. Virtual 
overlays can be compiled in object code. PADS is a true 
professional development system. Specify Computer. $500 

0 MVP-FORTH EXPERT-2 System for learning and developing 
knowledge based programs. Both IF-THEN procedures and 
analytical subroutines are available. Source code is provided. 
Specify 0 Apple, 0 IBM. or 0 CPIM. Includes MVP-FORTH 

$1 00 
0 FORTKWrlter, A Word Processor for the IBM PCIXTlAT with 

256K. MVP-FORTH compatible kernal with Files, Edit and Print 
systems. Includes Disk and Calculator systems and ability to 
compile additional FORTH words. $1 50 

0 MVP-FORTH Enhancement Package for IBM-PCIXTIAT Pro- 
grammer's Kit. Includes full screen editor, MS-DOS file interface, 

$110 
0 MVP-FORTH Cross Complier for CPIM Programmer's Kit. Gen- 

elates headerless code for ROM or target CPU $300 
0 MVP-FORTH Meta Compiler for CPlM Programmer's kit. Use for 

applicatons on CPlM based computer. Includes public domain 
source $1 50 

0 MVP-FORTH Fast Floating Point Includes 851 1 math chip on 
board with disks, documentation and enhanced virtual MVP- 
FORTH for Apple (I, II + , and Ile. $450 

0 MVP-FORTH Programming Aids for CPIM. IBM or APPLE Pro- 
grammer's Kit. Extremely useful tool for decompiling, callfinding, 

0 MVP-FORTH Floating Point 6 Matrix Math for IBM PClXTlAT 
with 8087 or Apple with Applesoft on Programmer's Kit or 
PADS $85 

0 MVP-FORTH Graphics Extenrlon for IBM PC/XT/AT or 
Apple on Programmer's Kit or PADS $65 

0 MVP-FORTH MS-DOS file interface for IBM PC PADS $80 

+& 

* 

&* 
Series. Volumes 4 and 6, Expert Systems by Park. 

*@ 

+-* 
disk, display and assembler operators. 

translating, and debugging. $200 

FORTH MSKS 
FORTH with editor, assen 
0 APPLE by MM, 83 
0 ATARP valFORTH 
0 CPlM by MM, 03 
0 HP-85 by Lange 
0 HP-75 by Cassady 
0 IBM-PC by LM, 83 
0 280 by LM. 83 
0 8088188 by LM. 83 

ibler, and manual. 

$100 0 MOO0 by LM. 83 $250 
$60 0 VIC FORTH by HES, & 

$100 VIC20cartridge * $20 
$90 0 C84 by HES Commodore 

$1 50 64 cartridge $40 
$100 0 Timex bv HW, cassette 

$'O0 0 2068 
$1 00 

0 TIS I OOOlZX-81 

Enhanced FORTH with: F-Floating Point, G-Graphics, T-Tutorial, 
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking, X-Other 
Extras, 79-FORTH-79, 83-FORTH-83. 
0 APPLE by MM, 0 C84 by PS.MVP, F, 

0 ATARl by PNS, F,G, & X. $90 0 Ext0nSlOnS for LM Specify 
0 CPlM by MM, F & 83 $140 
0 TRS-8Oli or ill by MMS 

$' 30 0 8087 S u ~ w r t  

$180 G & X  $96 F, G, & 83 

IBMv z80, Or 
0 Software Floating 

Point $100 F, X, & 79 

(IBM-PC or'8086) $1 00 
0 9511 Support 

0 Color Graphics 

Kay to vendors: 

(280 or 8086) $1 00 

(I BM-PC) $1 00 

HW Hawg Wild Software 
LM Laboratory Microsystems 
MM MicroMotion 
MMS Miller Microcompuler Services 
PNS Pink Noise Studlo 
PS Parsec 0 Data Base 

Management $200 
FORTH MANUALS, GUIDES & DOCUMENTS 
0 Thinklng FORTH by Leo 0 (u1ooO fig-Forth with 

+' Brodie. author of best selling assembler $25 
"Starting FORTH' 

0 ALL ABOUT FORTH by 
Haydon. MVP Glossary $25 0 1981 Vol 2 +& 

0 FORTH Encyclopedia by 0 1982 0 1983 each $25 
Derick & Baker $25 0 1981 Rochester 

$1 6 0 FORML - d i n g s  
0 1980 0 1981 Vol 1 

Proceedings 
0 1981 0 1 9 8 2  0 1 9 8 3  

40 FYS FORTH from the 

C l  User Manual $25 0 1984 +,each $25 *' Netherlands 

0 source Listing 

bv Winfield $1 6 Application 6 Research 

$25 0 Bibliography of FORTH $1 7 
0 The Journal of FORTH 0 The Complete FORTH 

0 Understanding FORTH d VOl. 111 OVOl. 112 
bv Revmann $3 0 Vol. 2/1 ,&each $17 

0 

*do 
0 

0 

0 

, I  

FORTH Fundamentals, 
0 Vol. I by McCabe 
0 Vol. II Glossary 
Mastering FORTH by 
Anderson & Tracy 
Beginning FORTH by 
Chirlian 
FORTH Encyclopedia 
Pocket Guide 
And So FORTH by Hua 
college level text. 

$1 6 
$14 0 

$18 

$17 

$7 0 
ng. A 

$25 

METAFORTH b y  
Cassad y $30 
Threaded Interpretive 
Languages $25 
Systems Guide to fig- 
FORTH by Ting $25 
inside F83 Manual by + 
Ting +' $30 
FORTH Notebook by 
Ting &$25 
Invitation to FORTH $20 

0 FORTH Roeramming by 0 PDP-11 User Man. $20 
Scanlon $1 7 

0 Startlng FORTH by Brodie. Standard 
Best instructional manual FORTH-79 mndard $15 
available. (soft cover) $1 9 

0 Installation Manual for fig-FORTH $1 5 

0 Source Llstlngs of fig-FORTH, Specify CPU $1 5 

Ordering inlormrtlon. Check Money Order (payable to MOUNTAIN VIEW PRESS, 
INC ) VISA Mastercard American Express COD s $5 extra Minimum order $1 5 
No billing or unpaid Po s California residents add sales tax Shipping costs in US 
included in price Foreign orders pay in US lunds on US bank include for handling 
and shippmg by Air $5 for each item under $25 $1 0 for each item between $25 and 
$99 and $20 for each item over $100 All prices and products subject to change or 
withdrawal without notice Single system andlor Single user license agreement 
required on some products 



Hang Ten for Lunch I 

Dear Mr. Ouverson: 

I thought you and other members of 
FIG might like to see some examples of 
a language I read about recently: 

SPEAKER SURFBOARD FETCH 
WINDOW TAIL-TOUCH 
BALL QUESTION 
SURFBOARD RIGHT FRISBEE 
FETCH 

No, it isn’t Forth, although one of its 
principles is, I ‘ .  . . object words 
precede action words, and modifiers 
come before objects.” According to 
Science News (Dec. 1, 1984), this is one 
of two languages researchers at the 
Kewalo Basin Marine Mammal 
Laboratory in Honolulu use to 
communicate with dolphins. With this 
language, the “words” are hand 
gestures. The other language, which is 
not so Forth-like, uses computer- 
generated whistles. 

Yours truly, 
Bob Lewis 
Portland, Oregon 

Passport for the STATE-less 

Dear Marlin, 

fig-FORTH and Forth-79/83 have a 
user variable called STATE which 
contains the compilation state. A non- 
zero value means that compilation is 
occurring. Some words, such as 
LITERAL in fig-FORTH, test this user 
variable and execute differently 
depending on its value. This is known 
as state-smartness. However, there 
appears to be a movement afoot to 
eliminate state-smartness. This is 
mostly a good thing: it keeps life 
simple if a word does the same thing 
when processed by the compiler as it 
does when processed by the interpreter. 
However,  t rans la t ing  routines 
dependent on state-smartness into 
state-less Forth dialects can be 
complicated. 

i 

An example of state-smartness 
dependency is Alden Long’s number 
conversion routine (“Letters,” Forth 
Dimensions VI/2). Numbers lead a 
double life. When processed by the 
compiler they are stored into the 
dictionary as a literal. When processed 
by the interpreter they are left on top 
of the stack. Thus, any word which 
does its own number conversion 
requires state-smartness. 

One way of emulating the STATE user 
variable is to test the smudge bit of the 
most recent word in the dictionary. 
Most Forth dialects use a smudge bit 
on a word’s header to hide an 
incompletely compiled word from a 
dictionary search. If the smudge bit of 
the last dictionary entry is set, it 
normally means we are compiling the 
current word. If the smudge bit of the 
last word in the dictionary is clear, the 
word is complete and, therefore, we 
must  be in the  in te rpre te r .  
Unfortunately, there is a case when this 
doesn’t work. If you use [ ] to break 
out to the interpreter while compiling, 
the smudge bit is set at that point. 

Although fig-FORTH has a STATE 
user variable and a state-smart 
LITERAL, here is an example of how it 
can be emulated with a word 
COMPILING? which returns the value of 
the latest smudge bit. fig-FORTH has a 
word LATEST which returns the name 
field address of the latest dictionary 
entry in the CURRENT vocabulary. 
From it, we can get the smudge bit and 
test it. 

: COMPILING? ( - t I f ) 
LATEST C@ 32 AND ; 

PolyFORTH, which I use, has a 
similar word LAST which is a variable 
containing a pointer to a pointer to the 
last word in the dictionary, hence: 

: COMPILING? ( - t I f ) 
LAST @ @ 2+ C@ 32 AND ; 

And finally, an example of how you 
would use this word to emulate a state- 
smart LITERAL 

: SMART-LITERAL ( n - [n] ) 
COMPILING? 
IF [COMPILE] LITERAL 
THEN ; IMMEDIATE 

Yours sincerely, 
Paul Bigelow 
Waterloo, Ontario 

Already Abstruse 
Dear Mr. Ouverson, 

I just received my renewal notice 
today, and I noticed the change in 
editorial policy, with its heavier 
emphasis on applications and practical 
tips. I want to commend you for the 
change. For some time now, I have 
believed that the reason Forth is not 
more widely used is because it has not 
had a journal willing to address itself 
to novices. Forth is abstruse enough by 
itself; it needs a presentation to 
beginners that is clear and practical. 
I’m sure that if the very real virtues of 
t he  language  can  be  clearly 
demonst ra ted  t o  beginning 
pregrammers, it will quickly win a 
much wider following. 
Sincerely, 
Scott Locicero 
Las Vegas, Nevada 

All right, Forth authors, time to get 
busy! We aim to serve beginners as we 
continue to delve into the advanced 
mysteries. Don’t be shy of “heavy” 
subjects or negligent of others which 
seem trivial; but do some comparative 
research of similar ideas, define all 
your words, document your screens 
well, avoid system dependencies and 
present plenty of text in proportion to 
the amount of code. FIG member 
David A .  Ryder wrote from Michigan 
last year, “I do not wish to seem bitter, 
but to me the problem is not with 
portability. It is a matter of 
communication. I am hoping the next 
volume will help a rmk beginner like 
myself. ” Our editorial files have plenty 
of similar letters, but we need a fresh 
reserve of material to meet this special 
need. Who will champion the novices’ 
cause? 

--Marlin Ouverson 

FORTH Dimensions Volume VI. No. 6 5 

I 



Xie, Xie 
Time does fly when you’re having 

fun, and it’s already time to remind 
you to renew your FIG membership. 
Many have already done so, ensuring 
uninterrupted delivery of Forth 
Dimensions and other important 
material. Plans are under way to 
expand member services in some 
dramatic ways, and we hope each and 
every one of you will share in the 
benefits. To one and all, thank you for 
supporting FIG’S activities during past 
years. 

We would also like to recognize once 
more all of the gracious overseas 
organizers and sponsors of the 1984 
FORML China Tour. The fruit of 
their labors was a series of successful 

conferences in the Republic of China 
(Taiwan) and the People’s Republic of 
China (mainland). Our coverage of 
last year’s tour concludes in this issue. 
Every conference was well organized 
and was well attended by serious and 
enthusiastic audiences, the kind we 
were proud to be part of. Our thanks 
and appreciation go to all who were 
involved with these functions! 

If you stayed home last year and 
missed the Forth techniques and 
important accomplishments discussed 
at the FORML conferences, all is not 
lost. FIG members in West Germany 
are putting together an exciting 
FORML event for which they are 
soliciting papers, speakers and 

attendees. We will keep you up to date 
as details are given to us - check for 
more  in “ P r o d u c t s  & 
Announcements. ” 

The event of note in this issue can be 
found in the “Techniques Tutorial.” 
Henry Laxen has tossed down a 
gauntlet that few may dare to pick up: 
the Mystery of the Grand Case is 
waiting to be solved, and you have only 
one issue’s time to do it. Those of you 
who have already renewed your FIG 
membership can go directly to Henry’s 
column; all others have another 
priority - if you want to read about 
the solution in Volume Seven, Number 
One. 

- Marlin Ouverson 

Missing Enigma 

Dear Fellow FIG-ers: 

I like the new “look” of Forth 
Dimensions, but miss the enigmatic 
definitions of Al McCahon. Can’t you 
bribe or threaten him from time to time 
for even a little tidbit? If possible, 
would you consider printing regularly 
an index of Forth-related articles from 
other publications? 

Keep up the good work! 

Sincerely, 
Danny K. Liles 
Jackson, Mississippi 

I’ll have a talk with A1 soon. . . As 
for the index, the best source is the 
Bibliography of Forth References, 
recently updated and expanded. When 
you see how many references it 
contains, you’ll understand why it 
doesn ’t appear in our magazine pages. 
It is published by the Institute for  
Applied Forth Research, Inc., and can 

be found as well on the FIG Order 
Form in Forth Dimensions. 

- Marlin Ouverson 

Color Forth 

Greetings, 
Knowing that FIG is always 

in te res ted  in  f ig-FORTH 
implementations on new machines, I 
would like to take this opportunity to 
inform the membership of one such. 

Last summer I was able to get 6800 
fig-FORTH running on the Radio 
Shack MC-10 Micro Color Computer, 
which has a ’6803 MPU. I had to 
rewrite 6800 Forth to run in high 
memory and, while I was at it, I fixed a 
couple of minor bugs and added some 
extensions necessary to make fig- 
FORTH useful on this tape-based 
system. Incorporated are: a CSAVEM 
command to save a block of memory 
to tape, and commands to plot high- 
resolution graphics (the MC-10 lacked 
these commands); PRINTER and 
SCREEN commands to direct output to 
either the console or a printer; a SOUND 

command for creating music; and 
Forth screens are simulated in RAM. 
This implementation, which I call MC- 
FORTH, requires the MC-10 to have 
the Radio Shack 16K RAM pack, for a 
total of 20K of memory. 

I have used MC-FORTH for a 
number of months now, and have had 
a wonderful time using it to learn 
about Forth. The offer I would like to 
make to all members of FIG is this: if 
you would like me to send a tape to you 
containing this Forth for the Radio 
Shack MC-10 Micro Color Computer, 
the fig-FORTH line editor and some 
assorted Forth utilities (recursive 
decompiler, dump, etc.), send $15 to 
cover my time and materials, and your 
name and address. Then you’ll finally 
be able to do something interesting 
with your MC-lo! 

Again, thank you for your efforts on 
behalf of all of us FIG-ers, and I hope 
my offer helps a few. 
Thank you, 
Gobind Singh Khalsa 
Liverpool, New York 

Volume VI, No. 6 FORTH Dimensions 6 



Learning Forth 
William E Ragsdale 

Hayward, California 

“Ask the  Doc to r”  is For th  
Dimensions’ health maintenance 
organization to aid your understanding 
and use of Forth. Questions of a 
problem-solving nature, on locating 
references, or just regarding contem- 
porary techniques are most ap- 
propriate. When needed, your good 
doctor will call on specialists. 
Published letters will receive a preprint 
of the column as a direct reply. 

In his last column, the good doctor 
addressed the common problem of or- 
ganizing one’s approach to learning 
Forth. The components of attitude, 
computer, version and documentation 
were addressed. This month, your 
faithful practitioner expands on self- 
study, based on a new book. 

We respond to the letters received 
from Bill Hepner of Anaheim, CA; 
John Megar of Snellville, GA; Dennis 
Miller of Weymouth, MA; Louis 
Lebovitz of Queens Villiage, NY; and 
Isadore Nicholson of Greenvale, NY. 
These readers ask for suggestions on 
learning Forth with systems accom- 
panied by modest documentation. 
Since the earlier column appeared, a 
book specifically intended for self- 
paced learning has been published. 

Because learning Forth is such a 
common topic in your Forth doctor’s 
mailbox, he will devote this full 
column to the new book Learning 
Forth by Margaret A. Armstrong with 
technical assistance from Dr. Mitchell 
E. Timin. This volume was published 
in 1985 by John Wiley & Sons, Inc., 
New York; 226 pages, softbound, 
$16.95. 

The material is organized into eleven 
chapters, five appendices and an index. 
The chapters, although titled different- 
ly, are organized as follows: 
1. Why you should program, 

2. Forth history 
3. Start-up 
4. Stack use, number representa- 

5 .  Defining new words 

motivation 

tion 

6. Style and structure 
7. Editor 
8. Conditiona and Booleans 
9. Data structures 
10. Interactive examples 

The foreword states the author’s 
purpose to develop student competen- 
cy with “. . . a  basic working 
knowledge of Forth. . . ” and “ . . . to 
be ready to move on to intermediate- 
level programming in Forth.” In 
summary, Armstrong accomplishes her 
goal with satifying directness. 

The Socratic style of mixing 
questions, answers and new material 
offers the reader a structured approach 
without being repetitive. Each concept 
is presented in a brief paragraph, with 
several one-line questions. Thus, 90% 
of the book presents “frames of 
knowledge” with requests for reader 
involvement. In fact, since text, 
questions and answers alternate, the 
book would be quite hard to read in 
narrative fashion. Each chapter 
concludes with several summary 
questions. 

A suggestion is in order. You will 
lose much of the “dialog” format of 
the book if you read ahead to the 
answer before truly thinking through 
each question. Try using a 3x5 card to 
cover the answers until you have had a 
chance to formulate your own. It’s fine 
to look back at the text, just resist any 
temptation to read the answers! Even 
better, write down your answers. This 
is involving, and will later reveal your 
true progress and understanding. 

Good Points 

The first chapter succeeds a t  
engaging the reader with discussion of 
the benefits of programming, as well as 
presenting products from a number of 
vendors. A brief history of Charles 
Moore’s work sets the stage for the 
later, technical material. 

A few inaccuracies about the early 
origins of Forth and FIG are to be 
found, indicating the author worked 
from published sources rather than 

from first-hand research. These do not 
detract from the appropriateness of 
historical perspective. 

The topic of text entry to disk is 
treated in a functional way rather than 
in a technical way. The reader learns 
how to list and load from disk, but 
must get the specifics of editing from 
his system documentation. This is out 
of consideration for the reader, since 
subtle differences are found in editors 
purported to be identical. Keen insight 
or good fortune also caused the author 
to omit other elements of Forth usage 
that have variations in use or subtlety 
in application. Words such as BLOCK, 
VOCABULARY and  DOES> a re  
thankfully absent, as they can intrude 
on the initial development of 
competency. 

Many of the examples build to a 
major project. Chapter Eleven calls on 
these components when presenting the 
example of a simple computerized 
payroll. All the components of a 
“real” application are present, 
although offered in a limited way. We 
see data structures, prompted input, 
calculation and a report. This is the 
first time in print for a coordinated use 
of such elements to teach Forth. An 
appendix also gives twenty-four blocks 
of short application examples. 

Systems other than Forth-79 or fig- 
FORTH will have trouble with the 
examples using BL, WORD, QUERY and 
Spa.  However, such dependencies are 
far fewer than in other texts. 

At first glance, this book is similar to 
many other books on Forth. But, 
looking deeper, we see an instance of 
the 80-20 Pareto principle. Other 
books spend only twenty percent of 
their space on the twenty percent of 
Forth that is the core of usage. The 
remaining eighty percent is spent on 
completeness, details and side effects. 

Armstrong turns around the ratio. 
She spends eighty percent of the book 
on the twenty percent of Forth you use 
eighty percent of the time. Some of the 
stack manipulation examples are 
lengthy; the time you devote to this 
material will be well spent if you truly 
master it. 

Volume VI, No. 6 7 FORTH Dimensions 



Problems 

All topics are presented at the same 
level of emphasis. This tends to mask 
some items of great importance. For 
example, on page twenty-five, the text 
interpreter is explained in five lines. 
The explanation given is not rigorous, 
and is buried without a caption as the 
fifteenth point in the chapter. 

This points out a subtle risk to the 
reader. Since information is presented 
in small bites, one may jump over and 
skip ahead. The risk is that impatient 
students will succumb to  the 
temptation to skip ahead. Still, 
encapsulation of information is 
essential to the learning process, even if 
the technique is not appreciated by the 
student. It has been stated that “you 
can only learn what you almost 
know.” The building-block approach 
is used here; but without an instructor 
present, the burden of pacing is 
relegated to the student. 

Some fundamentals need to be 
stated clearly the same way every time. 
There is some confusion between “a 
word” and “a word definition.” Also, 
no references are cited in this work. 
And Armstrong’s book would have 
benefitted from a clearer correlation 
with publications such as the Forth-79 
and Forth-83 Standards. 

Philosophy and Style 

Important methods of top-down 
design, natural-language problem 
statement and successive refinement 
are brought into play quite early 
(beginning on page three, to be exact). 

But no help is offered on screen 
editing style. There is not even a 
sample screen in the body of the book, 
although there are many in Appendix 
A. This problem is brought home on 
page 121, where a single definition is 
thirty-three lines long. On page 124, 
insult is added to this injury when the 
same example is expanded to forty- 
eight lines! This would have been a 
great place to discuss factoring and 
modularization. 

Only one place in the book offers 
mystification to readers. The fig- 

FORTH and Forth-79 EXPECT will 
leave one or two nulls at the end of 
input text. This is mentioned in the 
book’s glossary. Several examples use 
VARIABLE and ALLOT to leave space for 
text and numbers. It is a side effect of 
combined use that two extra bytes are 
allocated. This space nicely allows for 
the nulls, but no mention is made of 
such a need. If a student chose to 
conserve the space, a system crash 
would be likely. A more general 
technique would be to allot a scratch 
space, clear it to blanks, then EXPECT 
and CMOVE the desired characters to 
the storage areas. 

Terminology 

No mention is made of the Forth 
dialect used in the examples. The 
glossary is fig-FORTH, and it appears 
that all the examples will work in fig- 
FORTH and Forth-79. Five words are 
used which are not in Forth-83, but 
they may be provided in extensions by 
specific vendors (VLIST, BL, QUERY, SP@ 
and SP! ). It is a shame that simple 
overlays were not given, so that users 
of most distributed systems could 
make immediate use of this book. The 
terminology is quite up to date. 
Although the dialect appears to be fig- 
FORTH, the effects of Forth-79 and 
Forth-83 show in the text. Terms such 
as “text interpreter” are used, rather 
than the dated “outer interpreter.” 
Thus, readers will be learning 
contemporary expression. 

The a u t h o r  does have the 
abominable habit of capitalizing the 
word Forth. This makes reading 
difficult, and continues the confusion 
between Forth as a proper noun (it is 
not an acronym), trademarks built on 
the name, and the word FORTH as the 
name of a vocabulary when in the 
dictionary. 

What This Book is Not 

Do not expect to use this book as a 
reference manual. English topic 
headings are at a premium and the 
index is minimal. Each major 

paragraph or subject is numbered, but 
no use of the numbers is apparent. A 
keyword would have been more user- 
oriented. While chapters are logically 
laid out, you will generally have to 
search linearly within a chapter to 
return to a specific subject. 

The material on each topic is clear, 
usable and understandable. No 
attempt is made to be comprehensive 
or to discuss side effects. As a result, 
the material should be transportable to 
a variety of Forth systems. For 
example, LEAVE is not discussed during 
consideration of Do and LOOP. This is 
probably better left for other works, as 
compatibility problems and side effects 
are likely. In a similar fashion, 
discussion of the use of the disk for 
other than storage of programs is left 
alone. 

- 

Conclusion 

Your good doctor is aware of no 
other Forth book which is offered 
solely as a learning experience. Other 
authors have written books from which 
they wish one to learn, but here is the 
first chance for you to participate 
completely in such an activity. 
Congratulations are in order for 
Margaret Armstrong for producing 
Learning Forth. 

FORTH Dimensions a Volume VI, No. 6 



In=Word Parameter Words 

In a short note in Forth Dimensions 
(V/3), Dr. Timothy Huang used the in- 
word parameter technique t o  

Sam Suan Chen 
Lung Tan, Taiwan 
Republic of China 

~ 

DUP3 ( 1 2 3 4 2  ) DUP2 ( 1 2 3 4 2 4 )  
DROP3 ( 1 2 3 2 4 ) DROP4 ( 1 3 2 4 ) 

SWAP12 ( 1 3 4 2 ) SWAP34 ( 3 1 4 2 ) . . . . ( THE F I N A L  P R I N T  OUT SHOULD BE: 2 4 1 3 ) 

S C R I  53 
( TESTING OF THE WORDS DUPx, DROPx, AND SWAPxy 840415 S.CHEN 

CR 1 2 3 4  

OC 
cc a a  LOAD 5; LOAD 
2 4 1 5  
2 4 1 3  Ok 

0 K 
' Z D I S M  

I ADDR CODE 
_-_-  _ - _ _  -- 
72EF- 7 1 D 5  CR 
72Fl-  OFBB 1 
72F3- OFC3 2 
72F5- OFCB 3 
72F7- 0 8 0 E  ( L I T )  
72F9-  0004 
72FB- 080E ( L I T )  
72FD- 0003 
72FF- OA47, P I C K  
7301- 080E ( L I T )  
7x03- 0002 
7305- OA47 PICK 
7307- OBOE ( L I T )  

implement three new words: DUPx, 
DROPx and SWAPxy. These three words 
are quite fancy. However, they can be 
used only in interpretive mode, not in 
colon definitions. For example, a word 
such as z (screen 53) will not work; 
even its compilation cannot be 
completed normally. 

Here we present an improvement to 
Huang's scheme. The words used to 
achieve our goal are given on screen 54. 
They are all 79-Standard except SP@ 
and WIDTH. Although non-standard to 
Forth-79, these two words had been 

7309- 
730B-  
730D- 
730F- 
7 3 1  1- 
7313- 
7 3 1 5 -  
7317- 
7319- 
7516- 
751D- 
731F- 
7321- 
7527- 

0003 
OA6C ROLL 
0 8 E 7  DROP 
080E ( L I T )  
0004 
OA6C ROLL 
0 8 E 7  DROP 
0 8 0 E  ( L I T )  
0012 
7277 XYSWAP 
OBOE ( L I T )  
0054 
7277 XYSWAP 
41DC . 

7;25- 41DC . 
7327- 41DC . 
7 3 2 9 -  41DC . 
7528- OD43 : S  
?Z?& _ - _ _  -- 

Figure One 
I I 

: 2  
CR 1 2 3 4  
DUP3 ( 1 2 3 4 2  ) DUP2 ( 1  2 3 4 2 4 )  
DROP3 ( 1 2 3 2 4 ) DROP4 ( 1 3 2 4 ) 

SWAP12 ( 1 3 4 2 ) SWAP34 ( 3 1 4 2 ) 

. . . . ( THE F I N A L  P R I N T  OUT SHOULD BE: 2 4 1 3 ) 

; z  
S C R I  54 
( WORDS USED TO DEFINE DUP~,  DROPX, AND S W A P ~ Y  a40415 S.CHEN ) 

79-STANDARD: 

DUP DROP SWAP OVER ROT P I C K  ROLL >R R >  R@ 

+ 2+ /HOD ! @ I F  THEN BASE CONVERT : ; 

IHHEDIATE LITERCIL STATE COHPILE CCOHPILEI  

( HERE 

NON STANDARD (BUT NOT Q U I T E  UNKNOWN): 

SP@ WIDTH 
S C R I  55 
( IN-WORD PARAHETER PASSING: DUPx DROPx SWAPxy 840415 S.CHEN ) 

: INWORDS BASE @ >R 16 BASE HERE + 0 0 ROT CONVERT DROP DROP 
CCOHPILEI  L I T E R A L  R: BASE ; 

: T O N P I L E  STATE @ I F  R >  DUP @ , 2+ >R THEN ; 

: XYSWAP 16 /MOD >R DUP + SP@ + SP@ R >  DUP + + OVER @ OVER @ 
>R SWAP I R >  SWAP ; 

3 WIDTH ' : DUPX 3 INWORDS X O M P I L E  P I C K  : IMMEDIATE 

4 WIDTH ' : DROPX 4 INWORDS T O M P I L E  ROLL 
T O M P I L E  DROP : IMMEDIATE 

: SWAPXY 4 INWORDS T O M P I L E  XYSWAP : IMMEDIATE 
31 WIDTH ' 

C 1 1  : INWORDS BASE @ :H 16 BASE ' 
HERE + O 0 ROT CONVERT DROP DROP ?DUP 0= 
I F  . I '  INVCILID HEX I N  WORD" ABORT THEN 
CCOMPILEI L I T E R A L  R; 6CISE : 

[:I : INWORDS BASE Q R 16 BASE ' DUP ,R 
HERE + ( 1  0 ROT CONVERT C@ DUP 0= SWAP BL = OR NOT 
I F  HERE COUNT TYPE ." I N V A L I D  HEX HERE 

THEN R :  DROP DROP 
[COMPILE]  L I T E R A L  R BASE ' : 

COUNT R@ - SWCIP R + SWAF TYPE ABORT 

I I 
Figure Two 

Volume VI. No. 6 9 FORTH Dimensions 

i 



defined in fig-FORTH and most other 
Forth systems. For those unfamiliar 
with these words, please refer to Forth 
Encyclopedia by Derrick and Baker. 

The key point to our improvement 
lies in the special words IN WORD$^^^ 
?COMPILE. The first word decodes the 
in-word parameter as a hexadecimal 
number and then LITERALS it. Its input 
is the WIDTH declared prior to the colon 
def ini t ion.  The second word 
conditionally COMPILES the word next 
to it when its calling word is executed 
in compiling mode; otherwise it does 
nothing. 

With the support of these two special 
tools, the definitions of DUPx, DROPx 
and SWAPxy become quite simple, as 
detailed in screen 5 5 .  In the definition 
of SwAPxy, one will find a word 
XYSWAP. It is predefined to swap two 
stack items specified by two hex digits 
juxtaposed in the form of a number. 
For example, the entry 

HEX 15 XYSWAP 

will swap the top item and the fifth 
item on the stack. 

Our improvement and testing have 
been done on an Apple I1 with 
MicroMotion Forth-79, version 2.0. 
The test word z, mentioned above, 
now works perfectly. Its actual object 
code is shown in Figure One, along 
with the result of its execution. In 
addition, the word INWORD$ could be 
implemented with some error checking 
like that in Figure Two. 

~~ 

ATTENTION FORTH AUTHORS! 
Author Recognition Program 

To recognize and reward authors of Forth-related articles, the 
Forth Interest Group adopted the following Author Recognition 
Program, effective October 1, 1984. 

Articles 
The author of any Forth-related article published in a periodi- 

cal or in the proceedings of a non-Forth conference is awarded 
one year’s membership in the Forth Interest Group, subject to 
these conditions: 

a. The membership awarded is for the membership year 
following the one during which the article was published. 

b. Only one membership per person is awarded in any year, 
regardless of the number of articles the person published in 
that year. 

c. The article’s length must be one page or more in the 
magazine in which i t  was published. 

d. The author must submit the printed article (photocopies 
are accepted) to the Forth Interest Group, including identifica- 
tion of the magazine and issue in which i t  appeared, within 
sixty days of publication. In return, the author will be sent a 
coupon good for the following year’s membership. 

e. If the original article was published in a language other 
than English, the article must be accompanied by an English 
translation. 

f. Articles are eligible under this program only i f  they were 
first published after October 1, 1984. 

Letters to the Editor 
Letters to the editor are, in effect, “mini-articles,” and so 

deserve recognition. The author of any Forth-related letter to an 
editor published in any magazine except Forth Dimensions, is 
awarded $10 credit toward FIG membership fees, subject to 
these conditions: 

a. The credit applies only to membership fees for the mem- 
bership year following the one in which the letter was 
published. 

b. The maximum award in any year to any person will not ex- 
ceed the full cost of the membership fee for the following year. 

c. The author must submit to the Forth Interest Group a 
photocopy of the printed letter, including identification of the 
magazine and issue in which it appeared, within sixty days of 
publication. The author will then be sent a coupon worth $10 
toward the following year’s membership. 

d. If the original letter was published in a language other 
than English, the letter must be accompanied by an English 
translation. 

e. Letters are eligible under this program only i f  they were 
first published after October 1, 1984. 

Volume VI, No. 6 FORTH Dimensions 10 

I 



TI 9914A Screen Dump 
Howard H.  Rogers 
Torrance, California 

Forth, as written for the Texas 
Instruments 99/4A computer, permits 
a simple implementation of bit-map 
mode. The Forth program described 
below prints a full-size replica of the 
screen on a compatible printer. This 
technique should be adaptable to other 
computers, if changes make the 
scanning procedures specific to the 
particular video display processor 
(VDP). The printer used was a Star- 
Micronics Gemini 10. The resolution 
attained is identical to that of the 
screen, 256 x 192 pixels. 

The program operates in the 
following way. The particular bit-map 
mode, as stored in VDPMDE (the word 
for VDP control; screen 123, line 9), 
selects the addresses which determine 
the limits of the specific mode in use. 
VDP RAM (Figure One) is scanned 
(screen 123, lines 2-5) to correspond to 
the first row of pixels starting at the 
upper-left corner of the screen. The 
data is stored in the variable SCRDATA 
until the line is complete (screen 123, 
line 5) .  

At this point, the method used by 
PRT (screen 122, lines 13-15) to achieve 
the desired resolution in the final 
printout will be described. The bit-map 
modes available in the printer have too 
many dots per inch to be useful (sixty 
or 120), since a print would result 
which is much smaller than the image 
on the ten-inch monitor screen. The 
greatest resolution available in 
character mode was seventeen 
characters per inch, which was not 
enough (136 characters total in eight 
inches). The problem was solved by 
selecting three characters, ASCII 225, 
227 and 231, which print as follows. 
An ASCII 225 prints a 3 x 3 square in 
the upper-left corner of a 6 x 6 field; 
ASCII 227 prints a 3 x 3 square in the 
upper-right corner of the field; and 
ASCII 231 prints a 3 x 6 rectangle in 
the top half of the field. Hence, a 
maximum of 272 3 x 3 squares in eight 
inches resulted. A linefeed of 2/72 inch 
gives the proper ratio between height 
and width, and also provides some 

CQL. COL. COL. COL. CQL. COL.. . 
ROWS 0-7 8-F 10-17 18-1F . . . . AO-A8 . . . FB-FF 

0 2000 21:108 20 1 (:I 20 1 8 2 I:] A(:) 2 OF 13 
1 2001 2009 2011 2019 2 0 A  1 2 0 F Y  

2 2i:102 2 0 0 A  2012 2 0 1 A  X ) A ?  20f-A 
3 2003 2 0 0 B  2013 201s 2 0 A 3  ZCFB . . . .  . . . .  . 
7 2007 200F 2017 201F 2 0 A 7  ?OFF 
8 2 101:1 2 108 21 10 21 18 2 1Al:I 21F-8 . . . .  . . . .  . 

2167 2 l f T  

BC) 36<1(:1 36(18 3610 3618 3660 361-8 

BF 3707 370F 3717 .371F 3'7A7 37FF 

. .  . . . .  . . . .  . 

. .  . . . .  . . . .  . 

I Partial Memory Map of Screen in Bit-Map Mode. 
1 

Figure One 

SCR #122 
0 ( SCREEN DUMP - BIT-MAP MODES HHR 1 9 8 4  ) BASE-::.R DECIMAL 
1 0 VARIABLE SCRDATA 256 ALLOT SCRDATA 256 ERASE ( VDP c l a t a  ) 

2 0 VARIABLE STDATA 128 ALLOT STDATA 128 ERASE ( P r i n t e r  da ta  ) 

3 SWCH 15 E M I T  27 E M I T  6S E M I T  2 E M I T  ( P r i n t e r  codes LSEMINI 10) 
4 27 E M I T  77 E M I T  4 E M I T  UNSWCH ( 2/72 LF. 4 L H  m a r g i n .  17 C P I )  
5 : SELECT CASE 0 OF 92 ENDQF ( C h o o s e  p r i n t e r  charac ter )  
6 128 OF 225 ENDOF ( B i n a r y - A S C I I  0- 32 01-227) 
7 64 OF 227 ENDOF ( B i n a r y - A S C I I  10-225 11-2.3:L) 
8 192 OF 231 ENDOF ENDCASE ; 
9 : SCAN 32 0 DO SCRDATA I + CIS ( R e a d  data, 32 bytes per  L.ine! 

10 4 0 DO DUP 192 AND SELECT ( S e l e c t  2 b i t s  f o r  each c h a r a c t e r - )  
11 STDATA J 4 1: I + + C !  ( S t o r e  dat.a t o  be s e n t .  t o  P r l n t e r J  
12 2 SLA LOOP DROP LOOP ; ( S h i f t  l e f t  2 b i t s  each loop)  
13 : PRT SCAN SkCH 128 0 DO STDATA I + ( B e g : i n  p r i n t  % fetc:h data) 
14 C@ E M I T 8  LOOP CR ( S e n d  CHR 32, 225, 227, and 2Zrl) 
15 20(:100 0 DO LOOP UNSWCH ; --? ( T i m e  d e l a y  for p r i n t e r )  

SCR 1123 
0 ( SCREEN DUMP - BIT-MAP MODES HHR 1984 C o n t i n u e d )  
1 
2 : SCREEN-DUMP DO 8 0 DO 256 0 DO ( R e a d s  VDP RAM and ) 

3 R? R:, R:. R:, R SWAP :.%R OVER + ( !;tore!S i n  I::PLI RAM 
4 SWAP >R SWAP Xi OVER + SWAP ?R ( A d d s  1. l oop  i n d i c i e s )  
5 SCRDATA I 8 / + 8 VMBR 8 +I-QQP ( T r a n s f e r  f r o m  VUP t o  CFIJ! 
b PRT ?TERMINAL I F  SWCH CR UNSWCH 
7 CIUIT E N D I F  L.QOP ( P r e s ! s  CI-ERR .tn s t o p  p r : i n , t i n g  ! 
a 256 +LOOP BEEP : ( S i y n a 1 . s  c o m p l e t i o n  of p r i n t i n q )  
9 : SCREEN/DUMP VDPMDE 1 CASE 

10 4 OF 14336 8192 ENDOF ( S e l e c t s  G r - a p h i c r L ?  m o d e  ) 
11 5 QF t21H8 8192 ENDOF ( Select!: S P L I T  tnodc! ! 
12 6 OF 14336 9216 ENDOF ( S e l e c t s  S P L I T ?  m o d e  ! 
13 HONK CR . " ERROR- IREOIJ J R E 3  B IT-MAF'PED MODES " 01.11 T ENC)C:ALfili: 
1 4  SCREEN-DUMP BEEP : R-:.BASE ( I f  none of above moi le r j  ) 

15 

Volume VI, No. 6 11 FORTH Dimensions 



overlap of characters. The printer 
codes are shown on screen 122, lines 
3-4. 

PRT starts with do loops that read 
data for each line of the screen. Each 
two bits of data are stored sequentially 
in STDATA by SCAN (screen 122, lines 
9-12). Upon completion of the loop, 
printing begins with SWCH, which turns 
on the interface to the printer. After 
the line has been printed by the print 
loop (screen 122, lines 13-15), the 
process continues line-by-line, using 
the three do loops in screen 123, lines 

2-8, until the entire screen has been 
copied. 

A sample use of the graphics 
program (screen 132) and the printed 
result are in Figure Two, a simple 
three-dimensional box. The lines were 
first plotted on the monitor screen with 
the word .LINE (available on the TI 
99/4A) and then were printed with 
SCREENIDuMP. The last step usually 
requires about ten minutes, partly due 
to the unidirectional print mode used 
for the greatest precision when plotting 
graphical data. 

SCR Rl3Z 
0 ( EXAMPLE OF H I T  MAP MODE DRAWING) 
1 ( RECTANGULAR BOX) 
2 
3 GRAPHICS2 DRAW 
4 20 171 205 171 L I N E  205 171 205 4 0  L I N E  
5 205 40 25) 4 0 L I N E  21:) 40 20 171 L I N E  
b 205 171 235 151 L I N E  205 40 235 20 L I N E  
7 20 4Cr SO 20 L I N E  50 2(:1 235 20 LINE 
8 235 20 235 151 L I N E  50 151 235 151 L I N E  
9 50 151 50 20 L I N E  20 171 50 151 LINE 
10 
1 :t 
12 
1:: 
14 
1 s 

Multiuser/Multitasking 
for 8080,280,80t$6 

Industrial h 4 - A  
Strength ' 
FORTH 1 

TaskFORTH,. 
The First 

Professional Quality 
Full Feature FORTH 

System at a micro price* 

LOADS OF TIME SAVING 
PROFESSIONAL FEATURES: 

* Unlimited number of tasks 
a Multiple thread dictionary, 

0 Novice Programmer 

0 Diagnostic tools, quick and 

superfast compilation 

Protection PaCkaQew 

simple debugging 

FORTH-83 compatible 
0 Screen and serial editor, 

easy program generation 
Sr Hierarchical file system with 

data base management 

St;i.;rtiIg FORT-, FCX11TH-79, 

. Slaner package $250 Fun packape $395 Sngb 
user and commercel hcmses available 

I f  you are an experienced 
FORTH programmer, this is the 
one you have been waiting for! 
If you are a beginning FORTH 
programmer, this will get you 
started right, and quickly too! 

Available on 8 Inch disk 
under CPlM 2.2 or greater 

also 
various 5%" formats 

and other operating systems 

FULLY WARRANTIED, 
DOCUMENTED AND 

SUPPORTED 

DEALER - 
I!WITED 

INQUIRES Vru'  

Shaw Laboratories, Ltd. 
24301 Southland Drive, #216 
Hayward, California 94545 

(41 5) 276-5953 

FORTH Dimensions 12 



An Interactive Math Game: 

Mathquiz 
Lyle D. Morton 

Wheatland, Wyoming 

Perhaps you work from the same 
handicap I do. I am not an expert at 
Forth. With that in mind, I am going to 
present an article for all the Forth 
beginners in the world. When I wrote 
Mathquiz, I accomplished many 
routines and structures for the first 
time in a program of my own design. 
Some of the words and concepts are 
straight out of Starting Forth by Leo 
Brodie, but in this program I tried to 
put them together in a meaningful way. 

As the father of two computer- 
loving children, I was seeking to devel- 
op something they would enjoy using, 
and which could also help with their 
basic math skills. I wrote it in Forth as 
a self-teaching exercise, and because I 
prefer it to BASIC and Pascal. In an 
attempt to emulate such hardware as 
Texas Instruments’ “Little Professor” 
and “Speak and Math,” I included the 
skill-level selection routines and con- 
gratulatory remarks. The title page and 
the pep talk at the start of the program 
were an attempt to spruce up the 
program and give it the feel of a soft- 
ware package the kids might be ex- 
posed to in school. 

Mathquiz is written in MVP- 
FORTH (Forth-79), but I have added a 
couple of extra Apple utilities I coded 
on my Apple 11. Those utilities are 
INVERSE and NORMAL. They make use 
of inverse characters on the screen and 
can easily be deleted from the pro- 
gram. I have included their definitions 
for Apple users who have not yet coded 
them. You will also notice that I used a 
large number of variables in the pro- 
gram. I have read that this shows up in 
most programs written by beginners, 
but I think it enhances readability of 
the code. 

If you have a machine that uses 
eighty columns exclusively, you will 
want to change the title page to use the 
full width, or to include carriage 
returns after line endings, to eliminate 
scrambled eggs for a title. You may 
also want to adjust the delay loops to 
give the proper amount of time to read 

H E L L O .  YOU A R E  E N T E R I N G  T H E  WORLD 
OF M A T H - Q U I Z .  P L E A S E  E N J O Y  Y O U R S E L F ’  
E E  A D V I S E D  T H E  U P P E R  L E V E L S  MAY R E Q U I R E  
A P E N C I L  A N D  P A P E R .  G O O D  L U C K ’  W E L C O M E  T O  M A T H O U I Z  V E R S I O N  1.3 ’ 
E N T E R  YOUR F I R S T  NAME.  
L Y L E  
L Y L E  , YOU MAY C H O O S E  F R O M  T H E  
F O L L O W I N G  MENU : 

MATH Q U I Z  V E R S I O N  1.3 
1. A D D I T I O N  
2. S U B T R A C T I O N  
3. M U L T I P L I C A T I O N  
4. D I V I S I O N  
5. S T O P  P R O G R A H  

T Y P E  T H E  N U M B E R  O F  YOUR C H O I C E .  

C H O S E  YOUR L E V E L  O F  D I F F I C U L T Y :  
1, 2 ,  3, O R  4 

V + 5 = 1 4  C O R R E C T  
1 0  + 2 = 1 2  C O R R E C T  
3 + V = 1 2  C O R R E C T  
5 + 0 = 5 C O R R E C T  
1 + 1 = 2 C O R R E C T  
1 + 7 = 8 C O R R E C T  
10  + 10  = 20 C O R R E C T  
3 + 7 = 1 0  C O R R E C T  
10 + V = 11 C O R R E C T  
V + 0 = 7 C O R R E C T  
L Y L E ,  YOU W E R E  C O R R E C T  1 0  T I M E S  
O U T  O F  10 .  V E R Y  G O O D ! L Y L E  , YOU NAY C H O O S E  F R O M  T H E  
F O L L O W I N G  MENU : 

MATH Q U I Z  V E R S I O N  1.3 
1. A D D I T I O N  
2. S U E T R A C T I O N  
3. M U L T I P L I  C A T 1  ON 
4. D I V I S I O N  
5. S T O P  P R O G R A M  

T Y P E  T H E  N U M E E R  O F  YOUR C H O I C E .  

C H O S E  YOUR L E V E L  O F  D I F F I C U L T Y :  
1, 2, 3, OR 4 

28 - 2 = 25 C O R R E C T  
34  - 18 = 15 C O R R E C T  
40 - e l 7  = 13 
WRONG, T H E  C O R R E C T  A N S W E R  I S  23 
38 - 11 = 27 C O R R E C T  
28 - 11 = 1 7  C O R R E C T  
40 - 1 4  = 25 C O R R E C T  
36 - 0 35 C O R R E C T  
34  - 5 = 2V C O R R E C T  
29 - 5 = 23 C O R R E C T  
39 - 5 = 33 C O R R E C T  
L Y L E ,  YOU W E R E  C O R R E C T  V T I M E S  
O U T  O F  10. V E R Y  G O O D ’ L Y L E  , 
YOU MAY C H O O S E  F R O M  T H E  
F O L L O W I N G  MENU : 

MATH Q U I Z ,  V E R S I O N  1 .3  
1. A D D I T I O N  
2. S U B T R A C T I O N  
3. M U L T I P L I C A T I O N  
4. D I V I S I O N  
5. S T O P  P R O G R A M  

T Y P E  T H E  N U M B E R  OF YOUR C H O I C E .  

C H O S E  YOUR L E V E L  OF D I F F I C U L T Y :  

20 * 1 4  = 280 C O R R E C T ’  
19 * 5 = 95 C O R R E C T ‘  
5 * 12  = 60 C O R R E C T ‘  
3 * 15 = 58  
WRONG, T H E  C O R R E C T  ANSWER I S  48 
5 * 18 = 198  C O R R E C T ’  
5 * 1 5  = 70 C O R R E C T ‘  
10 * 10 = 100 C O R R E C T ’  
6 * 5 = 30 C O R R E C T ’  
7 * 15 = 115 
WRONG, T H E  C O R R E C T  A N S W E R  I S  105 
8 * 15 = 118 
WRONG, T H E  C O R R E C T  A N S W E R  I S  1 2 8  
L Y L E ,  YOU W E R E  C O R R E C T  7 T I M E S  
O U T  O F  10.  N O T  E A D ’ L Y L E  , 
YOU M A Y  C H O O S E  F R O H  T H E  
F O L L O W I N G  M E N U  : 

1, 2 ,  3, OR 4 

MATH Q U I Z  V E R S I O N  1 . 3  
1. A D D I T I O N  
2 .  S U E T R A C T I O N  
3. 
4. D I V I S I O N  
5 .  S T O P  P R O G R A M  

T Y P E  T H E  N U M B E R  O F  YOUR C H O I C E .  

N l J L T  I P L  I C A T  I ON 

T H A N E S - P L A Y  A G A I N  soow1 nv  

Figure One 

Volume VI, No. 6 13 FORTH Dimensions 



the title page and pep talk. If you are 
memory conscious, you can use fewer 
than forty bytes in NAME (most names 
are not nearly that long). 

All the math routines were 
straightforward except division. Since 
we normally don't have access to float- 
ing point in Forth, and not wanting 
answers truncated, I decided to use a 
modified multiplication routine. I mul- 
tiply two random numbers, then dis- 
play one of them and the product, and 
ask the player to figure out the second 
multiplier. (By adding one to the 
original random numbers, I eliminated 
the possibility of dividing by zero.) 

Those of you who are as green as I 
was when I started this program may 
want to look at GETNAME and ANSWER. 
These were the two most difficult 
words for me to get correct. If there is 
a lack in Starting Forth, I think this is 
it. It took several hours of research in 
AN About Forth by Glen Haydon and 
in And So FORTH by Timothy Huang 
before I knew what I was doing with 
this kind of input in an interactive 
program. 

Mathquiz has been in transition for 
many months. Hence, this is version 
1.3. Originally, the program did not 
loop continuously; after the initial 
=ART command was typed by the 
player, only one set of ten problems 
was given. At the end of those prob- 
lems, the player needed to type QUIZ to 
get his next ten problems. I made the 
program loop by using a BEGIN WHILE 
REPEAT structure in the word QUIZ. 
Recently, I changed the method of 
problem type and difficulty selection to 
single-keystroke entry by using KEY 
and by comparing the ASCII value it 
returns for a match. 

I have several more ideas to improve 
(maybe "change" is the correct word) 
Mathquiz. Changes often have meant 
incorporating different Forth struc- 
tures, and this has been both enjoyable 
and enlightening. I hope the ideas in 
Mathquiz are of use to you. 

5CR #71 
0 ( RANDOM NUMBER GENERATOR from " S t a r t i n g  FORTH" I 
1 VARIABLE RND HERE RND ' 
2 : RANDOM RND @ 31421 * 6927 + DUP RND I ; 
3 
4 : CHOOSE ( Ul---U? ) 
5 RANDOM U* SWAP DROP ; 
& 
7 f APPLE UTILITIES INVERSE S. NORMAL 
8 
V HEX 

0 9 / 8 3  LDM ) 

10 : INVERSE FEE0 CALL ; ( Change to i i n v r r s e  c h a r a c t e r s  I 
11 : NORMAL FEE4 CALL ; ( Return t o  normal  c h a r a c t e r s  ) 
12 DECIMAL 
13 
14 
15 

SCR #7Y 
0 ( MENU MODULE ) 
1 : BEGINLINE CR 8 SPACES ; 
2 : HEADER CR 5 SPACES 
3 . " MATH QUIZ VERSION 1.3 " ; 
4 : MATHMENU ( DISPLAY CHOICES ) 

5 HEADER BEGINLINE . " 1. ADDITION" 
h BEGINLINE . "  2 .  SUBTRACTION " 

8 BEGINLINE . ' I  4. DIVISION 'I 

9 BEGINLINE . ' I  5. STOP PROGRAM" CR 
10 . "  TYPE THE NUMBER OF YOUR 'I 

11 . ' I  CHOICE. " KEY CHOICE ! ; 
12 
13 
14 
15 

7 BEGINLINE . 3.  MULTIPLICATION" 

SCR #80 
0 ( DIFFICULTY SELECTION MODULE ) 

1 : DIFFICULTY CR . "  CHOSE Y O U R  LEVEL" 
2 . "  OF DIFFICULTY:" CR 5 SPACES 
3 . "  1, 2 ,  3 ,  OR 4 ; 
4 : SELECT BEGIN KEY DUP ?DUP ( u s e  BEGIN ... UNTIL l o o p  ) 
5 49 = IF 11 LEVEL I DROP ?DROP 1 ELSE ( to check f o r  e r r  1 
h 50 = IF 21 LEVEL I ZDROP 1 ELSE ( 1 1 , ~ 1 , 5 1 , 1 ~ ~ 1  a r e  ) 

8 5 2  = IF 101 LEVEL ' 1 ELSE CR ( m u l t l p l i e r s  'r 

V . "  NUMBER OUT OF RANGE' TRY '' 
10 . "  AGAIN. " 7 EMIT ( EELL ) 0 
11 THEN THEN THEN THEN 1 = UNTIL ; 
12 
13 : GETDIF DIFFICULTY SELECT ; 
14 
15 

7 -51 = IF 51 LEVEL I DROP 1 ELSE ( difficulty ) 

5CR X83  
0 ( SELECTION MODULE ) 

1 : GETONE CHOICE @ DUP DUP ZDUP ( select  problem t y p e  ! 
L 4V = IF 2DROP ZDROP GETDIF 10-ADD ELSE 
3 
4 
5 
4 

8 
9 
10 : 
11 
12 
13 
14 : 
15 

-I 

50 = IF ZDROP DROP GETDIF 10-SUB ELSE 
S 1  IF ZDROP GETDIF 10-MULT ELSE 
52 = IF DROP GETDIF 10-DIV ELSE 
53  = IF CR . "  THANKS-FLAY AGAIN SOON'" CR 
ELSE C R  CR 7 EMIT ( bell 1 . "  ENTRY OUT OF RANGE " 

1 CHOICE I ( f a l s e  r e s p o n s e  t o  c a u s e  QUIZ to loop ) 

THEN THEN THEN THEN THEN ; 

REGREET MATHMENU ( g e t  p l a y e r ' s  name & show menu I 
GETONE CHOICE @ ( g e t  p l a y e r ' s  c h o i c e  ) 

53 C WHILE DELAY REPEAT ; ( c h e c k  f o r  s t o p  o r  e r r o r  ) 

PDELAY COMMENCE ZDELAY QUIZ ; 

QUIZ BEGIN PAGE ( i n f l n i t r  BEGIN..WHILE..REPEAT loop 1 

START MATHTITLE DELAY INSTRUCT ZDELAY 

FORTH Dimensions 14 Volume VI, No. 6 



Now You Can Add 

ARTIFICIAL 
INTELLIGENCE Hed 

To Your Programs Using a Powerful Combination 

By Elliot Schneider & Jack Park 

Heres Your Chance to Profit by being on 
the Forefront, Write 5th Generation Software 

Learn How To: 
Create Intelligent Construct 

Build Expert Systems 
Write Stand Alone License 

Write Intelligent Programs For: 
Home Use 
Robotics Business 
Medical Diagnosis 
Education Process Control 
Intelligent CAI 
Scientific Analysis Graphics 
Data Acquisition 

Extended Math Functions 
Fast ML Floating Point & Integer Math 
Double Precision 2E+38 with Auto. Sci Not. 
nxex Logx Loge Sin Cos Tan SQR 1/X ... 
Matrix and Multidimensional Lattice Math 
Algebraic Expression Evaluator 

Programs Rule Bases 
Do Knowledge 
Engineering 
Use Inference Engines 

Data Analysis 

Real Time 

Fast Games 

Financial Decisions 

Free Programs 

SUPERFORTH 64+AI 
LISP 

LOGO 
~ c 

PASCAL 
B&C 

F O R T R A N  
ASSEMBLER 

Other 

6x I 
Program m i ng Time 

SuperForth 64 is more 
powerful than most other 

computer languages 

SuperForth 64 Saves You 
Time and Money 

Easy Graphics & Sound Words 
Hires Plotting 
Windows 
Split Screen Integrator 
Printer/Plotter Ctrl 
Sprite & Animation 

Easy Control of all I/O.. . 
RS232 Functions 
Access all C-64 Peripherals 

Turtle Graphics 
Koala Pad Graphics 

Hires Circle, Line, Arc 
Music Editor 

Editor Sound Control 

Interrupt Routines 

Utilities 
Interactive Interpreter 
Forth Virtual Memory 
Full Cursor Screen Editor 
Full String Handling 
Trace & Decompiler 
Conditional Macro 
Assembler 

Interactive Compiler 
Romable Code Generator 
40K User Memory 
All Commodore File Types 
Conversational User 
Defined Commands 

Great Documentatil-n 
Easy to Read 350 pg. 
Manual with Tutorials 

Source Screen Provided 
Meets all MVP Forth-79 
Industrial Standards 

Personal User Support 

A Total 
Integrated Package 

for the Commodore 64 

Ordering Information: Check, Money 
Order (payable to MOUNTAIN VIEW SPECIAL 

I i 

Call: 
(415) 961-4103 

I NTR 0 D U CTO RY 0 FFER MOUNTAIN VIEW PRESS INC 
PO. Box 4656 

Mt. View, CA 94040 
Dealer for 

PARSEC RESEARCH 
Drawer 1776. Frernont, CA 94538 

PRESS INC ) VISA Mastercard 
American Express COD s $5 00 extra 
No billing or unpaid PO s California 
residents add sales tax Shipping costs 
in US included in price Foreign orders 
pay in US funds on US bank include 
for handling and shipping $10 

" Parsec Research 
Commodore 64 TM of Commodore 

$990° only 
20330 Value 

Limited Time Offer 



Local Definitions 
Carol Pruitt 

Rochester, New York 

As I’ve developed larger and larger 
systems in Forth, I’ve become 
increasingly annoyed by its habit of 
remembering every name. Most utility 
packages consist of dozens of words, 
of which only a handful (scattered here 
and there) are intended for outside use. 
From the compiler’s point of view, the 
rest of those words are just names that 
can’t be used for something else. Mere 
assemblers can distinguish between 
local and global definitions - why 
shouldn’t Forth? 

I’ve tried using vocabularies for this 
purpose, but have become weary of 
constantly invoking this vocabulary 
and that. (The readability of the code 
suffers, too.) After six years of Forth 
programming, I’ve become weary 
enough to do something about it. 

The most visible word (see Figure 
One) in my implementation is LOCAL, 
which is used like IMMEDIATE. It marks 
the most recently defined word as a 
local definition. LOCALSTART and 
LOCAL.END determine the boundaries of 
the local area (i.e., the area inside 
which the local definitions are visible). 

This technique serves the intended 
purpose, namely: 

1) Only generally-useful words are 
visible outside their area. 

If this is rephrased as, “Forth can 
tell the difference between local and 
global words,” a corollary advantage 
becomes apparent: 

2) Humans reading the code can tell 
which words are intended for general 
use. 

If, on the other hand, the phrasing 
is, “It is impossible to call local words 
from the keyboard,” then: 

3) This technique can serve much the 
same purpose as sealed vocabularies. 

A fourth advantage derives from the 
implementation. My first inclination 
was simply to smudge all local words 
upon reaching the end of the local 
area. However, the technique shown 
here, that of delinking the local words 

( E x a m p l e  of LOCAL usage 

LOCAL.START 

0 VARIABLE OWORD LOCAL 

CODE lWORD ( w h a t e v e r  ) N M T ,  LOCAL 

: 2WORD ( w h a t e v e r  ) : LOCAL 

: 3WORD lWORD 2WORD : 

: 4WORD 10 0 
DO lWORD LOOP : LOCAL 

: SWORD OWORD 
I F  3WORD ELSE 4WORD THEN : 

LOCAL .END 

;S 

11-Jun-84 C J P  ) 

begin local area ) 

note tha t  ) 
local d e f i n i t i o n s )  
c a n  be v a r i a b l e s , )  
code words, ) 
colon w o r d s ,  e t c . )  

no te  a lso that  ) 
locals 6, globals ) 
can be ) 
in te rmixed  1 
as  desired ) 

( end local  area ) 

Figure One 

. - - - - - - - ------- . ------- . -- - - - - -. - - - - - - - .------- 
i OWORD I ! lWORD I ! ZWORD ! I 3WORD i I .  I 4WORD i ! 5WORD i 

Just before interpretation of LOCALEND, all words of the example are linked into 
the CURRENT vocabulary, just as in any typical Forth system. 

_____-- - - - - - - - . -- - - - - - ------- .------- . -- - - - - -. 
1 OWORD i lWORD 1 ZWORD 1 3WORD ! i 4WORD i i SWORD [ _____-- ------- ------- ------- 

After interpretation of LOCAL.END, only 3WORD and 5WORD are still linked into 
the vocabulary. This frees the other four names for re-use, and incidentally speeds 
compilation. 

however, they are still used by other words within the local area. They can be used 
from outside the local area only indirectly, by using global words which use the local 
words. 

Even though the four local words are no longer linked into the vocabulary, 

Figure Two 

Volume VI, No. 6 FORTH Dimensions 16 



( LOCAL: Implement local d e f i n i t i o n s  11-Jun-84 CJP ) 

0 VARIABLE LINK.FROM ( save  LFA o f  l a s t  non- loca l  word) 

64 CONSTANT LBIT ( v a l u e  of  name-f ie ld 's  local  b i t )  

: LOCAL ( < > - - <  > ) 
CURRENT @ PFA @ NFA ( set "local" b i t  1 
DUP C@ LBIT OR ( i n  name f i e l d  of  word ) 
SWAP CI : ( most r e c e n t l y  d e f i n e d  ) 

: LOCAL.START 
HERE : 

( <>--<star t  addr  of  local  area> ) 

: LOCAL-END ( <s ta r t  addr  of  local area>--<> ) 
( de- l ink  LOCAL words from vocab . )  

CURRENT @ PFA 
DUP LINK.FROM I ( save  s t a r t i n g  l ink-from a d d r )  
@ ( i n i t i a l i z e  this-word p o i n t e r )  
BEGIN 2DUP < ( for each word d e f i n e d  ) 
WHILE ( s i n c e  MCAL.START, ) 

IF LFA @ ( i f  t h e  word is l o c a l ,  
DUP LINK.FROM @ I ( de- l ink  it 1 

ELSE LFA ( else it becomes ) 
DUP LINK.FROM I ( l ink-from word 1 
@ 

THEN 
REPEAT 2DROP : 

DUP NFA C@ LBIT AND 

; S  

Copyright@ 1985 by the University of Rochester. All rights reserved. Permission is 
hereby granted for personal, non-commercial use provided this notice accompanies 
such use. 

Figure Three 

from their vocabulary (see Figure 
Two), yields this happy side effect: 

4) Things compile faster. 

As a test of this side effect, I marked 
enough local definitions in the lower 
layers of a large application to reduce 
the total number of global words (in 
system and application) by twenty- 
three percent. Compile time for the 
upper layer fell by twenty-two percent. 
Presumably, the similarity of 
percentages is not a coincidence. 

Of course, any local-definition 
technique has the following bizarre (to 
the veteran Forth programmer) effect: 
once a word has been designated as 
local, it cannot be called (or even 
found) from another part of the system 
(or even the keyboard) until that 
designation is removed and the source 
is recompiled. Since locals are most 
useful on large applications (which 
take a long time to recompile), care 
should be exercised in determining 
which words are to be local. 

Implementation 

LLE Forth, used in the University of 
Rochester's Laboratory for Laser 
Energetics, is quasi-79-Standard; I 
believe the additional words in Figure 
Three are familiar to Forth Dimensions 
readers. NFA, LFA and PFA each start 
with the code-field address on the 
stack, and leave the name-field, link- 
field or parameter-field address, 
respectively. 

Our link field points to the code field 
of the preceding word. The definition 
of LOCAL.END can be modified to suit 
other types of link. 

Some way must be chosen to flag 
local words for delinking. The count 
byte of our name field had two unused 
bits, so I chose bit six for this purpose. 
This required modifying RND to mask 
out bit six along with the precedence 
bit. Some Forth systems may already 
mask out everything except the count 
(and smudge bit, if any). 

If enough spare bits (or other flags) 
are available, additional levels of 

localness could be formalized. The 
implementation given here is, however, 
semi-nestable. That is, smaller, super- 
local areas can be designated inside 
larger local areas. The only restriction 
is that a local definition cannot exist 
inside a super-local area. (When LOCAL 
is used inside a super-local area, it 
designates a super-local word.) 

There is also one fairly minor 
restriction on the use of local words in 
general: while it is possible to change 
vocabularies inside a local area, it is 
definitely not advisable. The effects are 
peculiar and, as a result, the code is less 
readable. This restriction is more 
academic than actual, however, since 
local words can serve as an alternative 
to vocabularies. 

Acknowledgments 

This work was supported by the U.S. 
Department of Energy Office of 
Inertial Fusion under contract DE- 
AC08-80DP40124 and by the Laser 
Fusion Feasibility Project at the 
Laboratory for Laser Energetics which 
has the following sponsors: Empire 
State Electric Energy Research 
Corpora t ion ,  General  Electric 
Company, New York State Energy 
Research and Development Authority, 
Northeast Utilities Service Company, 
Southern California Edison Company, 
The Standard Oil Company and 
University of Rochester. Such support 
does not imply endorsement of the 
content by any of the above parties. 

Volume VI, No. 6 17 FORTH Dimensions 

I 



Enhanced DO LOOP 
Michael Hore 

Numbulwar, Northern Territory 
A ustralia 

This article will show how, with very 
little effort, you can add a useful en- 
hancement to the Forth-83 DO LOOP 
construct. In the process, we will touch 
on various aspects of its implementa- 
tion. If you have not tried adding any 
enhancements to your compiler’s con- 
trol structures as yet, this may be a 
good place to start. Sorry, if your 
Forth has the earlier type of DO, you 
won’t be able to make use of this idea 
- it depends on how the Forth-83 
LEAVE is usually implemented. 

First, let’s look at an example of a 
very common situation. You have to 
write a word to search a table for an 
entry matching a given value. The 
required stack effects are 
( value table-addr #entries - addr’) 
where addr’ is the address of the 
matching entry in the table, or zero if 
there is no match. 

Simple. You grab your pencil and 
write 
: LOOKUP OVER + SWAP 

DO I @I OVER = IF DROP I LEAVE THEN 
LOOP ; 
Of course, being a capable Forth 

programmer, in no time at all 
(certainly before testing!) you notice 
that this code will only work if there is 
a match in the table. If there isn’t, after 
the LOOP falls through, you won’t have 
the required zero on the stack; value 
will still be there. You need a DROP 0.  
But how can you prevent that from 
destroying the (correct) result when the 
search succeeds? The usual method is 
to push a zero just before the LOOP, in 
case this is the last time around. 
Remember, in Forth-83 there is no 
straightforward way of checking that 
this is, in fact, the last time around. 
You have to put the zero there just in 
case it is. So, after a few adjustments 
to keep the stack in order, you end up 
with 
: LOOKUP 0 ROT ROT OVER + SWAP 

DO DROP I @ OVER = 
IF I LEAVE 
THEN 0 LOOP SWAP DROP ; 

And that should work. But it is 

hardly elegant code! Now, a good rule 
of thumb is that if the solution to a 
problem looks messy, then maybe we 
haven’t understood the problem. I 
know there may be such things as 
messy problems to which only messy 
solutions are possible, but without 
entering a long philosophical debate, 
the fact is that here is what appears to 
be a simple problem to which we have a 
rather messy-looking solution. 

So, where does the messiness come 
from? The cause of the trouble is 
surely this: When the search succeeds, 
we can put anything we like after the IF 
to set up whatever results are required. 
But if the search fails and the LOOP 
falls through, there is no place to set up 
whatever results we need for that 
particular situation. The code after the 
LOOP is executed no matter what 
happened. We have to set up our 
“failure” results before the loop, to be 
there in case the loop falls through, 
and DROP them at the beginning. It’s 
not hard to think of other situations 
which would give even messier code 
than we have here. 

What we really need is a place where 
“failure” results can be set up, which 
are simply not executed if the loop 
LEAVES. I am proposing the construct 

LOOP--FALLTHRU: . . . THEN 

I am using THEN to conclude the 
construct, since L~OP--FALLTHRU: is 
something like an IF combined with 
LOOP - testing the condition, 
“Did the LOOP fall through?” 

Now, this construct is very easy to 
implement under most versions of 
Forth-83. The details, however, are 
dependent on how each particular 
version handles DO LOOP. In what 
follows, I will make particular 
reference to F83, the implementation 
by Henry Laxen and Michael Perry, 
which looks like it is becoming widely 
used. I will also provide enough 
information so that if you have a 
different implementation, you will at 
least have a good chance of working 
out what to do. Also, anything I say 
about LOOP could equally well apply to 
+LOOP, SO I won’t mention it 
explicitly. 

DO is always immediate and compiles 
(DO), its run-time operation, and 
pushes the address of the word 
following the (DO) onto the stack (using 
the system extension word <MARK or 
its equivalent). This address or 
“mark” may be used in different ways. 
It is generally picked up by LOOP to 
compile (mops and a backward branch 
address pointing to the word following 
the (DO). This branch address is 
compiled by the word <RESOLVE or its 
equivalent, within the definition of 
LOOP. 

In pre-83 Forths, nothing else had to 
be done. In Forth-83, however, LEAVE 
must cause a branch out of the loop, 
and we have to arrange things so that 
this works properly. LEAVE is now 
immediate, and could compile (LEAVE) 
and then do a >MARK to compile a 
forward branch address which would 
be filled in (“resolved”) by a 
>RESOLVE within LOOP. However, as 
there could be any number of LEAVES 
(or none) within a loop, >RESOLVE 
would need to be done a variable 
number of times. This is quite possible 
but a little tricky, so other methods 
have been proposed. 

One of these is for LOOP to work the 
same way, but for (DO) to carry a 
forward branch address to the word 
following (mop). At compile time, this 
forward reference is resolved by a 
>RESOLVE within LOOP. LEAVE 
compiles (LEAVE) and a backward 
reference to the forward branch 
address following (DO). This is the 
method proposed by Bill Stoddart 
(Forth Dimensions V/4). As he points 
out, this method allows a very simple 
implementation of a conditional DO 
LOOP which is skipped entirely if the 
initial index and limit are equal. 

Another possibility also involves (DO) 
carrying a forward branch address, but 
at run time (DO) uses this address to put 
a third entry on the return stack, 
pointing to the word following (LOOP). 
This is then used by (LEAVE), which now 
needn’t carry a branch address itself 
(and, in fact, LEAVE needn’t have been 
immediate at all, except that it is 
required to be so by the Standard). 
This is the method used by Laxen and 

FORTH Dimensions 18 Volume VI, No. 6 

I 



Perry. It involves a minimal run-time 
penalty over Stoddart’s method, but 
saves two bytes (on most machines) for 
every LEAVE. The F83 model also 
includes the conditional DO (called 

Another method, which I have been 
using myself, is very similar except that 
the third return stack entry points to 
the word following the (Do) rather than 
to the one following the (Loop). This 
way, (LOOP) does not need a branch 
address either, but is just as fast to 
execute. (LEAVE) requires an extra step 
to work out where to go, but this is 
hardly significant (on the PDP-11, it is 
just one extra machine instruction). 

Just to draw things together, in all 
these methods, DO leaves a “mark” on 
the stack at compile time, which is used 
by LOOP to do these things: 
1. Compile a backward branch address 
following (LOOP), that determines 
where the loop actually loops to. All 
methods except the last do this. 
2. Resolve a forward branch address 
following (DO). This determines where 
LEAVE actually leaves to. All methods 
except the first do this. 

Our proposed implementation of 
LOOP--FALLTHRU: should work for any 
Forth-83 system which performs as in 
point two above. The key fact is that if 
the loop falls through we don’t branch 
anywhere, so we don’t have to work 
out where to go at all. The forward 
branch address (when resolved as in 
point two) is not used for this. 

What will happen if, at LOOP, we 
don’t perform that resolution right 
away? The fall-through situation won’t 
be affected. But (LLAVE), instead of 
going to the next word after (LOOP), 
will go somewhere else - in fact, it will 
go to wherever we do perform the 
resolution. As mentioned earlier, our 
proposed construct is a bit like an IF. 
As it happens, IF also leaves a mark on 
the stack for later resolution. So, 
basically, all we have to do is make 
LOOP--FALLTHRU: “trick” the compiler 
in to  thinking an  I F  has been 
encountered. This is normally very 
easy. 

Screen 100 gives the relevant 
definitions as they exist in F83. 
?>MARK, etc. are versions of the 

?DO). 

s tandard  >MARK,  etc. words, 
incorporating some error checking; 
namely, the pushing of a -1 under the 
mark on the stack. The corresponding 
resolving words >?RESOLVE, etc., 
check that the -1 is there. 

Now notice that LOOP resolves twice, 
although DO only leaves one mark. The 
phrase 2DUP 2 +  in the definition of 
LOOP really has the same result as if DO 
had ?>MARK ?<MARK, which better 
makes clear what is being done. 
Logically, two separate marks are 
being resolved, one for a forward 
branch address following (DO) which 
allows (LEAVE) to work, and one for a 
backward branch address following 
(LOOP) so that it knows where to loop 
to. 

The definition of our new word is 
given on screen 101. Note that it is the 
same as LOOP with the?>RESOLVE left 
out. The ?<RESOLVE must be there, as 
it compiles the address used by (LOOP). 

That is all there is to it. When THEN 
comes along, the mark that we didn’t 
resolve at the end of the loop is 
resolved by ?>RESOLVE as though 
nothing unusual were happening. If 
(LEAVE) is later executed, it will leave to 
this point. 

As the F83 error checking is identical 
for all control structures, nothing 
special need be done about the -1 flag. 
If your implementation uses more 
elaborate error checking, however, 
with a different flag value on the stack 
for each construct (as in fig-FORTH), 
LOOP--FALLTHRU: will have to alter the 
flag value to the correct one for IF. 

1. LOOP--FALLTHRU: can be followed by 

phrase will be executed if LEAVE is 
executed in the loop. This may be 
useful if a loop has a number of LEAVES 
which all require some common action 
to be carried out. 
2. F83 includes the conditional ?DO 
LOOP, as mentioned above. The 
address used by (?DO) to skip the loop is 
the same used by (LEAVE). Thus, if 
LOOP--FALLTHRU: is used with ?DO and 
the loop is skipped, it will look as if a 
LEAVE has been taken. This shouldn’t 
be a problem, but should be kept in 
mind. 

A couple of extra points: 

an ELSE as Well as by a THEN. The ELSE 

VolumeVI, No.6 19 

GO FORTH, UNIX! 
I I .  with u4th 

UNIX/XENIX/FORTH DEVELOPERS 

Are you interested in improving your 
software productivity’ Do you have a 
UNlX system or engineering work 
station? Now you can realize the 
exceptional capability of moving 
your Forth applications to the world 
of UNlX and XENIX. Experience the 
productivityenhancement of an inter- 
active programming environment, 
and still code in C when necessary. 

UBIQUITOUS SYSTEMS announ- 
ces u4th, the first Forth completely 
tailored for UNIX. u4th is a fast 
direct-threaded Forth written in port- 
able C, yet capable of execution 
speeds comparable to many assem- 
bler Forths. Great for Al research 
and delivery. 

Some of its features are: 
Access to standard UNlX system 
calls 
Ability to incorporate new primi- 
tives written in C: easily installed in 
the Forth kernel image 
Ability to load from UNlX files 
Ability to use UNlX editorssuch as 
vi as well as its own resident editor 
Ability to compile defined Forth 
words into a new kernel image (for 
turn-key and source protected 
systems) 
Object-Oriented Forth included! 
Can pass commands through to 
UNlX 
Largely compliant with the Forth- 
83 standard (except for word size 
and use of lower case) 

UBIQUITOUS SYSTEMS offers u4th 
in the following formats: 

XENIX (MS DOS format) floppy 

Plexus tar format cartridge tape 

More on the way! 

Binary hcense: Xenix $395.00 
Plexus $895.00. OEM’s, Special terms 

disk (IBM PC/XT. PC/AT) 

(Plexus P/35. P/60) 

UBIQUITOUS SYSTEMS 
13333 Bellevue-Redmond Road N E 

Bellevue Washington 98005 
(206) 641 -8030 

9:00 a.m.-noon Weekdays 
hi x Th.4 A l X ’  X i N I X  Th4 MICROSOFT 



S c r e e n  100 

0 ( Som. c o n t r o l  s t r u c t u r e s  a s  p e r  L a x e n / P e r r y  F 8 3  Ju184MRH ) 
1 
2 : I F  COMPILE ?BRANCH ?>MARK 
3 : THEN ?>RESOLVE 
4 

; IMMEDIATE 
; IMMEDIATE 

5 : DO COMPILE (DO) ?>MARK ; IMMEDIATE 
6 : LOOP 
7 COMPILE (LOOP) 2DUP 2+ ?<RESOLVE ?>RESOLVE ; IMMEDIATE 
8 : +LOOP 
9 COMPILE (+LOOP) 2DUP 2+ ?<RESOLVE ?>RESOLVE ; IMMEDIATE 

10 
1 1  
1 2  
1 3  
1 4  
1 s  

I S c r e e n  101 

0 ( LOOP--FALLTHRUi f o r  L a x c n / P c r r y  F83 
1 
2 : LOOP--FALLTHRU: 
3 COMPILE (LOOP) 2DUP 2+ ?<RESOLVE 
4 
9 : +LOOP--FALLTHRU: 
6 COMPILE (+LOOP) 2DUP 2+ ?<RESOLVE 
7 
8 ( Example  o f  u s e :  ) 
9 

10 : LOOKUP f v a l u e  t a b l e - a d d r  Y e n t r i e s  -- a d d r '  I 0 ) 
1 1  OVER + SWAP 
1 2  DO I a OVER = IF DROP I LEAVE THEN 
1 3  LOOP--FALLTHRU: DROP 0 THEN i 
1 4  
1 9  CREATE TABLE 1 , 2 , 3 , 4 , 5 , 

100 LOCID 1 0 1  LOAD 

TABLE . 
21212 ok 
1 TABLE 5 LOOKUP . 
21212 ok 
3 TABLE 5 LOOKUP . 
21216 ok 
9 TABLE 5 LOOKUP . 

Qk 

0 ok 

Ju184MRH ) 

; IMMEDIATE 

; IMMEDIATE 

I 

FORTH Dimensions 20 

7 

PolyFORTHII 
the oterating system and 
programming language for 

real-time applications involving 
ROBOTICS, INSTRUMENTATION, 
PROCESS CONTROL, GRAPHICS 

and more, is now available for.. 

IBM PC* 
PolyfORTH II offers IBM PC 
users: 
0 Unlimited control tasks 
0 Multi-user capability 
0 8087 mathematics co- 

processor support 
0 Reduced application 

development time 
0 High speed interrupt 

handling 
Now included at no extra cost: 
Extensive interactive GRAPHICS 
SOFTWARE PACKAGE! Reputed 
to be the fastest graphic package 
and the only one to run in a true 
multi-tasking environment , it 
offers point and line plotting, 
graphics shape primitives and 
interactive cursor control. 
PolyFORTH II is fully supported 
by FORTH, Inc.'s: 
0 Extensive on-line 

documentation 
0 Complete set of manuals 
0 Programming courses 
0 The FORTH, Inc. hot line 
0 Expert contract programming 

and consulting services 
From FORTH, Inc., the inventors 
of FORTH, serving professional 
programmers for over a decade. 
Also available for other popular 
mini and micro computers. 
For more information contact: 

FORTH, Inc. 
2309 Pacific Coast Hwy. 
Herrnosa Beach, 
CA 90254 

RCA TELEX: 275182 
Eastern Sales Office 
1300 N. 17th St. 
Arlington, VA 22209 

2131372-a493 

7031525-777a 
'IBM PC is a registered trademark of International 
Business Machines Corp 



The Far Right Stuff 
Mike Perry, et al. 

Berkeley, California 

There are those among us who are 
attempting to advance by only one 
generation of computer technology. It 
is just such an egregious lack of 
imagination which has put us into the 
dire straits in which we find ourselves 
today. Why stop with the fifth 
generation, when logic has already 
taken us as far as it can? It is time to 
throw off the Markov chains which 
have bound our thinking for so long. 
Let us retain our integrity and not sink 
into a morass of floating points. 

In short, I propose that work begin 
on a sixth generation computer. When 
the knowledge-based expert systems of 
the fifth generation have exhausted the 
possibilities of mere rational thought, 
all eyes will turn to the potential of the 
irrational. It is not too early to develop 
intuitive machines, which I like to 
th ink  of a s  ignorance-based  
assumption systems. They will, of 
course, use irrational logic gates, which 
are based (naturally) on the natural 
number base (2.7 et cetera). Ordinary 
logical reasoning can be compared to a 
chain: an inference is only as strong as 
its weakest link. Intuitive reasoning is 
more like a rope: no one strand is very 
strong, but when tightly coupled into a 
rope, conclusions are bound to be 
inescapable. The possibilities are 
imponderable. 

There are many advantages to sixth 
generation machines. For one, 
ignorance systems will consume very 
little power: as everyone knows, 
Knowledge is Power. They can be built 
from some well-known illogic gates, 
such as the ignorance gate (don’t 
confuse me with the facts), the obvious 
gate (as any fool can clearly see) and 
the sure-thing gate (it’s in the mail). As 
all of these are output-only devices, no 
input will be required, greatly 
simplifying system design. This will 
lead to replacement of the old 
computer adage “Garbage In, Garbage 
Out” by simply “Garbage Out.” 

Performance measurement will also 
be affected. Instead of MIPS (millions 
of instructions per second) or KLIPS 

(kilo logical inferences per second), the 
sixth generation machines will be 
measured in DUPES (deca 
unreasonable predictions each second). 

New languages will be required. As 
demonstrated below, the older 
languages were very limited: 

ASCRAMBLER The first languages 
were an improvement over their 
predecessors, and helped to enhance 
problems to  truly macroscopic 
proportions. 

FORTUITOUS Filled an array of 
real needs at first, but it was beginner’s 
luck. Neither its backus nor anyone 
else would recognize it now. 

GOBBLE Government Organized 
Big Business LanguageE was a real 
turkey, too wordy and difficult to 
pronounce. Its users were renowned 
for their weight-lifting abilities. 

GARGOYLE BEGIN GARGOYLE 
:= ACADEMIC. It had a Hoareable 
appearance, AND was cursed time and 
again. It was super-setted by RASCAL 
in the END. 

SIMPLE 10 Basically too complex 
and hard to use. 20 Abused the 
powerful COME-FROM construct. 

LISTLESS (and (used Polish 
notation) (put old parentheses on a 
garbage heap)). 

RASCAL While not without its 
Wirth, it was unforgiving and not 
really modular, too. 

FROTH At first, even its starry-eyed 
followers thought it would not float, 
but when it came un-Moored they 
could see that it did. On the stack it 
pushed more than once has been. 

GOSSIP A classy language which 
supported chatting in both back-fence 
and window modes. Some objected to 
passing this sort of messages, feeling 
that some facts were better kept 
private. 

SEA {often confused with OCEAN; 
it is actually rather uniques;} SEA 
was one inspiration for the saying, 
“I’m elegant, you’re terse, he’s 
unreadable. ” 

MONOLITH To make RASCAL 
suitable for numerous tasks, new types 
of checking were implemented for a 
program’s definitions. A recent export 
of great import. 

ADORD The official language of 
the Department of Redundancy 
Department, who decided to Boole 
their resources. Before it is valuable, it 
will be dated. 

PROLONGED If the inferences of 
some experts are proved correct, then 
its deductions may eventually lead the 
way toward superficial intelligence. 

OXYMORON Allows an Ocean of 
disputer processors to run the RISC of 
producing abysmal results. Sort of a 
contradiction in teams. 

To solve the problems caused by 
sixth generation machines, new 
languages will have to be created. Here 
are a few possibilities: 

GUESSWORK Can be used to 
implement functions like What-Did-I- 
Mean? 

ABSURD Uses backward inference 
to reduce the solution until only the 
problem remains. Given a hyper- 
theoretical situation, it expands the 
problem until it interferes with the 
solution, thus disproving the result. 

As grand as these schemes may 
sound, let us not think that the sixth 
generation is in any way the ultimate. 
Already the characteristics of the 
seventh generation are becoming 
apparent. Taking the chance of 
combining the best features of 
irrational logic with the technology of 
virtual machines, we will at last see real 
imaginary computers. This will lead to 
the replacement of the old saying, 
“Never trust a computer you can’t 
lift” by the new adage, “Never trust a 
computer big enough to see.” 

FORTH Dimensions Volume VI, No. 6 21 



Rochester 
Forth Conference 

June 12-15, 1985 University of Rochester Rochester, New York 

The fifth Rochester Forth Conference is sponsored by the Institute for Applied Forth Research, Inc. in 
cooperation with the Laboratory for Laser Energetics of the College of Engineering at the University of Rochester, the 
Rochester Section of the IEEE, and the Rochester Chapter of the IEEE Computer Society. 

The focus Of the Conference is on Software Management and Software Engineering. The invited speakers 
will discuss the use of Forth in large projects, modifications to the language aimed at improving productivity, and 
contrast its use in business and scientific environments. In addition, presented papers will cover many aspects of 
implementing and applying Forth, including robotics, graphics, Forth chips and real-time systems. Forth novices, 
programmers, implementors, and project managers will find these presentations useful and pertinent to their work. 

The final day of the Conference will be open to the public, and devoted to tutorials, demonstrations 
and presentations by Forth vendors, panel discussions, and poster presentations. All those interested in learning about 
Forth, or in seeing the most current Forth products available are invited to attend this day at no charge. 

The registration fee includes all sessions, meals, and the Conference papers. Lodging is available at 
local motels or in the UR dormitories. Registration will be from 3-11 p.m. on Tuesday, June llth, and from 8 a.m. 
Wednesday the 12th in Wilson Commons. There is  an hourly shuttle to the airport during registration and checkout. 
Sessions will be held in Lower Strong Auditorium, and the open day will be in Wilson Commons. 

Those wishing to present papers should submit an abstract by March 30th, and a final paper by 
April 30th. Papers longer than four single-spaced pages will be submitted to the journal of Forth Application 
and Research for review, while shorter papers and abstracts will appear in their submitted form in the Conference 
Proceedings. Abstracts and papers should be sent to the Conference Chairman, Lawrence P. Forsley, Laboratory 
for Laser Energetics, 250 East River Rd., Rochester, New York 14623. 

For more information, call or write to Maria Cress at the Institute, 70 Elmwood Ave., Rochester, NY 14611. 
Phone: 76-235-0168. 

Regist rat ion Form 
Payment must accompany registration, Checks should be payable to the Rochester Forth Conference. Please mail your registration by May 15th to 
the Institute for Applied Forth Research, Inc., 70 Elmwood Avenue, Rochester, New York 14611. 

Name 

Address 

Telephone 

Registration: $325, Full-time students $200. ~ 

Dormitory Housing, 5 nights: Single $100, Double $75. ___ 

~ Prefer non-smoking roommate ___ Vegetarian meal option 

____ I am unable to attend. Please send information on obtaining the Conference Proceedings. 

Total Enclosed: 

I 



Selected 
Publications 

The Forth Interest Group Order Form (on the reverse side of this page) has two newly added publications selected by the 
FIG Publication Committee: 

Forth Tools and Applications 
1984 FORML Proceedings 

Forth Tools and Applications 

by Feierbach and Thomas 

Here is a book on Forth written for the 
programmer who knows the language and now 
wants to learn how to use it. Provided in this 
book are the standard tools required to quickly 
create and debug Forth-base applications. 

FORTH tools and Applications first gives you 
the advice you need to design your own 
programs. It also presents a number of 
techniques to aid you in the debugging process. 
Finally, you’ll take a close look at a variety of 
utilities that can become a part of your final 
application - utilities such as file data selection, 
sorting and merging, binary search, and floating 
point. 

Throughout this book the 79 Standard dialect is 
used with fig-FORTH words appearing where no 
79 Standard is available. An appendix at the 
end of the book completely covers both dialects 
for your ease of reference. 

As you master the tools of Forth programming, 
this book helps you develop good programming, 
documentation, and debugging skills. 

Discover the fun of programming your own 
software systems with this popular new machine- 
free language. Let FORTH tools and 
Applications be your guide to the countless 
applications open to you with FORTH 
programming. 

1984 FORML Proceedings 

The proceedings from the 1984 Forth 
Modification Laboratory are now available and 
may be purchased from the Forth Interest 
Group. The FORML Conference, held each 
November at Asilomar, California, is an 
opportunity for serious Forth programmers to 
share new applications and ideas with the 
attendees and programmers around the world 
through the publication of the proceedings. 
Order today and make the 1984 FORML 
Proceedings a part of your Forth library. 

All Memberships Expire in April 

Don’t forget to renew your FIG membership. If 
you haven’t already renewed, return the renewal 
envelope (in this issue) to receive your next 
Forth Dimensions without a lapse in 
membership. 

All members will receive membership cards 
which allow a 10% discount on publications sold 
by FIG. Your member number will be required 
to receive the discount, so keep it handy. 

Foreign members should note the new pricing 
schedule on the order form. In addition to the 
foreign air rate, FIG is now offering a surface 
rate for shipments to countries outside the US, 
Canada and Mexico. Please allow extra delivery 
time for surface orders. 

23 FORTH Dimensions Volume VI, No. 6 



b 

FORTH INTEREST GROUP MAIL ORDER FORM 
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668 

OFFICE USE ONLY 
BY Date Type - 

Please Print 

HISTORICAL DOCUMENTS 
Kitt Peak Primer $25/27/35 - 
fig-FORTH Installation Manual . . . . .  15/16/18 - 

.... . . . . . . . . . . . . .  

Name 

Company 

Address 

City 

State/Prov. ZIP 

Country 

Phone 

Membership in the FORTH Interest Group 
& Volume 7 of FORTH Dimensions 
No sales tax, handling fee or discount 
on membership. See co1.3. 0 

BACK VOLUMES 
Volume 1 FORTH Dimensions . . . .  *$15/16/18 __ 
Volume 2 FORTH Dimensions . . . . . .  15/ 16/ 18 __ 
Volume 3 FORTH Dimensions . . . . . .  15/ 16/ 18 __ 
Volume 4 FORTH Dimensions . . . . . .  15/16/18 __ 
Volume 5 FORTH Dimensions . . . . . .  15/16/18 __ 
Volume 6 FORTH Dimensions . . . . . .  15/16/18 ___ 

REFERENCE 
FORTH 83 Standard . . . . . . . . . . . . . .  $15/16/18- 
FORTH 79 Standard . . . . . . . . . . . . . . .  15/16/18- 

2nd Ed. ...................... 15/16/18 __ 
Bibliography of Forth References, 

BOOKS ABOUT FORTH 
All About FORTH . . . . . . . . . . . . . .  *$25/26/35 - 
Beginning FORTH . . . . . . . . . . . . . . . .  17/18/21 - 
Complete FORTH . . . . . . . . . . . . . . . . .  16/17/20 - 
FORTH Encyclopedia . . . . . . . . . . . . .  25/26/35 ___ 
FORTH Fundamentals, V. 1 . . . . . . . . .  16/17/20 - 
FORTH Fundamentals, V.2 . . . . . . . . .  13/14/16- 
FORTH Tools .................... 19/21/23 ___ 
Mastering Forth . . . . . . . . . . . . . . . . . . .  18/19/22 __ 
Starting FORTH (Soft Cover) . . . . . . .  20/21/22 - 
Starting FORTH (Hard Cover) . . . . . .  24/25/29 - 
Thinking FORTH (Soft Cover) . . . . . .  16/17/20 - 
Thinking FORTH (Hard Cover) . . . . .  23/25/28 - 
Threaded Interpretive Languages . . . .  23/25/28 ___ 
Understanding FORTH . . . . . . . . . . . . . . .  31415 - 

FORML Proceedings 1980 . . . . . . . . .  $25/28/35 - 
FORML Proceedings 1981 (2 V.) . . . . .  40/43/48 __ 
FORML Proceedings 1982 . . . . . . . . . .  25/28/35 - 
FORML Proceedings 1983 . . . . . . . . . .  25/28/35 - 
Rochester Proceedings 1981 . . . . . . . . .  25/28/35 - 
Rochester Proceedings 1982 . . . . . . . . .  25/28/35 - 
Rochester Proceedings 1983 . . . . . . . . .  25/28/35 - 
Rochester Proceedings 1984 . . . . . . . . .  25/28/35 - 

CONFERENCE PROCEEDINGS 

JOURNAL OF FORTH APPLICATIONS 
AND RESEARCH 
Journal of FORTH Research V.1#1 . $15/16/18 - 
Journal of FORTH Research V.l #2 . . 15/16/18 ___ 
Journal of FORTH Research V.2 #1 . . 15/16/18 - 
Journal of FORTH Research V.2 #2 . . 15/16/18 ___ 

REPRINTS 
Byte Reprints .................... $3.501415 - 
Popular Computing 9/83 . . . . . . . . . . .  3.50/4/5 - 
Dr. Dobb’s 9/82 . . . . . . . . . . . . . . . . . . .  3.501415 - 
Dr. Dobb’s 9/83 . . . . . . . . . . . . . . . . . . .  3.501415 - 
Dr. Dobb’s 9/84 . . . . . . . . . . . . . . . . . . .  3.501415 - 

Shipped by 
UPS Wt. 
USPS Wt. 

Amt. ___ 

*PRICING 
Column 1 - US, Canada, Mexico 
Column 2 - Foreign Surface Mail 
Column 3 - Foreign Air Mail 

ASSEMBLY LANGUAGE SOURCE LISTINGS 
1802 . . . . . . . . . . . . . . . . . . . . . . . . . . .  *$15/16/18- 
6502 ............................. 15/16/18 __ 
6800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15/16/18- 

....................... 15/16/18- 

....................... 15/16/18- 
8080.. ........................... 15/16/18- 
8086/88 .......................... 15/ 16/ 1 8 __ 
9900 ............................. 15/16/18- 
ALPH MICRO . . . . . . . . . . . . . . . . . . .  15/16/18 __ 
Apple I1 ......................... 151 16/ 18 ___ 
ECLIPSE ........................ 15/16/18 __ 
IBM/PC ......................... 15/16/18- 
NOVA ........................... 15/16/18 __ 
PACE ........................... 15/16/18 __ 
PDP-11 ......................... 15/16/18 __ 
VAX ............................ 15/16/18 __ 
280 ............................. 15/16/18- 

MISCELLANEOUS 
T-shirt Size:- . . . . . . . . . . . . . . .  $10/11/12- 
Poster (BYTE Cover) . . . . . . . . . . . . . . . . .  31415 ___ 
Handy Reference Card . . . . . . . . . . . . . . . .  FREE 0 

Subtotal $ 

10% Member Discount 
Member No. Required 

Subtotal $ 

CA residents add sales tax 
Handling Fee 
Membership (*$20/27/33) 

$2.00 

Total $ 

VISA 0 M/C 0 # 
Expiration Date 

$15 minimum on all VISA/MC orders. 
Make check or money order payable in 
US funds drawn on a US bank to: FIG. 

PAYMENT MUST ACCOMPANY 
ALL ORDERS 

(Including Purchase Orders) 
ALL Prices include Shipping. 

t * 



Pollard’s 

Monte Carlo Factorizer 
Nathaniel Grossman 

Los Angeles, California 
The factoring of integers is an old 

mathematical problem: given an 

other integers R and S, each L 2, such 
that N = RS. If R and S exist, N is 
called composite and the integers R 
and S are (non-trivial) factors of N. If 
no such R and S exist, the integer N is 
called p r i m e .  The so-called 
Fundamental Theorem of Arithmetic 
states that every integer 2 2 can be 
expressed as the product of prime 
integers and, except for the order in 
which the factors are listed, in one way 
only. There is considerable importance 
attached to the task of determining 
which integers are prime and of finding 
ways to express the remaining integers 
integers as a product of prime factors. 

About the status of this problem 
there is good news and bad news. The 
good news is that there is an absolutely 
sure algorithm for testing primality 
and for factoring. (It turns out that 
there are complicated algorithms which 
test for primality relatively quickly if a 
factorization is not required for those 
numbers found to be composite.) If the 
number N has non-trivial factors, at 
least one of them must be no larger 
than JN. To find such a factor, it 
suffices to divide N by each integer 
greater than one and no larger than 
JN: if one of those trial divisions 
leaves no remainder, the divisor is a 
factor of N. If no trial division is 
without remainder, N is prime. The 
bad news is that this algorithm, sure to 
take no more than JN divisions, may 
for certain N require essentially JN 
divisions. For many integers of current 
interest, that many divisions is beyond 
the capability of today’s fastest 

4 computers to complete within an 
acceptable time. Nevertheless, it is 
possible to attack large numbers with 
the hope of successful factoring by 
employing one of several strategies. 
This paper will show how one of those 
strategies can be implemented. 

Those interested in an overview of 
the most intense efforts to factor very 
large numbers will find an excellent ac- 
count of the principal methods and of 

integer N L 2, the goal is to find two 

\ 

t 

the notable successes and failures in a 
recent article written for non-special- 
ists by H. C. Wil l iam~.~  My account of 
“wheels” and of Pollard’s method is 
drawn from that article and from 
Pollard’s original announcement .4 

Wheels 
Before going to Pollard’s method it 

will be worthwhile to describe a 
technique for improving upon the 
“naive” division test mentioned 
above. The difficulty there arose 
because an unacceptable number of 
divisions might be required to test an 
integer N and there was no way to 
predict in general whether testing of a 
“random” N would be easy, hard, or 
essentially impossible. If a scheme 
could be devised for substantially 
cutting down the number of trial 
divisions, the method might become 
acceptable, depending on the computer 
and the time available for carrying out 
the computation. 

If space is available, the list of all 
prime numbers no larger than a certain 
integer L can be stored in memory. In 
performing the trial divisions on N, 
only the stored primes need be used as 
trial divisors among the integers IL.  
As the number of primes less than L is 
about L/log L, this can lead to a 
substantial saving in computation: 
only about 12% of the integers less 
than 10,OOO and about 7.8% of those 
less than 1,000,000 are primes, 
compared with the 50% that are odd 
numbers. 

If there is but a little storage 
available, savings can be made by 
means of an artifice that specialists call 
a wheel. As an example, note that the 
subject integer N can be tested easily 
for divisibility by 2, 3, and 5 ,  and such 
factors removed. It is easy to see as a 
consequence that a trial divisor D need 
not be considered unless the remainder 
when D is divided by 30 can be found 
in the list 1, 7, 11, 13, 17, 19, 23, 29. 
(All the remaining remainders are 
divisible by at least one of 2, 3, or 5 . )  
This restriction reduces the number of 
trial divisions by a factor of 8/30 to 
about a quarter of the original. The 
eight numbers 1, . . . 29 are the 
“spokes;” after the spokes are run 

through, the wheel is given another 
“turn” by addition of the product 30. 
Wheels with a great number of spokes 
have been used successfully. Note that 
the proportion of savings from use of a 
wheel is constant no matter how long 
the sequence of trial divisors is to run. 
Pollard’s Method 

Trying all suspect divisors or just a 
proportion of them is not practical if 
the integer N is even “moderately” 
large. Pollard proposed two methods 
for selecting more promising divisors 
and thereby cutting back on the 
number of trials. These methods are 
especially useful nowadays when 
computers take the drudgery (if not the 
waiting) ou t  of numer ica l  
computations. Trials at factoring that 
end in failure can be put up with 
because after the introduction of the 
new, ingenious factorization methods, 
“several failures in a row were of no 
particular importance, as long as they 
were followed by at least one success.” 
(Morrison and Brillhart3) One of 
Pollard’s methods, called first by him 
the p-method and then the Monte 
Carlo method, is well suited to 
implementation on a personal 
microcomputer. I have implemented a 
(slightly simplified) form of the Monte 
Carlo method on an Apple IIe 
computer in the Forth language. 

The idea behind the Monte Carlo 
method is quite ~ i m p l e . ~ ? ~  Suppose the 
integer N to possess a prime factor p 
that we seek. Fix a non-linear 
po lynomia l  f(x) with integer 
coefficients. Choosing a starting 
integer xl, generate x2, x3, . . . by 
setting X k  = f(xk-l) mod N.  The 
x-values may be well scattered 
throughout the interval from 0 to N-1 . 
If, however, the x’s are again reduced 
mod p and if p is “small,” the newly 
reduced x’s will begin to pile up in the 
interval for 0 to p-1. If f(x) is also 
chosen to have “random” output, it is 
to be expected that soon two of the x’s 
will be equal mod p. Of course p is 
unknown, but the two x’s, say xi and 
xj, will be such that xi-xj is divisible by 
p. Thus p will be a divisor both of xi-xj 
and N, so that p will be found as a 
factor of the greatest common divisor 

Volume VI, No. 6 25 FORTH Dimensions 



gcd(xi-x,, N). 
The words “random” and “Monte 

Carlo” suggest that some probabilistic 
engine is at work. That is not so: what 
is required is that f(x) spread the values 
generated widely and “uniformly” 
throughout the integers less than N. 
Whatever that means, it turns out that 
a n y  q u a d r a t i c  po lynomia l  
f(x) = x2 + b seems t o  work 
satisfactorily provided that b f  0, -2. 
(Linear functions are not suitable.) 

If the newly-generated x’s were to be 
compared with each of the earlier- 
generated x’s, the resulting storage and 
r e t r i eva l  a n d  t h e  necessary  
computations of greatest common 
divisors would complicate and prolong 
the calculations to no clear benefit. 
Instead, the algorithm is pared down 
and simplified - all that matters is that 
there be at least one success! Start with 
x1 and generate x2 = f(xl). Then begin 
cycles composed as follows: supposing 
&he pair (xi,x29 available a t  the 
beginning of the ith cycle, complete the 
cycle by computing (xi + x2i +2) and 
gcd(xZi +2-~2i ,N) .  Because xi+ = f(xi) 
and x2i+2 = f(f(x2i)), the production 
of the new pair is straightforward, 
especially because the calculations are 
carried out mod N. The cycles roll on 
until the greatest common divisor takes 
a value R > 1. Then the calculations 
will stop because R is a factor of N 
greater than one. Unfortunately, it can 
happen that R = N. 

Pollard4 gives estimates for the 
number of cycles required to factor N. 
If p is the smallest divisor of N,  Pollard 
builds on results reported by Knuth to 
show that the expected number of 
cycles needed to produce a non-trivial 
factor of N is about 1.0308Jp. 

As an example, with the polynomial 
f(x) = x2 + 1 and x1 = 6 and with 
the implementation described below, 
the decomposition into two prime 
factors 
4,225,910,033 = 65,003 x 65,011 
appears after 335 cycles. (The Pollard 
expected number of cycles is 263.) 

In Pollard’s formulation, the Monte 
Carlo method is slightly more 
complicated than I have described it 
here. (I give the full description in my 
discussion below of screen #4.) Using a 

further small extension of the method 
and a lot of mulit-precision arithmetic, 
Brent and Pollardl factored the eighth 
Fermat number, F, = 2256 + I ,  into 
the product of two prime factors. 
Although F, has seventy-eight decimal 
digits and the smaller of the two prime 
factors has sixteen, the calculation was 
performed on a Univac 1100/42 
computer in just two hours of t ipe.  

(The Fermat numbers F, = 22 + 1 
are primes for n = 0,1,2,3,4. Fermat 
conjectured the primality of all F,, but 
Euler showed the divisibility of F5 by 
641. Unfortunately, F, is just past the 
range of the present implementation, 
which factors numbers N < 232.) 
Implementation of Pollard’s Method 

The Monte Carlo method rests upon 
one hypothesis: that the number N to 
be factored has a “small” prime 
factor. Suppose, for the sake of 
argument, that N < 232. Then, if N 
factors, it must be divisible by a prime 
p < 216, and Pollard’s estimate 
predicts that the algorithm should be 
expected to find a factor of N divisible 
by p in no more than 2, cycles. To run 
the algorithm on a personal computer 
such as an Apple I1 under such 
circumstances will entail no intolerable 
wait for the results. Suppose, however, 
that 216 I N < 232, and that N is a 
prime. If N is close to 232, we might 
expect to wait about 2l6 cycles for the 
results. However, there is no need to 
wait so long. If N were not a prime, it 
would be factorable and factors would 
be discovered in far fewer steps. 
(Pollard estimated from numerical 
experiments that the number of cycles 
needed to find the smallest prime 
factor p would be > 2Jp with 
probability about 0.065.) 

If the number N to be factored is 
“large,” there is no a priori reason to 
expect a “small” prime factor. For 
that reason, Williams5 calls Brent and 
Pollard “lucky” in their attempt to 
factor F,. For the same reason, there 
seems no pressing need to implement 
the Monte Carlo method to higher 
precision on a personal computer. 
Those whose profession it is to factor 
large numbers-number theorists, 
cryptographers, and specialists in the 
design of computations-will have 

FORTH Dimensions 26 

B R Y E  
FORTH 

INTEL 
8031 
MICRO- 

CONTROLLEF 

FEATURES 
-FORTH-79 Standard Sub-Set 
-Access to 8031 features 
-Supports FORTH and machine 

code interrupt handlers 
-System timekeeping maintains 

time and date with leap 
year Correction 

-Supports ROM-based self- 
starting applications 

c o n  
130 page manual - S  30.00 
8K EPROM with manual-$100.00 

Postage paid in North America 
Inquire for license or quantity pricing 

.- ........* * ............................................................ ..................................... ‘ ..., 

Bryte Computers, Inc. 
P.O. Box 46, Augusta, ME 04330 

(207) 547-3218 



access to the giant number-crunchers. 
It seems reasonable, therefore, to set 
the goal of factoring numbers <232. 
This modest goal can be reached with 
the aid of the ordinary Forth language 
tools enriched by the Double-Number 

or three further words are added to the 
dictionary so that certain double- 
quadruple operations can be carried 
out. Those who carry out the 
implementation will get an inside look 
at this interesting factorizer, an 
algorithm that, within its clear 
limitations, works well. 

. Extension Word Set, provided that two 

screens  # O  t h r o u g h  #8 .  T h e  
documentation in screen #O extends 
into screen #1 and is not part of the 
program. In fact, there is something 
missing: definitions for the words 
DUM’, DUMI, and DUMIMOD, the actions 
of which are specified on screen #O. I 
have given there suggestions on how to 
supply these words. Those who have 
floating point extensions to their Forth 
Systems may f ind  equivalents  
contained therein. (I use the version 
furnished with the floating-point 
ex tens ions  t o  M i c r o M o t i o n  
MasterFORTH. They are written in 

My implementation is given in the 6502 assembler and, consequently, 

SCR I 0 
0 \ P o l l a r d ’ s  Honte Car lo  Fac to r i ze r  FORTH-83 19AU684N6 
1 
2 
3 by J. H. P o l l a r d  i n  B I T  15(1975), 331-334. 
4 
5 Number Extension Word Set f r o r  t h e  Forth-83 Standard: 
6 Dun* expects two unsigned double f a c t o r s  on t h e  stack and 
7 pushes t h e i r  unsigned quadruple product onto the  stack --- 
8 Dun/ expects a uq d i v idend  i n s i d e  a ud d i v i s o r  and pushes a ud 
9 quo t ien t  onto t h e  stack. (User r u s t  assure s u i t a b l e  data t o  

18 g i v e  a genuine ud quot ient . )  --- 
11 DUH/NOD i s  s i r i l a r  t o  DUHl, l eav ing  a ud r e r  i n s i d e  a ud quot. 
12 Such words r i g h t  be b u i l t  f r o r  D. A, Beers’ ’Quadruple Word 
13 S i r p l e  A r i t h r e t i c ’  i n  F o r t h  Dimensions IV/l, p. 17. The word 
14 UD/HOD g iven by N. Grossran, ”Long Words and Short F rac t i ons , ”  
15 F o r t h  Di rens ions ( t o  appear), could be used t o  [cont  on scr 111 
SCR # 1 

This  f i l e  con ta ins  a method f o r  f a c t o r i n g  i n t e g e r s  publ ished 

The i r p l e r e n t a t i o n  c a l l s  on severa l  extensions o f  t h e  Double- 

8 \ loader FORTH-83 19AU684N6 
1 
2 : NARKER ( n u l l  a c t i o n )  ; 2 9 THRU 
3 
4 \ I con t .  f r o r  scr 911 
5 \ w r i t e  DUH/ and DUH/HOD. Users of HicroHot ion HasterFORTH 
b \ w i l l  f i n d  Dun*, DUN/, and DUH/flOD i n  t h e  f l o a t i n g  p o i n t  exten- 
7 \ sion, l oca ted  i n  t h e  f i l e  DOUBLE and w r i t t e n  i n  6502 asserb- 
8 \ l e r .  They should add the  f i l e s  ASSEHBLER and DOUBLE t o  t h e  
9 \ d i c t i o n a r y .  

10 \ This screen loads t h e  f i l e  POLLARD and rakes a v a i l a b l e  t h e  
11 \ f a c t o r i n g  words FllC and FAC’. The sequences (ud) FAC or 
12 \ (ud> FAC’ r e s u l t  i n  p r i n t i n g  e i t h e r  (not necessa r i l y  prime) 
13 \ f a c t o r s  o f  (ud) or a warning t h a t  t he  cyc les  have reached i n  
14 \ number t h e  upper limit stored i n  t h e  v a r i a b l e  AT-HOST (scr 13) 
15 \ wi thout  f i n d i n g  fac to rs .  The limit i s  a r b i t r a r i l y  rade 1000. 

they are fast.) 
Screen #2. The algorithm is built on 

the quadratic interative polynomial 
f(x) = x2 + b. The numbers x and b 
are always to be double integers. To 
give leeway for experimentation, b is 
s to red  in  t h e  2-var iab le  
INCREASE-SQUARE with the default 
value 1. This gives the default 
function: f(x) = x2 + 1. SQ(MOD)$ 
computes f(x) mod N and NEW-PAIR 
turns the pair ( x ~ , x ~ ~ )  into the pair 
(xi+1~2i+2)* 

Screen #3. There is some interest in 
keeping count of the number of cycles; 
that number is stored in the variable 
COUNT. T h e  var iable  AT-MOST 
furnishes the only non-destructive way 
to halt the onrushing cycles. It is set to 
the default value 1000. 

Screen #4. The word DGCD computes 
the greatest common divisor of two 
double integers held on the stack. It is 
based on the word of the same name in 
my paper2 “Long Divisors and Short 
Fract ions,”  bu t  with DUMIMOD 
replacing the word UDIMOD defined in 
that paper. 

The greater share of the calls to 
DuWMOD occur within DGCD, so that 
the running time of the algorithm 
might sometimes be reduced by 
Pollard’s artifice of storing products 

nm = n m 
i =  1 

(x2i - xi) mod N 

and testing gcd(&,N) only for selected 
m-he suggests those m divisible by 
100. In the present case, the algorithm 
may run only two or three cycles before 
announcing factors of N. For large 
numbers such as F,, it may be assumed 
that preliminary trials have searched 
for and failed to find “small” prime 
factors. In such cases, introduction of 
n, and resulting manipulations makes 
sense, and will lead to substantial 
savings in computing time. Here, 
programming it does not seem worth 
the bother. 

Screens #7 and #8. Here are two 
versions of the Monte Carlo algorithm 
differing only in their display. Each 
expects the double integer N on the 
stack and each returns a message either 

VolumeVI, No.6 27 FORTH Dimensions 

C 



stating factors of N or reporting that 
the algorithm has QUIT after carrying 
out AT-MOST cycles. If N is a prime 
and factors are reported, they will be N 
and 1 .  In between the startup and the 
message, the display will report 
progress : MONTE-CAR LO-FACT0 R’ 
shows the triples i, xi, x2i scrolling 
upward and MONTLCARW-FACTOR 
displays anxiety-quelling do t s  
marshalled into rows, one dot 
appearing for each cycle begun. 

I find it convenient to enlarge the 
dictionary by aliases FAC’ and FAC for 
those long names. 

Examples: 
(i) 2,771 factors into 17 times 163 

in 5 cycles. 
(ii) 9,221 needs 235 cycles before it 

proclaims its factorization into 
9,221 times 1 (it is prime). 

315 times 997,331 (neither 
prime) in two cycles. 

M,, = 229 - 1 = 536,870,911 
is broken down into 486,737 
times 1103 in 13 cycles. 

(v) 1,234,567,891. FAC returns 
1,OOO dots followed by the 
message “After lo00 cycles, no 
factor of 1234567891 has been 
found. ” 

(vi) 4,225,910,033. FAC returns 335 
dots and the message “The 
number 4225910033 factors 
into 6501 1 times 65003 (335 
cycles)” and runs in about 40 
seconds. 

eventually return N and 1 as 
its factors provided no more 
than AT-MOST cycles run. 
However, returning N and 1 
does not mean that N must be 
prime. 1,007. FAC returns the 
factors 1007 and 1 after 5 
cycles, but 

the iteration function to 
x2 + 13, after which 1007. FAC 
returns factors 53 and 19 in 2 
cycles. Also, use of 

(iii) 314,159,265 is factored into 

(iv) The Mersenne number 

h 

(vii) If N is prime, FAC will 

13. INCREASLSQUARE 2! changes 

SCR I 2 
0 \ Sequence and p a i r  genera to rs  FORTH-83 19AU684N6 
1 
2 ZVARIABLE INCREASE-SQUARE 
3 
4 : SQMOD)+ \ d d l  --- d dZ 
5 ZDUP DUHt \ d l t d l  
b 5 PICK 5 PICK 
7 DUH/HOD ZDROP \ r o d  d 
8 INCREASE-SQUARE 2e D+ ; \ add o f f s e t  
9 

10 : NEW-PAIR 
11 5 PICK 5 PICK PSUAP 
12 SQ(HOD)+ 
13 ZSWAP 5 ROLL 5 ROLL 
14 SQ(HOD)t SQMOD)+ 
15 ZSWAP ZDROP ZSYAP ; 

SCR # 3 

1. INCREASE-SQUARE 2 ! 

\ d d2 d l  --- d d4 d3 

0 \ Conveniences FORTH43 19AU684N6 
1 
2 VARIABLE COUNTER VARIABLE AT-HOST 1000 AT-HOST ! 
3 ZVARIABLE FIRST-X b. FIRST-X Z! 
4 
5 : SETUP-POLLARD 

7 
8 : INCREASE-COUNTER \ --- 
9 1 COUNTER t! ; 

10 
11 : .COUNTER \ --- 
13 
14 : .NEY-PAIR 

\ d --- d d2 d l  
b 0 COUNTER ! FIRSTJ ze SQ(HOD)+ FIRST-x ze ; 

i z  COUNTER e 0 s D.R ; 

15 ZDUP 12 D,R ZSWAP ZDUP 12 D.R ZSWAP ; 
\ d d2 d l  --- d dZ d l  

f(x) = x2 + 17 returns factors Grossman, N., Long divisors and 
19 and 53 in 3 cycles. (“several short fractions, Forth Dimensions 

particular importance, as long 3. Morrison, M.A., and J .  Brillhart, 
as they were followed by at A method of factoring and the fac- 

torization of F,, Mathematics of least one success.”) Computation 29 (1975), 183-205. 

2. 

failures in a row were of no VI/3( 1984), 10-19. - 

REFERENCES 4. Pollard, J.M., A Monte Carlo 
method for factorization, BIT 15 
(1975), 331-334. 1 .  Brent, R.P., and J.M. Pollard, Fac- 

torization of the eighth Fermat 5. Williams, H.C. Factoring on a com- 
number, Mathematicsof Computa- 
tion 36 (1981),627-630. 

puter, The Mathematical Intelligen- 
cer 6 (1984), no. 3, 29-36. 

Volume VI, No. 6 FORTH Dimensions 28 



SCR I 4 
0 \ Greatest co r ron  d i v i s o r  FORTH-83 19AU684NG 
1 
2 : DGCD \ d l  d2 --- d 
3 BEGIN \ the  euc l idean a l g o r i t h r  
4 2SWAP 2OVER 
5 >R )R 0. R )  R >  
6 DUI/IOD 2DROP 
7 2DUP D0= 
8 UNTIL ZDROP ; 
9 

10 : DGCD-STACKER 
11 \ pushes 9cd of d2-dl and d onto s tack as a double 
12 2OVER ZOVER D- DABS 
13 7 PICK 7 P I C K  
14 DGCD ; 

= double nurber gcd o f  d l  and dZ 1 

\ d d2 d l  --- d dZ d l  d3 

SCR I 5 
0 \ Conveniences FORTH-83 19AU684N6 
1 
2 : IS-GCD->-l? \ d dZ d l  d3 --- d dZ d l  d3 f 
3 ZDUP 1. 2SWAP DU( ; 
4 
5 : DU. \ ud. --- 
6 (I IS I> TYPE SPACE ; 
7 
8 : ,FACTORS \ d dZ d l  d3 --- 
9 2SWAP ZDROP ZSWAP 2DROP 

10 20VER CR 
11 ." The nurber " DU. ." f a c t o r s  i n t o  ' 2DUP DU. 
12 ,' t i r e s  " 0. 2SWAP DUI /  DU. ; 

; p r i n t  an unsigned double nurber 

SCR I 6 
0 \ Warning FORTH-83 19AU684NG 
1 
2 : ROADRUNNER 
3 BEEP BEEP ; 
4 
5 : ,WARNING \ d d3 d2 d l  --- 
6 CR CR 
7 .I A f t e r  AT-NOST 8 . 
8 
9 2DROP ZDROP 2DROP DU. 

10 ." ha5 been found. ' 
11 ROADRUNNER ; 

." cycles, no f a c t o r  o f  

Volume VI, NO. 6 29 

and the ESB-1 
32 b i t  Single Board 

Super Micro 
f o r  

$795-00* 
Prepaid orders only, COD'S 

and Purchase orders $895.00 

Features 
I 8 MHz 32 bi t  68008 micro 
I Mounts Directly on S 1 /4" 

I 128K on Board R A M  
I 2-8 bit Parallel Ports 
I 2-RS232 Serial Ports 
I Floppy Disk Controller for up 

t o f o u r 5  1 / 4 , 3  1/2,3 114, 
or 3" Disk Drives 
I 4xFORTH ROM based Operating 

Sy s tem which includes 
83 Standard Forth wi th 
32 Bit Variables and Stack 
Full Screen Editor 

W Error Checking Assembler 
Terminal Independence 
Networking Facilities 
Dynamically Changeable Disk 

User Definable Aborts 
User Definable Device 

Much, Much More 

Disk Drive 

and RAM Disk 

Drivers and 

Host o f  the time 
you get less than you 

Pay for,  

but someti mes 
you can get more. 

Jhe l)rw~on Group 
148 Poca Fork Road 

Elkview West Virginia 25071 
304 1965-551 7 

4xFORTH is  a Trademark o f  
The Dragon Group,lnc. 5 0 1984, by TDG,Inc. Ma 



SCR I 7 
0 \ P o l l a r d ' s  Honte Car lo  F a c t o r i z e r '  FORTH-83 19AU684N6 
1 
2 : HONTE-CARLO-FACTOR' 
3 SETUP-POLLARD 0. \ i n i t i a l i z e  counter and stack 
4 BEGIN 
5 INCREASE-COUNTER 
6 AT-HOST e COUNTER @ U< \ too  rany cyc les? 
7 I F  .WARMING QUIT THEN 
8 ZDROP 
9 CR .COUNTER 

10 NEW-PAIR .NEW-PAIR 
11 DGCD-STICKER IS-GCD->-l? 
12 UNTIL 
13 ROADRUNNER 
14 CR CR .FACTORS CR CR ; 

\ d --- 

SCR # 8 
0 \ P o l l a r d ' s  Honte C a r l o  Fac to r i ze r  FORTH-83 19AU684N6 
1 
2 : HONTE-CARLO-FACTOR 
3 SETUP-POLLARD 0. CR \ i n i t i a l i z e  counter, stack, d i s p l a y  
4 BEGIN 
5 INCREASE-COUNTER 
6 AT-MOST Q COUNTER @ U< \ t o o  rany cyc les? 
7 I F  .YARNING QUIT THEN 
8 2DROP A S C I I  . EHIT  \ p r i n t  . for watcher 's  sake 
9 NEW-PAIR 

18 DGCD-STACKER IS-GCD_>-l? 
11 UNTIL 
12 ROADRUNNER 
13 CR CR .FACTORS CR CR 

\ d --- 

14 ASCII EMT 32 EHIT COUNTER e . cyc les  ; 

SCR II 9 
0 \ Short a l i a s e s  
1 
2 : FAC' NONTE-CARLO-FACTOR' ; 
3 
4 : FAC HONTE-CARLO-FACTOR : 

FORTH Dimensions 30 



m g e o  C-MOS FORTH COMPUTER $230 

Single board Emocard FORTH computer. Entirely C-MOS, con- 
sumes typically 16mA. Uses 6303 8/16-bit processor with hardware 
multiply, timer, and serial interface. Unused opcode trap 
forces processor back to  FORTH. Has 12R RAM and an additional 8K 
spare socket. Most memory can use EPROM in place of RAM for ded- 
icated applications. Fig-FORTH language with many other useful 
real-time words added and a fullereen editor working with dumb 
CRT terminals. Data, address and control buses me brought to 
the 64-pin indirect connector. The system is expandable by use 
of 6800, 6300 or 6500 series peripheral devices. 

TDS901-X NON-VOLATILE FORTH COHPUTEB $394 to $549 

A TDS9OO incorporating non-volatile RAM and modified FORTH 
system. FORTH applications and/or stored data are retained in 
NV-RAM when power is removed. Invaluable while developing soft- 
ware. Substitute the following in place of -X to get the order 
codes -2R, -4K, -6R, -8K, -1OK. This refers to the amount of 
non-volatile memory. The rest, up to 12K, is normal C-MOS RAM. 

TDS902 64K G M O S  FORTE COMPUTER 

Although the 64R memory space is almost full the card takes 
only 25mA typical because of its all C-MOS design. 

TDS9OWBS 6903 FORTH ASSEMBLER 

Software for any of the TDSSOO series computers which allows 
FORTH words to be defined in microprocessor code. Includes 
structured words such BEGIN/UNTIL compiling to machine code. 

TDS950 COMBINATION CARD 

$115 

Cassette interface card containing 1200 baud audio to RS232C 
converter, line transformer/power supply (115/230V) for itself 
and a TDSSOO computer, and 200mA-Hr of back-up battery to make a 
TDS900/TDS950 combination self-contained and portable. This is 
an ideal starting system. FORTH software for cassette load/dump. 

"IS971 COMMUNICATIONS CARD $230 

Contains an IEEE-488 Talker/Listener interface and two RS232C. 

'IDS972 PARULEL/SERIAL/A-D CARD $189 

&bit parallel I/O, RS232C and &bit A-D converter. 

"Ids is an extmct from our brochure of induttrial FORTH 

I car& Brocbere free. Offidal ordm .ecspted Far prh8te 
pluchascs send cheque, We accept m a t  oIIMBE6.. Dly 3-3 reeks. 

I 



October 23, 1985 - November 3, 1985 

Forth Modification Laboratory 
presents 

EuroFORML Conference 
Stettenfels Castle 

Heilbronn, Federal Republic of Germany 
Followed by 

SYSTEMS Trade Fair, Munich 
Computers and Communications 9th International 

Trade Fair and International User’s Congress 
and 

Selected sightseeing tours and entertainment in Germany 
International technical conference October 25-27, 1985 Stettenfels Castle 

Software Metrics - Programs and methods to measure program performance, complexity, 
structure, programmer productivity, development methods, models, tools, program verification 
aids, and procedures. Individual participation is encouraged and attendees are requested to submit 
a conference paper. Conference proceedings will be published. 

SYSTEMS Trade Fair October 28 - November 1, 1985 Munich Fair Grounds 

Computers and Communications - This is a major international event covering computers and 
communications. The trade fair is scheduled October 28 through November 1, 1985. 

h Guest and Tour Program - A complete program will be available for guests not attending the 
technical conference sessions. Sightseeing escorted tours are planned for the group. 

Reservations, authors instructions, itinerary, special group rate - Write to EuroFORML, Forth 
Interest Group, Post Office Box 8231, San Jose, CA 95155 or telephone the FIG Hotline (408) 
277-0668. East and West Coast departures are planned. Advance reservations are required. 

CALL FOR PAPERS 



Part Two 

I 

FORML China Tour 1984 
10-3: We arose early enough to place 

our leaden bags in the hallway by 6:30 
a.m., just before departing from Hong 
Kong. We met our first guide from the 
People’s Republic of China, a young 
woman working for CITS, China’s 
official travel service. She swept us to 
Tai Kok Tsui pier, where we waited in 
line to board the hover-ferry to 
Guangzhou (formerly Canton). Travel 
inside China is handled by CITS 
according to availability of rooms and 
flights. Because no flights were 
available out of Hong Kong on this 
day, we were able to travel a scenic 
route along waterways which were 
legendary long before Clavell 
popularized them in his Taipan. And 
although Guangzhou was not on our 
itinerary, after a cursory customs 
jnspectjon, local guides bussed us 
through a brief tour of the city. At the 
large center where international trade 
fairs are held twice annually, we ate the 
first of many meals which would move 
us to gustatory extremes. We then 

h changed U.S. travellers checks and 

Hong Kong dollars into Chinese yuan 
and succumbed to another buyers’ 
frenzy before catching our flight to 
Shanghai. 

We lumbered off the plane (only one 
checked bag per person meant many 
hand-carried kilos; and we had been 
fed again, in flight) to breathe the first 
cool air .of the trip. Night was 
advancing, but the city cast only a dim 
glimmer to penetrate the leafy 
boulevards. Night stollers in Shanghai, 
we were told, benefit from an 
ordinance which forbids lighting 
brighter than the full moon. We were 
already far from glitzy Hong Kong! 
During our bus ride to the Shanghai 
Hotel, we found that the local CITS 
guides and our hosts at Shanghai’s Jiao 
Tong University had both planned for 
our arrival. Late plans were 
formulated over drinks before we fell, 
exhausted, into bed. 

10-4: Our first full day in the 
People’s Republic of China was spent 
getting to know the people and places 
of Shanghai. Mr. Hu, our competent 
local guide, escorted us everywhere and 

One of the dragon walls enclosing Yuyuan 
Gardens in Shanghai. 

looms, cutting and clipping knots by 
hand at a fierce pace. We also visited a 
jade plant, where workers sit at 
individual work stations with power 
drills to carve goddesses and goblets 
from lucent chunks of stone; and 
where, upstairs, the raw material is 
ivory. We were very impressed by the 
quantity and consistent high quality of 
the finished pieces. Then, just to make 
sure we had an eventful day, our local 
guide arranged an evening at the circus 
for us! 

10-5: This morning, part of the 
FORML group went to Jiao Tong 
University to be met by the university’s 
President and an audience of about 
two hundred. During this precursor to 
the FORML conference, which was to 
begin in a few days, Forth was 
introduced to those who hadn’t used it 
yet, and a few advanced concepts were 
explored. 

While those ceremonies were taking 
place, the rest of the group was taken 
to a silk-printing factory to learn a bit 
about the process. After a brief foray 
into the company store, all re-boarded 
the bus for a visit with some people 
who will be important to the PRC’s 
future: its kindergartners. 

Volume VI, No. 6 33 FORTH Dimensions 

I 



A group presentation at Shanghai’s Jiao Tong University. 

The playground was full of four- to 
six-year-olds, and when the bus pulled 
to a stop they rushed the fences, 
repeatedly calling, “Hi! Hi!” The 
moment of pandemonium was brief, as 
the six-year-olds filed out to greet each 
of the American “aunts and uncles.” 
By the time each of them had adopted 
one adult with the clasp of a 
proprietary hand, the younger children 
had disappeared. We found ourselves 
being escorted to a room in the school 
where each of us was served make- 
believe tea with Styrofoam cakes - 
these youngsters had obviously been 
learning how Western children play. 
After tea-time, we were again led by 
the hand, this time to a room where the 
four-year-olds were making origami 
gifts for us - paper boats, hats and 
flapping birds which have taken their 
place in photo albums alongside 
snapshots of that day. The final event 
was a musical show in which most of 
the children sang, played instruments 
(we heard “Chopsticks” played as a 
piano duet) and danced; and they 
performed a colorful beach-ball-and- 
panda-suits choreography tha t  
conclusively stole our hearts as well as 
the show. Our young, panda-clad hosts 
then took us by the hand once more 
and led the way to the waiting bus. As 
we pulled away, young voices called 
out, “Bye! Bye!” 

6 

We were let out at a housing complex 
next. We visited the apartment where a 
sixty-one-year-old woman lives with 
her husband, daughter, son-in-law and 
grandchild. This family lives relatively 
comfortably in a two-room apartment 
with a shared, walk-down bath. We 
were offered tea and cigarettes 
(modern gestures of hospitality), and 
passed a pleasant time chatting about 
lifestyle and income (this household 
earns about 300 yuan per month, of 
which fifteen go for rent, 140 for food; 
most homes have a black-and-white 

television - a color set costs a year’s 
gross wages). 

Lunch was served back at the 
Shanghai Hotel, but four members of 
the group abandoned hearth, hotel and 
tour guides to find vegetarian cuisine. 
Meatless cooking was, somewhat 
surprisingly, rare throughout this trip. 
The best was found in the Jade Buddha 
Temple, a working temple and place of 
pilgrimmage, where the monks prepare 
wonderfully varied and tasty meals 
from vegetables, mosses, mushrooms 
and other fungi. In other parts of the 
temple, the respectful remove their 
shoes before entering rooms where 
larger-than-lifesize jade statues 
representing the Buddha are seated in 
repose on the principles of universal 
law. 

Later that evening, the President of 
Jiao Tong University of Shanghai gave 
a banquet in honor of the FORML 
tour group. It was an occasion of 
ceremony and friendship, and we 
shared in a delightful repast which few 
in the United States are able to sample, 
including eels, young sparrows and sea 
cucumbers. 

10-6: “Above there is heaven, below 
there are Hangzhou and Suzhou.” 
Boxed breakfasts and a four-hour train 
ride brought us to lovely Hangzhou. 

One of the major palaces in the Forbidden City. 

Volume VI, No. 6 FORTH Dimensions 34 



The staff of the Hua Jia Shan Guest 
House was smilingly helpful, and 
worked very hard at communicating 
with their guests in English and 
Japanese. On the shores of Xi Hu 
(West Lake), the population of one 
million seems in harmony with its 
natural surroundings, in contrast to 
Shanghai's crowds of commuting 
bicyclists. The hotel grounds are laced 
with ponds, winding pathways and 
willow trees. 

10-7: We spent a relaxing day 
touring the West Lake area. While 
much of Hangzhou was destroyed 
d u r i n g 1 as t century ' s Ta i p i n g 
Rebellion, and airhough modern China 
seems slightly disdainful of its spiritual 
heritage, many legendary sights have 
been restored to a fine degree. Lingyin 
Temple is the only working Buddhist 
monastery in this region, and is visited 
by so many devotees that a small but 
thriving trade in souvenirs and 
religious articles has sprung up nearby. 
Adjacent to the temple, the "hill that 
flew from afar" is still covered with 
hundreds of stone carvings that were 
intended to help anchor the hill in 
place, it having already flattened one 
village. On a bluff in the near distance, 
the Six Harmonies Pagoda was erected 
in 970 A.D. so that its geomantic force 
would alleviate the river's devastating 
tidal bore. 

An afternoon cruise on West Lake 
and a visit to a fan factory capped the 
day. Tour participants scheduled to 
lecture at the Shanghai conference 
were packed off on another train, 
while those who remained settled for a 
very welcome early retirement. 

10-8: Tour members who remained 
at Hangzhou embarked this morning 
on a train to Wuxi, where they were 
lodged in a small guest house of their 
own, with luxurious terraces 
overlooking the agricultural lake 
country which surrounded it. 

Meanwhile, the Forth experts in 
Shanghai were greeted by Professor 
Zhou, who introduced each U.S. 
delegate, described FIG'S purpose and 

summarized Forth's history world- 
wide and at Jiao Tong University, 
where it has been used since 1980 under 
the gracious auspices of Dr. Zhu, 
Director of the Computer Center. FIG 
President Robert Reiling responded in 
kind, thanking the hosts for their 
interest in Forth and in becoming a 
FIG Chapter. 

Bill Ragsdale, founding President of 
FIG, used human language as an 
analogy for understanding computer 
languages, and described how both can 
reflect our thought processes. He 
explained that large problems can be 
stated very simply, that a problem's 
solution is usually arrived at by 
breaking  i t  i n t o  manageable  
components, and that the environment 
must accomodate the solution. He 
emphasized that FIG derives much of 
its growth from volunteer efforts, as 
compared to  vendor-driven or 
manufacturer-driven organizations. 
This may result from the way in which 
Forth meets the real needs of individual 
users. 

Charles Moore continued the 
program by elaborating on Forth's 
growth without corpora te  o r  
governmental backing. He described 
For th  as a c rea t ion  of the  
programmers, who now are faced with 
the  prospec t  of convincing 
management to allow them to work 
with the tools of their own choice. He 
views Forth as a versatile programming 
language with advantages of the newer 
special-purpose languages (e.g., 
Smalltalk, Modula-2, Occam, Prolog) 
implicit to it, but without their 
l imi ta t ions .  Mr .  Moore  then  
enumerated some major applications 
of Forth in fields like radio telescopy, 
optical telescopy, gas chromatography, 
business systems, commercial  
telephone systems, special-effects 
photography, robot control and health 
care (administrative and technical 
uses), among many others. 

Later that afternoon after discussion 
of F83, t he  LaxenIPe r ry  
implementation of Forth-83, Kim 
Harris spoke on problem-solving with 
Forth. Using a sample problem of 
programming a camera for proper 
exposure, he discussed the classic Forth 

~ 

Free Power! 

I FREE 
FORTH 

VolurneVI, No.6 35 



technique of top-down problem embarked via plane for Beijing, capitol 
refinement and bottom-up coding. The of the vast nation. After a short delay 
first solution is not always the best at the airport, the group found its 
solution, so familiarization, expansion accomodations at the ultra-modern 
a n d  r educ t ion / f ac to r ing  were Lido Hotel, where our local guide 
introduced to the audience. This talk appeared. In no time, all were whisked 
concluded with a review of the off to People’s Square, with its massive 
elements of Forth that make it so monument to Mao Zedong. The 15th 
suitable to this methodology, and with century Temple of Heaven was the next 
a sample high-level solution to the stop, site of imperial Chinese 
posited problem. divination and harvest-related prayer. 

There, the natural cycles of seasons 
10-9: Bill Rags&& opened the day and stars were woven by the Son of 

with his discussion of the Forth virtual Heaven into a tapestry of great benefit 
stack machine, of the differences to all the people. Today, the temple is a 

demonstration of Forth on the Radio reminding a few, perhaps, of times 

accompany the group). In response to widely recognized import to daily life 

between Forth standards, and with a and tourist attraction, 

Shack Model 100 (the only computer to when the laws Of nature were Of as 

as the laws of society. 
2 
2 10-11: FORML members awoke to 

another opportunity to address a 
distinguished audience, this time at 

& Beijing’s Tsinghua University. About 
8 220 people attended this meeting, half ’ of whom had seen Forth in operation. ’ The Forth virtual stack machine was 

0 “Store ahead”? 

a question from the previous day, 
George Shaw then detailed differences 
between Forth and COBOL, followed 
by Robert McGhee with a comparison 
of twelve computer languages 
evaluated according to fifteen criteria. 

Following several other talks, many 
of which are documented in other 
FORML publications (e.g., in the 
upcoming 1984 FORML Proceedings), 
all that remained was an exchange of 
mutual thanks and appreciation for the 
hosts and attendees of the conference. 
FIG representatives sincerely offered 
to help Forth grow in the People’s 
Republic of China, and hope to have 
many more opportunities to do so. 

10-10: Aftkr a late reunion on the 
previous evening, the entire group 

discussed, as was the history of FIG 
and FORML. Charles Moore drew 
amused laughter with his comment, 
“Forth is a revolutionary language; 
maybe it is appropriate that it be 
popular in a revolutionary country 
such as China.” After the formal event 
concluded, the tour group was treated 
by the local guides to an evening at the 
Chinese opera. 

10-12: Early morning found a few of 
us worn out and feeling a touch of the 
respiratory infection that passes for 
Beijing’s version of “turista.” But one 
and all boarded a bus headed out of 
town for the Great Wall. Autumn had 
nipped the trees with russet colors, but 
sunlight warmed the breeze which blew 
over the ancient stones. Climbing the 
steep steps on the safe, sheltering side, 
and listening to the sound of the wind 
as it rushed in from vast distances - 
somewhere out there, you can still feel 
the presence of Tibet and Mongolia - 
it was not difficult to imagine a glow of 
campfires circling the world. As at 
Lingyin Temple, a small local industry 
has grown to serve the tourists, but 
here they mostly hawk sweatshirts, 

~ ~~ ~ 

FORTH Dimensions 36 

.,T=m r> I , Sl . a ’*”3 

MasterFORTH 
Portable programming environment 

Whether you program on Dl the Macintosh, the IBM F C ,  
an Apple 11 series, aCP/M sys- <% tem, or the Commodore 64, 

your program will run un- 
5 - s ~  
5 s- e- 

your investment If you write for 
others, it will expand your market- 

place 
MasterFORTH is a state-of- 

* 
changed on all the rest 
If you write for yourself, 
MasterFORTH will protect --- ’ - T N  

the art implementation of the 
Forth computer language 
Forth is interactive - you have 
immediate feedback as you 
program, every step of the way Forth IS 

fast, too,and you can use its built-in macro 
assemblerto make it even cp/M TM faster MasterFORTH’s 

relocatable utilities, 
transientdefinitions, and headerless code 
let you pack a lot more program into your 
memory The resident debugger lets you 
decompile, breakpoint, and trace your 
way through most programming prob- 
lems A string package, file interface, and 
full screen editor are all standard features 

MasterFORTH exactly matches the 
Forth-83 Standard dialect described in 
Mastering Forth by Anderson and Tracy 
(Brady, 1984) The standard package in- 
cludes the book and over 100 pages of 
supplementary documentation 



9 

I 

t-shirts and other memorabilia. The 
real commodity, though, is the 
presence of antiquity. These dusty 
peddlers aren’t victims of a new 
economy: they have always been here. 
Before the revolution and t-shirts, they 
sold water and food to travellers, 
meager feed for their stock, shelter for 
the night; before that, they traded 
small pleasures and fortunes to the 
soldiers who garrisoned the Wall; and 
before that, they were conscripted to 
hew stone blocks out of the native hills. 
The Wall has been a way of life for a 
long time in China. 

10-13: Our last day in Beijing saw us 
admiring very old astronomical 
instruments - appropriate activity for 
proponents of the computer language 
which received its baptism in some of 
the major observatories of the world. 
We also toured the Forbidden City, 
residence of past emporers. Many of 
the 9,000 rooms, which cover a moat- 
enclosed 250-acres, have been restored 
to their simple lines and elegant 
ornamentation. The day concluded 
with a small meeting, during which 
mutual interests and  business 
opportunities for U.S. and Chinese 
organizations were discussed. 

10-14: FORML tour members 
boarded a flight to Xi’an, capitol of 
Shaanxi Province and site of the now- 
famous terracotta army. There we were 
once again greeted by Professor Zhou, 
who eased our passage throughout the 
country, along with officials from Jiao 
Tong University of Xi’an and the Chief 
Engineer for the province. 

The local guide took us to the Forest 
of Stone Tablets, a library devoted to 
the works of Confucius, the entirety of 
which was carved in stone along with 
commentary and annotations. After a 
brief tour of the city (population 2.5 
million), which used to be the largest in 
the world, we witnessed a late-evening 
performance of Tang Dynasty dancing. 

10-15: The day began with a much- 
anticipated trip to see restored portions 
of the terracotta army, buried in the 
third century B.C. around the tomb of 
the  la te  empore r .  The  huge 

archeological site met all expectations, 
and the related museum was very 
helpful in explaining the history of the 
region. During this time, the group 
also viewed a partially excavated 
indigenous village and  noted 
congruities with sites in the Americas. 

Returning to Xi’an, our guide took 
us to the university and surrendered us 
into the hands of officials there. Like 
its counterpart in Shanghai, Jiao Tong 
University here is technically oriented; 
it has six research institutions, fourteen 
departments and about 10,000 
students. During a private reception, 
great interest in Forth was expressed to 
us by students and representatives 
from all the university’s departments. 
Afterward, we were led into an 
adjoining lecture hall, where a short 
FORML conference was held. In this 

room, only a small handful had used 
Forth or had seen it in action, but 
enthusiasm waxed strong. Some topics 
from previous meetings were re- 
introduced to the new audience, and 
fresh material was covered as well. Our 
visit to Xi’an, and to the People’s 
Republic of China, ended with a 
friendly round of questions and 
answers ,  a n d  a n  evening of 
comaraderie in the hotel lounge. 

The conference lectures in this article 
and in Part One (Forth Dimensions 
VI/S) were greatly abbreviated due to 
space considerations. Watch f o r  
published conference proceedings 
which may contain the papers on which 
these talks were based. Special thanks 
to Bob McGhee for  helping to compile 
these notes during the trip. 

- Marlin Ouverson. 

PRODUCTS AND ANNOUNCEMENTS 
Forth Dimensions welcomes press 

releases and product announcements, 
as well as reader letters regarding 
product performance. 

Keep your calendars open, folks; 
FIG members in West Germany are 
arranging a FORML conference for 
October 1985. The technical content of 
the conference is anticipated to be 
excellent. Even so, organizers for the 
event have reserved a castle to entice us 
foreigners (but is it crenelated?). And 
if the conference happens to fall as 
close as one could wish to Oktoberfest, 
and just before a major European 
technical conference, then it must be 
coincidence. Call the FIG Hotline at 
415-962-8653 for details. 

Laboratory Microsystems, Inc. has 
released a Unix implementation of 
Forth fo r  t he  IBM PC/AT. 
PC/FORTH for  80286 Xenix 
conforms to the Forth-83 Standard, 
and code written for other LMI 
systems can be ported to run under the 
company’s latest product. Unix 
functions can be accessed from within 
this version of PC/FORTH, which 
supports the standard Unix file-and- 
directory interface, paths and logical 
devices. The full-screen editor which 
comes with the system is customized 

for the PC/AT; and this Forth can 
compile from text files generated with 
Unix’s vi or ed, as well as from 
standard Forth screen files. LMI can be 
reached by calling 213-306-7412 
(voice) or 213-306-3530 (300/1200 
baud BBS for registered LMI 
customers). 

MicroMotion has announced release 
of its MasterForth for the Macintosh. 
The system conforms to the Forth-83 
Standard, includes a 68000 macro- 
assembler, and supports Mac’s mouse, 
finder, menus and graphics toolbox. In 
addition to its line of Apple software, 
MicroMotion has versions of 
MasterFor th  fo r  C P / M ,  the  
Commodore 64 and IBM PC. Floating 
point is an optional extension. Call 
MicroMotion at 213-821-4340 for 
further information. 

Forth, Inc. informs us their 
polyFORTH I1 is available. It provides 
a multi-tasking, multi-user system to 
users of MS-DOS computers. Tasks 
may have private partitions or may 
execute shared, reentrant routines. The 
relatively new product is being used by 
Bell Canada to operate thirty-two 
terminals on an Omnibyte 68000 
processor. Forth, Inc. may be 
contacted at 213-372-8493. 

37 FORTH Dimensions Volume VI, No. 6 



YACS 
Henry Laxen 

Berkeley, California 

One of the most frequent complaints 
newcomers to Forth mention is its lack 
of a CASE statement. I remember 
calling Kim Harris about eight years 
ago, when I was first learning Forth, to 
despondently ask how such an 
oversight was possible. He assured me 
that, while the language contained no 
intrinsic CASE statement, it would be 
little trouble to implement one. I am 
sure he and everyone else 
knowledgeable about Forth must have 
been asked that question at least a 
thousand times. 

In order to lay the question to rest 
once and for all, Forth Dimensions 
devoted an entire issue to a case- 
statement contest. The fond hope was 
that the last word had finally been 
spoken on the subject of case 
statements. That was true, until now. 
During one of my recent Forth 
playfests, I wondered what would be 
the characteristics of the ideal case 
statement. As an exercise in 
Forthought, I would like to share with 
you my deliberations. 

I started with the CASE known to 
many (see Figure One), which is 
probably the simplest of all. Basically, 
it defines an array of executable Forth 
words at compile time, then indexes 
into this array and executes the nth 
element at run time. Let’s go through 
the definition of CASE in Figure One, 
word by word. 

CREATE makes a header for us and 
adds it to the dictionary. It also 
initializes the code field of the newly 
defined word to be that of VARIABLE. 
HIDE then hides this definition (in F83) 
so that it is unavailable to the compiler 
until it is REVEALed later. ICSP is used 
to initialize the compile-time error 
checking. Next, 1 is called to invoke the 
Forth compiler. The counterparts to 
HIDE and lCSP will be executed when 
the definition is terminated by ;. 
Finally, the last word in CASE to be 
executed at compile time is the (;CODE) 
laid down by DOES>. It rewrites the 
code field of the newly defined word to 
point to the run-time code following it. 

0 

Now let’s look at the run-time 
action. When ROMAN is called, it 
assumes there is an index on the stack. 
The run-time action of DOES> places 
the parameter field address of ROMAN 
on the parameter stack in front of the 
index. S W P  brings the index to the top 
of the stack. The 2” doubles it, because 
each compiled pointer is two bytes 
long. + adds the doubled index to the 
origin of the array of pointers. gets 
the compiled code field address and 
passes it to EXECUTE, which runs it. 

This is the basic idea behind most 
Forth case statements in existence 
today. Let’s look objectively at the 
advantages and disadvantages of this 
approach. The biggest advantage of 
the version described in Figure One is 
its simplicity. It would be quite 
difficult to make it simpler. It is also 
extremely fast. The amount of 
overhead required to decide which of n 
cases to execute is minimal, just a shift 
and an addition. On the minus side, it 
is very dangerous. If it is ever cal€ed 
with an undefined index value, chances 
are very good that we will crash. 
Speaking from experience, let me 
assure you this is not an infrequent 
occurrence. 

The easiest way to solve this problem 
is illustrated in Figure Two. If we 
simply alter the syntax of a case 
statement by requiring that the number 
of cases precede the CASE defining 
word, we can simply and easily 
implement some run-time bounds 
checking. The word MAP will abort 
with an error message if the index is 
not between zero and number-of-cases 
minus one. Otherwise, it will return the 
address of the cell where the code field 
corresponding to that case is stored. 
We then fetch and execute that code 
field as before. 

This essentially solves the problem 
of crashing case statements, but 
introduces another. First, we have 
changed the syntax of the statement in 
order to accommodate run-time 
checking. This would necessitate 
changing all occurrences of CASE in our 
source code. Furthermore, this form of 
case statement is difficult to maintain, 
since if we add or delete a case from the 

FORTH Dimensions 38 

body of the statement, we must also 
remember to change the corresponding 
number at the beginning of the 
statement. This is a pain and often 
leads to bugs and frustration. 

What we really want is the old syntax 
for a case statement (i.e., no preceding 
number), but run-time error checking 
as well. Greedy, aren’t we? 
Fortunately, this is easy, too. The code 
listed in Figure Three performs this 
task. Let’s look at how it works. After 
defining the header, we see the words 
HERE 0 ,. This phrase remembers the 
current dictionary location and 
reserves a word of storage there. We 
then proceed to compile the individual 
cases, just as before with HIDE ICSP 1. 
Once the ; is encountered, we execute 
the rest of the words between the ] and 
the DOES>. 

These words simply calculate the 
number of cells used for code fields 
and store the result in the cell reserved 
for it at the beginning of the definition. 
The phrase HERE OVER - calculates the 
number of bytes compiled since the 
original HERE and the terminating ;. 
The 21 converts this byte count into a 
cell count. The 2- is there because we 
don’t want to count the cell used for 
this count ( 0 ,  ) or the cell used by the 
uNNEST compiled by ;. Finally, the 
SWAP ! places the result of this 
calculation into the cell reserved for it 
at the beginning. Thus, we have 
computed the number of items in the 
array, and no longer require a count to 
precede the CASE. Notice that the run- 
time action of this statement is 
identical with the one in Figure Two. 

We have progressed. We finally have 
a case statement with the advantages of 
the first one but without its major 
disadvantage. The cost in additional 
complexity is minimal - 
approximately three lines of code, 
counting the implementation of MAP. 
However, all these case statements lack 
one major feature, namely flexibility. 
The only cases we can select between 
are small integers. If we wanted to 
perform different actions depending 
upon the range of an integer, and if 
that range were very large, this 
approach would be quite unusable. 



0 \ Siaplest CfEE Statemnt 
1 : ZERO . n  taro is  not a R#a, NumwaI" ; 
1 : o r r  . "  I "  ; 
2 : w  ." I I "  ; 
3 : TW1EE . "  1 1 1 "  ; 
4 : FWR ." IU' ; 
5 : -  
6 CREATE HI# !CSP I 
7 wEs> sbmP2*+ 0 E X E m  ; 
8CR6ERoI#p( 
9 S R O ~ T U O m R E E F w R  ; 

1 o o m 1 m 2 m  
113RomwJ4RoI#p(SRomwJ 

Figure One 

0 \ CfEE Statemnt with ExpI ici t Bounds chrcking 
l : W  ( n a d d t - - - o d d r ' )  
2 M U P @ U < I F  2+suApW+ 
3 ELSE .STRUEABORT'IndexwtofRang." THEN ; 
4 : -  
5 CONSTWIT HIDE !CSP I 
6 DOES> W O E M W T E  ; 
7 
8 S C f E E M H W  
0 z E R o ~ T w n # E P a m  ; 

1 o o m 1 R o m w f 2 m  
1 1 3 # r # N 4 M H W S R O n # l  

Figure Two 

0 \ CRSE Statvlmt with Implicit Bamk Checking 
1 : m S E  
2 CREATE 
3 H E R E O ,  H I E  !CSP I 
4 HERE OVER - 2/ 2- SUFCP ! 
5 DOES> t#p Q EXECUTE ; 
6 
7 c R s E m  
8 ZERO ONE Two T M E  FOUR ; 
9 o m 1 m 2 m  

10 3 m 4 m 5 Rowm 

Figure Three 

Also, in order to use them we must 
define a word, and hence a new name, 
for each case. For me, this is an even 
greater disadvantage, since naming 
words appropriately is the hardest part 
of programming in Forth, the part I 
would like to minimize. 

Thus, on the other end of the 
spectrum, I would be willing to 
sacrifice some speed and simplicity if I 
could have arbitrary selection criteria 
and avoid having to come up with a 
unique name for each of the cases. In 
addition, I would like this new case 
statement to introduce the least 
number of new words into Forth, 
ideally just CASE and, perhaps, END 
CASE. After thinking about this set of 
objectives for quite a while, I finally 
came up with an implementation. At 
this point, I challenge you to see if you 
can come up with one - I will reveal 
mine in my next article. 

One closing comment. In Figure 
Three, where we implemented the case 
statement that calculates the number of 
items in the CASE, we made use of a 
property of ] that is relatively new and 
useful. In the days of fig-FORTH, ] 
was implemented by setting the 
variable STATE to a value that indicated 
we were compiling instead of 
interpreting. The word INTERPRET in 
the Forth system would look at this 
value of STATE and decide whether to 
compile or interpret the word it was 
scanning. Thus, ] was not callable as a 
subroutine, and the definition in 
Figure Three would not have worked. 
One of the big advances in Forth-83 
was the discovery that a system could 
be written without the variable STATE. 
One consequence of this observation 
was that ] became a callable procedure, 
just like other Forth words. Its 
function was to compile the words in 
the input stream until a [ was 
encountered. (Note that ; calls I.) Thus, 
] became a useful procedure in itself, 
allowing us to implement ideas such as 
those found in Figure Three. Needless 
to say, the specification for the GRAND 
CASE statement described in the 
previous paragraph makes heavy use of 
this feature of 1. Enough hints; good 
luck, and may the Forth be with you. 
Copyright@ 1985 by Henry Laxen. All 
rights reserved. 

Volume VI, No. 6 39 FORTH Dimensions 



I PL- 

We wish to welcome two new Netherlands FIG Chapter 
chapters: (in formation) 

Potomac FIG Chapter 

Central Arkansas FIG Chapter, Little Some news from Holland: Forth is Feb. 5:  Joel Shprentz described and 
Rock, Arkansas doing well here and is promoted by demonstrated a version of Prolog in 

association with the Hobby Computer Forth. Prolog is a language used for 
New Hampshire FIG Chapter, Club (HCC). The HCC is an artificial intelligence. Like expert 
Manchester, New Hampshire organization of 20,000 members and systems, Prolog uses facts (e.g., Mary 

still growing fast. It has a matrix likes wine) and rules (John likes X if X 
structure; this means everybody is, at likes wine) to make logical conclusions 

The two chapters in the Sari the same time, a member of some (John likes Mary). Joel has written a 
Francisco Bay area have decided to interest growp (row; e.g., Forth or Prolog interpreter in Forth-83. 
recombine as one for greater strength Apple) and from a geographical Although the language syntax has been 
and companionship. subgroup (column; e.g., Utrecht or twisted to fit Forth, it is still Prolog 

As we end this volume of Forth Amsterdam). Forth is spreading (similar liberties have been taken with 
Dimensions, I want to thank the people through contact with many BASIC LISP implementations). The problem 
who have put so much effort into programmers; we are showing off by above would look like this: 
making these sixty-nine chapters winning the problem-of-the-month 
possible world-wide. To the “sparks,” contest nearly every month; and we ATOM John ATOM Mary ATOM likes 
the people who work so hard getting promote Forth in the HCC newsletter ATOM wine VAR X 
the chapter started and keeping the (also sold outside the HCC). Among { { likes Mary wine } } RULE 
day-to-day engine running; and to the activities a re  development of { { likes John X } { likes X wine } } 
members of these chapters, who give so FYSFORTH, mentioned in Forth 
much of their time to make Forth and Dimensions. We have quarterly { { Likes John X } } PROVE 
the Forth Interest Group possible, I meetings and a bimonthly bulletin, 
would like to say “Here, Here!” and VIJGEBLAD. 

rest of the Forth community, I think availability of the 68000 fig-FORTH 

assembler. It can be cross-compiled by Dee. 8: The Central Arkansas FIG “Thank You!” 
the public-domain assembler available Chapter was formed during its first 
under CP/M. It assembles to an exact meeting, held at the National 
COPY of the object of the existing 68000 Education Centerys excellent facility. 
fig-FORTH version 1 .O. Plans are to Thanks are in order - to the Arkansas 

Nov. 28: Martin Tracy, from the LOS make this source listing available in Computer Club for support and 
Angeles Chapter, attended and print in Holland and via FIG. We can assistance; to Betsy (FIG Hotline) for 
presented his paper from FORML. send a machine-readable version. In the great supply of handouts; to Ron 
Steve Pollack presented his first pass Holland, it is also distributed on and the Atlanta FIG Chapter for their 
on a public-domain floating point for cassette in the Forth version of the wishes and support; and to John (SE 
the 8087 on IBM PCs and clones. BASICODE format. BASICODE is a Florida FIG) for the great input and 
There was considerable discussion joint effort of the HCC and the Dutch screens. The meeting was called to 
about the Forth Convention, and Broadcasting Foundation, “NOS.” It order by Gary Smith, who gave a 
about what our chapter should be is a method for distribution of presentation of the history and 
doing to promote Forth. machine- independent  BAS I architecture of Forth. Donald Long 

Dec. 5 :  We had Guy Kelley and GUY software. Every Sunday, a program is gave several i n fo rma t ive  
Grotke, guests from the San Diego broadcast here and also on the demonstrations of Forth on a 
Chapter. They presented a meta- “ Wereldomroep” in te rna t iona l  CoMPAQ with LMI Forth. Donald 
compiler which can be taught easily. shortwave. The 68000 FIG source was also described the single-board Forth 
GUY Kelley also presented a paper on converted to this format with the system he for home security. Gary 
IBM PC key assignments, which can be cooperation of the Dutch HCC FIG demonstrated the stack using a Jupiter 

Ace running the stack/boxes demo. vectored to do about anything. Bob chapter and the 68000 user group. 
Snook presented a paper on readability 
vs. economy. 

- Roland Koluvek 

RULE 

- Joel Shprentz 
“Thank YOU!” If 1 could speak for the we would like to tell you about the 

Central Arkansas FIG Chapter 
You here 5000+ voices saying listing written in Motorola 

Orange County FIG Chapter 

9 

- Albert van der Horst - Gary Smith 

FORTH Dimensions 



Kansas City FIG Chapter 

Nov. 27: Thirteen attended. Brooks 
Herdon gave a demo of Harvard 
Software Forth. Some highlighted 
features included segmenting different 
functions of Forth, capability to load 
source from text files entered via 
Wordstar, a logging facility, and 
others. We also noticed that some 
words did stack-underflow/overflow 
checking. 

Sacramento FIG Chapter 

Nov. 13: Twenty-three people 
attended, including Highlands High 
School teacher Jim Wong and two of 
his students, Trevor and John. They 
demonstrated their Forth-directed 

robot, TOPO. Mr. Wong purchased 
TOP0 personally in order to enhance 
student interest in computer science 
with his proposed “Robotics and 
Forth” class, students’ first exposure 
to Forth. Their impression is such that 
Mr. Wong is considering a Forth 
language class for the near future. We 
also had a round-table discussion 
regarding Charles Moore’s talk on his 
Forth engine at the Silicon Valley FIG 
meeting, which several of our members 
had attended. 

- Tom Ghormley 

Fort Wayne FIG Chapter 

Nov. 14: Ed Harmon has selected 
the ACM Special Interest Group 

Graphics (SIGGRAPH) CORE 
standard as the task of our group 
project. He has chosen a Pascal 
implementation as a model to be 
implemented in Forth. Ed led the 
meeting discussion toward defining the 
task interface requirements with the 
following conclusions: 1) Forth-79 will 
be the dialect used. 2) The names and 
types of variables were selected. Some 
variables will be arrays and double 
precision. Floating point will not be 
used. 3) Ed partitioned the Pascal 
model’s procedures and assigned them 
as tasks for the five members 
participating in the project. 

- Blair McDermid 

FORTH: FOR 2-W, 8086,68000, and IBM@ PC 
Complies with the New 83-Standard 

GRAPHICS. GAMES. COMMUNICATIONS 0 ROBOTICS 
DATA ACQUISITION 0 PROCESS CONTROL 

0 FORTH programs are instantly FORTH Applicatlon Development Systems 
include interpretericompiler with virtual memory 
management and multi tasking assembler full 
screen editor decompiler utilities and 200 page microprocessors 

FORTH 1s interactive and COrWer- manual Standard random access files used for 
SatlOnal, but 20 times faster than screen storage extensions provided for access to 
BASIC all operating system functions 

FORTH programs are highly strut- 2-66 FORTH for CPIM‘ 2 2 or MPiM I1 $100 00 
8080 FORTH for CPiM 2 2 or MPIM I1 $100 00 

tured, modular, easy to maintain 8086 FORTH for CP/M 86 or MS DOS $100 00 
0 FORTH affords direct control over PC~FORTH for pc DOS CP/M 86 or CCPM 
all interrupts, memory locations, and $ 1 ~ 0  00 68000 FORTH for CP/M 68K $250 00 
I/O ports FORTH + Systems are 32 bit implementations 

portable across the four most popular 

0 FORTH allows full access to DOS 
files and functions 
0 FORTH application programs can 
be compiled into turnkey COM files 
and distributed with no license fee 
0 FORTH Cross Compilers are 
available for ROM’ed or disk based ap- 
plications on most microprocessors 
Trademarks IEM International Business Machines 
Corp CPIM Digital Research Inc PCiForthi- and 
PCiGEN Laboratory Microsystems InC 

that allow creation of programs as large as 1 
megabyte The entire memory address space of 
the 68000 or 8086188 IS supported directly 

PC FORTH + $250 00 
8086 FORTH +for CPiM 86 or MS DOS $250 00 
68OOO FORTH + for CP/M 68K $400 00 

Extension Packages available include soft 
ware floating point cross compilers INTEL 
8087 support AMD 951 1 support advanced col 
or graphics custom character sets symbolic 
debugger telecommunications cross reference 
utility B tree file manager Wnte for brochure 

Laboratory Microsystems Incorporated 
Post Office Box 10430, Manna del Rey, CA 90295 [m] 

Phone credit card orders to (213) 306-7412 

41 FORTH Dimensions Volume VI, No. 6 



ALASKA Bay Area Chapter 
Monthly, 4th Sat. 
FORML: 10a.m. 
General: 1 p.m. 
ABC Christian School Aud. 
Dartmouth & San Carlos Ave. 

INDIANA MISSOURI 
Kansas City Chapter 
Monthly, 4th Tues., 7 p.m. 
Midwest Research Inst. 
Mag Conference Center 
Gail Linus Orth 

St. Louis Chapter 
Monthly, 3rd Tues., 7 p.m. 
Thornhill Branch of 
St. Louis County Library 
Call David Doudna 
314B67-4482 

81 6/W-6655 

Central Indiana Chapter 
Monthly, 3rd Sat., 10 a.m. 
Call John Oglesby 
317/353-3929 

Fort Wayne Chapter 
Monthly, 2nd Wed., 7 p.m. 
Indiana/Purdue Univ. Campus 
Rm. B71, Neff Hall 
Call Blair MacDermid 

IOWA 
Iowa City Chapter 
Monthly, 4th Tues. 
Engineering Bldg., Rm. 2128 
University of Iowa 
Call Robert Benedict 

219/749-2042 

319/337-7853 

Kodiak Area Chapter 
Call Norman C. McIntosh 
907/486-4843 

San Carlos 
Call: FIG Hotline - 415/%2-8653 

ARIZONA Stockton Chapter 
Call Doug Dillon 
209/93 1-2448 Phoenix Chapter 

Call Dennis L. Wilson 
602/956-7678 

Tucson Chapter 
Twice Monthly, 
2nd & 4th Sun., 2 p.m. 
Flexible Hybrid Systems 
2030 E. Broadway #206 
Call John C. Mead 
602/323-9763 

Central Arkansas Chapter 
Tivice Monthly: 2nd Sat., 2 p.m. & 
4th Wed., 7 p.ni. 
Call Gary Smith 
501/227-7817 

COLORADO 
NEVADA 

Southern Nevada Chapter 
Call Gerald Hasty 
702/452-3368 

Denver Chapter 
Monthly, 1st Mon., 7 p.m. 
Call Steven Sarns 
303/477-5955 

NEW HAMPSHIRE 
New Hampshire Chapter 
Monthly, 1st Mon., 6 p.m. 
Armtec Industries 
Shepard Dr., Grenier Field 
Manchester 
Call M. Peschke 

NEW MEXICO 
Albuquerque Chapter 
Monthly, 1st Thurs., 7:30 p.m. 
Physics & Astronomy Bldg. 
Univ. of New Mexico 
Call Rick Granfield 

603/774-7762 

505/296-8651 

CONNECTICUT 

Central Connecticut Chapter 
Call Charles Krajewski 
203/344-9996 

KANSAS 

Wichita Chapter (FIGPAC) 
Monthly, 3rd Wed., 7 p.m. 
Wilbur E. Walker Co. 
532 Market 
Wichita, KS 
Call Arne Flones 
3 16/267-8852 

FLORIDA 

Orlando Chapter 
Every two weeks, Wed., 8 p 
Call Herman B. Gibson 
305/855-4790 

Miami 
Monthly, Thurs., p.m. 
Coconut Grove area 
Call John Forsberg 
305/252-0108 

Tampa Bay Chapter 
Monthly, 1st Wed., p.m. 
Call Terry McNay 
8 13/725- 1245 

.m. 
CALIFORNIA 

LOUISIANA 
Los Angela Chapter 

Monthly, 4th Sat., 10 a.m. 
Hawthorne Public Library 
12700 S. Grevillea Ave. 
Call Phillip Wasson 
21 3/649- 1428 

New Orleans Chapter 
Call Darryl C. Olivier 
504/899-8933 NEW YORK 

FIG, New York 
Monthly, 2nd Wed., 8 p.m. 
Queens College 
Call Ron Martinez 

Rochester Chapter 
Bi-Monthly, 4th Sat., 2 p.m. 
Hutchinson Hall 
Univ. of Rochester 
Call Thea Martin 

212/517-9429 

716/235-0168 

Syracuse Chapter 
Monthly, 3rd Wed., 7 p.m. 
Call Henry J. Fay 

OHIO 
3 15/446-4600 

MASSACHUSETTS 
Monterey/Salinas Chapter 
Call Bud Devins 
408/633-3253 

Boston Chapter 
Monthly, 1st Wed. 
Mitre Corp. Cafeteria 
Bedford, MA 
Call Bob Demrow 
617/688-5661 after 7 p.m. 

Orange County Chapter 
Monthly, 4th Wed., 7 p.m. 
Fullerton Savings 
Talbert & Brookhurst 

Fountain Valley 
Monthly, 1st Wed., 7 p.m. 
Mercury Savings 
Beach Blvd. & Eddington 
Huntington Beach 
Call Noshir Jesung 
714/842-3032 

San Diego Chapter 
Weekly, Thurs., 12 noon 
Call Guy Kelly 
619/268-3100 ext. 4784 

GEORGIA 

Atlanta Chapter 
Call Ron Skelton 
404/393-8764 1 

MICHIGAN 
Detroit Chapter 
Monthly, 4th Wed. 
Call Tom Chrapkiewicz 
313/562-8506 

ILLINOIS 

Central Illinois Chapter 
Urbana 
Call Sidney Bowhill 
217/333-4150 

Fox Valley Chapter 
Call Samuel J. Cook 
312/879-3242 

Athens Chapter 
Call Isreal Urieli 
614/594-3731 

Cleveland Chapter 
Call Gary Bergstrom 
2 16/247-2492 

Cincinatti Chapter 
Cali Douglas Bennett 
5 13/83 1-0142 

MINNESOTA 

MNFIG Chapter 
Even Month, 1st Mon., 7:30 p.m. 
Odd Month, 1st Sat., 9:30 a.m. 
Vincent Hall Univ. of MN 
Minneapolis, MN 
Call Fred Olson 
612/588-9532 

Sacramento Chapter 
Monthly, 4th Wed., 7 p 

Call Tom Ghonnley 
916/444-7775 

1798-59th St., Rm. A 
.m. 

Rockwell Chicago Chapter 
Call Gerard Kusiolek 
312/885-8092 

I Volume VI, No. 6 FORTH Dimensions 42 



Dayton Chapter 
Twice monthly, 2nd Tues., & 
4th Wed., 6:30 p.m. 
CFC 11 W. Monument Ave. 
Suite 612 
Dayton, OH 
Call Gary M. Granger 
5 13/849- 1483 

Southern Belgium FIG Chapter 
Contact Jean-Marc Bertinchamps 
Rue N. Monnom, 2 
B-6290 Nalinnes 
Belgium 
071/213858 

VERMONT GERMANY 

Vermont Chapter 
Monthly, 3rd Mon., 7:30 p.m. 
Vergennes Union High School 
Rm. 210, Monkton Rd. 
Vergennes, VT 
Call Hal Clark 
802/877-2911 days 
802/452-4442 eves. 

Hamburg FIG Chapter 
Monthly, 4th Sat., 1500h 
Contact Horst-Gunter Lynsche 
Common Interface Alpha 
Schanzenstrasse 27 
2000 Hamburg 6 

CANADA OKLAHOMA IRELAND 
Nova Scotia Chapter 
Contact Howard Harawitz 
227 Ridge Valley Rd. 
Halifax, Nova Scotia B3P2E5 
902/477-3665 

Central Oklahoma Chapter 
Monthly, 3rd Wed., 7:30 p.m. 
Health Tech. Bldg., OSU Tech. 
Call Larry Somers 
2410 N.W. 49th 
Oklahoma City, OK 731 12 

Irish Chapter 
Contact Hugh Doggs 
Newton School 
Water ford 
051/75757 or 051/74124 

VIRGINIA 

First Forth of Hampton Roads 
Call William Edmonds 
804/898-4099 

Southern Ontario Chapter 
Quarterly, 1st Sat., 2 p.m. 
General Sciences Bldg. 
Rm. 312 
McMaster University 
Contact Dr. N. Solntseff 
Unit for Computer Science 
McMaster University 
Hamilton, Ontario L8S4K1 
416/525-9140 ext. 3443 

Potomac Chapter 
Monthly, 1st Tues., 7 p.m. 
Lee Center 
Lee Highway at Lexington St. 
Arlington, VA 
Call Joel Shprentz 
703/437-9218 eves. 

ITALY OREGON 
FIG Italia 
Contact Marco Tausel 
Via Gerolamo Forni 48 
20161 Milano 
02/645-8688 

Greater Oregon Chapter 
Monthly, 2nd Sat., 1 p.m. 
Tektronix Industrial Park 
Bldg. 50, Beaverton 
Call Tom Almy 
503/692-2811 Richmond Forth Group 

Monthly, 2nd Wed., 7 p.m. 
154 Business School 
Univ. of Richmond 
Call Donald A. Full 
804/739-3623 

REPUBLIC OF CHINA 
PENNSYLVANIA Toronto FIG Chapter 

Contact John Clark Smith 
P.O. Box 230, Station H 
Toronto, ON M4C5J2 

R.O.C. 
Contact Ching-Tang Tzeng 
P.O. Box 28 
Lung-Tan, Taiwan 325 

Philadelphia Chapter 
Monthly, 3rd Sat. 
LaSalle College, Science Bldg. 
Call Lee Hustead 
215/539-7989 

FOREIGN COLOMBIA 
SWITZERLAND 

Colombia Chapter 
Contact Luis Javier Parra B. 
Aptdo. Aereo 100394 
Bogota 
214-0345 

AUSTRALIA Swiss Chapter 
Contact Max Hugelshofer 
ERN1 & Co., Elektro-Industrie 
Stationsstrasse 
8306 Bruttisellen 
01/833-3333 

TENNESSEE 

Melbourne Chapter 
Monthly, 1st Fri., 8 p.m. 
Contact Lance Collins 
65 Martin Road 
Glen Iris, Victoria 3146 
03/29-2600 

Sydney Chapter 
Monthly, 2nd Fri., 7 p.m. 
John Goodsell Bldg. 
Rm. LG19 
Univ. of New South Wales 
Sydney 
Contact Peter Tregeagle 
10 Binda Rd., Yowie Bay 
02/52-7490 . 

East Tennessee Chapter 
Monthly, 2nd Tue., 7:30 p.m. 
Sci. Appl. Int'l. Corp., 8th F1. 
800 Oak Ridge Turnpike, Oak Ridge 
Call Richard Secrist 
61W693-7380 ENGLAND 

SPECIAL GROUPS Forth Interest Group - U.K. 
Monthly, 1st Thurs., 
7p.m., Rm. 408 
Polytechnic of South Bank 
Borough Rd., London 
Contact Keith Goldie-Morrison 
Bradden Old Rectory 
Towchester, Northamptonshire 
"12 8ED 

TEXAS 

Austin Chapter 
Contact Matt Lawrence 
P.O. Box 180409 
Austin, TX 78718 

DallasIFt. Worth 
Metroplex Chapter 
Monthly, 4th Thurs., 7 p.m. 
Call Chuck Durrett 
214/245- 1064 

Apple Corps Forth Users 
Chapter 
Twice Monthly, 1st & 
3rd Tues., 7:30 p.m. 
1515 Sloat Boulevard, #2 
San Francisco, CA 
Call Robert Dudley Ackerman 
4151626-6295 

BELGIUM 
FRANCE Baton Rouge Atari Chapter 

Call Chris Zielewski 
504/292- 19 10 

FIGGRAPH 
Call Howard Pearlmutter 
408/425-8700 

Belgium Chapter 
Monthly, 4th Wed., 20:00h 
Contact Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
031658-6343 

French Language Chapter 
Contact Jean-Daniel Dodin 
77 Rue du Cagire 
31100 Toulouse 
(16-61)44-03 

Houston Chapter 
Call Dr. Joseph Baldwin 
713/749-2120 

VolumeVI, No. 6 43 FORTH Dimensions 

I 



ORDER FROM THE FORTH INTEREST GROUP 

i 

Complete Order Form on Page 24 

ROlEf iT  S n I T H  
2300 ST. F R A N C I S  DH. 
PAL0 ALTO, C A  94303 

Address Correction Requested 


