

Introducing 3 New
68000 FORTH Systems

68000 FORTH Systems also available on HP Series 200 and Motorola VMEIO
For more information contact

CffEfiTlVE joLUTlONS
4701 Randobh Rd. Ste.12 Rockville, Maryland 20852 .. - . P- (301)984-0262

UN I X IS a registered trademark of AT&T CP/M is a registered t rademark of D ig i ta l Research

2 Volume VI, No. 3
FORTH Dlrnensions

F 0 R TH Dimensions
Published by the

Forth Interest Group
Volume VI, Number 3

September/ October 1984

Editor
Marlin Ouverson

Production
Jane A. McKean et al.

Forth Dimensions solicits editoria- na-
terial, comments and letters. No responsi-
bility is assumed for accuracy of material
submitted. Unless noted otherwise, mate-
rial published by the Forth Interest Group
is in the public domain. Such material
may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth Inter-
est Group at $15.00 per year ($27.00 for-
eign air). For membership, change of
address and/or to submit material for
publication, the address is: Forth Interest
Group, P.O. Box 1105, San Carlos, Cali-
fornia 94070.

1
Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Dimensions

FEATURES

10 Long Divisors and Short Fractions
by Nathaniel Grossman
This article presents both an analysis to show that the continued fraction
algorithm can be implemented in double-precision integer Forth and an
implementation in Forth-83.

20 Re-Defining a Colon Word
by Ed Schmauch
This program development aid allows one to redefine a Forth word so that
higher-level words which already use it will now reference the new version.

23 Think Like a User, Write Like a Fox
by Michael Ham
Designing systems to accommodate users’ individual typing habits may
seem antithetical to data integrity, or just too much work to bother with.
But for those times when “the computer should have known what I meant,”
this code will help.

26 Upgrading Forth-79 Programs to Forth-83
by Robert Berkey r this thorough approach will get you standard in short order.
When you are ready to integrate your existing applications with Forth-83,

DEPARTMENTS

4 Authors
5 Letters
7
9
30
32
35
38 FIG Chapters

Editorial: Credit Where It’s Due
President’s Letter: Operations by Robert R. Reiling
Ask the Doctor: Astronomical Problems by William F. Ragsdale
Techniques Tutorial: Debugging, Part Two by Henry Laxen
Chapter News by John D. Hall

Volume VI. No. 3 3 FORTH Dimensions

IbM PC, XT, AND COMZbAQ

tht? AAaffSFrORTM

* The speed, compactness end
extensibility of the
MMSFORTH totat. softwm
environment, optimized tor
the papular 1BM PC and
TRS-IIO Modeis 1.3 and 4.
An integraW system of
~~~~~~~~n 
progrwn5: ward -log, 
datahe management, 

With 8ource codep for 
modificaticirns by yau or 
The famous MMS support, 
including detailed man& 
and examples. telephone tip% 
additional program and 
tnexpemive program updab% 
User Groups worldwide, the 
MMSFORTH NewslstPer, 
Forth-related books. work- 

* Personal tl-ng tor TRs-8[): 
$ 1 ~ . 9 6  for MMSC;QRTH, or 
"3t4TH" Uggf System with 
FORTHWRITE, MTA- 
HANI)Lus andFmm 

Corporate Site L t a m e  Exten- 

tf you recognize the difference 
and want to profit from U, ask us 
or your dealer about the worM 
of MMSFORTH. 

sions from $t,OOO. 

MILLER MICROCOMPUTER S E W =  

(617)esSSlaS 
01 L8k. mom Rod, MtW, MA 01760 

the Authors 

Robert Berkey is a systems software 
engineer at Dysan Corporation. He is 
the treasurer of the Forth Standards 
Team, participated on the fig-FORTH 
implementation team and is the author 
of the Alpha Micro fig-FORTH listing. 

Ed Schmauch is a research chemisl 
with Conoco,Inc. where he investigate: 
methods of controlling corrosion during 
the production of petroleum products 
He has developed on a portable compu. 
ter various real-time Forth program: 
which were in turn used as debugging 
aids for other computer systems. 

Nathaniel Grossman is a professor of 
nathematics at UCLA where he teaches 
,oth graduate and undergraduate stu- 
lents. He uses Forth for personal and 
iemi-professional purposes, and enjoys 
.eading, thinking and fussing over a 
;mall model railroad. 

John D. Hall is the National Chapter 
Zoordinator for the Forth Interest 
3roup. 

Michael Ham is manager of customer 
;atisfaction at Dysan Corporation, and 
ists documentation design as one of his 
-esponsibilities of interest. He designed 
I national data base of continuing edu- 
:ation records, and wrote a college 
;earch program in Forth. 

Henry Laxen is Vice-president of 
Research and Development for Para- 
iise Systems, Inc. He worked on the 
)perating system for the Panasonicl 
2uasar HHC, the world's first hand- 
ield computer. He will soon participate 
n a tango competition, and has a cat 
lamed Sophie who sounds like a bird. 

William F. Ragsdale was the found- 
ng President of the Forth Interest 
3roup. As the author of fig-FORTH 
htallation Manual and Model, his 
work has been translated to run on 
:leven processors. 

4 Volume VI. No. 3 
FORTH Dimensions 



l-alue Needn’t Be Pricey 

Dear FIG: 

I would like to thank Henry Laxen 
and Michael Perry for their F83 imple- 
mentation. It is receiving considerable 
support in the Minnesota FIG Chapter. 
Its inclusion of complete source code is 
a great benefit few vendors offer. Its 
many enhancements and low price make 
it an unbeatable system. The under- 
standable lack of support could largely 
be compensated for if a user network of 
some kind develops. Suggestions, 
anyone? 

I must comment on Bill Ragsdale’s 
comments on the price of a software 
package as an indicator of its value 
(V/  6). While it is a clue, I don’t think the 
conclusion drawn (“... Forth ... has only 
one-fifth the value [ofl a C system.”) is 
justified. Price is also an artifact of the 

market system. The simplicity and ele- 
gance of Forth makes it easier to imple- 
ment with fewer development resources, 
which results in cheaper implementa- 
tions being possible. I hope vendors 
don’t conclude that if they only charge 
more they will sell more, clearly a falla- 
cious conclusion. Personally, I think 
software should be priced near the cost 
of the medium on which it resides, and 
programmers should be remunerated 
from the proceeds of some other finan- 
cial mechanism. 

Fred H. Olson 
122 1 Russell Avenue N. 
Minneapolis, Minnesota 5541 1 

A Cure is in Sight 

Editor: 

I am very pleased with the new format 
for Forth Dimensions. It certainly makes 

A Bibliography of 

Forth 
References 

A Bibliography of Forth References contains 
over 1,000 references to articles, books, and 
papers on Forth. Listed by author and subject. 
2nd Edition. September 1984. $15. 

Outside North America please add $5 for air- 
freight. Published by The Institute for Applied 
Forth Kesearch, Inc., P.O. Box 27686, 
Rochester, NY 14627. 

things easier to read and to find articles 
at my level. 

I have one suggestion. In your column 
“Ask the Doctor” could you make the 
“Rx” stand out in some manner. I find 
that sometimes I am into the answer 
before I realize I left the question. 

Keep up the good work. 

Sincerely, 

David H. Lawson 
219 N. Vanderhurst 
King City, California 93930 

We aim toplease - this month 3 column 
format should be a bit easier to 
read.. . -Ed. 

~ ~ 

APPLICATION AND 
RESEARCH 

Volume 2 will have articles on Forth in silicon, utilizing 
large address spaces, image processing, and telescope 

control. Journal issues also contain book reviews, 
technical notes, algorithms, and calendar events. 

Subscriptions Volume 2 1984 
Corporate/lnstitute $100 Individual $40 

Subscriptions outside North America please add $20 airmail 
postal charge. Back issues: Volume I. 1983, Robotics; Data 

Structures, two issues, $30, outside North America $40. 
Checks should be in U.S. Dollars on a U S .  bank, payable 

to The Journal of Forrh Applicarion and Research, 
P.O. Box 27686, Rochester, New York, 14627 USA. 

Published Quarterly by 
The Institute for Applied Forth Research, Inc. 

Volume VI, No. 3 5 FORTH Dimensions 



Sixth Annual 

Forth National Convention 
November 16-17,1984 

Hyatt Palo Alto 

4290 El Camino Real, Palo Alto, CA 94306 USA 
learn about Forth and make your life easier. The convention will show you how! 

Exhibits 
Speakers 
Tutorials 
Vendor Meetings 
Panel Discussions 

Equipment Demonstrations 
Discussion Groups 
Worldwide FIG Meeting 
Banquets 
Awards 

Forth i s  for everyone. The Forth computer language i s  used in video games, operating systems, real-time control, 
word processing, spread sheet programs, business packages, DBMS, robotics, engineering and scientific calculations 
and more. 

Coverage of Forth applications, Forth-based instruments, Forth-based operating systems, and more. 

Speak at the convention. Those wishing to participate and be speakers and/or panelists are urged to contact the 
program coordinator immediately. (Telephone the FIG hotline 41 5/962-8653.) 

PROGRAM 
FRIDAY, November 16 
EXHIBITS Noon - 6 pm 
11:30 am Registration 

1 pm Forth Systems 
2 pm Data Base Developments 
3 pm Forth-Based Products 
4 pm Forth-Based Products 
5 pm 32 Bit Systems 
6 pm Exhibits Close 

SATURDAY, November 17 
EXHIBITS 9 am - 5 pm 

10 am 
11 am 
Noon 
1 Pm 
2 Pm 
3 Pm 
4 Pm 
5 Pm 

Forth Resources 
Education 
lunch 
Forth Chips and Computers 
Business Applications 
Forth Chapters 
Forth-83 Standard, FORML Preview 
Exhibits Close 

BANQUET 

7 pm Saturday - Reservation and payment required - $30.00 

Convention preregistration i s  $10.00; or $15.00 at the door. Special convention room rates are available at the 
Hyatt Palo Alto. Telephone direct to Hyatt reservations by calling (800) 228-9000 and request the special Forth 
Interest Group Convention rates for November 16th and 17th. 
The Forth Convention is  sponsored by the Forth Interest Group (FIG). The Forth Interest Group is  a non-profit 
organization of over 4800 members and 50 chapters worldwide, devoted to the dissemination of Forth-related 
information. FIG membership of $15.00/year ($27.00 overseas) includes a one-year subscription to FORTH 
Dimensions, the bimonthly publication of the group. 

0 Yes! I will attend the Forth Convention. 

0 Number of pre-registered admissions - x $10.00 each $ -  

0 Number of Banquet Tickets - x $30.00 each 

0 Yes! I want to join FIG and receive FORTH Dimensions ($15.00 US, $27.00 foreign) 

TOTAL CHECK TO FIG $ 

0 I want to exhibit; please send exhibitor information. 

Name 
Address 
Company 
City State--.-.- Zip 

Phone ( 1 
Return to: Forth Interest Group, PO. Box 1105, San Carlos, CA 94070 415/962-8653 

FORTH Dimensions 6 Volume VI, No. 3 



Credit Where It’s Due 
Forth Dimensions is evolving along 

with the Forth Interest Group, and it 
requires the care and labor of a fairly 
large group of people, mostly FIG board 
members, attendees at the monthly FIG 
business meetings, correspondents and 
other volunteers. It seems a good idea to 
let you know how it all manages to come 
together. 

We receive letters and articles (but 
never enough!) in the mail. These are 
collected by Shepherd Associates (who 
is also responsible for all the advertising 
content) and are passed to me along 
with press releases, requests for reprint 
privileges and other miscellaneous mail 
for the editor. Often included among 
this material are requests for specific 
information about a Forth system: from 
how to save blocks to diskette on an 
Apple system, to which headerless com- 
piler is right for a given application. 
Unfortunately, except for items ans- 
wered in Bill Ragsdale’s “Ask the Doc- 
tor” column, we cannot always give the 
kind of individual attention we’d like. 
The best source of such information is 
often the vendor, a users group, the 
local FIG chapter, the FIG hotline, the 
FIG Tree or any class on Forth 
programming. 

Material under consideration for pub- 
lication is taken to Forth experts who 
offer technical and literary criticism. 
Ray Duncan and Kim Harris have often 
assisted graciouslyin this task, although 
a considerably larger number contrib- 
utes as needed. We look for sound pro- 
gramming technique, clarity of both the 
code and the text, interesting new solu- 
tions which demonstrate the problem- 
solving process, small applications 
which illustrate one or more Forth 
techniques, and good tutorials. Fre- 
quently frowned at are articles which 
simply re-hash an old subject with little 
new to offer. The reviewers also usually 
shy away from code presented in dia- 
lects of Forth that few readers can use 

directly, or which contains undocu- 
mented non-standard words and exten- 
sions. Sometimes the reviewers will like 
the basic concepts of a piece but will 
make suggestions to the author and ask 
him to consider revising the piece. Well- 
written tutorials for beginners are rarely 
received, but are almost always received 
enthusiastically. 

Articles accepted for publication are 
tentatively scheduled for a particular 
issue. In the interests of timeliness, 
Forth Dimensions does not work as far 
ahead as some periodicals, but we are 
always about two issues ahead of our 
readers in terms of the ones we are put- 
ting together. When you receive this 
issue we will be preparing Volume VI, 
Number 4 for the printer, Number 5 will 
be waiting in the wings and we will be 
planning and reviewing articles for 
Number 6. 

Jane McKean is the one responsible 
for taking the abstract concept of the 
new design of Forth Dimensions and 
turning it into the concrete form you 
hold in your hands. After an article’s 
spelling is corrected, the capitalization 
fixed and all questions answered, it is 
transmitted to Jane’s computer via 
modem or is handed to her as hard 
copy. She then enters formatting codes 
and uploads it to a nearby commercial 
typesetter. The typeset articles come 
back on long pages called galleys, and 
are proofread by yours truly before a 
final version is run off. Jane then tries to 
make the brew we’ve concocted fit within 
the given length of the magazine, a labor 
sometimes only requiring a shoe horn, 
but often calling for a crowbar wielded 
with surgical skill (my eyes are some- 
times bigger than the plates). If you can 
imagine a combination of a crossword 
and fifteen-tile puzzle with elements of 
Risk and Rubik’s Cube, you have a taste 
of what it’s like to do the physical pro- 
duction of a magazine. 

There is one more inspection of the 
entire issue before it goes to the printer. 
Labels are generated by C.J. Street & 
Associates, who provides our mailing 
list service; and the issue is printed and 
bound by Technical Publishing just as 
editorial and production are starting to 
put the next issue together. 

In a nutshell, that is how each issue 
gets put together. Of course, I haven’t 
mentioned our faithful columnists who 
endure my preaching about the signifi- 
cance of deadlines. (I really do need it by 
Friday, gang, no kidding!) The names 
John Hall, Henry Laxen, Bill Ragsdale 
and Robert Reiling appear regularly. 
Not mentioned often enough are the 
many other authors whose work also is 
freely given to improve the body of 
Forth literature and tools. Perhaps the 
best way to thank them is to return the 
favor! 

--Marlin Ouverson 
Editor 



THE MOST ADVANCED VERSION OF FORTH 
IS NOT ON THIS 5 1/4” DISK. 

IT’S UNDERNEATH IT! 
When you pay $300 for some languages all you get is a $3.00 disk. When you buy the 
NMIX-0012 RSC-FORTH System from New Micros, Inc. you not only get the language, you 
get a complete computer system. It has features that you can’t expect from a disk based 
language, like an RS 232 serial interface, 40 individually programmable input/output lines 
(5 parallel ports), two counter/timers, RAM, ROM and a EEPROM/EPROM programmer. For 
that matter, disks don’t usually come with their own power supplies, and almost none are 
packaged in rugged metal cases! You would expect a disk to come with hundreds of pages 
of documentation - our system certainly does. With a disk, you have to tie up your whole 
computer to run the program. After storing your program in our system, it can be dedicated 
to a task without the support of your PC, or you can communicate with it over the same serial 
channel used to program it. On top of all this our FORTH has advanced features, like built-in 
target compilation, CASE statements, PROM programming words and, believe it or not, disk 
access functions. The NMIX-0012 is 100 millimeters on a side, smaller than a disk, priced 
at $290 complete. The “100 Squared’“ is the logical choice! Substantial quantity discounts. 

FORTH Dimensions Volume VI. No. 3 



Operat ions 
tiorl; 

Have you ever wondered how the 
Forth Interest Group accomplishes all 
its member service activities? Dedicated 
volunteers perform many functions; for 
example, the Board of Directors and 
Officers are all volunteer positions. But 
this group cannot provide all the sup- 
port needed to keep the Forth Interest 
Group running smoothly; therefore, they 
have entered into agreements with spe- 
cialists who are able to perform the 
ongoing daily tasks that are necessary. 

Early this year the Board selected an 
association management firm, Shepherd 
Associates, to perform association ser- 
vices for the Forth Interest Group. For 
the past several years, Martens and 
Associates had performed this service, 
but because of other commitments they 
wanted to  stop. Shepherd Associates is 
experienced in association work and 
now handles the daily activities of the 

as entering Forth Dimensions subscrip- 
tion renewals and new subscriptions, fill- 

ucts, and answering the hot line. They 
help the Chapter Coordinator, John 
Hall, do mailings to chapter coordina- 
tors throughout the world. They also 
solicit advertising for insertion in Forth 
Interest Group publications. In July, the 
Board extended the initial contract to 
the end of 1984. 

* 
a Forth Interest Group, doing such things 

ing orders for publications and prod- D 

The editor of Forth Dimensions, Mar- 
lin Ouverson, is one of the professionals 
supporting the Forth Interest Group. 
He is responsible for editing Forth Di- 
mensions and making certain that it is 
ready for the printer on schedule. You 
probably have noticed some of the new- 
look features that Marlin has added to 
Forth Dimensions. Unique department 
headings, the thermometer to indicate 
the technical level of an article, and 
symbols to indicate the Forth dialect, 
for example. 

Spreading the word about the Forth 
Interest Group activities is publicist 

Linda Kahn. She is in contact with mag- 
azine editors regularly in order to  alert 
them to current events and new infor- 
mation about Forth. If you have an arti- 
cle about Forth, Linda can probably 
suggest a publisher who would be inter- 
ested in it. She also sends a regular 
stream of press release material to the 
press. 

These are some of the support func- 
tions that are contracted by the Forth 
Interest Group. They keep things going. 

-Robert Reiling 
President 

P.S. Don’t forget the upcoming 
events: the Sixth Annual Forth Interest 
Group Convention November 16-17, 
1984 at the Hyatt Palo Alto in Palo 
Alto, California; and the FORML Con- 
ference to be held at Asilomar, Pacific 
Grove, California, November 23-25, 
1984. 

Name one 32 bit Realtime 
Operating / Development 
System for which 128 kb of 
RAM and Floppy Disk is an 
enormous computer. 

Answer: 

4xFORTH for the MC68000, 
a complete RON based 
operating system with 

multi-user & tasking, 
dynamically selectable 

system’s device, 
e r ror  checking assembler, 

ring buffered input, 

ram disk, and much more. 

4xFORTH which meets the 
‘83 Forth Standard, except 
with 32 bit variables, 

4xFORTH, a realtime tool 
for the professional 
programmer . 

bv 
‘ zheDraqon~ ,znc  

148 Poca Fork Road 
Elkview, WV 2507 1 

304/965-5571 

Volume VI, No 3 I 



Long Divisors and Short Fractions 
Nathaniel Grossman 

Los Angeles, California 

Readers of Starting Forth, Forth Tools 
and Forth Dimensions understand the 
power of the scaling operation *I and will 
value the convenience of simple rational 
approximations to thirty-two-bit float- 
ing-point constants. Starting Forth [5,  p. 
1221 contains a short table of useful 
approximations. Forth Tools [2, p. 1041 
and Forth Dimensions [6] contain similar 
tables. 

For example, 4 2  1.4142135624. 
Starting Forth suggests the approxima- 
tion 19601/ 13860 1.4142135642. The 
method to be explained in this article 
obtains the approximation 19601 / 13860 
as well as better approximations, among 
them 47321 /33461rI .4142135621, which 
has an error 3X10-”. This method, part 
of the theory of continued fractions and 
well known to mathematicians, furnishes 
simple, iterative algorithms for grinding 
out short, rational approximations to 
long and complicated rational numbers 
and even to other classes of numbers such 
as square roots of integers. Implementa- 
tion of these algorithms on specific com- 
puters may run into difficulties when the 
arithmetic overflows the capacity of the 
built-in calculator routines. If, however, 
the numerical givens and the iterative 
schemes are carefully analyzed, the diffi- 
culties are seen to be removable. 

This article presents both an analysis to 
show that the continued fraction algo- 
rithm can be implemented in double- 
precision integer Forth and, best of all, an 
implementation in Forth-83. By loading 
the implementation, any Forth user can 
unleash continued fraction power. 

The rest of this article is in two parts. 
To get the full power from the algorithms, 
the standard Forth arithmetic arsenal 
must be extended by a word UD/MOD that 
expects unsigned double dividend and 
divisor and returns their unsigned double 
quotient and remainder. (Thus, UDIMOD 
is a superword of /MOD.) At the same 
time, it is convenient to introduce a new 
class of stack manipulators that I call 

long pair words. These words, distin- 
guished by the prefix LP, move pairs of 
adjacent double numbers around the 
stack. The LP words and UDlMOD have an 
independent value outside the continued 
fraction calculations. They can be viewed 
as quadruple-precision words of a sort, 
but I decided not to use David Beers’ 
quadruple precision words [3] because I 
did not need triple and quadruple addi- 
tion and subtraction or signed multiplica- 
tion and division. These matters compose 
Part I. 

Part I1 begins with a short introduc- 
tion to continued fractions in just enough 
detail to justify their use in constructing 
rational approximations. Both strengths 
and weaknesses are included. This leads 
into a discussion of the specific algorithm 
and of its implementation in Forth. 

Part I1 requires Part I, but the first part 
can stand alone as auseful addition to the 
Forth dictionary. You may be wavering 
about reading either or both. In that case, 
turn first to the Intermezzo between the 
two parts. You will find there a single, 
stand-alone screen. Load it and read the 
description; run it and you will get a con- 
cise demonstration of the power of the 
full continued fraction program. 

Part I 
Long Pairs and Long Division 

Although the Forth Required Word 
Set and the Double Number Extension 
Word Set are rich in arithmetic words, no 
words are included to carry out the divi- 
sion of one (signed or unsigned) double 
integer by another. Such words are 
needed occasionally. The Forth way to 
fill such a need is clear: extend the dic- 
tionary with new words. Indeed, two tries 
at writing double division words are 
available in back issues of Forth Dimen- 
sions. L.H. Bieman [4] wrote screens of 
double precision mathematics words, but 
an accompanying commentary on the 
words by Robert L. Smith indicates that 
Bieman’s word DI for division of double 
by double can produce errors of several 
units in the least significant digit of the 
quotient. Because I need full accuracy in 

the quotient, Bieman’s D/ is of no help to 
me. (I continue to use his word U*/ with 
gratitude.) And, as I have already men- 
tioned, David Beers’quadruple words [3] 
are too lush for my needs. Therefore, I 
have written a word UD/MOD to fill my 
needs exactly. 

A Long Division Algorithm 
The goal is a word UD/MOD that expects 

unsigned double dividend and divisor 
and returns the unsigned double quotient 
and remainder from the division. 

Of course, the literature contains many 
descriptions of multi-precision division 
algorithms. I read the appropriate section 
in Knuth’s standard treatise [8] but I did 
not feel that the algorithm Knuth recom- 
mends would be best for implementing in 
Forth. Nevertheless, I could make good 
use of some of the many goodies with 
which Knuth lards his text. The algo- 
rithm I implemented is improved by a 
long division algorithm (for use on geared 
mechanical calculators) presented in a 
mathematical handbook [ I ,  p. 211. Algo- 
rithms with such provenance usually 
require an additional logical co-processor 
-the human brain! It is toward doing 
away with human intervention that the 
tidbits from Knuth are applied. 

Suppose that u and v are integers, with 
v positive, u non-negative, and both less 
than 232 (double integers). It is required to 
divide u by v and return the quotient and 
remainder as unsigned double integers. 

Knuth advises using the division of a 
two-digit integer by a twodigit integer as 
a model. His algorithm requires exten- 
sion of the dividend to a three-digit 
integer, and I want to avoid this higher 
precision extension. Now, thirty-two 
binary digits seem more than two, but 
they are not really much more from the 
right oint of view. Introduce a superbase 
b = 2’ = 65336. Any double integer may 
then be written as u = uo * b i- u, where 
0 1  uo< b and O L  u~ < b; uo and u1 are 
the “superdigits.” Similarly, v = vo * b 4- 
V I  and u /v  = (UO * b + UI)/(VO * b -t- VI). 

FORTH Dimensions 10 Volume VI. No. 3 



u - d * u  _ -  - 
V W 

- d * (UO * b -k u,) - 
wo * b 4- WI 

- d  * {Uo*b+ui)  * I-- w1 + E }  { wo*b 
-~ 

wo * b 

Figure One 

The problem would be essentially done if 
Forth, which can talk in so many bases, 
could manipulate in base b. But it cannot. 

The next step is analytic. There is a 
simple formula: ( I  + XI-’ = I - x + error, 
where if 0 5 x < I then 0 I error < x2. 
Before we use this formula, we are going 
to scale the fraction u/v for a reason that 
will be easier to explain a few paragraphs 
farther along. We want to multiply divi- 
dend and divisor by a scalin inte er d 
that makes dv close to b2 = 2 , so close 
that %b2 5 dv < b2. The exact choice of d 
is not crucial: I take Knuth’s suggestion, 
selectingd=[b/(vo+ I)](where[x]is the 
floor of x, the largest integer not bigger 
than x). Let w = dv and write w = wo * b + wl; now %b I wo < b and u /v  = (d * 
u)/ w. (We do not multiply d and u to- 
gether immediately to form a new divi- 
dend because there is no guarantee that d 
* u will not stretch to more than thirty- 
two bits .) 

5 2  

With this preparation, the analytic 
unfolding of the division is easy (see 
figure one). 

Now we will show that the last two 
terms in the braces can be omitted if we 
want only the quotient [u/v]. This is 
where the scaling is important. We know 
that I I d I b, 0 5  w < b, 0 5 u l  <b, and 
%b I WO. Also, 0 5 E < (WI/WO * b)2. 

Then 

wo * b wo * b 

.i&}*{$$} 
- 4  - -. 

b 

and 

0 5 { L } * u *  wo * b wo * b 

(&} * b 2 *  {S} 
- 8  - _. 

b 

Thus 

[u/v] = {L} wo * b * {&+} 

because the two terms neglected are small 
(and of opposite signs, which will not be 

needed here). Having the quotient in 
hand, we find the remainder simply as 
u - v * [u/v]. 

The actual calculation of [u/v] is now 
easy using the arithmetic operations built 
into Forth, but the terms must be evalu- 
ated in the correct order to ensure full 
precision. First calculate the bracket as a 
double integer-Bieman’s U*/ is useful 
for this-then multiplyldivide by d /  WO, 
again using u*/. Division by the super- 
base b = 216 is then performed by drop- 
ping the least significant sixteen bits of 
the penultimate result. 

Implementation of Long Division 
The algorithm described above does 

not call for a complicated implementa- 
tion. There is one place to take care. Even 
though the divisor is called thirty-two 
bits wide, the sixteen high bits may be 
zero. If this happens, the number wo will 
be zero and the algorithm will call on 
division by zero. To avoid zero divisions, 
the algorithm lays down a double track. 

The screens are composed in Forth-83, 
specifically MicroMotion MasterFORTH. 
The screens should run in Forth-79 if 
UM* is replaced by U* and UMIMOD by 
UIMOD. MasterFORTH contains a file 
system and I have placed these screens in 
the file LONGWORDS. 

Screen #2: These are the long pair-LP- 
words for moving pairs of double num- 
bers around the stack. They are ana- 
logues of one-cell and two-cell stack 
words, and their actions should be clear 
from the stack diagrams. 

Screen #3: Here are Bieman’s useful 
words T*, T I  and U*l. 

Screen #4: If the divisor in fact fits into 
sixteen bits, then [u/v] can be computed 
with no further extension of the diction- 
ary by the word NARROW-UDI MOD. The 
word US>D converts an unsigned single 
to a double, and it is necessary because 
S>D reads the sixteenth bit as a - (minus) 
sign and extends to a double accordingly. 
Note the double constant SUPERBASE. 

Volume VI, No. 3 11 FORTH Dimensions 



Screen #5:  The actual long division be- 
gins on this screen. The word UDI MOD- 
TUCK disassembles the high and low parts 
of the dividend and divisor and saves 
those cells needed later. Then UDIMOD- 
DENSCALE calculates the number d, which 
SCALE-DEN uses to scale the denomina- 
tor. The quotient, at least if w needs thirty- 
two bits, is a consequence of WIDE-QUOT, 
which carries out the algorithm worked 
out above. 

Screen #6: WIDE-UDIMOD carries out the 
full thirty-two-bit division operation and 
returns quotient and remainder. 

Screen #7: Enter double numbers, divi- 
dend first and then the divisor, and exe- 
cute UDIMOD. The stack holds the re- 
mainder inside the quotient. Example: 
3141592654. 1 O O o ~ .  CF D. D. prints 
first 3 and then 141592654. 

(See “Intermezzo, ”page 15.) 

SCR # 2 
0 \ LONGWORDS FORTH 83 09MAR84NG 
1 \ For manipulating groups o f  double nurbers 
2 : LPSWAP \ D1 DZ 03 D4 --- D3 D4 Dl DZ 
3 >R > R  ZSWAP > R  )R ZSWAP R) R >  R )  R >  zswap 
4 >R >R ZSWAP R >  R )  ; 
S : LPDUP \ D1 DZ --- Dl DZ D1 DZ 
6 ZDUP > R  > R  ZOVER R )  R >  ; 
7 : LPOVER \ D1 DZ D3 D4 --- Dl DZ D3 D 4  D1 DZ 
8 >R > R  >R >R LPDUP R >  R )  R >  R )  LPSWAP ; 
9 : LPROT \ D1 DZ DS D4 DS D6 --- D3 D4 DS D6 D1 DZ 

10 )R >R > R  > R  LPSWAP R >  R >  R >  R )  LPSWAP ; 

12 DROP DROP DROP DROP ; 
1 1  : LPDROP \ D1 DZ --- 
13 
14 
1s 

SCR # 3 
0 \ LONGWORDS FORTH 8 3  10RAR84NG 
1 \ words f o r  manipulating double numbers 
2 \ double-triple words after L. H. BIERAN, FORTH Dimensions, V-1 
3 : UR/ \ UD UN --- UN divide UD by UN and drop remainder 
4 UR/ROD SWAP DROP ; 
S : T* \ UD UN --- UT 
6 DUP ROT UR* > R  > R  
7 UR* 
8 0 R >  R >  D+ ; 
9 : T/ \ UT UN --- UD 
10 > R  R @  Ull/MOD SWAP 
1 1  ROT 0 Re UR/ROD SWAP 
12 ROT R >  UM/HOD SWAP DROP 

14 : Us/ \ UD UN UN --- UD 
15 >R T* R) T/ ; 

13 0 zswap SWAP D+ ; 

SCR # 4 
8 \ LONGWORDS FORTH83 10RAR84NG 
1 \ words f o r  dividing double by double 
Z 
3 : NARROW-UD/MOD 
4 \ UDividrnd UNdivisor --- UDrcnainder UDquotient 
3 DROP >R ZDUP R e  \ shuck high cell of divisor 

7 ZSWAP ZDVER R >  1 U * /  D- ZSWAP ; \ UDrem UDquot 
8 
9 VARIABLE NUHH VARIABLE DENH VARIABLE DENL VARIABLE DENSCALE 

\ UDquotient 6 t swap u*/ 

10 ZVARIABLE NUN ZVARIABLE DEN 
1 1  65556. ZCONSTANT SUPERBASE 
12 
13 : US>D \ convert unsigned l6bit to 3Zbit 
14 0 : 
15 

Volume VI, No. 3 FORTH Dimensions 12 



SCR it 5 
0 \ LONGWORDS FORTH 83 10MAR84NG 
1 \ nordr for dividing of double b y  double 
2 
3 : UD/HOD-TUCK \ UD UD --- save parts of nun and den 
4 ZDUP DEN 2! DENH ! DENL ! 
5 ZDUP HUM Z! NUMH ! DROP ; 
6 : UD/MUD-DENSCALE \ --- UN for scaling-up den 

8 DENSCALE ! f 
’ 

9 : SCALE-DEN \ --- multiply denominator b y  scale factor 

7 SUPERBASE DENH e it un/ 

18 DEN 2C DENSCALE B 1 U * /  
1 1  DENH ! DENL ! ; 
12 : WIDE-QUOT \ --- UD i f  divisor needs more than 16 bits 
13 NU\ 2B NUMH @ US>D 
14 DENL @ DENH @ U * /  D- 
15 DENSCALE @ DENH @ U*/ SW4P DROP ; 

SCR t 6 
0 \ LONGWORDS FORTH 83 10M4R84NG 
1 \ nordr for  dividing double b y  double 
2 
3 : 7NARROW-DIVISOR \ D --- flag is divisor < 65536 7 
4 DUP 0= ; 
S : WIDE-REH \ --- UD remainder i n  wide division 
6 DUP NU\ Z B  ROT DEN Z B  
7 ROT 1 U*/ D- R O T  US>D ; 
8 : WIDE-UD/MOD \ UDdividrnd UDdivisor --- UDren UDquot 
9 UD/MOD-TUCK 
10 UD/flOD-DENSCALE 
1 1  SCALE-DEN 
12 WIDE-QUO1 
13 WIDE-RER ; 
14 
1s 

SCR # 7 
0 \ LONGWORDS 
1 \ division o f  double by double 

FORTH 83 10MAR84NG 

” 
L 

3 : UD/flOD \ UDdividend UDdivisor --- UDrenainder UDquotient 
5 IF 
b NARRUW-UD/flOD 
7 ELSE 
8 WIDE-UD/HOD 
9 THEN ; 

4 ?NARROW-DIVISOR 

10 : UDMOD \ UDdividend UDdiviror --- UDrenainder 
1 1  UD/MOD. ZDROP ; 
12 : UD/ \ UDdividend UDdivisor --- UDquotient 
13 UD/MOD 2SWAP ZDROP ; 
14 
1s 

C64-FORTH/79 
New and 
Improved 

for the 
Commodore 64 

C64-FORTH/79TM for the Commodore 64- 
$99.95 

.New and improved FORTH-79 
implementation with extensions. 

.Extension ackage including lines, 
circles, xatng, windowing, mixed 
high res-character graphics and 
sprite graphics. 

.Fully compatible floatin point package 
including arithmetic, rektional, logical 
and transcendental functions. 

.String extensions including LEFT$, 
RIGHT$, and MID$. 

.Full feature screen editor and 
macro assembler. 

.Compatible with VIC peripherals 
including disks, data set, modem, 
printer and cartridge. 

.Expanded 167 page manual with 
examples and application screens. 

.“SAVE TURNKEY” normally allows 
application program distribution 
without licensing or royalties. 

(Commodore 64 is a trademark of Commodore) 

TO ORDER 

-Disk only. 
-Check, money order, bank card, 

-Add $4.m osta e and handling in 

-Mass. orders add 5% sales tax 
-Foreign orders add 20% shipping 

-Dealer inquiries welcome 

COD’S add $1.65 

USA and ?ana& 

and handling 

PERFORMANCE 
MICRO 

PRODUCTS 
770 Dedham Street, 
Canton, M A  02021 

(617) 828-1209 

Volume VI. No. 3 13 FORTH Dimensions 



About Asilomar 

Asilomar is an ideal conference location. It is 
situated on the tip of the Monterey Peninsula 
overlooking the Pacific Ocean. Asilomar 
occupies 105 secluded acres of forest and 
dune. The secluded setting and clustered 
meeting and accommodation areas make it 
ideal for group meetings. Asilomar's excel- 

, lent meals are complemented by Asilomar's 
homemade bread and pastries. Accommo- 
dations are excellent and deluxe rooms have 
been reserved for FORML attendees. 
Sweeping ocean views are available from 

~ decks or balconies. Asilomar is a Unit of the 

Registration Form 
Complete and return with check made out to: 
FORML, P.O. Box 51351, Palo Alto, CA 94303 

Name 

Company 

Address 

City State ZIP 

Telephone (day) (evening) 

I have been programming in Forth for: (years) __ (months) - 

Accommodations Desired 
Prices include coffee breaks, wine and cheese parties, use of Asilomar facilities, 
rooms Friday and Saturday nights, and meals from lunch Friday through lunch 
Sunday. Conference participants receive notebooks of papers presented. 

Conference attendees, share a double room: 

Attendees in single room (limited availability): 

Non-conference guests: 

number of people ___ x $250 = $ 

number of people- x $300 = $ 

number of people- x $200 = $ 

Total Enclosed $ 

Options: Vegetarian meals? - 
Non-smoking roommate? - 

FORML, P.O. Box 51351, Palo Alto, California 94303, U.S.A. 

FORTH Dimensions 14 Volume VI. No. 3 



Intermezzo 
Short Continued Fraction 

This interlude is a sampler. You can 
load one screen and see a cut-down ver- 
sion of the continued fraction program in 
action. If you like what you see, you 
can plunge into Part 11-explanations, 
screens, and all. 

Begin by loading figure two, the screen 
#8 of the file NUMBTHY. It is over- 
stuffed and has no comments, but they 
will be found in abundance in Part 11. 
Enter 3 14 16 10000 SCF and execute. You 
will soon be viewing three columns 
headed PARTIAL-QUOT, NUMERATOR and 
DENOMINATOR. Ignore the first column 
for the moment and inspect the second 
and third. They list the numerator and 
denominator of a sequence of fractions, 
one or more of which you may recognize. 
If you enter a pair as <numerator> loo00 
<denominator> * I ,  execute, and inter- 
pret the result as an integer followed by 
four decimal places, you will surely rec- 
ognize the sequence of fractions as giving 
approximations to a well-known number. 

You can repeat with 14142 10000 SCF 
and 6931 lo000 SCF to generate rational 
numbers approximating J2 and In 2. 

Return now to 31416 10000 SCF for a 
closer look. The partial quotients in the 
left column fit together to create con- 
tinued fractions: 

3 31 1 

221 7 3 + 7  1 

3551 113 1 3+- 1 7+-  16 

39271 1250 1 
1 3 +  

7 +  1 
16+ 11 

Notice also that 3927/1250 is just the 
fraction 31416/ 10000 reduced to lowest 
terms. 

The word SCF accepts integers p and q 
no bigger than 32767 and returns the par- 
tial quotients and corresponding frac- 
tions (called convergents) of the con- 
tinued fraction for p/q. 

The goal of Part I1 is a word CF that 
would accept, say, 3141592654. and 
1000000000. and return a sequence of 
fractions affording increasingly better 
approximations to the floating point num- 
ber 3.141592654. From this sequence, we 
can select one whose numerator and 
denominator each fit into sixteen bits and 
test it using u*/ to see if the quotient 
approximates 3.141592654 to the desired 
precision. 

If you see possibilities from this dem- 
onstration, continue on to Part 11. 

SCR X 8 
0 \ NUHBTHY FORTH 83 17HAR84NG 
1 \ s h o r t  v e r s i o n  o f  c o n t i n u e d  f r a c t i o n  
2 VARIABLE SB-BIN VARIABLE SQ-BIN VARIABLE FR-BIN 
3 : SCF \ N1 N2 --- c o n t i n u e d  f r a c t i o n  o f  N1/N2 
4 CR . "  PARTIAL-QUOT" . '  NUHERATOR" . "  DENOHINATOR" 
5 1 0 ZSWAP 0 1 ZSWAP 
6 BEGIN 
7 SWAP OVER /HOD DUP S > D  CR 12 D.R 
8 SB-BIN I SR-BIN SQ-BIN I 

9 ZSWAP ZOVER 
10 SB-BIN @ ROT + DUP S > D  1 1  D.R 
1 1  ROT ROT SB-BIN @ + DUP S > D  13 D.R 
12 SWAP SQ-BIN @ SR-BIN @ DUP 0. 
13 UNTIL 
14 b 0 DO DROP LOOP ; 
15 

Figure Two 

Volume VI. No. 3 15 

DASH, FIND 
& ASSOCIATES 

I Our company, DASH, FIND & ASSOCIATES, 

is in the business of placing FORTH Program- 

mers in positions suited to their capabilities. 

We deal only with FORTH Programmers 

and companies using FORTH. I f  you would 

like to have your resumt included in our 

data base, or i f  you are looking for a 

FORTH Programmer, contact us or 

send your resumt to. 

DASH. FIND & ASSOCIATES 

808 Dalworth. Suite B 
Grand Prairie TX 75050 

(214) 642-5495 

Committed t o  Excellence 

FORTH Dimensions 



Part I1 
Continued Fraction 

If you have not read the previous 
Intermezzo, you may wish to do so now 
to get an idea of where this part will go. 
Then return here to continue reading. 

Every real number can be approxi- 
mated to arbitrary precision by rational 
numbers. If the real number is itself 
rational, then it is its own approximation 
to arbitrary precision, but in that case 
there are still approximations by rational 
numbers with smaller denominators. We 
must carefully distinguish the ideal set of 
real numbers from machine numbers, 
those entities that a given computer uses 
to mimic the real numbers and, even 
more so, machine arithmetic from the 
ideal of real number arithmetic. Most 
computer-users believe they are doing 
real arithmetic and, if the computer is 
well-designed, they will be reasonably 
safe in that belief. 

In carrying out actual arithmetical 
computations, we never calculate other 
than with rational numbers. Irrational 
numbers such as d2 and IT must be 
represented by rational surrogates. For 
example, we may represent T as the 
decimal approximation 3.1416, that is, 
the rational number 31416/ 10000. Com- 
putation with decimal fraction approxi- 
mations proceeds by familiar repetitive, 
simple steps. However, decimal fraction 
representatives are not the only forms in 
which to present a rational number and 
are not always the most efficient for spe- 
cific calculations. 

A decimal number no. nmn3. . . , pos- 
sibly non-terminating, is a conventional 
abbreviation for an infinite sum CEO 
nk each nk being an integer between 0 
and 9 inclusive. Another type of represen- 
tation is by a (possibly) infinite product, 
for example Wallis’ product 

_- I T - 2 2 4 4 6 6  - - - - - - 
2 1 3 3 5 5 7 ”  

(I have used a product decomposition in 
an earlier Forth algorithm [7].) Product 
representations are useful in forming 
products of two numbers, but they are 
not well-adapted for addition and 
subtraction. 

Our goal in this part is an implementa- 
tion of continued fraction expansions of 

double precision rational numbers. Con- 
tinued fractions-to be described presently 
-correspond to real numbers in a 
(nearly) one-to-one fashion, but they are 
not convenient for any of the usual 
arithmetic operations. They can, how- 
ever, be used to produce approximating 
rational numbers-optimal in a sense to 
be described-which can be substituted 
for real numbers in machine computa- 
tions of given precision and upon which 
arithmetic can be carried out as usual. If 
the original real number is irrational, the 
associated continued fraction is unique. 
If the original number is rational, the 
continued fraction is almost unique: there 
are two such associated continued frac- 
tions differing only trivially. In the ra- 
tional case, the continued fraction en- 
genders an infinite sequence of rational 
numbers approximating the given rational 
to increasing and, finally, to infinite pre- 
cision. The decimal fraction form of one 
of these approximants may agree with 
that of the original to the precision 
required and yet the approximant may 
have drastically smaller numerator and 
denominator than the original fraction. 

Continued Fractions 
Here is the place to define continued 

fractions and describe their properties 
useful to us. In fact we will describe a 
subclass, the simple continued fractions. 
(The word “simple” is merely a technical 
term.) A simple continued fraction is a 
symbol 

1 
f = b o +  1 

bi i- 1 
b2 +b,+... 

The first version gives an idea of the 
meaning of the symbol. The second ver- 
sion is a conventional representation for 
the sake of the typographer. The first 
version indicates that f is the limit of a 
sequence of rational fractions (called 
convergents). 

b2 

and so on. By conventions. apartial quo- 
tient bk can equal 0 only if all the follow- 
ing partial quotients are 0. In this case the 
convergents stabilize and f, the limiting 
value, is a rational number if all the par- 
tial quotients are integers. If the sequence 
of partial quotients never terminates, and 
if the partial quotients are integers, the 
limiting value f always exists and it is an 
irrational number. (It can be shown that 
the sequence of integer partial quotients 
is eventually periodic exactly when f is a 
number of the form (P Q&)/R, 
where P, Q, R, and D are integers, R Z 0, 
and D is positive and not a square.) For 
example, the continued fraction [ 1; 1, 2, 
31 -the trailing 0 entries are suppressed 
- gives the sequence of rationals 1 / 1, 
2/1,5/3,17/10,andthelastisthevalueof 
the continued fraction. (Note that [ 1; 1,2, 
31 = [ 1 ; 1, 2, 2, 11, illustrating the trivial 
non-uniqueness of terminating fractions.) 

Proofs of the following assertions will 
be found in almost every book whose title 
contains one of the strings “Theory of 
Numbers” or “Number Theory.” The 
notation is keyed to the standard refer- 
ence [ l ,  3.10.11 with one minor change 
that will be pointed out later. 

Iff = [bo; bl, b2, b3,. . .I, then the finite 
section f, = [bo; bi, b2,. . . ,bn] is called the 
nth convergent. When all the bk’s are 
integers (and this is the only case we con- 
sider from now on), the nth convergent 
simplifies into a rational number of the 
form f, = A,/Bn, where the numerator 
and denominator may have any common 
divisors removed. The limit f = lim An/ Bn 
always exists. Iff is irrational, the partial 
quotients are uniquely determined. Iff is 
rational, they are determined except for 
the last: the last partial quotient can be 
decreased by 1 and a further partial quo- 
tient 1 appended. (For example, [ l ;  1, 2, 
31 =[I;  1, 2, 2, 11.) 

The convergents bracket the value of 
the continued fraction according to the 
inequalities 

f2k < f2k+2 < f < f2k+l < f2k-1 

Furthermore, 

FORTH Dimensions 16 Volume VI, No. 3 



and there is no better approximation to f 
by a fraction A/ B with B < B,. 

If we set A-I =1, A-2 = 0, B-I =0, and 
B-2 = 1, then the value of the Ak and Bk 
can be found for k L 0 from the partial 
quotients by the recurrences 

Ak = bk * Ak-i + Ak-2 

Conversely, given f, the partial quotients 
can be generated from the convergents by 
the formula 

Euclidean Algorithm 
As we are aiming only for continued 

fractions of rational numbers, we can 
take an important path along the Eucli- 
dean algorithm. If u and v are integers, 
u non-negative and v positive, then the 
Euclidean algorithm consists of the 
sequence of divisions 

In this presentation, the Euclidean algo- 
rithm states exactly that u/v = [bo; b1, 

We can, therefore, implement the Eu- 
clidean algorithm and draw from it both 
greatest common divisor and continued 
fractions. 

Two remarks will be useful. It should 
be clear from inspection of the Euclidean 
algorithm that it will terminate after 
finitely many steps. How many steps will 
be required? G. Lam6 proved that the 
algorithm will require no more than 
about five times the larger of the numbers 
of decimal digits in the two terms u and v. 
When the terms u and v are double preci- 
sion integers of at most thirty-two bits, 
this means that the Euclidean algorithm 
will cycle at most fifty times or, in other 
words, that the continued fraction for 

b2,. . . , b,]! 

u/v will contain at most fifty non-zero 
partial quotients. 

What numbers will stretch the algo- 
rithms to their limits? Further inspection 
of the Euclidean algorithm shows that 
this will happen if the numbers u and v 
produce the sequence of partial quotients 
1; 1, 1, 1,. . .. When the ones run on 
forever to produce f = [ I ;  1 ,  1, 1,. . .I, 
then f= (1 f J5)/2, the golden section 
(or its reciprocal). Furthermore, the con- 
vergents to f can be calculated by the 
recurrences Ak = Ak-i + Ak-2, A-a = 0, 
A-I = 1, and Bk = Bk-1 f Bk-2, B-2 = 1, B-1 
= 0. Thus, both Ak and Bk run along the 
sequence of Fibonaccinumbers F k  defined 
by the recurrence F k  = Fk- i  -k Fk-2, FI = 1, 
F2=1. 

Implementation of the Algorithm 
The algorithm as I have implemented it 

calls upon the word UDIMOD and its satel- 
lites defined in Part I, as well as the long 
pair (LP) words. All of the calculations 
are in double precision and the screens 
are essentially the expansion to double 
precision of the single precision screen 
presented during the Intermezzo. 

Again the screens have been composed 
in MicroMotion MasterFORTH, an im- 
plementation of Forth-83 with file sys- 
tem. These screens are from my file 
NUMBTHY. They should run in Forth- 
79 if the word ABORT’ in screen #3 is 
adjusted. Here is a description of the 
screens. 

Screen #2: For convenience, the greatest 
common divisor, calculations for which 
are embedded in the continued fraction 
algorithm, is given without encumbranc- 
es by the word DGCD acting on double 
integers. The Fibonacci numbers are use- 
ful for many purposes-including gener- 
ation of demonstration continued frac- 
tions of maximal stretch-so the word 
FIB is included to list them as far as D. will 
print them. 

Screen #3: The numbers Ak, Bk, and bk 
all can be genuinely thirty-two-bit inte- 
gers. As the recurrence formulas for gen- 
erating the convergents call on products 

that quadruple precision multiplication 
bk * Ak-i and bk * &-I, it is conceivable 

could be required. In fact, this worst case 
can never happen, and this is clear from a 
close look at the recurrence formulas. 
Each of the Ak, Bk and bk is non-negative, 

Bk 5 u. Therefore, bk and Ak-1 cannot be 
both wider than sixteen bits and the same 
is true of bk and Bk-1: at most one of the 
factors can be double width. I wrote the 
word CF* to exploit this special circum- 
stance. It calculates the product of UDl 
and UD2 using Bieman’s multiplication/ 
division u*/. Because U*/ is not commuta- 
tive, CF* orders the factors and issues an 
error message if both are wider than six- 
teen bits. 

SO that bk * &-I < Ak 5 U and bk * Bk-i < 

Screens #4,5, and 6: The actual calcula- 
tion begins here in the mode of the Eucli- 
dean algorithm. I’ve written short words 
with long names in a try at cutting down 
on comment lines. The words should be 
easy to follow through on screen #6, 
where the stack at BEGIN holds Bk-2, Ak-2, 
Bk-i, &I, Tk-1, rk. 

Screen #7: If I have chosen word names 
well, all that remains to explain is that the 
last line of CF cleans the stack. (I could 
have used the Forth43 word CLEAR, but 
that might clear other numbers deeper in 
the stack.) 

Using CF 
The word CF ideally is used interac- 

tively. For example, suppose we are to 
calculate integer products [xT], where x 
is a double integer and [XT] is to be a 
double integer. The evaluation will be 
carried out by finding a rational u/v 
approximating T, then computing [XT] 
by the sequence xuvU*/. If x is much 
wider than sixteen bits, it is important to 
approximate Tin such precision that low 
precision digits in the product are not 
distorted. 

We know that T zz 3.141592654, so 
enter 3 141592654. 1000000000. CF. The 
latest convergent both of whose elements 
fit into sixteen bits each is 355/ 113. This 
gives T 3.1415929 ..., good to six 
rounded places. 

We can do better. The next entry is 
104348133215 3.141592654, the exact 
rounded value to nine decimal places. But 

Volume VI. No. 3 17 FORTH Dimensions 



104348 needs more than sixteen bits. 
Even so we can obtain [xn;] by the 
procedure 

x 52174 33215 U*/ 2DUP D+. 

Observe that the expansion given here 
for355/ 113=[3;7,15,1],whileSCFgives 
355/ 113=(3;7,16].Thisisaninstanceof 
the only almost uniqueness of the con- 
tinued fraction for rational numbers, and 
arises because only finitely many digits of 
rr are being manipulated. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Abramowitz, M., and LA. Stegun, Handbook 
of Mathematical Functions, National Bureau 
of Standards Applied Mathematics Series, 55 .  
(Re-printed by Dover Publications.) 

Anderson, Anita, and Martin Tracy, Forth 
Tools, Volume One, MicroMotion, Inc., 1984. 

Beers, David A,, “Quadruple Word Simple 
Arithmetic,” Forth Dimensions, IV/ 1, p. 17. 

Bieman, L.H., “Double-Precision Math 
Words,” Forth Dimensions, V/ 1, p. 16. 

Brodie, Leo, Starring Forth, Prentice-Hall, 
Inc.. 1981 

Corry, Robert T., “Closer Approximations,” 
Forth Dimensions, IV/4, p. 4. 

Grossman, Nathaniel, “Fixed-Point Loga- 
rithms,” Forth Dimensions, Vj5, p. 11 

Knuth, D.E., The Art of Computer Program- 
ming, Volume Two, Addison-Wesley Publish- 
ing Co., 1973. 

SCR # 2 
0 \ NUHBTHY FORTH 03 15MAR84NG 
1 \ double  number g r e a t e s t  common d i v i s o r  and f i b o n a c c i  numbers 
2 
3 : DGCD \ D1 D2 --- gcd of D1 and D? 
4 BEGIN 
5 ZSWAP ZOVER UDHOD ZDUP DO= 
6 UNTIL 2DROP D. ; 
7 
8 : FIB \ N --- f i r s t  N f i b o n a c c i  numbers, N < 4 7  
9 > R  0. 1. R >  I +  1 CR 
10 DO 
1 1  SPACE SPACE I . 
I2 ZDUP D. SPACE 126 EHIT 
13 2SWAP ZOVER D+ 
14 LOOP ; 
15 

SCR # 3 
0 \ NUHBTHY FORTH 03 14NAR84NG 
I \  
2 
j :  
4 
S 
b 
7 
8 
9 
I0 
1 1  
12 
13 
14 
15 

product  of double  f a c t o r s  when one i s  r e a l l y  s i n g l e  

CF* \ UD1 UDZ 
?DUP 
IF 
zswap ?DUP 
IF CR ABORT” 
ELSE 1 U * /  
THEN 

ELSE 1 U+/ 
THEN ; 

UD --- 
\ is UDZ wider than 16 b i t s ?  

\ y e s ,  so see i f  UD1 i s  
\ a l s o  wider than I6 b i t s  

OVERFLOW” \ both wide = >  a l l  done 
\ but  a t  l e a s t  one i s  narrow 
\ permits m u l t i p l i c a t i o n  
\ w i t h  32 b i t  p roduct  

SCR # 4 
0 \ NUHBTHY FORTH 83 15HAR84NG 
1 \ words f o r  cont inued  f r a c t i o n  --- see scr # 7  
2 
3 ZVARIABLE B-BIN ZVARIABLE Q-BIN ZVARIABLE R-BIN 
4 
5 : .CF-HEADING 
6 CR .”  PARTIAL-QuOT‘ . ”  NUHERATOR” . *  DENONINATOR“ ; 
7 
8 : INIT’IZE-RECURRENCE 
9 1. 0.  LPSWAP 0. 1. LPSWAP ; 

10 : GET-PARTIAL-QUOTIENT 
1 1  ZSWAP ZOVER UD/NOD ; 
12 
13 : .PARTIAL-QUOTIENT 
14 CR ZDUP 12 D.R ; 
15 

FORTH Dimensions 18 Volume VI. No. 3 



SCR t 5 
0 \ NUMBTHY FORTH83 lSMAR84NG 
i \ word5 f o r  continued fraction --- see 5cr 17 
2 
3 : SAVE-GCD-ELEMENTS 
4 B-BIN 2! R-BIN 2! Q-BIN 2! ; 
5 
b : INIT'IZE-TO-CALC-CONVERGENT 
7 LPSWAP LPOVER ; 
8 
9 : GET-NUMERATOR 
10 B-BIN 29 CF* 2ROT D+ 1 
I 1  
12 : .NUflERATOR 
13 ZDUP 12 D.R ; 
14 
15 

Volume VI. No. 3 

SCR i) b 
0 \ NUnBTHY FORTH 83 1SHAR84NG 
1 \ words f o r  continued fraction --- see s c r  # 7  
2 
3 : GET-DENOMINATOR 
4 ZROT 2ROT B-BIN 2@ CF* D+ ; 
5 
b : .DENOMINATOR 
7 ZDUP 12 D.R ; 
8 
9 : REINIT'IZE-RECURRENCE 
10 ZSWAP Q-BIN 2@ R-BIN 29 1 
1 1  
12 : ?END-GCD-ALGORITHM 
13 ZDUP DB= ; 
14 
15 

SCR t 7 
0 \ NUMBTHY FORTH 83 15MAR84NG 
1 \ continued fraction algorithm 
2 
3 : CF 
4 .CF-HEADING INIT'IZE-RECURRENCE 
5 BEGIN \ euclidean qcd dlgorithm loop 
b GET-PARTIAL-QUOTIENT .PARTIAL-QUOTIENT 
7 SAVE-GCD-ELEMENTS I N I T ' I Z E - T O - C A L C - C O N V E R G E N T  
8 GET-NUMERATOR .NUMERATOR 
9 GET-DENOMINATOR .DENOMINATOR 

10 REINIT'IZE-RECURRENCE ?END-GCD-ALGORITHM 
1 1  UNTIL 
12 6 0 DO ZDROP LOOP ; 

14 
15 

19 FORTH Dimensions 



Re=Def i n i ng 
E. H. Schmauch 

Ponca City, Oklahoma 

Although Forth offers may signifi- 
cant advantages over BASIC, there is 
one characteristic of BASIC which 
makes it easier for me to use in program 
debugging. To change any line in a 
BASIC program, all I do is re-enter that 
line and the program is ready to run. In 
Forth, I can interactively re-define any 
word; however all words which already 
reference this word will still reference 
the old version. To have the new version 
of the re-defined word referenced, I 
must re-load all words which reference 
the re-defined word. As programs be- 
come more complicated, the successive 
editing and re-loading of screens begins 
to resemble the old Fortran program 
development cycle, something I would 
like to avoid. 

Forth purists may insist that proper 
planning and bottom-up development 
will eliminate the type of problem I am 
describing; however, I found myself 
wishing to re-define a Forth word, when 
higher-level words have been developed, 
sufficiently often to warrant the devel- 
opment of RE: and RE; which are shown 
in screens 42 and 43. By using R E  and R E  
instead o f :  and ; I can re-define a word 
and previously defined words will refer- 
ence the new version. This allows me to  
interactively debug the word. When I 
am satisfied with the modifications, I 
edit the screen and re-load everything 
just once, instead of once for each test 
run during debugging. 

RE: and R E  do not overwrite the old 
definition, but rather compile a new 
parameter field at the top of the diction- 
ary. (The parameter field is the list of 
words in the definition.) At run time, 
execution is directed to the new parame- 
ter field. RE: is identical to : except RE- 
CREATE is used instead of CREATE. (For 
definitions o f :  and ; consult All About 
Forth by Glenn Haydon.) RE-CREATE 
finds the word and replaces the value in 
the PFA with the current top of the 
dictionary. RE: then puts the address of 
DOCOL at the top of the dictionary and 

a Colon Word 

SCl i  #41 
0 i R E D E F I N I N G  A COLON WORD ---- C R C = Z 9 1 5  -- EHS ObAUG83 FORTH-79 ) 

1 
7 .  : CFA .3 CONSTANT DOCOL 

4 : RE-CREQTE ( --- ) 

5 - - F I N D  NOT I F  
5 HERE COUNT TYPE . I #  NOT  FOUND^^ moRr  
7 THEN 
a DROP DUP CFA .3 DOCOL = NOT IF 
9 HERE COUNT TYPE . I *  NOT A COLON WORD" A n u w  

1 U  1HEN 
1 1  HERE SWAP 1 : 

SCF? #43 
6:) ( R E D E F I N I N G  A COLON WORD CHC= 4982 -- EHS ObAUGD3 FORTH-79 1 
1. 
17 . 
6 .  - 
4 

'5 
7 : 

n 
9 

111 
11 
1: 
1; 
1. 4 
15 

J 

) RE: ( .-... 
spa CSF' ' 
CURRENT .3 CONTEXT ' 
RE-CREATE: DOCOL . 1 : 

RE; ( - - -  
"CSP 
COMPILE HE-EX11 
TCOMF' ILEI  C : 
I M M E D I A T E  

enters the compile mode. Now the first 
word in the old definition is a colon 
word at the top of the dictionary. The 
word at the top of the dictionary will 
only have code and parameter fields, not 
name or link fields. Next the re-definition 
is compiled at the top of the dictionary. 
When the re-definition is complete, RE; 
is used instead of ;. 

RE; is identical to ; except it compiles 

the same function as EXIT except it pops 
the return stack an extra time. EXIT 
would transfer program execution to  
the third byte of the parameter field of 
the original definition. The extra pop of 
the return stack in RE-EXIT causes pro- 
gram execution to properly return to  the 
point after the word was called. SMUDGE 
is not used in RE: or R E  since the word 

RE-EXIT instead of EXIT. RE-EXIT serves 

being re-defined, in general, will not be 
on top of the dictionary. 

There is a performance penalty with 
words re-defined with RE: and R E  since 
DOCOL must be executed twice for each 
execution of the re-defined word. Once I 
am satisfied with the definition, I will 
edit the screen and re-load everything, 
eliminating the performance penalty. 
RE: and RE; can also be used to easily 
change colon words in the Forth kernel 
without meta-compilation. 

RE: and R E  demonstrates one of the 
greatest advantages of Forth over other 
languages: the ease with which a charac- 
teristic of a Forth system can be modi- 
fied in Forth. 

i 
I 

FORTH Dimensions 20 Volume VI. NO. 3 



SELECTED 
PUBLICATIONS 

The FORTH Interest Group Order Form (on the reverse side of this page) has 11 newly added publicationsselected 
by the FIG Publications Committee: 

All About FORTH 
Beginning FORTH Understanding FORTH 
FORTH Encyclopedia 
FORTH Fundamentals, Volume 1 
FORTH Fundamentals, Volume 2 

Threaded Interpretive Languages 

The Journal of FORTH Applications and Research, V. 1,#1 
The Journal of FORTH Applications and Research, V. 1, #2 
Dr. Dobb’s Journal, 9/84 

Thinking FORTH (Soft and Hard cover) 

Here are brief descriptions of 4 of them: 

THINKING FORTH, 
A Language and Phiksophy for M n g  RoMems 
by Leo Brodie 

The best-selling author of 
STARTING FORTH (Prentice Hall, 
1981) is back again! -this time 
with the first guide to using 
FORTH to program applications. 
This book captures the Philosophy 
of the language to show users how 
to write more readable, better 
maintainable applications. 

programmers will gain a better 
understanding and mastery of 
such topics as: 

Both beginning and experienced 

FORTH style and conventions 
decomposition 
factoring 

0 handling data 
0 simplifying control structures 

and more. 

And, to give you an idea of how 
these concepts can be applied, 
Thinking FORTH contains 
revealing interviews with real-life 
users and with FORTH’s creator, 
Charles H. Moore. 

To program in tel I igen tl y,you 
must first think intelligently, and 
that’s where Thinking FORTH 
comes in. 

programmer, consultant, teacher 
and world-renowned authority on 
FORTH. 

Leo Brodie is a writer, 

BEGINNING FORTH 
by Paul M. Chirlian 

Here’s a clear, self teaching 
introduction to FORTH. It starts 
with the very basic ideas you need 
to know to begin programming, 
then builds to the most complex 
FORTH programming procedures. 

FORTH Fundamentals, 
Volume 1: Language Usage 
by C. Kevin McCabe 

A complete guide to the two 
major versions of FORTH, fig- 
FORTH and FORTH-79. The book 
gives you nontechnical 
descriptions of FORTH words and 
programming methods, and it 
explores the language’s internal 
operation and use of memory. 

FORTH Fundamentals, 
Volume 2: Language Glossary 
by C. Kevin McCabe 

names, this comprehensive fig- 
FORTH and FORTH-79 glossary 
gives you all the applicable 
vocabularies and pronounciation. 
Each word is fully defined, with 
notes on the differences between 
the two FORTH versions. 

Organized by core FORTH word 

21 FORTH Dimensions Volume VI. No. 3 



FORTH INTEREST GROUP 
MAIL ORDER FORM 

NAME 

COMPANY 
STREET 
CITY STATE/PROV ZIP 

COUNTRY TELEPHONE ( ) 
f 

PRICES 
USlFORElGN AIR 

Membership in the FORTH Interest Group & 

Volume 1 FORTH Dimensions 
Volume 6 of FORTH Dimensions $15/27 ~ 

Volume 2 FORTH Dimensions 
Volume 3 FORTH Dimensions 
Volume 4 FORTH Dimensions 
Volume 5 FORTH Dimensions 

BOOKS ABOUT FORTH 
All About FORTH 
Beginning FORTH 
FORTH Encyclopedia 
FORTH Fundamentals, V. 1 
FORTH Fundamentals, V. 2 
Starting FORTH (Soft Cover) 
Starting FORTH (Hard Cover) 
Thinking FORTH (Soft Cover) 
Thinking FORTH (Hard Cover) 
Threaded Interpretive Languages 
Understanding FORTH 

REFERENCE 
FORTH 83 Standard 
FORTH 79 Standard 

CONFERENCE PROCEEDINGS 
FORML Proceedings 1980 
FORML Proceedings 1981 (2 V.) 
FORML Proceedings 1982 
Rochester Proceedings 198! 
Rochester Proceedings 1982 
Rochester Proceedings 1983 

JOURNALOFFORTH 
APPLICATIONS AND RESERACH 
Journal of FORTH Research V. 1 #1 
Journal of FORTH Research V. 1 #2 

REPRINTS 
Byte Reprints 

15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ~ 

$25135 ___ 
17/21 ~ 

25/35 ___ 
16/20 ___ 
13/16 ~ 

18/22 ___ 
23/28 ___ 
16/20 ___ 
23/28 ~ 

23/28 ___ 
315 ___ 

$15/18 ~ 

15/18 ___ 

$25135 ___ 
40155 ~ 

25/35 ___ 
25/35 ~ 

25/35 ~ 

25/35 ~ 

$1918 ___ 
15/18 ___ 

$3.5015 ~ 

PRICES 
USlFORElGN AIR 

Popular Computing 9/83 $3.50/5 ___ 
Dr. Dobb’s 9/81 3.50!5 ___ 
Dr. Dobb’s 9/82 3.50/5 ___ 
Dr. Dobb’s 9/83 3.50/5 ___ 
Dr. Dobb’s 9/84 3.5015 ~ 

HISTORICAL DOCUMENTS 
Kitt Peak Primer $25/35 ~ 

fig-FORTH Intallation Manual 15/18 ___ 

ASSEMBLY LANGUAGE SOURCE LISTINGS 
1802 
6502 
6800 
6809 
68000 
8080 
8086 I88 
9900 
ALPHA MICRO 
Apple II 
ECLIPSE 
IBMIPC 
NOVA 
PACE 

VAX 
280 

PDP-11 

$15118 ___ 
15/18 ___ 
15/18 ___ 
15/18 ~ 

15/18 ___ 
15/18 ~ 

15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ___ 
15/18 ~ 

15/18 ___ 
15/18 ____ 

T-S h i rt Size : $10112 ___ 
Poster (BYTE Cover) 3/5 ____ 
Handy Reference Card FREE ___ 

SUBTOTAL 
CA Residents Add 6%% Sales Tax 

TOTAL 

0 VISA 0 Mastercard # Fxpiration Date 
$15 Minimum On VlSAlMastercard Orders. 
All Prices Include Shipping. 

L 

Make Check or money order payable in US funds drawn on a US Bank to: FIG. 
PAYMENT MUST ACCOMPANY ALL ORDERS (Including Purchase Orders). 

OFFICE USE ONLY 

BY Date MO -TO -PU -Auth No 

Shipped By Date Weight UPS -USPS - 

Hold Date Weight UPS -USPS - 
ORDER PHONE: (408) 277-0668 

FORTH INTEREST GROUP P.O. BOX 8231 SAN JOSE, CA 95155 

FORTH Dimensions 22 volume VI, NO. 3 



Think Like a User 

Write Like A Fox 
Michael Ham 

Scotts Valley, Calgornia 

Good design consists in large part of 
anticipating the user’s inclinations and 
accommodating them, at the same time 
ensuring that the user is as friendly to 
your program as your program is to the 
user. This article describes the word DIG- 
ITS, written to conform to this precept. 
DIGITS collects numeric data of a speci- 
fied number of digits. 3 DIGITS, for exam- 
ple, will allow entry of at most three 
numeric digits and will ignore all keys 
except for numerals, backspace and the 
enter (or return) key - and those keys 
allowed by FIX. 

A computer will follow its instructions 
exactly but users are not so cooperative. 
It is better to observe users and then 
make your program conform to their 
habits and expectations than to attempt 
the reverse. FIX is a word to accommo- 
date the users. 

Whenever a user can validly complain, 
“The computer should have known what 
I meant,”the design is bad. For example, 
typists generally use the lower-case letter 
L for the number one; if an L is typed in 
the context of numeric entry, “one” is 
clearly intended. The word L->I thus 
accommodates the user in this regard. 
Similarly, the letter 0 and the numeral 
zero not only share the same form, they 
also occupy adjacent keys on the key- 
board. If the user is a hunt-and-peck 
typist, it is likely that the letter 0 in a 
numeric context is meant as a zero and 
O->o again accommodates the user. 

If the program displays the numeric 
entry field (e.g., the numbers are being 
entered in an inverse video rectangle that 
defines the maximum number of charac- 
ters), then some users will automatically 
space over instead of entering leading 
zeroes. That is, if they are to enter the 
number seven in a three-digit field, they 
normally will want to enter the seven in 
the units position and will press the space 
bar twice to move the cursor over. 
Rather than fight this natural tendency, 

Words to collect clean numeric data 
0 ( Numeric Input 1 of 2 Michael Ham 6/28/84 ) 

1 : B S ?  ( n - f ) 1 2 = ;  
2 : C R ?  ( n - f )  1 3 = i  
3 
4 : BACK -2 CURSOR + !  ; 
5 : BSP BACK SPACE BACK i 
6 : SP->O ( n - n ) DUP 32 = IF DROP 48 THEN ; 
7 : L->l ( n - n f DUP 76 = OVER 108 = OR IF DROP 49 THEN i 
8 : 0 - > O  ( n - n ) DUP 79 = OVER 1 1 1  = OR IF DROP 48 THEN i 
9 : FIX ( n - n ) SP->O L->l 0 - > O  i 
10 : OK? ( n f - 0 or n 1 ) IF 1 ELSE BELL DROP 0 THEN i 
1 1  : # ?  n - n f ) DUP 47 > OVER 58 < AND i 
12 : #BSCR?  ( n - n f ) # ?  OVER BS? OR OVER CR? OH i 
13 
14 : GET#BSCR < - ascii ) BEGIN KEY FIX aBSCR? OK? UNTIL i 
15 : GET#BSCR < - ascii ) 0 BEGIN DROP KEY FIX #BSCR? UNTIL ; 

o <  
1 
2 (  
3 :  
4 
5 
6 
7 
8 
9 

10 
1 1  
12 ( 

13 
14 
15 

Numeric Input 2 of 2 Michael Ham 6/28/84 ) 

n = max # of digits to collect; m = # of digits entered) 
DIGITS ( n - d m ) DUP 1 +  
0 DO BEGIN GETSBSCR DUP BS?  
( b k s p : )  IF DROP I IF BSP R> 1 -  > R  ELSE BELL THEN 0 

( c r :  ) IF DROP 1 LEAVE 
( nmbr: ) ELSE OVER I = IF DROP BELL 0 ELSE EMIT 1 

ELSE DUP PAD I + C! DUP CR? 

THEN THEN THEN UNTIL LOOP DROP ( n )  
0 0 PAD 1 -  CONVERT PAD - i 

NOTE: Delete 1 in line 7 i f  LEAVE is 83-Standard. ) 

it is easy to interpret spaces as zeroes. 
“Space, space, seven” can be accepted 
and displayed as “007”. (Of course, if 
they simply enter the seven (in the hun- 
dreds place) and then hit enter, the pro- 
gram should accept the number as seven, 
not as 700.) If the entry field does not 
have a visibly defined length, delete 
SP->o from the definition of FIX. 

Note that FIX is unobtrusive. Users 
who restrict themselves to the numeric 
keys will never know that FIX is present 
and even those who use FIX will be 
unaware of it. For them, the computer is 
simply doing what they would expect. 

BS? and CR? test for backspace and 
carriage return. This was written using 
Forth Technology’s Forth/level2, which 

interprets the backspace key as ASCII 
12. Most Forths use another value, typi- 
cally 8. To find out what your Forth 
does, type the sequence 

KEY . <enter> <backspace> 

The number displayed is the key-code 
for your backspace key. Use it in place of 
“12” in the definition of BS?. 

BACK moves the cursor back one posi- 
tion by decrementing the contents of 
CURSOR, which in Forth/ level 2 deter- 
mines the cursor position. In Forth/ level 
2, EMlTting a control code to the screen 
displays a character instead of triggering 
the specified function. In particular, that 
system’s 8 EMIT (which in some Forths 

Jolurne VI. No 3 FORTH Dimensions 23 



acts as a backspace and thus could be 
used as the definition of BACK) prints a 
rectangular blob. Once you have defined 
BACK you can then define BSP, which 
moves the cursor back one position and 
erases the character above it. 

#? checks to see whether the value on 
the stack is in the range of the ASCII 
values of decimal digits. #BSCR? extends 
#? to allow ENTER and backspace as 
valid characters also. I factored out #? 
for separate definition because it is use- 
ful in other contexts to check for purely 
numeric values. 

OK? is a general-purpose word for 
dropping bad input with a beep, sounded 
by BELL (substitute your Forth’s equi- 
valent). A beep can be useful if the user 
will be doing head-down data entry. If 
the user is probably going to be looking 
at the screen, however, I prefer to ignore 
invalid keystrokes without the beep: 
unnecessary noise is distracting in an 
office. I thus give two versions of 
GET#BSCR; the second version, on line 
fifteen of the first screen listing, will not 
beep. Instead, the DROP immediately 
after the BEGIN will get rid of invalid 
input after the UNTIL has eaten the flag 
left by#BSCR?. The zero preceding BEGIN 
is to give DROP something to drop the 
first time through the loop. 

You pick the version of GET#BSCR 
that you want to use. Both will loop 
until the user enters an acceptable value. 
From the point of view of the user, 
invalid keys (for example, most of the 
alphabetic keys) simply don’t work. 

The above words are used to define 
DIGITS, which itself requires a number: 
the maximum number of digits to be 
allowed in the number the user will enter. 
DIGITS leaves two numbers on the stack: 
the count of digits the user actually typed 
and, beneath that, the entered number 
(as a double-precision number occupy- 
ing two cells on the stack). By having the 
count of digits typed, your program can 
check whether a number was input or 
whether the enter key was pressed imme- 
diately, with no digits entered. 

The trick in writing DIGITS was seeing 
that to collect a five-digit number, for 
example, the loop must allow for six 
repetitions - but the sixth time through 
the loop, enter and backspace are the 
only valid input. 

DIGITS first duplicates the number of 
digits allowed. It uses one copy to deter- 
mine when it is in the last cycle of the 
loop; it adds one to the other copy and 
uses that as the limit for the loop. DIGITS 
refuses to backspace on the first cycle of 
the loop and refuses numeric input on 
the last cycle (when only enter or back- 
space are allowed). For these two errors, 
I decided that a beep was warranted 
because these keys are normally accept- 
able; it is only under these special cir- 
cumstances that they are invalid. If you 
don’t want the beep, eliminate the word 
BELL. 

The DO loop in DIGITS contains a 
BEGIN-UNTIL construct - the routine es- 
capes the BEGIN-UNTIL only when either a 
valid digit is collected or enter is pressed. 

If GET#BSCR delivers a backspace, the 
value is dropped from the stack; then if 
the backspace is invalid (trying to back- 
space past the beginning of the number) 
a beep is sounded or, if the backspace is 
valid, the backspace is performed and 
the loop index is picked up, decremented 
by one and put back. By setting back the 
index by one, the routine will collect 
again the previous digit. In either case, 
the backspace leaves a zero on the stack 
so that the routine will not escape the 
BEGIN-UNTIL but  will go back to 
GET#BSCR. 

If the input was nor a backspace, it is 
stored in the scratch area PAD. The index 
is used to locate the proper byte within 
PAD so that the ASCII string representa- 
tion of the number is built digit by digit. 
Note that the ASCII value for enter (13) 
will be stored as the last character of the 
string. 

If GET#BSCR delivers an ASCII 13 (the 
enter key), that value is stored in the 
string, then dropped from the stack and 
the DO loop is exited with LEAVE. 

If GET#BSCR delivers the ASCII value 
for a number - the next digit of the 
entered number - a check is made to see 
whether this is the last time through the 
loop (when only a backspace or enter 
will be accepted). If so, the digit’s ASCII 
value is dropped from the stack, the 
computer beeps and zero is left on the 
stack so that the routine will repeat the 

the digit on the screen and a one is left on 
the stack to escape the BEGIN-UNTIL and 
go through the next cycle of the DO loop. 

BEGIN-UNTIL loop; if not, EMIT displays 

Extraneous digits - digits that were 
backspaced over or entered (incorrectly) 
on the last cycle through the DO loop 
-are left in the string in PAD. They can 
be left there because they will be overlaid 
either by the correct digit or by the 
ASCII 13 stored when enter is pressed. 
The ASCII 13 marks the end of the valid 
digits. 

When the routine escapes the DO loop, 
it drops the number that was kept on the 
stack to check the index. CONVERT con- 
verts a number expressed as an ASCII 
string into numeric representation, add- 
ing it to a double-precision number on 
the stack. The two zeroes (which amount 
to one double-precision zero) are put on 
the stack so that CONVERT will be adding 
to zero, and PAD 1- provides the correct 
address for CONVERT. CONVERT leaves on 
top of the stack the address of the first 
non-numeric character it encountered in 
the string (which will be the ASCII 13 
from the enter). By subtracting PAD (the 
address of the beginning of the string), 
the top of the stack will show the number 
of digits entered. 

If fewer than five digits are collected, 
the number will be a single-precision 
number. DIGITS can then be followed by 
PDROP to get a single-precision number - 
without showing the number of digits 
collected. If you want a single-precision 
result but also want to know the number 
of digits entered (so you can distinguish 
an entered zero from no entry), follow 
DIGITS with SWAP DROP. 

Once you have received the result of 
DIGITS, you can subject it to any other 
edits your application might demand - 
maximum or minimum legal values or 
the like. DIGITS cooperates with the user, 
but also delivers a clean number for you 
to work with. 

FORTH Dimensions 24 Volume VI, No. 3 



SUPER FORTH 64" 
By Elliot B Schnetder 

TOTAL CONTROL OVER YOUR COMMODORE-64'" 
USING ONLY WORDS 

MAKING PROGRAMMING FAST, FUN AND EASY! 
MORE THAN JUST A LANGUAGE. . . 

A complete, fully-integrated program development system. 
Home Use, Fast Games, Graphics, Data Acquisition, Business, Music 

Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence 

A Powerful Superset of MVPFORTH/FORTH 79 + Ext. for the beginner or professional 
0 20 to 600 x faster than Basic 0 SPRITE-EDITOR 
0 1/4 x the programming time 
0 Easy full control of all sound, hi res. 

0 Access all C-64 peripherals including 4040 

0 Single disk drive backup utility 
Disk 8 Cassette based. Disk included 

0 Full disk usage-680 Sectors 
Supports all Commodore file types and 

0 Access to 20K RAM underneath ROM 

0 Vectored kernal words 
0 TRACE facility 
0 DECOMPILER facility 
0 Full String Handling 

ASCII error messages 
FLOATING POINT MATH SIN/COS 8 SQRT 
Conversational user defined Commands 

0 Tutorial examples provided, in extensive 

0 INTERRUPT routines provide easy control 
of hardware timers, alarms and devices 
USER Support 

SUPER FORTH 64@ compiled code 
becomes more compact than even assembly code! 

drive and EPROM Programmer. 
graphics, color, sprite, plotting line & 
circle 

0 Controllable SPLIT-SCREEN Display 
Includes interactive interpreter 8, compiler 

0 Forth virtual memory 
0 Full cursor Screen Editor 
0 Provision for application program 

distribution without licensing 
0 FORTH equivalent Kernal Routines 
0 Conditional Macro Assembler 
0 Meets all Forth 79 standards+ 
0 Source screens provided 
0 Compatible with the book "Starting Forth" 

0 Access to all 1/0 ports RS232, IEEE, 

0 ROMABLE code generator 
MUSIC-EDITOR 

Forth Virtual disk 

areas 

by Leo Brodie 

including memory & interrupts manual 

SUPER FORTH 64@ i s  more 
powerful than mosf ofher computer languages! 

SUPERFORTH64 

LISP 
LOGO L. 

E 
PASCAL 2 

B 3 C  N 
-I FORTRAN 0 

0 C 
ln 
Q, 
0) 
m 
3 
0) 
K 
m 

Q, 

ASSEMBLER 

Power of Languages Constructs Program Functionality 
Ordering Information Check Money Order 
(payable lo  MOUNTAIN VIEW PRESS INC ) 
VISA Mastercard American Express COD s 
$5 00 extra No billing or unpaid PO s Cali 
forma residents add sales tax Shipping costs 
in US included in price Foreign orders pay 
in US funds on US bank include for handling 
and shipping $10 

CALL: 

MOUNTAIN VIEW PRESS INC. 
A SUPERIOR PRODUCT (415) 961-4103 
in every way!  At a low 

price of only P .0 .  BOX 4656, MT* VIEW, CA 94040 
Dealer  for 

Drawer 1776, Fremont CA 94538 
PARSEC RESEARCH 

AUTHOR INQUIRIES INVITED 

$96 
Free Shipping in U S A 

0 PARSEC RESEARCH (Ertoblirhed 1976) Commodore 64 & VIC 20 TM of Commodore 

FORTH Dimensions Volume VI, No 3 25 



Upgrading Forth.79 Programs 
Robert Berkey 

Palo Alto, California 

Given a set of code developed under 
the 79-Standard, several choices exist 
concerning translating to Forth-83. The 
approach considered in this article is to 
integrate the application with the new 
standard, and the changes needed are 
reviewed. After upgrading, each word 
used within the application will then be 
used in a Forth-83 manner. 

The discussion is based on having a 
79-Standard program needing transla- 
tion onto a Forth-83 system. Actual 
programs may use system-dependent ex- 
tensions but the standard word set pro- 
vides a basis from which to work. A 
general knowledge of the changes to 
Forth-79 is expected for following the 
discussion; these changes have been docu- 
mented in previous issues of Forth Dimen- 
sions. Only the required word set of 
Forth-79 is considered, not the exten- 
sion word sets. Users upgrading fig- 
FORTH applications will also need to 
consider the differences between fig- 
FORTH and Forth-79. 

Integrating the Code 
The largest programming task is to 

examine the output of each flag (eight 
exist in the standard, and a typical 
application uses additional flag produc- 
ers), and determine whether its output is 
used in other than a zero or non-zero 
way. If in doubt, NEGATE or ABS can be 
inserted in-line following the flag result. 
ABS will work with either a 79flag or an 
83flag, whereas NEGATE will be slightly 
faster; but don’t ignore efficient alterna- 
tives. The phrase 79flag + can be re- 
coded 8311ag -. 79flag * is the same as 
83flag AND. The phrase 

flag IF + ELSE DROP THEN 

is the same as 

83flag AND + 

NOT must be examined to see if its 
input is a pure flag. If in doubt, it should 

be changed too=. Indeed, it is simplest to 
globally change each NOT to O=, although 
I find this to be stylistically undesirable. 
Uses of LEAVE should be examined for 
code that would have executed follow- 
ing the LEAVE and before the loop termi- 
nates; such code includes +LOOP itself, 
since +LOOP removes a value from the 
stack. Note that the on!y word needed 
after the 83-Standard LEAVE is THEN. 
For example, 

IF (a) LEAVE ELSE (b) THEN 

can be re-coded as 

IF (a) LEAVE THEN (b) 

Wherever ‘ is used, the ticked word must 
be followed with >BODY. Cases of’ used 
in a colon definition must be changed to 
r] and, as just mentioned, >BODY must 
be added after the ticked word. 

My own experience in doing a major 
conversion was to successfully examine 
all the flags, NOTs, tick-values and LEAVES 
and to forget to convert the few cases 
involving PICK and ROLL. Some modifi- 
cations are less common but can be rou- 
tinely checked for. U* must be re-named 
UM* and UiMOD must be re-named 
UMiMOD. FIND translates directly by re- 
placing its occurrences in colon defini- 
tions with the following phrase: 

32 WORD FIND O= IF DROP 0 THEN 

If FIND is being interpreted on a load 
screen it can usually be replaced with ‘ 
(tick). 

Several words have different imme- 
diate flags. COMPILE LEAVE gets changed 
to [COMPILE] LEAVE. FORTH, when used 
in a colon definition, must be replaced 
with [ FORTH 1. Likewise, EDITOR is no 
longer immediate and should be replaced 
with [ EDITOR 1. The phrases [COMPILE] 
FORTH and [COMPILE] EDITOR should 
have the [COMPILE] removed for stylistic 
reasons. 

The formerly state-smart words pres- 
ent special problems when preceded 
with [COMPILE]. Consider the phrase 

[COMPILE] ‘. Will the word containing 
the [COMPILE] ‘ be used ( I )  when STATE 
is true, (2) when STATE is false, or (3) 
both? For case (1)  use [COMPILE] [‘I. For 
case (2) remove the [COMPILE]. For any 
of the three cases a state-smart phrase 
can be substituted: 

STATE @ IF [COMPILE] [’I ELSE ’ 
THEN [COMPILE] .” 

can have the following phrase substi- 
tuted: 

STATE @ IF [COMPILE] .” ELSE 
34 WORD COUNT TYPE THEN 

[COMPILE] LITERAL can have the follow- 
ing phrase substituted: 

STATE @ IF [COMPILE] LITERAL THEN 

The considerations from here until 
the end of the paper will become increas- 
ingly unusual, but any bug in an algo- 
rithm is too much of a bug, so here goes. 
This material is also of increasing inter- 
est to work intended to be transportable 
across all standard systems. 

A number of other changes affect few 
programs. These include division pro- 
ducing negative quotients when the re- 
mainder is not zero, unusual DO inputs, 
the trailing character left by WORD and 
trailing null characters left by EXPECT. 
None of these was a problem in the 
application I converted. 

longer required by the standard but this 
is unlikely to be a problem, both because 
standard programs don’t typically use 
these words and because standard sys- 
tems have them around anyway. If they 
are unavailable in the FORTH vocabulary 
check in the EDITOR vocabulary. If avail- 
able in the FORTH vocabulary they can 
be depended upon to conform with the 
Cont ro l led  Reference Words  of 

SCR, LlSTand EMPTY-BUFFERS are no 

Forth-83. 

QUERY is no longer required but is 
typically implemented. It is regulated by 
the Controlled Reference Word Set but 

- -  -~ ~ ~~~ 

Volume VI, No 3 FORTH Dimensions 26 



it should be noted that the Forth-83 
QUERY sets >IN and BLK to zero. The 
word ? is no longer supported but is 
easily defined: 

: ?  ( a - - ) @ . ;  

Block buffers may be a subtle prob- 
lem because in Forth-83 changes can be 
written to disk even if not UPDATEd 
although I don’t know of any systems 
that exhibit this property. The phrase 

SAVE-BUFFERS EMPTY-BUFFERS 

can be re-coded FLUSH. Forth-79 algo- 
rithms that make other use of EMPTY- 
BUFFERS or that write to block buffers 
without updating are candidates for 
re-designing. 

Some usages that are now non-stand- 
ard will nonetheless work on some imple- 
mentations; included in this group are 
(1) ticking a CONSTANT and modifying 
its contents, (2) using COMPILE in con- 
junction with, (comma) to put a literal 
value into the threaded code as with 

COMPILE [ 0 , ] 

and (3) using the output of KEY without 
stripping the high bits. 

If the application is to be portable, 
each of these cases should be reviewed 
and eliminated. For the case of ticking a 
CONSTANT and modifying the contents, 
it may be useful to define a new class of 
words: 

: VALUE ( -- 16b ) ( creating: 16b --) 
CREATE, DOES> @ ; 

If any CONSTANT which is being ticked 
is re-defined using VALUE, the problem is 
resolved. A similar solution exists for 
KEY. 

: ASKEY ( -- char ) KEY 127 AND ; 

This, of course, requires altering refer- 
ences to KEY to become ASKEY. If your 
application is dependent on structures 
of the class 

COMPILE [ 0 , ] 

no standard mechanism is available for 
translation. The significance here is that 

the threaded code of a colon definition 
may be kept outside of the Forth address 
space. In practice there will be alternate 
programming approaches available or, 
for any particular system, a simple sys- 
tem-dependent word (or words) provid- 
ing equivalent functions. 

Multi-programming has heen speci- 
fied in Forth-83. If the application will 
run on only one system and that system 
is not multi-tasking, then there is no 
problem. But if the application is to be 
portable, multi-programming must be 
considered. A likely problem area is typ- 
ing from block buffers. 

Yet another problem can exist if the 
requirements of the standard program 
exceed the capacity of the standard sys- 
tem. Systems can be considered stand- 
ard with as few as 2000 bytes of applica- 
tion dictionary, sixty-four bytes of data 
stack, forty-eight bytes of return stack 
and thirty-two mass storage blocks. 

Another area to be considered is non- 
standard practices that worked on the 
older system but that will not run on a 
Forth-83 system. One potential problem 
is confusing I and R@. Similarly, the 
function I’ might have been used to 
extract the loop limit. For many Forth- 
83 systems the loop limit can be retrieved 
as a function of the top two elements of 
the return stack, but the specific func- 
tion varies widely among systems. Addi- 
tional unknown effects will involve vocab- 
ularies. CONTEXT and CURRENT are no 
longer in the required word set; in 
Forth-83 they are in the System Exten- 
sion Word Set. In fig-FORTH, CON- 
TEXT @ could be used to preserve the 
entire search order. In Forth-83 systems 
with a vocabulary stack, CONTEXT @ 
may preserve only the first vocabulary 
in the search order. FORGET now uses the 
compilation vocabulary, not the CON- 
TEXT search-order. 

The standard permits loop stacks, 
and the loop stack need support only 
three concurrent loops in the program. 
The number of loops in use at any one 
time is not something a Forth pro- 
grammer would normally consider. 

Some non-standard techniques will 
work only on an indirect threaded code 
system, while others will work only on a 

subset of indirect threaded code sys- 
tems; in either case these techniques 
would not have worked on certain 
Forth-79 systems and won’t work on 
some Forth-83 systems. Here is an exam- 
ple of problems involving non-standard 
techniques. Consider the following 
definitions: 

: TODEFINER CREATE COMPILE 

FIND , FIND, COMPILE EXIT 
DOES> EXECUTE 8 *  : 

[ HERE 6 - @ , ] 

A superficially Forth-83 implementation 
of the same idea follows: 

: NEST ( apf -- ) 2+ >R ; 

: 83DEFINER CREATE [’I NEST @ , 
‘ , ’ , COMPILE EXIT 
DOES> NEST 8 * : 

These are used in the form: 

79DEFINER MUNCH PAD @ 
83DEFINER MUNCH PAD @ 

On a post-increment indirect threaded 
system, MUNCH will fetch the value at 
PAD and multiply it by eight. 

But the above definitions comprise a 
rogues’ gallery of non-standard prac- 
tices. The definitions use the following 
Forth-83 non-standard practices. 

0 Reaching into the header of the Forth 
definition and knowing what is there. 

0 Requiring that the code field of a 
colon definition be exactly two bytes. 
(With a direct threaded system the code 
field might well be three, four or more 
bytes.) 

0 Leaving the return stack unbalanced 
in a colon definition. 

0 Assuming knowledge of whether the 
system has a pre-increment or a post- 
increment IP. 

0 Assuming that the threaded code is 
kept in the Forth address space, i.e., 
assuming that execution of COMPILE will 
modify the value of HERE by two (HERE 
might in fact be modified by zero, one, 
two, three or four). 

Volume VI. No. 3 27 FORTH Dimensions 



0 Assuming that the compilation address 
is a Forth address. (A compilation add- 
ress might be any sixteen-bit value that 
is somehow contained in the threaded 
code and understood by the address 
interpreter. In addition, the compilation 
address is not necessarily the address of 
a code field.) 
0 Assuming that the sixteen-bit compi- 
lation address is the only component of 
the threaded code. (A jump-subroutine 
system would have an additional one or 
two bytes; a byte-token system would 
only have one byte.) 
0 Assuming that the address used by the 
address interpreter is a Forth byte add- 
ress. (It could be a cell address or 
another number, such as an 8086 seg- 
ment.) 
0 Assuming that the address used by the 
address interpreter is kept on the return 
stack and is only one cell deep. (The part 
of the return stack accessible with R> 
may well have a return address of zero, 
one or two cells in length.) 

0 Assuming knowledge of the physical 
relationship of the address of the code 
field and the address of the parameter 
field. (>BODY converts the compilation 
address to the address of the parameter 
field for words whose parameter fields 
are known to exist in the Forth address- 

defined words that execute CREATE - 
but no mechanism is standardized for 
going from the parameter field to the 
compilation address or from the param- 
eter field to  the address of the code 
field.) 

space - CREATE and VARIABLE and user- 

Because of the actual structure in- 
volved, these definitions could be stand- 
ardized in this way: 

: EXECUTE2 ( apf --- ) DUP >R @ 
EXECUTE R> 2+ @ EXECUTE ; 
: 83DEFINER CREATE ’ , ’ , 
DOES> EXECUTE2 8 * : 

This article has shown one approach 
to  translating a Forth-79 program onto 
a Forth-83 system. The customized 
changes described above produce effi- 
cient and compact code. The next issue 
of Forth Dimensions presents another 
approach, a program interface that min- 
imizes man-hours required to  translate 
at the cost of efficiency and size of the 
program. 

YOU WON’T WANT THIS BOARD BECAUSE: 
It is a low cost development system; it comes in a metal case; it has its own 9 VAC power p a ;  it has a high level language and operating 
system built in, that sohare-supports disk functions; it has an RS232 serial port; it has two 8 bit parallel ports (five 8 bit ports for $330); 
it has two 16 bit multi-function counter/timers: it has edae sensitive lines: it has a 2 kbvte CMOS RAM: it has a 2 kbyte EEPROM; it has in 
circuit PROM programming capability; it has a protoGng area and room in the box for other cards. 
It is reliable . . . it is rugged . . . it is powerful. 

NOT EVEN BECAUSE: it can auto-start a user program on power up and IS priced 
at $90 in OEM quantity and configuration. 

YOU WANT IT BECAUSE: 
K WILL SAVE YOU TIME! 
Dedicated applicatons can quickb be developed and installed . . . like 
The electronic to compass-to-computer interface: development time - 4 hours 
Or the acoustic ranging unit with false echo rejection. 5 days. 
Or the electronic scale-to-business system, RS232 link: under 2 hours 

COST EFFECTIVE ENOUGH TO KEEP IN STOCK FOR THOSE 
QUICK INTERFACING FIXES OR DEDICATED CONTROL APPLICATIONS FORTH - BASED 

Volume VI, No. 3 FORTH Dimensions 28 



THE FORTH  SOURCE^^ 
MVP-FORTH 

Stable - Transportable - Public Domain - Tools 
You need two primary features in a software development package a 
stable operating system and the ability to move programs easily and 
quickly to a variety of computers MVP-FORTH gives you both these 
features and many extras This public domain product includes an editor 
FORTH assembler tools utilities and the vocabulary for the best selling 
book Starting FORTH The Programmers Kit provides a complete 
FORTH for a number of computers Other MVP-FORTH products will 
simplify the development of your applications 

1 Volume 1, A l l  about FORTH by Haydon MVP-FORTH 
MVP Books - A Series 

glossary with cross references to fig-FORTH Startfng FORTH 
and FORTH-79 Standard 2"d Ed $25 

7 Volume 2, MVP-FORTH Assembly Source Code Includes 
CP/M@ IBM-PC" and APPLE@ listing for kernel $20 

$1 0 
0 Volume 4, Expert System with source code by Park $25 
3 Volume 5, File Management System with interrupt security by 

Moreton $25 

C Volume 3, Floatmg Pofnt Glossary by Springer 

MVP-FORTH Software - A Transportable FORTH 
1 MVP-FORTH Programmer's Kit including disk documen- 

tation Volumes 1 & 2 of MVP-FORTH Series (A// About 
FORTH 2"d Ed & Assembly Source Code) and Starting 
FORTH Specify C CP/M C CPiM 86 Z CP/M+ 0 APPLE, 
0 IBM PC E MS-DOS 0 Osborne C Kaypro I H89/Z89 
I1 Z100 TI-PC n MicroDecisions - Northstar ~- ~ ~ ~ 

Z Compupro C Cromenco 1 DEC Rainbow C NEC 8201 +" 1 TRS-80/100 $1 50 

+%' MS-DOS file interface disk display and assembler 

0 MVP-FORTH Enhancement Package for IBM-PCIXT 
Programmers Kit Includes full screen editor 

operators $110 
C MVP-FORTH Cross Compiler for CP/M Programmer s Kit 

$300 
C MVP-FORTH Meta Compiler for CP/M Programmers kit Use 

Generates headerless code for ROM or target CPU 

for applicatons on CP/M based computer Includes public 
domain source $1 50 

board with disks documentation and enhanced virtual MVP 
FORTH for Apple II II+ and Ile $450 

Programmer s Kit Extremely useful tool for decompiling 

0 MVP-FORTH Fast Floating mint Includes 951 1 math chip on 

0 MVP-FORTH Programming Aids for CP/M IBM or APPLE 

callfinding and translating $200 
U MVP-FORTH PADS (Professional Application Development 

System) for IBM PC XT or PCjr or Apple I1 I1 + or Ile An 
integrated system for customizing your FORTH programs and 
applications The editor includes a bidtrectional string search 
and is a word processor specially designed for fast 
development PADS has almost triple the compile speed of 
most FORTH s and provides fast debugging techniques 
Minimum size target systems are easy with or without heads 
Virtual overlays can be compiled in object code PADS is a 
true professional development system Specify 
Computer $500 

C MVP-FORTH Floating Point & Matrix Math for IBM 
with 8087 or Apple with Applesoft on Programmers +' 
Kit or PADS $85 

+' Programmers  it or PADS $65 

4- MVP-FORTH Expert System for development of knowledge- 

4 0 MVP-FORTH Graphics Extension for IBM or Apple on 

+&c MVP-FORTH MS-DOS file interface for IBM PC PADS $80 

+' based programs for Apple IBM or CP/M $1 00 
FORTH CROSS COMPILERS Allow extending modifying and compiling 
for speed and memory savings can also produce ROMable code 
Specify CP/M 8086 68000 IBM Z80 or Apple11 l l i  

Orderlng Information. Check Money Order (payable to MOUNTAIN VIEW PRESS 
INC ) VISA Mastercard American Express COD s $5 extra Minimum order $1 5 
No billing or unpaid Po s California residents add bales tax Shipping costs in US 
included in price Foreign orders pay in US lunds on US bank include for handling 
and shipping by Air $5 lor each item under $25 $ 1  0 for each item between $25 and 
$99 and $20 for each item over $100 All prices and products sutqect to change or 
withdrawal withoul notice Single system and/or single user license agreement 
required on some Droducts 

$300 

FORTH MSKS 
FORTH with editor. assembler, and manual. 

40  APPLE by MM, 83 +' 0 ATARIO valFORTH 
+CJI0 CP1W by MM, 83 

l2 HP-85 by Lange 
0 HP-75 by Cassady 

+&a 1~p.1-p~ by LM, 83 

$100 c! 280 by LM, 83 *"+*d $100 
$60 0 8086188 by LM. 83 JI $100 

$100 0 68000 by LM. 83** ' $250 
$90 0 VIC FORTH by HES, VIC20 

$50 $1 50 
$1 00 0 cartridge c64 by HES Commodore $40 64 

NOVA by CCI 8" DS/DD$175 Timex by HW $25 
Enhanced FORTH with. F-Floating Poinl, G-Graphics, T-Tutorial, 
S-Stand Alone, M-Math Chip Support. MT-Multi-Tasking, X-Other 
Extras. 79-FORTH-79, 83-FORTH-83. 

0 FDOS for Atari FORTH's $40 
0 Extensions for LM Specify 

IBM, Z80. or 8086 

'0 APPLE by MM. 
S1 8o 

ATARI bv PNS. F.G. & X. $90 
+' F ,G.&83  

+&0 CP1M by MM, F & 83 

CPIM. X & 79 

$1 40 
0 Multi-Tasking FORTH by$;;; 

0 TRS-8011 or 111 by MMS 

0 Software Floating 

0p::i7 Support 

0 9511 Support 

$1 00 

(IBM-PC or 8086) $1 00 

F, X, & 79 S1 30 (Z80 or 8086) $1 00 
0 Timex by FD, tape G,X, 

++4 0 C64 by Parsec MVP. F, 79 , 

0 Victor 9000 by DE.G,X $150 
fig-FORTH Programming Aids for decompiling, callfinding, 

0' Color Graphics 

0 Data Base 
& 79 $45 (IBM-PC) $1 00 

G & X  $96 Management $200 

debugging and translating. CPIM, IBM-PC. Z80 
or Apple. $200 

FORTH MANUALS, GUIDES 6 DOCUMENTS 
0 ALL ABOUT FORTH by 0 1980 FORML Proc. $25 

Haydon. See above. 
0 FORTH Encyclopedia by 0 1982 FORML Proc. $25 

Derick & Baker $25 0 1981 Rochester FORTH 
.r\ 0 The Complete FORTH by Roc. $25 

+' Winfield $1 6 D 1982 Rochester FORTH 

$25 0 1981 FORML Proc 2 Vol $40 

0 Understanding FORTH by $25 
Revmann $3 1983 Rochester FORTH 

Roc. $25 

References, 1st Ed. $1 5 
Fundamentals' $1 0 A Bibliography of FORTH Vol I by McCabe 

0 FORTH Fundamentals, 
Vol II by McCabe $1 3 ~ p l ~ ~ ~ ~ ~ ' ~ f ~ ~ ~ h  

4 0 FORTH Tools, V0l.i by 0 Vol. 1, No. 1 $1 5 
+' Anderson & Tracy $20 0 vol. 1. N ~ .  2 $1 5 
0 Beginning FORTH by 0 METAFORTH by 

Chirlian $17 Cassadv $30 
0 FORTH Encyclopedia 

Pocket Guide $7 
And So FORTH by Huang. A 
college level text. $25 

0 FORTH Programming by 
Scanlon $1 7 

0 FORTH on the ATARl by E. 
Floegel $8 

0 Threaded Interpretive 

17 Systems Guide to f i g  

Invitation to FORTH 
0 PDP-11 User Man. 
0 FORTH43 Standard 

Languages 

FORTH 

$23 

$25 
$20 
$20 
$1 5 

C1 Starting FORTH by Brodie 0 FORTH-79 Standard $1 5 
Best instructional manual 0 FORTH-79 Standard 
available (soft cover) $1 8 Conversion $1 0 

0 Starting FORTH (hard 0 Tinv Pascal fia-FORTH $1 0 
cover) $23 11 N&A figFORTH by CCI 

Source Listing $25 assembler 

Vickers $15 Manual $25 

[7 68000 fig-Forth with 

c1 Jupiter ACE Manual by 
$25 

0 NOVA by CCI User's 

3 Installation Manual for fig-FORTH, 
Source Listings of figFORTH, for specific CPU s and computers The 
Installation Manual is required for implementation 
0 1802 n 6502 0 6800 n AlphaMicro 0 IBM JI 

L I PACE 0 6809 0 NOVA C, PDP-11 /LSI-11 
I 168000 U Eclipse 0 VAX 0 Z80 

$1 5 

Each $1 5 

+* I I 8080 CI 8086/88 n 9900 u APPLE II 

8184 

MOUNTAIN VIEW PRESS, INC. 
Po BOX 4656 MOUNTAIN VIEW, CA 94040 (41 5) 961 -41 03 

FORTH Dimensions Volume VI. No. 3 29 



William F. Ragsdale 
Hayward, California 

“Ask the Doctor” is Forth Dimen- 
sions’ health maintenance organization 
devoted to helping you use and under- 
stand Forth. Questions about problems 
you have, references you need or con- 
temporary techniques are most appro- 
priate. When needed, our columnist will 
call in specialists. Published letters will 
receive a pre-print of the column as a 
direct reply. 

Walter Milton of Camden, New Jer- 
sey has just begun to use the popular 
Forth from Texas Instruments on his TI 
99/4A. He offers a request that the good 
doctor hopes will stir thoughts for new 
application programs in the mind of at 
least one programmer looking for a 
challenge. 

“1 am an amateur astronomer and 
would appreciate any help or direction 
you can supply. I would like to write 
programs to do the following: 1) Code 
the celestial mechanics equations for 
planetary motion within the solar sys- 
tem. 2) Generate plots specifically for 
Jupiter and the four bright (Galilean) 
satellites. 3) I would also like to input 
my observations of Halley’s comet and 
compare with others’ reports.” 

Rx: Forth had early use in the astro- 
nomical community due to Charles 
Moore’s association with the National 
Radio Astronomical Observatory and 
the Kitt Peak National Observatory. 
His work aided research there, at Owens 
Valley Radio Observatory and at other 
observatories world wide. One can sur- 
mise that astronomers were limited by 
funds and hardware, and depended on 
Forth to extend their resources. 

Two proponents of Forth are Roger 
Stapleton at St. Andrews and Hans 
Nieuwenhuijzen at the State University 
at Utrecht. At this moment, 1 am being 
tantalized by a listing from St. Andrews 
for the measurement titled “Lunar 
Occultation of Aldebaran.” This is 
exchange material from 1979, sent by 

Roger. Since the application is quite 
specific to his hardware and support 
software, it serves to inspire rather than 
to provide specific guidance. 1 trust that 
both of these educators could provide a 
short list of references on the appro- 
priate calculation methods and practical 
approaches. 

While not programmed in Forth, the 
program TellStar (from Information 
Unlimited Software of Sausalito, Cali- 
fornia) will produce customized viewing 
charts for your site and time from an 
internal data base and planetary calcu- 
lations. The product also presents the 
constellations of the Southern Hemis- 
phere, so you may explore, in simula- 
tion, portions of the heavens only avail- 
able otherwise by extended travel. 

Who would like to combine the ele- 
ments of Julian date, star coordinates 
and planetary motion, yielding a Forth 
simulation system? 

The gentlemen mentioned above may 
be contacted at: 

Dr. J .  Roger Stapleton 
University Observatory 
Buchanan Gardens 
St. Andrews, Fife 
Scotland 

Dr. Hans Nieuwenhuijzen 
Sterrewacht Sonnenborgh 
Zonnenburg 2 
3512 NL Utrecht 
The Netherlands 

Frans Van Duinen of Toronto, Can- 
ada, graciously writes: “Firstly, let me 
express my appreciation for all the good 
work you and the many other Figgers 
have done and are still doing. Thanks! 

In the original fig-FORTH Model 
( ~ 1 . 1 ) ~  as in the Forth-83 Standard, the 
colon changes the first vocabulary in the 
search order to the one receiving the new 
definitions (CURRENT). Why is that? 

There are good reasons, no doubt, 
but for the life of me I see none, only a 
disadvantage. When I set the search 

order to CPIM FORTH DBASE ONLY I don’t 
appreciate the system changing it to 
DBASE FORTH DBASE ONLY just because 1 
happen to be adding definitions to 
DBASE. Your comments, please.” 

Rx: A small number of reasons come 
to mind for this characteristic. I’m unsure 
if they are compelling. A broader dis- 
cussion could bring to light additional 
aspects, favorable or not. The short 
answer is that it’s always been that way. 
The contemporary practice is reflected 
in Forth, Inc. products, fig-FORTH, 
and the Forth-78, Forth-79 and Forth- 
83 Standards. 

A more satisfying reason is that dur- 
ing testing you may switch to another 
vocabulary; when resuming compilation, 
you might now compile identically 
named words from that other vocabu- 
lary. If colon (:) did not move back to 
your application vocabulary, you would 
compile the editor I, which would be 
quite inappropriate inside a DO ... LOOP. 

Forth program development is highly 
interactive. You move from testing to 
editing to compiling in a matter of 
seconds. Many would find it irritating to 
have to type in the application vocabu- 
lary name at the end of editing. You 
presently just have to load the next 
application block and the editor is re- 
placed by the application vocabulary. 

The restoration of the CURRENT vocab- 
ulary was much more important back in 
the days when the search order was spec- 
ified in the order in which vocabularies 
were defined. (This is compile-time 
chaining as contrasted to the contem- 
porary method of run-time chaining 
with ONLY and ALSO.) Since the editor 
chained only to FORTH in those systems, 
without the automatic switch you would 
search EDITOR, then FORTH and then the 
CURRENT vocabulary. Since your appli- 
cation would be searched last, any syn- 
onyms in EDITOR or in FORTH would be 
found first. 

We see in compile-time-chained sys- 
tems that the context shift at the start of 

FORTH Dimensions 30 Volume VI, NO. 3 



compiling is needed for uniform behav- 
ior. The importance is reduced, but not 
eliminated, in run-time-chained systems. 

Forth is a very fluid environment. 
Vended systems can be extended or 
modified. Ross Grable is concerned 
about validation. He writes, “Dear Col- 
league: Is there any software that can 
verify the operation of a version of 
Forth? I am looking for a program that 
will verify a system against a glossary or 
a standard. It seems that this would be 
an extrememly useful tool, particularly 
since cross-computer portability is a 
strong feature of the language. Testing 
Forth automatically would certainly 
raise some interesting questions, such as 
how to test the limitations of compila- 
tion and defining words.” 
Rx: In early 1982 a team of four sys- 

tem implementors formed in Northern 
California to develop a validation pack- 
age for Forth-79. By the time they were 
under way, the prospect of Forth-83 
suggested that their work was prema- 
ture. However, they didn’t resume their 
effort upon the release of Forth-83. 

The field appears to be wide open, 
even invited by the standard itself. Sec- 
tion 7.2 of Forth-83 gives the required 
hardware configuration for testing (2000 
bytes of memory, thirty-two disk blocks, 
stacks of sixty-four and forty-eight bytes, 
and an ASCII terminal). Some of the 
steps likely to be in a validation suit 
would be to inventory all words, classify 
if immediate or non-immediate, verify 
that the validation source code has not 
been altered and check characteristics of 
the words. Typical subtleties would in- 
clude tests that IF ... THEN branches can 
branch further than 127 bytes, and that 
CREATE DOES> words are of the specified 
construction. FIND classifies words as 
immediate, non-immediate or missing. 
Prospects of testing prompted this Stand- 
ards Team choice. Such a validation 
program could be the basis of a product, 
or at least a very lively conference paper. 

David Fu of San Diego, California, 
has set his sights at the high end of the 
hardware spectrum. He queries, “I want 
to know whether anybody put Forth on 
the CDC Cyber, using the Compass lan- 
guage. I’d like to try it.” 

In August of 1978, your faithful prac- 
titioner received a listing of Forth in 

Compass Assembler for the CDC 6600. 
This was submitted to the Forth Imple- 
mentation Workshop by Gregory 
Walker of the Population Research Cen- 
ter of the University of Texas at Austin. 
About thirty-five words were written in 
code. Only ten were complex. Mr. 
Walker’s method was to write the text 
interpretation words in machine code 
and to compile most of what is usually 
code nucleus words in high-level form. 
This inverts the usual form but is ideal 
from a portability standpoint. The initial 
vocabulary is in the general form 

@ ! : ; INTEGER INTERPRET EXECUTE STATE 

XOR EQZ LTZ CURRENT PUTDICT 
NUMBER FIND NAME LOAD + - * / OR AND 

A beautiful touch was his method for 
the common stack operations. Gregg 
discards into a variable called TRASH in 
this fashion: 

o INTEGER TRASH 
0 INTEGER TOP 
: DROP TRASH ! ; 
: DUP TRASH ! TRASH @ TRASH @ ; 
: SWAP TOP ! TRASH ! TOP @ TRASH @ ; 

We were not able to include Gregg’s 
work in the FIG implementations since 
the market acceptance was uncertain 
and our CDC 6600 was unavailable for 
testing. 

MicroMotion 

MasterFORTH 
t‘s here - the next genera- 
ion of MicroMotion Forth, 
0 Meets all provisions, extensions and 

experimental proposals of the FORTH- 
83 International Standard. 

0 Uses the host operating system file 
structure(APPLE DOS3.3 & CP/M 2.x). 

0 Built-in micrwssembler with numeric 
local labels. 

0 Afull screen editor is provided which 
includes 16 x 64 fornot, can push & 
pop more than one line, user defin- 
able controls, upperliower case key- 
board entry, A COPY utility moves 
screens within & between lines, line 
stack, redefinable control keys, and 
search & replace commands. 

Includes all file primitives described 
in Kernigan and Plaugel‘s Software 
Toois. 

0 The editor, assembler arid screen copy 
utilities are provided as relocatabie 
object modules. They are brought 
into the dictionary on demand and 
may be released with a single com- 
mand. 

0 Many key nucleus commands are 
vectored. Eror handling, numberpar- 
sing, keyboard translation and so on 
can be redefined as needed by user 
programs. They are automatically re- 
turned to their previous definitions 
when the prcgram is forgotten. 

0 The string-handling package is the 
finest and most complete available. 

0 A listing of the nucleus is provided as 
part of the documentation. 

0 The language implementation ex- 
actly matches the one described in 
FORTH TOOLS, by Anderson & Tracy. 
This 200 page tutorial and reference 
is included with MosteWRTH. 

0 The input and output streams are 
fully redirectable. 

0 Floating Point & HIRES options avail- 
able. 

0 Available for A W E  11/11+/11e & CP/M 
2.x users. 

0 MosteWRTH - $100.00. FP & HIRES - 
$40.00 each 

0 Publications 
0 FORTH TOOLS - $20.00 

83 International Standard- $15.00 
0 FORTH-83 Source Listing 6502.8080, 

8086 - $20.00 each. 

Contacl 

MicroMotior 
12077 Wilshire Blvd.. Ste. 5C 

Los Angeles, CA 9002 
(213) 821-434 

Volume VI, No. 3 31 FORTH Dimensions 



Part Two 

Debugging Techniques 
Henry Laxen 

Berkeley, California 

Last time, we looked at machine- 
independent ways of debugging in Forth. 
We implemented the word UNRAVEL 
which, when executed, prints on the 
terminal the current nesting structure of 
Forth. This is very useful for run-time 
error checking. Now we are going to 
look at what kind of debugging tools we 
can implement if we are willing to 
descend to the depths of assembly 
language, and if we have a working 
knowledge of the internal structure of 
Forth. I will assume that you know how 
Forth works and will not endeavor to 
explain the workings of NEXT or NESTing 
or UNNESTing. If these things are un- 
familiar to you, I suggest you refer to 
Tracy's Forth Tools or to Brodie's 
Starting Forth for further information. 
If you are unfortunate enough to own an 
IBM P C  or compatible, you may be able 
to mindlessly use the code I am pre- 
senting. These same tools can be imple- 
mented on other CPUs but the code 
words must be modified, of course. 
Mike Perry and I have implemented 
these debugging words in our Forth-83 
system on the 8080, 8086 and 68000 
CPUs with little or no difficulty. 

All of the following techniques will 
only work if NEXT is not executed in- 
line, but is jumped to. The techniques 
rely on patching NEXT to perform addi- 
tional functions besides incrementing 
the I P  and jumping to the next word to 
execute. Because of that, the run time of 
the system will be affected. Byjudicious 
use of code, this overhead can be kept to 
well under fifty percent, which is not 
bad for debugging. 

The first and most useful debugging 
tool allows you to selectively single-step 
trace through the Forth word of your 
choice. One of the very nice things 
about this implementation is that you 
need not re-compile anything in order 

U \ Clebugging - L o u  L e v e l  
1 HEX 
2 UHRIHBLE 'DEBUG ( H o l d s  CFH o f  TRHCE r o u t i n e  ) 
3 UHRIRBLE .<If' Lower. I i s i t  o f  I P  d u r i n g  t r o c i n g  
4 UHRIHBLE I P >  I: Upper I imi t  o f  I P  d u r i n g  t r a c i n g  ) 

U [Wl JMP C; 5 CODE GUTO ( n -- ) IP  POP HX LODS HX W HUU 
6 CUUE UNBUG ( -- ) 
7 BYTE UHU 8 >NEXT p ?  MUU UD88B 8 ?NEXT I +  8 

8 HSSEMBLER LABEL UEBNEXT 
9 <IP 8 )  I P  CflP 11; I F  

10 i r j  8 )  IP CMP it.(= I F  
I 1  'UEBUG 8 )  U HUU U [ W l  JMP 

HUU NEXT C; 

12 THEN THEH ' GOTO @ I +  8 )  JHP ( Back t o  NEXT ) 

1 4  BYTE UEY 8 ?NEXT 8 )  HUlJ 
15 UEBNEXT M E X T  3 + - 8 >NEXT I +  8 )  tlUU NEXT C; UECIHHL 

13 CODE PNEXT -- ) 

Figure One 

U \ Uebugging - High Level 
I : L . I U  I c f a  l en  -- 1 

3 : 'UNHEST p f a  -- p f a '  
4 BEGIN 1 + DUP a [ ' 1  LINNEST = UNTIL ; 
5 UHRIRBLE RES 

7 UNBUG CR R >  ULlP w 10 L .  10 >R . S  SPHCE KEY LlPC 
8 HSCII F OUER = I F  
9 KES OFF nfiUP B E G l l i  (IUERV RUN R E 5  @ llH7 I L  THEH 

2 OUER >NRHE UUP , 10 RUT 1 -  - + SPHCES 

I Used t o  RESLIHE t r a c i n g  1 
6 : THHCE -- ) 

10 HSCl  I 0 UUER = I F  DROP QUIT THE14 
1 1  DROP PNEXT R >  GOTO ; ' THRCE 'CIEBLIG ! 

13 UNBUG ' OUP i I F  ! 'LINNEST I F >  ! PNEXT ; 
14 : RESUHE I -- n ) 
15 RES ON U ; 

12 : OERLlG -- ) 

Figure Two 

FORTH Dimensions 32 Volume VI, No 3 



1 

0 i Watch a flemnry L o c a t  ion 
1 
2 HS5EflBLER LHBEL WNEXT 

UHF: I H6LE WHTCH-PO I N T  D , 

3 WHTCH-POI NT 8 )  BX fl0U 0 [ E x ]  Fir: IICill 

4 WHTCH-POINT 2+ 8 )  HX CflP 0 0  I F  
5 HX WRTCH-PUINT 2 +  8 )  f lE l i j  ' 1lNHHlJEL 8 W tltlll 0 [ W ]  JflP 
FJ THEN GOTCI e 1 +  8 )  JflP i Hegiilat. NEXT ) 

8 HEX BYTE 0E9 8 >NEXT 8 )  flUU DECl f lHL 
7 C'UCIE PNEXT -- ) 

9 WNEXT >NEXT 3 + - 8 >NEXT 1 +  8 1  f lOU NEXT C; 
10 WHTCH addr -- ) 
1 1  ULlP WHTCH-POINT ! e WATCH-POINT 2+ ! PNEXT ; 
12 
13 
1 4  
15 

Figure Three 

to trace it. You can retroactively decide 
what to  trace and, in fact, can change 
your mind in the middle of the trace and 
begin tracing a different word. This abil- 
ity to debug previously compiled words 
is very powerful and usually requires 
hardware help. It is possible in Forth 
because the user has power over Forth's 
virtual machine, namely NEXT, and can 
modify it according to his whim. 

The idea, then, is to modify NEXT so 
that in addition to incrementing the I P  
and jumping to the next word, it checks 
to see if the I P  is within a certain range. 
If it is, it calls a special word that 
initiates debugging, instead of the word 
that it was going fo execute. The idea is 
very simple but the implementation is 
complicated by the fact that the special 
word that NEXT is calling must itself use 
NEXT in order to  implement the tracing 
function. Furthermore, we want to exe- 
cute step-by-step the word being traced, 
so we sometimes need to turn off this 
special NEXT. 

Now let's take a look at figures one 
and two. The variables <IP and IP> hold 
the range of IP values we are interested 
in tracing. Whenever the actual I P  is 
between these two values, we will initiate 
tracing. Fortunately, the structure of 

high-level Forth words is such that they 
are contiguous in memory. Thus, while 
we are executing a particular high-level 
Forth word, the I P  will always be 
greater than the code field address of 
that word, and less than the address of 
the UNNEST code field that was compiled 
by ;. The label DEBNEXT is the new ver- 
sion of NEXT that gets jumped to when 
tracing is enabled. It simply compares 
the IP value to the contents of the varia- 
bles <IP and IP>. If the 1P is between 
these values, the high-level word pointed 
to by the variable 'DEBUG is executed. If 
the IP is not in that range, then a normal 
NEXT is executed and Forth proceeds as 
though nothing had happened. The 
words UNBUG and PNEXT are inverses of 
each other. PNEXT patches NEXT to point 
to DEBNEXT, and UNBUG restores NEXT 
back to how it used to be. OE9 is a J M P  
instruction on the 8080, and AD880D is 
what NEXT normally is on an 8088. The 
last code word we need to worry about 
is GOTO, which is simply a high-level 
branch. It has its own in-line NEXT to 
avoid the problem of recursively tracing 
the same code field forever. 

The high-level work is done in figure 
two. L.ID prints the name of a word left- 

justified in a fixed-length field. 'UNNEST 
searches for the code field of UNNEST 
given a starting address, and returns the 
address found. In F83, the ; word com- 
piles the code field of UNNEST while EXIT 
compiles a different code field that does 
the same thing. This allows F83 to imple- 
ment this debugging feature and a nifty 
decompiler very simply, since colon 
definitions are now terminated by a 
unique code field. 

Now let's take a look at TRACE. The 
first thing it does is turn off debugging. 
This is just in case you happen to be 
tracing a word that is being used inside 
TRACE. You would get very confused, I 
assure you. Next, the name of the word 
about to be executed is printed, along 
with the current parameter stack con- 
tents. The R> on line seven gives us the 
address inside the word we are tracing 
of the code field of the word about to be 
executed. Thus, when we fetch it, we 
have the actual code field of the next 
word to be executed. Notice that our 
DEBNEXT version of NEXT has not yet 
incremented the IP; thus, the current 
address on the return stack is really the 
address of the current word that was 
about to be executed. We must replace 
this address on the return stack with the 
>R before printing out the parameter 
stack, or else confusion will again result. 
Next we wait for a KEY. At this point the 
user has three choices. If you want to 
continue single-stepping through the 
word, press any key other than Q or F. 
If you press Q for Quit, tracing will 
cease and you will be returned to the 
Forth interpreter. If you press F, you 
will re-enter the Forth interpreter, but 
will be able to continue tracing right 
where you left off if you type the word 
RESUME. 

Let's take a look at how this works 
and what it really means. First, the vari- 
able RES is turned OFF, meaning it gets 
set to zero. The following DROP throws 
away the character you typed. Thus, 
what is on the stack at this point is 
exactly what was there when tracing 
began. The BEGIN ... UNTIL loop repeatedly 
gets a line of input from the terminal 
with QUERY and then executes it with 
RUN. (On your system, INTERPRET may 

Jolurne VI, No. 3 33 FORTH Dimensions 



have to be substituted for RUN.) This 
continues until the variable RES is set to 
a non-zero value. Looking at RESUME, 
that is precisely what it does, as well as 
leaving a value on the stack to make up 
for the DROP that threw away the key- 
stroke. This ability to re-enter Forth 
and then RESUME debugging is extremely 
powerful. At any point while .you are 
tracing, you have the full power of 
Forth at your disposal. For example, 
you could examine variables, dump 
memory, list screens, or anything you 
want, right in the middle of executing a 
word. And then, by typing RESUME you 
can pick up right where you left off 
before re-entering Forth. One note of 
caution! If you make a mistake while 
you have re-entered Forth, the error 
handling of Forth will take over and 
you will wind up back in the Forth 
interpreter and unable to RESUME debug- 
ging of the word you were in. Such is 
life. 

The user interface to all of this is the 
word DEBUG. It should be followed by 

the name of the word you want to 
debug; for example, DEBUG WORDS. 
Then the next time WORDS is executed, 
it will be single-step traced. All DEBUG 
does is set up the variables <IP and IP>, 
and patch NEXT to point to DEBNEXT. 
Needless to say, you can make your own 
custom version of TRACE and simply 
place its code field address in the varia- 
ble ’DEBUG. Then it will receive control 
whenever the I P  is within the range 
specified. The possibilities are only 
limited by your imagination. 

Finally, a totally different but some- 
times invaluable tool is presented in fig- 
ure three. Again NEXT is patched to 
point to WNEXT. WNEXT monitors a par- 
ticular memory word whose address is 
at WATCH-POINT and whose initial con- 
tents is at WATCH-POINT 2+. If the value at 
that memory location differs from 
WATCH-POINT 2+ then we Call UNRAVEL, 
which will give us a trace of our return 
stack. Thus, we will be able to see 
exactly where we were at the time the 
location changed. This is an incredible 

tool usually found only in hardware 
emulators. It allows us to catch a “ran- 
dom store” bug almost immediately, in 
fact before the execution of the next 
high-level word: and the cost is one 
screen of code. 

I hope these debugging ideas will 
come in handy for you: They have saved 
me countless hours. Good luck, and 
may the Forth be with you. 

Copyright @ 1984 by Henry Luxen. 
All rights reserved. 

33 KFLOPS 
Use your IBM PC (or compatible) to mul- 
tiply two 128 by 128 matrices at the rate 
of 33 thousand floating-point operations 
per second (kflops)! Calculate the 
mean and standard deviation of 16,384 
points of single precision (4 byte) float- 
ing-point data in 1.4 seconds (35 
kflops). Perform the fast Fourier trans- 
form on 1024 points of real data in 6.5 
seconds. Near PDP-11/70 performance 
when running the compute intensive 
Owen benchmark. 

WL FORTH-79 
FORTH-79 by WL Computer Systems is 
a powerful and comprehensive pro- 
gramming system which runs on the 
IBM PC (and some compatibles). If your 
computer has the 8087 numeric data 
processing chip (NDP) installed, then 
this version of FORTH-79 will unleash 
the awesome floating-point processing 
power which is present in your system. 
If you haven’t gotten around to installing 
the 8087 NDP coprocessor in your com- 
puter, you can still use WL FORTH to 
flrite applications using standard 
’ORTH-79. 

8087 support and other features 
WL FORTH features extremely fast float- 
ing point calculations because it uses 
the 8087 hardware stack to store inter- 
mediate results and achieve 16 to 18 
digits precision. The system includes a 
large set of transcendental functions, 
such as SIN, COS, TAN, ASIN, ACOS, 
ATAN, Yz, LN, LOG, SQRT. FORTRAN 
like conversion specification words 
allow the user to specify output field 
width, places beyond the decimal point 
and fixed or scientific notation. 

The FORTH assembler allows the user 
to code time critical words in 8087/8088 
assembly language and includes struc- 
tured branch and looping constructs. 
The entire 1 Mb address space is avail- 
able for array storage. Definitions can 
include SWITCH to different screen 
files, thereby allowing dynamic switch- 
ing of screen files. SAVE allows current 
system to be saved as a .COM file and 
ZAP prevents your applications from 
being decompiled. The system in- 
cludes interrupt driven exception hand- 
lers for both the 8087 and 8088, and the 
programmer can select the desired 
number of screen buffers. 

But can get the source? 
Unlike most other products, the com- 
pletesource is available at a very 
affordable price. 

Package 1 includes FORTH-79 ver- 
sions with and without 8087 support. 
Included are screen utilities, 8087 and 
8088 FORTH assemblers. $100 

Package 2 includes package 1 plus the 
assembly language source for the WL 
FORTH-79 nucleus. $1 50 

Package 3 includes package 2 plus the 
WL FORTH-79 source screens used to 
add the 8087 features to the vocab- 
ulary. $200 

Starting FORTH book. $22 

WL Computer Systems 
191 0 Newrnan Road 

W. Lafayette, IN 47906 
(31 7) 743-8484 

Visa and Master Card accepted. 
~ ~ 

16M is a trademark of International Business Ma- 
chines 

FORTH Dimensions 34 Volume VI. No. 3 



John D. Hall 
Oakland, California 

We have five new chapters. That makes 
sixty-two! 

Kodiak Area FIG Chapter, Kodiak, 
Alaska 
Monterey/ Salinas FIG Chapter, Sali. 
nas, California 
Fort Wayne FIG Chapter, Fort Wayne, 
Indiana 
Albuquerque FIG Chapter, Albuquer- 
que, New Mexico 
Cincinnati FIG Chapter, Cincinnati, 
Ohio 

Arizona FIG Chapter 

May 24: Charles Moore attended! He 
discussed his Forth computer chip’s 
architecture in detail. At the time, he 
was in Arizona testing prototypes of the 
chip prior to production runs. An over- 
flow crowd attended and the meeting 
was video-taped. The tapes may be 
available for distribution after approv- 
als are obtained. 

Orange County FIG Chapter 

February 22: Wil Baden presented his 
FIX-FORTH which fixes the F83 Model 
so that it will meet the 83 Standard. 
John Broderick presented a program for 
cross-referencing words and where they 
are used. 

March 28: Dan Slater spoke to  the 
group and presented a slide show of the 
work he did at TRW, and a robot 
camera he worked on for Hollywood 
space movies. The group was very 
impressed with the work he was able to 
turn out. Wil Baden reported that he 
spoke on the virtues of Forth to  the 
Rockwell Space Systems Group at the 
Lunch Hour Computer Club. 

April 4: Dave Harralson presented a 
paper on the generalization of Forth 
control structures. Wil Baden also spoke 
about control logic. 

Sacramento FIG Chapter 

May 22: Fifteen people attended, 
including Jack Park, author of MVP’s 
Expert System. We discussed our rea- 
sons for attending a FIG meeting and 
tried to identify areas of mutual interest. 
Mr. Park identified an area of concern 
for the chapters: that of reconciling our 
levels of experience in Forth. If a topic 
or speaker addresses a subject at an 
expert level, the less experienced won’t 
be able to follow and will become bored. 
If it is addressed at a novice level, the 
more experienced won’t need to follow 
and will become bored. Tom Ghormley 
is sure that their chapter is not the first 
to address this. Any suggestions? (J. H.: 
This sounds like a discussion of the 
blind leading the blind and the faithful 
only talking to the faithful. In reality, it 
shouldn’t be this polarized. A chapter 
meeting is a place to discuss, criticize 
and learn by all. It’s not aplace to accept 
someone S ideas as the “truth ”any more 
than it is a place to present the “true” 
solution. In all cases, papers andpresen- 
tations are tutorials for the author as 
well as for the audience, and the process 
to obtain the solution should be the 
main message, not the product. With 
this attitude, both “novices” and “ex- 
perts’lare learning, and the only distinc- 
tion is how far along each is in the learn- 
ingprocess. As soon as the topic changes 
slightly, the role 0f”novice ”and “expert” 
will possibly change. The test of the 
strength of the Forth community and 
chapter then becomes how well those 
further along can assist those earlier in 
the process.) 

June 12: Walt Winter of Engineering 
Logic gave a talk on his Forth-operated 
TM990 control system. Wes Lane gave a 
talk on the 83 Standard experimental 
proposed words ONLY and ALSO as well 
as a short exposition of direct, indirect 
and tokenized threaded code. Tom 
Ghormley passed around his article on 
Forth for comments and correctionsIt 
appeared in the July issue of the Sacra- 
mento Valley Computer News. 

July 10: Twenty-two people attended 
the meeting, several because of Tom 
Ghormley’s article. A demonstration of 
Forth application using a Commodore 
64 and several J&J instruments had to 
be postponed because of a bad disk. Bob 
Nash was rushed into service and gave a 
short comparison of three versions of 
Forth available for the Commodore 64 
as well as a more in-depth look at 
SuperForth 64, complete with demo. 

Connecticut FIG Chapter 

May 4: The first FIG meeting of the 
Connecticut chapter was held at the 
Meridan Public Library. The group had 
an excellent assortment of personalities 
and programming experience, and was 
especially fortunate to have in attend- 
ance two very knowledgeable and expe- 
rienced Forthers (Forthites, Forthies ... ?): 
John Moran, a software group leader; 
and Bryan Lockwood, an independent 
consultant. John told the group about 
the trials and tribulations of getting 
Forth in ROM and his use of a meta- 
compiler to  do so. He also discussed his 
experience getting Forth up on the VAX. 
Bryan explained some of the problems 
and limitations of trying to  access more 
than 64K of address space from a six- 
teen-bit bus. He also gave a short talk on 
headerless code as a means of saving 
memory. Dan Kern-Ekins, an indepen- 
dent consultant and president of a local 
Commodore 64 club, told us about his 
version of Forth for that machine, and 
described some of the peculiarities of his 
disk operation. Tom Evans, a software 
engineer, spoke of his use of Forth at 
work for data acquisition and analysis 
of optical surfaces. Mike Davis talked 
about the new IBM-PC he got at work 
and his plans to  get Forth for the NEC- 
820 I A. Jean-Pierre Jaborska surprised 
many of the group when he commented 
that the Commodore Pet, his Forth 
machine, is still being manufactured. 
Jean-Pierre, who is from France, was 
disappointed that so many Forth arti- 
cles are at the system level, and so few 
talk about real-world applications - a 
good point. Charlie Krajewski outlined 

Volume VI. No 3 35 FORTH Dimensions 



a Forth project in which he hooked his 
bicycle to an 8088-based computer for 
indoor winter training. Unfortunately, 
the project was finally completed in 
early May. 

Forth Gesellschaft 

April 28: Sixteen people got together 
to get the ball rolling for a German FIG 
chapter. Three of us are “old FIG hands” 
who, once upon a time, keyed the FIG 
listings into their machines. We are going 
to work as a chapter under the name of 
Forth Gesellschaft and we will publish a 
newsletter under the name of Vierte 
Dimension. The first issue will be mailed 
by the end of May and will feature a 
translation of Bill Ragsdale’s interview 
from Forth Dimensions (V/6). Six work- 
ing groups constituted themselves: 

I)  Forth-83: we will be distributing 
Laxen and Perry’s F83 and work is 
underway to translate the documenta- 
tion into German. 

2) Leibniz: one of the major difficulties 
in gaining wide acceptance for Forth is 
constituted by the language barrier. 
Hence, we are going to create a “new” 
programming language, under the name 
of Leibniz, which will have German 
names and will follow the Forth-83 
Standard semantically. Leibniz will be 
derived from the version of Forth which 
was developed by Klaus Scheisiek and it 
will be put into the public domain. 

3) One working group will keep tabs on 
Forth publications and products, and 
will compile an index. 

4) Newsletter: Vierte Dimension will be 
published approximately four times a 
year as a forum and communications 
vehicle for Forth users in Germany. 
Initial subscription is 23,- DM for indi- 
viduals and 55,- DM for corporations. 

5 )  Fifth Dimension: this is a “brain- 
storming” group which is going to envi- 
sion the future development of Forth 
toward friendly and not necessarily 
Forth-like user interfaces and higher- 
level constructs. We will see what they 
are going to come up with. They want to 
use Forth as a base on which to build 
more sophisticated structures. 

6) Operations and management: Horst- 
Gunter Lynsche was elected secretary of 
Forth Gesellschaft and he will be respon- 
sible for the management aspects - 
keeping tabs on the subscribers, publish- 
ing Vierte Dimension, etc. 

TOTAL CONTROL 
FORTH: FOR 2-W, 8086,68000, and IBM@ PC 

Complies with the New 83-Standard 
GRAPHICS. GAMES. COMMUNICATIONS. ROBOTICS 

DATA ACQUISITION 0 PROCESS CONTROL 
FORTH programs are instantly FORTH Application Development Systems 

portable across the four most popular include interpreterlcompiler with virtual memory 
management and multi-tasking, assembler, full 
screen editor, decompiler, utilities. and 130 + microprocessors. 

FORTH is interactive and CC)nver- page manual Standard random access files 
sational, but 20 times faster than used for screen storage, extensions provided for 
BASIC. access to all operating system functions. 

0 FORTH programs are highly strut- 2-60 FORTH for CPlMO2.2 or MPlM 11, $50.00; 
8080 FORTH for CPlM 2.2 or MP/M 1 1 ,  $50 00: 

turedf easy maintain. 8086 FORTH for CPIM-86 or MS-DOS, $100.00, 
FORTH affords direct control over PC~FORTH for PC-DOS, CP/M-BG, or CCPM, 

all interrupts, memory locations, and $100.00; 68000 FORTH for CPlM-68K, $250.00. 
ilo ports. FORTH + Systems are 32 bit implementations 

FORTH allows full access to DOS 
files and functions 
0 FORTH application programs can 

pc FORTH + 
be compiled into turnkey COM f lks 8066 FORTH +for CP/M 86 or MS-DOS $250 00 

that allow creation of programs as large as 1 
megabyte The entire memory address space of 
the 68000 or 8086188 is supported directly 

$250 00 

$400 00 and distributed with no IlCenSe fee 68000 FORTH + for CPlM 68K 

Cross are Extension Packages available include’ soft- 
available for ROM’ed or disk based a p  ware floating point. cross compilers, INTEL 
plications on most microprocessors. 8087 support, AMD 951 1 support, advanced COI- 
Trademarks IBM, International Business Machines Or graphics, character sets’ symbolic 
Corp , WIM. Digital Research Inc , PCiForth + and debugger. telecommunlcatlons, cross reference 
PCIGEN, Laboratorv Microsvstems. Inc utility, 6-tree file manager Write for brochure 

Laboratory Microsystems Incorporated 
4747 Beethoven Street, Los Angeles, CA 90066 [m] 
Phone credrt card orders to (213) 306-7412 

FORTH Dimensions 36 Volume VI, No. 3 



New Chapters in Formation 
Here are more of the new chapters 

that are forming. If you live in any of 
these areas, contact these people and 
offer your support and help in form- 
ing a FIG chapter. You are not 
expected to be one of the “experts.” 

Bruce N. Collins 
c / o  Malemute Software 
P.O. Box 81746 
College, AK 99708 

Gary Smith 
Hawg Wild Software 
P.O. Box 7668 
Little Rock, AR 72217 

Herman B. Gibson 
8014 Gondola Dr. 
Orlando, FL 32809 

Alexander Luoma 
P.O. Box 10432 
Talahassee, FL 32302 

Richard Wagner 
728 E. Colfax Ave. 
South Bend. IN 46617 

Michael G. Waldon 
Inst. of Environmental Studies 
Rm. 42, Atkinson Hall 
Louisiana State University 
Baton Rouge, LA 70803-5705 
5041 388-8521 

Claude W. Hesselman 
2545 Bainbridge Blvd. 
Chesapeake, VA 23324 
8041 545-1240 

Jean-Marc Bertinchamps 
Rue N. Monnom, 2 
B-6290 Nalinnes 
Belgium 

Darryl C. Oliver 
Pacer Electronics 
2302 Marengo 
New Orleans, LA 701 15 
5041 899-8922 

Tom Chrapkiewicz 
P.O. Box 1056 
Dearborn, MI 48 12 1 
3 13 I 524-2 100 

The job of organizing a chapter can 
be done as well by people who are 
better at organizing than at program- 
ming, or by people who are in need of 
the help and support that a chapter 
can return. Lend a hand! 

Gene Embry 
Route 1, Box 151-H 
Morrisville, NC 27560 

Bill Morrissey 
Rio Grande Electronics 
1595 W. Picacho, Ste. 28 
Las Cruces, NM 88005 

J. Rennie 
1809 N.W. 34th 
Oklahoma City, OK 73 1 1 

Phillip A. Marcher 
243 Judith Dr. 
Johnstown, PA 15905 

Bard Ermentrout 
5464 Upsal Place 
Pittsburgh, PA 15206 

Terry L. Wallis 
322 Haverford 
San Antonio, TX 78217 

A1 Amway 
Rare Earth Services, Inc. 
3115 Willow Rd. N.W. 
Roanoke, VA 24017 

David Caulkins 
Mad Apple FIG 
P.O. Box 5103 
Madison, WI 53705 

Ray St. Laurent 
P.O. Box 95 
Vars, ON KOA 3H0 
Canada 

Jan Langerad 
Loebpakken 1 
3520 Sarum 
Denmark 

Mrs. J.J. van der Hoek 
Forth Interesse Groep 
Medemblikpad 70 
8304 CZ Emmeloord 
The Netherlands 

Mu It iuser/M u It itas ki ng 
for 8080,280, 808.6 

Industrial (,,q \ 
Strength 

TaskFORTH,. 
The First 

Professional Quality 
Full Feature FORTH 

System at a micro price* 

LOADS OF TIME SAVING 
PROFESSIONAL FEATURES: 
* Unlimited number of tasks 
* Multiple thread dictionary, 

superfast compilation 

* Novice Programmer 
Protection Packagem 

a Diagnostic tools, quick and 
simple debugging 

* Starting FORTH, FORTH-79, 
FORTH-83 compatible 

* Screen and serial editor, 
easy program generation 

* Hierarchical file system with 
data base management 

* Starter package $250 Full package $395 Single 
user and commercial licenses available 

If you are an experienced 
FORTH programmer, this is the 
one you have been waiting for! 
If you are a beginning FORTH 
programmer, this will get you 
started right, and quickly too! 

Available on 8 inch disk 
under CPlM 2.2 or greater 

also 
various 51h” formats 

and other operating systems 

FULLY WARRANTIED, 
DOCUMENTED AND 

SUPPORTED 
~~ 

DEALER - 
Shaw Laboratories, Ltd. 
24301 Southland Drive, #216 

Hayward, California 94545 
(415) 276-5953 

Volume VI. No. 3 37 FORTH Dimensions 



us. 

ALASKA 

KodiPk Area Chapter 
Call Norman C. McIntosh 
9071486-4843 

ARIZONA 

Phoenix Chapter 
Call Dennis L. Wilson 
6021 956-7678 

Tucson Chapter 
Twice Monthly, 2nd & 4th Sun., 2 p.m. 
Flexible Hybrid Systems 
2030 E. Broadway #206 
Call John C. Mead 
6021323-9763 

CALIFORNIA 
Berkeley Chapter 
Monthly, 2nd Sat., 1 p.m. 
10 Evans Hall 
University of California 
Berkeley 
Call Mike Perry 
41 51644-3421 

Los Angeles Chapter 
Monthly, 4th Sat., I 1  a.m. 
Allstate Savings 
8800 So. Sepulveda Boulevard 

Los Angeles 
Call Phillip Wasson 

mile North of LAX 

2 13 / 649- 1428 

Monterey/Salinas Chapter 
Call Bud Devins 
408 /633-3253 

Orange County Chapter 
Monthly, 4th Wed., 7 p.m. 
Fullerton Savings 
Talbert & Brookhurst 
Fountain Valley 
Monthly, 1st Wed., 7 p.m. 
Mercury Savings 
Beach Blvd., & Eddington 
Huntington Beach 
Call Noshir Jesung 
7 14/ 842-3032 

San Diego Chapter 
Weekly, Thurs., 12 noon. 
Call Guy Kelly 
6191268-3100 ext 4784 

Sacramento Chapter 
Monthly, 2nd Tues., 7 p.m. 
170B 59th St., Room C 
Call Tom Ghormley 
9 161 4441775 

Silicon Valley Chapter 
Monthly, 4th Sat., 1 p.m. 
Dysan Auditorium 
5201 Patrick Henry Dr. 
Santa Clara 
Call Glenn Tenney 
41 51 574-3420 

Stockton Chapter 
Call Doug Dillon 
2091 93 1-2448 

COLORADO 

Denver Chapter 
Monthly, 1st Mon., 7 p m  
Call Steven Sarns 
3031477-5955 

CONNECTICUT 

Central Connecticut Chapter 
Monthly, 1st Thurs., 7 p.m. 
Meriden Public Library 
Call Charles Krajewski 
203 I 344-9996 

FLORIDA 
Southeast Florida Chapter 
Miami 
Call John Forsberg 
3051 252-0 108 

ILLINOIS 

Cenhnl Illinois Chapter 
Urbana 
Call Sidney Bowhill 
21713334150 

Fox Valley Chapter 
Call Samuel J. Cook 
3121879-3242 

Rockwell Chicago Chapter 
Call Gerard Kusiolek 
3121 885-8092 

INDIANA 

Central Indiana Chapter 
Monthly, 3rd Sat., 10 a.m. 
Call Richard Turpin 
3 17/ 923-1321 

Fort Wayne Chapter 
Call Blair MacDermid 
2191749-2042 

0 low 
Iowa City Chapter 
Monthly, 4th Tues. 
Engineering Bldg., Rm. 2128 
University of Iowa 
Call Robert Benedict 
3191337-7853 

KANSAS 
Wichita Chapter (FIGPAC) 
Monthly, 3rd Wed., 7 p.m. 
Wilbur E. Walker CO. 
532 S. Market 
Wichita, KS 
Call Arne Flones 
3161 267-8852 

MASSACHUSETTS 

Boston Chapter 
Monthly, 1st Wed. 
Mitre Corp: Cafeteria 
Bedford, MA 
Call Bob Demrow 
6171688-5661 after 7 p.m. 

MINNESOTA 

MNFIG Chapter 
Even month, 1st Mon., 7:30 p.m. 
Odd Month, 1st Sat., 9:30 a.m. 
Vincent Hall Univ. of MN 
Minneapolis, MN 
Call Fred Olson 
6121588-9532 

MISSOURI 

Kansas City Chapter 
Monthly, 4th Tues., 7 p.m. 
Midwest Research Inst. 
Mag Conference Center 
Call Linus Orth 
8161444-6655 

St. Louis Chapter 
Monthly, 3rd Tues., 7 p.m. 
Thornhill Branch of 
St. Louis County Library 
Call David Doudna 
3 141 867-2482 

NEWDA 

Southern Nevada Chapter 
Suite 900 
101 Convention Center Drive 
Las Vegas, NV 
Call Gerald Hasty 
7021 452-3368 

NEW MEXICO 

Albuquerque Chapter 
Call Rick Granfield 

William Edmonds 
804/ 898499 

5051 296-8651 

NEW YORK 

FIG, New York 
Monthly, 2nd Wed., 8 p.m. 
Queens College 
Call Tom Jung 
2121432-1414 ext. 157 days 
2 12/ 26 1-321 3 eves. 

Rochester Chapter 
Bi-monthly, 4th Sat., 2 p.m. 
Hutchison Hall 
Univ. of Rochester 
Call Thea Martin 
7161 235-0168 

Syracuse Chapter 
Monthly, 1st Tues., 7:30 p.m. 
Call C. Richard Corner 
3151456-7436 

OHIO 
Athens Chapter 
Call Isreal Urieli 
614/ 594-373 1 

Cleveland Chapter 
Call Gary Bergstrom 
21 61 247-2492 

Cincinatti Chapter 
Call Douglas Bennett 
513/831-0142 

Dayton Chapter 
Twice monthly, 2nd Tues & 
4th Wed., 630 p.m. 
CFC 11 W. Monument Ave. 
Suite 612 
Dayton, OH 
Call Gary M. Granger 
5 13 / 849-1483 

OKLAHOMA 

'hlsa Chapter 
Monthly, 3rd Tues., 7:30 p.m. 
The Computer Store 
4343 South Peoria 
Tulsa, OK 
Call Art Gorski 
9 181 743-0 1 13 

OREGON 
Greater Oregon Chapter 
Monthly, 2nd Sat., 1 p.m. 
Computer & Things 
3460 SW 185th, Aloha 
Call Timothy Huang 
503/ 289-9135 

PENNSYLVANIA 

Philadelphia Chapter 
Monthly, 3rd Sat. 
LaSalle College, Science Bldg. 
Call Lee Hustead 
2151539-7989 

TEXAS 

Dallas/Ft. Worth 
Metroplex Chapter 
Monthly, 4th Thurs., 7 p.m. 
Software Automation, Inc. 
14333 Porton, Dallas 
Bill Drissel 
2141 264-9680 

Volume VI. No. 3 38 FORTH Dimensions 



Houston Chapter 
Call Dr. Joseph Baldwin 
7 I3 '749-2 120 

VERMONT 
Vermont FIG Chapter 
)rlonthlj. 3rd Mon., 7:30 p.m. 
krgemes Union High School 
Rm. 210, Monkton Rd. 
Vrgennes, VT 
Call Hal Clark 
8021 877-29 1 1 days 
80214524442 eves 

VIRGINIA 

Norfolk FIG Chapter 
Call William Edmonds 
804/ 8984099 

Potomac Chapter 
Monthly, 1st Tues., 7 p.m. 
Lee Center 
Lee Highway at Lexington St. 
Arlington, VA 
Call Joel Shprentz 
7031437-921 8 eves. 

Richmond Forth Group 
Monthly, 2nd Wed., 7 p.m. 
Basement, Puryear Hall 
Univ. of Richmond 
Call Donald A. Full 
8041 739-3623 

FOREIGN 
AUSTRALIA 

Melbourne Cb8pta 
Monthly, 1st Fri., 8 p.m. 
Contact: Lance Collins 
65 Martin Road 
Glen Iris, Victoria 3146 
03 I 29-2600 

Sydney Chapter 
Monthly, 2nd Fn., 7 pm. 
John Goodsell Bldg., 
Rm. LG19 
Univ. of New South Waks 
Sydney 
Contact: Peter TR- 
IO Binda Rd., Yowie Bay 
021524-7490 

BELGIUM 

Belgium Chaptu 
Monthly, 4th Wed., 2 0 a h  
Contact: Luk Van Locck 
Lariksdreff 20 
2120 Schoten 
031658-6343 

Southern Belgium FIG Clmpter 
Contact: Jean-Marc Bertinchamps 
Rue N. Monnom, 2 
B-6290 Nalinnes 
Belgium 
071/213858 

CANADA 

Nova Scotia Chapter 
Contact: Howard Harawitz 
227 Ridge Valley Rd. 
Halifax, Nova Scotia B3P 2E5 
9021477-3665 

Southern Ontario Chapter 
Monthly, 1st Sat., 2 p.m. 
General Sciences Bldg. 
Rm. 312 
McMaster University 
Contact: Dr. N. Solntseff 
Unit for Computer Science 
McMaster University 
Hamilton, Ontario L8S 4K1 
416/525-9140 ext. 2065 

Toronto FIG Chapter 
Contact: John Clark Smith 
P.O. Box 230, Station H 
Toronto, ON M4C 552 

COLOMBIA 
Colombia Chapter 
Contact: Luis Javier Parra B. 
Aptdo. Aereo 100394 
Bogota 
214-0345 

ENGLAND 

Forth Interest Group - U.K. 
Monthly, 1st Thurs., 7 p.m., Rm. 408 
Polytechnic of South Bank 
Borough Rd., London 
Contact: Keith Goldie-Morrison 
Bradden Old Rectory 
Towchester, Northamptonshire 
"12 8ED 

FRANCE 

French Language Chapter 
Contact: Jean-Daniel Dodin 
77 rue du Cagire 
3 1 100 Toulouse 
(16-61) 44.03 

GERMANY 

Hamburg FIG Chapter 
Monthly, 4th Sat., 1500 hrs. 
Contact: Horst-Gunter Lynsche 
Holstenstr. 191 
D-2000 Hamburg 50 

IRELAND 

Irish Chapter 
Contact: Hugh Dobbs 
Newton School 
Waterford 
05 I / 75757 
05 I /74124 

ITALY 

FIG Italia 
Contact: Marco Tausel 
Via Gerolamo Fomi 48 
20161 Milano 
02/ 645-8688 

REPUBLIC OF CHINA 

R.O.C. 
Contact: Ching-Tang Tzeng 
P.O. Box 28 
Lung-Tan, Taiwan 325 

SWITZERLAND 

Swiss Chapter 
Contact: Max Hugelshofer 
ERN1 & Co. Elektro-lndustrie 
Stationsstrasse 
8306 Bruttisellen 
01/833-3333 

SPECIAL GROUPS 
Apple Corps Forth 
Users Chapter 
Twice Monthly, 1st & 
3rd Tues., 7:30 p.m. 
1515 Sloat Boulevard, #2 
San Francisco, CA 
Call Robert Dudley Ackerman 
41 5 1626-6295 

Baton Rouge Atari Chapter 
Call Chris Zielewski 
5041 292- 19 10 

Detroit Atari Chapter 
Monthly, 4th Wed. 
Call Tom Chrapkiewicz 
3131524-2100 

FIGGRAPH 
Call Howard Pearlmutter 
408/425-8700 

Volume VI, No. 3 39 FORTH Dimensions 



ANNOUNCING 

ORDER FROM THE FORTH INTEREST 
COMPLETE ORDER FORM ON PAGE 22 

FORTH INTEREST GROUP 
PO. Box 1105 
San Carlos, CA 94070 

cj 3: 
. . .. . . , 

Address Correction Requested 

BULK RATE 
U.S. POSTAGE 

PA1 D 
Permit No. 3107 
San Jose, CA 




