
Dimensions

Simple
Modem I10

The ForthCard

STD BUS INTERFACE

DOWNLOAD SOURCE
FROM YOUR PC !

OPTIONAL 5v
REGULATOR ON CARD

The Forthcard provides OEMs and end
users with the abiliiv to develoo Forth and

24 KBWI

ass€
STD

?m bl
bus

y lai
con

Just add a CRT terminal (or a computer
with RS-232 port), connect 5 volts and you
have a self contained Forth computer.
The STD bus interface makes it easy to single e-,
expand. limited d h w l

Part # S W
Download Forth source code using the Forthcard, Cb
serial port on your PC. Use the onboard 2kbyte RAM. :
EPROMlEEPROM programming capability and Manuok
to save debugged Forth and assembly
language programs. Standard UV erasable
EPROMs may also be programmed with an
exte ?rnal VPK 'ly.

FORTH Dimensions
Published by the

Forth Interest Group

bolume V l , Number 5
January/February 1985

Editor
Marlin Ouverson

Production
Cynthia Lawson

Fwrh Dimensions solicits editorial
..a.erial, comments and letters. N o

-s>wnsibility is assumed for accuracy
I-. material submitted. Unless noted
::.xwise, material published by the
Fsr rh Interest Group is in the public
zxnain. Such material may be repro-
:xed with credit given to the author
1.7d to the Forth Interest Group.

Subscription to Forth Dimensions is
-:x uith membership in the Forth
inmest Group at $15.00 per year
5Y.00 foreign air). For membership,

zhange of address and to submit
-.aterial for publication, the address is:
Forth Interest Group, P.O. Box 8231,
San Jose, California 95155.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Dimensions
FEATURES

13

F
8

B

18

i
30

32

34

38

Simple Modem I/O Words
by John S. James
This, the first in a series of application tutorials, will help beginning Forrh pro-
grammers to communicate with the world. High-level model definitions are
provided, as well as executable routines for IBM PC and compatibles.

An Augmented TRACK
by Andreas Goppold
Modifications and extensions to van der Eijk’s trace ut i l i ty have made i t even
more powerful. Tracing a word’s execution at varying levels is one feature.

Quicksort and Swords
by Wil Baden
While Hoare’s efficient “Quicksort” does not lend itself well to implementation
in BASIC or Fortran, the same is not true of this Forth version. Roughly parallel
Pascal code is provided for comparison.

Why Forth Isn’t Slow
by Adin Tevet
It isn’t always easy to explain to Forth novices why words calling words ud
infiniturn doesn’t require nearly infinite execution time. This Israeli author
stopped making claims and started providing proof!

SOFTN KT
High-Level Packet Communication
by Jens Zander and Robert Forchheimer
Packet radio is the natural extension of both personal and business teleconimun-
cation. The Forth-based model in Sweden should be studied for its unconven-
tional use of packets as “programs.”

FOKML, 1984 Asilomar Conference
Once again, FORML has ho5ted a mind-expanding forum of Forth experts. Thij
review encapsulates some of the papers from this year’s meeting.

FOKML China Tour 1984, Part One
The months of preparation were evident in the recent series of historic Chinese
Forth conferences to which FIG members were invited. In our next issue, readers
will find the conclusion of this report.

DEPARTMENTS
5 Letters
6 Editorial: “Author Hecognition”
9

41
42 FIG Chapters

Ask the Doctor: “How to Learn Forth”
by William I;. Hagsdale
Chapter News by John 1). Hall

VolumeVI, No 5 3 FORTH Dimensions

33 KFLOPS
Use your IBM PC (or compatible) to mul-
tiply two 128 by 128 matrices at the rate
of 33 thousand floating-point operations
per second (kflops)! Calculate the
mean and standard deviation of 16,384
points of single precision (4 byte) float-
ing-point data in 1 .4 seconds (35
kflops). Perform the fast Fourier trans-
form on 1024 points of real data in 6.5
seconds. Near PDP-11/70 performance
when running the compute intensive
Owen benchmark.

WL FORTH-79
FORTH-79 by WL Computer Systems is
a powerful and comprehensive pro-
gramming system which runs on the
IBM PC (and some compatibles). If your
computer has tile 8087 numeric data
processing chip (NDP) installed, then
this version of FORTH-79 will unleash
the awesome floating-point processing
power which is present in your system.
If you haven't gotten around to installing
the 8087 NDP coprocessor in your com-
guter, you can still use WL FORTH to
Nrite applications using standard
'ORTH-79.

8087 support and other features
WL FORTH features extremely fast float-
ing point calculations because it uses
the 8087 hardware stack to store inter-
mediate results and achieve 16 to 18
digits precision. The system includes a
large set of transcendental functions,
such as SIN, COS, TAN, ASIN, ACOS,
ATAN, Yz, LN, LOG, SQRT. FORTRAN
like conversion specification words
allow the user to specify output field
width, places beyond the decimal point
and fixed or scientific notation.

The FORTH assembler allows the user
to code time critical words in 808718088
assembly language and includes struc-
tured branch and looping constructs.
The entire 1 Mb address space is avail-
able for array storage. Definitions can
include SWITCH to different screen
files, thereby allowing dynamic switch-
ing of screen files. SAVE allows current
system to be saved as a .COM file and
ZAP prevents your applications from
being decompiled. The system in-
cludes interrupt driven exception hand-
lers for both the 8087 and 8088, and the
programmer can select the desired
number of screen buffers.

But can I get the source?
Unlike most other products, the com-
pletesource is available at a very
affordable price.

Package 1 includes FORTH-79 ver-
sions with and without 8087 support.
Included are screen utilities, 8087 and
8088 FORTH assemblers. $100

Package 2 includes package 1 plus the
assembly language source for the WL
FORTH-79 nucleus. $150

Package 3 includes package 2 plus the
WL FORTH-79 source screens used to
add the 8087 features to the vocab-
ulary. $200

Starting FORTH book. $22

WL Computer Systems
191 0 Newman Road

W. Lafayette, IN 47906
(317) 743-8484

Visa and Master Card accepted

IBM IS a trademark of International Business Ma-
chines

is Beak

Eiik2-
0r-e z i the weaknesses of Forth is

UEZ -:> greatest strength: the simplicity
3 -x inrnnsic language and its exten-
&!-> T h s means that Forth itself is
Y zzsrriull] compact and clean.
~.EC=C-* er, a compact, clean language is
TCT ntcessarily ideal for software
x9t’.mment.
&-d I S xery clean and compact, yet

LW b c a l is impossible to use for any
-ZL *arb.: it is, among other things, so
-c&-e that a programmer must use all
ic- of tricks to do anything. On the

4 : ~ *upply everything you need (and
_ c I to do anything you want.

!he writer for the “Designers De-

-+azine (yes, I’m responsible for the
r:-:h C column), I have been
-:,.owing the Fortran 8x committee
V J 3) Fortran, although it is ob-

-2,ete. \\as, in its time, a clean, simple
zyguage providing both access to the
xachine and high-level constructs.

Hobever, in attempts to keep the
anguage alive and current, many new
-eatures” are being added to it. His-

->rically, compiler vendors would write
.ampilers which would accept the
.:andard (Fortran 66 or 77), then add
. arious “features” or “extensions” to
Take it a little easier to use. Variations
?roliferated.

Recently, at a public forum, the
2anel was asked, “With all the addi-
-:om, isn’t Fortran losing its simpli-
: i t>? Can’t you just leave the language
alone and standardize on the
extensions?” The response was, “Yes,
,t‘s too large; yes, we want to keep it
.imple; but whose features do we
accept?”

The same thing has happened with
Pascal. There are so many different ex-
tended versions of Pascal that por-
tability is out of the question. Indeed,
i f you want to use Pascal, you will
probably have to sacrifice portability
in favor of usability.

Now, Forth is not a dinosaur like
Fortran, nor is it “closed” like Pascal.
It is one of the few languages which

___._ y - a.7 hand, languages like PL/I or

--,-.a

-5-2 - column in Computer Language
- - -
-

support extensions of themselves.
Therefore, it seems, there can be as
many “extended” versions of Forth
running loose as there are Forth
programmers.

One of my problems as the Forth
guru where I work was to maintain
some semblance of order with the
Forth system we use. With any other
language, this is nearly trivial. With
Forth, I spent a lot of time organizing
the mass of “extensions” that people
threw at me daily. The result was a
collection of in-house standard
extension words which were released to
all programmers. Naturally, it was not
an easy task.

Forth, like C, is particularly well
suited to system-level work. Many
people seem to think that it could use
more high-level data constructs, judg-
ing by the articles I’ve seen in Forth
Dimensions and the annual Forth issue
of Dr. Dobb’s Journal. This is un-
doubtedly true.

I propose, however, that the lan-
guage be kept as simple and clean as
possible. We should avoid the num-
erous, perpetually changing “stan-
dards” that Fortran has undergone. I
believe that it would be desirable to
start looking at the various extensions
to Forth as areas requiring standardiza-
tion. The Forth Vendors Group (FVG)
floating-point proposal, for example,
as set forth in the latest Forth issue of
Dr. Dobb’s Journal, is a major step in
that direction.

In the published Forth/C debate, the
C proponent made the claim that Forth
lacks standard utilities and tools.
David Lawson from King City,
California wrote to say, “That was
true in the past, Forth proponents are
now making a serious effort to keep a
standard language with a library of
utilities slowly being built. For in-
stance, almost every issue of Forth
Dimensions has some utilities or ways
to build them.”

This is true, I admit. However, this
is just a collection of utilities, not
necessarily standardized, and some-
times flawed. An acquaintance of mine
discovered some serious errors in a
floating-point utility published in

Forth Dimensions a while back.
There are numerous common pack-

ages that could be standardized to
some degree in the name of portability.
Floating point is one. Others include
graphics, terminal I/O, high-level data
structures, multi-tasking, etc. The idea
is to come up with descriptions of user-
level words, giving the stack picture
and purpose. Implementation details
should be avoided.

Naturally, this is a major task. It
should not be delayed overly much,
however. At some time, the invest-
ments made in individual extensions
will become so great that any attempt
to find order will be met with, “Sure,
standardize, but make mine the
standard. ”
Sincerely,
Ken Takara
San Jose, California

Back to Recursion
Dear Editor:

In the article on recursion (Forth
Dimensions VI/4), Michael Ham dis-
cusses Charles Moore’s suggested word
RECURSIVE which would be used in the
definition of GCD in the following
manner:
: GCD (a b --- gcd) RECURSIVE ?DUP IF
SWAP OVER MOD GCD THEN ;

However, according to Ham
“ . . .the word ; must now clear (rather
than toggle) the smudge bit when the
definition is complete.” If you define
the word RECURSIVE as follows, using
the word SMUDGE from MVP-FORTH:
: RECURSIVE SMUDGE ; IMMEDIATE
the definition of GCD becomes:
: GCD RECURSIVE ?DUP IF SWAP OVER
MOD GCD RECURSIVE THEN ;
then you don’t have to worry about the
word ; clearing the smudge bit because
RECURSIVE again toggles the smudge
bit before ; is executed. Another
example is the definition of the word N!
(“n factorial”):
: N! (n --- n!) RECURSIVE DUP 1 = NOT
IF DUP 1 - N! RECURSIVE THEN;
where n is greater than or equal to one.
Sincerely,
Ron Apra
San Jose, California

Volume V I . NO. 5 5 FORTH Dimensions

Author Recognition
The dust had barely settled following

our return from three weeks of Forth
conferences in China, when the annual
FIG convention and FORML Asilomar
Conference swept us up. We are back,
firmly in the saddle again, and have
finally dealt with the accumulation of
correspondence and prospective ar-
ticles.

We are now able to announce FIG’S
new policy in recognition of authors of
Forth articles. In order to encourage
authors to write about Forth, a one-
year FIG membership will be awarded
to authors of Forth articles whose
published length is at least one page
(includes authors of material published
in Forth Dimensions). Authors of

published Forth-related letters to
e d i t o r s o f n on -Forth - spec i f ic
publications will receive a coupon
worth ten dollars toward FIG member-
ship. A few restrictions: all credits ap-
ply only to FIG membership for the
single year following publication and
are non-transferable; author must send
a photocopy of the original item,
magazine name and issue date to the
Forth Interest Group within sixty days
of publication (accompanied by an
English synopsis/translation if original
is in another language); and eligible
items must have been first publisbed
after October 1 , 1984. So get busy -
renewal time is coming!

Finally, this month we are pleased to

introduce a new department. Each
‘‘Application Tutorial” will convey
useful code and theory to relative new-
comers. John s. James has volunteered
to serve as the primary contributor of
this material. John’s abilities as an
educator and Forth programmer are
well known, and we are proud to
present his work in our pages on a
regular basis.

- Marlin Ouverson
Editor

Grass-Roots Forth

Dear FIG:
It appears to me that if FIG and its

members are really serious about
promoting the widespread use of
Forth, then less effort should be direc-
ted toward trying to convert members
of the established computer industry
away from their own favorite
computer language, and more effort
should be spent trying to reach the
grass-roots computer user, the entry-
level computer programmer, the
innocent children and wide-eyed home
computer neophytes who have not yet
been conditioned or committed to one
language or another.

Let’s face it, if children (and other
beginning programmers) were equally
exposed to BASIC and Forth, many
(and probably most of the better
programmers) would prefer program-
ming in Forth! And as these program-
mers advance to high levels, they
would certainly carry Forth along with
them.

Step One: Set a goal. So how can the
Forth Interest Group bring this situa-
tion to pass? The first step is to adopt a
goal and encourage as many FIG
members as possible to join in the
effort. Personally, I would like to see
FIG adopt the goal of activelypromot-

ing and supporting the Forth language,
particularly in regards to entry-level
programmers.

If such a goal seems inappropriate
for the organization as a whole, then I
challenge every FIG member pers.ona1-
ly to adopt such a goal and to do
whatever he can to encourage the
growth of Forth among newcomers.

Step Two: Make Forth available. If
Forth is to compete with BASIC, it
must be as accessible as BASIC. This
means it must be free! There is no
other possible way for beginners to
have an opportunity to seriously try it
and find out whether or not they like it.
A public-domain version of Forth (PD-
Forth) must be made available for their
computer - one which they can freely
copy and distribute to their friends. It
is not enough that it be available for
their microprocessor (as fig-FORTH
has been in the past), it must be
computer-specific and ready to run.

I would not at all be surprised to find
out that suitable PD-Forths (probably
versions of fig-FORTH) have already
been written for all of the more
popular home computers. But if so,
then where are they?

Actually, a large number of PD-
Forths is not necessary. Only three -
for the Commodore 64, Apple IIe com-
patibles and IBM PC compatibles -

are really needed to reach the vast
majority of today’s entry-level pro-
grammers. So even if no current PD-
Forths existed, three dedicated in-
dividuals could do the whole thing. Or
a couple of far-sighted vendors could
also do the job by releasing their
obsolete versions of Forth. Not only
would they be increasing the number of
prospective purchasers of their other
Forth products, they would also be
obtaining free distribution of any
advertisements placed on their PD-
Forth boot-up screen.

Step Three: Make Forth visible. It is
not enough to make Forth available, it
must also be visible because many
programmers (particularly at the entry
level) may not be aware of its
availability or its potential.

I am convinced that there are many
opportunities for individual FIG mem-
bers to have fun, gain recognition, get
paid and promote Forth all at the same
time by writing articles in popular
computer programming magazines. I
know tha t magazines such as
COMPUTE, Gazette, RUN and Ahoy
are always looking for good, original
programs and are even willing to pay
for them. Forth is one of the few useful
languages which can be made short
enough to be published in such
magazines. And once the language it-

&

POQTH Dimensions 6 Volume VI. No 5

self has been published, the door is
wide open for tutorial articles and ap-
plication programs.

Step Four: Support the new Forth
users. Since FIG is already supporting
Forth users, nothing new would have
to be done here, except placing more
emphasis on beginners as their num-
bers increase.

And in case you’re wondering why I
don’t follow my own advice and write
my own version of PD-Forth (ho, boy,
don’t I wish I could!), it’s because I’m
still a beginner myself and I still need
your support.

Lionel Hewett
Kingsville, Texas

Death Wish

Dear Marlin:
I believe the Forth standards com-

mittee has a death wish as they con-
tinue to create new dialects with each
“standard” they emit. My current con-
cern is that readers of the August 1984
BYTE do not turn off to Forth when
they read “Forth-83: the Evolution
Continues.” A careful reader will soon
realize Forth-83 is more revolution
than an upward evolution from
Forth-79 or the FIG model (Forth-78).

By using new names, dialects need
not be created. For example, the
Forth-83 DO LOOP and DO +LOOP are
very different animals from the
Forth-78 DO LOOP and DO +LOOP. I
would like to be able to use both (while
maintaining portability with the FIG
model and without having to add
extensions). I would be able to use both
if the Forth-83 versions were named
0083, LOOP83 and +LOOP83. More
important to me: I would use the new
keywords only when their new
properties are relevant, while continu-
ing to use the proven Forth-78
keywords as before. In this way, evolu-
tion can take place with a minimum of
risk. Note my use of Forth-78. The
Forth-79 Standard is incomplete and,
thus, useless to me.

As an experienced Forth program-
mer, I find the changes from Forth-78

(listed in BYTE table three) to be
marginal and, in the main, unneces-
sary. For example, / and /MOD now use
floored division, which is very useful in
some applications. However, that is
not the division the world knows and
uses. I believe the committee is naive
not to retain “common division” and
use new names for new animals.
Furthermore, implementations of these
new keywords have not been fully
evaluated; practical consequences are
not known.

I do not perceive any preemptive
benefits. More specifically, the new
definitions are not such significant im-
provements over the old that they jus-
tify replacement - additions would
make more sense.

I suggest the committee address new
areas such as graphics, mathematics
and data bases in lieu of massaging
yesterday t o death. Finally, I
recommend the committee recognize
the intrinsic democracy of extensibility
by using it.

Sincerely yours,

Nicholas Pappas
Oakland, California

Volume VI. No 5 7

for the

Commodore 64
Now the best for less

$69.95

C64-FORTH/79TM integrated
professional development
environment.

0 See our reviews in INFO 64,
MIDNIGHT, and NY CBMUC. C64-
FORTH/79 is Commodore Approved.

0 High performance 2D graphics
extension including HRES rnulticolor
line, circles, scaling, windowing, HRES
character graphics, sprites, ram
characters, 10 demo screens and
more.

0 Complete CBM compatible floating
point package includes arithmetic,
relational, SIN/COS, SQR, and more.
Professional, 21 command, cursor
screen editor with virtual memory,
conditional macro assembler, and
debug-decompiler facility.
String extension for easy string -

0 ~ ~ ~ ~ ~ % ~ e with CBM peripherals,
Dooular third party peripherals and
‘c62 operating setup/memory
configurations.

0 Easy to use 167 age manual written
for the serious g r th rograrnmer with
many examples, apptcation screens,
detailed command glossaries and
Fompatible with “Going Forth”, or

compiles bootable turnkey
application programs for royality free
distribution.

Discover Forth.”
0 “SAVE TURNKEY” automatically

(Commodore 64and CBMare trademarksof Commodore)

TO ORDER
- Check, money order, bank card.

- Add $4.00 postage and handling in

- Mass. orders add 5% sales tax.
- Forei n orders add 20% shipping and

- Dealer and Club Inquiries welcome.

COD’S add $1.65.

USA & Canada.

handfng.

PERFORMANCE
M I C R O

PRODUCTS
P.O. Box 370

Can ton, M A 021 20
(617) 828-1209

Stable - Transportable - Public Domain - Tools
You need two primary features in a software development package a
stable operating system and the ability to move programs easily and
quickly to a variety of computers. MVP-FORTH gives you both these
features and many extras. This public domain product includes an editor,
FORTH assembler, tools, utilities and the vocabulary for the best selling
book "Starting FORTH". The Programmer's Kit provides a complete
FORTH for a variety of computers. Other MVP-FORTH products will
simplify the development of your applications.

MVP Books - A Series
0 Volume 1, All about FORTH by Haydon MVP-FORTH

glossary with cross references to fig-FORTH.
Startmg FORTH, and FORTH-79 Standard 2nd Ed

0 Volume 2, MVP-FORTH Assembly Source Code Includes
CP/M@ , IBM-PCm , and APPLEm listing for kernel

0 Volume 3, Floatmg Po,nt Glossary by Springer
0 VolUme 4, Expert System with source code by Park
0 Volume 5, h le Management System with interrupt security

$25

$20
$1 0
$1 5

$25
$1 5

by Moreton
+&I Volume 6, Expert Tutorfa/ for Volume 4 by M & L Derick

MVP-FORTH Software - A Transportable FORTH
- MVP+ORTH Programmer's Kit includtna disk. documen-
-

tation Volumes 1 & 2 of MVP-FORTH Series (All About
FORTH 2M Ed 8, Assembly Source Code) and Starbng

- IBM PCiXTlAT 0 PC/MSDOS 0 Osborne, 0 Kaypro
- H89iZ89 Z Z I O O 0 TI-PC 0 MicroDecisions

" FORTH I CP/M 0 CP/M 86 0 APPLE 0 STM PC, -
-

~~.~ ~. -
- Northstar Z Compupro, 0 Cromenco. 0 DEC'Rainbow.

$1 50
- MVP-FORTH PADS (Professional Application Development
System) for IBM PC/XT/AT or PCjr or Apple 11, 11+ or Ile. An
integrated system for customizing your FORTH programs and
wlications. The editor includes a bidirectional string search
and is a word processor specially designed for fast develop
ment. PADS has almost triple the compile speed of most
FORTH's and provides fast debugging techntques. Minimum
size target systems are easy with or without heads Virtual
overlays can be compiled in object code PADS IS a true
professional development system. Spectty Computer $500

0 MVP-FORTH EXPERT-2 System for learning and developing
knowledge based programs. Both IF-THEN procedures and
analytical subroutines are available Source code is provided.
Specify 0 Apple. C IBM. or Z CPlM Includes MVP-FORTH
Series, Volumes 4 and 6, Expert Systems by Park. $1 00

40 FORTKWriter, A Word Rccessor for the IBM PC/XT/AT with
256K MVP-FORTH compatible kernal with Files. Edit and Print
systems. Includes Disk and Calculator systems and ability to
Compile additional FORTH words. $1 50

+& Z NEC 8201. 1 TRS-80/100, 0 HP 11 0, 0 HP 150
-

+&

+%

0 MVP-FORTH Enhancement Package for IBM-PCIXTIAT +' Programmer's Kit. Includes full screen editor, MS-DOS file

0 MVP-FORTH Cross Compiler for CP/M Programmer's Kit.
Generates headerless code for ROM or target CPU

0 MVP-FORTH Meta Compiler for CP/M Programmer's kit. Use
for applicatons on CPlM based computer. Includes public
domain source $1 50

0 MVP-FORTH Fast Floating Point Includes 951 1 math chip on
board with disks, documentation and enhanced virtual MVP-
FORTH for Apple 11, I1 + , and Ile.

interface, disk, display and assembler operators. $110

$300

$450
0 MVP-FORTH Programming Aids for CPIM. IBM or APPLE

Programmer's Kit. Extremely useful tool for decompiling.
callfinding, translating. and debugging. $200

Rogrammer's Kit or PADS $85

Apple on Programmer's Kit or PADS $55
$80

0 MVP-FORTH Floating Pdnt & Matrix Math for IBM
PClXTlAT with 8087 or Apple with Applesoft on

0 MVP-FORTH Graphics Extension for IBM PCIXTIAT or

0 MVP-FORTH MS-DOS file interface for IBM PC PADS

THE FORTH SOURCE^^
MVP-FORTH

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (415) 961-4103

i

FORTH MSKS
FORTH with editor, assembler. and manual
0 APPLE by MM. 83 $250
0 ATARI" valFORTH $60 VIC FORTH by HES, 4
0 CPIM by MM. 83 $100 VIC20cartridge 6 $20
0 HP-85 by Lange $90 0 C64 by HES Commodore
0 HP-75 by Cassady $1 50 cartridge $40
0 IBM-PC by LM. 83 $100 TimeX by HW

d 2068 +.* $30
0 280 by LM. 83
0 8086188 by LM. 83

$100 0 68000 by LM, 83

& T/S IOOO/ZX-81 $25

$100
Enhanced FORTH with: F-Floating Point. G-Graphtcs. T-Tutorial,
S-Stand Alone, M-Math Chip Support. MT-Multi-Tasking, X-Other
Extras, 79-FORTH-79, 83-FORTH-83.
0 APPLE by MM. C C64 by Parsec. MVP, F,

0 ATARI bv PNS. F.G. 8, X. $90 2 Ext.Mions for LM Soecifv
F, G. & 83 $180 G & X $96

? >

0 CPlM by MM. F & 83 $1 40 IBM Or 8086
0 TRS-8011 or 111 by MMS

0 Timex by FD. G.X, & 79 $45

Z Software Floating
$1 00

(IBM or 8086) $100

F, X, & 79 $1 30 cbz,
Key lo vendors:

FD Forth Dimension
z 9511 Support

(Z80 or 8086) $1 on . ._ - HW Hawg Wild Software - Corw Graphics
IIBMPC) $1 00

LM Laboratory Microsystems
MM MicroMotion
MMS Miller Microcomputer Serv~ces
PNS Pink Noise Studio

1 Data Base
-ent $200

FORTH MANUALS, GUIDES 6 OOCUYllTS

& Brodie, author of best selling assember
-$O Thinking FORTH by Leo I W ftghrth wtth

$25
"Starting FORTH"

Haydon See above S25 5 3 9 8 1 VoI 2 +%*
0 FORTH Encyclopedia by - 1982 I 1983 each $25

Dertck & Baker $25 5 1-1 Rochester

Netherlands 525 1 1 9 8 4 #each $25
z WbOnphY of FORTH $1 7

by Winfield S-5 Z The hnul d FORTH
Applkation 6 Research

$1 6 z F- M i n g s -
0 ALL ABOUT FORTH by - '9% z 1981 V O l l

-

60 FYS FORTH user's Manrut - .-S +' with Source Code from the - 'wl - I982 9 1983

0 The Complete FORTH

0 Understanding FORTH

0 FORTH Fundamentafr. I V O l 21 ,&each $1 7

0 FORTH Fundamentals, M Y $30

40 Mastering FORTH by L.ng-0- $23

FORTH by Ting $25

by Reymann u - voi 1.1 l V 0 l 1/2

Vol I by McCabe 516 I WAFORTH by

VOI II by M C G ~ D ~ s l j 1 Th..ded Intwretive

#' Anderson & Tracy $18 z OUkk to f i g

Chirltan j .7 1 I d d a FB3 Manual by
0 Beginning FORTH by

0 FORTHEncycbpedb Ting +*-- $30
Packet Guide f7 I FORTHHot.book by -,

0 And So FORTH by Huang A - Ti% @$25
525 - hritltbn toFORTH $20 colleae level text

Z Instailation Manual for figFORTH $1 5

cj Source Listings d Hg-FORTH, Specify CPU $1 5

O W n g Infamulion: Check Money Order (payable to MOUNTAIN VIEW PRESS
INC) VISA Mastercard American Expess COD'S $5 extra Minimum order $15
NO billing or unpaid Po s California residents add Sales tax Shipping costs in US
mcludea in price Fweign orders pay In US funds on US bank include for handling
and Shipping by A8r $5 lor each item under $25 $1 0 for each item between $25 and
$99 and $20 for each item over $100 All prices and products subject to change or
withdrawal without notice Single system and/or single user license agreement
required on some products

How to Learn Forth
William E Ragsdale

Hayward, California

“Ask the Doctor” is Forth Dimen-
sions’ health maintenance organization
devoted to your understanding and use
of Forth. Questions of a problem-solv-
ing nature, on locating references, or
just about contemporary techniques
are most appropriate. When needed,
our good doctor will call in specialists.
Published letters will receive a pre-
print of the column as a direct reply.

Your doctor’s mailman has just left,
leaving an interesting assortment of
questions and comments from readers
such as yourself. While reading and
sorting, your faithful practitioner has
just placed four more letters on a
looming, teetering pile. It wobbles and
slumps to the floor - a call to action!

What common thread runs through
this accumulation? The frustration of
people struggling to get a toehold to
learning Forth. They cry out:

-How can I get started?
-Which Forth?
--I have no documentation!
-Whom do I ask?

To assist those of you represented by
these forty letters, your faithful coun-
sellor will address 1) selecting a Forth
system for learning, and 2) a plan for
systematic self-education.

To clarify the task of learning Forth,
take as your goal the ability to read
Forth programs by others and to write
modest programs of your own. Three
keys are needed to unlock the mystery
of Forth. First is your desire. Next is a
learning environment. Finally, a study
plan to guide your efforts, If any of
these are missing, expect trouble; when
all are present, you soon should ex-
perience a thrill from the mastery of a
new intellectual resource.

To aid in your learning task, one
noble authority (guess!) suggests the
following list of items and their relative
importance to you:

Specific computer - 5%
Forth version and documentation
- 10%
Starting Forth text - 25%
Attitude + method - 60%

Most correspondents say something
like, “Which Forth is the best for me to
learn on?” or “ I have Forth from the
TI users’ library but no documenta-
tion.” You should realize that the time
invested in learning Forth will be fifty
to 300 hours. We first wish to evaluate
the suitability of specific systems for
learning. If you are missing elements of
the above list, the required time could
be doubled or, worse, you could be-
come so demoralized that you abandon
the effort.

The Computer

Which computer is best? Whatever
one you own now! Forth is the great
equalizer: From a learning standpoint,
hardware carries little impact. Later,
some systems may aid specific applica-
tions work but, for now, not to worry.
You can start with a VIC-20 or better
- this means a computer with full
keyboard and at least 16K of memory.
The Sinclair or Jupiter Ace is not sug-
gested, as you will be fighting the key-
board or memory limitations. A disk
should be available, even if you don’t
begin with one. Mass storage is a key
element in Forth; your learning will
stop abruptly without easy access to
data storage. Cassette tape is a distant,
but livable, second choice.

To summarize Forth’s minimum
needs in a computer:

16K memory
full, ASCII keyboard
50K mass storage
16-line by 64-character display

Forth Version

The Forth you choose should be
evaluated for its learning value. Just

because you find it in a free library, or
get a copy from a friend, does not
mean it will be necessarily appropriate
for your learning effort. A question-
naire is included with this month’s
column. The good doctor suggests
that, after using it to evaluate your
choice, you mail in a copy. A summary
of the results will be published in fu-
ture issues of this column for the aid
of all.

The score card has a maximum
possible point total of thirteen. Any
version scoring less than seven will im-
pede, rather than aid, your effort. A
number of items have been included
without point values. This information
will be helpful for advanced use, but
will not play a significant part in your
initial skill development.

The importance of certain features
to the learning process is shown by the
point/rating scale. Other scales would
be appropriate for other needs; this
one is slanted only to your learning
needs.

Your candidate system should be
based on a broadly documented lan-
guage model. For the future, Forth-83
is growing in importance. But to date,
Forth-79 and fig-FORTH are better
represented in current books. Not
recommended are variant dialects such
as SL5 (Stackworks) or TransForth.
These systems either have renamed
keywords (e.g., C@ and C! or are miss-
ing some (e.g., DOES>).

Since our textbook will be Leo Bro-
die’s Starting Forth, either poly-
FORTH or Forth-79 versions are most
appropriate. But your future work is
likely to be most affected by Forth-83,
and the learning differences are small.
Since that book discusses aspects of
f i g - F O R T H , p o l y F O R T H a n d
Forth-79, you will unavoidably ex-
perience some confusion - though not
insurmountable - regardless of your
version of Forth.

Forth Documentation

Our scorecard suggests at least fifty
pages of Forth documentation should

FORTH Dimensions 9 Volume VI, No. 5

accompany your system. With the
wealth of available books, you need
not depend solely on your supplier to
teach you Forth. In fact, most manuals
give only the facts, covering funda-
mental word definitions, editing and
compiling. Style, examples and ap-
plication will be learned elsewhere.
So. . . i f your manual covers the basics
of installation, use and options, educa-
tion can be derived from other sources.

Your system documentation must
cover machine-specific details:
1) How to start up (boot)
2) Customization or loading options
3) Peripherals supported (e.g., print-

er, alternate disks)
4) Use of the editor
5) Use of host operating system or

filer
6) Glossary with deviationdexten-

sions from a base-line system
(Forth-83, Forth-79, fig-FORTH)

Why
Forth?

IBecause
it

bVi0 IR IK '§ !

kVhy

IBecause
it's

4 h IF 10 IR T IH 'i?

IF A\ !6 !

Benchmarks for
4xFORTH in ROM on a
10.0 mHz MC68000

B
0.296
0.061
0.38
0.57
0.98

-

End User License Fees Start

OEM and Porting Services
Available Upon Request

At $2SO .oo

by

7he Dragon Group
148 Poca Fork Road
Elkviev, WY 25071

3041965-5517

' As published in
Byte , Nov 1984 , p 308-31 0

4xFORTH and Forth
Accelrrdtor are Trddemdkes

of The Dragon Group, InC.
0 1984, by TDG, Inc.

You should expect initial load mod-
ules (boot-up object code) of 6 to 15K,
and possible options on top of that.
Access to mass storage (disk or tape)
and a text editor are essential.

Study Plan

If you are a total novice with Forth,
read Understanding Forth by Rey-
mann. Each aspect of Forth is covered
in a brief, enlightening overview. The
material provides an excellent knowl-
edge base which will be detailed in
Starting Forth. (Both books are avail-
able from the Forth Interest Group -
see order form in this issue.)

Next, you should work through
Starting Forth with your system. This
means line-by-line, example-by-exam-
ple, on your system. It does not mean
reading in bed, just before dropping
off to sleep. The chapters and pages to
be covered are tabulated below. Work
every example. Master every problem.

FORTH: FOR Z-W, 8086,68OOo, and IBM@ PC
Complies with the New 83-Standard

GRAPHICS. GAMES COMMUNICATIONS ROBOTICS
DATA ACQUISITION 0 PROCESS CONTROL

0 FORTH programs are instantly FORTH Application Development Systems
include interpretericompiler wlth virtual memory
management and muiti tasking assembler full
screen edltor decompiler utilities and 200 page microprocessors

FORTH IS interactive and conver- manual Standard random access files used for
sational, but 20 times faster than screen storage extensions provided for access to
BASIC all operating system functions

FORTH programs are highly strut. 2-86 FORTH for CPIM" 2 2 or MPiM I1 $100 00
8080 FORTH for CPiM 2 2 or MPiM II $100 00
8086 FORTH for CPlM 86 or MS DOS $100 00 tured, modular, easy to maintain

0 FORTH affords direct Contro l Over PC/FORTH for pc DOS CP/M 86 or CCPM
all interrupts, memory locations, and $100 00 68000 FORTH for CP/M 68K $250 00

ilo ports FORTH + Systems are 32 bit implementations

portable across the f o u r most popular

FORTH allowS full to DOS
files and functions
0 FORTH application programs can
be
and distributed with no license fee

that allow creation of programs as large as 1
megabyte The entire memory address space of
the 68000 or 8086188 is supported directly

$250 00 pc FORTH +

8086 FORTH +for CP/M 86 Or MS-DOS $250 00
68000 FORTH + for CP/M 6 8 ~ $400 00

Into turnkey CoM files

Cross Compi'ers are Extension Packages available include soft
available for R O M ' e d or disk based ap- ware floating point cross compilers INTEL
pllcations on most microprocessors 8087 support. AMD 951 1 support advanced col

carp CPIM Digital Research Inc PCiForth + and debugger telecommunications cross reference
PCiGEN Laboratory Microsystems Inc

Trademarks IBM International Business Machines Or graphics character sets symbolic

utility B-tree file manager Write for brochure

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rex CA 90295 [m]

Phone credit card orders to (273) 306-7412

FORTH Dimensions 10

Benchmark'

-Test
*Test

0.4
0.5

A = 4xFORTH
B = 4xFORTH with
Forth Accelerator

A l l Times in Seconds

When stuck, don't skip. Look for an
equivalent use or definition in your sys-
tem vendor's manual. Ask a friend.
Call the vendor. Ask why he deviates
from Starting Forth. Your Forth is ex-
tensible and modifiable. Ask the ven-
dor why he doesn't provide an overlay
to match Starting Forth.

By vendor, of course, the good doc-
tor is referring to the person or firm
who developed or tailored your system
for your computer. Users groups (and
FIG) generally are not staffed to hand-
le such problems, so find the real ori-
ginator or get a system with better
support.

Have you opened your mind to
learn? Forget the methods of BASIC,
C and Pascal for the time being. Later
you will have the perspective to com-
pare and evaluate, but not while
learning.

Stud; Sequence

Our study plan within Starting Forth
covers nearly all of the Forth-83 Re-
quired Word Set. These words are also
in Forth-79 and so are well covered by
Brodie. Double numbers, numeric in-
put and numeric output format conver-
sion should be skipped now for later,
more advanced study.

1) Fundamentals, pp. 1-30

2) Stack, pp. 31-55 (omit pg. 50)

3) Editor, pp. 57-87

4) Conditionals, pp. 89-106

5) Return Stack, pp. 107-112 (defer

6) Looping, pp. 127-147

7) Numbers, pp. 149-163 (defer pp.

pp. 113-122)

164-175)

8) Data, pp. 183-192 (defer pp.

9) Vocabularies, pp. 242-243 only

10) Storage, pp. 253-268

11) Examples, pp. 317-348

193- 194, 195-21 3)

Word Competency

At the conclusion of your study pro-
gram, you should have experience
with, and be comfortable in the use of,
the following Forth words:

Math:

+ - * / / M O D l + 1- 2+ 2- ABS
NEGATE

Input/Output:
KEY EXPECT COUNT CR SPACE SPACES
EMIT ." TYPE -TRAILING

Comparisons:
- - - < U< > O = O < O > MINMAX

Definers:
: ; CONSTANT VARIABLE CREATE

Dictionary:
FORGET ALLOT HERE, C,

Logic:
AND NOT OR XOR

Memory:
! @ +! C! C@ CMOVE CMOVE>
FILL ERASE
output:
. U.R U. HEX DECIMAL

Stacks:
SWAP DUP OVER ROT DROP PICK ROLL
?DUP >R R> I

Control:
IF ELSE THEN DO LOOP +LOOP BEGIN
UNTIL LEAVE

Disk Use:
LIST LOAD FLUSH COPY WIPE UPDATE
BLOCK EMPTY-BUFFERS

Bibliography

Joseph Reymann, Understanding
Forth, Alfred Publishing Co. ,
Prentice-Hall, 1981.
Leo Brodie, Srarring Forrh, Prentice-
Hall, 1981.

* * + ~ * * * ~ I ~ I x x * I * * I L ~ I ~ ' * I C X ~ X I L L

PKOCLICTS RY DK. C. H. T i P l G

INSIDE F83
E b e r v t h i i a VOLI want t o
about t n e Ferr Y - L - > en Fa- <-\5tem
bLit a f r a i d t o a 5 l . 2Sa packed
paqe5 d i v i d e d i n t o 1mir pZl-tS:
t u t o r i a l on F8- sbstem. F ~ l r t h
, e r n e l . u t l l ~ t ~ e c . a n d 8~180
.;pecific t c e l 5 . I t 1s based on

bLlt Llre+ul as a r e f e r e n c e manual
f o r a l l o t h e r F8: Svstems.

825. vo

C?: /prr:@r z.1 4 3 ' ? * E Tpi.-Cz.

FORTH NOTEBOOK
L a r g e c o l l e c t i o n of E amoles of
F o r t h programming s t v l e I n
s o l v i n a moderate t o como l l ca ted
p r o h 1 em 3. Top ics i n c l u d e :
q a m ~ 5 . i n s t r ~ i m e n t c o n t r o l . 1 maue

ana l ~ 5 1 s . p recess ing and
m ic rodssemt le r . and manv more.

*25. rw

SYSTEtS GUIDE TO f lg-FORTH
The most a u t h o r i t a t i v e t r e a t i s e
on how's and whv's o f t h e
i i g - f o r t h Model developed b v
P ~ l l Kagsdale. The i n t e r n a l
s t r u c t u r e o f F o r t h svstem.

$25. < 11 1

FORTH-79 ROM CARD FOR APPLE I1
F l u g t h i 5 KOM c a r d 1n Gpple 11
and t u r n Apple i n t o a genuine
F o r t h compnter. I d e a l fcv
teach ing and t r a l n i n a purposes
because d i s l d r l v e i s n o t
r eq LI i r Ed.
fo r th -7q ROM Card $51 I. oi,

T u t o r i a l - - F o r t h f o r t h e Complete
qource Li s t i ng B 1:. m.1

I d i o t B 7. ClCl

f ig-FORTH FOR NOVA MHPUTER
The f i g - f o r t h model implemented
f o r DG's NOVA computers. w i t h
assembly s o ~ i r c e and o b J r c t code.
Source L code on 8" d i s l 85(l.C10
SoLirce l i s t l n g a 11 j . ClCI

* * l * * l ~ x m * * n * * * r n * * * r r * * * * r ~ a ; * * *

FERRY-LAXEN FB3 SVSTEH DISKS
Ff:-V.2.1 as d l s t r u b u t e d b v l io
V i s i b l e Suppor t . I nc . F lease
C - - E ~ L ~ : : , 5 p f c i f y yob- CFU. G Z ,
a-3 des i -ed d i s l format .

825.~0 p e r a i s i .
FZ-DOS DD Format: .. F8:/8I#E@ f o r IBiI-FC

Z . FEI 8c80 t o r C F / M
7. F8-/8086 t o r CF/M-86
4. F b S / b 8 ~ 1 . W t o r CF/M-6Rt

I W I - F C CF/M-86 DD Format:
5 . F8:/8VEcI f o r CF/M
0. F E / 8 @ 8 6 f o r CFIM-86
7 . FBZ/bBOUcl f o r CF IM-bBt

C"M P S L Formet:

L i s t i n a f o r IBM-FC F3: Blc? .I .Kl

r i r a * * i * * * * * * * t t n * n ~ t * t * f * y l * * ~ f

- c i d checl o r money o r d e r to :
E f f e t e E n t e r p r l s e s , I nc .
1306 S. B St.,
San Mateo , Ca. 94402

; = , l i n g d Handl ing, 1-'1% of
orde r . C a l i f o r n i a n s p l e a s e add
c.5'. s a l e s t a .
r i a * m * * : * * n * r * r t r ; r l ~ * * ~ * * n ~ * * ~ *

Volume VI. No. 5 11

Evaluation Form
Forth Systems for Learners

For learning value, a system should score seven points or more. Please
send a copy of your evaluation to “Ask the Doctor,” Forth Dimensions,
P.O. Box 8231, San Jose, California 95155.

Product :

Vendor:

Distributor: ~

R u m on: ~

- cost: -

__ Object size (one point for each 5K up to 20K)

Options in source form (one point if these comprise at least ten
blocks)

Editor (one point if i t conforms to Starting Forth; no for a FIG-
style editor)

Editor display (scrolling lines earn no points; screen earns one
point)

Mass storage (no points for tape; minus three points if disk is
not supported; one point for hard disk support)

Dialect (two points for Forth-83; one point for Forth-79; one
point for polyFORTH; no points for fig-FORTH)

Absolute conformance to one of the above dialects: add one

Documentation (one point if more than f i f ty pages)

Support (one point i f vendor answers telephoned questions)

Assembler (yedno; no points)

Floating point (yes/no; no points)

Access lo host files (yes/no; no points)

Please list any other extensions:

FORTH Dimensions 12 Volume VI. No 5

A pplica t ion Tu t oria I

Simple Modem 110 Words
John S. James

Santa Cruz, California

‘‘Application Tutorials” show how
to use Forth to get results. They assume
some knowledge of the language; for
example, they won’t explain what a
stack is, or how to use IF or DO. Nor
will they cover advanced material, such
as metacompiling a new Forth system.
Instead, they focus on tools for
everyday work.

The Forth-83 Standard will be used.
Often, we will use the excellent F83
implementation of that standard by
Laxen and Perry. Most practical
applications need some words not in
the standard (for example, the
assembler mnemonics), and we will
explain such words when necessary.

We will be guided by the Forth
coding conventions being developed by
K i m Harris. These conventions
concern the physical appearance of the
code and do not affect programming
techniques. Those unfamiliar with the
conventions will notice little change
f rom practices common already,
except for the ;P to mark the “purpose
field” of interface comments.

The code in these tutorials is released
into the public domain without
restriction.

Scope of This Tutorial

We will show how to write to and
read from a serial communication port
connected to a modem. In this
example, the computer is an IBM PC
(compatibles should run the same
code), and we will do the I/O through
system calls to the BIOS (Basic
Input/Output System), which is
provided in ROM with the computer.
If you are using a different computer,
this code can serve as a model for
implementing the same modem
operations on it.

We will show how to define system
calls, using assembly language. Then
we will define general-purpose modem
words. Finally, a dumb-terminal
program will illustrate how to use the

I/O words; this program can also be
useful in its own right. Also, we will
briefly discuss some techniques not
used in this code, such as buffered 110
and direct I/O to port addresses.

Overview

Modems can be connected to
computers in different ways. Often, a
twenty-five-pin cable connects a
modem to a serial port. (Most of the
twenty-five pins are not really
necessary, and sometimes a five-pin
cable is used instead.) Also, the port
and modem are often combined in the
same plug-in card, or the modem may
be built into the computer.

The programmer often has a choice
of how to read from or write to the
port (and the attached modem). The
computer manufacturer may provide
operating-system calls for this purpose,
or the programmer may bypass the
operating system and use the port
directly. It’s usually best to use the
system calls if they can do the required
job, in order to make the program
more likely to be compatible with
possible future upgrades of the
computer. In this example, we will use
system calls to the ROM BIOS
software provided with the IBM PC.

Defining the System Call

Some Forth systems come with some
or all of the system calls already
defined. Others have a “call” word
which allows easy access. But in this
example, we will write from scratch the
system call we need, using the Forth
assembler.

If you are using the F83 system on an
IBM PC or compatible, you can just
copy this code. A different Forth-83
system (not the F83 implementation)
may have d i f fe ren t assembler
mnemonics or other symbols, so the
code would look different, although
identical machine language would be
generated. And other Forth systems for

the IBM PC might not use the 8088
stack (as F83 does), or they could
require that registers used for the call
be restored. In such a case, consult
documentation on how to use the
system’s assembler, or analyze the
source of simple code words such as
DUP Or +.

For the IBM PC, the documentation
on how to use its BIOS system calls is
in the IBM Personal Computer
Tech n ica I R e f ere n ce Man u a I ,
Appendix A, the ROM BIOS listing, in
comments in front of the BIOS code
which implements each system call. We
will not reproduce that information
here but, basically, you load the AH,
AL and DX registers with arguments,
then do an INT 14 (hex) to make the
call. Results come back in the AH and
AL registers.

The Code

On screen #3 (the first screen),
INITIAL-BITS holds the bit pattern which
tells the BIOS software the speed,
parity and other options wanted.
STATUS-BITS will hold any status
information returned by the system
call.

CALL14 is our code word to do
interrupt fourteen (hex), which calls
t he BIOS ser ia l -communicat ion
software. The first stack argument
contains the values to be placed into
AX (the AH and AL registers) on the
8088. The top stack argument must
contain a zero or one to select RS-232
card number one or two (the computer
supports two serial ports). NEXT
assembles the instruction to return
control to Forth, and END-CODE ends
the code definition.

CALL14X is defined in terms of
CALL14 and just makes the call more
convenient by providing the number of
the RS-232 card in use and by
automatically saving a copy of the
results returned (including all status
bits)in STATUS-BITS.

In screen #4, M-EMIT writes a
character to the port, much as the
Forth word EMIT writes to the terminal.

Volume VI. No. 5 13 FORTH Dimensions

FORTH
into

EUROPE
upport for major FORTHs
and our own products

VAX FORTH 32
* Complete VMS support * Command line qualifiers

DEC compatible full
screen editor

Ir On line HELP facilities * Start-up files * Switchable logfiles * Sysb?m files with
precompiled modules * Cross compilers
available for most
microprocessors

FORTH-83 CROSS-
COMPILERS

* B-tree symbol table of

Ir Compiles FORTH-83

* Compiles 16 or 32 bit

* Two passes allow

unlimited size

nucleus

code

automatic pruning of
nucleus for ROM
applications

It Automatic handling of
defining words

Ir Targets include 1802,
28,8070,8080,
6801 13, 6502, 651 1 0,
6809, QQxxx, 808618,
68000,280

IicroProcessor Engineering, 21
anley Road, Shirley. Southarnpton,
01 5AP England, Tel 0703 780084
ORTH-Systeme Angelika Flesch,
cheutzenstrasse 3, 7820 Titisee
lewstadt West Germany, Tel 07651

I---I
665

The l o o + (in hex) puts a one into the
high-order byte of the word whose low-
order byte contains the character to be
written. These bytes will get into the
AH and AL registers, respectively; a
one in the AH register is a command to
the BIOS ser ia l -communicat ion
routine to write the character in the
AL.

M-EMIT relies on the BIOS to wait, if
necessary, until the port has finished
writing the last character and is ready
to write the next. I f you are
implementing these words on a
different computer, you might have to
put a delay loop in M-EMIT.

CALL14X always returns a result
which is the value of the AH and AL
registers; a copy of that result has
already been saved in STATUS-BITS.
M-EMIT drops the stack copy, because it
does not return any argument on the
stack.

M-STATUS performs a call to read
current status information. The system
returns sixteen status bits. But in this
simple example, we use M-STATUS only
once (and use only one of the returned
bits), in defining M-KEY? which .tests
whether a character is now ready to be
read from the modem, and returns a
true/false flag.

M-KEY reads a character from the
modem. First, it waits until a character
is present, then it executes CALL14X
with a two in the AH, which tells the
BIOS to read from the modem.
Finally, it masks status bits off of the
returned character. (These bits have all
been saved in STATUSBITS already, so
they are not lost.)

We used the delay loop BEGIN M-KEY?
UNTIL because different computers
handle timeout differently if no key
comes in from the remote terminal; for
example, the IBM PC times out in one
second, while some computers wait
indefinitely. We wait until a character
is available, in order to define M-KEY in
a way that can work the same on all
equipment.

M-INITIALIZE must run before any
port I/O is done. In more advanced
programs it may be executed more than
once, to change the communication
options (speed, parity, stop bits and
data bits), perhaps to try out different

speeds to match a remote terminal
dialing in.

Terminal Program

Screen #5 uses these modem words
to build a simple dumb-terminal
program. The BEGIN UNTIL loop keeps a
“false” flag on the stack as an exit
switch; the loop will exit if the flag gets
set to “true.” The loop just keeps
looking for any key from the modem
and, if any key comes in, writes it to
the terminal. And vice versa, from the
terminal to the modem.

The word KEY? is outside the
Forth-83 Standard. This word returns
a flag which is “true” if a key has been
struck at the local keyboard and is
available for KEY to read; or is “false”
if no key is available. Most Forth
systems have such a word, perhaps
with a different name such as
?TERMINAL.

There should be a way for users to
exit from the terminal program so that
they do not need to reboot when they
are finished using it. We chose control-
D (value “4”) as the character which
can be typed from the terminal to exit
the loop.

Sample Session

Figure one shows a sample use of
this program. We load the program
first, then execute TERMINAL. Then we
start typing to the port (and modem).

In this example, we are using a
Hayes modem with its switches in the
factory setting. The typed AT gets the
modem’s attention, and the D is a
command which instructs the modem
to dial the following telephone
number. In this case we called the FIG-
Tree, a twenty-four hour computer
conference about Forth, which is open
to anyone with a 300 BPS modem.

Further Development

You could improve TERMINAL fairly
easily, for example, to have it save a
copy of input and/or output in
memory, or to allow text to be typed
into memory while offline for

Volume VI. No 5 14 -^--
-_I q Dimensions

transmission later (perhaps hours later,
by using a timer if available, or a delay
loop otherwise) in order to save phone
charges on long-distance calls.

However, the modem input/output
words defined here could not receive
data while the computer was busy for
an extended time on some other task,
such as disk I/O. For example, these
definitions could not be used to receive
files too large to fit into memory unless
the sending computer could pause

otherwise, characters being transmitted
would be lost while the computer was
busy with the disk. More advanced
communication software would have
an interrupt routine t o receive
characters immediately when they
came in, no matter what else the
computer was doing at the time, and
would place the received characters
into a buffer. Then, M-KEY would get
its characters from the buffer. A
separate buffer would be used for

while disk -output was taking place; M~EMIT

A>F83

8086 Forth 83 Model
Veraion 2.1.0 Modified 01Jun84
OPEN FD.BLK ok
3 LOAD 4 LOAD 5 LOAD TRUE isn't unique FALSE isn't unique ok
TERMINAL
AT D 1-415-538-3580
CONNWT

WELCOME TO THE CONFERENCE TREE

TERMINAL LINE LENGTH (20-80,

LOWER CASE OK (C/R=YES)?
OR CARRIAGE RETURN FOR 80)?

TYPE 'READ HELP' A N Y TIME
OR 'READ CONFERENCES' TO START

'S' KEY TO PAUSE OR RESUME PRINTING

FOR COMPLETE INSTRUCTIONS ON USE, TYPE "R HELP C" (OMIT THE PUOTES!)

COMMAND? READ CONFERENCES STARTING 1-OCT-84

* * * CHUCK.MOORE-OCT-27 22-OCT-84
PARENT=SILICON-VALLEY USAGE= 79

t * . t l l t l l . . R t . W W ~ R C . C Z I I I . I . . . I I Z C I I I I I I R W W ~ ~ ~ R U ~ ~ ~ W W W ~ W W W W ~ ~

The Silicon Valley FIG chapter ie proud to announce
that it October guest speaker will be Charles Moore .

* the inventor of the FORTH language.

He will tell ua about his latest project, the CHIP.

The meeting will be held at the usual time and place: t

Dyaan auditorium at 1:OO pm, Saturday, October 27.

Notice: Silicon Valley FIG members have seating priority.

w

* . . .
* . I W * * W R . l * l . t W t t W W t W O ~ ~ 9 W R R ~ ~ ~ ~ ~ ~ * ~ * W ~ ~ R W W O * ~ ~ R * . S . *

* * I DEMENTED-TYPO ~ O - O C T - W

Volume VI. No. 5 15

Mu1 tiuser/Multitasking
for 8080,280, SOS.6

Industrial 9.i
Strength
FORTH

Tas kFORTH,.
The First

Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:
Sr Unlimited number of tasks
Q Multiple thread dictionary,

Q Novice Programmer

a Diagnostic tools, quick and

superfast compilation

Protection PackageTM

simpls debugging

FORTH-83 compatible
Sr Screen and serial editor,

easy program generation

Sr Hierarchical file system with
data base management

Q St<~;rbiIg FORT'fi, FCX4TH-79,

* Slaner package $250 Full package 5395 Slngle
user and commercial Iicanses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 Inch disk
under CPlM 2.2 or greater

also
various 51h" formats

and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED

DEALER
INQUIRES
IWETED

Shaw Laboratories, Ltd.
24301 Southland Drive, #216

Hayward, California 94545
(41 5) 276-5953

Scr # 3 A:FD .BLK
0 \ Communication: constants, variables, system call JJ llNov84

2 1 CONSTANT COM-PORT \ To address RS-232 port number 1
3 VARIABLE INITIAL-BITS \ To tell BIOS the speed, parity, etc.
4 2 BASE ! 01001010 INITIAL-BITS 1 DECIMAL
5 \ Binary for convenience; 300 bps, odd parity, 1 atop 7 data
6 \ For more info, see IBM PC Technical Reference, Appendix A
7 VARIABLE STATUS-BITS \ To hold statue info from system calla
8 HEX
9 CODE CALL14 \ xaxl n - - xax2 :P Communication 1/0 cell

1 -1 CONSTANT TRUE 0 CONSTANT FALSE \ For better clarity

10 DX POP AX POP 14 INT A X PUSH NEXT END-CODE
11 : CALL14X \ xexl - - xax2 :P Call selected card. Save bita.
12 COM-PORT 1- CALL14 DUP STATUS-BITS f ;
13 DECIMAL
14
15

Scr W 4 A: FD.BLK
0 \ Communication: write. read, get status, init JJ llNov84
1 HEX
2 : M-EMIT \ b -- :P Write to communication port
3 100 + (puts '1' in 'AH') CALLl4X DROP :
4 : M-STATUS \ - - x ;P Get port status, 16 bits: aee Tech Ref
5 300 ('3' in 'AH') CALL14X :
6 : M-KEY? \ - - ? :P True if modem char. ready to read
7 M-STATUS 100 AND (Teat the data-ready brt)

8 IF TRUE ELSE FALSE THEN : \ Improve the True flag
9 : M-KEY \ -- b :P Read a character
10 BEGIN M-KEY? UNTIL 200 CALLl4X OOFF AND
11 \ '2' To 'AH'. Mask off status bita returned.
12 : M-IN&TIALIZE \ -- :P Initialrze the port
13 INITIAL-BITS CJ CALLl4X DROP ;
14 DECIMAL
15

Scr # 5 A:FD .BLK
0 \ Communication: simple dumb terminal JJ llNov84
1 : TERMINAL \ -- ;P Dumb terminal; exit on Control-D
2 CR M-INITIALIZE
3 BEGIN
4 FALSE \ Exit switch: default is don't exit the loop
5 M-KEY? IF I-KEY EMIT THEN
6 KEY? IF KEY 127 AND (Mask off parity)

7 DUP 4 = IF DROP (The ' 4 ') DROP TRUE (Exit loop)
8 ELSE M-EMIT THEN THEN
9 UNTIL :

10
11
12
13
14
15

FORTH Dimensions 16

.

SUPER FORTH 64"
By Elliot B Schneider

TOTAL CONTROL OVER YOUR COMMODORE-64'"
USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY!
MORE THAN JUST A LANGUAGE.. .

A complete, fully-integrated program development system.
Home Use, Fast Games, Graphics, Data Acquisition, Business, Music

Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence

A Powerful Superset of MVPFORTH/FORTH 79 + Ext. for the beginner or professional I
0 20 to 600 x faster than Basic
0 1/4 x the programming time
0 Easy full control of all sound, hi res.

graphics, color, sprite, plotting line &
circle

0 Controllable SPLIT-SCREEN Display
0 Includes interactive interpreter 8 compiler
0 Forth virtual memory
0 Full cursor Screen Editor
0 Provision for application program

distribution without licensing
0 FORTH equivalent Kernal Routines
0 Conditional Macro Assembler
0 Meets all Forth 79 standards+
0 Source screens provided

Compatible with the book "Starting Forth"

0 Access to all 1/0 ports RS232, IEEE,

L

by Leo Brodie

including memory & interrupts
ROMABLE code generator '

MUSIC-EDITOR

SUPER FORTH 64@ is more
powerful than most other computer languages!

0 SPRITE-EDITOR
Access all C-64 peripherals including 4040

0 Single disk drive backup utility
Disk 8 Cassette based. Disk included

0 Full disk usage-680 Sectors
Supports all Commodore file types and

0 Access to 20K RAM underneath ROM

Vectored kernal words
0 TRACE facility

DECOMPILER facility
Full String Handling

0 ASCII error messages

Conversational user defined Commands
Tutorial examples provided, in extensive
manual
INTERRUPT routines provide easy control
of hardware timers, alarms and devices
USER Support

SUPER FORTH 64@ compiled code
becomes more compact than even assembly code!

drive and EPROM Programmer.

Forth Virtual disk

areas

FLOATING POINT MATH SIN/COS & SQRT

In
a,
0, m
3
0,
t m
-I

SUPERFORTH64

LISP
LOGO L.

E
PASCAL I

B&C N

0 C

a,

V
Power of Languages Constructs Program Functionality

Ordering Information: Check, Money Order
(payable to MOUNTAIN VIEW PRESS, INC.),
VISA, MaslerCard, Americon Express. COD'S
55.00 axtra. No billing or unpoid Po's. Cali-
fornia residents odd roles tox. Shipping costs
in US included in price. Foreign orders, pay
in US fundsbn LIS bonk, include for handling
and shipping $10.

CALL:
A SUPERIOR PRODUCT (415) 961-4103
in every way! At a low

price of only
MoUNTAiN 'IEW PRESS IN'*

p.0. Box 4656, MT. VIEW, CA 94040
Doalor for

Drawer 1776. Fremont, CA 94538
PARSEC RESEARCH

AUTHOR INQUIRIES INVITED

$96
Free Shipping in U.S.A.

Q PARSEC RESEARCH (Esleblirh*d 1P76) Commodore 64 6 VIC-20 TM of Commodore

VolurneVI No 5 17 FORTH Dimensions

An Augmented TRACE
Andreas Goppold

Hamburg, West Germany
specific word on, it will print up to six
nesting levels (screens 10 - 11).

Sample Usage

Screens 64 - 65 contain the
I have come to appreciate the 7) Printing the names of words whose definitions of words which are traced

interactive power of Forth, especially addresses are on the return stack below. The first word traced is '' which
since discovering the ability to display (screen 13) is now supported. is defined beginning on line 8 of screen
all information relevant to a program. 65. The next word traced is $@ and is
The TRACE function is a very powerful 8) A HELP screen is available (screen 9). defined on lines 10 - 11 of screen 64.
tool, indeed, and I have elaborated a
little on Paul van der Eijk's utility 9) Indentation O f IDS to indicate
(Forth Dimensions IW2). The changes
I made are as follows:

nesting depth (see example).

1) Redefined a few kernel definitions
(screen 17). This gives a more complete
trace when the nesting level of a new
word is only one. I could have
rewritten the NEXT routine to trace
everything, but that remains as a
project for the future.

2) Renamed the routine. I call it TRON
since the computer is effectively
making a movie of its own operation
(screen 16).

3) The routine now finds the nesting
level of a colon definition. This is
heuristically done by searching the
return stack and throwing out
addresses which can't be fitted to an
acceptable NFA. In this manner, one
can eliminate most of the static
introduced by the use of > R (screen 14,
lines 7 - 9).

4) The stack now is printed bottom-
left, top-right. This way, data that
stays on the stack remains in the same
position on the printout, making it
much more readable (screen 15, lines 8
- 9).

5) Use of decimal numbering. I can't
think in hex; since Forth is nice enough
to do all the translation work for me, I
allow it to do so.

6) Ability to stop and restart the TRACE
printout. Also, one may now set
nesting levels to control when TRON
will begin to give full information. One
can have prespecified nesting levels
such that for most of a program TRON
will print only up to a certain nesting
level, let's say two, and then from a

Screen 8 64
0 (String stack extension, continued
1 : $P! ro w !
2 (Returns value of $P 1
3
4 : %P@ %P @ DUP W $0 > SkiCIP %END (OR IF
5 .- STK-PTR-ERR ! 18 w! QUIT THEN ;
6 (nedp - - - 1

a
Y (adr len --- fetch string to $STK 1

to : re
11 1- R) oum C! $P ! ;
12 --)

- mod* A * Coppold 1
; (%P! empties W T K by resetting %F')

7 : CHK9WL Wp $END (IF t " $STKK WERFLOW ! " QUIT THEN ;

DUP)R s m s w - 1- CHKIWL it SWCIP WER R CMOVE

13
14
15

Screen 8 65
0 (String stack extension, continued)
1 (addr --- fetch string together w/ length byte)
2 : sLe wr c~ it -we WEN - CHKBOVL DUP)R SWAP ~ W E
3 R) 9P ! ;
4
5 : (" 1
6
7
8 : "
Y

li' DW ?t SWAP I! (moves in-line string to %STX 1
DW 2t R > +)R $E ;

(if compiling emplace an in-line string to be
(moved to string stack at execution time,

10 f in direct exec put e x losed string on string stacK. 1
11 22 STATE @
12
13

IF CONPILE I ") 0 C j WORD HERE C!! -1 ALLOT DUP 9 ALLOT
ELSE 0 C t WORD HERB C@ -1 ALLOT HERE !

14 HERE DUP 2t SWAP @ b@
15 ENDIF ; IMMEDIATE --)

VolumeVI, No. 5 FORTH Dimensions 18

e
C@
!
DUP
S W
e
3e
DUP
w e
e
wp
D W
S W

W P

CHK3OUL
DUP

OVER
CMOVE

-

OVER
C!
!

empty stack
34 49116

31947
5 31946

31946

31948 31946
31948 5
31948 5
315'48 5

31948 5 175'41
31948 5 175'41 17941
31948 5 175'41 17941

31946 31948

31948 5 18076

31948 5 17941
31948 17941 5
3194a 17935

17936 31948 1793.5 5

17x15 18076

31948 17935
17536 31948

17y35 5
17935 5 17935

e
C@
!
DUP
SWAP
@
3e
DUP SQ
bP!! EXECUTE M
@ %P@ EXECUTE S@
DUP $P@ EXECUTE
DUP %W EXECUTE

SWAP EXECUTE C@
- EXECUTE W
CHKCOVL EXECUTE
DUY CHK$OVL EXEC
OVER EXECUTE S!!
CMOUE EXECUTE 3e
OVER 3@
C! 3@
! 3@ OK

o SWP sre EXECUTE

Screen It t
J Trace. mocls, A, Coppold latest mod: 25-01-84 1
1 FORTH DEFINITIONS
1 0 V&IAPLE 'I'FLAG 0 WIRIABLE DEPTSAU 2 U M I M L E DEPTLIM
3 0 VARIABLE INDSAV 0 VARIABLE RPFLAG 1 VARIABLE EPFLAC
4 4 VARIABLE CSTLIM 0 M I A B L E SLFLAG
5
6 HERE 11 + CONSTANT RSAV 50 ALLOT
7 HERE 12 + CONSTANT EP%U 30 ALLOT
9 HERE 12 + CONSTANT NMSAU 30 ALLOT
c;
LO - - >
11
12
13
14
1 5

jcreen 8 9
0 \ Trace, modsr A. Loppold I

1 : TAB 40 OUT l! - SPACES :
2 : H CLEAKSCREEN 20 2 GOTOXY rt' TRACE HELF' SCREEH" CH CR
3
4 t " TRON starts TRACE *' TAB +'' TkOF ends trace mode" CR CR
5 " "S : ha I t TRACE" TAB . " ^R : reslime TRACE " Ct?
(5 + " *W : toggle SLOW mode" TAB t" ESC q u i t execution " CR
7 + " "P : rafter ^S only) enter Printing mode?"
a exit AS' CP CR
Y t'' "H : set nestinq level 1 f o r TRACE " CH

' TRACE has the following options:" CR

10 + " TRACE is usually on nesting level I t A different nesting lev
11 el ran be" CR .'' specified, and when TRACE has reached a certain
12 wordc Mode 2 i s startedt '' CR CK
13 + * ' 'E : set Word where to enter TRACE mode 2" CR
14 + " ^D : set nesting level fo r TRACE mode 2 " CR CR CR : - - >
15

TAKE
FORTH

TO WORK

NOW YOU CAN RUN
FORTH ON THE OFFICE

IBM MAINFRAME. GIVE

YOURSELF THE FORTH
ADVANTAGE ON THE
JOB!

FORTH/370
for large IBM and

equivalent computers

IBM 370, 4341, 3033, etc.

Based on fig FORTH

Program compatible with

Editor and Assembler

Runs under VM/CMS or
MVS/TSO
32 bit word, 64 bit double
word and floating point

Files compatible with host
operating system

micro FORTH systems

FORTH/370 IS AVAIL-
ABLE ON A 30 DAY FREE
TRIAL. ONLY ONE LI-

CENSE FEE OF $750.
REQUIRED FOR ALL OFA
FIRM'S CPUs.

Source code may be
pu rc hased.

WARD SYSTEMS GROUP
8013 Meadowview Drive
Frederick, Maryland 21 701

(301) 695-8750

Volume VI, No 5 19

Pol yFORTH@ll
the operating system and
programming language for

real-time applications involving
ROBOTICS, INSTRUMENTATION,
PROCESS CONTROL, GRAPHICS

and more, is now available for..

DEC* PDP-IF
and

LSI-II* Systems
The PolyFORTH II high
performance features
include:
0 Multiple users (30

terminals on a LSI-II)
0 Unlimited control tasks
0 High speed interrupt

handling
0 Reduced application

developmenftime
PolyFORTH II software will run
on any standard PDP* or LSI-II
with RX02 disk (RSX* optional),
Micro/PDP-ll* and PROFES-
SIONAL* 350 and is fully
supported by FORTH, Inc.'s:
0 Extensive on-line

documentation
0 Complete set of manuals
0 Programming courses
0 The FORTH, Inc. hot line
0 Expert contract programmin!

and consulting services

From FORTH, Inc., the inventors
of FORTH, serving professional
programmers for over a decade.
Also available for other popular
mini and micro computers.
For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach. ,111
CA 90254

RCA TELEX: 275182
Eastern Sales Office
1300 N. 17th St.
Arlington, VA 22209

2131372-0493

7031525-7778
'Registered trademarks of Digital Equipment Corp

Screen tt 10
0 (Trace! nmclst A. GoppaId i
1

2 : BPT CR .'' start TRACE rnocte 2 a t : I ' BPSAL' DUP 1t INQ DUP IF
3 >R SWAP R CmWE R > SWAP C! THEN 0 BPFLAC ! :
4 : SLOW :' " 1000 0 DO I DUP * DROP LOW ;
5 : SET-DPT CR + " trace depth level : " WIN DEPTLIM ! ;
6 : FLIPSL SLFLAG @ 0. SLFLAC ! ;

8
9

1Q
11
12
13
14
15

7 : SET-CST CR constant depth level : " WIN CSTLIM ! ; - - >

Screen 8 11
0 (Trace, modst At Coppold

2 15 OF CONSOLE ENDOF 72 OF H ENDOF
3 05 OF BPT ENDOF 18 OF SET-CST ENDOF
4 23 OF FLIPSL ENWF
5 04 OF SET-DPT ENDOF ENDCASE ;
b : TTEST ?TERFIINAL IF CONSOLE KEY CASE
7 93 OF STOP ENDOF (S 72 OF H ENDOF
8 15 OF STOP ENWF ("S 1 18 OF SET-CST ENDOF (*R)
5 05 OF BPT ENDOF ^E 1
10 23 OF FLIPSL ENDOF (^W 1
11 04 OF SET-WT ENDOF I "D 1
12 27 OF QUIT ENDOF E N W E THEN : - - >
13
14
15

1 : STOP 1'' " KEY CONSOLE CASE 16 OF PRINTER ENDOF

Screen n 12
0 1. Trace, mads, A t Gappoid)

1
2 (isfa len --.-
3 : TEST-LEN
4 1 = IF PUP 1t C@ 127 AND PUP 54 { SWAP 32 } AND ELSE 0 THEN ;
5
6 nfa len -.--)
7 : TEST-CHH OVER t OVER 1+ 1 ROT ROT
8
Y

DO I C@ DUP 32 > SWAP 126 (AND AND LOOP :

10 < n fa flag ---
11 : WRT-RET RPFLAG i! I F

ELSE DROP ,'' - " THEN ELSE 12 IF ID+
13 IF 1' ' " DROP ELSE DROP THEN THEN :
14 - - >
15

Volume VI, No. 5 20

1

?

Screen 13
0 1: Trace, niods, A , Goppold !
1
2 : RETPRT HF'FLAG i?

4 ELSE 14
5 THEN 0 DO RSAV @ 2t I 2* i DUF' FiO @ 4 - (

6 IF f! 2- @ ?t NFA DUP CE 31 AND DUF' 1 >
7 IF TEST-CHR ELSE TEST-LEN THEN WKT-RET

9 THEN LOOP ;

3 IF OUT e ao SWAP - 50 MIN 0 MAX SPACES a

a ELSE DROP LEAVE

10
11
12
13
14
15

Screen #I 14
0 (Trace, adopted froni F'auI van der EiJk, modst A + Goppold)
1 (RO E RSAV I3 - 2/ DEPTSAU @ O= IF DtlP DEF'TSAU ! THEN DEPTSAV C!
2 - DUF' 1 > IF 15 MIN 1 DO I INDSAV 1 1 ' ' " LOOP ELSE DROP THEN)
3
4 : (TRACE) TFLAG @ < inserted as 1st cuord of definition !
5 IF RP@ RSAU I TTEST
6 W F M @ O=
7 IF R 2- NFA 1t NMSAU EF'SAV CC! CMWE NMSAV DUP P S A U G@ i 1-
8 DUP C@ 127 AND W C! BPSAV D W 1t SWAP CE S= (match wd !
Y IF 1 D W BF'FLAC

iltord not yet occurred, chk r-depth if less than l i m i t) 10
11 RO @ M U @ - 2/ (:redepth 1
12 DEP?" @ O= IF DUP DEPTSAV 1 THEN
13 DEPTSAU @ - (:ad,,depth 1 DFSTLIM I3 { (1 if < Iim 1
14 THEN

ELSE

15 ELSE 1 (bpflag-1 1 THEN -- >
Screen 8 15

0 (Trace) adopted from Paul van der EiJkt moclst A + Goppold)
1 RO E RSCIU @ - 21 (:redepth)
2 DEPTWV @ - (:adj+depth 1 CSTTLIM @ (AND
3 IF CK 0 RPFLAG ! RETPRT
4 R 2- NFA ID, (back to NFA for name 1
5 OUT E 30 SWAP - 30 MIN 0 MAX WACES (tab over 1
b SP@ so e =
7 IF ." empty stack"
8 ELSE SfY 2- WP 16 t SO C 2- MIN (show up to top)
9 DC! I t " " I3 0 5 DtR -2 +LOOP (0 wO*dS Of S t i)
10 ENDIF
11 4301 @ IF 1 RPFLAC ! RETPHT THEN
12 SLFMC C IF SLOW THEN
13 THEN

1';
14 ENDIF ; -- >

Volume VI. No. 5 21

BRrrE
FORTH

INTEL
8031
MICRO-

CONTROLLER

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code interrupt handlers
-System timekeeping maintains

time and date with leap
year correction

-Supports ROM-based self-
starting applications

c o n
130 page manual -S 30.00
8K EPROM with manual-$100.00

Postage paid in North America
Inquire for license or quantity pricing

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330

(207) 547-32 18

1985

Papers may be presented in either plat-
form or poster sessions. Please submit
a 200 word abstract by March 30th,
1985. Papers must be received by April
30th, 1985, and are limited to a maxi-
mum of four single spaced, camera-
ready pages. Longer papers may be
presented at the Conference bu t
should be submitted to the refereed
Journal of Forth Appl icat ion and
Research.

1

Rochester
Forth

Conference
June 12 - 15,1985

University of Rochester
Rochester, New York

The fifth Rochester Forth Con-
ference will be held at the
University of Rochester, and
sponsored by the Institute for
Applied Forth Research, Inc.
The focus of the Conference
will be on Software Engineer-
ing and Software Management.

Call for Papers

There is a call for papers on
the following topics:

.Software Engineering, and Soft-
ware Management Practices

*Forth Applications, including,
but not limited to: real-time,
business, medical, space-
based, laboratory and personal
systems; and Forth microchip
applications.

.Forth Technology, including
finite state machines, meta-
compilers, Forth implementa-
tions, control structures, and
hybrid hardware/software sys-,
tems.

Abstracts and papers should be sent to
the conference chairman: Lawrence P.
Forsley, Laboratory for Laser Energet-
ics, 250 East River Road, Rochester,
New York 14623. For more information,
call or write Ms. Maria Cress, Institute
for Applied Forth Research, 70 Elmwood
Avenue, Rochester, NY 14611
(716) 235-0168.

Screen 8 14
0 (Trace colon words, continued 1
1
2 : TRON 1 TFLAC ! 0 DEF‘TSAU ! 1 WFLAC !
3 CR 20 SPACES + ” Type H f o r He1 p Wnu ” ;
4 : TROF 0 TFLAG ! ; (turn off trace node)

5
4 : :
7 ?EXEC (must be executing)
8 !CSP (compiler security 1
Y CURRENT I! CONTEXT ! (set context vocabulary)

1 0 CREATE (build the dictionary header)

1 1 ’ (TRACE) (f i n d CFA of trace runtime routine)
1 2 CFA DUP F! (and compile it 1

1 4 3 (enter compilation mocle 1
15 ; IPIMEDIATE

(turn on trace mode 1

(redefine colon t o insert trace word 1

13 HERE 2 - !

--)

Screen 8 17
0 (T F W E function cont’d)
1 : ! ! ; : INUMEER) (NUIIPER) ; : + t ; : * * ; : +! t! ;

3 : I! I! ;
4 : CE Ce ;
5 : FDOS FDOS ;

7 : OVER OVER ; : PICK PICK ;
8
Y : mor

2 - - ; : -FIND -FIND ; : t t ; : /MOD /NOD : DUP DUP ;
: BLANKS BLANKS ;
: CllOUE CPIOUE ;

: BLOCK BLOCK ;
: DROP DMIP ;

: CIMD AND ;

: C ! C! ;

: OR OK ;
: ENCLOSE ENCLOSE ;

: MATCH PIATCH ;
6 : ROT ROT ; : sr! sr! ; : SWAP s w ; : TYPE TYPE ;

- - >
(redefine w i t h the trace enabled) DROP ;

10 : TEST 50 0 DO
11 I DW DROP

13 TRON TEST TROF
14 ;S
15

12 Loor ;

VolumeVI, No. 5 22

Selected Publications

WE APOLOGIZE. The last issue of FORTH Dimensions stated that 5 newly added publications were included on the
order form, but through a series of miscalculated events, they were not included. These publications are available from
FIG and you will find them listed with their prices on the order form on the reverse side of this page.

A BIBLIOGRAPHY OF FORTH
REFERENCES
Second Edition, September 1984
Thea Martin, fd i :or

The second edition of A Bibli-
ography has over 1300 references
to Forth related papers, books and
articles from the US and abroad
indexed by subject and author.

MASTERING FORTH
by Anita Anderson and Martin Tracy

A step-by-step tutorial to the
high level, stack oriented Forth
Computer language. Formerly
titled FORTH TOOLS, this unique
guide introduces you toeach of the
commands required by the Forth
83 International Standard.

THE JOURNAL OF FORTH
APPLICATION AND RESEARCH,
v. 2, #1

This issue of The Journal is
devoted to hardware impjementa-
tions of Forth. The focus is the
“Forth engine ... a board set or chip
which will allow a board or board
set to execute Forth as its primary
programming language.”

\

f
1984 ROCHESTER FORTH
CONFERENCE
Real Time Systems.

A compilation of the papers and
abstracts presented at the 1984
Rochester Forth Conference held
June 6-9, 1984 at the University of
Rochester in New York.

1983 FORML PROCEEDINGS
The proceedings from the fifth

annual FORML conference which
was held November 23 to 25, 1983
at the Asi lomar Conference
Grounds, Monterey, California.
FORML (the Forth Modification
Laboratory) is an informal forum
for sharing and discussing new or
unproven proposals intended to
benefit Forth. This 350 page
volume contains 42 papers or
abstracts.

The Forth Interest Group Order
Form has two newly added publi-
cations for this issue:

THE COMPLETE FORTH
by Alan Winfield.

This book is a complete guide to
FORTH programming. The first
half of the book introduces the
language through examples and
frequent comparison with BASIC.
The later chapters delve into some
of the more unusual capabilities of
FORTH, many of which have no
equivalent in other languages. The
FORTH-79 standard dialect of
FORTH is adopted throughout the
book, although common depar-
tures f rom this standard are
detailed as footnotes.

The book is intended for anyone
who wishes to learn and use
FORTH. Some familiarity with
microcomputers and BASIC is
assumed, but no prior knowledge
of FORTH is required. The book
should equally well serve as a
useful reference of ideas and
techniques for practicing FORTH
programmers.

THE JOURNAL OF FORTH
APPLICATIONS AND RESEARCH,
v. 2. #2

This issue of The Journal is
devoted to real time systems.

SPECIAL
FORML Proceedings, 1980-83

This issue we are offering a
special price on Proceedings from
the FORML Conferences of 1980
through 1983.

FORML was created in 1979 by
Kim Harris and John Spencer. Two
conferences were held in 1980, one
in UK in January and one in
November at the Asilomar Confer-
ence Center in Monterey, where the
annual conference has been held
traditionally ever since. The Con-
ference Manager is Robert Reiling
and the Conference Director is Kim
Harris. FORML is now a part of the
Forth Interest Group, and is not
connected with the Forth Standards
Team.

Many of the most active and
influential people in the Forth
community are regulars at FORML
conferences. A number of ideas
presented and discussed have been
commonly adopted. Some have
influenced the Forth Standard.
FORML has helped determine the
future of Forth.

The 5 volume set offered here at a
special price as indicated on the
order form on the reverse of this
page, contains papers of the
presentations of the conferences
beginning with the November
conference of 1980 through the 1983
conference. This Special Proceed-
ings offer expires April 1, 1985.

FORTH INTEREST GROUP MAIL ORDER FORM
NAME __ COMPANY

STREET ___ CITY

STATEIPROV. ZIP COUNTRY

TELEPHONE () DATE

Membership in the FORTH Interest Group &

Volume 1 FORTH Dimensions
Volume 2 FORTH Dimensions
Volume 3 FORTH Dimensions
Volume 4 FORTH Dimensions
Volume 5 FORTH Dimensions

Volume 6 of FORTH Dimensions

BOOKS ABOUT FORTH
All About FORTH
Beginning FORTH
Complete FORTH
FORTH Encyclopedia
FORTH Fundamentals, V. 1
FORTH Fundamentals, V. 2
Mastering Forth (Formerly Forth Tools)
Starting FORTH (Soft Cover)
Starting FORTH (Hard Cover)
Thinking FORTH (Soft Cover)
Thinking FORTH (Hard Cover)
Threaded Interpretive Languages
Understanding FORTH

REFERENCE
FORTH 83 Standard
FORTH 79 Standard
Bibliography of Forth References, 2nd Ed

CONFERENCE PROCEEDINGS
FORML Proceedings 1980
FORML Proceedings 1981 (2 V.)
FORML Proceedings 1982
FORML Proceedings 1983
Rochester Proceedings 1981
Rochester Proceedings 1982
Rochester Proceedings 1983
Rochester Proceedings 1984

I

PRICES
US/FOREIGN AIR

$15127 ___
15118 ____
15/18 ____
15118 ~

15/18 ~

15118 ___

$25135 ___
17121 ___
16/20 ~

25/35 ~

16/20 ___
13/16 ____
18122 ____
19/22 ~

23128 ___
16/20 ___
23128 ___
23128 ___
315 ____

$15118 ___
15/18 ___
15118 ~

$25135 ____
40145 ____
25/35 ___
25/35 ~

25135 ____
25135 ____
25135 ___
25/35 ____

I SPECIAL
FORML proceedings 1980-83 (5 Volume Set)
0 $ 75 U.S. and Canada
0 $ 90 Foreign Surface

PRICES
US/FOREIGN AIR

JOURNAL OF FORTH APPLICATIONS AND RESEARCH
Journal of FORTH Research V. 1 #1 $15118 ~

Journal of FORTH Research V. 1 #2 15118 ~

Journal of FORTH Research V. 2 #1 15118 ___
Journal of FORTH Research V. 2 #2 15118 ____

REPRINTS
Byte Reprints
Popular Computing 9183
Dr. Dobb’s 9182
Dr. Dobb’s 9/83
Dr. Dobb’s 9184

$3.5015 ___
3.5015 ~ _ _
3.5015 ~

3.5015 ~

3.5015 ~

HISTORICAL DOCUMENTS
Kitt Peak Primer $25135 ____
fig -FORTH Instal I at ion Manual 15118 ___

ASSEMBLY LANGUAGE SOURCE LISTINGS
1802 $15118 ~

6502 15118 ___
6800 15118 ~

6809 15118 ____ ’
68000 15118 ___
8080 15118 ____
8086 188 15118 ___
9900
ALPHA MICRO
Apple II
ECLIPSE
IBMIPC
NOVA
PACE

VA X
Z 80

PDP-11

15118
15/18
15118
15118
15118
15118
15/18
15118
15118
15/18

T-shirt Size: $10112 ___
Poster (BYTE Cover) 315 ____
Handy Reference Card FREE ___

SUBTOTAL
CA Residents Add 6‘/2% Sales Tax

TOTAL

0 VISA Mastercard # Expiration Date
$15 Minimum On VlSAiMastercard Orders
All Prices Include Shipping

Make Check or money order payable in US funds d rawn on a US Bank to FIG
PAYMENT MUST ACCOMPANY ALL ORDERS (Including Purchase Orders)

OFFICE USE ONLY

Date MO _ _ T O ___ PU ____ Auth No BY

Shipped By Date Weight UPS --.--USPS ~

Hold Date Weight ___ UPS --.-USPS -
ORDER PHONE. (408) 277-0668 615

FORTH INTEREST GROUP P 0 BOX 8231 SAN JOSE, CA 95155

I

Quicksort
Wil Baden

Costa Mesa, California

Of the known algorithms for inter-
nal sorting on a single processor, the
most efficient is C.A.R. Hoare's
"Quicksort" first published in the
British Computer Society's Computer
Journal in 1962. This is also one of the
simplest to implement in Forth. In
BASIC and Fortran, it is so messy to
program that, for most applications, a
simpler, less efficient algorithm is used
instead. Recursion and address point-
ers make it easy in Forth (and Pascal).
With the use of vectored execution for
the comparison function, it can be a
general tool for many applications.
Roughly parallel versions in Pascal and
Forth are given here. The Pascal is in-
tended to be explanatory of the Forth,
although there are differences due to
the nature of the two languages. The
Forth is, by design, not factored into
smaller words because speed is an im-
portant objective - every word will af-
fect the efficiency of execution.

If you read the two versions in paral-
lel, you will see that equivalent opera-
tions are done in the same sequence, al-
though the logical structures are dif-
ferent. The difference is to take ad-
vantage of Forth's features and to
avoid degenerate recursive calls.

In a practical Forth implementation,
it is important that the following check
be made:
ROT (m,j,i,n) SOVER SOVER - + > IF
PSWAP (i,n,m,j) THEN

This line verifies that the parameter
and return stacks do not overflow. It
could be left out and the program
would almost always work; but Mur-
phy's law says that someday in the far
distant future, when you have long for-
gotten about possible causes, your sys-
tem will crash if you do not have this
line.

The performance is excellent for
most applications. If it is not good
enough, you can tune it in easy stages
by gradually replacing high-level
phrases with code definitions.

The normal use of SORT is as a tag
sort: it is used to order an array of

k

and Swords
1 SWORDS (: list words i n VOCJhUlJry iri alphabetic sequence.)

i load names.) NANS (addrrn)
DUP I + ' names defined' CR
i'IXJF' SORTED I D (s o r t rimes.)
+NAMES ; (list rianes.)

Figure One

: ID.:: (nfalrnfa? -- f) (compare FIG-Forth style namefields)

ZDIJP CWNT 31 (width) AND OVER + SWAP (rifalrnfa2rnfalrrifa?+wrrifaZ)
DO 1+ DUP C@ I C@ -

IF C@ 1.27 (char) AND I C@ 127 (char) AND - (, . ,rcl-cZ) DUP
IF 0.c SWP ROT DROP (frnfa?) THEN
[I = LEAVE.

THEN
LOW (nfa1.rrifa2rrioriZero -'or-- frO)
IF C@ 31 (width) AND SWP C@ 31 (width) AND 3. THEN 1

Figure Two

: NAMES (-- arn : huild array o f n f a ' s from dictionary,)
f'fW C/L + DUP (alra?)
CONTEXT @ alra2rnfa of l a s t word i n 'CONTEXT')
EEGIN @ -DUP MI-IILE DUP :>.R OVER ! 2+ Fix:. Pf'A LFA REPEAT
OVER - 2 / (convert a l ra? t o a l rn) i

Figure Three

: ,NMES (arri : list n words located hy addresses s t a r t i n o a t a)
0 DO DUP @ ID+ 2 SPACES 2+ LOW DROP ;

Figure Four

(FIG-Forth)

: CR () CR 0 OUT ! ; (~ O I J ray already do t h i s .)
: ?L.INE (ri ! newline i f not room for ri characters.)

OUT @ .+ RMARGIN !2 1:. 1F CR THEN ;

(F83 1
: ?LINE (ri : riewline i f not room for n characters.)

#OUT @ + RMNiGIN @ 3 I F CR THEN ;

Figure Five

(FIG-Forth)
: ?TAB I n : tab t o rm:t multiple of ri i f riot already there.)

W T @ OVER MOD -WP IF - SPACES ELSE DROP TIHEN ;

(F83)
: ?TAB (n : t a b t o rex t multiple of n i f not already there.)

M U T @ NEGATE SWAP MOD SPACES ;

Figure Six

. -~lumeVI, No 5 25 FORTH Dimensions

THE IPC-SBCBB DEVELOPMENT AND CONTROL SYSTEM

WRITE IT - RUN IT - ROM IT
A single board computer development and control systemthat
IS so simple to use, you wil l be developing applications pro-
grams the first day! . Choice 01 Basic or FORTH

+ 8 channel. 8 btt analog to

. Two 8 bit input ports

. Time of day

* BCBB 16 bit UP

. Onboard EPROM programmer tor

* US232 terminal and parallel
printer port lor program entry

' 7 current sinking OUIPUIS rated
at 5w rnA 50 VOC

' Up l o 32 K of user memory

+ Assembled and tested $279

in ROM complete program development

digital converter

Two 8 bit output ports

Kits start at $119

MasterCard and Visa accepted
1777 S Bellaire St. Suite 211 Veata Technology. Inc.

Denver, GO 80222 (303) 759-4983

STO-BUS MICROFLOPPY DISK SUBSYSTEM

Plug a disk drive direclly into your STO-BUS card rack
* 3-112 inch or 3 inch drive ' Popular Western Olgilal floppy

mounted directly on the
controller card

5 volt only option

' Small size 2-112 inch
high

disk contioller (W01770)

' t o w power

* Dual drive option

' $555 single drive
W d o u b l e drive

Mastercard and Visa accepted
1777 S Bellaire St Suite 211 Verta Technology. Inc

Denver GO 80222 (303) 7544983

THE iPC-ST088
THE INDUSTRIAL PERSONAL COMPUTER FOR THE STO-BUS

WRITE IT - RUN IT - ROM IT
Provides a productive development environment through
extensive hardware and software integration So simple to
use, programming can be delegated to technical support
oersonnel
+ Choice of Basic or FORTH

in ROM or CPIM-86 on
microfloppy disk

* CPiM.86 610s in ROM

* 5 VQC only option

* EPROM programmer onboard ' Centronics printer port 101
program docUmentaliOn

* RS-232 terminal port
for program entry ' Languages s ~ p p ~ r t mass

storage to disk, RAM disk
+ 8088 increases STO memory and magnetic bubble memory

to 1 megabyte. uses 2-80
peripherals . Economical $49i ($351101

~~~~~ ~ 

: TACI.10 ( nfapn ; displw namefield in n-uide colulrm.) 
DUF ?TAB 
OVER C@ 31 ( width) AND 1t RMARGIN @ ROT MOD + ?LINE 
. ID  ; 

Figure Seven 

: +NAMES ( apn : l i s t  ri nantes located hy star t ing address E$ ) 

0 DO D W  NAME-TAB TAC;.ID 2t LOOP DfKIf' ; 

Figure Eight 

: NAWS ( arn ; b u i l d  array o f  n f a ' s  from dictionary.) 
( pr in t  VOCabiJlary name ) CR CONTEXT @ BODY> >NAME , ID 

I'M C/L t DUF ( alra2 ) 
#THREADS 0 
1)O t:ONTEXT @ I 2x t 

LOOP 
OVER - 2/ i 

BEGIN @ ?DUP WHILE DUP >R L>NAME OVER ! 24. R >  REPEAT 

Figure Nine 

6 O L L  ROOT RO? RUN 
-EM SCAN SCF: SCR' SCRN z E T  
r E  SOURCE(:) SOW?CESTREAM SP@ SPACE SFACES SPAN 
US STREAM STREAM(:) SUBJECT' SWAP TAB TAB. I D  TERMINAL 
MALO T E X l  THEN THEN THENIF T H E N I F  THRLI T I R  TONE 

TIJCt:' TX 'TYPE IJ. U.R U Z /  (J.:: UMS UM/MOD LJNTIL 
UPDATE LJPDATED'? VAR I ABLE V L  I N  VOC-L I NK ~JCICABULARY 
WHERE WHILE WHILE W I T H I N  WORD WORDS X(JR C [ ' I  

El '\ 1 

Sample of output from the Forth-83 version. 
Figure Ten 

FORTH 414 NAMES DEFI.NED 
I # # .:. #BlJF FERS #OUT #S 
# T I H  #VCl(:S $NUMBER XD I R .' WORD ( 

(CCINVEY) (COPY) ID .  ) ( s ! l J .  ) ic 

C' 1 CCOMPILEI WORDS XOR c 
Sample of output from the fig-FORTH version. 

Figure Eleven 

Mastercard and Visa accepted 

1777 S Bellaire St Suite 211 Vssla Technology. Inc. 
Denver, CO 80222 (303) 759-4988 

26 Volume VI, No. 5 



locators (i.e., addresses, pointers, etc.) 
of records or data. The user first puts 
into the array the locators of the data 
to be sorted. The user also assigns to 
the deferred word PRECEDES the ad- 
dress of a word which will compare the 
keys of the data specified by two loca- 
tors. If a file is to  be sorted, this word 
should read records as needed. This 
word should return nonzero for true 
when the data pointed to by the first 
locator should precede the data point- 
ed to by the second locator. SORT re- 
quires on the stack the address of the 
first cell of the array and the number of 
locators in the array. 

To make SORT easy to  use, the word 
SORTED is provided. It is used in the 
form: 

array number SORTED relation 

where "relation" is the address of the 
word which will compare keys. This 
will sort "number" locators beginning 
at address "array" according to "rela- 
tion." (See SWORDS in figure one.) The 
usual sequence of operations is to load 
an array with locators, order the array, 
and then process (often by printing) the 
data as located in the ordered array. 

As a useful application, we give an 
alphabetically ordered list of the words 
in your dictionary. We will show a sim- 
ple version in fig-FORTH and a better 
one in Forth-83. The fig-FORTH user 
should be able to figure out how to 
make the changes for the upgrade. The 
definition of the end-user word is the 
same in both dialects. (See definition 
of SWORDS in figure one.) 

The word to compare name fields is 
also the same in both dialects. It is 
made complicated (and slow) by the 
fact that we need to take care of the 
high-order bit in the last byte of a 
name. We compare the two words 
bytg-for-byte for their minimum 
length, and then check a mismatching 
byte (see ID? in figure two). If it is the 
same character, we make the shorter 
word precede the longer one. In this 
application, the slowness is not very 
important, since the order of most 
words will be decided by comparing 
only a few characters. 

In both versions, we assume there is 
enough memory available above PAD 

You may require:  
( Forth-63 ) 

: CRASH ( ) TRlE M:ORT' undefined e:xecution vector .' i 
: DEf:tR ( ) CREATE ['I CRASH I DOES;. ( ) @ EXECUTE i 
: (IS) ( a ) H> IDUP 2t ::.R @ >BODY ! i 

( FIG--Forth ) 

( Change ABORT' . +. " t o  I F  , ' . . +'I AE:ORT THEN 

MCURSt: ( ? ? ) LAST @ NAN::. 9 i IHHEDIATE 

: I S  ( c i  -- ) STATE @ IF COHf'ILE ( I S )  ELSE ' :>BODY ! THEN i IHHEDTATE 

: KECURSE ( ? ? ) ILATEST PF'A CFA i IMHEUIAlE 
i n  SORT and CRASH ) 

!Xf:t:R ( ) <:BUILDS ' CRASH CFA I DOES;. ( -- ) @ EXECUTE ; 
: ( I S )  ( pfa -- ) CFA R>. DUF' 2.1. >R @ ( c f a )  4 + ! i 
: I S  ( pfa -- ) STATE @ 

I F  COWILE (IS) ELSt. CFA CCOHPILEI ' ( pfa) 21 ! THEN ; IHHEDIATE 
: (SORTED) R:> DUP 2t >R Ld ( c f a )  2+ ( pfa)  IS PRECEDES SORT ; 

We hope t h a t  y o i ~  have CODE d e f i n i t i o n s  of 'ZDUP', '2SUAP'r '?DROP', and 
'ZOUW'. Performance w i l l  d e f i n i t e l y  s u f f e r  i f  YOIJ do not  have them. 
I f  you do not  have them, YO~J can improve perforsance a l i t t l e  hy replacing 
some words with t h e i r  hi@ leve l  def in i t ionsr  e.g.9 replace 'ZDUP' u i t h  
" ClUER OVER' 6 

Figure lbelve 

b a r e ' s  UUICKSURT -- p a r a l l e l  delnonstration i n  Pascal and Forth 1 

fl.inctim precedes ( x ,  y : pos i t ion)  : hoolearl i 
be3i.n 

end ; 

proced1.w quick (nap n : address) ; 
var 

i, j : address i 
pivot ,  temp : pos i t ion  ; 

if  ( m  n) then hegin 

precedes := (k.eyCx1 c: k.eyCy1) ; < compare key a t  pos i t ions  > 

< order tagCml..tagCnl > 

hegin 

p ivot  := tagCnl t ((n .- n) div  2 ) l  ; 

repea t  < p a r t i t i o n  1 
i :.; ; j := rl ; 

while (precedes(tagCi1, p i v o t ) )  da i := s u c c ( i )  i 
whi1.e (precedes(pivot9 tagCj3))  do j := p r e d ( j )  i 
if ( i  .::= j )  then begin 

temp := tagCi3 ; tagLi3 := tagCj1 i tagCj1 := temp i 
i := s u c c t i )  i j := pred(j) 

end 
1-inti1 ( i  ::. j )  ; 
i f  (j-r .: n-i) then hegin quick (mtj)  i quick, ( ipn)  end 
else hegirl quick ( i r n )  i quick. (I, j )  end 

end 
end i 

procedure s o r t  ( a  : address ; n : in teger )  i 
hegirl 

wid i 
qu ick  (a, a t (n-1)) 

Quicksort in Pascal 
Figure Thirteen 

VolurneVI, No 5 27 FORTH Dimensions 



FORTH 
IS NOW 
VERYFAST! 
.Sieve 1.3slpass 
.Compile 300 screenslminute  
.Drop 1.82 us  
.Concurrent I/O @ 250K b a u d  

DEVELOP YOUR 
APPLICATIONS IN 
A TOTAL FORTH 
ENVIRONMENT. 

MICROPROGRAMMED BIT SLICE 
FORTH ENGINE 
.Microcoded forth kernel 
.Microcoded forth primitives 
.Multi-level task switching architecture 
for real t ime applications 
.Optional writable control s tore  

H.FORTH OPERATING SYSTEM 
.Hierarchical file system 
.Monitor level for program d e b u g  
.Multi-user multi-tasking 
.Target compiler 
.I/O management  
.Forth 8 3  Compatible  

H4TH/Ol OEM SINGLE BOARD 
.Floppy disk controller 
.2 channel  SIO to 38.2K b a u d  
.Calendar clock-4HR backup 

.44K Byte ram 200NS 

.32K Byte EPROM operat ing system 

. IKX 32 microprogram memory 70ns 

H4TH/lO DESKTOP 
.Dual 0.8m Byte floppys 
.H4TH/OI processor 
.Three user slots 
.Two expansion slots 
.Power & cooling 

H4TH/20 DESKTOP 
.I0 m Byte Winchester 
.0.8 m Byte floppy 
.H4TH/OI processor 
.300K byte RAM expandable  2m byte 
.Three user  slots 
.One expansion slot 
.Power & cooling 

A forth-engine consisting of a state-of-the-art integrated hardwarelsoftware 
system giving unsurpassed performance for professionals and their applications 
from a company that is totally dedicated to the forth concept and its implementation. 

HARTRONIX, Inc. 1201 North Stadem Drive Tempe, Arizona 85281 602.966.7215 
VolumeVI No 5 FORTH Dimensions 28 



for the address of each word plus a lit- 
tle more. We choose as the address of 
the start of the array PAD + CIL (see 
NAMES in figure three). 

It is now easy to list the words. The 
number of words and the address of 
the array are on the stack. We use the 
fig-FORTH ID. to list each word (see 
.NAMES in figure four). The resulting 
list will be in sequence, but some words 
will cross over two lines. Let's fix that 
by printing the words in columns. I like 
columns nine characters in width for 
name fields, though you may prefer a 
greater width. If a name is too long for 
one column, it will use the next 
column: 
9 CONSTANT NAME-TAB ( Column width 
for name fields ) 

We also need a variable for the maxi- 
mum number of characters in a line. 
This is a variable so you can change it 
for different output devices. We call it 
RMARGIN and it is already defined in 

Laxen and Perry's F83. Seventy-two is 
a good value for most systems. 

Now we want a way to avoid running 
over the current line. fig-FORTH and 
F83 are similar in this regard (see the 
two definitions of ?LINE in figure five). 
Now you should have recognized that 
#OUT is the new name for OUT. You will 
also have guessed that a useful feature 
of CR in many systems has been made 
part of F83, namely #OUT is reset to 
zero. 

Another useful feature of fig- 
FORTH has been incorporated in F83: 
EMIT and other words which emit 
characters increment #OUT. We are 
going to  use this to  tab to the next 
column if we are not already there. 
(See the definitions of ?TAB in figure 
six; the F83 version takes advantage of 
floored division.) 

That does it. Now we can display 
names in columns. We will use the new 
name .ID of ID. from F83. (See TAB.ID in 

figure seven.) It is not necessary for 

TAB. This gives us a new definition for 
.NAMES in fig-FORTH and in F83 (See 
.NAMES in figure eight). 

The F83 definition of NAMES is like 
fig-FORTH but is done for each thread 
in the multi-thread dictionary. As an  
extra feature, we print the name of the 
vocabulary (see NAMES in figure nine). 
With this code, sorting 500 names 
takes twenty-five seconds on a 1Mz 
6502, or fourteen seconds on a 5Mz 
280. 

These are words you may require to  
run the accompanying code. We hope 
you have CODE definitions of SDUP, 

mance will definitely suffer if you do  
not have them. If not, you can improve 
performance a little by replacing some 
words with their high-level definitions 
(e.g., replace SDUP with OVER OVER). 

RMARGIN @ to  be a multiple Of NAME- 

SSWAP, SDROP and SOVER. Perfor- 

WWE:/WWE 811012 ) 

( vectored execi-dot-1 ) 

: QUICK ( aCslt,&nl i ( partil.ion ~ i n I ~ . a L n J  ) 

( take middle vali-ie a:; p i v o t  ) ZD\JF' 
ZDUP SWAP 

IWER - 2/ --? AND + @ >R 

BEGIN ( nivri7jvi ) ( .:::: i, <:= j .<= rl ) 

BEGIN DW' @ R@ PRECEDES MiILE 2+ REPEAT SWAP 
t$EGIN R@ OVER @ PRECEDES WHILE 2- REPEAT SWAP 
ZDUP U i  NOT 

2DUP Ui: 
I F  ZDlJP 2DllF' I? X @ SWAP ! R:, SWAP ! SWAP 2- SWAP ?+ THEN 

( ni <:= j .:: i .<= ri ) UNTIL. R> DROP ( m v n v  jvi ) 

ROT ( mrjrivri ) 20UER ZOUER - + :. I F  'LSWAP ( ivrivm7j ) 'THEN 
7DW U.< IF' RECURSE ELSE ZOHOP THEN ( shorter part ) 
ZDUP U( I F  RECUKSE ELSE ZDROP TIEN ( longer part ) 

: SORT ( avn -- ) ( order aCO3..aCn-11 by 'PRECEDES'. ) 
?DUP O= MORT" nothing t o  sort.' 
1- P X  OVER + ( aCOlvaCn--13 ) OUICE ; 

: (SORTED) R:> DUF' 2.1. >R @ TS PRECEDES SORT ; 
: SORTED ( arn --+elation> ) ( order aC014.aCn-ll by (relation::. ) 

SlATE @ 
XF [:OWILE: (SORTED) 
ELSE ' IS FIECEDES SORT THEN i IMHEDIATE 

Quicksort in Forth 
Figure Fourteen 

~~ ~ 

,alumeVI No 5 29 FORTH Dimens ions  



Why Forth Isn’t Slow 
Adin Tevet 

Haifa, Israel 

When a friend explained Forth to me 
a couple of years ago, I dismissed the 
idea as impractical. I was sure that any 
language in which a word executed 
words which in turn executed other 
words, etc., just had to be slow. Now 
that I am happily coding in Forth, I 
have begun to think about why Forth 
isn’t as slow as I had imagined it to be. 

My mental image had been some- 
thing like that of figure one-a, which 
suggests a sequence of word executions 
that might be rather long before finally 
getting down to machine code. You do 
get a sequence which could be long if 
each word executes just one other word 
(as illustrated in figure one-b) but this 
seems to be rare. In a scan of fifty 
colon definitions published in Forth 
Dimensions, I found no one-word 
definitions. 

The next worst case is when each 
word executes just two other words. 
The picture then looks like figure two. 
Here P stands for the primary words 
coded in assembly language and S 
stands for secondary words, which ex- 
ecute previously defined words. This 
picture suggests that many secondaries 
are needed to execute the program, but 
this isn’t so. In any binary tree, if #P is 
the number of primaries (terminal 
nodes) and #S is the number of secon- 
daries (intermediate nodes), then #S = 
#P - 1. 

This is easy to prove. The simplest 
case is a tree consisting of just one 
primary. For this tree, we have 

#S = 0 = 1 - 1 = #P - 1 

Any other binary tree can then be 
grown from this simplest tree by 
repeatedly replacing a terminal node P 
with S. Each replacement just adds one 
to #S and one to #P, so the equation #S 
= #P - 1 remains true. This formula 
says that even in the extreme case 
where every secondary word in a pro- 
gram executes just two words, there 

a 

Figure One-a 

word 

1 
word 

word 

1 
Figure One-b 

will be only one secondary executed for 
each primary executed. Thus, threaded 
code only doubles the number of words 
that are executed. This is already quite 
a bit better than I had originally im- 
agined. 

Analyzing a little deeper, suppose 
that all secondary words execute exact- 
ly N words. Then, 

#S = (#P - 1)/(N - 1) 

This is also easy to prove: each primary 
is replaced by one secondary And N 
primaries in each step as a tree grows. 
The same formula also holds in the 
completely general case where secon- 
dary words execute any number of 
previously defined words. N is then the 
average number of words executed by 
the secondaries in the tree. (A proof of 
this is similar to the other proofs; I will 
supply one on request .) 

Now, if EP is the average execution 
time for a primary and Es is the 
average execution time for a secon- 
dary, then total execution time can be 
derived as in figure three. The expres- 
sion #P x EP is the execution time for 
the primaries and 

(1 + E S h P  x (N - 1)); 

is the factor representing the overhead 
cost incurred by the secondaries. A 
factor of one would indicate no over- 
head at all, a factor of two would indi- 
cate an overhead of 100% over execu- 
tion time for the primaries alone. If the 
tree were flattened down to a single 
secondary that executes all of the 
primaries in the program, then the 
overhead factor would be one. 

Just to get a quick estimate of the 
overhead for secondaries in a real sys- 
tem (fig-FORTH on an LSI 11/23), I 
counted assembly language instruc- 
tions in the implementation of several 
words, ignoring the differing cycle 
times of the instructions. I found a 
total of seven instructions in the im- 
plementations of DOCOL and SEMIS for 
run-time execution of colon defini- 

FORTH Dimensions 

~~~ ~ 

30 VolurneVI, No 5

tions, the most common form of
secondaries. Over a group of twenty
primaries, I found an average of 4.4 in-
structions per primary (including
NEXT). This gives a very rough ap-
proximation of Es / EP = 7 /4.4. I
assumed that N could be estimated by
counting words in a large number of
colon definitions. The number of
words executed at run time by a
secondary is increased by a backward
branch (as in LOOP) and decreased by a
forward branch (as in IF), so I ignored
colon definitions containing any
branching. From fifty such colon
definitions found in Forth Dimensions,
I counted an average of N = 6.5
words. Note that N also depends on
programming style, with shorter Forth

definitions giving smaller values of N.
These values provided an estimate of
overhead

= 1 + ES/EP x (N - 1)

= 1 + 7/14.4 x (6.5 - 1))

= 1.29

which represents a 29% increase in ex-
ecution time due to the execution of
secondaries. Because of the many
simplifying assumptions used in arriv-
ing at this figure, it should not be taken
too literally. But even as a very rough
approximation, it shows that the ex-
ecution cost of secondary words is not
high.

I
P

I
P

Figure Two

0 0

0

0

I
P

I
P

Free Power!

FREE
FORTH

. umeVl No 5 31

SOFTNET

H ig h- Leve I Packet Corn m u n ica t ion
Jens Zander

Robert Forchheimer
Linkoping, Sweden

SOFTNET is a packet-radio concept
under development in Sweden. The
network is distributed and all nodes are
programmable via the network during
normal operation. This concept
represents an unconventional approach
to the protocol issue and offers elegant
solutions to the higher-level com-
munication problems. This paper gives
a programming model of the network,
along with some examples.

Introduction

The SOFTNET approach was con-
ceived in 1980 and was discussed
among Swedish radio amateurs. The
discussion led to a proposal for an ex-
perimental network in the 432 MHz
band utilizing bit rates up to 100 Kbps.
During 1981, this draft was presented
to the Swedish Telecommunication Ad-
ministration. The administration
responded in a positive way, giving the
packet radio group at Linkoping
University virtually free hands. This
group, consisting of six people, is cur-
rently involved in developing prototype
nodes and basic software for the net-
work.

The main concept behind SOFTNET
is that all packets are considered to be
programs of a network language.
These programs are interpreted in the
nodes as soon as they arrive. Nodes can
be programmed by any number of
users simultaneously without unwant-
ed interaction. This approach makes it
possible for a user to define his own
high-level services like datagrams, vir-
tual calls, file transfers and mailboxes.
The concept also allows changes at
lower levels during operation, permit-
ting redefinition of LINK-level/Access
protocols. A detailed description of
these ideas can be found in references
one, two, three and five.

Node Model

In a SOFTNET node, an incoming
packet that has passed the link level is

given to the node computer for inter-
pretation. Here a standardized set of
instructions are available. The kernel
of this set is simply a Forth interpreter
to which has been added functions that
control the node hardware. Thus, any
user may execute his own Forth pro-
gram in any of the nodes that he can
reach. This way, he is able to instruct
another node to either deliver the
packet to the owner of the node or to
retransmit it so that the node merely
acts as a repeater. Forth allows the
creation of private directories, so the
user may also store programs in remote
nodes. These programs may either
“wake up” upon the arrival of a
packet from the user or upon an inter-
nal signal (e.g., the real-time clock)
produced by the remote node itself.
Describing the node, thus, reduces to
describing a programming model. In
the Forth case, this is done by simply
listing all the available functions or
“ w o r d ~ ” . ~ Figure one summarizes the
packet format from the user’s point of
view.

In fact, the link-level protocol. has
been added to the Forth kernel so that
also the link-level information is hand-
led by a Forth interpreter. This permits
on-line reprogramming and extension
of the link protocol such as new ver-
sions of HDLS, access algorithms, etc.
Thus, from the first byte to the last, a
SOFTNET packet is simply a set of
Forth statements. From a practical
point of view, it is a good idea to con-
ceptually keep instructions at the link
level apart from the higher-level pro-
grams, since changes at the link level
have to be coordinated among the
users.

The Node:
Multi-user, Multi-tasking

Processing at the link level requires
real-time performance, while higher-
level tasks are less time constrained.
On the other hand, the link processor
serves one packet at a time sequential-
ly, while higher-level tasks may run
concurrently. Also, the programming
activities of one user should not in-
fluence any other. Thus, a SOFTNET

node must be able to support parallel
tasks besides being able to keep apart
the current users of the node. For the
prototype implementation, our choice
was a dual processor (6809) system.
One of the processors is solely devoted
to link-level processing. The second
processor contains a multi-tasking
Forth interpreter and is shared among
the users. A special task - the owner
process - interfaces the node to the
owner’s equipment, which can be any-
thing from a dumb terminal to a full-
grown computer system. In the latter
case, the dual processor Forth system is
simply considered a modem between
the owner’s system and the network.

FORTH PROGRAM

t
link level

inlormation
link level

information

Figure One

Node Programming Example

Consider the simple network given in
figure two. Four nodes are connected
by two-way radio paths as indicated by
the lines between the nodes. Suppose a
user is located at node A and has the
specific task to deliver a large number
of packets to node E (i.e., he wants to
establish a “virtual” call to E). This
can be done in at least two ways. The
simplest thing to do is just to add a
retransmit command to all packets as
shown in figure three-a. The command
TO takes the next symbol as an (one-
hop) address and transmits the rest of
the packet to that address. This goes
on, dropping one address each time,
until the remaining packet reaches
node E, where the data portion is
transferred to the owner of the node.
This procedure may, however, con-
sume valuable packet space, especially
when many intermediate nodes are
used. We can instead make use of the
programming features and instruct the
intermediate nodes B and C just to pass
along the packet to the next node in
line. This can be done as in figure
three-b. Here we define a new function
named, say, VCE in the intermediate

FORTH Dimensions 32 VolumeVI. No. 5

lo/. B O/O C %E OWNER <data> I

O/o B : VCE .“VCE” ‘10 C ;

Y o B O/o C : VCE .“OWNER” ‘10 E ;

Figure Two

nodes and in our own node. A new
definition is made Forth-style, starting
with a colon and ending with a semi-
colon. The effect of executing VCE is to
pass on the rest of the packet to the
next node in line. Also, the function
places a copy of its name first in the
packet for repeated execution in the
succeeding nodes.

Project Status

Since the advent of the project at
Linkoping University, a rapidly grow-
ing number of interested radio
amateurs has joined the discussions. A
SOFTNET User Group (SUG) is being
formed as a subgroup of AMSAT-SM.
To date, this group has received about
one hundred applications for member-
ship.

Hardware development has made
considerable progress. The node com-
puter board is under production and a
first shipment of fifty kits was de-
livered in February 1984. Also, the PC
layout for the link computer board is

: VCE .“VCE” O/o B ;

VCE < data >

complete. The packet radio utilizes a
duo-binary direct FSK modulation
scheme with favorable bandwidth
properties. Transmission is synchron-
ous and MFM coding is used to recover
clock information. Due to problems in
the design of the radio, testing of the
digital hardware and software had to
be done on a cable-bound local net-
work. A system with up to four nodes
has so far been successfully demon-
strated and has provided useful results
for further software development.

Conclusions

The SOFTNET concept, with its
fully programmable nodes, will give
the user opportunity not only to com-
municate, but to conduct experiments
in network architecture and network
protocols. The concept is applicable to
all kinds of communication networks.
An implementation using a local net-
work cable has been successfully tested
and a UHF radio broadcast netupork is
under

Figure Three

References

1. Persson, I . and Forchheimer, R.:
“Design Considerations of a Dis-
tributed Packet Radio Network Using
the Amateur Radio Bands,” Internal
Report, LiTH-ISY-0408, May 1980.

2. Zander, J. and Forchheimer, R.:
“Preliminary Specifications for a Dis-
tributed Packet Radio Network for
Computer and Radio Amateurs,” In-
ternal Report , LiTH-ISY-0424,
January 1980.

3. Zander, J. and Forchheimer, R.:
“Softnet Packet Radio in Sweden,”
ARRL Amateur Radio Computing
Networking Conference, Gaithesburg,
Maryland, October 1981.

4. Forchheimer, R. and Zander, J.:
Softnet User’s Manual, Linkoping
1983.
5. Qvigstad, F. and Matts, S . : “Con-
struction of a Packet Radio Node
Computer,” Internal Report, LiTH-
ISY-0491, December 1981.

FORTH Dimensions JolurneVI No 5 33

In Review

FORML 1984 Asilomar Conference
Friday, November 25, 1984 --

clouds were moving in from the Paci-
fic, contrasting against the brilliant
sky. Traffic was backed up the freeway
for miles due to the opening of the new
Monterey Bay Aquarium, causing a
half-hour delay in the start of the pro-
gram. As always, the wind-swept pines
and wildlife at the Asilomar Confer-
ence Center provided a quiet but in-
tense environment for the annual
FORML conference.

Attendance at the meeting differs
from that of the FIG convention (held
the previous weekend in San Jose) in
that registration is limited to a small
number; the technical level of papers is
generally quite high; and criticism,
debate and other forms of audience
participation are an integral part of the
presentations. Introductions showed a
sophisticated professional audience
and a vigorous representation of Forth
experts. The one hundred FIG mem-
bers in attendance had traveled from
Taiwan (ROC), England, West Ger-
many, Switzerland and many parts of
the United States.

Sam Suan Chen attended as a repre-
sentative of the Taiwan FIG Chapter.
In addition to his own paper “In-Word
Parameter Words,” he accepted an in-
vitation to serve as chairman of a ses-
sion on interfaces.

The first speaker in that session was
Charles Moore. In addition to provid-
ing a progress report on the Forth chip,
he told how he started its design totally
ignorant of how to document on paper
the design of a computer, a non-trivial
problem. He finally realized he could
use Forth to document that design.
Code in his paper shows how that can
be done.

His method is one of describing the
logic to the computer, incorporating
the equations (which he had put into
postfix form). His paper describes the
Forth CAD system which evolved into
a simulation of the correctness of logic
levels and signal propogation timing.

Charles Buckley next discussed a
“Graduate Course in Smart Product
Design.” In 1977, Professor L.J.
Leifer started the course in the Design
Division of the Mechanical Engineer-

L

ing department at Stanford University.
It has been found there that the design
projects go much more quickly by
eliminating dependence on outside
programmers. The course is an intense,
one-year MS program which condenses
the equivalent of five quarters’ work in
two quarters.

The course covers software to such
an extent that the students have full ac-
cess to the machine’s abilities. In the
past they had to cut the syllabus in
half, or else work so fast as to set stu-
dents’ heads spinning. But for the past
two years they have used Forth and
find it a phenomenal improvement.

The Forth environment can replace
entire subsystems, considerably easing
the learning curve of gaining familiar-
ity with the available tools. The ease of
using Forth with assembly language
was another major advantage. Its sim-
plicity and consistency make it quick to
learn, and a noticeable improvement in
the quality of student projects has
become evident.

John James and William Volk both
spoke of subjects which could improve
the portability of Forth programs.
James’ “Towards Standardized Mo-
dem Words” addresses the problem of
enabling Forth routines to communi-
cate easily with various kinds of mo-
dem hardware. Another goal was to
insulate the end user from the need to
know anything about parity, word
length, stop bits, etc. Volk’s “Portable
Graphics Wordset” speaks of the prob-
lem of running a portable program on
different systems in such a way that the
screen will look the same. Side benefits
of doing this are windows and
viewports.

The third session consisted of only
two papers, but they were central to the
“Expert Systems” theme of this year’s
conference. Dana Redington’s con-
tribution concerned the FORTES Poly-
somnographer in use at the Stanford
Sleep Lab. He prefaced his presentation
with the explanation that in the field of
artificial intelligence, there are cogni-
tive science (how the mind works,
science-oriented) and knowledge en-
gineering (trying to create a machine to
mimic the mind).

There are two major approaches to
knowledge engineering, or expert sys-
tems. The traditional approach re-
quires that the information must be
modular in form; and one must under-
stand the difference between software
and knowledgeware (work toward
knowledge engines and building know-
ledge bases).

An expert system mimics a human
expert. There are two classes: consul-
tants (non-real-time) and operators
(real-time). The components of either
are a knowledge-slate, knowledge-
engines, and knowledge-bases, each
with various specific sub-functions.
For this particular application, the lab
conditions for sleep research mandated
a small, quiet computer and budget
required it come “off the shelf.” Forth
was installed and extended to become
an expert system. Forth is described as
a very good language for these pur-
poses, particularly because LISP and
PROLOG don’t work fast or well on
microcomputers.

Jack Park then shared some of his
experience working with expert systems
programmed in Forth. He pointed out
that any kind of program that encapsu-
lates information is, technically, an ex-
pert system. The point of departure for
genuine examples, though, is that they
get away from the programmer con-
trolling the program flow and let the
information itself direct the program
flow.

In the general “Forth Philosophy”
part of the program, Tom Hand pro-
vided an anecdote interesting to the
many teachers and schools evaluating
and developing Forth curricula. He
teaches an elective course at the Florida
Institute of Technology in which stu-
dents are required to develop a Forth-
related thesis. In another course, on
operating systems, learning Forth was
optional; at first, most students opted
to stay away from it, but later it be-
came evident that those who had Forth
were completing their projects much
more quickly and with fewer problems.
As the course progresses, more stu-
dents turn to Forth.

In the same afternoon, Ron Braith-
waite spoke about “Object-Oriented

~

FORTH Dimensions 34 VolumeVI. No 5

Programming,” a subject which in-
spired a good deal of audience par-
ticipation. There were varied opinions
about whether data typing was a good
idea (or even needed). The simple def-
inition of “objected-oriented” was
offered by Wil Baden in two words:
CREATE DOES>. Food for thought!

By this time, the audience was
primed for a heady debate about con-
cepts so broad as to have little direct
impact on the day-to-day routine of
programmers and systems developers.
Andreas Goppold’s paper bore the
sub-title, “An essay into the time-
frame network of instrumental
language. ” Instrumental language was
defined as a class of languages which
allows man to interface with what, by
the use of that language, came to be
called “objective reality.” Hence his
interest in the relations and processes
involved, rather than in the data itself.
Goppold traced the evolution and
impact of spoken and written language
in the past five thousand years and
made some projections about
:ommunication in the coming millenia.

Don Colburn’s “Direct Connect”
presentation was a discussion of man-
ro-man and man-to-machine commu-
nication. He used Blissymbolics to
demonstrate iconic transmission of
information.

At this point, the audience fairly
burst into active participation as hands
were raised around the room. There
was a question about whether icons
lead us back five thousand years to the
hieroglyphic state, or whether they are
a step forward into universal meaning.
Several participants reminded us of the
large role that aural input plays in
our communication. However, most
agreed that visual input is vital. John
James suggested as an interesting ex-
periment the development of a com-
puter with which we communicate only
in sounds (words or otherwise), and
which responds to us in like manner. . The goal of the experiment would be to
program the computer to do a useful
rask. As this session ended, individuals
continued debating various points in
small groups.

A popular part of the FORML con-
ference was that devoted to impromptu

lectures. A scattering of topics was
presented, each given five minutes
or less. During that period, Klaus
Schleisiek spoke on the recurring
theme of the importance of file sys-
tems. He feels that while many of the
typical systems today are not intel-
ligently designed, this represents a
challenge which Forth can help to
confront.

John Irwin uses PC-DOS from Forth
to access the PC file system. He uses
the word RIW to process a flag to call
system functions, an approach which
minimizes the changes needed within
Forth to implement files.

Guy Grotke spoke on his simple
metacompiler. The premise was that if
one is willing to accept certain limita-
tions, one can write so simple a meta-
compiler that it is possible to use it in
teaching situations.

Zafar Essak, a physician, spoke of
the medical applications of Forth. He
underlined the importance of consider-
ing how the system we design will af-
fect its users. His way of designing
medical office management software:
any event in the office can be grouped
under the general heading of “client
encountering professional.” Then each
type of encounter (scheduling, prob-
lems and medications, investigation,
consulting, etc.) can be assigned a
logical relationship.

Wil Baden presented his simple rules
for spacing between Forth words for
improved readability. In his method,
words that put something on the stack
are called nouns, those that consume
items are verbs, modifiers are adjec-
tives, and words leaving the stack un-
changed are likened to interjections.
Nouns followed by nouns, adjectives
or verbs have only one space after
them. An adjective followed by an-
other adjective has only one space; ad-
jectives followed by a noun or by a
verb, use two spaces. Interjections are
followed by two spaces except when
the following word in another interjec-
tion. Verbs are always followed by a
double space. And if that verbal des-
cription seems confusing, a simple
chart using abbreviations is shown:

dicroMotion

MasterFORTH
t‘s here- the next genera-
ion of MicroMotion Forth.

Available for the APPLE ll’s, IBM PC,
Macintosh & CP/M 2.x

0 Meets all provisions, extensions and
experimental proposals of the FORTH-
83 International Standard.

0 Uses the host operating system.
0 Built-in micreassembler with numeric

local labels.

A full screen editor is provided which
includes 16 x 64 format, can push &
pop more than one line, user defin-
able controls, upper/lower case key-
board entry, A COPY utility moves
screens within & between lines, line
stack, redefinable control keys, and
search & replace commands.

Includes all file primitives described
in Kernigan and Plauger‘s Software
Tools.

0 Theeditor, assemblerand xreencopy
utilities are provided as relocatable
object modules. They are brought
into the dictionaly on demand and
may be released with a single com-
mand.

0 Many key nucleus commands are
vectored. Error handling, numberpar-
sing, keyboard translation and so on
can be redefined as needed by user
programs. They are automatically r e
turned to their previous definitions
when the program is forgotten.
The string-handling package is the
finest and most complete available.

A listing of the nucleus is provided as
part of the documentation.

0 The language implementation ex-
actly matches the one described in
MASTERING FORTH, by Anderson &
Tracy. This 200 Page tutorial and re-
ference manual is included with
MasteWRTH.

0 The input and output streams are
fully redirectable.
Floating Point & HIRES options avail-
able.
MasteWRTH-S100,00APPLE&CP/M;
$125.00 Macintosh & IBM PC. Floating
Point & HIRES - $40.00 each.

-

Publications
0 MASTERING FORTH - $18.00
0 83 International Standard- $15.00

FORTH-83 Source Listing 6502,
2-80,8066 - $20.00 each.

12077 Wilshire Blvd Ste 506
Los Angeles CA 90025

(213) 821-4340

iolumeVI. No 5 35

Introducing 3 New
68000 FORTH Systems

68000 FORTH Systems also available on HP Series 200 and Motorola VMEIO
For more information contact

CREfiTIVE fOLUTlONS
4701 Randolph Rd. Ste.12 Rockville, Maryland 20852

(30 1)984-0262

UNlX IS a registered trademark of AT&T CP/M IS a reglstered trademark of Dlgl ta l Research
Volume VI. No 5 36 FORTH Dlmenslons

n a v i
+

a + - + +
v + + + +
i + + + -

n - - -

Leo Brodie addressed those who
teach and write about Forth. He finds
the pfa, cfa, etc., ambiguous and has
adopted Kim Harris’ revised notation.
Because the contents of the code field
can be an address, the address of the
code field itself is now written acf, and
for the same reason the address of the
parameter field is now referred to as
the apf.

Chuck Moore spoke on “hacking
Forth,” fearing that the fun aspect of
programming is being lost. He related
that hackers at a recent conference
spoke more on how one cannot make
money by giving away software than
about how important it is that infor-
mation (if not the software itself) be
freely available and shared.

Mike Perry then made several
points. The progress report on F83:
very few extensions have been done
and little has been shared (as was
originally hoped); F83 has been ported
to almost no new machines, and those
which have been done are no longer
directly related or are somehow
reduced in scope. In one case, a person
ported Forth to the Mac but wouldn’t
show the code to Perry because it had
become “proprietary.” From there
Mike went on to discuss the public
domain, and elicited a strong audience
response in support of it. He especially
requested vendors to look on hackers’
efforts (e.g., public-domain software)
as contributions to the state of the art
and not as threatening in the way of
competition.

The final topic for formal papers
was “Local Variables,” a subject
which prompted Conference Director
Kim Harris to remark on the prolifera-
tion of the ideas presented at FORML
meetings. After thorough discussion of
an idea, regardless of its degree of ac-

.

ceptance or rejection at the meeting, it
either comes quickly into widespread
use or is never heard of again. Local
variables have raised some interest
among FIG members lately; watching
their progress or stagnation in the
Forth community should be exemplary
of this process.

Bob La Quey uses a transient trans-
lator which creates a small, temporary
dictionary to hold values. In answer to
the question, “With respect to what
are the variables local?” he answers
that he tries to keep them within one
colon definition. His proposal tends to
reflect his antipathy to stack operators.

George Shaw’s approach, what he
calls “Rock and Roll Programming,”
stores local variables under the stack
with his word ROCK and fetches them
with ROLL. This differs from some
other solutions in that it takes values
off the stack and so works like other
Forth operators.

William Volk’s goal was to have lo-
cal variables without affecting any of
his other code. For graphics solutions,
he felt that he could simplify his ap-
plications which used many stack man-
ipulations and make them run faster.
His variables are kept at fixed locations
in memory.

Finally, the Forth community has
been far from untouched by the splash
caused by the Macintosh’s entry into
the microcomputer pool. Charles Duff
from Kriya systems, which has devel-
oped a Forth for the Macintosh (along
with MicroMotion and Creative Solu-
tions), spoke of extending Forth in
new directions. The complexity of
Mac’s operating system really stretched
Forth’s capabilities, especially in the
area of data structures.

During the impromptu lectures, Tom
Zimmer also spoke of Forth and the
Macintosh. He recommends that im-
plementors working on that machine
handle all the traps available inside
Mac. Most systems do not because of
the massiveness of the undertaking.
Zimmer opens a MacWrite text file and
enters a sequence of simple lines, e.g.:

OPEN AOOO TRAPA < CR >

which can be accessed by a Forth com-
mand like

MAKETRAP OPEN

which can access the text file and find
the needed parameter. This would
work if the machine were fast enough
to do such a search without bogging
down. However, he pre-compiles this
text file (which is in alphabetical order)
and uses a program which can find the
individual entries quickly.

That is this year’s FORML confer-
ence in a very small nutshell. Complete
papers of all the presentations, and
some additional material, will be pub-
lished in the Proceedings of the 1984
FORML Conference.

Volume VI. No 5 37 FORTH Dimensions

Part One -

FORML China Tour 1984
9-25: The FORML tour group met in
the terminal at San Francisco’s Inter-
national Airport. In that lobby, we
renewed old acquaintances and began
new friendships with those who would
be our constant companions for the
next three weeks. After ritually check-
ing pockets several times for passports,
traveler’s checks and plane tickets, we
embarked on an itinerary that would
include Taiwan (Republic of China),
Hong Kong and the mainland People’s
Republic of China.

9-26, 9-27: International date line. By
this time, our bodies had conformed
perfectly to the shape of the regulation
airline seats. Henry Laxen and Mike
Perry, far from conferring over
esoteric aspects of their Forth im-
plementation, were engaged in the cul-
turally appropriate game of Go. Not
entirely lost in the temporal world,
however, the game-side conversation
soon turned to mathematical permuta-
tions of the Go board (but really, guys,
Moebius Go?) and to Dr. C.H. Ting’s
relentless Forth version of the classical
Chinese pastime.

The group changed planes outside
Tokyo. We girded ourselves for an in-
stant transition from Western to East-
ern culture, but the connecting flight’s
announcements were in English despite
the minority of Americans on board.
After a short flight that brought our
total flying time to about twelve hours,
it was a relief to prepare for landing in
Taipei. And as we tiredly hauled our
carry-ons through the gate (with
enough cameras to forever quell any
cliche remarks about visitors to our
own country), we were greeted by smil-
ing faces and large banners prepared
by members of the Taiwan FIG
Chapter!

We were ushered quickly through
customs and, after introductions and
photographs on all sides, boarded a
bus for the hour-long commute to
Taipei’s Lai Lai Sheraton. But not
before being informed that the next
day’s activities would begin with an
8:30 a.m. departure!

9-27: This morning saw us visiting
the Hsinchu Research Institute, whose

‘

Taroko Gorge was an exhilarating
example of Taiwan’s natural
beauty.
Electronics Research and Service Or-
ganization (ERSO) brought integrated
circuitry to Taiwan. They are engaged
in advanced research as well as in ac-
tively implanting the results of that
research into the nation’s industries. It
was a special pleasure to tour their
facilities at the invitation of the
institute’s Dr. Tang and to meet with a
few of their four thousand employees,
because ERSO was one of the hosts of
the Taipei FORML Conference.

During our tour, we had the oppor-
tunity to watch a Forth-controlled
robot arm demonstration. It used
video input to sort out blank metal
disks from those with letters that it ar-
ranged to spell “ERSO.’’ The machine
operated under the Universal Robot
Control System developed by engineers
there. A meeting followed in which
questions and answers were exchanged
about the technology and the Forth im-
plementation, and a formal presenta-
tion was made to that group by FIG
President Robert Reiling.

It had been a busy morning, and
with the prospect of several intense
weeks ahead, a number of us took ad-
vantage of the lunch-time opportunity
to have pizza at the hotel. An after-
noon visit to the Chiang Kai Shek
memorial, a truly monumental build-

ing, concluded the first day we spent
on foreign soil.

9-28: The day started with a visit to the
Palace Museum, where the accumu-
lated art treasures of centuries are on
display. The hours spent there were
hardly sufficient to view the thousands
of jade, bamboo, silk and other
precious objects, which are replaced
frequently by items from a seemingly
endless storehouse.

The afternoon found tour group
members exploring the modern,
technological a r t s available to
consumers. Shops were full of a wide
variety of modern electronic products,
only some of which were significantly
lower priced than in the United States.
More interesting to many, perhaps,
were nondescript stores selling
familiar-looking computers with no
maker’s imprint. Due to recent efforts
by IBM, no versions of that company’s
PC were in sight; other manufacturers
will have to remember that imitation is
the sincerest form of flattery. The most
notable examples of pricing strategy
were found on the software shelves.
Major applications like dBase I1
typically cost four dollars per diskette.
Local Forth enthusiasts also have a
complete selection of Forth books
which have been translated into
Chinese.

Back at the Lai Lai Sheraton, Mar-
guerite Philips, our American tour
guide, hosted a cocktail party for
speakers and guests. On that occasion,
the final schedule of topics and
speakers was drawn up for the con-
ference which would begin the next
day.
9-29: An array of large blue and white
FORML flags and a forty-foot banner
greeted those who arrived at TamKang
University’s impressive International
Conference Hall. The Taiwan FORML
Conference began with presentations
by the University’s President Dr.
Clement C.P. Chang and by its Vice-
chancellor Dr. Louis R. Chow. Key
organizers of the two-day event also in-
cluded Dr. Timothy Huang, Dr. C.H.
Ting, Dean of the Graduate Institute
of Management Science Professor

Volume VI, No. 5 FORTH Dimensions 38

.

Chien Lih, and Secretariat Ching-Tang
Tseng, and many other distinguished
planners and sponsors.

During program introductions by
our hosts, Forth was touted as the best
of the fourth-generation computer lan-
guages, and its importance in process
control was stressed. Robert Reiling
then spoke on the history and goals of
the Forth Interest Group, a topic which
was greatly appreciated by local FIG
members, who are in the process of ob-
taining government recognition of
their group. Bill Ragsdale next shared
some non-technical ideas, such as how
a piece of Forth code can reflect how
the programmer thinks and solves
problems, and how the language does
not have the built-in limitations of
other languages - instead, the limits
are the mind and ambition of the pro-
grammer.

Wil Baden surprised everyone by
beginning his lecture about F83 in
Chinese. He discussed his translation
of F83 for the Apple I1 and concluded
by writing in Chinese characters on a

At our farewell banquet, Robert Reiling accepts a gift from the Taiwan
FIG Chapter and Tam-Kang University.

CGM-FORTH for 280" CP/M"
GGM-FORTH, a complete software system for
real-time measurement and control, runs on any
280 computer under CP/M using an extended
fig- F 0 R TH vocabulary .

GGM-FORTH uses direct-access FORTH
"screens" files, and also sequential text files,
and allows four or more files to be
simulaneously active for input/output.

All CP/M input/output devices, including
printer, reader, punch, etc.. are accessable to
GGM-FORTH routines thru BDOS calls,
making i t truly hardware-independent.

In addition, GGM-FORTH includes an on-
line HELP facility. whichcan look upany word
in the dictionary and display its definition
aqd/or other in format ion The HELP
dictionary is easily extendable to add the

GGM SYSTEMS, INC.
135 Summer Ave.,

280 i s a trademark of Zilog, InC.

user's own definitions HELP may be invoked
at any time without disturbing the stack
contents or screen display (in the case of the
f u I I-sc reen edi t or) .

GGM-FORTH features:

0 Open multiple CPiM files, in any co!?bin
ation of direct-access and sequential-access,
fully compatible with all CP/M utilities

0 Char. in/out uses CP/M console, lister, file, or
port

0 On-line HELP provides instant access to defi-
nitions in the run-time GGM-FORTH dictionary

0 HELP file is easily extended to include user
definitions using HELP uti l i ty

0 HELP is available during full-screen editing

Complete system and manuals $195.

(6 17) 662-0550
Reading, MA 01867

CPiM I S a trademark of Digital Research. Inc

transparency, drawing pleased ap-
plause from the audience. During in-
termissions, Wil was among those who
demonstrated Forth to eager par-
ticipants.

Timothy Huang proceeded to dis-
cuss how programmers whose native
tongue is Chinese can program in
Forth more easily than in other com-
puter languages which are more closely
aligned with English. His company has
a Chinese version of Forth, and he
showed some samples of its code. One
definition, which he considered un-
necessarily large, he compared to the
very long cloths used to bind very small
feet.

Ching-Tang Tseng, President of the
Taiwan FIG Chapter, spoke on teach-
ing Forth. His paper includes lists of
courses which have been taught in that
country, content and structure of the
classes, and locally developed pro-
grams used in teaching those classes
(which are available to any who might
benefit from them). He also spoke on
the desirability of lowering the average
age of Forth students.

After some additional talks by
American attendees (largely covered by
the review of the 1984 FORML
Asilomar meeting), H.C. Liu described
a significant application he wrote in
Forth for a military hospital. His pro-
gram runs on an Apple 11 to measure a
patient’s pulse and correlate it with
other vital signs.

9-30: Everyone was eager to return for
the second day of the Taiwan FORML
Conference. One of the first speakers
was H.L. Lee. He had written a Forth
program to solve a friend’s inventory
management problem. This practical
system was designed for in-office use,
and is forgiving of certain types of
operator errors. A key element is that
the user doesn’t feel like he or she is
learning a new computer language.

Y.M. Wu discussed “Forth Applica-
tions in Water Resources Planning.”
He has a simple method of using the
stack to record search paths through a
binary tree. Since cities are in different
locations relative to water supplies, this
“lowest cost flow” technique finds the
least expensive flow path to get water
to cities.

9

A project of great interest at ERSO is the Forth-controlled robot arm.

K. Huang presented his “6502 Cross
Disassembler in Forth-79.” As an ad-
dendum to his talk, he requested that
all available assemblers and disas-
semblers be collected and published.
This would save much work re-
inventing the same utilities, and would
help to promote Forth as a develop-
ment language.

After a stimulating day, the con-
ference was officially closed with gifts
of recognition to Sam Suan Chen and
the Taiwan FIG Chapter officers and
the conference staff; and to Robert
Reiling, William Ragsdale, Charles
Moore, Henry Laxen and Mike Perry.
Sixty people attended a farewell ban-
quet at which Charles Moore spoke
about Forth’s outstanding perform-
ance in major applications and its
superiority over Prolog as the language
of the fifth- and sixth-generation com-
puters.

10-1: The FORML tour group regret-
fully left Taipei after a fond farewell to
our friends there. Only hours later, we
arrived in Hong Kong to check into our
hotel in the Wanchai district. Our win-
dows looked across the harbor into
Kowloon and toward mainland China,
our next destination. Most of us
gathered that evening for dinner

aboard a three-story floating res-
taurant and enjoyed a later drive up
Victoria Peak for a look at the island’s
night lights.

10-2: Nothing was planned until later
this evening, so a free day of shopping
was declared by one and all. Going our
separate ways, the FORML group was
quickly assimilated into the interna-
tional crowds. Miles of trekking
through the humid heat took us past a
Gucci’s (next to a McDonalds),
acupuncture shops (next to stereo and
camera shops), high-tech malls and
high-rise tenements. Enough of us
wandered together into a tailor’s store
to create a veritable shopping frenzy
amid bolts of silk and leather. At the
evening dinner, we had a meeting to
plan our entry into the mainland and to
fill out the many required forms. Last-
minute shopping and shipping (via the
legendary slow boat) preceded night-
caps and a well-earned rest for our
aching feet and slender wallets.

Coverage of the FORML Tour
Group’s activities in the People’s
Republic of China will be detailed in
the next issue of Forth Dimensions.

FORTH Dimensions
-~

40 Volume VI, No 5

John D. Hall
Oakland, California

We have three new chapters for a
total of sixty-eight!

Orlando FIG Chapter,
Orlando, Florida

Tampa Bay FIG Chapter,
Clearwater, Florida

Central Oklahoma FIG Chapter,
Oklahoma City, Oklahoma

Atlanta FIG Chapter

August 21: The meeting was very
well attended considering it is vacation
season. This month the session did not
feature a speaker but, as usual, lots of
topics surfaced in general discussion.
Forth-83 differences are causing some
consternation but it was pointed out
that languages of any kind have to be
alive. Once in four years seems to be a
reasonable revision rate. The question
of Forth’s readability came up. It is,
perhaps, easier to write cryptic code in
Forth than in other languages, but one
could write Forth almost in English. It
seems more a matter of style and, per-
haps, more time needs to be spent in
up-front work before getting down to
the “fun” part of coding.

September 25: As usual, our meeting
did not lack for interesting and wide-
ranging discussion, including the fol-
lowing topics: advertising ourselves lo-
cally, Charles Moore’s rumoured
microprocessor, how MacForth is gain-
ing attention, the new book Complete
Forth by Alan Winfield, examples of
shadow screens, Micro magazine, the
use of 1 .R to eliminate spaces in ASCII
output, etc. Recall hearing about the
expert system redone in Forth by GE?
At a recent, well-attended presenta-
tion, the most persistent question
about the system concerned the sub-
stitution of Forth for LISP. The
speaker replied that Forth lent itself
better to the successful implementation
on a micro. Three cheers!

October 93: Ron Skelton mentioned
that we now have forty-five people on

the mailing list and that we have held
regular meetings since July 1983. How
time flies! People at MSA have been
contacted and confirmed they were
using Forth in their Designware pro-
ducts marketed by Peachtree Software.
The article in BYTE (September 1984)
about KAMAS, an outline textldata
processing product using Forth, was
discussed. The group also discussed
John Dvorak’s article in the October
29 issue of Info World which was highly
critical of Forth, but which was more
sensational than substantial. Much
other discussion centered on trying to
implement the Laxen and Perry F83,
and on understanding strange words
like DEFER. The merits of conventional
screen-organized Forth versus files of
Forth code is a topic that keeps
popping up. Some folks are always
interested in the speed issue and were
planning to try using FASTER-
FORTH techniques.

-Ron Skelton
Fort Wayne Chapter

September 14: We have had three
successful meetings since our last news-
letter. Ed Harmon provided us with an
interesting demonstration at our July
meeting on the Apple 11’s MicroMo-
tion Forth. Ed (at that time an admit-
ted novice in Forth, but a competent
user of Pascal and COBOL) translated
a short Pascal graphics routine into
Forth. There was an interesting fall-out
from this exercise in view of the often-
mentioned criticism of Forth (i.e., you
can write it but you can’t read it).
Pascal was invented to enhance read-
ability. As Ed put the two routines on
the blackboard, it was indeed a sur-
prise to witness the almost identical ap-
pearance of the two source codes.
Furthermore, Ed made note of the fact
that the Pascal code had unnecessary
redundancy in the parameter-passing
statements. Ed is enthusiastic about
Forth and has purchased SUPER
FORTH 64 by Persec Research for the
Commodore 64.

-Blair MacDermid
Los Angeles Chapter

October 27: The morning session
began with introductions, and was fol-

lowed by news, rumours and then
lunch. The four afternoon sessions
were by Martin Tracy, who presented a
three-screen implementation of float-
ing point; Nathaniel Grossman, who
continued by expanding Martin’s Zen
math into a Zen slide rule using the
Cordic algorithm; Loring Craymer,
who presented debugging help for F83
that does not require patching NEXT
and will work with in-line NEXT sys-
tems; and Barry Cole, who presented
some performance enhancements and a
discussion of measurement tools.

-Barry Cole
Rochester Chapter

The Rochester chapter meets every
other month at the University of Ro-
chester. At the May meeting, Paul
Conaway exhibited the virtues of the
Rockwell F11 chipset and his New Mic-
ros “100 Squared” system. July was
devoted to a demonstration of Mac-
Forth by Nick Francesco. In Septem-
ber, David Harper demonstrated his
polyFORTH implementation of the
full-screen editor described by Blakely
in Forth Dimensions (V/2) and later
expanded by Gates (VVl). David also
described and demonstrated the inter-
nals of Jack Park’s Expert Systems. At
each meeting, there has been discussion
about what people are doing with F83.
Orange County chapter handouts have
also been of particular interest. Several
people are looking for Forth for the
PDP-8. Does anyone know of one?

-Chapter Scribe
Greater Oregon Chapter

October 13: Tim Huang reported on
the Taiwan FORML Conference. Tom
Almy gave a multi-tasking presentation
and demonstration of the Tower of
Hanoi puzzle done as several coopera-
tive tasks rather than recursively. This
involves an elegant message-passing
scheme which Tom detailed with source
code. Our December meeting this year
will have been held at a local res-
taurant, including spouses and/or sig-
nificant others. If successful, it will be-
come an annual event.

--Pann McCuaig

FORTH Dimensions VolumeVI No 5 41

MISSOURI INDIANA U.S.
ALASKA

Silicon Valley Chapter
Monthly, 4th Sat., 1 p.m.
Dysan Auditorium
5201 Patrick Henry Dr.
Santa Clara
Call Glen Tenney
41 5/574-3420

Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Inst.
Mag Conference Center
Call Linus Orth
8 16/444-6655

Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
3 17/257-0217

Fort Wayne Chapter
Call Blair MacDermid
2 19/749-2O42

Kodiak Area Chapter
Call Norman C. McIntosh
907/486-4843

Stockton Chapter
Call Doug Dillon
209/93 1-2448

ARIZONA St. Louis Chapter
Monthly, 3rd Tues., 7 p.m.
Thornhill Branch of
St. Louis County Library
Call David Doudna
314/867-4482

Phoenix Chapter
Call Dennis L. Wilson
6021956-1678

IOWA
COLORADO

Iowa City Chapter
Monthly, 4th Tues.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853

Tucson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

CALIFORNIA

Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

NEVADA

Southern Nevada Chapter
Call Gerald Hasty
702/452-3368 CONNECTICUT

KANSAS
Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

NEW MEXICO
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker CO.
532 Market
Wichita, KS
Call Arne Flones
3 16/267-8852

Berkeley Chapter
Monthly, 2nd Sat., 1 p.m.
10 Evans Hall
University of California
Berkeley
Call Mike Perry
415/6443421

Albuquerque Chapter
Call Rick Granfield
505/296-8651 FLORIDA

Orlando Chapter
Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790

Miami
Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305 /252-0 108

NEW YORK
Los Angeles Chapter
Monthly, 4th Sat., 11 a.m.
Allstate Savings
8800 So. Sepulveda Boulevard
‘/2 mile North of LAX
Los Angeles
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst

LOUISIANA
FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Tom Jung
212/432-1414 ext. 157 days
2 12/26 1-32 13 eves.

New Orleans Chapter
Call Darryl C. Olivier
504/899-8933

MASSACHUSETTS Tampa Bay Chapter
Monthly, 1st Wed., p.m.
Call Terry McNay
8 13/725- 1245

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m. GEORGIA

Syracuse Chapter
Monthly, 1st Tues., 7:30 p.m.
Call C. Richard Corner
3 15/456-7436

Atlanta Chapter
Call Ron Skelton
404/393-8764

Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

MICHIGAN

Detroit Chapter
Call Tom Chrapkiewicz
313/562-8506

ILLINOIS OHIO
Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150

Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242

Rockwell Chicago Chapter
Call Gerard Kusiolek
3 12/885-8092

Athens Chapter
Call lsreal Urieli
614/594-373 I

Cleveland Chapter
Call Gary Bergstrom
216/247-2492

MINNESOTA

MNFIG Chapter
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
6 12/588-9532

Sacramento hapter
Monthly, 2nd Tues., 7 p.m.
170B 59th St., Room C
Call Tom Ghormley

F

916/444-7775

Cincinatti Chapter
Call Douglas Bennett
5 13/831-0142

Volume VI, No. 5
FORTH Dimensions 42

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

GERMANY Dayton Chapter
Twice monthly, 2nd Tues., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612
Dayton, OH
Call Gary M. Granger
5 13/849-1483

VERMONT

Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Hal Clark
802/877-2911 days
802/452-4442 eves. CANADA OKLAHOMA IRELAND

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers
2410 N.W. 49th
Oklahoma City, OK 73112

Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or051/74124

VIRGINIA

First Forth of Hampton Roads
Call William Edmonds
8041898-4099

Potomac Chapter
Monthly, 1st Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/437-9218 eves.

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
Basement, Puryear Hall
Univ. of Richmond
Call Donald A. Full
804/739-3623

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg.
Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

ITALY
OREGON

FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021645-8688

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-2811

REPUBLIC OF CHINA

PENNSYLVANIA Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5 52

R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

Philadelphia Chapter
Monthly, 3rd Sat.
LaSalle College, Science Bldg.
Call Lee Hustead
215/539-7989

FOREIGN COLOMBIA SWITZERLAND
Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

AUSTRALIA Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
011833-3333

TENNESSEE

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins

East Tennessee Chapter
Monthly, 2nd Tue., 7:u) p m .
Sci. ADDL Int'l. Corn.. 8th Fl.
800 Oak Ridge Turnpike, Oak Ridge 65 Martin Road Glen Iris, Victoria 3146 Call RichardSecrist
615/482-9031 03/29-2600

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LG19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
021524-7490

ENGLAND

SPECIAL GROUPS Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rrn. 408
Polytechnic of South Bank
Borough Rd., London
Contact Keith Goldie-Morrison
Bradden Old Rectory
Towchester, Northamptonshire
"12 8ED

TEXAS

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Apple Corps Forth Users
Chapter
Twice Monthly, 1st &
3rd Tues., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
415/626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910

FIGGRAPH
Call Howard Pearlmutter
4081425-8700

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thun., 7 rn.
Software Automation, Inc. BELGIUM
14333 Porton, Dallas
Call Bill Drissel Belgium Chapter
214/264-9680 Monthly, 4th Wed., 20:00h

Houston Chapter Lariksdreff 20
Call Dr. Joseph Baldwin

Contact Luk Van Loock

2120 Schoten
71 3/749-2120 031658-6343

FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1100 Toulouse
(16-61)4-03

FORTH Dimensions Volume VI. No. 5 43

FORTH INTEREST GROUP
Winter Specinl

FORML
Conference
Proceedings
198 0-1 98 3

SPECIAL PRICE
Available Until April 1, 1985

Complete Order Form on Page 24

FORTH INTEREST GROUP
PO. Box 1105
San Carlos, CA 94070

BULK RATE
U.S POSTAGE

PA1 D
Permit No 3107 I San Jose, CA 1

Address Correction Requested

