
Volume 5, Number 5
JanuarylFebruary 1984

$2.50

n w I

uimensions

Data
Acquisition

FEATURES
Introduction to Data Acquisition Michael Perry 5
Timekeeping in Forth_... Will iam F. Ragsdale 6
Macro Expansion in Forth Jeffrey Soreff 9
F i xed- Po i n t Log ari t h m s.. N at h an i e I G ross man.. .11
Paradigm for Data Input Michael Ham 19
Toward Eliminating Forth Screens Robert Wagner 20
A More General ONLY Paul E. Condon 24
Recursion of the Forth Kind Michael Gwilliam

Ronald Zammit 28
Quick Sort in Forth Marc Perkel 29
With in WITH I N Gary Neme t h.3 1
FORML 1983: A Review .. 33

DEPARTMENTS
Letters ... 3
Editorial: Cover Ups .. 3
Tec h n i q ues Tu t o ri al :

Multi-Tasking, Part II Henry Laxen 37
FIG Chapter News John D. Hall 38

“If you require an expert in a given area you have three choices: you
can hire one, you can cultivate one, or you can find a consultant who is
already an expert. The first two choices are reasonable only if this
expertise is required on a very long term basis. Cultivating an expert can
be a particularly frustrating experience since it usually takes one to make
one. A consultant, on the other hand, can supply his expertise only when
and in the amount needed. It will cost quite a bit more per hour to use a
consultant expert but the long run savings, in this case, are dramatic ...”

‘%uide to Using Consultants”
Inner Access Corporation 1984

For your free copy of “Guide to Using Consultants” call or write:
51 7-K Marine View, Belmont, CA 94002 (4, 5) 59
P.O. Box 888, Belmont, CA 94002 OR

Inner Access Corporation
A computer software and hardware consulting firm for business and industry In -8295

=PROCESS CONTROL =DATABASE MANAGEMENT . DATA ACQUISITION
= GRAPHICS. HARDWARE DESIGN = SELECT/SORT/MERGE .SOFTWARE SUPPORT

= 8048/49 Z80/8085= FORTH = SYSTEMS SOFTWARE = SPECIALIZED EDITORS
=MULTIPROCESSOR SOFTWARE. AUTOMATED DESIGN = MODELLING
= SPECIFICATION = DOCUMENTATION = TRAINING .MICROPROCESSOR APPLICATIONS

9 TURN-KEY SYSTEMS. FORM DRIVEN SOFTWARE. 68000.28000 = 8086/88. NCS 800

FORTH Dimensions 2 Volume V. No. 5

FORTH Dimensions
Published by Forth Interest Group

Volume V, No. 5
January/February 1984

Editor
Marlin Ouverson

Publisher
Roy C . Martens

mesetting/Production
LARC Computing, Inc.

Cover Art
Al McCahon

Forth Dimensions solicits editorial material,
comments and letters. No responsibility is
assumed for accuracy of material submitted.
Unless noted otherwise, material published by
the Forth Interest Group is in the public
domain. Such material may be reproduced
with credit given to the author and the Forth
Interest Group.

Subscription to Forth Dimensions is free
with membership in the Forth Interest Group
at $15.00 per year ($27.00 foreign air). For
membership, change of address and/or to
submit material, the address is: Forth Interest
Group, P.O. Box 1105, San Carlos; CA
94070.

Editorial

Cover Ups
In the last issue, I promised that, this

time, we would have a review of this
year’s FORML conference. Here it is,
as expected! The amount of available
space did not permit us to cover all the
sessions, or even each talk in any one
session. The selection process was very
nearly arbitrary, because so many
papers of outstanding quality were
presented. But read for yourself, then
make plans to attend next year. It will
be the Friday, Saturday and Sunday af-
ter Thanksgiving. Look for details, as
they become available, in these pages.

Have you been paying attention to
our cover art recently? The last one ar-
rived with a handwritten apology to
Renaissance painter, engraver and
designer Albrecht Durer (and whoever
finds both the missing umlauts in this
issue gets Proofreader-of-the-Month
award - our typesetter doesn’t like
’em). Artist A1 McCahon has been syn-
thesizing such designs for some time,
taking apparently disparate technical
elements and finding a unified artistic
concept. Some time back, I had the op-
portunity to listen to a group of Forth

letters to the Editor

On Curses and Communication

Dear FIG:
As you responded to one reader, we

can’t impose a standard language on
everyone, and anyone should be free to
deviate from the standard as he desires.
On the other hand, since we do have a
standard, can’t we urge authors to at
least make reference to the current
standard in their program listings?
How about a special Forth word to call
down a curse of disk errors on authors
who fail to indicate the instances where
their listing deviates from the stan-
dard? I presume such a list would be
small compared to the main program.

people trying to figure out the hidden
meaning of one of our covers. (My
favorite line of the evening: “But why
is the dog looking in that direction? It
must mean something!”) The most
obscure visual references were objects
of extended conjecture - could they
really be just design elements? We
aren’t giving away any secrets, but are
willing to print interesting letters to the
editor which attempt to decipher what
was in the artist’s mind. Mainly, this is
an indirect way to thank Al for the nice
touch he has added to our covers.

You may recall that, earlier this
year, Forth Dimensions had the oppor-
tunity to publish a lengthy interview
with Charles Moore. It has since been
pointed out that there are a number of
other people who also have figured
prominently in the development of
Forth. We are laying plans now for a
series of interviews with key Forth
people around the world. May we have
your nominations for interviewees?
The next one is slated to be Bill Rags-
dale, President and one of the founders
of the Forth Interest Group. Look for
it!

How many Forth articles have we all
seen wherein the author simply men-
tions that his program is written in
xyz-Forth, with never a mention of
those strange words which have never
been seen in any standard and,
frequently, are not found in any of the
six Forth references I use. In an ideal
world, it should be possible for one at
least to derive the intent of any Forth
program presented without having to
buy that specific version. As it stands,
the comment that “ . . .this program is
written in PC-Forth.. . ” or FIG-
Forth, MVP-Forth, etc., is simply an

(Continued on next page)

Bill’s welcome contribution to this
issue is his article on “Timekeeping in
Forth.” A glance at his code will re-
veal what we believe is the first pub-
lished example of shadow screens.
Note that each shadow is linked to the
source screen, and each comment line
corresponds visually to the line it docu-
ments. Let us know how you like the
concept and its execution.

Finally, don’t panic when you notice
the absence of a list of Forth vendors in
this issue. It has been retired for
extensive updating, with the assistance
of the vendors themselves, who will be
receiving correspondence from us
about the project. Over time, some in-
accuracies had slipped in, and com-
ments we received also asked for a
more readable format. While the list is
out for repair, copies of it will continue
to be mailed to any who write or call
for a copy.

See you next issue!
-Marlin Ou verson

Editor

Volume V. No. 5 3 FORTH Dimensions

invitation to skip to the next article if
that is not the version you use. Is this
communication? Doesn’t Forth suffer
enough from lack of communication
with the outside world without creating
isolated islands within itself?

And wherein has the Forth commun-
ity benefitted from a standard if only
those articles written in your own ver-
sion are readable? I believe that unless
better communication is established
among the diverse users of Forth, it
will remain a very interesting language
of minor importance. I recognize that
Forth has grown in popularity, but I
observe much less growth in accom-
plishment as compared to some other
languages, and I believe that this is in
part due to the difficulty of the ex-
change of ideas.
Yours truly,

James H. Ramsay
Box 1015

Mathews, VA 23109

You are, of course, correct that we
must be vitally concerned with com-
munication. And while we cannot dic-
tate which Forth dialect one uses (nor

do we wish to), Forth Dimensions can
indeed contribute to the legibility of
nonstandard code. For example, par-
ticipants at FORML were interrogated
in detail about coding conventions
which, when used, will greatly enhance
the readability of anyone’s Forth. We
believe that where function is ade-
quately apparent, most problems with
legibility will disappear. These and
other measures not strictly tied to any
specific dialect will be introduced in
these pages as they become available to
us. In the absence of absolute transpor-
tability, we are aiming for 100% com-
prehensibility. With the help of readers
like yoursew, we are learning how best
to accomplish this. Thanks to all who
have written on this subject, and keep
the letters coming! -Ed.

The Minimal Nucleus

Dear Editor:
After you have Forth up and run-

ning, you may wish to experiment with
ways to either speed up the nucleus or
minimize its size. It is particularly easy
to do this if you have a cross compiler

and the source to the Forth nucleus.
Even though saving a few bytes here
and there may not let you write another
thousand lines of code, it is satisfying
(and Forth-like) to know things are as
efficient as possible.

Assuming you don’t remove nucleus
words, there are general techniques to
save code space in the nucleus:

Reuse Forth code for duplicated
definitions. In the current version, R@
and I execute identically, as do O = and
NOT, and cFA and 2-. It is possible to
save code by allowing the second
definition to reuse the first definition’s
code. The technique is:

CODE R@ ’ I HERE CFA ! END-CODE

This makes the length of R@ only seven
bytes instead of seventeen. This tech-
nique will not work if there is a separ-
ate loop stack or if NOT is redefined to
mean the one’s complement.

o> can use part of O<’s code. TRA-
VERSE can be coded in CODE, not only
running more quickly, but taking less
code as well.

(Continued on page 17)

1 proFORTH COMPILER
8080/8085,280 VERSIONS

SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS
INTERACTIVELY TEST HEADERLESS CODE

MULTIPLE, PURGABLE DICTIONARIES
IN-PLACE COMPILATION OF ROMABLE TARGET CODE

FORTH-79 SUPERSET
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $2250

2 MICROPROCESSOR-BASED PRODUCT DESIGN
SOFTWARE ENGINEERING

ELECTRONICS AND PRINTED CIRCUIT DESIGN
PROTOTYPE FABRICATION AND TEST
REAL-TIME ASSEMBLY LANGUAGE/proFORTH
MULTITASKING
DIVERSIFIED STAFF

DESIGN STUDIES - COST ANALYSIS

FORTH Dimensions 4
~~

VolumeV, No 5

Introduction to Data
Acquisition

Michael A . Perry
Berkeley, California

Computers are often used to anal-
yze, display or control physical pro-
cesses. Acquiring data means taking
measurements and turning them into
numbers, which a computer can mani-
pulate. There are three steps in this
process. First, the physical value is
converted into a voltage by a trans-
ducer, then the voltage is turned into a
number by an analog-to-digital con-
verter (ADC), then the number is saved
by the computer.

For an example, take monitoring a
temperature. First the signal, the tem-
perature, is converted into an electrical
signal by a transducer. A transducer is
anything which converts energy into
voltages by a circuit connected to a
thermistor. A thermistor is a resistor
whose value changes sharply with its
temperature. A typical circuit might
produce a signal of ten milli-volts per
degree centigrade, so that zero degrees
would give 0.00 volts and 100 degrees
would give 1.00 volts.

This voltage is then converted to a
number by an ADC. Analog-to-digital
converters produce a number which
represents the input signal as a fraction
of the full scale value. ADCs are avail-
able in different precisions, and many
allow the user to select the full-scale in-
put voltage range. For example, one
fairly typical ADC is the Analog De-
vices 574, which allows full-scale rang-
es of -5 to + 5 , or -10 to + 10 volts
bipolar; or 0 to + 10, or 0 to + 20 volts
unipolar; and converts the input into a
twelve-bit binary number, signed for
bipolar inputs or unsigned for unipo-
lar. Assume we have amplified the tem-
perature signal by ten, so that 100 de-
grees is 10.0 volts, and we set the ADC
to a full-scale input range of 0 to + 10
volts. The twelve-bit output will range

from zero (for zero volts) to 4095 (for
4095/4096 * 10 volts). Converters with
eight- or twelve-bit resolution are com-
monly available now, and sixteen-bit
converters are becoming more avail-
able. High resolution, high accuracy
and high speed are all more expensive.

Finally, the number is read and
saved by the computer. The ADC will
usually be controlled and read by writ-
ing and reading I/O ports or memory
addresses. In the simplest case, all of
the data you intend to collect will fit in
memory, and all the computer need do
is to read the converter at regular inter-
vals and store the numbers at succes-
sive addresses in memory.

So far, this should sound pretty
easy. It is. The first complication that
arises is that it is generally desirable to
take readings at very regular intervals.
The only way to be sure of the interval
is to set a clock to cause an interrupt,
and take the readings in the interrupt
routine. The second is that large
amounts of data will not fit in memo-
ry, and so must be written to the disk.
While writing to the disk, the processor
is busy and cannot process interrupts.
A DMA disk controller is required if
you must respond to interrupts quickly
and you will be writing to the disk.

A system which can respond to ex-
ternal events promptly is called a real-
time system. Actual systems are often
called upon to provide fancy graphic
displays of the data as it is collected,
and even to interpret the data and use it
to control the process being measured.

C64- FORTH/79
New and
Improved

for the
Commodore 64

C64-FORTH/79TM for the Commodore 64-
$99.95

.New and improved FORTH-79
implementation with extensions.

.Extension ackage including lines,
circles, scatng, windowing, mixed
high res-character graphics and
sprite graphics.

.Fully compatible floatin point package
including arithmetic, rektional, logical
and transcendental functions.

.String extensions including LEFT$,
RIGHT$, and MID$.

.Full feature screen editor and
macro assembler.

.Compatible with VIC peripherals
including disks, data set, modern,
printer and cartridge.

.Expanded 167 page manual with
examples and application screens.

.“SAVE TURNKEY” normally allows
application program distribution
without licensing or royalties.

(Commodore 64 is a trademark of Commodore)

TO ORDER

-Disk only.
-Check, money order, bank card,

-Add $4.00 osta e and handling in

-Mass. orders add 5% sales tax
-Foreign orders add 20% shipping

-Dealer inquiries welcome

COD’S add $1.65

USA and f a n a 2

and handling

PERFORMANCE
MICRO

PRODUCTS
770 Dedham Street,
Canton, M A 02021

(617) 828-1209

FORTH Dimensions VolumeV, No 5 5

Timekeeping in Forth

William F. Ragsdale
Hayward, California

I often hear the lament, “While
learning Forth, I’d like to see some
real-life applications. I’m tired of
rewriting editors! ” Well, here’s what
the doctor ordered. In seven screens,
you will see how to:

input text
convert time bases
handle interactive error prompting
maintain a real-time clock
control time-dependent execution
perform string compilation
and lookup
use custom output formatting
These concepts are detailed in the

source screens and text. Be aware that
their brevity may conceal their utility.
As you understand and expand any of
them, your Forth toolkit becomes larg-
er; more ambitious applications are
easier.
What

Recently, I was developing an ap-
plication for data collection and ma-
chine control. One of the data struc-
tures was a weekly schedule of event
times. Each schedule time represented
one minute and was followed by a
fixed-length record.

Since these records were held in time
sequence, I needed a compact represen-
tation that was easy to scan and sort.
One possibility was minutes, hours and
day number held in three fields (words
or bytes). This form needed a multi-
field comparison for sorting.

I then considered other formats,
starting with the smallest unit. Sixty
minutes in an hour; then 60*24 hours
or 1440 minutes in a day; then 1440*7
or 10080 minutes in a week. How con-
venient! A sixteen-bit positive integer
representing the minute of the week -
MOW.

Why
Like most programmers, after select-

ing the concept, 1 searched for justi-
fication of the use of MOW: 1. Com-
pact storage - an integer held in two

bytes, using fifteen of sixteen bits. 2.
Same representation on the stack or in
memory. 3. Easy to sort and insert into
tables. 4. Can be operated upon by
numerical comparison operators > , <
and . 5. Simple conversion operators
to and from ASCII text.
Conventions

Time input and output of this ap-
plication are designed €or the conven-
tions of twenty-four hour timekeeping.
Please see table one.

~

Day English MOW

Sunday 12:00M
12:OlAM‘
12:59AM
1 :00AM
11 59AM
12:OON

Sunday 1 1 :59PM
Monday 12:00M
Saturday 11 59PM

0
1 1

- 59
60

719
720

1439
1440

10079

24-Hr.

2400
0oO1
0059
0100
1159
1200
2359
2400
2359

Some contemporary applications of
keeping time use oo00 hours for mid-
night. If this format is desired, you
may remove the flag generation and
subsequent adjustment in MlHlD and
>MOW. You might also wish to extend

the DAY-NAMES table to include another
day name of HOL for holidays. In this
case, MOW would run from 0 thru
11519.

Commentary

are grouped as follows:
The Forth words of the application

Conversion, scaling 42
Text output 43
Time-keeping primitives 44
High-level timekeeping 45
Text primitives 46
Input text high level 47
Sample use 48

Block 42 presents the conversion word
WH/D which breaks a MOW value into
minutes, hours and days. The hour is
adjusted for o MOW being 2400 hours.
>MOW is the complementary word
which returns the MOW integer.

The output operators are next most
important as you will need them for
testing. Day numbers are converted
f r o m the text in DAY-NAMES.
<#HHMM#> uses the usual Forth nu-
merical output formatting primitives to
convert hours and minute values to
ASCII text. .DHM displays the day and
time. Could you suggest an appropri-
ate English word name?

Volume V, No. 5 FORTH Dimensions 6

If you aren't actually keeping time
with this application, blocks 44 and 45
may be ignored. Block 44 assumes an
interrupt and machine code which will
increment JIFFY at a 60 Hz rate. Your
clock interface will probably differ.
TICK and TOCK continue the time-keep-
ing process over seconds and minutes.
The style here is typical Forth. The in-
terrupt routine should be short. (How
about JIFFY INC, m,?) Limits and car-
ries should be at high level, as with

I've broken out the words EACH-
SECOND and EACKMINUTE so you may
include your code for specific data col-
lection or control actions. These ac-
tions would generally be conditional on
MOW and a table of specific times.

RUN, TICK and TOCK.

shrdw 1M

lhr variables JIFFY, SEcooS. M. md mY a l l w tk
rrstem t o r t t h the 1 1 ~ ~ 1 1 o f tie. lhr m n t m t r o f
of M are m i t t s of the week, I n the ianw 0..10079.

Mrt IS t w l r a l hW2 u r n b l r COL f o r t h t i n t r r r v r t rou tme
I * x h kr a u d nrt a t ~~~ d l t h l a t c r r u r t r
M t l l 5 a second 1.01M SIC.). Wse i n h r r u r t r UI counted
i n to JIFFY a t the i n t r r r u r t I e v t l . dirh 15 l i t e r r x u l n e d by
tk hlth I c w l code in TICK. This 11 t r n c r l Forth t r chn i ru t
t o k w tk i n t r r r u r t codc short and "on-rondrtional. u t h
t t i t l n l md rinte I imt i d m I n h i i h level.

lllx IS ca111t6 mrr o f t tn than M C ~ a second and I m w a
trw f l a i a t t h t v. second. mX IS ca l l ed n c h second m d
INV- a trw f l a t a t tk v. m u t e .

ShldW Id

You mar i nse r t row ce& into M t routines &Wl-§CW
and W I Y I I E . Each m i l l h t m c u t r d a t tk u m o m i a t e
t i r b r Ry.

Ry is tk W o t o t r n for tha outer control low d i r h can
run a uocess~ co l l ec t (Ih m mit until I r w c i f i d t i r .
It a s s ~ s that UI i n t r r r v r t IS l n c r r m t i n l JIFFY a t a M h5
rate. Ry k w r w n i TIK t o atd for seconds char& md
mY t o m t c h for minutrr chanstr. I f m u k re r time over tb
w i r d of YWS. t k n Ry w s t Ltrrmm lew YNPI md maintain
mY and WYI c r r rec t l r . lk modif icat ion w u l d %+ dent a t tk
m i n t c a n t e d as '(I"'.

n I w zero 'V.
If Ry 15 MVIP t o stop. rus t re~lace ?KM wi th the

*do. I&

'ILERI IS slmlw t o the Forth 83 reserved word DlERI
rhlrh a r t t r t s text frm the mntm t m i n a l . I n t h i s
case. W m l i h c s so i f inrut 11 alrradr cmm frm the
trnlrul. If inru t is hla taken frm the d i r k I b l k no" ZCPOI
t k n text continuts f m the disk.

=TEXT doe5 a n c l e l e t t e r b r l e t t e r c w a ~ i i o n m r the
I t n i t h of the second s t m t . It INWS a trw (111 on a rood
I l tCh.

N.WlEXT IS used tr scan the table of (Ir IYIS.

l n w t m r a w t r r s are the i n r u t t ex t ddr. tk tab le of n r l x b l e
cho~rrr, and the &tr o f e n t r l r s that YI be s c a m 4 II the
table. N.TH-TEI1 ~ c a n i fot t k table o f chmer and r r t u rns
the r o i l t i o n n k r I" the table i f found o? e l s t -1 l f a l se l .
L t r that N.TH-lEXT and =TEXT ape wi t@ *mmI I" "it.

Yudw 1 b l

CfT-IIE v r o u t i the o n r a t o r fop t k t i w o f (Ir i n the
21 hour time 5 r 5 t a . l n w t is (rm checked for decimal
d i l i t r and a r a n l of MoI thru ?Iw. lk ho WILE clausts
live w e c i f i c s ~ 5 t e s t i o n fop co r r r c t r n w t form.

m-MY w w t s the w e n t o r for the Lr NI. I n ru t u s t
be a three I e t t t r a h b r t v i a t m . In case of e m r . the w t n t o r
IS Y i v m m @ a r k of correct Inrut.

SEW-TIE Comblnrr El-lllf and CfT-ORY t o I n l t l a l m
the n r i a b l e I(y h n u t e of the r t k l . M t h t r rmt the
RH routine w i t be o w r a t i n i t o tar the t i w current.

GET-TIME and GET-DAY on block 47
give the operator a simple prompt. If
he fails to respond with the appropriate
input, an additional prompt is given to
clarify the expected format. The usual
action occurs between BEGIN through
to WHILE. The error prompt occurs

Block 46 gives text input and com-
parison, so we may look up the user's
input in DAY-NAMES. After completing
this application, I wanted to compile
times from disk (block 48). I found a
design problem, as the user cannot
respond to error re-prompting. Thus
PBLK was inserted to alert the operator.
If the input stream is being taken from
the disk (BLK contains a non-zero val-

(Continued)

from WHILE to REPEAT.

BIk U

0 (T i w k e i p l n l W L r n I F R I
I CRERE JlW 0 (holds i n c m n t s o f M Hz t l l I
2 Wi€AlE SEUXDS 0 , (a c c w l a t e s second, t i l l om 81nute)
3mTEw 0 . (holds m u t e o f the m k i
4mrEmY 0 . I (I" of tk Y N r)
5 65280 tmsrrw ammT I iaterrrurt flu XI m o m I
b
7 issmER
8 (the i a t e r r u r t vector for thr M Ih I n t e r r u r t m i n t s k r e
9 am- m. 01 I w. 5 NT IF. JIFFY IW. TIM. mi.

10
I1 : TleK
12 JIFFY C59)M I F -60 JIFFY t' 1 SECMDst' TIM i
I?

I

(dc tec t t r M ucond u t h trw flu 1

9
10
I!
I2
13
I4
15

0
1
2
3
1
5
b
7
8
9

10
I1
12
13
I 4
IS

0
1
2
3
I
5
b
7

FOR TRS-80 MODELS 1,3 & 4
IBM PC, XT, AND COMPAQ

The MMSFORTH
System.

Compare.
The speed, compactness and
extensibility of the
MMSFORTH total software
environment, optimized for
the popular IBM PC and
TRS-80 Models 1, 3 and 4.
An integrated system of
sophisticated application
programs: word processing,
database management,
communications, general
ledger and more, all with
powerful capabilities, sur-
prising speed and ease of use.
With source code, for custom
modifications by you or MMS.
The famous MMS support,
including detailed manuals
and examples, telephone tips,
additional programs and
inexpensive program updates,
User Groups worldwide, the
MMSFORTH Newsletter,
Forth-related books, work-
shops and professional
consulting.

A World of
Difference!

Personal licensing for TRS-80:
$129.95 for MMSFORTH, or
"3+4TH" User System with

HANDLER and FORTHCOM
for $399.95.
Personal licensing for IBM
PC: $249.95 for MMSFORTH,
or enhanced "3+4TH" User
System with FORTHWRITE,
DATAHANDLER-PLUS and
FORTHCOM for $549.95.
Corporate Site License Exten-
sions from $1,000.

FORTHWRITE, DATA-

If you recognize the difference
and want to profit from it, ask us
or your dealer about the world
of MMSFORTH.

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01760

(617) 653-6136

VolumeV, No. 5 7 FORTH Dimensions

ue), then execution aborts with an er-
ror message.

Block 48 illustrates how you may
build a table of MOW event times.
EVENTS is given the number of times to
request input, in this case ten. Then the
EVENT-TABLE is filled in. The command
10 EVENTS should work either from
disk or the terminal. In either case ten
prompts are displayed. You might
want to make conditional all prompt-
ing in GET-TIME and GET-DAY. If data or
commands are to be included in EVENT-
TABLE then make appropriate additions
just before LOOP in EVENTS.

Standards Consideration

This application is written in Forth-83.

This dialect was chosen because its
control of the input stream is most
precisely specified, and this Standard
should dominate over the next several
years.

The only non-standard words are
THRU (which compiles a sequence of
blocks) and ?KEY (which returns a ter-
minal key value or zero, lacking an
operator input), If running on an ear-
lier dialect of Forth, the definitions of
?QUERY, ?BLK and the use Of WORD,
TIB, LEAVE and CREATE will have to be
altered.

A possible problem exists in TICK in
the phrase -60 JIFFY +!. If the interrupt
incrementing JIFFY occurs just before
the +! writes into JIFFY, the increment

Shador 168 E l k 48

E m 5 builds a liven number of tine events into a table.
I n this r n w l e , the MNT-TRBE holds ten t i e s .

In an application. YOU miJht f o l l a each went t r r rith
scvrral brtes holdinr data or c o v n d r to be executed at the

0 (T i r i n data tables
I : N M T S

3
4 CREATE NWT-TRBE

b 126W 24WlWi 15OOM

83 dec 17 YR)
(cmrile n t i r s into memory. addr\n - I

2 o m ET-TII): m-w m , LOOP i

SHClflC t i r . 5 1 0 m s 01oOw 14009N m m

DISldY-EK)(TS Just rlars back the event t i r s of this 7 W 4 5 M 05.45 MI 1400 rnl
e x u l e for testinl. 8 2300 SAT

9
10 : DISRIIY-NEHTS

I2
13

(output the ten t i e s , for testinl)

1 1 MNT-TRBE~OOW CR w c . M z+ LOOP DROP:

may be lost. You should consider
interrupt protecting the machine code
for +!.

Conclusion

We have seen in this application how
Forth may be used to build a set of
application-specific words for time-
keeping. Their utility is obvious, yet
complexity is low. Presently, over 500
stores have operating schedules con-
trolled by MOW with JlFFYs TlCKing and
TOCKing.
About the Author

Bill Ragsdale is the President of the
Forth Interest Group. Bill has previ-
ously authored articles on the Forth
Standards development, disk storage
allocation, higher level defining words
and the ONLY concept for vocabularies,
as well as the book “fig-FORTH Mod-
el and Installation Guide”. Member-
ships include the Forth Standards
Team (Chairman 1980-1982), IEEE
and ACM. Bill is the President of an
electronics manufacturer and a gradu-
ate of the University of California at
Berkeley in Electrical Engineering.

FORTH: FOR 2=8P, 8086,68000, and IBM@ PC
Complies with the New 83-Standard

GRAPHICS GAMES COMMUNICATIONS. ROBOTICS
DATA ACQUISITION 0 PROCESS CONTROL

0 FORTH programs are instantly FORTH Application Development Systems
portable across the four most popular

FORTH 1s Interactive and conver-

include lnterpreterlcompller with virtual memory
management and multi tasking assembler full
screen editor decompiler utilities and 130 +
Daqe manual Standard random access files

microprocessors

sational, but 20 times faster than used for screen storage, extensions provided for
BASIC access to ail operating system functions - - _

FORTH programs are highly strut- 2.80 FORTH for CPlMO2 2 or MPlM II $50 00
8080 FORTH for CP/M 2 2 or MP/M I1 $50 00

tured, modular, easy to maintain 8086 FORTH for CPlM 86 or MS DOS $100 00
FORTH affords direct Control over PC~FORTH for p c DOS CP/M 86 or CCPM

all interrupts, memory locations, and
ilo ports

FORTH allowS full to DOS

$100 00 68000 FORTH for CPlM 68K $250 00

FORTH + Systems are 32 bit implementatlons
that allow creation of programs as large as 1
megabyte The entire memory address space of
the 68000 or 8086l88 is supported directly

$250 00
be compiled Into turnkey ‘OM files 8086 FORTH +for CPiM 86 or MS DOS $250 00
and distributed with no IlCenSe fee 68000FORTH + forCP/M 68K $400 00

Cross Compilers are Extension Packages available include soft
available for ROM’ed or disk based ap- ware floating point cross compilers INTEL
plications on most microprocessors 8087 support AMD 951 1 support advanced COI

Corp C P ~ M Digital Research Inc PCiForth + and debugger telecommunications cross reference
PCiGEN Laboratory Microsystems Inc utility B tree file manager Write for brochure

files and functions
0 FORTH application programs can

pc FORTH +

Trademarks IEM International Business Mach nes Or graphics character symboiic

Laboratory Microsystems hcorporated
4747 Beethoven Street 10s Angeles, CA 90066 [m]
Phone credit card orders to (213) 306-7412

FORTH Dimensions 8 Volume V, No. 5

~~ -

Macro Expansion in Forth

: NEW-FUNCTION

A DO' F3 LOOP' C ;

Figure One

: NEW-FUNCTION

A 2DUP - O > IF DO B LOOP ELSE 2DROP ENDIF C ;

Figure Two

: DO' ZDUP - O > IF DO ;

: LOOP' LOOP ELSE 2DROP ENDIF ;

Figure Three

: DO' 2DUP - O >

[COMPILE] IF [COMPILE] DO ;

Figure Four

: TST DO' I . LOOP' ;

Figure Five

: DO' ZDUP - 0)

[COMPILE] IF [COMPILF] DO ; IMMEDIATE

Figure Six

: DO' COMPILE 2DUP COMPILE - COMPILE O >

[COMPILE] IF [COMPILF] DO ; IMMEDIATE

Figure Seven

: A-MACRO COMPILE NON-IMMEDIATE-WORD

[COMPILE] IMMEDIATE-WORD ; IMMEDIATE

Figure Eight

: USF-A-MACPO WORD1 WORD2 A-MACRO WORD3 WORD4 ;

Figure Nine

Jeffrey Soreff
Santa Clara, California

By the proper use of COMPILE,
[COMPILE] and IMMEDIATE, one can
write macros in 'Forth that insert im-
mediate and normal words into colon
definitions. A string of non-immediate
Forth words is easily put in a macro,
since this is just the ordinary behavior
of Forth function definitions. Suppose,
however, that we wish to put im-
mediate words, such as DO or IF, into a
macro. This case occurred in an at-
tempt to code altered versions of DO
and LOOP. A version of DO and LOOP
was desired which would not execute
the loop body even once if the lower in-
dex was greater than or equal to the up-
per index. This would give cleaner
behavior for some situations, since the
number of times that the loop would
execute would be the value of the upper
index minus the value of the lower in-
dex for all cases where this is possible
(nonnegative integers), instead of
having an exception for zero. This can
be done if one could expand the code in
figure one into that shown in figure
two.

The initial IF test jumps around the
loop if the index difference is less than
or equal to zero. The problem with
simply coding this as in figure three is
that the compiler will complain about
the unterminated DO and IF. The essen-
tial problem is that IF, DO, LOOP and
ENDIF are all immediate words, with
effects at compile time. We need to DE-
FER their execution from the compile
time of DO' and LOOP' to the compile
time of the word that DO' and LOOP' are
to be used within. This can be done by
using [COMPILE] to delay execution. If,
however, we simply wrote DO' as in
figure four and used it as in figure five,
then the compile time actions of IF and
DO would occur at the run time of TST,
rather than during its compilation, as
we want. This can be avoided by writ-
ing DO' as an immediate function,
shown in figure six.

Volume V. No. 5 9 FORTH Dimensions

I
The [COMPILE] words defer the ac-

tions of the immediate words IF and DO
until the run time of DO‘, and the IM-
MEDIATE makes that run time occur at
the compile time of TST, as desired. A
new problem is introduced by this, be-
cause the non-immediate words DO’,
SDUP, - and O > will also act at the
compile time of TST. This can be solved
by changing the action invoked by the
non-immediate words from one of ex-
ecution to one of inserting code point-
ers. This is done by inserting COMPILE
before all non-immediate words,
resulting in the code in figure seven.

In general, one can write a macro
containing both immediate and non-
immediate words by using the code in
figure eight in the manner shown in
figure nine.

To recapitulate, the immediate
words are all preceded by [COMPILE],
which delays their execution from the
compile time of A-MACRO to the run
time of A-MACRO. Since A-MACRO is an
immediate word, its run time is the
compile time of USE-A-MACRO, which is
exactly when the immediate words
would have executed if they had been
typed directly into the definition of
USE-A-MACRO. The non-immdiate
words are all preceded by COMPILE,
which makes A-MACRO insert the
address of IMMEDIATE.WORD into the

is run, i.e. at USE-A-MACRO’S compile
time. This is the same action that the
colon compiler would have taken if the
non-immediate words had been typed
into USE-A-MACRO’S definition directly.

code for USE-A-MACRO when A-MACRO

Editor’s note: We like Jeffrey’s code
very much. Readers who use his ideas
are encouraged to send us examples of
your macros, especially of their less ob-
vious uses.

Ver. 2 For your APPLE II/II+
The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

OURS OTHERS FEATURES

79 Standard system gives source portability YES -
Professionally writ ten tutorial & user manual 200 PG -
Screen editor wi th userdefinable controls YES -
Macro assembler wi th local labels YES -
Virtual memory YES -
Both 13 & 16 sector format YES -
Multiple disk drives YES -
Double number Standard & String extensions YES -
Upper/lower case keyboard input YES -
LO Res graphics YES -
80 column display capability YES -
Z 80 CP/M Ver 2 x & Northstar also available YES -
Affordable1 $9995 -
Low cost enhancement option

Hi Res turt le graphics YES -
Floating point mathematics YES -
Powerful package wi th own manual
50 functions in a l l
AM951 1 compatible

FORTH-79 V 2 (requires 48K & 1 disk drive) $ 9 9 9 5

$ 4 9 9 5
$1 39 9 5

ENHANCEMENT PACKAGE FOR V 2

COMB I N A T ION PACKAGE
(CA res add 6% tax COD accepted)

Floating point & H i Res turtle graphics

Version 2 For 2-80, CP/M (1.4 & 2x1,
& Northstar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERS
79 Standard system gives source portabi l i ty YES -
Professionally writ ten tutorial & user manual 200 PG -
Screen editor wi th userdefinable controls YES -
Macro assembler wi th local labels YES -
Virtual memory YES -
BDOS BlOS & cclnsole control functions (CP/M) YES -
FORTH screen files use standard resident

file format YES -
Double number Standard & String extensions YES -
Upper/lower case keyboard input YES -
APPLE I l/l I+ version also available YES -
Low cost enhancement options,

Tutorial reference manual
50 functions (AM951 1 compatible format)

Affordable1 $9995 -
FI oat i ng point mat hemat ics YES -

Hi Res turt le graphics (Nostar Adv only) YES -
ENHANCEMENT PACKAGE FOR V 2

COMBINATION PACKAGE (Base & Floating point)

FORTH 79 V 2 (requires CP/M Ver 2 x) $99 9 5

Floating point $ 4 9 9 5
$139 9 5

(advantage users add $49 9 5 for H i Res)
(CA res add 6% tax, COD & dealer inauiries welcome)

MicroMotion
12077 Wilshire Blvd. # 506
L.A., CA 90025 (213) 821-4340
Soecifv APPLE, CP/M or Northstar

MicroMotion jl ’ II
12077 Wilshire B l d # 506
L A CA 90025 (21 31 821 -4340

Dealer inquiries invited
Specify APPLE CP/M or Northstar
Dealer inquiries invited

FORTH Dimensions 10 Volume V, No 5

FixedlPoint logarithms

Nathaniel Grossman
Los Angeles, California

This paper shows how to compute
logarithms using (fixed point) Forth.
The algorithm is implemented for nine-
decimal-place logarithms, but the algo-
rithm and the implementation easily
can be modified to yield logarithms to
any number of decimal places and to
any logarithmic base.

Logarithms were invented by John
Napier, Baron Merchiston, and Napi-
er’s logarithmic tables were first pub-
lished in 1614. Napier conceived of
logarithms as a tool for simplifying the
laborious computations in astronomy.
(Earlier, he had invented “Napier’s
bones,” cleverly marked rods for car-
rying out multiplication without mem-
orizing multiplication tables.) Napier’s
tables, because of their obvious utility,
were eagerly adopted, one consequence
being general acceptance of the deci-
mal point, a notation first used in
modern form in the tables.

(Even long after Napier’s time, tri-
gonometric tables contained only func-
tion values scaled to integers. Sines and
cosines were considered as lengths of
sides in a right triangle whose hypo-
tenuse was the scaling factor, e.g.
10,0o0,OOO for “seven-place” tables.
Our modern conception of trigonome-
tric functions as ratios of sides is due to
Euler, who introduced such notions in
1748.)

A logarithm is a function that as-
signs to every positive number x a se-
cond number log x in such a way that

log(xy) = log x + log y

log(x/y) = log x - log y

and

Thus, logarithms convert multiplica-
tion into addition and division into
subtraction. They also convert the
taking of powers into multiplication
and the taking of roots into division,
and further application of logarithms
converts these into addition and sub-

traction, respectively. In the days be-
fore mechanical and electronic cal-
culators, logarithms afforded the only
way to bypass the tedium of calcula-
tion and, in some cases, the only way
to perform certain calculations.

With the invention of the geared
mechanical calculator (Robert Hooke’s
diary contains in its entry for January
22, 1672, the remark “Libnitius [Leib-
niz] shewd Arithmetical engine [to the
Royal Society]”) and, later, the elec-
tronic computer, the computational
significance of logarithms withered
away. Nevertheless, logarithmic ex-
pressions are an indispensable ingred-
ient of many scientific formulas. Even
those who make little direct use of such
formulas may find occasion to plot
data in semi-log or log-log displays.

As a novice who was led to Forth by
reading how it was harnessed to con-
trol a gigantic model railroad, I was
initially stunned and demoralized when
I found out that Forth implementa-
tions need not contain floating point
and higher mathematical function
routines. How, I wondered, could one
carry out mathematical computations
in Forth?

Luckily, tonics were at hand. Forth
Dimensions offered examples of math-
ematical functions constructed within
Forth. Attending my first meeting of
the Los Angeles FIG Chapter, I was
gently and patiently reminded that
Forth is extensible, so that it can be tai-
lored to each user’s needs. I knew that
I could not abandon this elegant lan-
guage, and I decided to push on, using
Forth as it was created to be used.

Because square roots and trigonome-
tric functions had already been dealt
with in Forth Dimensions (IV/l), I set-
tled on logarithms as my goal. In the
Spring of 1983, I had taught a course
on the Historical Development of the
Calculus in which I devoted several
hours of lectures to methods used for
construction of the earliest logarithm
tables by Napier, Briggs and Burgi. I
remembered that those tables were
constructed by very simple arithmetic

steps repeated many times, and that the
computations were, in effect, in fixed-
point arithmetic. After considering the
various ways in which logarithms and
logarithmic tables could be and have
been constructed, I decided to return to
the fountainhead.

Construction of Algorithms
There are many ways to compute

logarithms. As I have settled on one of
the oldest methods, I will begin by dis-
cussing some of the “newer” methods
and explaining why I discarded them.

1. The more modern tables were
computed using infinite series, specifi-
cally Taylor series that can be construc-
ted by means of the Calculus. In gener-
al, not every entry was obtained direct-
ly from a series of computations. In-
stead, “enough” values were calcu-
lated directly by series and the gaps
were filled in by interpolation or dif-
fe renc ing schemes , m u c h a s
“ordinary” surveyors densify a
network starting from benchmarks left
by the Geodetic Survey.

The key series is

In(1 + x) = x - x2/2 + x3/3 -
x4/4 + . . .

valid if 1x1 < 1. It is necessary to trun-
cate the series into a polynomial at a
stopping place suitable for the preci-
sion sought. The resulting polynomial
is then inefficient because there will be
polynomials of lower degree that will
give the desired precision throughout
the specified x-domain. For example,
there is a polynomial of degree eight
that gives In(1 + x) for 0 5 x I 1
with, at most, a 3 error1. (Other
polynomials can be found in [2].) The
advantage of the special approximating
polynomials is that they approximate
the function to uniform precision over
the whole range of validity. The disad-
vantage is that nastier coefficients must
be stored, so they do not have the con-
venient recursive coefficient calcula-
tion such as Bumgarner exploited in his

FORTH Dimensions Volume V. No. 5 11

computation of sines (Forth Dimen-
sions IV/l). Furthermore, what if the
requirements are changed to require
logarithms with higher precision? The
chosen polynomial now falls short and
there may not be another, more suit-
able polynomial lying near at hand.
This method must be discarded be-
cause it is not extensible to fit needs
that may arise (although it might be
fine, even best, for a specific
application).

2. The possibility of simply storing a
table of logarithms must be consid-
ered. This method might be suitable
for a specific application. In deciding
how many entries to store, a balance
must be struck among the precision
required, the types of interpolation, if
any, acceptable, the density of argu-
ments and the lookup time. Because
Forth is intended for smaller compu-
ters with limited storage, this method
in general appears counter to Forth
philosophy. Besides, the typing of long
tables is prone to errors and simply
dull.

3. There is a wonderfully swift,
second-order, iterative algorithm for
computing logarithms. Start with

y1 = (x2 - x-2)/4

y2 = (x - x-’)/2

and

then compute y2,y3,. . . by the formula

The limiting value of yk as k grows
larger is In x, the natural logarithm of
x. This formula would seem most suit-
able for systems with square root and
floating point. Requiring the extra load
just to calculate logarithms is counter
to Forth philosophy.

4. The CORDIC algorithm is imple-
mented in many pocket calculators and
in other computers for obtaining math-
ematical functions. A description of an
algorithm for part of the CORDIC
output has been printed in Forth Di-
mensions (IV/l, V/3). Again, this
method entails extra steps not required

if one seeks only to calculate
logarithms.

5 . Other methods are available,
some of which are described in [2]. In
particular, there is a very simple algo-
rithm2 that produces the binary digits
of x = 10g2y for any y with 1 I y 5 2.
Those digits appear one-by-one as flags
after an absurdly simple calculation in-
volving only squaring followed by a
comparison. Unfortunately, the squar-
ing operation produces a sequence of
numbers whose values again lie be-
tween 1 and 2, but whose digits after
the point grow exponentially with the
number of squarings. The algorithm is
hardly suitable for implementing on
small computers where Forth is most at
home.

Selection of the Logarithm
Before beginning to describe the

method implemented, that of factor-
logarithms, I must settle one important
point: which logarithm to compute?
The fundamental properties of loga-
rithms pin down the logarithm func-
tion only up to a scale factor. That fac-
tor can be fixed by naming the number
(the logarithmic base) which has loga-
rithm equal to 1. Thus, a table of loga-
rithms to one logarithmic base can be
converted to a table of logarithms to a
new base by multiplying the originals
by a suitable constant.

Certain logarithmic bases lead to
logarithmic functions with special pro-
perties that make them more useful for
one or another purpose. The natural
logarithm, whose functional designa-
tion frequently is “ln,” is called natur-
al because its use simplifies certain
formulas in the Calculus. The denary
(or common or base 10) logarithm has
a characteristic called the “characteris-
tic” that makes it very convenient for
ordinary arithmetic calculations. (The
natural logarithm is not convenient for
arithmetic.) I use neither of these,
choosing instead the binary (or buse 2)
logarithms. Binary logarithms occur
naturally in formulas arising in Infor-
mation Theory. The binary logarithm
also has a “characteristic” that makes
it convenient for binary arithmetic
such as many computers use internally.
The binary logarithmic function is

denoted by log2, and it is fixed by
requiring that 10g22 = 1.

Note that the logarithm chosen for
use in semi-log or log-log plotting is
.lot crucial, because it is to be expected
that the plot will be scaled to paper
size. Similarly, the use of natural loga-
rithms in scientific formulas, while
making sense during derivation of the
formula, is of no advantage and might
even be a disadvantage when the em-
phasis switches f rom
“derivation-time” to “computation-
time.” Many simple scientific formulas
involve half-lives, doubling times,
fifty-percent extinction times, distance
travelled for attenuation to half-
strength and the like. For such
calculations, base 2 logarithms and
exponentials are most convenient.

Having, I hope, justified computing
binary logarithms, I will close this sec-
tion by describing the factors for con-
verting from one logarithmic base to
another. The notation log, is standard
for indicating logarithms to the base a.
If b is a second base, then the loga-
rithms of x to the bases a and b are re-
lated by the formulas

log# = logax logba =

log,x/log,b

The natural logarithm In is the same
as log,, where e is a certain number
about 2.7. Thus

l n x = I n 2 m logzx

Rather than multiplying by the value
of In 2 to the number of places to
which log2 is kept, which would require
multiple-precision arithmetic, In 2 can
be written as the quotient of two single
factors. One pair that falls just short
for nine-place logarithms can be found
in Forth Dimensions (IV/4):

In 2/16.384 = 846/19997

with relative error -12 m Multi-
plication by In 2 can be effected as

846 lo00 Urn/ 16384 19997 Urn/

where the word urn/ is defined in the
first of the accompanying screens.

FORTH Dimensions 12 VolurneV, No. 5

The Algorithm
If the number x is restricted by 0 I x

< 1, the natural logarithm In then
satisfies

0 I ln(1 + x) < x

The binary logarithm then satisfies

0 I 10g2(l + x) < x/ln 2

Hence, forcing x toward 0 also for-
ces 10g2(l + x) toward 0.

The goal is log2N, where N is a posi-
tive number (in the present case, a posi-
tive integer). Write N = 2CN, where c is
a non-negative integer (called the bi-
nary characteristic of N) and 1 I N, <
2. The fundamental property of log2
yields the equation

l0g2N = c + 10g2N1

The number log2N1, for which 0 I
log2N1 < 1, is called the mantissa of
N,. (Strictly speaking, it is the binary
mantissa.)

1 + M,, where0 I M,
< 1. If M, is close enough to 0, then
log2N1 is also small, so log2N equals
the integer c plus a small non-negative
correction. Unfortunately, MI cannot
be counted upon to be close to 0: take
N = 255, whence c = 7 and M, is close
to 1. Therefore, it is necessary to take
steps to force M, - or rather a proxy
for M, - toward 0.

By a sequence of binary right shifts
followed by subtractions, the non-zero
binary digits of N, to the right of the
point can be removed one by one. Fig-
ure one provides an example. The hori-
zontal lines indicate subtractions, and
the lines enclosed in parentheses repre-
sent subtractions that were cancelled
because they left remainders less than
1.

PI1 I 1 . 1 1 0 1

Write N,

(1 - 2-1) (1 1 1 0 1)

1 - 2-2 11 1 0 1

1 - 2-2 1 0 1 0 1 11

1 . 0 1 0 1 1 1

1 . 0 0 0 0 0 1 0 1

(1 - 2-3) (1 0 0 0 0 0 1 0 1)

(1 - 2-4) (1 0 0 0 0 0 1 0 1)

(1 - T 5) (1 0 0 0 0 0 1 0 1)

1 - 2 4 1 0 0 0 0 0 1 0 1

1 . 0 0 0 0 0 0 0 0 1 1 1 0 1 1

Thus, in a mix of binary and de-
cimal,

(1.1101)(1 - 2-2)2(1 - 2-6) =
1.000000001 1101 1

By shifting six steps to the right, the
first six places after the point have been
swept clear to zeros. Observe that more
than one shift in a given position may
be required. In general, there will be a
product decomposition

N,(1 - 2;1)a1(l - 2-2)a2 . .
(1 - 2-k) = 1 + Mk+l

where

0 5 Mk+l < 2 - k

and each a-number is a non-negative
integer.

Suppose the goal is to compute
log,N to n binary places. Recall that

0 2 log2 1 + Mk+l <
< M k + l / l n 2

Because

l / l n 2 < 1.5 < 2

then

(lOg2(1 + Mk+1) < 2-k+’)

To be sure that the value of

lOg2(1 + Mk+ 1)

can have no effect on the first n digits
after the point, it will suffice to choose
k so large that

2-k+l < 2-n

that is, k > n + 1

That done, we write

li = 10g2[l/(l - 2-91

for i = 1,2,. . . ,k. Then the fundamen-
tal property of logarithms yields

log2Nl = al l l + a212 +
. . . + aklk

valid to n binary places. Because each
a-coefficient is an integer, only
addition will be required to generate
10g2N1 by this formula.

The values l,, . . .,I, must be gener-
ated and stored in memory in advance.
These are the (binary) factor-loga-
rithms that give the method its name.

Multiuser/Multitasking
for 8080,280, 8086

Industrial @ \
Strength

TaskFORTH,.
The First

Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:
b Unlimited number of tasks
b Multiple thread dictionary,

superfast compilation

b Novice Programmer
Protection PackageTM

* Diagnostic tools, quick and
simple debugging

b Starting FORTH, FORTH-79,
FORTH-83 compatible

* Screen and serial editor,
easy program generation

b Hierarchical file system with
data base management

* Starter package $250 Full package $395 Single
user and commercial licenses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 inch disk
under CPlM 2.2 or greater

also
various Sh” formats

and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED
~~

DEALER I

Shaw Laboratories, Ltd.
24301 Southland Drive, #216

Hayward, California 94545
(415) 276-5953

FORTH Dimensions Volume V, No. 5 13

Each 1-value carries as many binary
places as the mantissa must have. The
number of places (n) then determines
the number (k) of 1-values to be stored.

Note that the shift subtractions
cause non-zero digits to propagate
toward the right. If the arithmetic reg-
isters are of fixed width, full accuracy
is maintained until the digits run out
the low end of the registers, after which
false borrowings may propogate erron-
eous digits to the left.

I have implemented the factor-algo-
rithm in Forth having “normal” speci-
fications. To get nine decimal places -
with an error of a few units in the ninth
place because of roundoff in the stored
factor-logarithms and truncations in
the shifts - it suffices to carry thirty
binary digits after the point and to
store the first fifteen binary factor-
logarithms.

Description of the Screens
I have implemented the algorithm on

a VIC-20 computer using the HES
VIC-FORTH dialect, a subset of FIG-
Forth. (VIC-FORTH contains the 6502
UI bug described in Forth Dimensions
V/l, but the divisions called in the
screens are in the safe region.) The ear-
ly screens supply some of the standard
arithmetic words and double-number
extensions not in VIC-FORTH. Here
are details of the screens.

Screen #1: Binary shifts are natural
in a binary computer and they should
be coded at low level for speed. I carry
them at high level, which leads to con-
siderable slowing of execution. In or-
der not to lose digits, it is necessary to
use triple-numbers. U r n / is the
arithmetic operation required and
DRTSHIFT multiplies a ud by 1, yielding
an intermediate ut, then divides by 2 to
give the right-shifted ud.

Screen #2: The factor-logarithms are
double-numbers and they are stored in
a double table, a new data type created
by the defining word DTABLE.

Screen #3: Here is the actual double
table. The initial entry (1 .-) is
never called: if I 5 x < 2, then

(1 - 2-9mx < 1

I put it in so as not to upset DTABLE,
which is generic.

Screen #4: The word CHAR-
ACTERISTIC shifts a double-number
argument to the right, keeping count of

0 (SCR W1: 9-PLACE B I N A R Y LOGARITHMS OF 9-DIGIT INTEGERS)

2 : T* (U D , U N --- UT)
1 (N A T H A N I E L GROSSMAN, 9 /19 /83 --- HES VIC-FORTH)

3 DUP R O T U * > R > R (MULT UPPER PRECISION PART)
4 U * (MULT LOWER PRECISION PART)
5 0 R > R > D + ; (A D D BOTH PARTS 1
6 : T / (U T , U N --- U D)
7 > R R U / SWAP (D I V UPPER PRECISION PART)
8 ROT 0 R U / SWAP (D I V LOWER PRECISION P A R T)
9 ROT R > U / SWAP DROP (D I V R E N A I N D E R
0 0 2SWAP SWAP D+ ; (A D D PARTS

2 > R T* R > T / ;
1 : U * / (U D , U N , U N --- U D)

3 : DRTSHIFT (U D --- LID; DBL R I G H T SHIFT)
4 1 2 u * / ;
5 ; s

8 (SCR 112: LOG2 --- SINARY LOGARITHMS NG,9/19/83)
1 (U D -> DBLMANTISSA / CHARACTERISTIC 1
2 (0 < U D < 2**30 = 1 ,073 ,741 ,824)

(STORE DBL) ; 3 : D,
4 : D@ D;P’@ SWAP 2 + @ SWAP (FETCH DBL) ;
5 : D0= O R 0 3 (D B L = 0 ?) ;
6 : D T A B L E
7 <BUILDS
8 DOES>
9 SWAP 1 - 4 * + DQ :

18
1 1 - 1 V A R I A B L E C H A R
12 0 V A R I A B L E SHIFT-COUNT
13 i V A R I A B L E SHIFT-DIVISOR
1 4 16384 CONSTANT ?TOO-BIG ; S

B (SCR 63: LOG2 CONT NG,9/19/83)

2 1.000080800 D , .415837499 D, .192645078 D,

4 .011315313 D , .8@5646563 D , .002820519 D ,

6 .000176121 D , .008888058 D , .000044028 D ,
7

1 DTABLE FACTOR-LOG2 (-LOG2[1-2**-MI, M = 1 TO 15)

3 .893ie9404 D , .w58e3690 D , . ~ 2 2 7 2 @ 0 7 7 D ,

5 .00 i409570 D, .000704613 D , . em352263 D ,

8 : D< (FROM “ A L L ABOUT FORTH”)
9 R O T 2DUP =

10 I F R O T ROT DMINUS D+ 0 <
11 ELSE SWAP < SWAP DROP
12 ENDIF SWAP DROP ; ; S
1 3
1 4
15

@ (SCR 14: LOG2 CONT
1 : CHARACTERISTIC (
2 2DUP (
3 -1 C H A R ! (
4 B E G I N (
5 1 C H A R +! (
6 DRTSHIFT
7 2DUP D0=
8 UNTIL
9 2DROP .

10 : LEFT-ALIGN
11 30 C H A R @ -
12 0 DO
13 2DUP D+
14 LOOP ; ; s

N G , 9 /19 /83)

SAVE C O P Y OF U D
I N I T I A L I Z E V A R I A B L E C H A R
SEEK LARGEST POWER OF 2 AT MOST U D
INCREASE FOR C O U N T I N G
DBL R I G H T SHIFT
NEXT POWER TOO LARGE?
YES? T H E N B A I L OUT OF LOOP
CLEAN STACK

HOW M A N Y LEFT SHIFTS?

SHIFTS TO LEFT IN DBL

U D --- UD; STORE C H A R V A L U E 0 TO 30

U D --- UD; SHIFTS LEFT FOR MANTISSA

0 (SCR 115: LOG2 CONT NG,9/19/83)
1 : UPDATE-INDICES (---)
2 1 SHIFT-COUNT +!
3 SHIFT-DIVISOR @ DUP + (DOUBLE THE SHIFT DIVISOR)
4 SHIFT-DIVISOR ! ;
5 : SHIFT-STEP (U D --- U D , FACTOR G E N E R A T O R)
6 2DUP (U D , U D 1
7 SHIFT-DIVISOR @
8 1 SWAP (UD,UD,N,l)
9 u * /

10 DMINUS D+ ; ;S (FRESH COFACTOR)
11
12
13

FORTH Dimensions 14 Volume V, No. 5

0 (S C R 116: L O G 2 CONT N G , 9 / 1 9 / 8 3)
1 : C H E C K - S H I F T (UD --- U D , F)
2 2 D U P 0 ? T O O - B I G D< ; (T O O MUCH S U B T R A C T E D ?)
3 : NEW-COFACTOR (U D , F --- U D , F)
4 I F 2 D R O P 0 (T O O MUCH)
5 E L S E 2 S W A P 2 D R O P 1 (NOT T O O MUCH; DROP I N S U R A N C E)
6 E N D I F ;
7 : F A C T O R 2 (U D --- U D , F ; P R O D U C E O N E F A C T O R OR S K I P)
8 2 D U P
9 S H I F T - S T E P (S H I F T AND S U B T R A C T)

1 0 C H E C K - S H I F T (T O O MUCH S U B T R A C T E D ?)
1 1 NEW-COFACTOR ; (NEXT NUMBER T O F A C T O R)
1 2 ; s
0 (S C R 1 7 : L O G 2 CONT N G , 9 / 1 9 / 8 3)
1 : I N I T ’ I Z E - M A N T 2 (U D 1 , U D Z --- U D 2 , U D l , U D 1)
2 0 S H I F T - C O U N T ! (I N I T I A L I Z E)
3
4
5
5
7
8
9

1 @
1 1
1 2
1 3
1 4
1 5

1 S H I F T - D I V I S O R ! (I N I T I A L I Z E)
0 S - > D (MAKE S L O T T O HOLD M A N T I S S A)
2 S W A P ; (MOVE S L O T D E E P E R I N T O S T A C K)

C H A R A C T E R I S T I C
: M A N T 2 - S E T U P (U D 2 , U D l , U D l --- ! J D 2 , U D 3)

L E F T - A L I G N ;
: D B L I L N (2) (UD --- UD)

13436 10000 U*/ ;

0 ? T O O - B I G DMINUS D+ (I S O L A T E L E F T - O V E R SUMMAND)
: L E F T - O V E R S (UD --- UD)

D B L / L N (2) D+ ; (S C A L E AND ADD)

;s

0 (S C R 118: L O G 2 C O N T N G , 9 / 1 9 / 8 3)
1 : M A N T I S S A 2 (U D --- UD

3 1 5 0 (E N T E R S H I F T - S U B T R A C T L O O P)
2 I N I T ’ I Z E - M A N T 2 M A N T 2 - S E T U P (P R E P A R E F O R M A N T I S S A CALC)

4 DO
5
6 B E G I N F A C T O R 2
7 W H I L E S H I F T - C O U N T 8 (I F T H E R E IS A N A D D E N D)

U P DA T E- I N D I C E S

8 F A C T O R-L O G 2 (B R I N G I T U P)
9 2 S W A P > R > R (A N D)

1 0 D+ R > R> (ADD I T IN)

0 (S C R 6 9 : L O G 2 CONCLUDED N G , 9 / 1 9 / 8 3)
1 : L O G 2 (U D --- U D , N ; 0 < ARGUMENT < 2**30 = 1 , 0 7 3 , 7 4 1 , A 2 4)
2 2 D U P 2 D U P
3 0 S - > D 2 S W A P D< (N O T T O O SMALL?)

5 e ?TOO-BIG D< (NOT TOO LARGE?)
4 R O T ROT

6 AND -
7 I F
8 M A N T I S S A 2
9 CHAR @

(J U S T R I G H T ! S T A C K)

(BELOW DBL M A N T I S S A)
(W I L L H O L D S G L C H A R A C T E R I S T I C)

10 E L S E
1 1 CR CR . I 1 NOT IN L O G 2 ’ S DOMAIN ‘I C R CR
1 2 E N D I F : :S

than that used before gives

+ M16) = MI6 - ‘/ZM21(j +
. . .
and

EM2,,
is always zero to nine decimal places.
But it is not always valid just to replace
ln(1 + M16) by M16. The difficulty
comes from the representation of all
numbers by integers. Thus, 1 .xxx. . . x
is represented as

23O[l + (J/23O)]

Hence,

+
- approximated numerically by

M16!ln 2 - is actually represented by
the integral part of

(~/230)/1n 2
Taking scaling into account, this is

addi t ion of (1 .3436)(J)(10-9) in
decimal. The word LEFT-OVERS carries
out the final adjustment, using the
scaling word DBULN(2).

Screen #8: The word MANTISSA2 ac-
cepts a double-number considered as a
positive integer less than 230 =
1,073,741,824 (including, therefore, all
integers of at most nine digits) and
returns a double number considered as
a point followed by nine decimal digits.
(Leading zeros will be suppressed if the
mantissa is D.)

Screen #9: Here is the goal word,
“the last for which the first was
made.’’ Enter a positive double num-
ber less than 230 followed by LOG2.
Then the first-out number on the stack . .

1 3 will be the characteristic, and this will
the shifts, until the result becomes 0. the old cofactor. All the factoring steps be

mantissa. (Separation of characteristic Then LEFT-ALIGN shifts the original ar- are gathered together in FACTORS. and mantissa is completely analogous gument to the left until its leading digit Screen #7: The first two words pre- to the same separation for common (= 1) occupies the bit 31 in the double pare all the registers and indices for computation of the mantissa. If it were logarithms and has no analogue for register.
Screen #5: UPDATE-INDICES keeps

track of the binary place (i) which is error message appears.
currently being acted upon and gener- Example: Q p e 2050. m G 2 . D. and
ates the divisor (2’) that effects the then execute. The first number printed
shift. SHIFT-STEP carries Out the shift- would always contain only zeros in the will be the characteristic 11 and the
subtraction. first decimal places. But that division is second will be the binary mantissa

Screen #6: CHECKSHIFT looks to see not possible, at least not at a reason- 1408199. T h u s , log22050 =
if too much has been subtracted. NEW. able cost in time. 11.001408199.
COFACTOR either validates the new There is a simple way to deal with It is easy to modify the screens for
cofactor - if the subtraction was not the left-overs after fifteen shift-sub-
too much - or backs up and restores tractions. A more elaborate expansion (Continued on page 17)

by the

possible to divide by 216, then the dou- natural logarithms.) If the argument is
ble table FACTOR-u)Gp could contain negative Or too large, an appropriate
sixteen numbers and

log2(1 + MI,)

FORTH Dimensions Volume V, No. 5 15

PIECE
OF

MIND
CompuPro's System 816.

The fastest, most cooperative computer you can buy.
OEMs and systems integrators are busy More Versatile.
people. Too busy to waste time with an
uncooperative computer system.
That's why every System 816 from
CompuPro is built to work long reconfigure any of them to keep
and hard without a whine or
a whimper. maintaining complete software

All family members share a common
modular architecture. So it's a

simple matter to upgrade or

up with your needs. All the while

compatibility up and down the line
And the 5-100 bus allows you

the flexibility to plug in any
compatible board to add graphics
capabilities or boards for your
own unique applications.

You also get your choice of
operating environments. including
CPIM? CPIM-860 Concurrent
CPlM-86*, MPIM-86 * and
CP/M-68Km, and our own
CP/M"8-16m and MP/M*8-16m
At the programming level, the

System 816 family supports Pascal. C. FORTH. BASIC.
COBOL, PL11. FORTRAN 77M and more.

More Dependable.
With ten years of pioneenng

successes built into it, the
System 816 is backed by the
industry's longest warranty
coverage. Depending on your
needs. our warranties range from
12 to 36 months. Most other
computer manufacturers expect
you to be satisfied with 90 days.
which typically covers parts only.

complete hardware and software
support, flexible configurations and upgrades, and
system training.

You can also depend on

More Powerful.
The System 816 squeezes more performance out of the

IEEE-69615-100 bus than any other system you can buy.
A choice of CPUs-and up to 4 Mbytes of our exclusive
M-DriveIH" RAM disk-give multiple workstations all
the speed and power they can ask for. Standard RAM
memory is expandable to one megabyte or more.

Disk storage capacity ranges up to 4.8 Mbytes on
floppy drives and as much as 320 Mbytes per controller
on hard disk.

n
LompuPro,

More Information.
Your customer's satisfaction is important to both of us.

so don't get stuck with a system that's more of a
hindrance than a help Send in the coupon and find out
what peace of mind is all about

solutions. call (415) 786-0909 ext 506 for the location of
our dealers worldwide. or the Full Service CompuPro
System Center nearest you

For business. scientific and industnal computing

[?
0

Send me your free System 816 brochure

Send me the name 3f my nearest Full Service
CompuPro System Center or dealer

NAME
TITLE ~-

ADDRESS
c1n STATE- ZIP-

A GODBOUT COMPANY Mail to: CompuPro. Attn: Sales Dept.
3506 Breakwater Court. Hayward. CA 94545 3506 Breakwater Court, Hayward, CA 94545

CP/M and CP/M-& are registered trademarks and CP/M-MK. MP/M-&, Concurrent
CP/M-86 and FORTRAN 77 are trademarks of Digital Research Inc CP/M 8-16 and
MPiM 8-16 are compound trademarks of Digital Research Inc and CompuPro

Pnces and specifications subject to change without notice
System 816 front panel design shown IS available from Full Service CompuPro
System Centers only 1983 COMPUPRO

16 Volume V, No. 5 FORTH Dimensions

(Continued from page 15)

varying needs. Cutting the double table
FACTOR-LOG2 to a table holding seven
five-place entries and then replacing
the double operations by single
operations, five-place logarithms can
be obtained, and there is room to
round off to four places. By inserting
quadruple operations (with some quin-
tuple intermediates) and loading a
QTABLE containing thirty quadruple
logarithmic values, it will be possible to
obtain logarithms to eighteen places.

It is more likely that single-number
logarithms will be needed than
quadruple ones. Nevertheless, the
algorithm is extensible, without ado, to
any needed precision. Much more than
half the work needed to obtain the
factor-logarithms to a large number of
places has been carried out by H.S.
Uhler. who published in 1942 a now-

scarce book4 presenting - among
other tables - natural factor-
logarithms to 137 decimal places! The
factorization scheme for decimally pre-
sented numbers is far more elaborate
than the scheme we gave above for
binary-represented numbers. Uhler’s
book has an introductory essay which,
besides explaining why he needed 137
decimal places, describes the mind-
boggling precautions he took to avoid
copying and entering errors more com-
mon in the days of mechanical cal-
culators.
References

1 . Abramowitz, M., and I.A.
Stegun, Handbook of Mathematical
Functions, National Bureau of Stan-
dards Applied Mathematics Series, 5 5 .
(Reprinted by Dover Publications.)
Table 4.3 presents twenty-five-place
factor-logarithms without instructions

for their use.
2. Lyusternik, L.A., et a l . ,

Handbook for Computing Elementary
Functions, Pergamon Press, 1965.

3. Salzer, H.E., Radix tables for
finding logarithms to twenty-five
decimal places, in Tables of Functions
and of Zeros of Functions, National
Bureau of S tanda rds Applied
Mathematics Series, 37. A bare-bones
table containing fourteen twenty-eight-
place natural-factor logarithms, with
instructions and examples.

4. Uhler, H.S., Original Tables to
137 Decimal Places of Natural
Logarithms for Factors of the Form 1
k n .lO-P, Enhanced by Auxiliary
Tables of Logarithms of Small
Integers, New Haven, Connecticut,
1942. Besides historical remarks, there
are examples and discussion of
computation of the tables.

Letters (Continued from page 4)

Substitute constants for numeric
literals. When the Forth compiler en-
counters a word that is not in the dic-
tionary, it converts the word to a num-
ber and compiles LIT and the number
for a memory use of four bytes per
referenced number. If the number were
a CONSTANT, only a two-byte reference
to the CONSTANT would be necessary.
The size of a CONSTANT is 7 + n where
n is the number of digits in the number.
Thus, you need four or five references
to a particular number before saving
code space. Another thing to consider
is that CONSTANT executes more quickly
than does LIT (on the 8080, at least).
With this as a background, I went
through my Forth nucleus source and
compiled the list of number usage
shown in table one (I started with a
Laboratory Microsystems 8080 source,
running under CP/M and converted
mostly to Forth-79 with some
enhancements).

The FIG model defines 0, 1 , 2 , 3 and
BL as constants, saving 159 bytes.
There isn’t that much more to be saved
in the nucleus by use of this technique,
as the table shows, the constant 5 sav-
ing two bytes. However, it would prob-
ably save applications space if all the
single-digit numbers were defined as
constants, as well as 040 and 080.

Used
-1 2

0 44
1 17
2 7
3 16
4 4
5 5
6 2
7 4
8 3
9 2

OA 2
OB 3
oc 4
OD 2
OE 1
OF 3
010 4

Used
011 1
012 2
013 3
014 1
015 1
016 1
018 2
019 1
0 1A 1
0 1F 1
BL(20) 12
02 1 2
022 4
024 1
025 1
029 1
02A 1
02c 1

02D
02E
030
03A
040
044
C/L(050)
05B
060
07B
080 (BPS)
OAO
oco
OCD
OFF
7FFF
8000
A08 1

Used
2
2
1
1
5
1
1
1
1
1
5
1
1
1
1
2
1
1

Do not compile EXIT for any word
that never gets to the end of its defini-
tion. Instead of defining a new word to
terminate a definition without compil-
ing EXIT, use +-2 A L ~ at the end of
the affected definitions (which are
INTERPRET, QUIT, ABORT, COLD and
WRM).

Define messages in screens 4 and 5
for the sign-on message in ABORT, the
sign-off message in BYE and the mes-
sage in LIST (provided disk is
available). In my system, this would
save 3C hex bytes, nothing to sneeze at.

Cross-compile internally used words
using headerless code to strip out the
name and NFA bytes. This could be

done for LIT, BRANCH, OBRANCH,
1 BRANCH, (LOOP), (+LOOP), (DO),
(;CODE), (.“), --> and possibly some
others. However, this would make life
difficult for such programming aids as
decompilers, tracers, debuggers, etc.,
since they couldn’t find those words.
Doing this would save fifty-seven hex
bytes.

I’m sure others have thought of even
different techniques.

Sincerely,
David W. Harralson
11105 Acama St. #4

North Hollywood, CA 91602

(Continued on page 22)

Volume V, No. 5 17 FORTH Dimensions

.

8080/280 FIG-FORTH for CP/M dk CDOS systems
FULL-SCREEN EDITOR for DISK 8 MEMORY

$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and
debugging them. You receive TWO diskettes (see below for formats available). The first disk is readable by
Digital Research CP/M or Cromemco CDOS and contains 8080 source I keyed from the published listings of
the FORTH INTEREST GROUP (FIG) plus a translated, enhanced version in ZILOG 280 mnemonics. This
disk also contains executable FORTH.COM files for Z80 i3 8080 processors and a special one for Cromemco
3102 terminals.

The 2nd disk contains FORTH readable screens including an extensive FULL-SCREEN EDITOR FOR
DISK i3 MEMORY. This editor is a powerful FORTH software development tool featuring detailed terminal
profile descriptions with full cursor function, full and partial LINE-HOLD LINE-REPLACE and LINE-
OVERLAY functions plus line insert/delete, character insert/delete, HEX character display/update and
drive-track-sector display. The EDITOR may also be used to VIEW AND MODIFY MEMORY (a feature not
available on any other full screen editor we know of.) This disk also has formatted memoryand I/O port dump
words and many items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data
base handler, an 8080 ASSEMBLER and a recursive decompiler.

The disks are packaged in a ring binder along with acomplete listing of the FULL-SCREEN EDlTORand a
copy of the FIG-FORTH INSTALLATION MANUAL (the language model of FIG-FORTH, acomplete glossary,
memory map, installation instructions and the FIG line editor listing and instructions).

This entire work is placed in the public domain in the manner and spirit of the work upon which it is based.
Copies may be distributed when proper notices are included.

0 FIG-FORTH & Full Screen EDITOR package
USA Foreign

AIR
Minimum system requirements:
80x24 video screen w/ cursor addressability
8080 or 280 or compatible cpu
CP/M or compatible operating system w/ 32K or more user RAM

0 8" SSSD for CP/M

0 8" SSSD 0 8" SSDD 0 5%" SSSD 0 5%" SSDD

0 8" DSSD 0 8" DSDD 0 5%'' DSSD 0 51/4'' DSDD

Select disk format below, (soft sectored only). $50 $65
(Single Side, Single Density)

Cromemco CDOS formats, Single Side, S/D Density

Cromemco CDOS formats, Double Side, S/D Density

Other formats are belng considered, tell us your needs.
0 Printed 280 Assembly listing w/ xref (Zilog mnemonics) $15 $18
0 Printed 8080 Assembly listing ... $15 $18

TOTAL $- ~

Price includes postage. No purchase orders without check. Arizona residents add sales tax. Make check
or money order in US Funds on US bank, payable to:

Dennis Wilson c/o
Aristotelian Logicians
2631 East Pinchot Avenue
Phoenix, AZ 85016
(602) 956-7678

FORTH Dimensions 18 Volume V. No. 5

A Paradigm for
Data Input

Michael Ham
lo wa City, lo wa

Programs frequently collect data in-
teractively from the user. In some
cases, the program should inform the
user that an input is unacceptable. For
example, if the user wants to delete a
record and enters an ID for which no
record is on file, the program must let
the user know that there is no such
record, instead of mysteriously reject-
ing the input: a silent rejection might
lead the user to think that the deletion
was accomplished rather than that the
ID was bad.

But for cases in which only a few
possible entries are valid, a well-de-
signed program will ignore invalid in-
put. Some programs accept bad input
and return the message, “INVALID,”
but if the program knew the input was
invalid, it should not have accepted it
in the first place. It is more tactful to
overlook the user’s error.

For example, when the program ex-
pects single-character input for menu
selection, the user can tell by the ab-
sence of action that something went
wrong. When this kind of input is re-
fused, the effect from the user’s point
of view is that all keys are inoperative
except those that produce valid input.
The words shown in figure one are for
single-character input, but they can

easily be extended to accommodate
two-character or three-character input.

The words OK?, ECHO and CAP are
generally useful: OK? is used to get rid
of input that failed the edit, ECHO
displays on the screen the input that
passed the edit and CAP converts lower-
case letters to upper case, so that the
program will not be case sensitive.

The CKXX words can be written as the
occasion requires. cKA-E checks the
input for A (ASCII 65) through E
(ASCII 69) inclusive; and CKA,I,S
checks for the three specific characters
A, 1 (ASCII 49) and 5 (ASCII 53).

The GETxx words are also written to
order, but they all follow the same
pattern: a BEGIN. ..UNTIL loop enclosing
KEY (which waits for a key to be
pressed and leaves the ASCII value on
the stack), a CKxx on the input and OK?
to wipe out invalid input. Note that
input is not acknowledged (via ECHO)
until the loop is exited, which occurs
only when a valid datum arrives.
(Often the screen will be designed to
list the valid responses.)

Exercise: Many times, valid input
lies in a contiguous range of ASCII
values. Write GETRESP (1 u -- n), which
expects on the stack the lower and
upper ASCII values for valid input
and, like the words in figure one,
accepts and acknowledges only valid
data.

: OK? (n f -- 0 or n 1) IF 1 ELSF DROP 0 THEN ;

: FCHO (n -- n) D U P FMIT ;

: CAP (n -- n) DUP 96 > OVFR 123 < AND IC 32 - THEN ;

: CKA-F (n -- n f) C A P DllP 64 > OVER 70 < A N D ;

: CKO-9 (n -- n f) DUP 47 > OVFR 58 < AND ;

: CKA,1,5 (n -- n f) CAP DUP 6 5 = OVER 49 =
OP OVER 53 = OR ;

: GFTA-F (-- n) BFCIN KFY CKA-F OK? UNTIL ECHO ;

: GFTO-9 (-- n) RFGIN KFY CKO-9 OK? UNTIL FCHO ;

: CFTA,l,S (-- n) RFGIN KFY CKA,1,5 OK? UNTIL ECHO ;

When checkinq ourely for alphahetic input, a simpler definition
of CAP is : CAP 95 AND ; R u t note that this definition,
unlike the longer one, wreaks havoc on numeric input.

Figure One

PerkeZ I Software Systems
MARX FORTHVl.4

NOW PUBLIC DOMAIN
Marx Forth package includes: - Complete source code . Screen editor

Double number word set - Forth style macro assembler . Standard Marx Forth extension word set
Extensions include:

- Cursor control . Recursion

Internal advancements include:

. Super fast compiler - New 83-standard circular DO-LOOP

. Vocabulary trees without vocabulary links - Compiler security
1 byte relative branches for conditionals
Smart CMOVE
Machine code where it counts

TARGET COMPILER INCLUDED
Ever wr i te a great Fo r th appl icat ion

and then want t o sell it w i thou t having
t o sell and support a complete Fo r th
system? Wi th the Marx Fo r th Target
Compiler, you can t u r n your favor i te
appl icat ion i n t o stand-alone headerless
code files tha t don‘ t require Fo r th in
the system t o run.

This compi ler w i l l compi le your
existing applications w i th n o modif ica-
t ions t o your source program. I t handles
immediate words, create does words,
and mul t ip le vocabularies as gracefully
as any other words.

SOURCE CODE LISTINGS $35
CP/M, Northstar DOS, TRS-80, Atari.

Marx Fo r th wr i t ten in Marx For th .
Package includes manual and hex dumps.
Disk version available fo r Northstar DOS
and CP/M on ly . $150.

THE *SLICK* PROJECT
S L I C K is a new Forth- l ike super

compi ler t ha t has all t he power o f Fo r th
and more. The main design cr i ter ion
behind S L I C K is el iminat ing the read-
ab i l i t y problems associated w i th For th .
Recursive descendant compi ler compiles
postf ix, p re f i x ,and in f i x notat ion. New
variables el iminate @ and !. The t e x t
parsor has been greatly enhanced, el im-
inat ing the need t o separate words w i th
spaces in some situations. Development
is geared towards being able t o compi le
code f rom other languages as well. Al l
S L I C K code can be target compi led t o
stand-alone machine code.

I ’m look ing fo r sof tware houses
interested in distr ibut ing th is p roduc t .
Anyone interested please write.

Volume V. No. 5 19 FORTH Dimensions

Toward Eliminating Forth
-

Screens

Robert R. Wagner
Portland, Maine

Forth screens are a real hindrance to
the program development process.
Specifically:

1) They are difficult to work with.
a) Inserting new lines of code soon

requires the programmer to move lines
from one screen to the next and, in
doing so, to have to deal with -->.

b) Inserting code in a line requires
care and manual manipulation to avoid
losing code at the end of a line.

c) Directory utilities require the user
to update a directory list (of screens)
whenever a screen or set of screens has
to be "bumped" up for an expanding
application.

d) An application cannot be loaded
by name, or requires a WADER word
which links the name to the screen (and
also requires updating).

2) Forth screens waste space in disk
storage; each space is stored as a
separate character. This discourages
the writing of code having a structured
appearance.

Most commercial Forth systems run
under a disk operating system (DOS).
Storing Forth code in DOS files greatly
improves the situation:

1) The entire application is a single
file, stored and retrieved by a
(hopefully) descriptive name.

2) The DOS catalog/directory
utilities are available for use.

3) The entire file can be edited as a
unit, using either the DOS editor or a
nice editor in Forth for full text files.

4) In most DOS's, trailing blanks in
a line are suppressed (usually by a
carriage return) and, in many systems,
leading blanks (more than one) are
stored as [control code, count] in the
disk file.

I know of no commercial Forth
system that now works with DOS files
in this way, but creating systems which
do so will permit eliminating the

SCR # 94
0 ." RUTNES TO COPY DOS F I L E TO SERIES OF SCKNS" (RRW 11/13/83) "

1 (Must n o t t h e m s e l v e s he DLOADed from a DOS f i l e .)
2 CASES ASSEMBLER BASE @ HEX FORTH DEFINITIONS
3 : GETDOS i 0 VARIABLE BLKNUH (BLOCK #)
4 0 VARIABLE LINPNTR I L I N E CNTR I N BUFFER)
5 0 VARIABLE INBLK 13E ALLOT INBLK FCBIN ! (SETS AN INPUT FCB)
6 0 VARIABLE HAXBLOK (FOR MAX PERHITTED BLOCK #)
7 0 VARIABLE DOSFLG (Nonzero i f l o a d i n g from a 110s f i l e)
8 0 VARIABLE THERE (adr o f 1st h r t e i n a s s i g n e d l o a d h u f f e r)
9 (Reniainng l i n e s on t h i s s c r n are srstee-srecific CFLEX-68093,)
10 (Other srstms r e o u i r e d i f f . ASSEMBLER c o d e 6 s r s t s cll a d d r (s)
11 D406 CONSTANT FHSCALL (FLEX addr f o r g e n e r a l f i l e nlngnmt u s e)
12 (Oren DOS f i l e for i n r u t w i t h addr of name on s t a c k :)
13 : OPENIN (" DR#,FILENAHE,EXT" --) 1 FCBIN @ OPEN i
14 CODE GETCHR .B CLR, FCBIN LUX, FHSCALL sJSRv O= NOT I F 1 FFFF
15 # LnDr (FFFF ON STACK FOR ERROR) E N D I F i 98 EXG, PUSHDi --:;.

SCR # 95
0 + " ACCOUTi EXIT , LINOUT " (RRW 11/13/83)
1 : RUFFRSET (-- hlkaddr) 0 LINPNTR ! BLKNUH @ BLOCK i
2 : NEXTBUFF (o l d h u f f a d d r -- newhuffaddr) UPDATE DROP
3 1 BLKNUH t ! BUFFRSET CR .I ' STACK:" S? i
4 (Output accumulated l i n e to h u f f e r : 1

6 1t DUP PA11 t C@ ROT DUP 1t ROT ROT C! SWAP REPEAT

8 o no 20 OVER c ! it LOOP

5 : ACCOUT (--) 0 BEGIN DUP PAD C@ .:: WHILE

7 DROP 40 PAD C@ - -DUP O= NOT I F

9 ENDIF 0 PAD C ! LINPNTR @ 3 = I F
10 NEXTBUFF ELSE 1 LINPNTR t ! ENDIF i
11 : E X I T < -- CLOSEIN QUIT i
12 (T r r t o o u t r u t t h e l i n e i close and n u i t if i m r o s s i h l e :)
13 : LINOUT (--) BLKNUH @ WXBLOK @ ::. I F
14 +' I B u f f e r overow" CLOSE I N QUIT ENDIF ACCOUT i
15

-- .:.

SCR # 96
0 1" OVERFLOW, BLANKREST1 PUTBACK 'I (RRW 11/13/83)

2 : OVERFLOW (--)

3 PAD 4 1 t BEGIN 1- DUP CP 20 = UNTIL DUP PAD :? NOT
4 IF nRoP 4 0 ELSE tw BEGIN DUP ce 20 = WHILE 1- REPEAT <::
5 DUP PAD 1:. NOT I F DROP ELSE SWAP DROP THEN PAD -

1 < PAD r n t r = 4 1 : Walk hack t o rrev B L i l i n e -1;. h u f f r , s h f t r e a d r) .

6 THEN DUP PAD C ! LINOUT 4 1 SWAP - DUP
7 PAD C ! DUP PAD 42 t SWAP - PAD I t ROT CHOVE i
R
9 : BLANKREST (of h r t e s i n h u f f r) (-- 1 LINPNTR @ 4 0 # B/BUF 1::

10 SWAP - DUP ROT r w ROT 20 FILL t NEXTBUFF i
11 (Restore e v e r r t h i n g - - c l o s e f i l e)
12 : PUTBACK (--)

<: 13 CLOSEIN ' ENCLOSE CFA ' WORO 1E t ! 0 DOSFLG !
1 4 ' QUIT CFA ' ERROR 25 t ! (r u t v e c t r t o QUIT hack i n ERROR) <:I
15 7FFF THERE @ 2- ! (mark t h e h u f f e r a5 u n u s e d) i:.

SCR Q 97
0 . ' I WRAPUP? i s , FHSERR NEXTCHK ADUTOBUFF " (RRW 11/08/83) <:
1 : WRAPUF (e v e r r t h i n g r d e r n d i n s on whethr DLOAD OR DGET) (-- b:
2 DOSFLG @ i f i g for rtoAti)
3 IF ; UOSFLG @ 1- -DUP I F IIOSFLG ! ELSE PUTBACK THEN 0 <:

4 ELSE (n o t FLOADing) CLOSEIN .:
c .:
b BEGIN LINPNTR @ O= BLKNUH @ B/SCR HOD O= * NOT <:

7 WHILE BLANKREST REPEAT
8 CR CR ." WARNING--Last NOT F L U S H e l ! ! ! " QUIT .:
9 TIiEN i .:
10 : i S < r e d e f) < -- 1 DOSFLG @ I F PUTBACK THEN R>. DROP i c:

12 DROP ELSE . I ' FHS ERROR # 'I DECIHAL . ENDIF WRAPUP i
13 : NEXTCHR (--) GETCHR DUP 0.: I F DROP FHSERR THEN i <:

14 : ADDTOBUFF (CHR-1 --) PAD C@ 1t SWAP OVER PAD t C ! DUP PAD C ! (-->. <' 15 64 '?- I F OVERFLOW THEN i (0620831

PAD C@ O= NOT I F LINOUT ENDIF

11 : FHSERR (--) FCHIN @ 1t C@ DUP 8 = I F e " END-OF-FILE " CR c:

I
I

i
I

FORTH Dimensions 20 Volume V, NO. 5

5 C R :C 98
0 + ' I GETDATA, DGETt NQUITi ?DELIM " (RRW 11/13/83) .:
1 I Get. and process a s i n g l e c h a r a r a c t e r from t h e f i l e :) <:

2 t GETDATA I --) NEXTCHR BEGIN DUP DO-CASE
3 D CASE IIROP LINOUT NEXTCHR DUP A = I F DROP NEXTCHR ENDIF .::
4 END-CASE <:

5 20 R :). 7F R -:I t IFCASE DROP . I ' NON-PRINT CHAR." EX IT END-CASEc:
6 I d e f l t case) ADDTOBUFF NEXTCHR END-CASES AGAIN i ..:
7 < #*MAJOR USER W O R D - - G e t a DOS t x t f i l e i n t o s e r i e s of s c r n s # :) <:
3 : DGET (" DH.NAHE.EXT"-3,STRTNG SCR #-2rMAX SCH #-1 ---)
9 H/SCR # 3 t MAXHLOK ! H/SCR # HLKNUM ! OPENIN BUFFRSET 0 PAD ! <

10 ." STARTING " GETIIATA i
t l (New v e r s i o n o f QUIT:)
12 : NQUIT IlOSFLG @ I F PUTBACK THEN QUIT i
13 < R e t u r n s f l a S = l i f d e l i n i = c h r r 0 o t h e r w i s e :)
14 : ?DELIM (delinit c h r -- d e l i n i r c h r v f l a g)
15 O'VER SWAP DUP D = I F UROP HL THEN SWAP OVER = i -- :> <:

0 + " DENCLOSE Y DLOAD9 < RKW 11/13/83) e:

1 (F:evisd form of ENCLOSE f o r r e a d i n 9 frni DOS f i l e : .:
2 : DENCLOSE (s d d r l de l in i -- a d d r l n l n 2 n 3) <:

3 SWAP DROP (a d r e s s) 0 BEGIN DROP NEXTCHR ?DELIM NOT UNTIL DUP.:
4 I F I n o t a n u 1 l) O ROT ROT (c n t = O , d e l i n i r c h r) BEGIN .:

ROT SWAP OVER THERE @ t C ! (S t r c h r) 1t (c n t) SWAP NEXTCHR..:
6 DUP I F (n o t a n u l l) ?DELIM ELSE (i3 n u l l) 1 THEN
7 UNTIL DROP DROP (c h r d d e l i n i 1 <:

3 ELSE I n u l l) SWAP DROP (d e l i n t) THERE @ C ! 1 (c n t) PUTBACK .:
9 THEN THERE @ 0 RUT 0 i <::

10 < Y$$$ MAJOR USER WORD--load from a 110s (FLEX1 F I L E : $#####*#*) <
I1 : D L O A D (" D r . f i l e n a m e " -- > 2 DOSFLG ! FO BUFFER THERE I <:

12 ELK @ :>.R I N @ >.R 3 BLK ! (f o r i n t e r r hr 0 u o r d) <:

t 3 OPENIN ' DENCLOSE CFA ' WORD 1E t ! (p n t s to DENCLOSE n o u)
14 ' HQUIT CFA ' ERROR 25 t ! (r u t v e c t o r to NQUIT i n ERROR)
15 INTERPRET CR R:, I N ! R? BLK I i BASE ! i s

." ROUTINES TO OUTPUT FORTH F I L E S TO FLEX TYPE" (RRW 0 7 / 0 9 / 8 3)

"CR .D 99

r

FORTH DEFINITIONS BASE @ DECIMAL
0 VARIABLE FCHO 3 1 8 ALLOT FCBO FCBOUT !

? SENDSCRN C 1 s t s c r r c u r r s c r --)

OVER OVER = NOT
I F 0 OVER (L I N E) t 1 6 - DUP C@ 40 =

THEN 16 0 DO
I F 16 BLANKS ELSE a t 14 BLANKS THEN

I OVER .L INE 13 EHIT
LOOP i

? SRCESCRNS lt. OVER DO
I SENDSCRN

LOOP i
? SENDOlJT I STKTSCR#-3vENDSCR#-2i" DR.NANE.EXT"-l ---)

WRITE SRCESCRNS CLOSEOUT i
Bclrl- 1 ;$

standard Forth screen. This author
knows of only two previously
published moves in this direction. Dr.
Donald Delwood in Forth Dimensions
(IV/3) described a system running
under DEC RTll or RSXll which
links a file to a set of screens (starting
at screen one). Apparently, one then
LOADS, LISTS or EDITS in a conventional
way. In a letter in Forth Dimensions
(IV/2), Derek Vair stated that he
intended to do for CP/M-86 files
about the same thing described below
for FLEX.

The proper approach to this problem
requires a redesign of the screen-
oriented part of the Forth system. The
code presented below is an improper,
but helpful, method for doing it with
an existing system - in this case,
Talbot's tFORTH running under the
FLEX DOS. In a proper system, DGET
would be eliminated and a LIST or EDIT
would operate directly on a DOS file.

I
l

SENDOUT would be replaced by a (very
different) FLUSH to DOS file or,
possibly, a n escape-from-edit
command. One feature of Forth
screens might be desirable: when an
application is already in the edit
buffer, it should be LlsTable or
LOADable directly from the buffer.
Now, on to the code.

First, some explanation of the
FLEX/tFORTH-specific words used in
the code to follow. You will have to
write or incorporate the equivalent
words for your system. (Note: the File
Control Block (FCB) is called the File
Descriptor Block in DEC, CP/M and
other systems.)

CLOSEIN and CLOSEOUT Close FCB
whose address is in the user variable
FCBIN and FCBOUT, respectively.

FCBIN and FCBOUT User variables
containing addresses of FCB's
normally used for read and write,
respectively.

OPEN (addrl, flag, addr2 --) Open
DOS file for I/O (addrl is the address
of the length byte of the string
containing the DOS file name; flag
contains zero for read or one for write;
addr2 is the address of the start of the
FCB to use).

WRITE Used as "cccc" WRITE. File
cccc is opened for write using the FCB
whose address is in FCBOUT, and the
switch in EMIT is set to cause characters
to be sent to cccc instead of the
terminal until CLOSEOUT is
encountered.

tFORTH + :
CODE An assembler macro which

sets up the Forth dictionary links (to be
followed by the code itself).

NEXT, Compiles code required to
link back into the next word of Forth.

PUSHD, Pushes the contents of the D
(=A,B) registers onto the Forth
parameter stack, then performs NEXT,.

The code itself contains three
operative top-level words:

1) DGET Gets a DOS file into a series
of screens.

2) SENDOUT Sends a series of screens
out to a DOS file.

3) DLOAD Loads directly from a
named DOS file.

Note that the listing of SENDOUT is
not of a Forth screen. It is D m D e d
directly from a DOS file.

The key to the entire system is the
new loader word DLOAD, which
operates by substituting the CFA of a
new version of ENCLOSE, called
DENCUSE, in WORD. ENCLOSE is the
word buried in the INTERPRET loop
which gets the next group of characters
for interpretation, whether from a
block or from the TIB. In DLOAD the
following is done:

1) Set a flag, DOSRG, to indicate a
DLOADing in progress.

2) Assign a buffer, with address at
THERE, for DENCLOSE to use for

3) Save pointers to the source stream

4) Replace CFA(ENCL0SE) by

5) Replace CFA(QUIT) by CFA(NQUIT).
This could be done once and for all
when screen ninety-seven is loaded, but

Some ASSEMBLER words in

accumulating characters.

in which DLOAD appeared.

CFA(DENCLOSE) in WORD.

(Continued on next page)

Volume V. No. 5 21 FORTH Dimensions

would cause problems if NQUIT were
later included in a FORGET.

6) Enter the interpret loop.
7) (After leaving the loop, usually

via NQUIT) replace pointers to the
original text stream for continuing
normal interpretation.

DENCLOSE is the replacement for
ENCLOSE during a DLOAD. Its structure
is:

BEGIN
Get cha rac t e r s f r o m f i le

management system (FMS), dropping
delimiters

UNTIL a non-delimiter is found (keep
on stack)

IF not a null
Place successive characters into the

buffer whose address is at THERE,
terminating when a null or a delimiter
is encountered.

ELSE (a null)
Store it, execute PUTBACK to restore

everything for normal operation.
ENDIF
Leave parameters on stack to allow

code in WORD to move the word to
locations starting at HERE. (These
parameters are the same as those
produced by ENCLOSE, except that S-4
happens to be the fixed address for the
location of the ENCWsEd word.

In addition to the above null-
induced termination (which should not
occur in a FLEX text file), other modes
of termination are ;s, the “proper”
termination (re-defined on screen
ninety-six), and End-of-File condition
error from the FMS, dealt with in
WRAPUP by substituting a null the first
time, executing PUTBACK the second
time.

This solution allows the user to
maintain most Forth source code in
DOS named files, but it does require
one screen for the storage of the DLOAD

sequences for each application.
DLOADing from a file being DloADed is
not permissible. My own preference in
a final system would be to limit
DLOADing to operation from the
terminal or f rom special files
containing only DLOAD commands,
thus keeping the components of an
application “up front,” where they
can be seen. In any case, the approach
presented here represents a useful first
step toward an improved system for
developing and using Forth code.

Letters (Continued from page 17)

Postfix Flag-Waver

Dear Editor,
Intelligent minds question every-

thing. In a recent letter (Forth Dimen-
sions V/3), a reader wonders why
Forth control structures, such as IF,
have to employ reverse Polish syntax.
He suggests the form:

IF (cond) THEN (true) ENDIF

In this syntax, IF has no function save
readability.

We might be tempted to agree that
this syntax is preferable from the
standpoint of readability, but to ignore
the suggestions simply because the
weight of Forth tradition is against it.
It turns out, though, there’s a very
good reason for using the reverse Po-
lish syntax: flags can be passed as argu-
ments, using the same mechanism used
for numbers (the stack). This allows us
to factor out a condition from a defini-
tion.

Suppose we have this word, using
Forth’s traditional syntax:

:?ON/OFF(t = o n - -)
IF .” ON ” THEN ;

As you can see, it receives a flag
from the stack and makes a decision.
In the proposed syntax, we would have
to write:

: ?ON/OFF (t =on --)
IF THEN .” ON ” ENDIF ;

leaving nothing between IF and THEN.
Or we could take IF out completely, to
show that the argument is coming in
from outside the definition. But then,
where does the IF go?

Infix notation for control structures
is only appropriate for languages
which insist upon passing data and
flags via local variables.

Sincerely,
Leo Brodie

17714 Kingsbury St.
Granada Hills, CA 91344

Errata

Dear Marlin,
Since writing about code definitions

callable by colon- or code-defined
words (FD V/3), I have discovered a
slight error in the definitions. I have
also switched to a 6502-based system.
So, in 6502 machine language, the cor-
rect definitions are shown below:

CODE (CALL) XSAVE STX, 0 JSR,
XSAVE LDX, NEXT JMP, C;

‘(CALL) 3 + CONSTANT CALL-ADDR
:CALL CALL-ADR ! (CALL) ;
: SUBROUTINE CREATE DOES> CALL ;

The ASSEMBLER vocabulary must be
invoked before using SUBROUTINE to
define words.

Thank you for your interest in my

Sincerely,
work.

David Held
P.O. Box 483

Hermosa Beach, CA 90254

Just One EXIT in CASE

Dear FIG:
I enjoyed puzzling over Marc

Peikel’s letter titled, “Yet Another
CASE S t a t e m e n t ” in Forth
Dimensions (V/3). I do, however, have
one suggested improvement. If there is
no match, the EXIT compiled by
ENDCASE is executed twice. While this
does not cause an error in the results, I
would prefer if the EXIT executed only
once. This can be accomplished by
replacing COMPILE DROP in the defini-
tion of ENDCASE with COMPILE R >
COMPILE 2DROP.

:ENDCASE
l2COMPlLE R> COMPILE 2DROP

HERE SWAP !
COMPILE EXIT [COMPILE] [;
IMMEDIATE
Sincerely,

Ed Schmauch
Conoco, Inc.

P.O. Box 1267
Ponca City, OK 74603

(Continued on page 32)

FORTH Dimensions 22 Volume V. No. 5

1984 Rochester Forth Applications Conference
With a Focus on Real-Time Systems

June 6 - 9,1984
University of Rochester
Rochester, New York

The fourth Rochester Forth Applications Conference will be held at the University of Rochester and
sponsored by the Institute for Applied Forth Research. The focus of this year’s Conference is on real-time
systems, which includes such areas as process control, data acquisition, smart instrumentation, laboratory
systems, robotics, computer vision, spacecraft navigation, music synthesis and voice recognition.

Call for Papers

There is a call for papers on the following topics:

1. Real-time software.

2. Forth applications, including, but not limited to: real-time, business, medical, space-based, laboratory
and personal systems; and Forth microchip applications.

3. Forth technology, including finite state machines, control and data structures, and hybrid
hardwarelsoftware systems.

Papers may be presented in either platform or poster sessions. Platform papers will be reviewed for
conference direction and paper suitability. Please submit a 200 word abstract by April I s t , 1984. Papers must
be received by M a y I s t , 1984. Abstracts and papers should be sent to the conference chairman, Lawrence
Forsley, Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623.

Conference Format

Sessions will begin Wednesday, June 6th, and end Saturday, June 9th, and include a group of invited
speakers in the area of Real-Time Systems. Submitted papers will be scheduled in platform and poster
sessions. There will also be working groups addressing topics of current interest, and demonstrations by
participants and vendors. Sessions will be held on the University of Rochester’s River Campus.

The registration fee of $300 includes a l l sessions, activities, meals, and the Conference Proceedings. Full
time students may register for $150. Attendees have the option of student dormitory housing at the rate of
$100 single/$75 double for five days. Those staying on campus will find a car unnecessary, as there will be a
shuttle from the airport and train. A l is t of nearby motels is also available. For more information, write to
Diane Ranocchia, Institute for Applied Forth Research, 70 Elmwood Ave., Rochester, New York 14611 or call
71 6-235-0168.

Are you planning a:
10-20 minute talk? ~ poster? ____ demonstration? ___
If you are, we must have your abstract by April I s t , 1984.

Registration fee: $300 ($150 for full time students)

University housing: dormitory single $100, double $75
I f double, have you a specific roommate?
(If not, you will be assigned one. Non-smoking roommate? yes no)

There is a vegetarian meal option. Check i f you want it.

Amount enclosed:

Please make checks payable to the Rochester Forth Conference. Mail registrations to:
Conference, 70 Elmwood Ave., Rochester, NY 14611.

Rochester Forth I
I

I
I
I I
~II---IIII--IIIIIIII---IoIIIIIIILI---~

Volume V, No. 5 23 FORTH Dimensions

A More General ONLY

Paul E. Condon
San Carlos, California

I have implemented a version of Bill
Ragsdale's ONLY in MVP-FORTH on a
CP/M machine. (See the Forth-83
Standard, Experimental Proposals.)
The implementation is somewhat more
general than the proposal published in
the Forth-83 Standard, and I offer it
for the consideration of, and ex-
perimentation by, all interested
Forthers.

A special feature of this implementa-
tion is that it allows dynamic switching
between the three popular methods of
handling vocabulary chaining. Using
these modifications, one may try things
each way and see which is really prefer-
red; one can opt for freedom of choice
and consider this approach itself as a
prototype. Perhaps, rather than having
a standard way of handling vocabulary
chaining, one might choose a standard
for the way in which the method of
chaining is specified.

The essential change that makes
dynamic switching easy to implement is
a small addition to the parameter list of
vocabulary words (see screen #101).
MVP-FORTH follows the FIG model
in organization and memory manage-
ment. The header part of a dictionary
entry contains a name field of variable
length, followed by a link field (fixed-
length pointer to the next entry in
search order). The body of the entry is
a definition of the named word. It con-
tains a pointer to some executable
machine code and a parameter list of
variable length. In the particular case
of vocabulary words, there are two
pointers in the parameter field. One
points to the first, or head, word in the
vocabulary in search order (note: most
people would say it points to the last
word, by which they mean the most
recently defined word; I call it the head
of the list, and also refer to the tail of
the list - the last word examined in
search order) and the other points to
another vocabulary word definition. I
have added to these pointers a third

SCR #loo
0 (LOAD SCREEN FOR 'ONLY' SYSTEH 1
1
2 DECIHAL
3 FORTH DEFINITIONS
4 210 LOAD (UTILITY WORDS FROH HVP 1
5
6 102 l f l THRU (ONLY etc. 1
7 225 LOAD (SUPPLEHENTAL WORDS FROH HVP 1
8 60 LOAD (EDITOR VOCABULARY FROH HVP 1 1

9 90 LOAD (ASSEMBLER VOCABULARY FROH HVP 1
10
11
12
13

SCR #lo1
0 I ONLY iaplerentat ion 1
1
2 (The new voc.def format has two more words t o ranage the TAIL
3 1
4
5 (nfa: (voc.name> 1

of the vocabulary l i s t as wel l as the HEAD of the l i s t .

6 (l f a : point t o nfa of next word i n search order 1
7 (cfa: point t o rachine code f o r t h i s word 1
8 (pfa: A081 durry word for ranaging HEAD of l i s t 1
9 (+2 point t o f i r s t word i n search order (l a s t entered 1

10 (+4 point t o next voc.def. 1
11 (t 6 A081 2nd durry word f o r managing TAIL of l i s t 1
12 (
13 (i n search order. 1
14 (1
15

+8 point t o pfa , i . e . 1st durry word of next voc.def

I t e r s a t +6 & +8 are new t o t h i s i rp lerentat ion.

SCR 1102
0 (an i rp leaentat ion of ONLY PECondon 10/9/83 1
1

2 FORTH DEFINITIONS
3 0 VOC-LINK ! (WON'T BE USING OLD VOC.DEF.S BNY HDRE 1
4 VOCABULARY &OX (A NAHE UNLIKELY TO CONFLICT WITH OTHERS 1
5
6 VARlABLE PERMANENT (VOC TO WHICH TRANSIENT I S LINKED 1
7 VARIABLE FIG? (FIG-HODEL VS. FORTH-79 HODEL 1
8 VARIABLE RELINK? (Ragsdale's ONLY, or not 1
9 VARIABLE 'FORTH (POINT TO PFS+2 OF new FORTH 1

10 VARIABLE 'ONLY POINT TO PFA+2 OF ONLY)

11
12
13

FORTH Dimensions 24 Volume V, No. 5

SCR 1103
0 f WPICK, WBEFORE, WREHOVE, WATTACH 1
1 (WORDS TO PICK A WORD-DEFINITION OUT OF CONTEXT AND PUT
2 (I T AT CURRENT. 1
3
4
5 : WBEFORE CONTEXT @
6
7
8 : WREHOVE SWAP PFA DUP LFA e ROT ! ;

1

BEGIN DDUP @ DUP I F - ELSE DDROP DROP 0. THEN
WHILE @ PFA LFA REPEAT ;

9 : WATTACH CURRENT e e OVER LFA ! NFA CURRENT e ! ;
10 : WPICK CCOHPILEI ’ NFA WBEFORE WREHOVE WATTACH ;
11
12
13
14
15

SCR t104
0 (ALSO, TOSS, X-HODE 1
1
2 WPICK IHHEDIATE
3 WPICK DEFINITIONS
4 : ALSO CONTEXT @ PERHANENT ! ;
5 : TOSS PERHANENT @ DUP ’ &OX 2+ = NOT
6 OVER ’ONLY e = NOT AND
7 IF 6 t e 2t PERHANEWT ! THEN ;
8
9 : FIG-HODE -1 F I 6 ? ! 0 RELINK? ! ;

10 : 79-HODE 0 F I 6 ? ! 0 RELINK? !
11 : ONLY-HODE 0 FIG? ! -1 RELINK? ! ;
12 FIG-HODE
13
14
15

SCR 1105
0 ((REH-VOC> 1
1
2 : (PCHK) (CHECK A VOC.POINTER I N (REH-VOC))

3 (NXT, PFA, PNT --- NXT, PFA 1
4
5 : (REH-VOC) (PFA --- 1
6 (--- NXT, PFA)

7 PERHANENT (PCHK>
8 VOC-LINK e (--- NXT, PFA, PTR 1
9 BEGIN

10
11 I F 3 PICK OVER 4 + ! THEN (LINK TO SUCCESSOR 1
12 @ DUP 0=
13
14
15

DUP @ CFA 3 PICK = I F 3 PICK 2t SWAP ! ELSE DROP THEN ;

DUP fl + @ SWAP

(LOOK FOR V0C.S THAT ARE LINKED TO THIS ONE 1
DDUP 4 + @ =

UNTIL DROP DROP DROP ;

one that is used to point to the next
vocabulary in search order. (Also note:
the A081 is a “magic” trick that makes
the entry “look like” a word definition
header to words that search the
dictionary.)

In the FIG model and in Forth-79,
the tail links to the parameter field of
some other vocabulary word. In
Ragsdale’s work, the tail word in each
vocabulary is “closed,” i.e. contains a
null pointer in the link field, and
higher-level management of the search
order is done in a push-down stack. I
have replaced this with a simple link of
the tail word back to the new pointer in
the vocabulary word definition. With
this change of structure in place, it is
easy to re-connect and re-arrange
vocabularies by manipulating the
pointers in the parameter fields of the
vocabulary words. The link of p fa+4
was originally implemented to support
a smart FORGET. Now it is useful in
supporting other functions whose
domain is all vocabulary definitions.

In the ONLY approach, a distinction
is made between transient and resident
vocabularies. My code uses the
variable PERMANENT to support this
distinction. The word ALSO sets
PERMANENT equal to CONTEXT and, as a
consequence, the transient vocabulary
becomes part of the resident list of
vocabularies.

The word Toss was suggested by
George Shaw (Dr. Dobb’s Journal,
September 1983). It removes the first
vocabulary from the resident list and
places it at the end of the transient list.
My version is not quite what Shaw
specified, because the previous
contents of the transient vocabulary
are not lost in my Toss.

The word VOCABULARY is re-defined
so that it builds the new, longer
vocabulary word definition. It also
contains some conditional branching
so that it can support the FIG model,
the Forth-79 Standard and Ragsdale’s
ONLY approach to vocabulary chaining.
RELINK? is a flag variable that controls
whether or not a vocabulary is re-
connected when it is invoked. FIG? is a
flag variable that controls the initial
linking that is set up when a new
vocabulary word is defined.

Volume V, No. 5 25 FORTH Dimensions

Other words are:

ORDER Prints the search order of
vocabularies.

vocs Prints a list of all vocabulary
words.

SEAL Removes ONLY from the search
order.

ONLY A special vocabulary which
removes all other vocabularies from
the search order when it is invoked,
and which automatically invokes ALSO.

One complication that deserves
special mention is the vocabulary &OX.
In MVP-FORTH there is a magic
word, called X, whose name in the
dictionary is really a single ASCII null.
This word must always be in the search
order, if INTERPRET is to terminate cor-
rectly. Rather than placing a copy of x
in every vocabulary, I have removed x
from FORTH and placed it in a special
vocabulary. I called this vocabulary
ALWYS for a while, but decided it
didn’t deserve tying up a good English
word. So I gave it a name that isn’t too
likely to conflict with any application,
but is slightly indicative of why it is
there.

One consequence of this work is a
much improved understanding of
vocabularies on my part. When several
vocabularies are defined, they are
always placed in a tree structure.
CONTEXT, CURRENT and PERMANENT
are pointers to particular places in this
tree. It is a tree with a single root,
because all vocabularies must link
eventually to &OX, which contains the
only copy of x in the whole dictionary.
In my implementation of ONLY, the tree
is re-arranged in a two-step process.
First, < REM-VOC> removes the selected
vocabulary from the tree, and all
vocabularies that were linked to it are
linked instead to the following vocab-
ulary. Then the free vocabulary is
linked to the vocabulary pointed to by
PERMANENT. The removal step ensures
that a circular linking can never be
formed. Because there is no stack of
pointers to vocabularies, there is no
need to enforce a limit to the number
of vocabularies in the resident list, and
I have not implemented any limit. If a
vocabulary is already correctly linked
when it is invoked, no action it taken.

FORTH Dimensions

SCR t l 0 b
0 (new VOCABULARY
1
2 HEX ’ VOCABULARY NFA 20 T066LE (SHUDGE OLD VERSION 1
3 : VOCABULARY
4 CREATE A081 , HERE 4 + ,
5 HERE VOC-LINK @ , VOC-LINK !
6 (NEW STUFF:)

7 A081 , F I 6 1 I F CURRENT ELSE ’FORTH THEN
8 e CFA ,
9

11
12
13 THEN (OLD STUFF: 1 2t CONTEXT ! ;
14 DECIHAL
15

10 DOES> RELINK? e
I F DUP 8 t e PERHANENT @ CFA = NOT (NEED RELINKING? 1

I F DUP (REH-VOC> PERHANENT @ CFA OVER 8 + ! THEN

SCR $107
0 (ONLY, SEAL, WORDS, ORDER)

1 FORTH DEFINITIONS VOCABULARY ONLY ’ ONLY 2t ‘ONLY !
2 : SEAL ’ ONLY (REH-VOC) i
3 : WORDS ’ VLIST CFA 1 LITERAL EXECUTE ;
4 : ORDER
5 CR ,’ context -> ’ CONTEXT @ CFA
6 BE6IN
7
8
9

10 TYPE SPACE
11 8 t @ DUP ’ &OX =
12 UNTIL DROP
13 CR ,’
14 : VOCS VOC-LINK @ CR BE6IN DUP 4 - NFA I D . SPACE @ DUP 0=
15 UNTIL DROP :

DUP PERHANENT @ CFA = I F CR .’ perranent -} ’ THEN
DUP NFA COUNT 3 1 AND DUP

OUT e t C/L > I F CR THEN

current -> ’ CURRENT @ CFA NFA ID. SPACE i

SCR $108
0 (new FORTH and sore magic relinking If 1
1 DECIHAL
2 CURRENT e CFA NFA 32 T066LE (SHUDGE OLD VERSION)
3 VOCABULARY FORTH (USING NEW FORHAT 1
4 ’ FORTH 2+ DUP ’FORTH ! (BIND ’FORTH 1
5 LATEST SWAP ! (COPY HEAD POINTER)
6 FORTH DEFINITIONS ALSO (INVOKE NEW DEFINITION 1
7 ’ POX ’ FORTH 8 + !
8
9

10
11
12
13
14
15

(LINK FORTH TO POX 1

!

26 Volume V, No. 5

SCR
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SCR
0
1
2
3
4
5
6
7

9
10
11
12
13
14
15

SCR
0
1
2
3
4
5
b
7
8
9

1 0
11
1 2
13
1 4
15

a

#lo9
(work on X and ! linkings 1

’ %OR
LFA DUP’

(X FOLLOWS %OR I N HVP-FORTH SEARCH ORDER 1

e DUP
&OX 2t ! (PUT X INTO &OX VOC. 1

PFA LFA DUP (POINT TO LF OF X 1
e ROT ! (REHOVE x FROH FORTH 1
0 SWAP ! (SEAL X 1

1

’ FORTH 6 t ’ ! LFA ! (L I N K ! BACK TO FORTH 1

t l l 0
(move new words into the ONLY vocabulary 1

LATEST ’ ONLY 2+ ! (ONLY HEAD POINTS TO NEW WORDS 1

‘ ONLY 6 + ’ &OX LFA (L I N K T A I L OF NEW WORDS TO ONLY, WAIT 1
’ ONLY ’ FORTH B t ! (L I N K FORTH VOC. TO ONLY VOC. 1

!

‘ POX ‘ ONLY 8 t ! (ONLY T A I L POINTS TO NULL WORD VOC. 1

DUP e CONTEXT e ! (REHOVE NEW WORDS FROH CONTEXT 1
(DO L I N E 4, WHICH WAS DEFERRED 1

ONLY-RODE ONLY DEFIN IT IONS
: SUL ’ ONLY CFA 1 L ITERAL EXECUTE ; (NEW NAME FOR ONLY 1
: ONLY RELINK? e

I F [’ &OX 2+ 1 LITERAL PERHAWENT ! (ZAP PERHANENT 1
ONLY (INVOKE VOCABULARY 1 ALSO

ELSE ONLY THEN ;
ONLY FORTH ALSO FIG-HODE

l l l
(PATCHES TO POINT TO NEW FORTH 1

FORTH DEFIN IT IONS
HEX : X ! >R BEGIN R e SWAP ! DUP WHILE REPEAT DROP R > DROP 1

0 l l D E (in COLD 1 193C (in FREEZE 1 ’ FORTH X !
0 706 (in (ABORT> 1 18AD 1EBB (in FORGET 1 ’ FORTH CFA X !
FORGET X !

DEC I HAL

In building this system, I first com-
piled the definitions for the new words
into the FORTH vocabulary and then
manipulated the links so that they are
moved to the ONLY vocabulary. By
doing this, I avoided using a meta-
compiler (which I don’t have). The
only really tricky part was moving x in
one fell swoop, so that INTERPRET
never noticed that it was temporarily
missing. To do some of the moving of
definitions, I wrote WPICK. The word
ticks the following word in CONTEXT
and re-connects the links so that it
becomes the first word in search order
at CURRENT.

Finally, I found five places in MVP-
FORTH where other words contain
compiled references to the word
FORTH. Since I have introduced a new
version of this word, I patch these
references in screen #I 11. Naturally,
these patches are implementation-
specific and will have to be changed by
anyone attempting to use this work on
another system.

My first impression of working with
ONLY is that I like it, but that I am
having trouble remembering to use
ALSO when it is needed.

~~ ~

Volume V. No 5 27 FORTH Dimensions

The 5 x b' stand alone board is
based on the Rockwell single
chip FORTH Microcomputer
which contains a FORTH oper-
ating system in its internal ROM.

RS 232 and 20 ma Serial interface
4 sockets for plug in I/O modules
(Opto 22, Crydom, etc
4 half bridge power drivers
8 optically isolated inputs
8 channel 8 bit ADC, radiometric

4 potentiometers for IeveVspeed

4 position dip switch
4 Schmitt trigger inputs
4 open collector outputs
8 expansion I/O lines
Power fail interruptheset
In circuit EPROM and EEPROM

+5v regulator, DC/DC convertor
Buss expansion connector
Sockets for up to 14kb of memory

PROATROL'" has it all together!
Develop your program, configure your
I/O options, debug your system and
GO FORTH1

or referenced

settings

programming

Only $495.00

Recursion of the
Forth Kind

Michael Gwilliam
Ronald Zammit

Arcata, California

Many of us have used Forth in
unusual ways, as it allows many
innovative solutions. A demonstration,
often shown to novices, is the re-
defining of a word using the same
word. What is presented here is the
strange case of a new word being used
to define itself. It is being employed
while it is being defined! Sound
impossible? Well, let's look at such a
word, keeping in mind that this may
serve no practical use except to test
your understanding of Forth.

Most of us have seen the model for ;
in the Systems Guide to jig-FOR TH. It
is given as in figure one.

SMUDGE [; IMMEDIATE

Within this model, the ; is used,
implying that it is already defined.
Now let's look at another model in
figure two, called ;; to avoid confusion
with the previous example.

?CSP COMPILE ;S SMUDGE
[COMPILE] [[SMUDGE
IMMEDIATE] ;; SMUDGE

Notice that this word does not have a
; terminating it. This word will work in
the same manner as the ; but uses itself
when defined. Let's examine how this
works:

: ;; Create a dictionary header named
;; and set STATE to 1 to compile.

?CSP Compile ?CSP.

COMPILE Compile COMPILE,

;S Compile ;s.
SMUDGE Compile SMUDGE.

[COMPILE] [Force compilation of [.

1 Set STATE to 0, stop compilation and
begin execution.

SMUDGE Toggle (set) the smudge bit
to allow ;; to be found in the
dictionary, even though it is not a
complete definition.

IMMEDIATE Set the precedence bit,
forcing execution of ;; when compiling.

] Set STATE to 1 to begin compiling.
;; The interpreter looks for the
definitions of ;; and can locate the
uncompleted definition, as it is
smudged. Since the word ;; is
immediate, it will execute.

At this point, the words compiled
under the ;; header are executed.

?CSP check stack pointer.

COMPILE Compile the next word,
which is ...
;s The primitive ;S is added to the end
of the definition of ;; ending its
definition in the same manner as all ;
definitions.

SMUDGE Toggles the smudge bit of ;;
making the header unlocatable during
a dictionary search.

[Set STATE to 0, stop compilation and
begin execution.

Now the next word in the input
message buffer is executed.

SMUDGE Again toggles the SMUDGE
bit, making the header locatable during
a dictionary search.

Once ;; has been entered, it may be
used to define new words in the same
manner as ; is used. While this is a
tricky and redundant definition, we
hope that your understanding of ;; will
add to your overall appreciation of
Forth.

FORTH Dimensions 28 Volume V. No. 5

Quick Sort in Forth

Marc Perkel
Springfield, Missouri

The famous Quick Sort, or partition
sort, is generally considered the fastest
general purpose sort (hence its name).
The basic concept behind it is relatively
simple. Suppose we had an array of
numbers from one to 100 in random
order. If we were to sort these numbers
using the Quick Sort, we would first
select the middle number which, let’s
say, was a seventy-two. Then we scan
from the beginning for a number that
is not less that seventy-two.

Once we have found one, we scan
backwards from the end for a number
that is not greater than seventy-two.
When we have found these two
numbers, we exchange them. Then we
continue scanning and exchanging
until, somewhere in the middle, the
two pointers cross. At this point we
have divided the array into two arrays,
the lower one with all the numbers less
than seventy-two and the upper one
with all the numbers greater than
seventy-two. We now repeat the,
process on both arrays, creating four,
then eight, then sixteen, etc. arrays.

As the original array is divided into
more and more arrays, the size of these
pieces gets smaller and smaller. When a
piece gets down to one item, it is
considered sorted and is no longer
dealt with. Thus, the process doesn’t
go on forever. When the array is
divided completely into one-byte
pieces, the sort is complete.

Lines five through OA contain the
code for one dividing pass. This pass
leaves four addresses on the stack,
which represent the ends of two smaller
arrays. The rule is to sort the smaller
array first. This prevents the recursion
from going any deeper than the
logarithm of the number of items to be
sorted. If you were sorting lo00 items,
nine levels is as deep as you can go.
Lines OB and OC bring the smaller
array up first.

With the ends for the two arrays on
the stack, the sort calls itself, thus
treating each array just like the original
a r ray . These, then, each call
themselves, as long as the pieces have
any sortable size.

Recursion of this kind is handled
gracefully by Forth because of its two
stacks. Each recursion leaves a pointer

to the unfinished work of the rerun
stack, while the second array to be
sorted accumulates on the data stack.
Most other languages would require an
array to be created to accumulate the
second array, simulating the data
stack.

For those who are using FIG-Forth
and don’t have a word MYSELF, the
phrase [SMUDGE] SORT [SMUDGE] will
work instead. This sort is written to
sort bytes and can easily be re-written
to sort anything you want. This sort
can be displayed in a very impressive
manner by those who have memory-
mapped video. (This means TRS-80
owners.) You can block move RAM to
screen memory and sort the screen.
This allows you to watch it happen.
Lots of fun!

S c r e e n A 0 (* I 160
(Recurs ive Quick S o r t - S o r t s an array o f b u t e s . 1

VARIABLE MI rmLE
: EXCHANGE 2DUF C@ SWAP C@ ROT C ! SWAP C! i
: SORT (s t a r t end -)

m u p UP OVER - w t c@ wrrtrt.E ! (P i c k . m i d d l e one 1
BEGIN (scar1 r i g h t t h e n l e f t 1

SWAP BEGIN DUP C@ MIDDLE [? .::: WHILE I t REPEAT
SWAP BEGIN DUP C@ MIJJDLE @ 1::. WHILE 1- REPEAT

9 m u P :;- NOT IF ~ D U P EXCHANGE 1
A 2DUP :::. (
B UNTIL SWAP ROT
C 20UER 20UER - ROT ROT - .::: I F 2SWAP
11 2LsUP .:: I F MYSELF ELSE 2DROP THEN

F
E 2rtuP .:: IF MYSELF ELSE mRoP THEN i

-1 r i t THEN
u n t i l P a r t i t i o n s cross 1

(s o r t both pieces 1
THEN

(smallest f i r s t)
(t h e n large riece 1

Volume V, No. 5 29 FORTH Dimensions

Break Through the
64K Barrier!

FORTH-32'" lets you use up to one megabyte
of memory for programming. A Complete

Development System! Fully Compatible
Software and 8087 Floating Point Extensions.

303 Williams Ave.
Huntsville, AL 35801

(205) 533-9405 800-558-8088

Now available for the IBM PC, PC-XT, COMPAQ, COLUMBIA MPC,
and other PC compatibles!

IBM, COMPAQ, MPC. and FORTH-32 are trademarks of IBM, COMPAQ, Columbia Data Products. and Quest Research, respectively.

i

Volume V. NO 5 FORTH Dimensions

Within WITHIN

Gary Nemeth
Rocky River, Ohio

I

The word WITHIN is not standard, yet
it shows up in many applications - it
performs a range check. Because it is
not standard, there are several ways it
is defined. The parameters are always
the value to test, and the two range
limits, resulting in a true/false on the
stack. Several different versions of the
word are defined and used in the
attached console listing. They are
shown on a Forth-79 system, and work
on other types of systems as well.
Standard words are proposed in
conclusion, as well as a math puzzle.

The word WITHIN1 is the first
definition which comes to mind. The
test value comes first (lowest on the
stack), followed by the low and high
range values. Take a look at the code
before reading on. After WITHIN1 has
executed, a true value on the stack
indicates that the test value was within
range. This version shines when used to
edit dates or analog control settings.
The phrase DUP 1 12 WITHIN1 keeps the
month value, then stacks true if okay.
Likewise, AGE 13 19 WlTHlNl establishes
a teenager.

We could have stopped right there,
and that WITHIN would have become
standard. But two forces have caused
other versions to appear: Forth
DO ... LOOP parameters use a limit value
one higher than the highest manifest
index (because this is very convenient
when ALLOT@ and using zero-origin
subscripts), and the words ?ERROR and
ABORT" use a true value to signal error.

The word WITHIN2 uses this limit
idea. Give that word the value to test,
the lowest allowed value, then one
more than the highest value. The result
is then, algebraically: low I n < limit.
The month phrase becomes DUP 1 13
WITHIN2 IF . .I' IS A MONTH " THEN. This
seems to be what Forth, Inc. uses.

Now suppose you wish to ABORT"
when a range check fails. The sequence
WITHIN2 NOT yields a true when the
range check fails, so ABORT" or ?ERROR

0 (WITHIN WITHIN)

1
2 : W:ITH'INl (n \ l o w \ h i g h tri.je ok.)
3 ':..R 1.- OVER .:' SWAP R.:. 1+ AND ;
4 : W:ITt-I:tN2 (i - ~ \ l o w \ l i n i t , t r u e ok.
, ::H 1- OVE:R .::: SWAP R::. AND ;

6
7 : WITHIN3 (n\low\l:in:i.t. t r u e bad)

9 : WI.TH:IN~ (t-,\:i:ifi.it\iow -- true had)

€1 ?.R []VER :r. R':. 1- ROT .:' OR ;

1 0 ::.R 1- [)VE:R ..: SWAP R::.. OR ;
11
1 2 : C4I 6 -5 CR DO I t I -2 1 WITHIN1 + SPACE LOOP ;
1 3 : W ? 6 -5 CR DO I + I -2 ? W I l H I N Z SPACE LOOP ;
1'1 : W3 6 -5 CH DO I + I -2 2 WITHIN3 t SPACE LOOP ;
15 : W4 0 -5 C:R DO :I , I 2 --2 W:ITHIN4 + SPACE LOOP ;
3 DUF' '1 12 WITHIN1 . . 1 3 O K
12 DlIF' 1 1 2 WITHIN1 . + 1 12 OK
1 2 DUP 1. 1 2 WITHIN? . . 0 12 O K
12 [)ill:' 1 1 2 WITHIN3 . . 1 1 2 OK
12 DUF' 1 2 I WITHIN4 . , 1 1 2 OK
W 1 w2 W3 W4
- 5 0 - - - 4 0 . - 3 0 - 2 1 - 1 1 0 1 1 1 2 0 3 0 4 0 5 0
- 5 0 - 4 0 .-30 . - 2 1 - 1 . 1 0 1 1 1 2 0 3 0 4 0 5 0
- :; 1 - - 4 1 - 3 1 - 2 0 - 1 0 0 0 1 0 2 1 3 1 4 1 5 1
--5 1 - - 4 1 --3 1 - 2 0 -1 0 0 0 1 0 2 1 3 1 4 1 5 1 OK

: E:RRAN'r :>K 1.- C ~ J C K .:: SWAP :::.R ..: OR ; 01.:
FC1RGE:T ERRANT OK

0 0 0 E"?AN'T + 1 OK
: E:HRANT :.:.R 1.- OVER .:.: SWAF:' R::> ..:I OR r 01.:

o i o m R A N ' r . o [It:
: W:L'TH:tN 1.t SWAP E:RRANT NOT ; OK

0 1 12 WITHIN . 0 OK
1 1 12 WITHIN . 1 C)K

1 2 1 1 2 WITHIN . 1 O K
1 3 1 12 WITHIN + 0 OK

c1 t<

would then report the error and ABORT.
More kindly, the sequence WITHIN2 NOT
IF could be employed to correct the
errant value. These are frequent
scenarios for editing input, and bring
the definition WITHIN3. It is identical to
the one for WITHIN2 followed by NOT.

My personal preference is WITHIN4,
which 1 call ERRANT. This word takes
the range limit values in the same way
DO takes its parameters, and leaves its
result ready for ABORT". Define a word
which brings the DO parameters to the
stack, such as : PARTS 39 0 ; Then the

PARTS ERRANT ABORT" OUT OF RANGE! "
phrases PARTS DO or PARTS-. or DUP

come naturally.
An aside: the definitions of WITHIN2

and WITHIN4 are mysteriously similar.
They provide a rare glimpse of a non-
trivial theorum result. Could George
Boole have proved the definition of
WITHIN4, given that of WITHINS?

I haven't seen a definition where the
test value comes last, such as (low-limit

n -- tf). Range limit values seem like
constants and are conveniently
specified af ter the test value.
Otherwise, one would code DUP 1 13
ROT WITHIN etc., which is more work
than necessary.

One of these words should become
standard, or mentioned in the optional
word set for standard usage. The first
one or the last seem to be better choices
than the others. If ERRANT (WITHIN4)
and WITHIN (WITHINl), as shown last in
the listing, were standard, then
newcomers could more easily structure
their applications.

Volume V. No. 5 31 FORTH Dimensions

CASE TEST 1 Letters (Continued from page 22)

A More General CASE OTHERWISE DROP
Figure One 3 7 BETWIXT SWAP

DUP I 5 OF

Dear Forth Dimensions:
Dan Lerner’s “CASE as a Defining

Word” inspired me to stir the pot one
more time. My version allows for range
testing at the expense of one extra cell
per case. Quite simply, mine works
thus:

The PFA points indirectly to the
OTHERWISE function to be executed. It
points directly to the limit of a + 6
mop which steps through a table test-
ing the case index. An example will
make this clear - the code in figure
one compiles as shown in figure two.

BETWIXT compiles exclusive limits
for testing and a CFA. OF sets up ex-
clusive limits for a single case and uses
BEMTIXT. QTHERWISE compiles the CFA
of the default case and puts a pointer
to it in the PFA of the structure.

I plan to implement the DOES>
portion of CASE as a ;CODE structure.

nTESTl l l lcccc A A W 0006 0004 (DUP) 0007 0003 (SWAP) (DROP)

NFA LFA CFA PFA
I---------)----------------)-----------’

Figure Two

SCR #17
Q (CASE AS A DEFINING WORD MAS 83.10.28)

1 : CASE CREATE HERE 0 , DOES> DUP 3 3 ROT ROT
2 W P 3 SWAP 2+ DO W P I 23 WITHIN I F
3 ZDROP I 4 + a Q LEAVE THEN
4 6 +LOOP DROP EXECUTE ;
5 : BETWIXT , , C C W I L E 3 ’ CFCI , ;
6 : OTHERWISE HERE SWAP ! CCOWILEI ’ CFA , EXIT ;
7 : OF 1 - DUP 2+ BETWIXT 8
8 EXIT
9

10 (Note, WITHIN performs an exc lus ive range test where the
11 stack p i c t u r e i s thus: (n, l o u e r . l i m i t , u p p e r - l i m i t - f)

12

FIG model systems will use an extra OTHERWISE to protect against incom-
cell because of the implementation of plete structures (for instance, a CASE
the DOES> structure, but will run just structure with only the OTHERWISE part
the same. could crash the system at run time).

Modifications that could be made to Martin Schaaf
this code include: inclusive range test- 32 Crest Rd.
ing, testing for outside of a range, un- San Anselmo, CA 94960

As is, though, the structure is signed tests, machine code (for speed)
transportable across Forth systems. and error checking in CASE and

FORTH Dimensions 32 Volume V, NO 5

FORML 1983: A Review

The Fifth FORML Conference took
place, as usual, in the lovely Asilomar
Conference Center near Monterey,
California. Of the seventy attendees,
twenty were guests who came simply to
enjoy the Thanksgiving holiday among
friends, deer and racoons, separated
from the Pacific Ocean only by a few
yards of sand dunes and rare cypress.
The setting was spectacular and the
program of keen interest, but there is
no doubt that much of the value of the
annual affair lies in the interaction be-
tween attendees. The conference at-
mosphere and the calm physical sur-
roundings create an environment in
which ideas can grow and find con-
structive criticism. Interchanges can be
rapid-fire and direct, and participants
benefit from the broad perspective
found among fellow attendees.

All this is, naturally, leading some-
where. FORML is much more than lis-
tening to dry recitations for three days.
To find out just how much more it is,
you really have to go and participate in
the collision of opinions and facts, ex-
periences and philosophies. That ex-
perience would seem to be as much a
part of FORML as the sharing of
knowledge, techniques and code.

Following are the recollections of
several conference participants. The
large amount of material presented at
FORML precludes anything but a
thumbnail sketch in these pages. As al-
ways, the papers will be published in a
book later this year, along with addi-
tional material not yet seen - even at-
tendees who received a conference
binder should keep an eye out for the
published proceedings.

Forth Implementations
Reviewed by Roger Wallace

Four papers on Forth implementa-
tions were contributed to this session:
1) Timothy Huang, “First Chinese
F o r t h - A Doub le -Heade r
Approach.” 2) Ray Duncan, “8086
Forth+ - A 32-Bit Forth Implemen-
tation for the Intel 8086/88 Micropro-
cessor.” 3) Michael A. Perry, “F83 -

A Public-Domain Model Implementa-
tion of the Forth-83 Standard.” 4)
Harvey Glass, “The Implementation
of Extensions to Provide a More Writ-
able Forth Syntax.”

Ray Duncan was not able to give his
paper but, fortunately, his written ex-
planation of his thirty-two-bit 8086/88
implementation is fairly detailed. He
explains why this thirty-two-bit
Forth+ runs slower than the 16-bit
8086 implementation.

Huang’s paper on Chinese Forth was
delivered by Mike Perry, who has
worked in Taiwan on this project, and
who even attended a FIG meeting
there. This implementation is called,
“Dai-E Forth, Level 11,” and it ad-
heres to the ’83 Standard. Mike gave a
very lucid explanation, which is largely
contained in the written report. The
goal of this work is to produce a “word
processor” in Chinese in Forth. Since
grade schools are attended six days a
week for ten hours per day, there is
ample time for extensive computer
training. While there is a phonetic al-
phabet used in the earlier grades, the
goal of this work is to provide software
for adult use, which can manipulate
the classic Chinese characters.

It seems that most Chinese adults
have largely forgotten, or at least
ceased to actively use, the phonetic al-
phabets. There is a different thirty-
seven-letter and five-tone symbol pho-
netic alphabet used on Taiwan and on
the mainland. The alphabet used on
Taiwan is called the “BER PER MER
FER,” after the sound of the first four
characters. Each English Forth word
was translated to a Chinese phrase of
more than two characters, in order to
avoid the homonym (different charac-
ter with identical pronunciation) prob-
lem, which is severe in Chinese. The
English math operators and characters
(such as ; : , and [) are preserved.

A separate header and body ap-
proach proposed by Klaus Schleisiek
(Forth Dimensions II/5) allows a dou-
ble set of headers, one English and one
Chinese, to be used. A complete list of

the Forth-83 Standard words is in-
cluded, with both the Chinese charac-
ter and the Chinese phonetic letters
listed.

Then Mike Perry changed hats and
presented his own contribution, de-
scribing the public-domain model of
the Forth-83 Standard. He described
the philosophical reasoning which in-
duced him to provide a relatively so-
phisticated public-domain model (com-
pared to the bare-bones F79 model).
He is hoping to derive greater public
acceptance for F83, since a new user
can immediately have available a good
full-screen editor, assembler, debug-
ger, decompiler, source screen locator,
compile error locator, shadow-screen
manager, screen printing utility and
other utilities which will make one’s in-
doctrination to Forth much more plea-
sant. About forty bugs have been
found in this ’83 Model, none of which
are serious. Next Spring, Mike will is-
sue a version correcting as many bugs
as are reported by that time.

F83 even includes a simple multi-
tasker. All told, there are 420 screens.
The blocks are embedded in CP/M
files. An important feature of this very
interesting new F83 model is that it is
issued by an organization founded by
Mike, called “NO VISIBLE SUP-
PORT SOFTWARE.’’ It is his belief
that this is the only way he can provide
this software without spending the next
few years on the telephone, holding
hands.

Professor Harvey Glass gave an ex-
cellent talk on extensions which make a
more writable Forth syntax. These ex-
tensions provide a programming syn-
tax which requires no explicit para-
meter stack operations. There is
straightforward recursive capability
and a simple way of handling forward
references. These extensions are imple-
mented entirely in high-level Forth,
and make the new dialect read much
like a reverse-Polish version of Pascal
or ALGOL. The result is both more
readable and more writable. The exten-
sions to Forth and their implementa-

Volume V, No 5 33 FORTH Dimensions

tion, described in this paper, provide a
dialect of the language that is useful
for both veteran Forth programmers
and for those not now familiar with
Forth.

Naturally, there was extensive dis-
cussion between the audience and Mike
Perry and Professor Glass about these
extremely interesting presentations.

Programming Techniques
Reviewed by Robert Berkey

As an implementor of Forth systems,
the conference session on program-
ming techniques will continue to hold
special interest for us. That this is true
for others was indicated by the large
number of papers (nine) presented by
the authors and distributed in the
conference binders.

Mike Perry’s paper, “A Simple Mul-
ti-Tasker for Forth” presented the
multi-tasker drawn from the public-
domain system he created with Henry
Laxen. For a public-domain system,
multi-tasking is a notable feature. In
classic Forth style, this multi-tasker
uses round-robin, as opposed to time-
slice, scheduling. One of the exciting
innovations here are two words, MULTI
and SINGLE, which enable and disable
the round-robin loop.

Our own paper, “COMPILER and
INTERPRETER Co-routines,” develops
an idea from Robert Patten. He is one
of the wellsprings of Forth innova-
tions, but, because he is so generous
with his ideas, gets less credit than he
surely deserves. This particular idea
addresses problems experienced by sys-
tems in which] (right bracket) is used
as the compiler loop. First impressions
are that this technique of making the
compiler loop and the interpreter loop
work as co-routines may entirely re-
place the usage of right bracket as the
compiler loop. It will also get usage in
systems in which the two loops had
been combined, as Guy Kelly plans to
do with his PC public-domain system.

Kim Harris and Michael McNeil
have teamed up to tackle multiple exit
loop issues in the paper, “Proposed
Extensions to Standard Loop Struc-
tures.” As we work with these gentle-
men, we know that tradeoffs are still
being weighed and that constructive in-
put is entertained. For example, should
each exit have its own, independent ter-

mination body? For programming
usage, we are ready for these capa-
bilities.

Wil Baden is well known among
Orange County FIGgers, but as a Nor-
thern California resident, it was our
pleasure to make his acquaintance at
this year’s FORML. His paper,
“Modern Control Logic,” discusses
THENIF, a new control st-ucture name
which, when used, eliminates the many
THENs which from time to time appear
at the end of certain colon definitions.
In an example, he shows how this also
unclutters other cases of IF statements.
He also implements LEAVE, which
leaves from BEGIN loops, and EXIT,
which exits from DO loops. Wil later
showed us his new public-domain sys-
tem which incorporates these tech-
niques.

Klaus Schleisiek, as usual, would get
any awards for having come the far-
thest distance - West Germany. He
has again taken on a major Forth top-
ic, this one being “Error Recovery,”
for applications. His technique, unlike
ABORT, ABORT“ or QUIT, allows
controlled recovery from any variety of
error conditions.

The timeliness of this topic shows in
Don Colburn’s paper, “User Specified
Error Recovery.” Don shows how his
multi-FORTH can alter the behavior
of ABORT” but still allow error handlers
to be nested by saving data on the re-
turn stack. Although clearly a different
solution than Klaus’, there is a remark-
able similarity of ideas in these two
papers, and interested readers will
want to analyze both.

Chuck Moore might not have much
interest in this paragraph, as he runs
his entire CAD-CAM in 28K, but those
of us who are memory gluttons will
want to know about Glen Haydon’s
overlays t i t led, “Vir tual
Vocabularies. ’ ’ Pre-compiled
vocabularies are kept on disk and, as
needed, are made available and ex-
ecuted in the V-BUFFER.

Tom Zimmer’s “Improved Block
Maintenance” also has a memory pro-
blem, but his attention has been fo-
cused on mass storage. What do you
do if half of your data is spaces? The
answer is to compress those spaces.
And while doing so, you create a block
access structure that also allows con-
venient insertion of new blank screens

in the middle of other blocks, and also
allows automatic backup copies of
edited screens. Then you write a
FORML paper which also points out
that this can be implemented from
scratch in half a day.

The final paper, “Tail Recursion
Convoluted or Return Stack Optimi-
zation”, by Glenn Tenney is, logically
enough, at the tail end of the other
papers in this session. Glenn is remem-
bered by conference attendees for his
unobtrusive video taping of the con-
ference sessions. About his paper,
when the last word in a colon defini-
tion is itself a colon definition, the
word ;; can be used in place of ;. ;;
backs up and converts the docolon call
and the exit into a branch which, when
used in speed-critical code, will
produce a useful time savings without
penalty.

Thanks to Mike, Jonathan and Mar-
lin for Frisbee on the beach at sunset.
[Editor’s note: It was cold, windy and
rainy, but great fun with good friends!]

Arithmetic and Floating Point
Reviewed by Sidney Bowhill

Five papers were presented in this
session. In the first, Charles Springer
investigated the use of rational arith-
metic, in which fractions are represent-
ed by relatively prime integers in the
numerator and denominator. This has
the advantage that the answers to ma-
thematical calculations are given exact-
ly, without approximation. However,
he found that in summing a simple
series, the numerator and denominator
soon overflow, typically after ten or
eleven terms.

Jonathan Sand described the excep-
tion handling in the IEEE Floating-
Pcht Standard. The exception require-
ments are for overflow, underflow,
inexact, division by zero and invalid
operation. He has implemented the
traps for these exceptions as Forth vari-
ables, and he described formats to
invoke a trap, assign a name, inable,
disable and test for enable/disable. As
part of the trap handler, the floating-
point accumulators and the address of
the current operation are saved as vari-
ables. All enabled traps are invoked
during the final rounding procedure.
He also described the use of these traps

FORTH Dimensions 34 Volume V, No. 5

in the interactive mode during the de-
bugging phase.

Sidney Bowhill presented two pa-
pers. The first gave a set of screens that
can be compiled to give a floating-
point system for the MOS Technology
6502 at any precision in the mantissa
from two to fifteen bytes. The
machine-language code is based on a
239-byte segment published by Steve
Wozniak in 1976, T h e For th
implementation uses a fifteen-deep
floating-point stack and two floating-
point accumulators, all in the
dictionary. Execution speed of the
system at low precision is comparable
to or better than existing commercial
packages. Multiplication of two
floating-point numbers with eight-byte
mantissa precision takes sixteen msec.

In a second paper, Bowhill discussed
the problems of implementing trans-
cendental functions in a variable-pre-
cision floating-point Forth system. The
conventional approach using polyno-
mial approximations is impractical,
since a different set of coefficients
would be required for each precision.
He found that power series were ade-
quate for exponential, sine and cosine,
since the denominators of the coeffi-
cients are factorial in form; for the
arctangent function, a continued-frac-
tion approach was found satisfactory.
For the logarithm, it was first necessary
to produce an argument in the range
one to 1.414, following which a
modified power series could be used.

Klaus Schleisiek presented a paper
with Uwe Lange in which the logarithm
of a number could be extracted one bit
at a time. This algorithm seems worth
exploring as being possibly faster than
the power-series approach.

A panel discussion covered, among
others, the topics of whether a
floating-point system should be
regarded as an indispensable part of a
Forth package (the predominant view
was affirmative); whether floating-
point numbers should be placed on the
parameter stack, or their addresses
placed on the parameter stack, or they
should be part of a separate floating-
point stack (the predominant view was
the latter); and the usefulness of
hardware floating-point chips such as
the AMD 951 1 and the Intel 8087.

File Systems
Reviewed by Ray Talbot

The session on file systems began
with a presentation by P. Morton on
his data security and file management
system. This is a package written in
high-level Forth (MVP dialect). The
FMS is a general, fairly standard file
system, which is designed to function
within a Forth block environment. The
main interest of those present lay in the
data security aspect, as that is not a
standard feature of most file systems,
much less Forth. The FMS has auto-
matic procedures for maintaining in-
tegrity of data files, even through
events such as power failures.

W.M. Bradley discussed his propo-
sals for a portable file system interface.
This is a set of Forth words which may
be used to interface with host operating
systems (e.g. CP/M, UNIX, MS-DOS,
etc.) or as a framework for a pure
Forth system. The proposed system is
patterned after the C I/O interface to
UNIX. In addition to the pros and
cons of a Forth file system and the jus-
tification for the proposed word set, he
presented two full source code imple-
mentations - one for CP/M-80 and
one for 68000 UNIX. Both are largely
high-level and, hence, transportable.

P. Midnight discussed a generaliza-
tion of the CP/M file system interface
employed in the Laxen and Perry F83
implementation. The scheme employs
file control blocks which permit more
flexible access to multiple host files
and/or internal Forth files.

There was general discussion on the
usual range of file-related topics, the
basic question being, “lOB-byte,
fixed-length blocks: are they good or
bad?” The answer was, “Yes.” There
was some sentiment that source code
text not be restricted to fixed-length
blocks, but that fixed blocks are good
for data files.

In general, file systems in Forth seem
to be a gradually accepted necessity for
viability in the marketplace.

TAKE
FORTH

TO WORK

NOW YOU CAN RUN

FORTH ON THE OFFICE

IBM MAINFRAME. GIVE

YOURSELF THE FORTH

ADVANTAGE ON THE

JOB!

FORTH/370
for large IBM and

equivalent computers

IBM 370, 4341, 3033, etc.
Based on fig FORTH
Program compatible with

Editor and Assembler
R u n s under VM/CMS or
MVS/TSO

32 bit word, 64 bit double
word and floating point
Files compatible with host
operating system

micro FORTH systems

FORTH/370 IS AVAIL-
ABLE ON A 30 DAY FREE

TRIAL. ONLY ONE LI-

CENSE FEE OF $1350.

REQUIRED FOR ALL OFA

FIRM’S CPUs.

Source code may be
pu rch ased.

WARD SYSTEMS GROUP
8013 Meadowview Drive
Frederick, Maryland 21 701

(301) 695-8750

Volume V, No. 5 35 FORTH Dimensions

MVP-FORM Software - A Transportable FORTH
0 MVP-FORTH Programmer's Kit including disk, documen-

tation, VOlUmeS 1 & 2 of MVP-FORTH Series (All About
FORTH, 2nd Ed. & Assembly Source Code), and Starting
FORTH. Specify 0 CPIM, 0 CP/M 86, 0 CP/M+, 0 APPLE,
0 IBM PC, 0 MS-DOS, 0 Osborne, 0 Kaypro, 0 H891Z89.

& 0 ZIOO, 0 TI-PC. 0 MicroDecisions. 0 Northstar, * 0 Compupro, 0 Cromenco, 0 DEC Rainbow $1 50

FORTH MSKS
FORTH with editor, assembler, and manual.

0 APPLE by MM $100 0 280 by LM $1 00
0 APPLE by Kuntze $90 0 8086188 by LM $1 00
0 ATARl' valFORTH $60 0 68000 by LM $250
0 CPlW by MM $100 0 ViC FORTH by HES. VIC20
0 HP-85 by Lange $90 cartridge $50

+& 0 HP-75 by Cassady $1 50 0 CB4 by HES Commodore 64
0 IBIM-PCO by LM $100 & $60
0 NOVA by CCI 8" DS/DD$175'0 by HW $25

Enhanced FORTH with: F-Floating Point, G-Graphics, T-Tutorial,
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking. X-Other
Extras, 79-FORTH-79, 83-FORTH-83.
0 APPLE by MM, 0 Extensions for LM Specify

F, G. & 83 $160 IBM, 280, or 8086
ATARI by PNS. F,G, 8, x. $90 0 Software Floating

$1 00 0 CPlM by MM, F & 83 $1 60
0 Apple. GraFORTH by I $75 (IBM-PC or 8086) $1 00
0 Multi-Tasking FORTH by SL.

CPIM, X & 79 $395 (Z80 or 8086) $1 00

opf:i7 Support

0 951 1 Support

0 TRS-8011 or 111 by MMS 0 Color Graphics
F. X. & 79 $1 30 (IBM-PC) $1 00

0 Data Base
$200

0 Tlmex by FD. tape G,X,

0 Victor 9000 by DE.G,X $150

Management
$45 Requires LM FORTH disk

& 79

0 flg-FORTH Programming Aids for decompiling, callfinding,
and translating CPIM, IBM-PC. 280, or Apple $1 50

CROSS COMPILERS Allow extending, modifying and compiling for
speed and memory savings. can also produce ROMable code *Requires
FORTH disk
0 CP/M $300 0 IBM. $300
0 8086- $300 0 280. $300
0 68000- $300 0 Apple 11/11 + $300

FORTH COMPUTER
0 Jupiter Ace $1 50
0 16K RAM Pack $50
0 48K RAM Pack $1 25

Koy to vendors:
CCI Capstone Computing Inc
DE Dai-E Systems
FD Forth Dimension
HW Hawg Wild Software

LM Laboratory Microsystems
MM MicroMolion
MMS Miller Microcomputer Services
PNS Pink Noise Studlo
SL Shaw Labs , ,.._Y

0 MVP-FORTH Cross Compiler for CP/M Programmer's Kit
Generates headerless code for ROM or target CPU $300

0 MVP-FORTH Meta Compiler for CP/M Programmer's kit Use
for applicatons on CP/M based computer Includes public
domain source

0 MVP-FORTH Fast Flostlng Pdnt Includes 951 1 math chip on
board with disks. docurnentation and enhanced virtual MVP-
FORTH for Apple 11, II + , and Ile

$1 50

$450

0 MVP-FORTH Rogramming Aids for CP/M. IBM or APPLE
Programmer's Kit Extremely useful tool for decompiling,
callfinding, and translating $1 50

$1 00
0 MVP-FORTH by ECS for IBM-PC or ATARP Standalone with

screen editor License required

0 MVP-FORTH by ECS for IBM-PC or ATARl With color
animation, multitasking sound, utilities, and license $1 75

0 MVP-FORTH Professional Application Development System
(PADS) for IBM-PC, or APPLE A three level integrated
development system with complete documentation $500

$80
,@I 0 MVP-FORTH Expert System for development of knowledge-

based programs for Apple, IBM, or CP/M
+.# 0 MVPFORTH File Management System (FMS) with interrupt

security for IBM, Victor 9000, or CP/M $200

THE FORTH SOURCE^^
M V P - FO R TH
Stable - Transportable - Public Domain - Tools
You need two primary features in a software development package a
stable operating system and the ability to move programs easily and
quickly to a variety of computers MVP-FORTH gives you both these
features and many extras This public domain product includes an editor,
FORTH assembler tools utilities and the vocabulary for the best selling
book Starting FORTH The Programmer's Kit provides a complete
FORTH for a number of computers Other MVP-FORTH products will
simplify the development of your applications

0 Volume 1, All about FORTH by Haydon MVP-FORTH
MVP Books - A Series

glossary with cross references to fig-FORTH, Starting FORTH
and FORTH-79 Standard 2"j Ed $25

0 Volume 2, MVP-FORTH Assembly Source Code Includes
CP/M@ IBM-PC@ and APPLE@ listing for kernel $20

+& 0 Volume 3, Floating Point Glossary by Springer $1 0
0 Volume 4, Expert System with source code by Park $25
+& 0 Volume 5, File Management System with interrupt security by

Moreton $25

I IKlhL'

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (41 5) 961 -41 03

FORTH MANUALS, GUIDES dr DOCUMENTS

0 ALL ABOUT FORTH by 0 1980FORMLProc. $25
Haydon. See above. 1981 FORML ~ o c 2 VOI $40

0 FORTH Encyclopedia by 0 1982 FORML Roc. $25
Derick & Baker $25 0 1981 Rochester FORTH &* 0 The Complete FORTH by Roc. $25
Winfield 1982 Rochester FORTH

0 Understanding FORTH by Roc. $25
Reymann $3+.d0 1983 Rochester FORTH

&I 0 FORTH Fundamentals, Roc. $25
Vol. I by McCabe $ I6 A FORTH Rimer $25

$25

&I 0 FORTH Fundamentals,

+@0 Beginning FORTH by

0 Threaded Interpretive

0 METAFORTH by
$23 Vol 11 by McCabe $1 3 Languages

Chirlian $17 Cnssndv $30 -~~ ------I

$7 Pocket Guide FORTH $25
0 Systems Guide to f lg 0 FORTH Encyclopedia

And So FORTH by Huang. A
college level text. $25 -
FORTH Programming by
Scanlon $1 7+&
FORTH on the ATARl by E

Starting FORTH by Brodie

available (soft cover) $18 0

Floegel $8 0

Best instructional manual 0

Invitation to FORTH
PDP-11 User Man.
FORTH-83 Standard
FORTH-79 Standard
FORTH-79 Standard
Conversion
Tiny Pascal Ilg-FORTH
NOVA fig-FORTH by CC

$20
$20
$1 5
$1 5

$1 0
$1 0

I
0 Starting FORTH (hard Source Listing $25

cover) $23 0 NOVA by CCI User's
,&U 68000 fig-Forth with Manual $25

525 +$* Vickers '$15
U Jupiter ACE Manual by assembler

0 Installation Manual for fIg-FORTH, $1 5
Source Listings of fig-FORTH, for specific CPU's and computers The
Installation Manual is required for implementation Each $1 5
0 1802 0 6502 6800 0 AlphaMicro
0 8080 0 8086/88 0 99M) 0 APPLE I1
0 PACE 0 6809 0 NOVA 0 PDP-Il/LSI-l l

68000 Eclipse VAX 280

Ordsrlng Inlormallon: Check Money Order (payable 10 MOUNTAIN VIEW PRESS
INC) VISA MasterCard American Express COD s $5 exba Minimum order $1 5
NO billing or unpaid Po s California residents add sales tax Shipping costs in US
included in price Foreign orders pay 'r US funds on US bank include for handling
and shipping by Air $5 for each item under $25 $1 0 for each item between $25 and
$99 and $20 for each item over 51 00 All prices and products subect to change or
withdrawal wlthout notice Single system andlor single user license agreement
recuired on some Droducts

i

Volume V, No 5 FORTH Dimensions 36

Tech n i q u es Tutorial

MultilTasking, Part II

Henry Laxen
Berkeley, California

Last time, we saw how to implement
the low-level portion of a multi-tasker.
We learned that, in Forth, tasks must
cooperate with each other and give up
control of the CPU at various points.
We saw how the PAUSE and RESTART
words work and how they very effi-
ciently save the status of a task and re-
store it. This time, we will take a look
at how to create tasks and, once start-
ed, how to manage them.

Just for the record, let me restate
that tasks are linked together in a cir-
cular list via the LINK user variable. A
task is active if the ENTRY user variable
contains an RST instruction, and is in-
active if it contains a JMP instruction.

The human (I want to say user but
will refrain) interface to this mechan-
ism is displayed in figure one. Let’s
take a look at what each word does and
how it works. First, LOCAL is a tool that
allows one to access a USER variable
within a specified task. It just com-
putes the actual address of a user vafi-
able, given the starting address of the
required task. SLEEP installs a NOP
machine instruction into byte zero of
the ENTRY user variable. Since byte one
contains a JMP instruction, the effect
of SLEEP is to guarantee that the next
task will get control immediately with-
out this task doing anything. Notice
that there is only one instruction (a
JMP) executed for each inactive task.
This is extremely low overhead. The
WAKE word is the inverse of SLEEP. It
installs an RST instruction into byte
zero of ENTRY. This will eventually
cause the RESTART word to be executed,
and awaken this task. Finally, the STOP
word simply puts the current task to
sleep and passes control to the next
task. WAKE and SLEEP both require an
argument, which is a pointer to the
task that they are to act on, while STOP
acts on the current task and, hence,
requires no argument. The names for
these functions are extremely apt and I
wish the credit for them was mine; but

1 : LOCAL (S base addr -- addr ’)
2 U P @ - + :
3 : S L E E P (S addr --)
4 0 (NOP) SWAP ENTRY LOCAL C! ;
5 : WAKE (S addr --)
6 2 0 7 (R S T) SWAP ENTRY LOCAL C! :
7 : S T O P (S --)
8 U P @ S L E E P PAUSE :

Figure One

1
2
3
4
5
6
7
8
9

1 0 :
11
1 2
13
1 4

TASK: (S s i z e --)
CREATE TOS HERE #USER @ CMOVE (C o p y t h e User A r e a)
HERE ENTRY LOCAL L I N K ! (I p o i n t t o h i m
ENTRY UP @ -ROT HERE UP ! L I N K ! (H e p o i n t s t o me)
DUP HERE + DUP RPO ! 100 - SPO ! SWAP UP !
(R e s e r v e space f o r r e t u r n s t a c k)
HERE #USER @ + HERE DP LOCAL !
HERE S L E E P ALLOT ;

SET-TASK (S i o t a s k --)
DUP SPO LOCAL i
2- ROT OVER ! (I n i t i a l I P)
2- OVER RPO LOCAL @ OVER ! (I n i t i a l RP)

(t o p of s t a c k)

SWAP T O S LOCAL ! ;
1 5
1 6 : ACTIVATE (S t a s k --)
17 R> OVER SET-TASK WAKE ;

Figure Two

1 400 TASK: COUNTING
2
3 VARIABLE #TIMES
4
5 : COUNTER COUNTING ACTIVATE BEGIN 1 # T I M E S +! PAUSE AGAIN :
6
7 COUNTER

Figure Three

I am afraid they belong to Charles
Moore. Thank you, Chuck.

Now that we know how to start and
stop tasks once they exist, let’s take a
look at what must be done to set up a
task in the first place. The code associ-
ated with this appears in figure two.
The TASK: word sets up a task of a spe-
cified size. The SET-TASK word initial-
izes a task so that it is ready to run and
the ACTIVATE task allows you to
associate a high-level definition with
the task. Let’s look at each word in
more detail.

Tasks are allocated as part of the dic-
tionary. Also, each task must have its
own user area, return stack, parameter
stack and dictionary space. This setup
is handled in TASK, which is a defining
word that creates a task with a given
name and of a specified size. When the
name of the task is executed, it returns

a pointer to itself. A simple CREATE
suffices for this function, since the
word it defines returns its parameter
field address.

Next, a copy of the current task’s
USER area is copied to the new task. On
line two we set up the current task’s
LINK pointer to point to the new task,
and on line three we make the new task
point to the old entry point of the cur-
rent task. We also save a pointer to the
current task on the stack. On line five
we set up the size of the return stack
and the empty parameter stack of the
new task, and restore the User Pointer
to point to the current task. On line six
we initialize the new task’s dictionary
pointer and, finally, on line seven we
put the new task to sleep and allocate
space for it in the dictionary of the cur-
rent task.

Volume V. NO. 5
~ ~~

37 FORTH Dimensions

SET-TASK sets up a task for its first
execution. It places the initial values of
the IP and the return stack pointer on-
to the new task’s parameter stack, and
stuffs the new task’s initial parameter
stack value into the TOS user variable
for the new task. In essence, SET-TASK
behaves as though the new task has just
done a MUSE, and is ready to do a
RESTART. This is what you would
expect. Finally, ACTIVATE uses SET-TASK
to make the new task point to the code
following the ACTIVATE word, and
WAKES up the new task.

Last but not least, let’s see how we
actually set up another task. Figure
three illustrates this. On line one we
define a COUNTING task and allocate
400 bytes for its use. On line three we
simply define a variable called #TIMES
which will hold the number of times we
have counted. Line five defines a word
called COUNTER which specifies that the

COUNTING task is to be ACTlVAlEd by
explicit use of the MUSE word. This is
absolutely vital, since this task per-
forms no I/O, hence it must explicitly
give up control of the CPU at specified
moments. To start running the task,
simply execute the word COUNTER.
Now you can watch the behavior of the
task by periodically displaying the con-
tents of the variable #TIMES. You will
be able to see it incrementing very ra-
pidly. If you want to stop the new task
from executing, you need only type
COUNTING SLEEP. Again, you can query
the value of #TIMES and, indeed, verify
that the task has suspended operation.
To start it up again, just type COUNTING
WAKE and you will once again be able
to see the variable %TIMES
incrementing .

This has been an extremely simple
example of a background task. Other
applications can be far more useful.

Chapter News
John D. Hall

Oakland, California
talk on a code compiler program/ar-
ticle he has been working on. He pro-
mises it will be submitted to Forth
Dimensions soon. We have four new chapters!

Central Indiana FIG Chapter
Indianapolis, Indiana Melbourne Chapter

Detroit Atari FIG Chapter
Detroit, Michigan

Cleveland FIG Chapter
Cleveland, Ohio

Iowa City FIG Chapter
Iowa City, Iowa

Cleveland Chapter

November 22: At the first meeting of
the chapter, there was an excellent
turnout of thirteen local FIG members
and three non-FIGgers. The meeting
was mostly organizational, but they
took time out to introduce each other
and to find their common interests.
Gary Bergstrom, who did the leg work
to get this chapter started, gave a short

September 22: At the chapter meet-
ing, some inconclusive discussion on
screen transfers was due to the leading
lights of the previous meeting not ap-
pearing at this one. However, Wesley
Summers worked away in the back-
ground and got some transfer code
working.

October 7: After a change of venue
to Paul Fraser’s house, Paul showed
the group his AussieByte board and
Lance Collins talked about his screen-
less Forth developments.

November 4: The chapter had a joint
meeting with the Hitachi Peach Users
Group at Templestowe Technical
School. Graeme Hedley gave a very
good talk on 6809 Forth. He also
showed a speech synthesis system done
by a graduate student (in Forth, of
course) at Latrobe University.

For example, you can use the multi-
tasker as a mechanism for implement-
ing print spooling and windowing, as
well as pipes and filters. I hope these
two articles on multi-tasking are a
starting point for your own experimen-
tation. Until next time, may the Forth
be with you.

Copyright 0 1983 by Henry Laxen.
AN rights reserved. The author is Vice-
President of Research and
Development for Paradise Systems,
Inc., 150 North Hill Drive, Brisbane,
CA 94005, manufacturers of the
MultiDisplay Card for the IBM-PC
and other computer-related products.

Detroit Atari Chapter

October: The first order of business
was to elect officers. Tom Chrapkie-
wicz was elected manager and Todd
Meitzner was elected assistant man-
ager. Copies of the various public-do-
main Forths were made for those re-
questing them. An informal discussion
of the various versions of Forth avail-
able followed. Almost every version of
Forth for the Atari computer was re-
presented. The most popular versions
seemed to be VALFORTH, APX and
the Bay Area public-domain versions.
The group elected, for discussion pur-
poses, the FIG-Forth standard, which
will be compatible with these Forths.

Todd Meitzner demonstrated a kalei-
doscope program and a Rubik’s Cube
display program. The source code for
these two programs was discussed. The
chapter’s first endeavor for future
meetings will be to run a tutorial on
Forth using Starting Forth by Leo
Brodie.

(Continued on next page)

FORTH Dimensions 38 Volume V, No. 5

Orange County Chapter

October: The group took up the diS-
cussion of Forth-83 with Bob Snook,
pointing out the pitfalls of the new
truth flag. Further discussion followed
about the articles in Forth Dimensions
and Dr. Dobb’s Journal by Wil Baden.
To get the newer members of the group
up to speed in Forth, Roland Koluvek
gave a tutorial about the FIG-Forth
vocabulary structure presented in
Forth Dimensions, and reviewed again
the ONLY ... ALSO structure.

Northern California Chapter

November 26: Since this meeting was
so soon after the FORML sessions of
November 23-25, several FIG mem-
bers from out of town used the oppor-
tunity to visit and share their ideas. It ic

really very nice to have the new faces,
fresh ideas and lively discussions that
occur when guests drop in. Wil Baden,
from the Orange County Chapter, gave
us a talk about an 83-Standard Forth
he has for the Apple. It is a public-do-

main implementation and is available
from him. It has many extensions, in-
cluding an assembler, editor, debugger
and the directory structure he present-
ed in Forth Dimensions. Bob Berkey
presented an idea about how a change
to the null word could clean up much
of the problem with running out of in-
put while in the compile state.

In the afternoon session, the out-of-
towners introduced themselves. They
were Jon Rible from Massachusetts,
Pierre Morton from France and tem-
porarily in the Bay Area, and Wil
Baden from Orange County. (Wil
made the comment that he was asked
to be an officer of the Orange County
group, which he had to turn down; but
since he did so much preaching about
For‘5, he decided to accept the position
of “chaplain.”) During the Rumors
portion of the meeting, Dr. Ting
showed us a clock he has for sale. It
runs in “reverse-Polish” (backward).
A FORML report was presented, and it
seems each year FORML gets better
and better. There were nearly eighty in
attendance, with fifty participants.

After the FORML presentation,
Glenn Tenney, moderator, held a
“Doctor Is In” session and took writ-
ten questions from the audience. Some
of the questions were: “What is floor-
ed division?” “Can Forth handle in-
terrupts?” “What is the difference be-
tween [COMPILE], COMPILE and]?”
And, “Explain the text interpreter and
the inner interpreter.” Simple ques-
tions, right Glenn? He handled them so
well that he had to call for help only
once. Dr. Ting stepped in for the last
question, and when he was through, we
all had a new and much clearer insight
into the world of Forth interpreters.
Dr. Ting has promised to submit a
paper to Forth Dimensions on this
topic. Look for it in an upcoming is-
sue!

Chapters in Formation

Here are more of the new chapters
that are forming. If you live in any of
these areas, contact one of these people
and offer your support in forming a
FIG chapter.

Contact:

Michael Perry
1446 Stannage Ave.
Berkeley, CA 94702

Charles Shattuck
206 Irene Ave.
Roseville, CA 95678

Ron C. Estler
Ass’t. Prof. of Chemistry
Ft. Lewis College
Durango, CO 81301

Thomas Hand
617 Manor Place
Melbourne, FL 32907

John Forsberg Matt Lawrence
17740 SW 109th Place
Perrine, FL 33157 Austin, TX 78758

8409 Jamestown

305/252-0108 5 12/834-8455

Harvey Glass John London, Jr.
College of Engineering
Univ. of South Florida Richmond, VA 23219
Tampa, FL 33620

211 E. Grace St.

8041’233-7237

Ron Skelton Thomas C. Kuffel
1220 Winding Branch Circle
Atlanta, GA 30338 Seattle, WA 98155

18221 - 29th Place NE

404/393-8764

Arnold Pinchuk
2130 Menasha Ave.

Tony Sanger Manitowoc, WI 54220
1931 Sam’s Creek Rd.
Westminster, MD 21157
301 1875.291 5 Jean-Daniel Dodin

77 Rue du Cagire
31 100 Toulouse

Gary Zajsc France

Altoona, PA 16602
100 South Zajac Dr. 16-6 1 /44.03.06

Klaus Schleisiek
Richard C. Secrist P.O. Box 202264
Facility & Mfctr. Automation, Inc 2000 Hamburg 20
117 Flint Rd. West Germany
Oak Ridge, TN 37830 04103-13255

Lam, Kwak Yin F
Mass Transit Railway Corp.
GPO Box 9916
Hong Kong

Hugh Dobbs
Computer Studies Dept.
Newton School
Waterford, Ireland

Joan Verdaguer
Apdo. de Correos 24257
Barcelona
Spain

Dr. Robert Johnson
Institute of Physical Chemistry
Box 532, Uppsala Univ.
Uppsala, Sweden

Volume V, No. 5 39 FORTH Dimensions

FORTH INTEREST GROUP

MAIL ORDER

OMembership in FORTH Interest Group and
Volume V o f FORTH DIMENSIONS

g E a c k Volumes o f FORTH DIMENSIONS. Price per each.

IJI On 01u 0 1"
nfia-FORTH Installation Manual. containino the lanauaae model
I

o f fig-FORTH, a complete glo&ary, mem& map ind ?nstallation instructions

and machines. The above manual is required for installation.
Check appropriate box(es). R i per aach.

0 6 0 8 0 ~ 8 0 6 6 / 6 0 6 6 0 9 9 0 0 OAPPLE 11 UECLIPSE
GPACE JNOVA O P W - 1 1 ~ 6 6 0 0 0 O A L P H A MICRO

UAssembly Language Source Listings of fig-FORTH for specific CPLPs

01802 0 6 5 0 2 O 6 6 0 0 0 6 6 0 9 O V A X 0 2 8 0

4 " S t a r t i n g FORTH, by Brodie . BEST book on FORTH. (Paperback)
0 " S t a r t i n g FORTH" by Brodie. (Hard Cover)

fl 1980, $25USA/$35Foreign
,I 1981, Two Vol . , $4OUSA/$55Foreign
2 1982, 625USA/$35Foreign
ROCHESTER FORTH Conference a 1981, $25USA/$35Foreign

1982, $25USA/$35Foreign
1983, $25USAl$35Foreign T o t a l

PROCEEDINGS: FORML (FORTH Modif icat ion Conference)

- /l STANDARD: FORTH-79, cf FORTH-83. $15USAf$18POreign EACH. T o t a l
K i t t Peak Primer, by Stevens. An in-depth s e l f s t u d y book.

,TMAGAZINES c ABOUT FORTH: =BYTE Repr in ts 8/80-4/81
- 1 Dr Dobb's J r n l , 2 9/81, (2 9/82, 9/83

Poplar Computing, 9/83 $3.50USA/$5Foreign EACH. T o t a l
FIG T-sh i r t s : !I Small UMedium 3 Large flX-Large a Poster , BYTE Cover 8/60, 16"x22"

fl FORTH Programmer's Reference Card. I f ordered s e p a r a t e l y , send
a stamped, s e l f addressed envelope.

TOTAL

FOREIGN
USA AIR
$15 $27

$15 $18

$15 $18

$15 $18

$18 $22
$23 $28

$
$
$25 $35

$
$10 $12
$ 3 $ 5

Free

NAME MS/APT

ORGANIZATION PHONE()

CITY STATE ZIP COUNTRY

VISA# MASTERCARD#

AMERICAN EXPRESS# Card Expi ra t ion Date

Make check or money o r d e r i n US Funds on US Bank, payable to: FIG.
postage. No purchase o r d e r s without check. C a l i f o r n i a r e s i d e n t s add sales tax. 10/83

(Minimum of $15.00 on Charge Cards)

All p r i c e s i n c l u d e

OROER PHOlrE NulveEFzI (415) %286S3

FORTH INTEREST GROUP* PO BOX 1105 * SAN CARLOS, CA 94070

FORTH INTEREST GROUP
'?O. Box 1105
$an Carlos, CA 94070

Address Correction Requested

BULK RATE
U.S. POSTAGE

PAID
Permit No. 261
Mt. View, CA

