
Volume 5. Number 4
Novem berlDecem ber 1983

$2.50

n' I

U I sions

Multi-
Tasking
FEATURES

So Many Variables Michael Ham 5
Yet Another Number Utility David McKibbin 7
Manufacturing Cost Program Marc Perkel 9
Menu-Driven Software John Bowling 10
Vocabulary Tutorial, Part II Evan Rosen 14
Forth Froth ... Wil Baden 16
Vectored Execution and Recursion Roy W . Sommers 17
Apple Forth a la Modem R . D . Ackerman 19
Forth-83 Loop Structure Bill Stoddart 22

DEPARTMENTS
Letters ... 3
Editorial: Fifth Forth Fest .. 3
Tec h n i q u es Tutor i a I :

Multi.Tasking, Part I Henry Laxen 26
New Product Announcements .. 30
FIG Chapter News John D . Hall 31

b

THE FORTH SOURCETM
0 MVP-FORTH Cross Compiler for CP/M Rogrammer s Kit - MVP-FORTH

Lan also generatt
CPU YY""

Stable - Transportable - Public Domain - Tools
You need two primary features in a software development package a
stable operating system and the ability to move programs easily and
quickly to a variety of computers MVP-FORTH gives you both these
features and many extras This public domain product includes an editor
FORTH assembler tools utilities and the vocabulary for the best selling
book Starting FORTH The Programmers Kit provides a complete
FORTH for a number of computers Other MVP-FORTH products will
simplify the development of your applications

0 MVP-FORTH Meta Compiler for CP/M Programmers kit Use

$1 50

0 MVP-FORTH Fast Floating Point Includes 951 1 math chip on

for applicatons on CP/M based computer Includes public
domain source

board with disks documentation and enhanced virtual
MVP-FORTH lor Apple /I and Ile $450

L l MVP-FORTH Programming Aids for CP/M IBM or APPLE
MVP Books - A Series
C Volume 1, A// about FORTH by Haydon MVP-FORTH Programmers Kit Extremely useful tool for decompiling

callfinding and translating glossary with cross references to fig-FORTH Starting FORTH
and FORTH-79 Standard 2nd Ed $25

$1 50

C Volume 2, MVP-FORTH Assembly Source Code Includes 0 MVP-FORTH by ECS f w IBM-PC or ATARP Standalone with
CP/M@ IBM-PCm and APPLEB listing for kernel $20 screen editor License required $1 00

++d 3 Volume 3, NOating Point Glossary by Springer $1 0
$25

JI C Volume 5, File Management System with interrupt security by

0 MVP-FORTH by ECS for IBM-PC or ATARl With color ++d 0 Volume 4, Expert System with source code by Park

*' Moreton $25 U MVP-FORTH Professional Application Development System

animation multitasking sound utilities and license $1 75

MVP-FORTH Software - A Transoortable FORTH (PADS) for IBM-PC or APPLE A three level inteqrated system
with complete documentation. Complete system $400 0 MVP-FORTH Programmer's Kit including disk, documen-

tation. Volumes 1 & 2 of MVP-FORTH Series (A// About
FORTH. 2nd Ed. & Assembly Source Code), and Sfarting
FORTH. Specify 0 CPIM. 0 CP/M 86, 0 CP/M + , 0 APPLE,
0 IBM PC. 0 MS-DOS, 0 Osborne, 0 Kaypro, 0 H89/Z89,
0 21 00, 0 TI-PC. 0 MicroDecisions, 0 Northstar,

++d 0 MVP-FORTH Expert System for development of knowledge-

++d 0 MVP-FORTH File Management System (FMS) with interrupt

FORTH MANUALS, GUIDES & DOCUMENTS

based programs for Apple, IBM, or CP/M. $80

0 Compupro. 3 Cromenco $1 50 security for IBM. Victor 9000, or CP/M $200

FORTH DISKS
FORTH with editor, assembler, and manual.

0 APPLEby MM $1 00 0 NOVA by CCI 8" DS/DD$I 50 0 ALL ABOUT FORTH by C 1980 FORML Proc. $25
APPLE by Kuntze $90 0 280 by LM $50 Haydon See above $25 0 1981 FORML Roc 2 Vol $40

0 ATARP valFORTH $60 8086188 by LM $1 00 U FORTH Encyclopedia by 0 1982 FORML Roc. $25
Derick & Baker.
Programmer's manual to fig- Proc. $25

0 CPW' by MM 0 VIC FORTH by HES. VIC20

0 HP-85 by Lange $go cartridge $50 FORTH with FORTH-79

$25
references. Flow charted, 2"d

$25
Enhanced FORTH with F-Floating Point, G-Graphics, T-Tutorial, +%dm Understanding FORTH by *&'

$25 Primer Extras, 79-FORTH-79.
I by McCabe $1 6 0 Threaded Interpretive

Languages $23
0 APPLE by MM.

I1 by McCabe $13 METAFORTH by
Point O0 *+do Beginning FORTH by Cassady $30

c ATARI by PNS. F.G. & x. $90

$1 7
CPlM by MM, F & 79 $140 8087

Chirlian ' GraFoRTH by I $75 (IBM-PC or 8086) $1 00 FORTH FORTH $25
Pocket Guide $7 0 Invitation to FORTH $20 0 Multi-Tasking FORTH by SL, 0 951 1 Support

And so FORTH by Huang. A $20 0 Color Graphics
college level text. $25+%*0 FORTH43 Standard $1 5

0 TRS-8011 or ill by MMS

0 Data Base 0 FORTH Programming by 0 FORTH-79 Standard $1 5 d 0 Timex by FD. tape G.X.

.r\ 0 Victor 9000 by DE,G,X $150 Requires LM

0 I981 Rochester FORTH $100

Iga2 Rochester

Rochester
$60 Ed. $25

S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking. X-Other Reymann $3
+%d 0 FORTH Fundamentals, Vol.

F, G, & 7 9 $1 40 IBM, 280, or 8086 *+do FORTH Fundamentals, Vol.

A

0 Extensions for LM Specify

0 Software Floating

0 Systems Guide to f i g

$1 00 PDP-11 User Man. CP/M, X & 79 $395 (280 or 8086)

F, X. & 79 $1 30 (I BM-PC) $1 00

0 FORTH-79 Standard $200 Scanlon Management
0 FORTH on the ATARl by E. Conversion $1 0

++ & 7 9 $45

Floegel S8 0 Tiny Pascal fig-FORTH $10

Source Listing $1 5
available. (soft cover) $18 NOVA by ccI User's Manual

includes editor, assembler,
cover) $23 and utilities $25

Jupiter ACE Manual by
assembler $25 Vickers $1 5

FORTH COMPUTER 0 Installation Manual for fIg-FORTH, $1 5

Source Listings of fig-FORTH, for specific CPU's and computers. The
Each $1 5 Installation Manual is required for implementation.

disk.

0 Starting FORTH by Brodie. 0 NOVA fig-FORTH by CCI
*' 0 fig-FORTH Programming Aids for decompiling, callfinding.

and translating. CP/M. IBM-PC, 280, or App!e $1 50 Best instructional manual
CROSS COMPILERS Allow extending, modifying and compiling for
speed and memory savings, can also produce ROMable code. *Requires
FORTH disk.

Starting FORTH (hard

0 CPlM $300 0 IBM* $300
0 8086- $300 0 280- $300
C Northstar@ $300 0 Apple 11/11 + $300

[7 Jupiter Ace $1 50
$50

$1 25
Key to vendors: 0 1802 0 6502 6800 0 AlphaMicro

#LO 68000 fig-Forth with

0 16K RAM Pack
0 48K RAM Pack

8080 n 8086188 o 9900 APPLE 11 CCI Capstone Computing Inc
DE Dai-E Systems

I lnsoft PNS Pink Noise Studio 0 68000 0 Eclipse 0 VAX 0 Z80
LM Laboratory Microsystems

MM MicroMotion
MMS Miller Microcomputer Services

FD Forth Dimension NS Nautilus Systems 0 PACE 0 6809 0 NOVA 0 PDP-Il/LSI-lI

SL Shaw Labs
Ordering Infwmatlon: Check, Money Order (payable to MOUNTAIN VIEW PRESS,
INC), VISA, Mastercard, Amencan Express COOS $5 extra Minimum order $1 5
No billing or unpaid Po 's California residents add sales tax Shipping costs in us
included in price Fweign orders, pay in US funds on US bank, include for handling

and shipping by Air $sfor each item under $25, $1 0 for each item between $25 and
$99 and $20 for each item over $100 All prices and products subject to change or
withdrawal without notice Single system andlor single user license agreement
required on Some products DEALER & AUTHOR INQUIRIES INVITED

MOUNTAIN VIEW PRESS, INC.
1 PO BOX 4656 MOUNTAIN VIEW, CA 94040 (415) 961-4103

Volume V. No 4 FORTH Dimensions 2

FORTH Dimensions

Published by FORTH Interest Group
Volume V, No. 4

November/December 1983
Editor

Marlin Ouverson
Publisher

Roy C. Martens
Typesetting/Production
LARC Computing, Inc.

Cover Art
Al McCahon

FORTH Dimensions solicits editorial
material, comments and letters. No respon-
sibility is assumed for accuracy of material
submitted. Unless noted otherwise, material
published by the FORTH Interest Group is in
the public domain. Such material may be re-
produced with credit given to the author and
the FORTH Interest Group.

Subscription to FORTH Dimensions is free
with membership in the FORTH Interest
Group at $15.00 per year ($27.00 foreign air).
For membership, change of address and/or to
submit material, the address is: FORTH Inter-
est Group, P.O. Box 1105, San Carlos, CA
94070.

letters to the Editor
A Friend in Need

Sirs:
I need help. I have used my com-

puter (Kaypro 10) for word processing
only. I was not interested in learning a
language till I began reading about
Forth in the journals. I picked up Start-
ing Forth and leafed through it. I said
to myself, “I can learn this!” I bought
the book and ordered the language
disk. The computer store ordered SLS
from Supersoft. I started to learn the
language using Starting Forth as my
documentation. I soon discovered that
they were not mated to one another.
Valiantly, I struggled with the six pages
of Supersoft tutorial, then back to
Starting Forth, trying to change the
words that wouldn’t work. After many

Editorial

Fifth Forth Fest
Another October has come and

gone, and with it the Fifth Annual
Forth Convention. Hats off to the FIG
board of directors, especially to Robert
Reiling and Gary Feierbach, who
created an informative, streamlined
event for the 1200 attendees and the
thirty exhibitors. It is a sign of the ma-
turation of the Forth community and
of the diligence of the organizers that
the convention earned coverage in the
public media as well as in the trade
press.

At each of the annual conventions,
one FIG member is named “Figgie of
the Year.” The recipients are those
who have made except iona l
contributions to Forth and its growth
in the industry. This year, the whimsy
of the title was surpassed only by the
surprise of John D. Hall when his
name was announced. John’s work as
coordinator of local chapters of the
Forth Interest Group has been diligent,
thorough and unselfish. Through his
efforts, many chapters have been
guided into formation and now serve
the world-wide Forth programming
community. This has greatly enhanced

Forth’s growth and status. Thanks,
John, and congratulations!

Mountain View Press, a major ven-
dor of Forth products, presented a
prize at the convention this year. The
company had held a contest for those
who receive its newsletter. The
challenge was to describe Forth in
twenty-five words or less for non-Forth
people. Charles Moore judged the
entries and had this to say before
announcing the winner: “Forth resists
analysis. It’s a right-side of brain func-
tion Language is practical. Forth
is a language, not an operating
system.” The winner of the contest was
Michael Ham of Iowa City, Iowa. His
entry reads, “Forth is like the Tao: it is
a Way, and is realized when followed.
Its fragility is its strength; its simplicity
is its direction.”

Your editor spent the two-day meet-
ing with authors, authors-to-be and
readers. I hope we learned a lot about
each other. From what I saw and
heard, all of us can look forward to a
great deal of exciting material in
upcoming issues of Forth Dimensions.
As the magazine grows, so does the

hours, I gave up. After all that, here is
my question:

What should I buy, as a beginner,
that would let me use Starting Forth as
my documentation?

Awaiting your information, I am
Yours sincerely,

Duane Windemiller
367 Ocean Boulevard

Hampton Beach, NH 03842

Breakpoint Revisited

Dear Editor,

The breakpoint tool described in
Forth Dimensions (Vol. V, No. 1)

(Continued)

number of ways in which we can serve
you. Especially vital is that this publi-
cation always remain an open forum.
There must always be room for you to
voice your support and concerns, not
just of the magazine, but about the
language and community in which we
are immersed.

A small commercial: the ways we
can serve you are limited only by our
resources. Help Forth Dimensions and
the Forth programming community to
grow by joining as an individual
member of the Forth Interest Group.
Sure, it’s nice to share reading
materials. But why not get your own
membership and begin sharing this
magazine with new people who haven’t
yet been exposed to Forth. Besides,
aren’t you tired of getting that well-
thumbed issue after everyone else has
read it?

In the next issue we will bring tidings
from the November FORML con-
ference. Until then, accept our heart-
felt wishes for a pleasant holiday sea-
son and a new year of peace.

-Marlin Ouverson
Editor

FORTH Dimensions Volume V. No. 4 3 I

M ul t iuser/Mu It i tas ki ng
for 8080,280,8086

Industrial @-\
Strength

TaskFORTH,. ~

The First
Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:
a Unlimited number of tasks
a Multiple thread dictionary,

superfast compilation

sr Novice Programmer
Protection Pac kagew

a Diagnostic tools, quick and
simple debugging

a Starting FORTH, FORTH-79,
FORTH-83 compatible

Sr Screen and serial editor,
easy program generation

a Hierarchical file system with
data base management

* Starter package $250 Full package $395 Slngle
user and commercial licenses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 inch disk
under CPlM 2.2 or greater

also
various 5%" formats

and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED

, DEALER -
INQUIRES L"

~~~~ 1 INVITED 

Shaw Laboratories, Ltd. 
24301 Southland Drive, At216 

Hayward, California 94545 
(41 5) 276-5953 

needs to be slightly modified for ver- 
sions of Forth, such as MVP FORTH, 
that use a vectored INTERPRET. This 
results in three levels of return instead 
of two in going into and leaving the 
new interpreter. In the enclosed code, I 
used RESUME because GO has a dif- 
ferent function in MVP FORTH (it is a 
code word that permits one to directly 
load the program counter). The chang- 
es are to replace the four in line seven 
with six, and to add an additional R> 
DROP in h e  eleven (line numbers refer 
to the original listing on page nineteen 
of Forth Dimensions). The version for 
my Forth is shown in figure one. 

File Fan 
Dear Sir: 

After laying off for a couple of 
years, I have rejoined FIG; and I just 
treated myself to an (extended) evening 
of catching up on Volumes I11 and IV 
of Forth Dimensions. So many (mostly 
pleasurable) reactions are reverberat- 
ing in my mind that it has taken an act 
of utmost discipline to restrict,my com- 
ments to the few below. 

First, let me say that I am not a 
Forth fanatic. I have been driven some- 
what reluctantly to Forth after careful 
study of a number of languages for 
personal computing, including, most 
recently, C. 

The most important issue on my 
mind is that of operating systems. I 
see, over a two-year period, some sig- 
nificant evolution away from the Forth 

162 LIST 

screen system and towards the file han- 
dling systems of the host environment, 
e.g. CP/M. This evolution is being 
driven by the vendors, and my impres- 
sion is that it is being quietly resisted by 
FIG. 

As a personal computerist, I do not 
see this as primarily an issue of being 
able to share disk space with the resi- 
dent system. Rather, for me, it is sim- 
ply an issue of being able to use with 
Forth the power of whatever operating 
system is available. 

Editors and word processors are 
among the programmer's most per- 
sonal tools. On the face of it, there just 
can be no comparison between a Forth 
screen-based editing system and a good 
file-based system. On top of that, there 
is a whole industry out there devoted to 
developing editors and word proces- 
sors; and many of us own several ex- 
amples of each, some of which we find 
extremely useful. 

The design of my personal 2-80, 
CP/M Forth system includes file vari- 
ables for sequential and random CP/M 
files, and allows an arbitrary number 
of open channels. It also includes a file 
control disk stack which makes it pos- 
sible for any Forth source file to load 
another, to any depth, and pick up 
where it left off. Some of the possibili- 
ties this opens up for the organization 
of libraries should be clear. 

Let me make a radical proposal. 
Abandon the screen system and, in 

(Continued on page 28) 

SCR el62 
9 ( BREAK L GO (RESlJME) FORTH DIMENSIONS VOL 5 # 1 ) 

1 VARIABLE CHECK ( COMPILE BREAK INTO : DEF ) 

2 : BREAK CR . I '  BREAK S= 'I .S CR ."  R= 'I ( R.N ) 

3 R P I  6 - CHECK ! 0 BLK ! BEGIN QUERY INTERPRET . I '  sob: " CH 
4 AGAIN ; 
5 : RESUME ( [jO IN FD ) KP@ CHECK = IF K >  DROP R:. DROP H) DRC 
6 ELSE . "  can ' t  resume 'I QUIT 'TI-(EN ; 
7 
D 
Y 

1 (:I 
1 1  
12 
13 
14 
1s 

OK 

Figure One 

FORTH Dimensions 4 Volume V, No 4 



Why Novices Use 
So Many Variables 

Michael Ham 
Iowa City, Iowa 

Forth programmers often find 
themselves tutoring Forth novices. The 
more experienced the tutors, the harder 
it is for them to recall their own early 
difficulties and to understand the 
sources of the beginner's problems. 
Without knowing the source of the 
problem, one cannot attack it at its 
root, and instead must correct the er- 
rors one by one, as they occur. This 
paper discusses a possible source of a 
common novice error: using unneces- 
sary variables. 

I recently found a conceptual block 
when I examined the reasons I had 
coded a program awkwardly (see list- 
ing). The listed definition works - it 
does, in fact, display the primes less 
than loo0 - but an experienced Forth 
programmer will instantly see that 
some changes are in order: 

1. Eliminate the variable PRIME. 
2. Replace 2 PRIME ! in line five 

3. Replace 0 PRIME ! in line eight 

4. Eliminate 1 PRIME ! in line nine. 
5 .  Eliminate line eleven altogether. 

with 1. 

with DROP 0. 

The word still works with these 
changes, but more efficiently. (The ac- 
tual difference in execution time is one- 
tenth of a second on my Forth: 29.0 vs. 
28.9 seconds.) What caused the super- 
fluous code? 

I discovered the redundancies by 
chance: I picked up the listing two or 
three days after writing it, and on 
glancing at it, suddenly saw that the 
careful replacement of the two by a one 
(line eleven) was unnecessary, since 
two would serve as a true flag as well as 
one. 

But why had I even put a two into 
PRIME in the first place? Its origin 
seemed to lie in my unexamined feeling 
that, on coming out of the loop, it 
would be good to know how I discov- 
ered the nature of the number: from 
within the loop (PRIME contains zero or 
one), or by exhausting all possible 
divisors (PRIME contains two). Perhaps 
I also had wanted to avoid declaring, 
before even starting the loop, whether 
the number was prime or not: two was 
a way of not taking a position. 

I decided that I might as well leave 
the two on the stack as a true flag - 
and, given that, no reason it shouldn't 
be a one from the start. So I dropped 

- 

2 V A F l I A H L E  P R I M E  ( S T A R T  z e r o e s  system clocl; T I M E  prints tlrne) 

0 ( E X A M P L E  O F  F E G I N N E R  C A I J T I O N  M Ham 8/23/83 ) 

4 : P R I M E S  

6 
7 
8 
9 

1 0 
1 1  
1" 
1; 
14 
15 

= 
( -- ) CR STAR.1. 
1 0 0  1 1 DO 2 F R  I ME ! 

5Cr1 2 DO J I :. 
J I MOD O= 
AND I F  0 P R I M E  ' L-EAVE T H E N  
J I = I F  1 PRIME ! L E A V E  T H E N  

LOOP 
P R I M E  13 DUF' 2 = I F  DROP 1 T H E N  
I F  I 5 . R  T H E N  

LOLIP 
I - I M E  i 

Listing 

DUP 2 IF DROP 1 THEN 

from line eleven, and in line five 
initialized PRIME with 1 PRIME !. 

Then I realized that when exiting the 
loop early (via one of the LEAVES), I 
was fetching from PRIME the value just 
put into it. What was going on? 
Looking at the code again, I saw that 
PRIME was unnecessary, and that all the 
changes listed above should be made. 

Why had I created PRIME in the first 
place? I thought about it and conclud- 
ed that I had not fully understood 
Brodie's cautionary remark in Starting 
Forth (page ninety-three) about mak- 
ing the stack effect of a word be the 
same, regardless of which part of the 
word was executed. I had thought that 
he meant you should be careful about 
the stack effect only to prevent stack 
underflow or overflow, which would 
crash the program. 

It is that, of cciurse, but with this ex- 
ample I saw something more - some- 
thing undoubtedly so familiar to those 
who are used to Forth and the stack 
that they accept it unthinkingly: if 
words keep properly to themselves, 
using the stack only for their expected 
input and output, and cleaning up after 
themselves, then they can be looked on 
as sealed systems, having no effect on 
anything that might already be on the 
stack but outside their sphere of in- 
fluence. 

In my prime number routine I had 
pulled the flag off the stack and tucked 
it into a variable to keep it safe. No 
telling what might happen with all that 
thrashing about on the stack. The flag 
might get hit by a wild shot or ricochet. 
So off it went for safekeeping, to be 
fetched from its cubbyhole when need- 
ed. 

I immediately recalled another ex- 
ample of the same behavior in a pro- 
gram to compute quartiles. The pro- 
gram collects the scores for each 
group, sorts them, computes the quar- 
tiles and prints the results, cycling in an 

FORTH Dimensions Volume V. No. 4 5 



endless loop to get the figures for the 
next group. After every eight groups I 
wanted to do a form feed to avoid 
printing on the perforation. At first I 
had put the count of the groups in a 
variable, once again to keep it safe 
from all the activity taking place on the 
stack: gathering data, sorting, comput- 
ing, printing. 

But then I had seen that the sequence 
of words constituted a closed system, 
and the count could rest safe and 
sound on the stack the whole time, to- 
tally unaware of the storm of activity 
raging right over its head. The count 
could go on the stack at the beginning 
of the loop, and remain through the 
complete routine for each group. At 
the end of each, the count would 
emerge, back on top of the stack, not a 
hair out of place. 

It still somewhat amazes me that 
merely by making sure words practice 

good stack hygiene you can be so con- stack and, after the words have done 
fident about what is happening on the their work and gone and the dust has 
stack. If you investigate the unneces- settled, that number will stand there, 
sary variables that beginning Forth once more at the top of the stack, ab- 
programmers use, I bet you’ll find solutely unharmed. 
them unaccustomed to using a stack 
and nervous about unforseen by-pro- 
ducts of all that frantic stack activity. 
They become overprotective and use a 
mechanism familiar from their exper- 
ience with other programming langu- 
ages to shield their counts and inter- 
mediate results from possible harm. 
They see the whirlwind of activity that 
will descend on the stack, but they fail 
to recognize that it is harmless, en- 
closed within the inviolable sphere 
defined by the words’ net stack effect. 

You need only convince novices that, 
if they write their definitions with a 
careful eye on the stack effects, they 
can drop enormous clusters of words 
on top of a lonely little number on the 

Ver. 2 For your APPLE II/II+ 
The complete professional software system, that meets 
ALL provisions of the FORTH-79 Standard (adopted Oct. 
1980). Compare the many advanced features of FORTH- 
79 with the FORTH you are now using, or plan to buy! 
FEATURES OURS OTHERS 

79-Standard system gives source portability YES - 
Professionally written tutorial & user manual 200 PG. - 
Screen editor wi th  userdefinable controls. YES - 
Macro-assembler wi th  local labels. YES - 
Virtual memory. YES ~ 

Both 1 3 &  16-sector format. YES - 
Multiple disk drives. YES - 
Double-number Standard & String extensions. YES - 
Upper/lower case keyboard input. YES - 
LO~Res graphics. YES - 
80 column display capability YES - 
2-80 CP/M Ver. 2 x & Northstar also available YES - 
Affordable $99.95 - 
Low cost enhancement option 

Hi-Res turtle-graphics. YES - 
Floating-point mat hemat ics. YES - 
Powerful package wi th  own manual, 
50 functions in all, 
AM951 1 compatible. 

FORTH-79 V.2 (requires 48K & 1 disk drive) 
ENHANCEMENT PACKAGE FOR V.2 

COMB INAT ION PACKAGE 
(CA res. add 6% tax COD accepted) 

$ 99.95 

$ 49.95 
$1 39.95 

Floating point & HI-Res turtle-graphics 

Version 2 For 2-80, CP/M (1.4 & 2.~1, 
& Northstar DOS Users 

The complete professional software system, that meets 
ALL provisions of the FORTH-79 Standard (adopted Oct. 
1980). Compare the many advanced features of FORTH- 
79 with the FORTH you are now using, or plan to buy! 
F E A T U  RE S OURS OTHERS 
79 Standard system gives source portabi l i ty YES - 
Professionally writ ten tutorial & user manual 200 PG - 
Screen editor wi th  userdefinable controls YES - 
Macro assembler wi th  local labels YES - 
Virtual memory YES - 
BDOS BlOS & cbnsole control functions (CP/M) YES - 
FORTH screen files use standard resident 

file format YES - 
Double number Standard & String extensions YES - 
Upper/lower case keyboard input YES - 
APPLE l l / l l+ version also available YES - 
Low cost enhancement options, 

Tutorial reference manual 
50 functions (AM951 1 compatible format) 

Affordable! $9995 - 
Floating point mathematics YES - 

Hi Res turt le graphics (Nostar Adv only)  YES - 
ENHANCEMENT PACKAGE FOR V 2 
FORTH 79 V 2 (requires CP/M Ver 2 x )  $99 9 5  

Floating point $ 49.95 
COMBINATION PACKAGE (Base & Floatinq point )  $139.95 

(advantaqe users add $49.95 for H i -Red  
(CA. res.add 6% tax; COD & dealer inquiries welcome) 

MicroMotion 
12077 Wilshire B i d .  # 506 
L.A.. CA 90025 1213) 821-4340 
Specify APPLE, CP/M or Northstar 

r 

Dealer inquiries invited K z Y  

Volume V. No. 4 FORTH Dimensions 6 



Yet Another Number Utility 
David McKibbin 

Timonium, Maryland 

In any program or environment, 
there is typically one number base that 
predominates. Just as typically, there 
are also times when another number 
base for input or output would be 
clearer or easier. The following word 
set allows for these single occurrences 

of numbers which are not in the cur- 
rent number base and can be used in 
either compile or execution mode. 

There is one defining word (BASE.) 
for the class of words that output in the 
various number bases, and another 
(BASE’) for the class of words that in- 
put. I still use < BUILDS in my system as 
the complement to DOES>. For those 
who don’t, replace the <BUILDS with 

2 : BASE. ( base p r i n t  d e f i n i n g  word *)  
4 BUILDS . DOES, BASE IS :H 13 BASE I U. R: BASE ; 
4 
5 2 BASE. H. ( b i n a r y  p r i n t  *) 

6 8 BASE. 0. ( o c t a l  p r i n t  * )  
7 1v BASE. x .  ( decimal p r i n t  *) 
8 16 BASE. H. ( hex p r i n t  *) 
9 

10 
1 1  
12 
13 
14 
15 

-. 

SCR 
i) 
1 
2 

4 

6 
7 
8 
9 

1 0 
1 1  
12 
13 
14 
15 

7 
3 

= 

# 31 
( NUMBERS - BASE’, B’, O’, X ’ ,  H’ DTM ZCJFeb82 ) 

: BASE’ 
,BUILDS , IMMEDIATE 
DOES: BASE Ca ‘.R @ BASE I 

8 0 BL WORD CONVERT 1DRUP CCOMPILEI LITEHCIL 
R BASE I ; 

2 BASE’ B‘ 
8 BASE’ 0’ 

1 0  BASE‘ X ’  
16 BASE’ H’ 

0 k; 
DECIMAL 1234 OK 
DUP B. 10011010010 OK 
DUP 0. 2322 OK 
DUP X .  1234 OK 
DUP H. 4D2 OK . 1234 OK 
H’ 1234 . 4660 OW: 
X ’  1234 . 1234 OK 
0‘ 1234 . 668 OK 
B’ 10CiC1101 . 69 OK 
: s t r i p - p a r i t y  H’ 7F AND ; OK 
193 s t r i p - p a r i t y  . 65 OK 

( b i n a r y  i n p u t  *) 
( o c t a l  i n p u t  *) 

( decimal i n p u t  * )  
( he;: i n p u t  *) 

CREATE. Words defined by BASE. and 
BASE’ have their new, temporary base 
stored in their parameter fields. When 
executed, they simply fetch the current 
number base and save it on the return 
stack, set BASE to the new value stored 
in their parameter field, perform the 
input or output, and finally restore the 
old base from the return stack. 
Additionally, words defined by BASE’ 
are made immediate so that they can be 
used inside colon definitions. For me, 
this has been very useful inside 
DO...U)OP where the count is clearer if 
expressed in decimal but the body of 
the loop contains bit masks, etc., that 
are more clearly expressed in hex. 

Inside BASE’ the code fragment 

0 0 BL WORD CONVERT PDROP 

is used to get a sixteen-bit number from 
the input device to the stack. Then 
LITERAL is used either to do nothing (in 
execution mode) or compile the 
number as a literal (in compile mode). 
This is presuming upon the “state 
smartness’’ of LITERAL. With the 
current move away from state 
smartness, I recommend checking your 
implementation of LITERAL. 

In writing programs, I will usually 
leave the current number base in 
DECIMAL and use these words for any 
departures from that. This has solved 
several recurring problems. First, when 
I see a number, I know that it is in de- 
cimal if not preceded by a modifier. I 
don’t have to reverse-scan the code 
looking for the last base change. Se- 
cond, I can painlessly insert hex bit 
masks regardless of the current number 
base. And third, I can enter numbers in 
whatever base most clearly conveys my 
intent or purpose without bulking up 
the code with explicit HEX, DECIMAL or 
OCTAL words. 

FORTH Dimensions Volume V, No. 4 7 



8080/280 FIG-FORTH for CP/M & CDOS systems 
FULL-SCREEN EDITOR for DISK & MEMORY 

$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and 
debugging them. You receive TWO diskettes (see below for formats availatjle). The first disk is readable by 
Digital Research CP/M or Cromemco CDOS and contains 8080 source I keyed from the published listings of 
the FORTH INTEREST GROUP (FIG) plus a translated, enhanced version in ZILOG Z80 mnemonics. This 
disk also contains executable FORTH.COM files for 280 & 8080 processors and a special one for Cromemco 
3102 terminals. 

The 2nd disk contains FORTH readable screens including an extensive FULL-SCREEN EDITOR FOR 
DISK & MEMORY. This editor is a powerful FORTH software development tool featuring detailed terminal 
profile descriptions with full cursor function, full and partial LINE-HOLD LINE-REPLACE and LINE- 
OVERLAY functions plus line insert/delete, character insert/delete, HEX character display/update and 
drive-track-sector display. The EDITOR may also be used to VIEW AND MODIFY MEMORY (a feature not 
available on any other full screen editor we know of.) This disk also has formatted memoryand I/O port dump 
words and many items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data 
base handler, an 8080 ASSEMBLER and a recursive decompiler. 

The disks are packaged in a ring binder along with a complete listing of the FULL-SCREEN EDITOR and a 
copy of the FIG-FORTH INSTALLATION MANUAL (the language model of FIG-FORTH, acomplete glossary, 
memory map, installation instructions and the FIG line editor listing and instructions). 

This entire work is placed in the public domain in the manner and spirit of the work upon which it is based. 
Copies may be distributed when proper notices are included. 

0 FIG-FORTH 81 Full Screen EDITOR package 
USA Foreign 

AIR 
Minim urn system requirements: 
80x24 video screen w/ cursor addressability 
8080 or 280 or compatible cpu 
CP/M or compatible operating system w/ 32K or more user RAM 

0 8" SSSD for CP/M 

0 8" SSSD 0 8" SSDD 0 5'A" SSSD 0 5Yi"SSDD 

0 8" DSSD 0 8" DSDD 0 5%'' DSSD 0 5%" DSDD 

Select disk format below, (soft sectored only). ................................... $50 $65 
(Single Side, Single Density) 

Cromemco CDOS formats, Single Side, S/D Density 

Cromemco CDOS formats, Double Side, S/D Density 

Other formats are belng consldered, tell us your needs. 
0 Printed Z80 Assembly listing w/ xref (Zilog mnemonics) ............................ $18 
0 Printed 8080 Assembly listing ..................................................... $15 $18 

$15 

TOTAL $- - 
Price includes postage. No purchase orders without check. Arizona residents add sales tax. Make check 

or money order in US Funds on US bank, payable to: 
Dennis Wilson c/o 
Aristotelian Logicians 
2631 East Pinchot Avenue 
Phoenix, AZ 85016 
(602) 956-7678 

Volume V, No 4 FORTH Dimensions 8 



Manufacturing Cost Program 
Marc Perkel 

Springfield, Missouri 

This program demonstrates how 
simply cost analysis can be done in 
Forth. In this example, Forth is used 
not only as a compiler, but as a job 
control language. In other words, 
source screens do not have to contain 
code to be compiled. They may contain 
lists of commands to be executed. This 
execution replaces typing the same 
commands from the keyboard. In this 

S c r e e n  80 ($ )  128 
0 ( P r i c i n s  P r o g r a m  1 : TASK 
1 
2 2UARIABLE TOTAL 

way, disk files of command strings to 
be executed can be changed at will. 

What the Program Does 
This program calculates the cost of 

manufacturing a fruit basket. The user 
first compiles screen eighty, which is 
the program. Then the user types the 
word PRICES, which causes the prices 
to compile. Then the user types FIGURE 
FRUIT-BASKET, which causes the cost of 
the fruit basket to be printed on the 
screen. Any time the user wants to 

i DECIMAL 

3 
4 : +MONEY .::# # # ASC , HOLD #S ASC 0 HOLD #:::. TYPE SPACE ? 
5 : t T O T A L  TOTAL 2@ D t  TOTAL 2 !  i 
6 : PRICE CREATE I p DOES:>, 2@ >R OVER U$ ROT I?:::. $ t +TOTAL ; 
7 : COST CREATE I I DOES::. 2@ +TOTAL. i 
8 : LOCATES CREATE p DOES:. @ LOAIl ; 
9 : DOZEN 12 1: i 
A : FIGURE 0 .  TOTAL 2 !  CCOMFILE7 ' EXECUTE TOTAL 2@ +MONEY ; 
5 
C ( D i r e c t o r r  ) 
D 129 LOCATES PRICES 
E 130 LOCATES FRUIT-HASKET 
F 

S c r e e n  81 ( $ )  129 
0 ( F r i l J t  H a s k e t  C o s t s  ) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

.34 PRICE 

.26  PRICE 
,47 PRICE 

, 54  PRICE 
.32  PRICE 
, 2 9  PRICE 
+ 0 2  PRICE 

2 .45  COST 
1.08 COST 
3.67 COST 
1.00 COST 

+03 PRICE 

A PP 1. E S 
HANANAS 
ORANGES 
CHERRIES 
GRAPEFRUIT 
PEARS 
PEACHES 
GRAPES 

BASKET 
PACKAGING 
SHIPPING 
HANDLING 

S c r e e n  82 ( $ )  130 
0 ( F r u i t  R a s k . e t  m a t e r i a l s  ) 

1 
2 5 PEARS 
3 8 ORANGES 
4 3 GRAPEFRUIT 
5 2 IIOZEN CHERRIES 
6 3 rlOZEN GRAPES 
7 6 PEACHES 
8 4 APPLES 
9 7 HANANAS 
A 
H BASKET 
C S H I P P I N G  
D PACKAGING 
E HANDLING 
F 

change prices, he brings in the editor 
and types over the old data. Or, if the 
user wants to change the materials, he 
likewise types in the new materials by 
using the editor. 

How the Program Works 
The variable TOTAL accumulates the 

total costs. .MONEY is used to print the 
total in dollars and cents format. +To- 
TAL adds the thirty-two-bit number on 
top of the stack to TOTAL. PRICE is a 
defining word; at compile time, it cre- 
ates a definition (containing the price) 
that, when executed, multiplies the 
price by the number on the stack and 
adds it to the total. For example, 34 
PRICE APPLES creates the word APPLES 
and assigns the value .34 each. When 4 
APPLES executes, APPLES multiplies 
four times thirty-four cents and adds it 

COST works like PRICE except that it 
doesn't multiply. It assumes a quantity 
of one. DOZEN merely multiplies the 
quantity by twelve. LOCAES is a defin- 
ing word used here as a crude disk dir- 
ectory. LOCATES creates a word (e.g. 
PRICES) and stores 129 into it. When 
PRICES executes, it loads screen 129. 
The word FIGURE executes the 
following word first and displays the 

The interesting thing to note is that 
the words created by PRICE, COST and 
LOCATES become part of the Forth 
vocabulary. Thus, typing any word 
created by LOCATES will cause a prede- 
termined screen to load. Any word 
created by COST will cause an amount 
to be added to TOTAL, and likewise with 
PRICES. The Forth outer interpreter is 
used as a big, text-driven case 
statement and eliminates the need to 
write one as part of the program. 

In conclusion, I challenge anyone to 
write such an elegant program in any 
other language. This program is in use 
by a local manufacturer, and I hope 
others will expand on this unusual 
technique in real-world applications. 

to TOTAL. 

TOTAL. 

FORTH Dimensions Volume V. No. 4 9 



Menu-Driven Software 
John Bowling 

Phoenix, Arizona 

Menu-driven software has always 
been easier for all but the most sophis- 
ticated of users. The programmer puts 
a list on the screen with a brief descrip- 
tion of the option, along with a key 
code. The user enters the simple key 
code, and is off and running in a new 
section of the program. If the new sec- 
tion has options, up comes another 
menu. If the purpose of the software 
requires it, a menu tree can have hun- 
dreds of levels, with some menus able 
to jump tens of levels per key code. 

Menus make a user's job very easy, 
but can be a headache for a program- 
mer. They require that the software 
write an entire page out to a terminal, 
pick up a user's response, index into a 
vector table, and jump to a new section 
of code. If the software is very large, 
overlays or some type of virtual me- 
mory scheme may be required. Ideally, 
the language selected should support 
menus without having to code each one 
separately. Using a subroutine for the 
menu code requires passing a pointer 
to the character data for the terminal, 
and a pointer to the vector table. 
Somewhere in memory reside pages of 
text for the terminal and more pages of 
vector tables. 

There is a simple solution to the 
problem in Forth. The Forth listing 
shown here is quite simple, and is de- 
signed to work with any standard FIG- 
Forth system. The two primary words, 
M" and MENU-UP, are supported by a 
mode variable (MUMODE), a pointer 
variable (MP), and two arrays (MNU~ 
and MNUS). MENU-UP controls the use 
of M" by setting MUMODE true and sets 
MP to zero. 

When a screen is loaded and an M" is 
encountered, M" checks MUMODE. If 
MUMODE is true, two numbers are ta- 
ken from the input stream (the disk), 
and saved in the array positions point- 
ed to by MP. MP is incremented once 

130 
0 ( sample Directory Screen for  MENU j l b  October 12, 1983 ) 
1 
2 DECIMAL ( Header a t  top of page ) 
3 CR .'I D i s K  Directory" 20 Spaces ." October 12, 1983" CR 
4 CR .'I D i s K  Menu:" 24 SPACES ." Drive 'I DR @ . CR CR 
5 
6 
7 
8 M" 12 19 
9 M" 131 131 

10 M" 20 21 
11 M" 180 185 
1 2  M" 10 11 
13 
1 4  
15 

( TYPE out  directory according to  MUMODE ) 

Assembler (6502) 'I 
Directory Menu" M" 22 23 DisKing" 
Documentor 'I M" 25 39 Editor" 
permanent EX tensions" 
s t a r tup  Loader" 

131 
0 ( Non-Standard words used for  MENU j l b  October 12, 1983 ) 
1 FORTH DEFINITIONS DECIMAL 
2 
3 0 VARIABLE DR 
4 
5 is a variable tha t  contains the drive number l a s t  ) 
6 ( specified by DRO or  DRl  ) 
7 

( DR 

8 : DRO EMPTY-BUFFERS DRO 0 DR ! ; ( -- 1 
9 : DRl EMPTY-BUFFERS DRO 1 DR ! ; ( -- ) 

10  
11 ( Adjust a number between Low and High values, inclusive ) 
12 : LIMITS ROT M I N  MAX ; ( n low high - n ) 
13 : PPGE OC EMIT ; ( PAGE should c lear  the screen ) 
1 4  
15 -> 

132 
0 ( M E N U  
1 
2 DECIMAL 
3 
4 0 VARIABLE 
5 0 VARIABLE 
6 

variables ?NUMB j l b  October 12, 1983 ) 

( number storage arrays ) 

MNUl 52 ALLOT MNUl  52 BLANKS 
MNU2 52 ALLOT MNU2 52 BLANKS 

7 ( Array Pointer Mode 
8 
9 0 VARIABLE MP 0 VARIABLE MUMODE 

10 
11 -> 
12 
13  
1 4  
15 

Starlight-FORTH OSI V s1.10 Copyright 1983 by ~ o h n  Bowling 

10 Volume V, No. 4 FORTH Dimensions 



133 
0 ( MENU M" jlb October 12, 1983 ) 
1 
2 ( Menu d i sp lay  function ) 
3 : M" MUMODE @ I F  ( Save numbers ) 
4 ( P r i n t  o u t  a code le t ter  fo r  the MENU -- 
5 M P @ 6 5 +  ( Adjust t o  Alpha ) 
6 . 52 EMIT 2 SPACES ( P r i n t  o u t  Menu number ) 
7 ( Adjust a r r a y  pointer  ) 
8 ( PiCKUp the numbers following M" and place them i n  a r r a y  ) 
9 32 WORD HERE'NUMBER DROP SWAP M N U l  + ! ( Pul l  # ) 

10 32 WORD HERE NUMBER DROP SWAP MNU2 + ! ( Pul l  # ) 
11 1+ 0 26 LIMITS M P  ! THEN ( Increment pointer  ) 
1 2  34 WORD HERE COUNT TYPE CR ; ( Type remainder ) 

MP @ WP 2* DUP 

1 -  

13 
14 -> 
1 5  

( M" should be used as you would use .'I ) 

134 
0 ( M E N U  MENU-UP j l b  October 12,  1983 ) 
1 
2 ( S e t  v a r i a b l e s  and p r i n t o u t  t he  spec i f i ed  screen ) 
3 
4 : MENU-UP 0 MP ! 1 MUMODE ! LOAD 0 MUMODE ! CR 
5 ( Request a number from the user ) 
6 .'I Your Se lec t ion  11 t o  'I M P  @ 65 + . .I' I ?  I' 

7 ( Adjust number wi th in  LIMITS ) 

9 ( C a l l  saved numbers from a r r a y s  ) 
10 MNu2+ @ SWAP MNUl+ @ 0 M P  ! ; 
11 
12 --> 
1 3  
14 
1 5  

8 KEY 65 - 0 MP @ 1 - LIMITS 2* DUP 

135 
0 ( MENU Sample uses j l b  October 12,  1983 ) 
1 
2 ( Sample uses  of MENU menu -> e d i t o r  ) 
3 : EM PFGE .I1 Edi t  Menu" 130 MENU-UP EDITOR E ; 
4 
5 
6 : L M  PFGE ." Load Menu" 130 MENU-UP SWAP DROP LOAD ; 
7 
8 ( P r i n t  o u t  MENU screen without saving numbers ) 
9 ( M" wor-Ks j u s t  a s  .'I does ) 

( menu -> compiler ) 

10 : D I R  P E E  0 MUMODE ! 0 MP ! 130 LOAD ; 
11 
12 ;s ( See t e x t  about EDITOR modifications) 
13  ( Replace a l l  130 's  w i t h  t he  screen number you ' se l ec t  f o r  ) 
14  ( your d i r e c t o r y  screen ) 
1 5  

Starlight-FORTH OSI V s1.10 copyright 1983 by John Bowling 

End Listing 

for each execution of M" when MU- 
MODE is true. Following the extraction 
of the two numbers, a letter corre- 
sponding to MP value plus sixty-five is 
printed, followed by > and the re- 
mainder of the data in the input stream 
up to the next occurrence of ' I .  

After the screen load is completed, 
the user is requested to press a key be- 
tween A and MP value plus sixty-five. 
This upper letter, and the maximum 
value in MP, is limited by the space 
available in the arrays, Z or twenty-six. 
This limit is enforced in M" by MP, and 
in MENU-UP by the letter keyed in. 

There are three sample methods of 
using the menu function. DIR prints the 
specified screen as if M" were 
equivalent to :I .  LM will load starting at 
the screen number in MNU1, pointed to 
by the pressed key. EM calls the editor 
after displaying the menu. 

I use a full-screen editor which 
employs control keys and function 
keys to perform various functions. It 
uses two variables called FIRST and 
LAST that contain the LIMIT values for 
screen numbers that are allowed to be 
edited. When using EM, the values on 
the directory screen are placed into 
FIRST and LAST. Control-Q will move 
to the previous screen, but not prior to 
FIRST. Control-W will move to the next 
screen, but not after LAST. Function 
key five (FS) will move to the FIRST 
screen, and F6 moves to the LAST. 
EDITOR sets to vocabulary and E enters 
the editor. 

(See figures on page 13) 

Volume V, No. 4 11 FORTH Dimensions 



FORTH for Z-80@ 9 8086,68000, and IBM@ PC 
FORTH Application Development Systems include interpreterlcompiler with virtual memory management and 
multi-tasking, assembler, full screen editor, decompiler, utilities, and 130 + page manual. Standard random ac- 
cess files used for screen storage, extensions provided for access to all operating system functions. 

2-60 FORTH for CPIM" 2.2 or MPIM I1 . . . . . . . . . . . . . . . . . . . . . . . . .  $ 50.00 
8080 FORTH for CPIM 2.2 or MPIM I1 . . . . . . . . . . . . . . . . . . . . . . .  $ 50.00 
8086 FORTH for CPIM-86 or MS-DOS . . . . . . . . . . . . . . . . . . . . . . .  $100.00 

. . . . . . . . . . . . . . . . . . . . . . .  $100.00 
68000 FORTH for CPIM-68K . . . . . . . . . . . . . . . . . . . . . . . . .  $250.00 

83. Standard version of all application development systems available soon. All registered users will be entitled 
to software update at nominal cost. 

FORTH + Systems are 32 bit implementations that allow creation of programs as large as 1 megabyte. The en- 
tire memory address space of the 68000 or 8086188 is supported directly for programs and data. 

PCIFORTH + for PC-DOS or CPIM-86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  $250.00 
8086 FORTH + for CPIM-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  $250.00 
68000FORTH+ forCPIM-68K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .$400.00 

. . . . . . . . . . . . . . . . . . . . . .  
PCIFORTHTM for PC-DOS, CPIM-86 or CCPM . . . . . . . . . . . . . .  

Extension Packages for FORTH systems 

Software floating point (2-80,8086, PC only). . . . . . . . . . . . . . . . . . . .  
Intel 8087 support (8086, PC only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Symbolic interactive debugger (PC only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .$100.00 
Cross referenceutility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 25.00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 50.00 
PCITERM communications program for PC and modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 60.00 
Hierarchical file manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 50.00 
B-tree index manager. . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $125.00 
B-tree index and file manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $200.00 

QTF+ Screen editor and text for 
for IBM PC with IBM or Epson printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .$100.00 

Nautilus Cross Compiler allows you to expand or modify the FORTH nucleus, recompile on a host computer for 
a different target computer, generate headerless and ROMable code. Supports forward referencing. Produces 
executable image in RAM or disk file. No license fee for applications. Prerequisite: Application Development 
System for host computer. 

. . . . . . . . . . . . . . . . . .  $100.00 
. . . . . . . . .  .$100.00 

AMD9511support(8086,Z-80only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Color graphics with animation support (PC only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PCIGENTM(custom character sets, PC only) . . .  

Hosts Z-80 (CPIM 2 2 or MP1M 1 1 ) .  8086188 (CPIM-86 or MS-DOS), IBM PC (PC-DOS or CPIM-86). 68000 (CPIM-68K) 
Targets 8080. Z-80. 8086188, 6502, LSI-11. 68000. 1802, Z 8 

Cross-Compiler for one host and one target . . . . . . . . . . . . . . . . . . . . .  
Each additional target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . .  $300.00 
. . . . . . . . . . . . .  .$100.00 

AUGUSTATM ADA subset compiler from Computer Linguistics, for 2-80 M 2.2 . . . . .  .$ 90.00 
LEARNING FORTH computer-assisted tutorial by Laxen and Harris for CPIM, includes Brodie's 

. . . . . . . . . . .  . $  95.00 
2-80 Machine Tests Memory, disk, printer, and console tests with all s 
mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  . $  50.00 

"Starting FORTH" (8" format only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8080 and Z-80 application development systems require 48 kbytes RAM and 1 disk drive, 8086 and 68000 require 64 kbytes PriCeS include shipping by UPS or first ClaSS 
mail within USA and Canada California residents add appropriate sales tax Purchase orders accepted at our discretion Master Charge and Visa accepted 

Disk formats available Standard CPlM 8 "  SSSD. Northstar 5 h "  OD, Micropolis 5 ' 1  "OD. Sage 5 ' 1  " DD. Apple 5 ' 1 4  ". Victor 9000 5 ' b  'I. Kaypro 5 %  ", Osborne 5% " DD. 
Micromate 5'!4 ". IBM PC 5 %  ". Standard MS-DOS 5V4"SSDD Most other formats can be soecial ordered 

Laboratory Microsystems, Inc. 
4147 Beethoven Street 
Los Angeles, CA 90066 

(21 3) 306-741 2 

2 80 is a registered trademark o f  Zilog Inc 
CPlM is a registered trademark of Digital Research Inc 
IBM is a registered trademark of International Business Machines Corp 

Augusta is a trademark of Computer Linguistics 
dBASE II is a trademark o f  Ashton-Tate 

PCiFORTH and PClGEN are trademarks of Laboratory Microsystems InC 

FORTH Dimensions 12 Volume V, No. 4 



D i s K  Directory 

D i s K  Menu: 

A> Assembler (6502) 
B> Directory Menu 
C> DisKing 
D> Documentor 
E> Edi tor  
F> Permanent Extensions 
G> Sta r tup  Loader 

your Se lec t ion  {A to  GI? 6 

S t a c ~  a f t e r  Key press  

TOS 10 11 BOS 

OK 

Sample of 130 DIR 

DlSK Directory 

D i s K  Menu: 

12  19 Assembler (6502) 

22 23 DisKing 
20 21 Documentor 
25 39 Edi tor  

10 11 S t a r t u p  Loader 

131 131 Directory Menu 

180 185 Permanent Extensions 

OK 

Sample of 130 MENU-UP 

Drive 0 

Drive 0 

nner Access holds 
:he key to your 
;of tware so I u t io n s 

When in-house staff can’t 
solve the problem, 
make us a part of your team. 
As specialists in custom designed 
software, we have the know-how 
to handle your application 
from start to finish. 

Call us for some straight talk 
about: 
I Process Control 
I Automated Design 

Database Management 
I System Software & Utilities 

Engineering 
m Scientific Applications 
I Turn Kev Svstems . # a  

Inner Access Corporation n P.O. Box 888, Belmont, CA 9400; - 
PHONE (41 5) 591 -8295 

FORTH Dimensions Volume V, No. 4 13 



Vocabulary Tutorial, Part II 
Evan Rosen 

East Setauket, New York 

A commonly recognized problem 
with the CONTEXTlCURRENT scheme 
arises when programming a code defi- 
nition for some vocabulary (call it 
VOCAB) which is not FORTH. Then 
ASSEMBLER is CONTEXT and VOCAB is 
CURRENT. If some needed data is in a 
third vocabulary, the programmer has 
to declare that vocabulary, get the data 
to the stack, and then declare ASSEM 
BLER again to continue assembling 
machine code. This problem and its 
cousins are at the nuisance level. 

More serious is the fact that CON- 
TEXT~CURRENT makes implementing 
" front-end" routines like algebraic 
parsers very difficult. One has only to 
write out the solution to the quadratic 
equation in Forth to realize the need 
for such a utility. Yet, although parsing 
schemes in Forth have been proposed 
many times (see the recent one by 
Stolowitzl ), few have found their way 
into widely distributed systems. This is 
largely attributable to the difficulty of 
having more than two vocabularies, 
CONTEXT and .CURRENT, in the search 
order. For instance, for an algebraic 
parser's vocabulary, redefined words 
would include at least the following: 
+ - < > I ( )  

These words would have to be reach- 
ed by the search before their counter- 
parts in the FORTH vocabulary, since 
they are redefinitions. In FIG, this 
means that the parser vocabulary 
would have to be CONTEXT, and the 
next searched vocabulary would have 
to be put in CURRENT, producing in- 
elegant and misleading code. Accessing 
any other vocabulary during parsing, 
for data pickup or another reason, 
would become awkward to the point of 
impracticality. 

Still other uses for extra, transient 
Vocabularies, such as named, local ar- 
guments, which would make life so 

ONLY *** ONLY 8 8 8 ONLY 

ONLY erases t h e  18 bytes o f  search l i s t  and then i n s t a l l s  
[ oo in te rs  t o )  i t s e l f  i n  the  f i r s t  (cctntext) p o s i t i o n  i n  t h e  
l i s t  so t h a t  i t  w i l l  show as CONTEXT, and a t  t h e  l a s t  
( "p ro tec ted" )  l i s t  p o s i t i o n  so t ha t  i t  won't be pushed o f f  
t he  end as more vocabular ies are added. The 0's i n  t h e  l i s t  
w i l l  be skipped dt.iring searches. ONLY w i l l  not be searched 
twice s i r c e  a " tw ice  i n  a r o w "  detector  i n  -FIND w i l l  
prevent t h e  second search. 

F09TI-I %..* FORTH 8# 1 @#I2 8#3 ONLY 

Ke've tagged the  zeroes i n  t he  search l i s t  so you can watch 
which ores d i s a a p e a r .  FORTH places a pcointer t o  i t s e l f  i n t o  
the  f i r s t  tcontext )  p o s i t i o n  o f  the l i s t .  This is t h e  
normal f unc t i on  o f  a vocabulary name i n  v i r t u a l l y  FORTH 
irnplementat ior~s, and i s  preserved i n  t h i s  one. That' 5 a 
good sign. 

-" -r* FORTH FORTH 8# 1 8#2 ONLY 

H e r e ' s  par t  o f  t he  magic. FILSO, a new word, moves e n t r i e s  
O, 1, and 2 o f  t he  search l i s t  i n t o  pos i t i ons  1, 2, and 3. 
The e n t r y  at  p c 6 i t i o n  3 is l os t .  The ONLY a t  m s i t i o n  4 i s  
l e f t  urltouched. FORTH is now safe from ove rwr i t i ng  by the  
next vocabulary c a l l .  The e f f e c t  o f  RLSO i s  simply t o  make 
rooni f o r  t h e  next vocabulary, i n  t h i s  case FISSEMBLER. . . 

RSSEMBLER *** RSSEMHLER FORTH O# 1 8#2 ONLY 

The vocabulary #SSEMBLER 1s put at t h e  top  o f  t h e  search 
l i s t .  The search o r d e r  i s  now FISSEMBLER FORTH (slr.ip) ( s k i p )  
ONLY. 

QLSO *"** QSSEMBLER QSSEMBLER FORTH B# 1 ONLY 

FISSEMBLER I s e l  i d  down preparat cwy t o  dad i n g  another 
vocabulary t o  the  l i s t .  Note that  0#2 has been l o s t .  

PQRSE ."*+ PRRSE RSSEMBLER FORTH Q# 1 ONLY 

P#RSE is added. We are now Drepared t o  do assembly code. 
and t o  parse a lgebra ic  exDt-essims whi le  doing do. Flnd 
t h e r e ' s  r c m i  fcnr  another vocabulary. Note t h a t  i f  two mcwe 
vocabulat-ies wet-e t o  be added. e. g. RLSO VOCl RLSO VOC2 
thev FORTH woi.tld be pushed o f f  t h e  end. 

1 .  Michael Stolowitz, "Algebraic Expression 
Evaluation in Forth," Forth Dimensions, Vol. IV 
No. 6. 

~~ ~ 

FORTH Dimensions 14 Volume V, No. 4 



much easier, also have been impeded 
by the vocabulary search problem. 
The ONLY Solution? 

Probably the best and most obvious 
approach to the outlined situation is 
simply to allow the programmer to 
specify a search order for as many 
vocabularies as are required, and be 
done with it. Indeed, over the last few 
years many authors have proposed 
and/or implemented systems which do 
just this. And the STOIC language, a 
variant of Forth, has long had a voca- 
bulary stack for the same reason. But 
no general agreement on specifics has 
arisen for Forth. 

Recently, however, due to some 
campaigning by Bill Ragsdale on be- 
half of his own rather clever scheme2, 
a welcome concensus on the next mile- 
stone in Forth vocabulary structures 
may be in sight. 

(An important thing to remember 
when promoting ideas to the rag-tag 
Forth community is to give your code a 
short, catchy name like ONLY and then 
emblazon the name on your t-shirt at 
Forth conferences. It also doesn’t hurt 
if the solution is a good one.) 

Following is a description and illus- 
tration of the form of Ragsdale’s voca- 
bulary structure. 

At the heart of the ONLY scheme are 
three words: ONLY, ALSO, and a new 
version of -FIND. The Forth-79 version 
of the word VOCABULARY is used in- 
stead of the FIG version. (The differ- 
ence makes each one stand-alone or 
“sealed,” e.g. with its last link field 
containing zero, similar to the way the 
vocabulary FORTH is in FIG-Forth.) 
These words and a few bytes of memo- 
ry appended to the data area of the 
variable CONTEXT are about all the 
implementation requires to function, 
though several other programmer- 
friendly words are included for con- 
venience. 

When the variable CONTEXT is de- 
fined, it is followed by, say, 8 ALLOT 
which reserves some additional memo- 
ry where the list of (pointers to) voca- 
bularies in the search order will reside. 
With eight more bytes allotted after 
CONTEXT, there is a total of ten, or 
room enough for five vocabularies in 

2. William F. Ragsdale, “The ‘ONLY’ Concept 
for Forth Vocabularies,” Forth Modifcation 
Laboratory Conference Papers, 1982. 

the list at once. Five entries is an ar- 
bitrary but practical list size. 

At compile time, the new -FIND sear- 
ches through each of the vocabularies 
in’ turn, using the usual (-FIND) primi- 
tive. But the real innovation is in how 
the search list is set up and manipu- 
lated. We examine this process by start- . 
ing with the word ONLY. 

ONLY is a very small vocabulary con- 
taining only a few words and having an 
additional feature not shared with 
other vocabularies: when executed, 
ONLY zeroes the search list and then in- 
stalls pointers to itself in the first and 
last positions in the list. (During 
search, zeroes in the list are skipped 
over, and duplicate successive entries 
do not result in duplicate searches.) 
The first position is the normal data 
area of the variable CONTEXT, and the 
last position in the search list is a pro- 
tected one which is not normally alter- 
ed by anything except ONLY. Saying 
ONLY is how one starts a new search 
list. 

The few words in the ONLY vocab- 
ulary allow a larger list to be built. The 
main words are: ONLY itself, which al- 
ways allows you to start over; ALSO, 
which makes room for more vocabu- 
laries on the list (see figure one); 
FORTH, which adds the Forth vocabu- 
lary to the search list; and the null 
word, a system detail necessary for in- 
terpretation of source code. 

Obscure? Probably only at first. 
Figure one shows a walkthrough of a 
typical sequence. 

Now, because appropriate search or- 
ders can usually be set up outside a 
word to be defined, there is no par- 
ticular need for vocabularies to be im- 
mediate any more, and so in a particu- 
lar implementation you may find that 
they are not. Beyond this, if you are 
only programming in the Forth vocab- 
ulary, you’ll see very little difference in 
code. However, all sorts of additional 
programming utilities are made pos- 
sible with the new structure. Expect to 
see them coming up soon. 

The next and last installment in this 
vocabularies series will discuss the 
marked similarity between the vocab- 
ulary structure in Forth (especially 
FIG-Forth) and the “object” structure 
in the Xerox-developed language, 
Smalltalk. 

FOR TRS-60 MODELS 1,3 & 4 
IBM PC, XT, AND COMPAQ 

The MMSFORTH 
System. 

Compare. 
The speed, compactness and 
extensibility of the 
MMSFORTH total sOftWare 
environment, optimized for 
the popular IBM PC and 
TRS-80 Models 1, 3 and 4. 

0 An integrated system of 
sophisticated application 
programs: word processing, 
database management, 
communications, general 
ledger and more, all with 
powerful capabilities, sur- 
prising speed and ease of use. 

0 With source code, for custom 
modifications by you or MMS. 

0 The famous MMS support, 
including detailed manuals 
and examples, telephone tips, 
additional programs and 
inexpensive program updates, 
User Groups worldwide, the 
MMSFORTH Newsletter, 
Forth-related books, work- 
shops and professional 
consulting. 

A World of 
Difference! 

0 Personal licensing for TRS-80: 
$129.95 for MMSFORTH, or 
“3+4TH” User System with 

HANDLER and FORTHCOM 
for $399.95. 

PC: $249.95 for MMSFORTH, 
or enhanced “3+4TH” User 
System with FORTHWRITE, 

FORTHCOM for $549.95. 

sions from $1,000. 

FORTHWRITE, DATA- 

0 Personal licensing for IBM 

DATAHANDLER-PLUS and 

0 Corporate Site License Exten- 

If you recognize the difference 
and want to profit from it, ask US 
or your dealer about the world 
of MMSFORTH. 

MILLER MICROCOMPUTER SERVICES 
61 Lake Shore Road, Natick, MA 01760 

(617) 653-6136 

“ 0 I ” l l l t .  ”, I“”. 4 . -  



C64-FORTH 
for the 

Commodore 64 

FORTH SOFTWARE 
FOR THE 

COMMODORE 64 

C64-FORTH (TM) for the Commodore 64 - 
$99 4.5 

Fig Forth-7Q implementation with extensions 
Full feature screen editor and macro 

Trace feature for easy debugging 
320x200, 2 color bit mapped graphics 
16 color sprite and character graphics 
Compatible with VIC peripherals including 
disks, data set, modem, printer and cartridges 
Extensive 144 page manual with examples and 

assembler 

application screens 
”SAVETURNKEY normally allows 
application program distribution without 
licensing or royalties 

C64-XTEND ITM) FORTH Extension for C64- 
FORTH - $54.45 

(Requires original C64-FORTH copy) 
Fully compatible floating point package 
including arithmetic, relational, logical and 
transcendental functions 
Floating point range of 1E+38 to 2E-39 
String extensions including LEFT$, RIGHT$, 
and MID$ 
BCDfunctions for lodigit  numbers including 
multiply, divide, and percentage. BCD 
numbers may by used for DOLLAR CENTS 
calculations without the round-off error 
inherent in BASIC real numbers. 

outputting DOLLAR.CENTS values 

applications screens 

(Commodore 64 is a trademarkofcommodore) 

Special words are provided for inputting and 

Detailed manual with e u m p l e s  and 

r 0  ORDER- Specify disk or cassette version 
- Check. money order. bank card, 
COD’S add $1 50 
- Add $4 00 postage and handling in 
USA and Canada 
- Mass orders add 5% sales tax 
- Foreign orders add 20% shipping 
and handling 
- Dealer inquiries welcome 

PERFORMANCE 
MICRO 

PRODUCTS 
770 Dedham Street, S-2 

Canton, MA 02021 
(617) 828-1209 

Next- Generation 
533 

Micro-Computer Products 

Forth Froth 
WiI Baden 

Costa Mesa, California 

Forth is unusual among program- 
ming languages in that it uses ) and ( 
for the same purpose as natural lan- 
guage. Indeed, “parenthesis” means 
“remark” in Greek, and ) and ( are 
properly called “parenthesis marks,” 
just as we say “quotation mark” and 
‘‘exclamation mark. ” 

Other analogies with natural lan- 
guage can be made. 

In natural language, a noun is the 
name of a person, place or thing. In 
Forth, this corresponds to something 
whose stack diagram is ( -- nl , .  . .ni). 
Nouns can be singular or plural; this 
corresponds to how many values are 
put on the stack. A proper noun, in 
Forth, is a constant. 

An adjective modifies a noun. In 
Forth, the stack diagram is (nl, . . .ni 
-- nl ’, . . . ni ’). 1 + is an adjective; so 
are + and COUNT. 

A verb is the name of an action. In 
Forth the stack diagram is (nl, . . . ni 
--) . 

Intransitive verbs use up one value 
from the stack (e.g. LIST) and transitive 
verbs consume more than one value 
from the stack. The stack element cor- 
responding to nl is the subject of the 
verb, the other elements are objects. 
The value corresponding to n2 is the 
direct object; any others are indirect 
objects. A verb without a subject, e.g. 
the stack diagram would be ( -- ), is an 
impersonal verb; others are personal 
verbs. 

Prepositions must be followed by 
another word. Some examples in Forth 
are :, VARIABLE, FORGET and ‘. 

A pronoun takes the place of a 
noun. In Forth, these are the stack 
operators, DUP and OVER. It is con- 
venient to consider the other stack 
operators as pronouns also, e.g. ROT, 
SWAP, and DROP. (Note that by our 
previous definitions, DROP could also 
be a verb and the rest could all be ad- 
jectives.) 

Interjections are the words in a 
parenthesis. 

Conjunctions are used to join words 
and phrases. The Forth conjunctions 
are BEGIN, WHILE, REPEAT, UNTIL, IF, 
ELSE, THEN, DO, LOOP, and +LOOP. 

Adverbs tell how, when or where. 
They modify adjectives, verbs and 
other adverbs. They are something like 
adjectives and something like verbs. In 
Forth they are words with stack 
diagram 
(nl,.  . . ni,n[i+ 11,. . .nk -- n l , .  . .nil 
They take items off the stack, but leave 
some unchanged. 

Thus, all eight parts of speech are 
found in Forth. Other grammatical 
features are also present. 

A phrase is a sequence of words 
which could be used as a colon defini- 
tion. A phrase has a stack diagram 
which tells what kind of phrase it is. 
Thus, if the stack diagram is (-- n), it is 
a noun phrase. 

A clause is a verb phrase or an ad- 
verb phrase. Dependent clauses are ad- 
verb phrases; independent clauses are 
verb phrases. 

In English, just the first letter of the 
name of a language is capitalized (e.g. 
English, French, Fortran, Forth). 
Thus, FORTH is a Forth word. The 
name of the compiler will depend upon 
your system, but will probably be 
“forth” or “FORTH.” 

When I first thought of these cor- 
respondences, I thought they were 
amusing but not very useful. A year 
later, I think they have a definite value. 
They suggest a way of choosing names 
for words, a convenient classification 
when describing a word and a rationale 
for punctuating phrases in definitions. 
A clause, for instance, should be sep- 
arated by end-of-line or by extra spac- 
ing. 

. 

IRTH Dimensions 16 VolumeV No 4 



and Recursion 
Roy W. Sommers 

Pennsville, New Jersey 

Previous articles on recursion (e.g. 
Vol. IV, No. 2) utilized the words MY- 
SELF and RETURN to effect recursion. 
However, in cases where the proce- 
dures call each other, this approach 
does not work. Recursion can still be 
accomplished, though, by using vec- 
tored execution. 

This type of recursion can be illus- 
trated in terms of the binary tree de- 
scribed in Turtle Geometry (Abelson 
and diSessa, page 83). The reference 
program was written in a form of LO- 
GO and used separate procedures to 
draw left and right stems of different 
lengths, and a third procedure to con- 
trol depth of recursion and &tx-sor po- 
sitioning. Each procedure called one 
or more of the other procedures. 

An analogous program can be writ- 
ten in Forth by using vectored execu- 
tion (see accompanying code and illus- 
tration). Since NODE contains LBR and 
RBR, these words must be defined be- 
fore NODE is loaded. However, if they 
were written in the form (LBR) and 
(RBR), they could not be loaded before 
NODE since they contain NODE. Vec- 
tored execution solves this problem by 
defining LBR and RBR in terms of the 
variables 'LBR and 'RBR which, at the 
time of execution of NODE, contain the 
PFAs of (LBR) and (RBR). 

Volume V. No. 4 17 FORTH Dimensions 



Break Through the 
64K Barrier! 

FORTH-32'" lets you use up to one megabyte 
of memory for programming. A Complete 

Development System! Fully Compatible 
Software and 8087 Floating Point Extensions. 

303 Williams Ave. 
Huntsville, AL 35801 800-558-8088 (205)  533-9405 

Now available for the IBM PC, PC-XT, COMPAQ, COLUMBIA MPC, 
and other PC compatibles! 

IBM. COMPAQ, MPC. and FORTH-32 are trademarks ot IBM, COMPAQ, Columbia Data Products, and Quest Research, respectively 

18 Volume V, No. 4 FORTH Dimensions 



Apple Forth 6 la Modem 

# 120 
TEHHINAL MODEM ROUTINE -HfIA S/'i)6/83 > 

HEX 
COE(5 CONSTANT CTRL.2 
COEt6 CONSTANT CTKL i  i WRITING 1 
COB6 CONSTANT STATUS < REAIIINE 1 
COE!? CONSTANT DATA 

3UO GUNSTANT BYTESdSCR C APPLE SCREEN 5 

9 

1 I- 

; 

I, 

R.  Dudley Ackerman 
San Francisco, California 

These words will allow Forth users 
with Hayes Micromodems and Apples 
to send screens back and forth. Minor 
modifications will allow use on other 
systems. 

Execute MODEM after connect is 
made. A one should be on the origi- 
nator's stack, a zero on the stack of the 
computer in answer mode. Both parties 
should be able to see entries from both 
keyboards. 

When the modem program sees a 
control-B from its keyboard, it inputs a 
line of Forth. By executing RTRANSU, a 
set of screens can be sent from one sys- 
tem to the other. Notice the stack setup 
for RTRANSU : source screen number, 
destination screen number, and num- 
ber of screens. 

TRANS# sends a control-B out and a 
screen number, then waits to give the 
receiver time to  get the screen into its 
buffer. When the modem program gets 
a control-B across the line, it executes 
the Forth word to receive a screen. 

@KEY is Apple specific and gets a 
charactet from the keyboard. Hex 
eleven in INIT.MODEM sets the number 
of bits per character to eight, with no 
parity, one start bit, and two stop bits 
for the Hayes modem. Hex three 
initializes the Hayes modem. 

The program will also function as a 
simple terminal program. One desir- 
able feature would be a way to capture 
text into free memory, then save the 
text to  disk. 

Volume V, No. 4 19 FORTH Dimensions 



S !  

1v bl I 3 311 



PIECE 
OF 

MIND 
The System 816. 

The fastest, most cooperative computer you can buy. 
OEMs and systems integrators are busy people. Too busy to waste time with an uncooperative computer system. 

That’s why every System 816 from CompuPro is built to work long and hard without a whine or a whimper. 

Hore Dependable. 

successes built into it, the 
System 816 is backed by the 
industry‘s longest warranty 
coverage. Depending on your 
needs, our warranties range from 
12 to 36 months. Most other 
computer manufacturers expect 
you to be satisfied with 90 days, 
which typically covers parts only. 

complete hardware and software 
support, flexible configurations and 
upgrades, and system training. 

Hore Powerful. 

With ten years of pioneering 

You can also depend on 

01903 CornpuPrc 

The System 816 squeezes more performance out of the 
IEEE-696 5-100 bus than any other system you can buy. 
A choice of CPUs-and up to 4 Mbytes of our exclusive 
M-Drive/Hm RAM disk-give multiple work stations all 
the speed and power they can ask for. Standard RAM 
memory is expandable to one megabyte or more. 

Disk storage capacity ranges up to 4.8 Mbytes on 
floppy dnves and as much as 320 Mbytes per controller 
on hard disk 

n 
[ omPuPro, 

A GODBOUT COMPANY 

3506 Breakwater Court, Hayward, CA 94545 
WFAU’83 in Las Vegas. 

hccs and spccifkauons subject to change wnhout ~ O U C C  
System 816 hnnt panel dcslgn shown IS awlable fmm Full Scmce CampuPro 
System Centers only 

CP/M and CP/M-86 KC rrgmtcrrd trademarks and CP/MaK MPIN 86 Concurrent 
CP/M-% and FORTRAN 77 m tradcmvks of D ~ g m l  Research CP/M and NP/N 8 16 
arc compound trade-ks of Detal  Research and CompvPro 

Hore Versatile. 
All family members share a 

common modular architecture. 
So it’s a simple matter to upgrade 
or reconfigure any of them to 
keep up with your needs. All the 
while maintaining complete 
software compatibility up and 
down the line. 

And the S-100 bus allows you 
the flexibility to plug in any 
compatible board to add graphics 
capabilities or boards for your 
own unique applications. 

You also get your choice of 
operahng environments, including 
CP/M@, CP/M-M@, Concurrent 

CP/M-Mm, MPIM Mm, and CP/M-MKm, and our own 
CP/M@ 8-16m and MP/Mm8-16m. At the programming 
level. the System 816 family supports Pascal, C. map- 
FORTH, BASIC. COBOL. PL/1. and ANSI FORTRAN 77m 
and more. 

Hore Information. 
Your customer’s satisfaction is important to both of 

us, so don’t get stuck with a system that’s more of a 
hindrance than a help. Send in the coupon and find 
out what peace of mind is all about. 
0 Send me your free System 816 brochure. 
0 Send me the name of my nearest Full 

Service CompuPro System Center or dealer. 

NAME 

TITLE 

ADDRESS 

CITY STATE -ZIP- 
Mail t o  CompuPro. Attn: Sales Dept. 

3506 Breakwater Court. Hayward. CA 94545 

FORTH Dimensions Volume V. No. 4 21 



Forth-83 loop Structure 

Bill Stoddart 
Middlesbrough, England 

The story so far..  . 
Bob Berkey has suggested a new 

loop structure capable of covering a 
full 64K range, of handling positive or 
negative increments, or even incre- 
ments which switch sign. The internal 
implementation is based on the fact 
that an overflow condition occurs 
when a sixteen-bit addition or subtrac- 
tion traverses the boundary between 
7FFF and 8000 hex in either direction. 
By using 8000 hex as a universal loop 
limit and performing a corresponding 
transformation on the loop index, we 
can test for completion of the loop by 
checking whether adding the increment 
to the transformed index causes an 
over flow. 

The new loop has been accepted into 
the 83-Standard, but requires careful 
thought if its advantages in terms of 
generality and speed are to be accom- 
panied by simplicity of implementa- 
tion. 

The main complication of the new 
loop is in the implementation of LEAVE, 
which has traditionally equated the 
loop limit and index, forcing termina- 
tion on the next occurrence of U)OP or 
+LOOP. This technique is no longer 
available, as there is no longer an 
explicit loop limit, and there is no value 
the index can be set to which will 
ensure termination for both positive 
and negative increments. Setting the 
limit to 7FFF hex will ensure termina- 
tion for LOOP and +LOOP with a posi- 
tive increment, since adding a positive 
value to 7FFF will always cause an 
overflow. However, there will be no 
overflow if the index is decremented by 
+LOOP. 

With this in mind, the 83-Standard 
specifies that LEAVE should straight 
away transfer execution to just beyond 
the end of the loop structure. Various 
ways of achieving this have been sug- 
gested. Bob Berkey’s original sugges- 
tion was that the runtime operation 
compiled by DO should push an exit ad- 
dress onto the return stack. This im- 

1 et-1 

0 ( N L I C ~ ~ L I S  ) 

1 
2 HEX 

4 CODE (DO) 
5 AX POP ( i n i t i a l  ~ n d e x  ) CX POP ( l l m l t  ) AX CX CMP 
6 O= I F  [ bypass null loop  ) LODS AH AH SUB AX S I  ADD 
7 ELSE BP SP XCHG 8000 # DX MOV CX DX SUB DX PUSH ( :: 1 

- 
3 

8 A X  DX ADD DX PUSH ( 1 ) sr  BP XCHG SI INC 
9 THEN NEXT END-CODE 

1 0  
1 1 DECIMAL 
12 
13 
14 
15 

181 
0 ( Nucleus ) 

1 
2 CODE (LOOP) RP3 WORD INC OFL I F  4 # BP ADD S I  INC 
J ELSE LODS AH AH XOR AX S I  SUB THEN NEXT END-CODE 
4 
5 CODE (+LOOP) 
6 AX POP AX BP3 ADD OFL I F  4 # BP ADD SI INC 
7 ELSE LODS AH AH SUB AX SI SUB THEN NEXT END-CODE 
8 
9 

1 0 
1 1  
12 
13 
14 
15 

182 
0 ( Nucleus ) 

1 
2 CODE I 4 -- n l e a v e  loop ~ n d e c  ) 
3 BP3 AX MOV 2 DISP8 RP3 AX SUB AX PUSH NEXT END-CODE 
4 
5 CODE J f -- n l e a v e  o u t e r  loop index ) 

6 4 DISPB BPO AX MOV 6 DISPB BP3 AX SUB AX PUSH NEXT 
7 END-CODE 
8 
9 CODE CLEAVE) 

10 4 # BP ADD LODS AH AH SUB AX SI SUB 
11 LODS AX S I  ADD NEXT END-CODE 
12 
13 
14 
15 

Volume V, No. 4 FORTH Dimensions 22 



18; 
0 ( S y s t e m  word  set. high  level ) 

1 
2 : ,MARI. ( ~- addr ) HERE : 
3 
4 : .RESOLVE ( addr -- ) 

5 HERE SWAP - 1 +  C. : 
6 
7 : dlARI.. ( -- addr ) HERE (1 C. : 
8 
9 : .RESOLVE ! addr -- ) 

1 0  HERE OVER - 1- SWAP C '  ; 
11 
12 
1 3  
14 
15 

184 
(.) ( P r o g r a m  structures 1 
1 
2 VARIARLE CLUE 

4 : DO ( -- dest ) 

5 CLUE 3 COMPILE (DO) M A R K  ( f o r w a r d  branch past loop ) 

6 DUP CLUE ' .:MARK ( b a c k w a r d  branch f r o m  loop ) ; IMMEDIATE 
7 
8 : LOOP ( dest -- ) 

9 COMPILE (LOOP) <RESOLVE :RESOLVE CLUE ' ; IMMEDIATE 

- s 

1 0  
1 1  : +LOOP ( dest -- ) 

1 2  COMPILE (+LOOP) (RESOLVE >RESOLVE CLUE ' ; IMMEDIATE 
13 
14 : LEAVE ( addr l  addr2 -- addr l  addr2 ) 

15 COMPILE (LEAVE) CLUE 3 (RESOLVE ; IMMEDIATE 

End Listing 

._ .  DO T E S T  I F  CONNECT L E A V E  THEN LOOP ... 
T h i s  c o m p i l e 5  a5: 

Figure One 

plies a runtime penalty whether or not 
LEAVE is included in a loop, and sub- 
sequent suggestions from Klaus Schlei- 
siek and Bill Ragsdale have avoided 
any runtime penalty by using LOOP or 
+LOOP to resolve forward branch 
addresses left by an IMMEDIATE version 
of LEAVE. 

Now read on . .  . 
The implementation presented here 

runs loops at maximum speed and also 
avoids any complexity in the compile- 
time behavior of LOOP or +LOOP. 
These words do not need to know 
about the existence of LEAVE. There is a 
minimal runtime penalty when the run- 
time operator for LEAVE is executed. 
The essential idea of the implementa- 
tion is that the runtime operator 
(LEAVE) compiled by LEAVE calculates 
its continuation address by locating an 
offset which follows the runtime oper- 
ator (DO) compiled by DO. 

Consider figure one. The runtime 
operators (DO), (LOOP) and (LEAVE) are 
followed by unsigned eight-bit dis- 
placements. Thus, (DO) has an offset to 
beyond the loop, and (LOOP) has an off- 
set back to the start of the loop. 

The offset that follows (LEAVE) is 
back to the location following (DO). 
(LEAVE) performs its function by: 
a) subtracting its offset from IP, leav- 
ing IP pointing to the byte that follows 
(DO), and 
b) adding the offset that follows (DO) to 
IP, leaving IP pointing just beyond the 
loop. 

At compile time, DO saves the loop 
start address in the variable CLUE, hav- 
ing first saved the previous value of 
CLUE on the parameter stack. LEAVE 
uses the contents of CLUE to calculate 
the offset back to the start of the loop. 
LOOP or +LOOP will restore the pre- 
vious value of CLUE, which will either 
be its initial value or the start address 
of an outer loop. 

The code presented here is without 
compiler protection, but setting the ini- 
tial value of CLUE to zero provides a 
simple test for being inside a loop. 

The existence of an offset following 
(DO) means that including a test for a 

Volume V, No. 4 23 FORTH Dimensions 



null loop is very simple and efficient. 
On grounds of functional correctness, 
too, I think this should be included in 
the standard, and the test is included 
here. 

The code definitions of the runtime 
operators are given for an 8086 im- 
plementation. For those who wish to 
ponder the details, SI is a sixteen-bit in- 
dex register used as Forth’s IP. Next is 
post incrementing, so that during ex- 
ecution of a code-level word, IP points 
to the following byte. 

BP is a sixteen-bit index register used 
as Forth’s RP. The return stack grows 
toward low memory, so that 

drops two items from the return stack. 
AX is a sixteen-bit accumulator with 

low byte AL and high byte AH. The @ 
symbol is used in the assembler to de- 
note indirection, so 

will add AX to the contents of the 
location indicated by BP, which is the 
top of the return stack. The instruction 

adds the second return stack item to 
Ax. 

4 # BP ADD 

AX BP@ ADD 

2 DISPE BP@ AX ADD 

LODS is a one-byte instruction 
equivalent to 
SI@ AL MOV SllNC 

The offsets compiled by DO, LEAVE, 
LOOP and +LOOP are calculated using 
the 83-Standard system words >MARK, 

The definitions of these words are 
included for completeness. They are 
specific to a system using eight-bit 
unsigned offsets. 

The definitions of DO, LEAVE, LOOP 
and +LOOP will be usable on any sys- 
tem, since they use the system words to 
hide details of the underlying imple- 
mentation. 

>RESOLVE, < MARK and < RESOLVE. 

Appendix: DO. . . COOP Algebra 

It is fascinating that a discovery such 
as the new loop can be made after so 
many programmers and compiler wri- 
ters have been implementing loops for 
so many years. One reason why this 
type of thing is tricky is that sixteen-bit 
integer arithmetic is really two arith- 
metic systems combined, signed and 
unsigned, and in using the overflow 
flag to test for loop termination we are 

using a facility from signed arithmetic 
to test for the completion of an unsign- 
ed operation. In a hardware realization 
of a Forth machine, of course, the in- 
ternalized limit could be zero, with a 
“loop” flag which comes up when a 
sixteen-bit arithmetic operation crosses 
zero. 

Let L and I represent the loop limit 
and index. We define the range R of 
the loop as R = L - I. 

We transform L and I to internalized 
values 1 and i, where in most systems 
1 = 8000 hex. 

This transformation does not affect 
the range of the loop, so we can write R 
= 1 - i, and thus i = 1 - L + I. 

As the loop executes, there is a con- 
stant difference between i and I which- 
can be expressed as I = i - x, which by 
eliminating i gives x = 1 - L. 

The values of x and i are calculated 
by the runtime operator for DO and are 
pushed onto the return stack. (See 
comments in (DO).) The Forth word I 
calculates the loop index using I = i- x. 

1 proFORTH COMPILER 
8080/8085,280 VERSIONS 
0 SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS 

INTERACTIVELY TEST HEADERLESS CODE 

MULTIPLE, PURGABLE DICTIONARIES 
IN-PLACE COMPILATION OF ROMABLE TARGET CODE 

FORTH-79 SUPERSET 
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $2250 

2 MICROPROCESSOR-BASED PRODUCT DESIGN 
SOFTWARE ENGINEERING 

ELECTRONICS AND PRINTED CIRCUIT DESIGN 
PROTOTYPE FABRICATION AND TEST 
REAL-TIME ASSEMBLY LANGUAGE/proFORTH 
MULTITASKING 
DIVERSIFIED STAFF 

DESIGN STUDIES - COST ANALYSIS 

FORTH Dimensions 24 Volume V. No. 4 



I 

i 

PRICES STARTat $895.00 for a SINGLE COMPUTER LICENSE (CP/M Version) - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - -  
0 OK!!! I'm interested! Please send me more information about the Multi-FORTHTM system. 

Name Company 

Address 

Phone Hardware Type 
1 

4801 Randolph Road 
Rockville, Maryland 20852 

(301) 984-0262 
A Creobive Solutions lnc. 

M u l t  FORTHTMis a registered trademark of  CreativeSolutions Inc 

Volume V,  No. 4 25 FORTH Dimensions 



Tec h n iq u es Tutorial 

Mult i lTasking,  Part I 
Henry Laxen 

Berkeley, California 

Multi-tasking has long been one of 
the biggest benefits of Forth and one of 
its most closely guarded secrets. The 
fact that even crippled processors like 
the 8080 can be made to run four or 
five tasks simultaneously with little 
performance degradation is a testa- 
ment to the efficiency both of Forth it- 
self and of the techniques involved in 
implementing a multi-tasking kernel. It 
is time to reveal the techniques used in, 
most Forth multi-tasking systems and 
to allow the user to benefit from the 
power such knowledge can bestow. 

Now for the disclaimers. First, I am 
only going to discuss multi-tasking, 
and not multi-user, Forth systems. The 
difference is that in a multi-tasking 
Forth there is but one terminal attach- 
ed to the system, hence only one person 
at a time is interpreting or compiling. 
This is considerably simpler than a 
multi-user Forth system with several 
terminals (each perhaps with its own 
unique characteristics), all interpreting 
and compiling at the same time. In our 
multi-tasking system, the user will be 
able to have several tasks running si- 
multaneously, perhaps communicating 
with each other and with the terminal, 
but I will not get into the subtleties as- 
sociated with turning it into a true 
multi-user environment. The second 
disclaimer is that in order to get some 
efficiency out of the system, the tech- 
niques used to implement multi-tasking 
are generally very machine dependent. 
Since my machine is an 8080, and it is 
me writing this article, you will either 
have to bear with me or ignore the ar- 
ticle. The choice is yours. 

This first installment will deal with 
the low-level mechanism involved in 
task switching, and the structures that 
must be in place in Forth in order to 
make multi-tasking possible. The se- 
cond article on this subject will talk 
about creating and manipulating tasks. 
While the code I present is oriented 
toward an 8080, I will describe its func- 
tion. You should be able to translate it 

into code for your processor without 
much pain. 

Now then, let me first describe the 
philosophy behind multi-tasking in 
Forth. Unlike traditional multi-tasking 
systems, which interrupt the currently 
running task at a completely arbitrary 
time and initiate another task unbe- 
knownst to the first one, Forth requires 
tasks to cooperate. While each task 
does not know details about the other 
tasks, it must at least be aware of them, 
or else the system will revert to a single- 
task existence. Each task must explicit- 
ly give up control of the CPU at certain 
points while it is running. The Forth 
kernel does so whenever it is about to 
perform an 110 operation, such as 
reading or writing to the terminal or 
mass storage device. If the user creates 
a task that does no I/O of its own, then 
he must explicitly give up control or 
else as soon as that task is activated, it 
will take total control of the machine. 
Each of the two approaches mentioned 
above has merit, and I will briefly dis- 
c~llss the good and bad points of each. 

The main advantage of traditional 
multi-tasking systems is that the pro- 
grammer does not need to be aware of 
their existence. As far as he is concern- 
ed, the program he writes is just run- 
ning slower. He does not need to modi- 
fy it in any way from a single-user en- 
vironment. There is, of course, a cost 
associated with this benefit, and that is 

one of performance. Since the operat- 
ing system must absolutely guarantee 
that the state of the system is undistur- 
bed between one running of the task 
and another, an extremely complex 
process usually is required to save and 
restore a task. Since the task is una- 
ware that it is being removed from con- 
trol, the operating system may grab it 
at a particularly inopportune moment, 
and the amount of information that 
must be saved and restored can be stag- 
gering. This is why performance on 
such systems typically degrades rather 
dramatically as soon as several tasks 
are running concurrently. The main 
advantage of the Forth approach to 
multi-tasking is that the overhead of 
task switching is extremely small. 

Thus, many tasks can be run simulta- 
neously with little performance deg- 
radation. The disadvantage is that an 
additional burden is placed on the pro- 
grammer. He must follow some rules 
that apply in multi-tasking systems, as 
well as, perhaps, modify his code to 
take advantage of multi-tasking. My 
conclusion from this synopsis is that 
traditional multi-tasking is great on 
very large systems where tens or hun- 
dreds of tasks are running simultane- 
ously and the computer hardware helps 
you. On microcomputers and small 
systems, the traditional approach sim- 
ply does not apply, and the benefits of 

VARIABLE UP ( P o i n t s  t o  t h e  c u r r e n t l y  a c t i v e  use r  base  a d d r e s s  ) 

: USER CREATE , DOES> @ UP @ + : 

Figure One 

VARIABLE #USER ( Holds t h e  s i z e  of t h e  u s e r  a r e a  ) 0 #USER ! 
VOCABULARY USER USER D E F I N I T I O N S  
: CREATE CREATE #USER @ , DOES> @ UP @ + : 
; ALLOT #USER +! : 
: VARIABLE CREATE 2 ALLOT : 
FORTH D E F I N I T I O N S  

Figure Two 

Volume V, No 4 FORTH Dimensions 26 



the Forth approach greatly outweigh 
the drawbacks. 

The basic mechanism Forth uses is 
simply to define an ordinary Forth 
word, usually called PAUSE, which 
relinquishes control of the CPU from 
the currently running task and gives it 
to the next task that is ready to run. 
PAUSE takes nothing from the stack 
and returns nothing, and disturbs the 
system in a well-defined way of which 
the user must be aware. What PAUSE 
actually does is to examine a linked list 
of tasks that may or may not be ready 
to run. The first ready task it finds is 
given control of the CPU and is al- 
lowed to run until it executes a PAUSE 
of its own. The linked list is circular, so 
eventually we will get back to the first 
task in the list and run it again, with ex- 
ecution continuing immediately after 
the PAUSE word. By agreement, tasks 
shall not disturb the state of the system 
except with regard to block buffers. 
Thus, each task may not assume that 
the buffer it is using is still present after 
a PAUSE has been executed. This minor 
restriction greatly simplifies the job of 
saving and restoring the state of the 
system between task activations. 

Wait a minute, you say, what about 
the many system variables that tasks 
may use while they are running. For ex- 
ample, if a background task is doing 
print spooling while you are editing a 
screen, both tasks are accessing 
variables such as OUT, BASE, HLD, etc. 

Things would get very confusing if 
each task could change these and affect 
other tasks. Fortunately, there is an ex- 
tremely elegant way to prevent this 
which has traditionally been known as 
USER VARIABLE in Forth. The idea is 
simple, namely, just group together 
those variables which each task must 
have to itself. These variables become 
offsets from some base address. When 
these variables are executed, they must 
add their offset to the base address of 
the current task. Thus, to switch tasks 
one need only change the base address 
from whence these variables originate, 
instead of copying the values themsel- 
ves to some safe area. The portion of 
memory reserved for these variables is 
called the USER area. There are many 
different ways of implementing this 
concept, and I would like to present a 
new one here which I believe has great 
merit. Traditionally, USER was a defin- 
ing word which took as an argument an 
offset from the base address and as- 
signed a name to that offset. At run- 
time, the offset was added to the base 
of the current user area, which was 
contained in a regular variable, and 
that address was placed onto the pa- 
rameter stack. This is simple, but has 
some disadvantages. It is difficult to 
insert a new USER variable into the 
middle of existing ones with this im- 
plementation. It also forces the user to 
be aware and do arithmetic in order to 
maintain the user area. The old im- 

CODE PAUSE (S  -- ) 
I P  PUSH ( Push t h e  c u r r e n t  i n t e r p r e t e r  p o i n t e r  o n t o  s tack  
RP LHLD H PUSH ( a n d  t h e  c u r r e n t  r e t u r n  s t a c k  p o i n t e r  ) 
0 H L X I  SP DAD XCHG ( S t a c k  p o i n t e r  now i n  DE ) 
UP LHLD ( P o i n t s  t o  TOS, which  is f i r s t  e n t r y  
E M MOV H I N X  D M MOV H I N X  ( Move s t a c k  p o i n t e r  t o  TOS 
H I N X  PCHL ( Jump t o  n e x t  t a s k  ) C ;  

Pause on the 8080 
Figure Three 

I I 
CODE RESTART ( S  -- ) 

( S i n c e  a RST i n s t r u c t i o n  h a s  j u s t  b e e n  e x e c u t e d ,  t h e  a d d r e s s  
UP + 3 is now o n  t h e  s t a c k  ) 

-3 H LXI D POP D DAD UP SHLD ( S e t  up new USER a r e a  ) 
M E MOV H I N X  M D MOV XCHG SPHL ( Restore p a r a m e t e r  s tack  
H POP RP SHLD ( R e s t o r e  R e t u r n  S t a c k  P o i n t e r  ) 
I P  POP ( Restore t h e  I P  ) NEXT JMP C;  

I Figure Four I 
I I 

plementation was as shown in figure 
one. 

A much more flexible approach is to 
make USER a vocabulary, and redefine 
those words which may be needed on a 
task level. Consider the implementa- 
tion in figure two. 

Now you need no longer keep track 
of where each variable is going and 
how much space has been used. Also, 
arrays are much easier to create, and I 
think it reads much more nicely. With 
the old approach, you would have to 
say 34 USER BASE to define a user vari- 
able called “base,” and you must 
know that location 34 is available for 
use. With the new scheme, you simply 
type USER VARIABLE BASE, which reads 
very nicely indeed. 

Now then, suppose we have such 
things as USER variables, regardless of 
exactly how they were defined. In par- 
ticular, I will need three such variables 
as follows: 

USER VARIABLE TOS (Holds top Of  
stack when switching tasks.) 

USER VARIABLE ENTRY (Contains 
machine code and task status.) 

USER VARIABLE LINK (Points to next 
task in a circular list.) 

Let’s examine the role of each of 
these a little more closely. TOS is simply 
going to hold the value of the top of 
the parameter stack for this task, when 
it gives up control of the CPU to the 
next task. Since each task must have its 
own local stack in order to do just 
about anything, this value must be 
saved and restored between successive 
activations of a task. ENTRY in our 
implementation will contain machine 
code that will either jump to the next 
task in the list if the current one is not 
ready to run yet, or it will jump to 
some activation code that will bring 
this task to life once again. Finally, 
LINK points to the ENTRY field of the 
next task in the circular list. The only 
tricky part of this is how to fit the code 
that decides whether or not to activate 
this task and either continue or restore 
all of the task’s parameters, in the two 
bytes reserved for ENTRY. It just so 
happens that, on the 8080, two bytes is 
more than enough and, in fact, one 
would suffice. 

FORTH Dimensions Volume V, No. 4 27 



The 8080 has several one-byte in- 
structions called RST instructions. 
When these are executed, they push the 
value of the program counter on the 
stack and jump to  a specified location 
in low memory. Thus, the trick on the 
8080 is to put either an RST or a JMP 
into the ENTRY point. An RST instruc- 
tion will cause this task to be activated, 
while a JMP instruction will jump im- 
mediately to the ENTRY point of the 
next task in the list. Remember that the 
contents of LINK point to the ENTRY 
point of the next task in the list. So to 
make a task active, an RST instruction 
is placed into ENTRY while to deactivate 
a task an NOP instruction is placed in- 
to ENTRY. The JMP instruction is al- 
ways present in ENTRY + l. This is 
wasteful, I know, but what the hell. 
Now then, all we have to do is under- 
stand what exactly happens when we 
do a PAUSE and a task activation. Let’s 
first look at what PAUSE does on the 
8080. (See figure three.) 

PAUSE is in charge of saving the 
current task’s status and jumping to 
the next task in the circular list. Notice 
how little information needs to be 

saved during a task switch. Only the 
current value of the IP, the return 
stack depth, and the parameter stack 
depth is saved. Note that the IP and the 
return stack depth have been pushed 
onto the parameter stack, so it will be 
the duty of the RESTART word to pop 
these off so that the stack depth is 
unchanged. Now let’s take a look at 
RESTART in figure four, which must re- 
start a task where it left off, namely 
just after executing a PAUSE. 

Remember that the RST instruction 
is a one-byte call to a fixed address. 
Thus, it pushes the address of the cur- 
rent user area plus three onto the cur- 
rent stack. This information is used to 
restore the user area for the task that is 
now being restarted. Once the base of 
the user area is computed, the parame- 
ter stack is restored and then the return 
stack and the interpretive pointer. 
Thus, RESTART has undone what was 
done by PAUSE, and resumed execution 
with the word following PAUSE, as 
though nothing has happened. 

I hope this has shed a little light on 
what goes on in a multi-tasking system. 

Next time, we will explore how to cre- 
ate and manipulate tasks, now that we 
understand the task-switching mechan- 
isms involved. Until then, good luck, 
and may the Forth be with you. 

Copyright 0 1983 by Henry Laxen. 
All rights reserved. The author is Chief 
Software Engineer for Universal Re- 
search, 150 North Hill Drive #lo, Bris- 
bane, CA 94005, specializing in the 
development of portable computers. 

Letters (Continued from page 4) 

fact, any reference to an operating sys- 
tem at all (except for terminal interfac- 
ing words like EMIT), as far as the stan- 
dard is concerned. That is most defin- 
itely not to say that the screen system is 
not a good one. In fact, it might be the 
best system for particular applications. 
But I think Forth should emulate the 
attitude of C and Modula I1 in that 
respect. Separate the design and im- 
plementation of the operating system 
from the language standard. 

The next issue on my mind is that of 
strings. Possibly one of the FIG study 
groups is taking care of my concerns; 
but it would make me feel more com- 
fortable to see some debate, at the level 
of fundamentals, in Forth Dimensions 
before things get too far along. 

BASIC has taught us that good 
string handling is one of the very im- 
portant components of interactiveness. 
The secret of (Microsoft) BASIC’s 
friendliness with strings is that you 
never have to specify the length of a 
string, and the secret of that is 

BASIC’s string-space garbage collec- 
tor. Here is an opportunity for Forth, 
because, however they are imple- 
mented, Forth’s string variables are 
likely to be dispersed randomly in the 
code, rather than being assigned to a 
well-defined memory region; and that 
makes garbage collection impossible 
without both forward and backward 
links between string variables and 
string values in string space. This is ex- 
tra memory overhead, compared to 
BASIC, but the advantage is that it 
makes very fast garbage collection pos- 
sible. 

String handling is very important, 
and Microsoft BASIC has shown us 
that it can be done extremely well in 
small-scale systems. We should accept 
nothing less for Forth. 

Finally, let me comment on the edi- 
tor’s reply to a letter in Forth Dimen- 
sions (Vol. IV, No. 6, page 25), point- 
ing out a design bug in a FIG release. 
The response was to the effect that the 
bugs were known, and had been fixed 
in the implementations of various ven- 

dors, who have more resources for that 
kind of maintenance than FIG. 

I have to chide you a little for that. 
We all appreciate the tremendous gen- 
erosity of the people behind FIG, who 
put their public-domain philosophies 
where their mouths are, at the cost of 
that most valuable commodity, per- 
sonal time. But the situation is surely 
analogous to that of publishing re- 
search in scientific journals. As a theo- 
retical physicist, it is my professional 
and ethical responsibility to publish an 
erratum if I become aware of a sig- 
nificant mistake in any of my pub- 
lished work. I think the same should 
apply to FIG publications. If you know 
of a bug, you should publish an er- 
ratum. 

I hope that, in the interest of pruning 
my remarks to a few, I have not con- 
veyed an overly critical impression. I 
really get a sense, from two years’ 
worth of Forth Dimensions, that the 
community is making solid advances. 
Although not a Forth fanatic, let me 

(Continued on next page) 

~ ~~~ 

Volume V, No 4 FORTH Dimensions 28 



7 1983 CALANDER 
7 - 1983 

Sun Man Tue Wen Thr  F r i  S a t  
1 2  

3 4 5 6 7 8 9  
18 11 12 13 14 15 14 
17 18 l ?  20 21 22 23 
24 25 26 27 28 2? 30 
31 

S c r e e n  # 32 
8 ( C a l a n d e r  D e v e l o p m e n t ,  S c r e e n  1 o f  3 ) 
1 : CTABLE <BUILDS 8 DO C, LOOP DOES> t C3 ; 
2 31 38 31 38 31 31 38 31 38 31 29 31 0 
3 31 38 31 38 31 31 38 31 38 31 28 31 0 
4 26 CTABLE DAYS-IN-MONTH ( m o n t h  -- d a y s  i n  m o n t h  ) 
5 
6 : IS-LEAP-YEAR? ( y e a r  -- f l a g  ) 
7 DUP DUP 488 MOD 8s ( i f  y e a r  d i v i s a b l e  by 488 ) 
8 SWAP 188  MOD 8= NOT OR ( or  n o t  d i v i s a b l e  by 188 ) 
9 SWAP 4 MOD 8.: AND ; ( a n d  d i v i s a b l e  by 4 t h e n  l e a p  ) 
18 
1 1  
1 2  
13 
14 
15 --> 

S c r e e n  # 33 
8 ( C a l a n d e r  D e v e l o p m e n t ,  S c r e e n  2 o f  3 ) 
1 : DAY-OF-YEAR ( d a y ,  m o n t h ,  y e a r  -- d a y  o f  y e a r  ) 
2 I S-LEAP-YEAR? 
3 I F  13 t 14 ( i f  l e a p  y e a r  c o n v e r t  o f f s e t s  ) 
4 ELSE 1 ENDIF ( e l s e  s t a r t  a t  m o n t h  1 ) 
S 2DUP = I F  2DROP ( i f  m o n t h  i s  j a n u a r y ,  r e t u r n  d a y  ) 
6 ELSE DO I DAYS-IN-MONTH t LOOP ( e l s e  c a l  day o f  y e a r  ) 
7 ENDIF ; 
8 I DAY-OF-WEEK ( d a y ,  m o n t h ,  y e a r  -- d a y  o f  week,  s u n d a y  i s  8 ) 
9 DUP >R DAY-OF-YEAR 8 ( g e t  c u r r e n t  d a y  o f  y e a r ,  c u r r e n t  day ) 

18 R> 1908 DO ( s t a r t  a t  y e a r  1 9 8 8 )  
1 1  I IS-LEAP-YEAR? I F  366 t ELSE 365 t ENDIF 
1 2  LOOP t ( a d d  i n  d a y  o f  t h i s  y e a r  ) 
13 7 MOD ; ( mod by 7 f o r  d a y  o f  week ) 
14 ( N o t e :  w o r k s  f r o m  y e a r  1981 t o  2 1 8 8  ) 
15 --> 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

18 
1 1  
12 
13 
14 
15 

S c r e e n  # 34 
( C a l a n d e r  D e v e l o p m e n t ,  S c r e e n  3 o f  3 ) 
: CALANDER ( m o n t h ,  y e a r  -- ) ( p r i n t  m o n t h s  c a l a n d e r  ) 

2DUP SWAP . ."  - " . CR 
. I '  Sun Mon Tue Wen T h r  F r i  S a t "  CR 
2DUP 1 ROT ROT DAY-OF-WEEK ( f i n d  d a y  o f  1st d a y  o f  m o n t h  ) 
DUP 2* 2+ SPACES ( s p a c e  o v e r  i n  o u t p u t  ) 
ROT ROT ( s t a c k :  d a y o f w e e k ,  m o n t h ,  y e a r  ) 
IS-LMP-YEAR? I F  13 t ENDIF DAYS-IN-MONTH < g e t  days i n  m o n t h  ) 
l +  1 DO 
I 4 .R ( out  d a y  ) 
1 *  DUP 7 = I F  CR ENDIF 7 MOD ( i f  s a t  t h e n  c r  ) 

LOOP 0= NOT I F  CR ENDIF CR ; ( o u t p u t  e n d i n g  c r s  ) 
: CALANDER-YEAR ( y e a r  -- ) ( p r i n t  c a l a n d e r  f o r  w h o l e  y e a r  ) 
13 1 DO DUP I SWAP CALANDER LOOP DROP ; 

end by saying that I find FIG a unique- 
ly valuable enterprise. 

David N. Williams 
1238 Westport 

Ann Arbor, MI 48103 

Code for All Seasons 

Dear FIG, 
At last year's Forth convention in 

San Jose, one speaker mentioned that 
functions to print out the calendar 
would be useful. Though I am not an 
expert in Forth yet, these functions 
seemed simple, and 1 have developed 
the code shown in the accompanying 
screens. I am using a Forth developed 
from the FIG model; it should be 
simple to convert these functions to 
Forth-79. 

I would personally like to see some 
routines that would display a comment 
associated with a Forth word. I find it 
very awkward to look up uncommon 
definitions each time I need to use one. 
Currently, I am just not familiar 
enough with Forth to implement this. 
Does anyone have some ideas? 

Thank you very much, 
Jesse Jay Wright 

164 N. Oak Knoll #8 
Pasadena, CA 91 101 

FIG Aficionado 

Dear Editor, 
Re: the contents of Forth Dimen- 

sions, you find me delighted to see true 
FIG-Forth screens reappearing. After 
all, FIG-Forth is our group's own ver- 
sion of Forth, and though'the "stan- 
dard" (unfortunately, I think) gets 
changed every four years or so (this is 
bound to scare off many a potential 
commercial user worried about soft- 
ware maintenance - a standard that 
changes is a contradiction in terms!), 
FIG-Forth escaped unscathed. In con- 
trast, a Forth-79 screen written only 
one year ago won't necessarily load on 
a Forth-83 system. R y  to explain this 
to a business user who just got coaxed 
into spending a few thousand bucks on 
a Forth-83 system with promises of a 
wealth of ready-made software at 
large, and who discovered that it will 
require considerable amounts of re- 
writing before he can use it. The same 

Volume V. No. 4 29 FORTH Dimensions 



applies to Forth-79 users who won’t be 
able to load all these ’83 screens which, 
no doubt, will appear before long. If 
new “standards” keep popping up like 
this, there will soon be as many Forth 
dialects as there are BASICS, and the 
intended source portability will be 
nothing but a hollow phrase. 

A while ago, I obtained a 2-80 FIG- 
Forth listing from Dennis Wilson of 
Aristotelian Logicians. To do better 
justice to the 2-80 bit, I re-worked 

parts of it. I got lots of fun out of re- ested person who sends a 5 114 ‘ ’ dou- 
writing code definitions, ending up ble-sided, single-density diskette (or 
with fewer bytes used and a faster ex- $5)  and return postage. 
ecution time to boot. As a result, the Yours Forthfully, 
Primes benchmark (Forth Dimensions, Edmund Ramm 
Vol. 11, No. 4) executes lo00 primes in Postfach 38D-2358 
fifty-four seconds, and the BYTE test Kaltenkirchen, West Germany 
(September 1981) runs in just eight 
seconds. I’d very much like to hear 
from anyone who can do better than 
this on a 4Mz, Z-80 system. I will glad- 
ly supply the source text to any inter- 

New Product Announcements 

Forth Dimensions welcomes press 
releases and product announcements, 
as well as reader letters regarding pro- 
duct performance. Addresses of the 
distributors and manufacturers men- 
tioned in this column may be found in 
the Vendors List. 

Perkel Software Systems has an- 
nounced that its Marx Forth v1.4 is 
now a public-domain product. In- 
cluded is its target compiler system 
which allows applications to be run as 
stand-alone machine code files that 
don’t require a Forth system to run. 
Source listings and forty-page manual 
cost $35, disk version $150; for North- 
Star, CP/M, Atari, Radio Shack. 
Those interested in developments re- 
lated to a “universal compiler” with 
the ability to compile code from Forth, 
Pascal, C and BASIC may write to 
Perkel Software Systems. 

The Pocket Guide to Forth lists 
Forth words in ASCII order, along 
with definitions and stack diagrams. 
Gives FIG-Forth and Forth-79 correla- 
tions. Available for $7.00 from Moun- 
tain View Press ($7.25 elsewhere). 

Forth Inc. has released a schedule of 
Forth classes for the period from No- 
vember 1983 to February 1984. In- 
cluded are an intensive introduction 
covering vectored execution, array 
handling, sealed vocabularies, data 
typing, data formatting and manage- 
ment; advanced instruction detailing 
multi-tasking, serial device drivers, in- 
terrupt routines, BLOCK device dri- 
vers and target compile applications 

culminating in a running target image; 
and data-base design concentrating on 
the techniques needed to store data on 
disk and to design reports, user inter- 
face and security, indexing methods, 
and data description and access tools. 
Courses are five days in length, consist 
of both lecture and hands-on learning, 
and cost between $750 and $950 for in- 
dividual enrollment. 

Several printed listings which include 
the 83-Standard are available from 
MicroMotion for $15 each. Also avail- 
able are 6502, 8080 and 8086 source 
listings which support both the new 
standard and the 83 model by Laxen 
and Perry. Call or write them for a free 
83-Standard Programming Reference 
Card. 

Ziggurat Software announced ap- 
plications for HES’ FIG-Forth for the 
VIC-20. Included are additional FIG- 
Forth words not in the HES implemen- 
tation, printer utilities for the VIC 
printer, a case statement, arrays and 
strings, and disk utilities. Available on 
cassette or disk. 

Innovatia Laboratories offers three 
products, FMS is a text formatter 
which permits storage of text or direct 
output (typewriter-like) to printer, and 
permits access to all upper- and lower- 
case Greek letters and forty-six math 
and special symbols. FLH provides 
LISP-like list-handling in Forth and a 
small expert system written in FLH. 

FWG, a firmware generator, creates 
ROMable Forth code, with or without 
headers, for target compilers. 

Forth for the Texas Instruments 
99/4A can be purchased from Wycove 
Instruments Ltd. It requires at least 
32K of additional memory and one of 
the following: Editor/Assembler, Mini 
Memory or Extended BASIC. A cas- 
sette version is available. Sprites, 
sound, floating-point arithmetic and 
peripheral access are supported. The 
$50 price includes a short introduction 
to Forth, complete description of the 
included Forth words, hardware notes 
and a sample game. Beginners are 
referred to Starting Forth by Leo 
Brodie. 

FORTH Dimensions 30 Volume V, No. 4 



Chapter News 
John D. Hall 

Oakland, California 

We have three new chapters! They 
are ; 
Fox Valley FIG Chapter 
Batavia, Illinois 
Philadelphia Area FIG Chapter 
Philadelphia, Pennsylvania 
Houston FIG Chapter 
Houston, Texas 

The following areas do not have FIG 
chapters, even though there are suffi- 
cient FIG members to form them. I 
know that many members in these 
areas are interested, but someone will 
have to make an effort! 

Tucson, AZ 
San Jose, CA 
Gainesville, FL 
Tampa, FL 
Orlando, FL 
Huntsville, FL 
Melbourne, FL 
Atlanta, GA 
Indianapolis, IN 
Baton Rouge, LA 
Raleigh/Durham, NC 

Atlantic City, NJ 
Corvallis, OR 
Eugene, OR 
Columbus, OH 
Cincinnati, OH 
Norfolk, VA 
Roanoke, VA 
Richland, WA 
Madison, WI 
Milwaukee, WI 

Australia Chapter 

At the meeting on July 1, after a 
question and answer session, the dis- 
cussion was devoted to screen transfer, 
with some heavyweight thinking about 
the IS0  seven-layer model. On August 
5 ,  the same topic was featured, and at 
the end of the meeting, several people 
decided to actually do something about 
writing code and making cables to ac- 
tually transfer some data. 

Los Angeles Chapter 

There was a talk on August 27 about 
the current state and future trends of 
software and hardware development 
for personal and business computers in 
Japan. Martin Tracy discussed tech- 
niques and implementations for ROM- 
able Forth systems. Barry Cole ex- 
plained how he implemented a quick 
booting For th  on  a portable 
computer.On September 24, Nathaniel 
Grossman described his method for 

implementing nine decimal place, bi- 
nary logarithms in fixed-point Forth. 
John Hall, FIG Chapter Coordinator, 
gave a report on the activities of other 
FIG chapters. There was some discus- 
sion on the way to increase com- 
munication between chapters. Later, 
the group talked about implementation 
of Forth-83, which may lead to a 
model. Martin Tracy demonstrated 
and described the MicroMotion im- 
plementation of Forth-83. Greg 
Stevenson discussed a method of 
speeding dictionary searches indepen- 
dent of the existing method. At the Oc- 
tober 22 meeting, Nathaniel Grossman 
spoke on finding 16-bit square, cube, 
etc. roots by Newton’s method, in 
fixed-point Forth. Bob Jaffray 
presented a simple method to provide 
execution security by testing for valid 
CFAs as a patch to NEXT. Steven Lewis 
talked about VERIFY, a word to docu- 
ment effects of the execution of a 
Forth word. Jim White described an 
implementation of LISP in Forth. Ken 
Inouye demonstrated Forth on the new 
Sharp 16-bit CPU computer. There 
were also reports from members who 
attended the National Forth Conven- 
tion. About thirty-five people attended 
this chapter meeting and enjoyed it 
very much. 

Iowa Chapter (in formation) 

August 23, the group saw a presenta- 
tion of a simple but fast LIFE imple- 
mentation on the Commodore 64 (us- 
ing C64-Forth from Performance Mic- 
ro Products) by Robert Benedict, As- 
sistant Professor of Mechanical En- 
gineering. One generation in Forth was 
1.6 seconds vs. 126 seconds in BASIC. 
Another demonstration by Scott Ev- 
ans, an electrical engineering student, 
showed some Forth utilities developed 
for the Commodore 64, used as a con- 
troller to move a hydrophone in a 
plane, for data acquisition. 

Eugene Johnson, a professor of 
mathematics, presented a series of 
words on September 27 to do matrix 
operations. He uses these in his courses 

on linear algebra. Michael Ham show- 
ed some words that simply ignore in- 
valid input. These are useful when the 
range of valid input is obvious, as from 
a menu. The effect for the user is that 
the only keys that work are those for 
valid input. 

Orange County Chapter 

Roy Martens paid a brief visit at the 
August 24 meeting, and discussed what 
was happening with the Northern Cali- 
fornia Chapter, and the state of the 
Forth-83 standard. Lee Jordan pre- 
sented a paper on a 6502 disassembler. 
Lee is a beginning Forth programmer 
and was unaware of the present state of 
the art of Forth disassemblers. He put 
a lot of work into it; one learns by do- 
ing. At a short meeting on September 
7, Wil Baden presented his text format- 
ter, which was a model done in Pascal. 

Northern California Chapter 

At the October 22 morning FORML 
meeting, Doug Dillon presented code 
for a Modem-7 environment. Doug’s 
code was written in Forth-83, using the 
Laxen and Perry implementation. 
Michael Stolowitz presented code on a 
B-tree and file-indexing method, also 
using F83. In the afternoon, Bob Reil- 
ing, Forth Convention Chairman, gave 
a review of the convention and report- 
ed an attendance of over 1200. Larry 
Forsley and Thea Martin, from Ro- 
chester, New York, spoke about the 
latest state of affairs at the Institute for 
Applied Forth Research, which they 
direct. Larry mentioned the next con- 
ference in Rochester, to be held June 5 
through 9. The topic is to be Forth Ap- 
plications, with one day devoted to 
real-time systems. Mike Perry gave a 
demonstration of a Forth-based CP/M 
BIOS generator, and discussed the vir- 
tues of Forth-83 in combination with 
the F83 implementation. 

Support your local chapter! 

John D. Hall is the Chapter Coor- 
dinator for the Forth Interest Group 
and is a consulting programmer. 

Volume V. No 4 31 FORTH Dimensions 



~~~ 

Alan B. Cohen Steve Buffone Norbert Heindl
14 Candlelight Dr.
Danbury, CT 06810 Cuyahoga Falls, OH Berlichingstrasse 9

Chapters in Formation
621 Center Ave. reflects-electronic gmbh

Here are more of the new chapters 8540 Schwabach
that are forming. If you live in any of West Germany
these areas, contact one of these people gzz; 2:;

P. J. Reynolds and offer your support in forming a Murray & Roberts Bldg.
FIG chapter. Augusta, GA 30913 Memphis, TN 38111 P.O. Box 4853

Joel A. Neely
Interface Solutions, Inc.
Box 11167 p.o. Box 1332

Contact:
Charles Samuels
7805 Linda Lane
Anchorage, AK 99502

Doug Dillon
California Cedar Products
P.O. Box 8449
Stockton, CA 95208
209/93 1-2448

Robert McFarland
DIGILOG Corp.
Box 3315
Ventura, CA 93006

Fig Chapters
U.S.

ARIZONA

Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

CALIFORNIA

Los Angeles Chapter
Monthly, 4th Sat., 11 a.m.
Allstate Savings
8800 So. Sepulveda Boulevard
Los Angeles
Call Phillip Wasson

Northern California Chapter
Monthly, 4th Sat., 1 p.m.
FORML Workshop at 10 a.m.
Palo Alto area.
Contact FIG Hotline

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst
Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung

21 3/649-I428

415/%2-8653

7 14/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon.
Call Guy Kelly
619/268-3100 ext. 4784

Cape Town 8000
South Africa Michael Ham

3110 Alpine Ct.
Iowa City, IA 53340

Jim Watson
801 Orleans
Corpus Christi, TX 78418 319/337-1353

Manfred Peschke Pete Koza
Intersystems Mgmt. & Consult.
Story Hill Rd. RFD 3
Dunbarton, NH 03045

Gary Bergstrom P.O. Box 46263
191 Miles Rd.
Chagria Falls, OH 44022 Canada

9671 NE 122 Place
Kirkland, WA 98033

Zafar Essak

Vancouver, BC V6R 4G6

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

ILLINOIS
Fox Valley Chapter
Call Samuel J. Cook

Rockwell Chicago Chapter
Call Gerard Kusiolek

312/879-3242

312/885-8092

KANSAS

Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilber E. Walker Co.
532 S. Market
Wichita, KS
Call Arne Flones
316/267-8852

MASSACHUSmS

Boston Chapter
Monthly, 1st Wed., 5 p.m.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MINNESOTA

MNFIG Chapter
Monthly, 1st Mon.
11 56 Lincoln Avenue
St. Paul, MN
Call Fred Olson
612/588-9532

MISSOURI

Kansas City Chapter
Call Terry Rayburn

St. Louis Chapter
Monthly, 3rd Tue., 7 p.m.
Thomhill Branch of
St. Louis County Library
Call David Doudna
314/867-4482

8 161363-1024

NEVADA

Southern Nevada Chapter
Suite 900
101 Convention Center Drive
Las Vegas, NV
Call Gerald Hasty
702/452-3368

NEW JERSEY

New Jersey Chapter
Call George Lyons
201/451-2905 eves.

NEW YORK

New York Chapter
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Tom Jung
212/432-1414 ext. 157 days
212/261-3213 eves.
Rochester Chapter
Monthly, 4th Sat., 2 p.m.
Hutchison Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Syracuse Chapter
Call C. Richard Corner
31 5/456-7436

OHIO

Athens Chapter
Call Isreal Urieli

Dayton Chapter
Twice monthly, 2nd 'hes &
4th Wed., 6:30 p.m.
CFC, 11 W. Monument Ave.
Suite 612
Dayton, OH
Call Gary M. Granger

614/594-3731

5 13/849-1483

OKLAHOMA

n l s a Chapter
Monthly, 3rd 'ha., 7:30 p.m.
The Computer Store
4343 South Peoria
'klsa, OK
Call Art Gorski
918/743-0113

OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Computer & Things
3460 SW 185th, Aloha
Call Timothy Huang
503/289-9135

PENNSYLVANIA

Philadelphia Chapter
Monthly, 3rd Sat.
LaSalle College, Science Bldg.
Call Lee Hustead
215/539-7989

L

Volume V, No. 4 FORTH Dimensions 32

TEXAS

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Software Automation, Inc.
14333 Porton, Dallas
Call Marvin Elder
214/392-2802 or
Bill Drissel
214/264-9680
Houston Chapter
Call Dr. Joseph Baldwin
7 13/749-2120

VERMONT

Vermont Fig Chapter
Monthly, 4th Thurs., 7:30 p.m.
The Isley Library, 3rd fl.
3rd Floor Meeting Room
Middleburynes, VT
Call Hal Clark
802/877-2911 days
802/452-4442 eves

VIRGINIA

Potomac Chapter
Monthly, 1st Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/437-9218 eves.

AUSTRALIA

Australia Fig Chapter
Contact: Ritchie Laird
25 Gibsons Road
Sale, Victoria 3850

FIG Australia Chapter
Contact: Lance Collins
65 Martin Road
Glen Iris, Victoria 3146

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.,
Rm LG19
Univ. of New South Wales
Sydney
Contact: Peter Tregeagle
10 Binda Rd., Yowie Bay

BELGIUM

Belgium Chapter
Contact: Luk Van Loock
Lariksdreff 20
2120 Schoten

051/44-3445

03/29-2600

021524-7490

03/658-6343

CANADA

Nova Scotia Chapter
Contact: Howard Harawitz
P.O. Box 688
Wolfville, Nova Scotia
BOP 1x0
902/542-7812

Southern Ontario Chapter
Monthly, 1st Sat., 2 p.m.
General Sciences Bldg,
Rm 312
McMaster University
Contact: Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S 4K1
4161525-9140 ext. 2065

COLOMBIA

Colombia Chapter
Contact: Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

ENGLAND

Forth Interest Group -- U.K.
Monthly, 1st Thurs.,
7 p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
Contact: Keith Goldie-Morrison
15 St. Albans Mansion
Kensington Court Place
London W8 5QH

ITALY

FIG Italia
Contact: Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021645-8688

SWITZERLAND

Contact: Max Hugelshofer
ERN1 & Co. Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

TAIWAN

Taiwan Chapter
Contact: J.N. Tsou
Forth Information Technology

Taipei
P.O. BOX 53-u)o

02/33] -13 16

SPECIAL GROUPS
Apple Corps FORTH
Users Chapter
W c e Monthly, 1st &
3rd 'hes., 7:30 pm
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
415/626-6295
Baton Rouge Atari Chapter
Call Chris Zielewski

FIGGRAPH
Call Howard Pearlmutter

504/292-1910

408/425-8700

Vendors (Continued from page 35)

'Itiangle Digital Services, Ltd.
l00A Wood St., Walthamstow
London El7 3HX England
01-520-0442 Telex 262284

Application Packages Only
See System Vendor Chart
for others
Curry Associates
P.O. Box 11324
Palo Alto, CA 94306

InnoSys
2150 Shattuck Ave.
Berkeley, CA 94704

41 51322- 1463

415/843-8114

Consultation & 'Itaining Only
See System Vendor Chart
for others
Bartholomew, Alan
2210 Wilshire Blvd. #289
Santa Monica, CA 90403

Boulton, Dave
581 Oakridge Dr.
Redwood City, CA 94062
Brodie, Leo
17714 Kingsbury St.
Granada Hills, CA 91344

Eastgate Systems Inc.
P.O. Box 1307
Cambridge, MA 02238
Girton, George
1753 Franklin
Santa Monica, CA 90404

Go FORTH
504 Lakemead Way
Redwood City, CA 94062

Harris, Kim R.
Forthright Enterprises
P.O. Box 50911
Palo Alto, CA 94303
415/8584933
Intersystems Management
Computer Consultancy
Story Hill Rd. RFD3
Dunbarton, NH 03045

Laxen, Henry H.
1259 Cornell Ave.
Berkeley, CA 94706

McIntosh, Norman
2908 California Ave., #3
San Francisco, CA 941 15

Metalogic Corp.
4325 Miraleste Dr.
Rancho Palos Verdes, CA 90274

21 3/394-07%

213/368-3677

21 3/829-1074

415/366-6124

603/774-7762

415/525-8582

41 5/563-1246

2 13/5 19-701 3

Peschke, Manfred
Intersystems Mgmt. & Consult.
Story Hill Rd. RFD 3
Dunbarton NH 03045

Petri, Martin B.
Computer Consultants
16005 Sherman Way
Suite 104
Van Nuys, CA 91406

Redding Co.
P.O. Box 498
Georgetown, CT 06829

Schleisiek, Klaus
Eppendorfer Landstr. 16
D 2000 Hamburg 20
West Germany
(040)480 8 154
Schrenk, Dr. Walter
Postfach 904
7500 rarlstruhe-41
West Germany
Software Engineering
6308 Troost Ave. #210
Kansas City, MO 64131
8 16/363- 1024
Softweaver
P.O. Box 7200
Santa Cruz, CA 95061
4081425-8700
Timin, Mitchel
3050 Rue d'Orlean #307
San Diego, CA 921 10
61 9/22241 85

Technology Management, Inc.
1520 S. Lyon St.
Santa Ana, CA 92705

603/774-7762

213/908-0160

203/938-938 1

7 14/835-95 12

Volume V, No. 4 33 FORTH Dimensions

FORTH System Vendors
(by Category)

(Codes refer to alphabetical listing
e.g., A1 signifies AB Computers, etc.)

Processors

1802 . C1, C2, F3, F6, L3
6502(AIM, KIM, SYM) R1, R2, S1
6800 C2, F3, F5, K1, L3, M6, T1
6801 P4,Tl
6809 C2, F3, L3, M6, S11, T l
68000 C2, C4, D1, El , F3, K1, T1
68008 . P4, T1
8080/85 A5, C1, C2, F4, 15, L1, L3, M3,

M6, R1, T3
Z80/89 A3, A5, C2, F3, F4, 13, L1, M2,

M3, M5, N1, T3
Z8oooO I3
8086/88 C2, F2, F3, L1, L3, M6
9900 . E2, L3

Operating Systems

CP/M A3, AS, C2, F3, 13, L3, M1, M2,
M6, T3

CP/M-86
CP/M-68K
RSX-11

C2, F3
T1

FLEX. T1
F3

FO RTH Vendors (Alphabetical)
The following vendors offer FORTH systems, applications, or con-

sultation. FIG makes no judgment on any product, and t aka no
responsibility for the accuracy of this list. We encourage readers to

FORTH Systems

A

B
1. Blue Sky Products

729 E. Willow _ _
Signal Hill, CA 90806

2. Business Computing Pras
2210 Wilshire Blvd.

1. AB Computers
252 Bethlehem Pike
Colmar. PA 18915
21 5/822-7727 Suite 289

17453 Via Valencia
San Lorenzo, CA 94580

Santa Monica, CA 90403
213139447% 2. Acropolis

415/276-6050
4. Applied Analytics Inc.

8910 Brookridge Dr., #300
Upper Marlboro, MD 20870 C

5 . Aristotelian Logicians
2631 E. Pinchot Ave.
Phoenix, AZ 85016

7. Abstract Systems, etc.
RFD Lower Prospect Hill
Chester, MA 0101 1

8. Armadillo Int’l Software
P.O. Box 7661 3. CMOSOm
Austin, TX 78712
512/459-7325 Sylmar, CA 91342

1. Capstone Computing, Inc.
5640 Southwyck Blvd., #2E
Toledo, OH 43614
41 91866-5503

2. Chrapkiewicz, Thomas
16175 Stricker
East Detroit, MI 48021

P.O. Box 44037

Computers

AlphaMicro , P3, S3
Apple . . , , , . , , A4, F3, F4, 12, 14, J1, L4, M2,

M6, M8, 02, 03
Atari , , M6, P2, Q1, V1
Compaq , , . . , , . I , , , . . . F3, MS
Cromemco , AS, M2, M6

Heath-89 , . , M2, M6, M7
Hewlett-Packard 85
Hewlett-Packard 9826/36 C4
IBMPC , , . . . A8, C2, F3, L1, M5, M6, 42, S9,

w 2
IBMOther L3, W1
Kaypro II/Xerox 820 , M2
Micropolis A2, M2, S2
Northstar . . . , 15, M2, P1, S7

DEC PDP/LSI-11 . , , C2, F3, L2, S3

Nova C5
OhioScientific A6, B1, C3, 01 , S6, T2
Osborne M2
PetSWTPC Al, A6, B1, C3, 01, S6, T2, T5
Poly Morphic Systems A7
TRS-80I,II, 111, XVI 15, M2, M5, M6, S4, S5, S10
TRSIOColor A3, A8, F5, M4, S11, T1
Vector Graphics M2

Other ProductdServices

Applications F3, P4
Boards, Machine F3, M3, P4, R2
Consultation C2, C4, F3, N1, P4, T3, W1
CrossCompilers C2, F3, 13, M6, N1, P4, T1
Products, Various AS, C2, F3, 15, S8, W2
lkaining C2, F3, 13, P4, W1

keep us informed on availability of the products and services listed.
Vendors may send additions and corrections to the Editor, and must
include a copy of sales literature or advertising.

4. COMSOL, Ltd.
’heway House
Hanworth Lane
Chertsey, Surrey
England KT16 9LA

5 . Consumer Computers
8907 La Mesa Blvd.
La Mesa, CA 92041

6. Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852
301/984-0262

714/698-8088

2. Elcomp-Hofacker
Tegernseerstr. 18
D-8150 Holzkirchen
West Germany
08024/7331
Telex 52 69 73

P.O. Box 1176
Milton, WA 98354
206/63 1-4855

4. Engineering Logic
1252 13th Ave.
Sacramento, CA 95822

3. Emperical Research Group

5 . Eco Technologies
7. Curry Associates

P.O. Box 60324 1100 Larkspur Landing
Circle a 7 5
Larkspur, CA 94939 Pal0 Alto, CA.94306
41 5/46 1-6 12 1

E
F 1. Elcomp Publishing, Inc.

53 Redrock Lane
Pomona, CA 91766
7 14/623-83 14

1. Fantasia Systems, Inc.
1059 The Alameda
Belmont, CA 94002

Telex 29 81 91 415/593-5700

3. FORTH, Inc.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254
21 31372-8493

4. FORTH Ware
639 Crossridge Terrace
Orinda, CA 94563

5 . Frank Hogg Laboratory
130 Midtown Plaza
Syracuse, NY 13210
3 15/474-7856

6. FSS
P.O. Box 8403
Austin, TX 78712
5 12/477-2207

H
1. HAWG WILD Software

P.O. Box 7668
Little Rock, AR 72217

I
1. IDPC Company

P.O. Box 11594
Philadelphia, PA 191 16
2151676-3235

2. IUS (Cap’n Software)
281 Arlington Ave.
Berkeley, CA 94704
4 15/525-9452

3. Inner Access
5 17K Marine View
Belmont, CA 94002

4. Innovatia Laboratories
5275 Crown St.
West Linn, OR 97068

10175 S.W. Barbur Blvd.
Suite #202B
Portland, OR 97219

6. Interactive Computer
Systems, Inc.
6403 Di Marco Rd.
Tampa, FL 33614

4151591 -8295

5 . Insoft

503/244-418 1

J
1. JPS Microsystems, Inc.

361 Steelcase Rd., W.
Markham, Ontario
Canada L3R 3V8
416/475-2383

K
1. Kukulies, Christoph

Ing. Buro Datentec
Heinrichsallee 35
Aachen, 5100
West Germany

L
1. Laboratory Microsystems

4147 Beethoven St.
Los Angeles, CA 90066
2 13/306-7412

2. Laboratory Software
Systems, Inc.
3634 Mandeville Canyon
Los Angeles, CA 90049
213/472-6995

3. Lynx
3301 Ocean Park, #301
Santa Monica, CA 90405
2 131450-2466

4. Lyons, George
280 Henderson St.
Jersey City, NJ 07302
201/451-2905

M
1. M & B Design

820 Sweetbay Dr.
Sunnyvale, CA 94086

12077 Wilshire Blvd., #506
Los Angeles, CA 90025
213/821-4340

2500 E. Foothill Blvd., #I02
Pasadena, CA 91 107

2. MicroMotion

3. Microsystems, Inc.

213/577-1477
4. Micro Works, The

P.O. Box 11 10
Del Mar, CA 92014

5 . Miller Microcomputer
61 Lake Shore Rd.
Natick, MA 01760

6. Mountain View Press

7 14/942-2400

617/653-6136

P.O. Box 4656
Mountain View, CA 94040
415/%1-4103

8 Newfield Ln.
Newtown, CT 06470

8. Metacrafts Ltd.
Beech Trees, 144 Crewe Rd.
Shavington, Crewe
England CWI 5AJ

7. MCA

N
1. Nautilus Systems

P.O. Box 1098
Santa Cruz, CA 95061
408/475-7461

0
1. OSI Software & Hardware

3336 Avondale Court
Windsor, Ontario
Canada N9E 1x6

2. Offete Enterprises
1306 S “B” St.
San Mateo, CA 94402

3. On-Going Ideas
RD # I , Box 810
Starksboro, VT 05487

5 191969-2500

802/453 -4442
P

1. Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803

2. Pink Noise Studios
P.O. Box 785
Crockett, CA 94525
415/787-1534

3. Professional Mgmt. Services
724 Arastradero Rd., #lo9
Palo Alto, CA 94306

4. Peopleware Systems Inc.
5190 West 76th St.
Minneapolis, MN 55435

4O8/252-22 18

612/83 1-0827

Q
1. Quality Software

6660 Reseda Blvd., #I05
Reseda, CA 91335

2. Quest Research, Inc.
P.O. Box 2553
Huntsville, AL 35804
800/558-8088

R
2. Rockwell International

Microelectronics Devices
P.O. Box 3669
Anaheim, CA 92803
714/632-2862

S

1. Satellite Software Systems
288 West Center
Orem, UT 84057
80112244554

2. Saturn Software, Ltd.
P.O. Box 397
New Westminister, BC
Canada V3L 4Y7

3. Shaw Labs, Ltd.
P.O. Box 3471
Hayward, CA 94540

4. Sierra Computer Co.
415/276-6050

617 Mark NE
Albuquerque, NM 87123

5 . Sirius Systems
7528 Oak Ridge Highway
Knoxville, TN 37921

6. Software Federation
44 University Drive
Arlington Hts., IL 6ooo4

615/693-6583

3 12/259-1355
7. Software Works, The

1032 Elwell Ct., #210
palo Alto, CA 94303

8. Spectrum Data Systems
5667 Phelps Luck Dr.
Columbia, MD 21045

9. Steams, Hoyt Electronics

41 5/960-1800

301/992-5635

4131 E. Cannon Dr.
Phoenix, AZ 85028

10. Stynetic Systems, Inc.
Flowerfield, Bldg. 1
St. James. NY 11780

602/996-17 17

516/862-7670

11. Supersoft Associates
P.O. Box 1628
Champaign, IL 61820
217/359-2112

12. Sylmar Software
P.O. Box 44037
Sylmar, CA 91342

T
1. Talbot Microsystems

1927 Curtis Ave.
Redondo Beach, CA 90278
2 13/376-9941

2. Technical Products Co.
P.O. Box 12983
Gainsville, FL 32604

3. nmin Engineering Co.
904/372-8439

C/o Martian Technologies
8348 Center Dr. Suite F
La Mesa, CA 92041

4. Transportable Software
P.O. Box 1049
Hightstown, NJ 08520
609/448-4175

619/464-2924

V
1. Valpar International

3801 E. 34th St.
Tucson, AZ 85713
800/528-7070

W
1. Ward Systems Group

8013 Meadowview Dr.
Frederick, MD 21701

2. Worldwide Software
2555 Buena Vista Ave.
Berkeley, CA 94708

3. Wycove Systems, Ltd.
415/644-2850

P.O. Box 499
Dartmouth, NS B2Y 3Y8
Canada
9021469-9897

Z
1. Zimmer, Tom

292 Falcato Dr.
Milpitas, CA 95035

2. Ziggurat Software
P.O. Box 100
N. Salem, NH 03073

Boards & Machines Only
See System Vendor Chart
for others
Controlex Corp.
16005 Sherman Way
Van Nuys, CA 91406
213/780-8877
Datricon
7911 NE 33rd Dr., #200
Portland, OR 9721 1

Golden River Corp.
7315 Reddfield Ct.
Falls Church, CA 22043

503/284-8277

(Continued on page 33)

FORTH INTEREST GROUP

' U.S. POSTAGE

Permit NG 261
Mt. View, C k

MAIL ORDER

OMembership in FORTH Interest Group and

TBack Volumes o f FORTH DIMENSIONS. Rm oer each.
Volume V of FORTH DIMENSIONS

Y

IJI an Cl" oh
Ofig-FORTH Installation Manual, containing the language model

of fig-FORTH, a complete glossary, memory map and installation instructions
UAssembly Language Source Listings of fig-FORTH for specific

and machines. The above manual is required for installation.
Check appropriate box(es). Rics par aach.

~ 8 0 8 0 uW86/8088 0 9 9 0 0 OAPPLE 11 OECLIPSE
C~PACE JNOVA O P W - 1 1 G68000 O A L P H A MICRO

rJl802 0 6 5 0 2 n 6 8 0 0 0 6 8 0 9 O V A X Ozao

4 " S t a r t i n g FORTH, by Brodie.
" S t a r t i n g FORTH" by Brodie. (Hard Cover)

n PROCEEDINGS: FOWL (FORTH Modif ica t ion Conference)
fl 1980. $25USA/$35Foreign
(1 1981, Two Vol., $4OUSA/$55Foreign

1982, $25USA/$35Foreign
ROCHESTER FORTH Conference

1981, $25USA/$35Foreign c 1982, $25USA/$35Foreign
1983, $25USA/ $35Foreign T o t a l

17 STANDARD: 0 FORTH-79, FORTH-83. $15USA/$18Foreign EACH. T o t a l
;-? K i t t Peak Primer. by Stevens. An in-depth s e l f - s t u d y book.

BEST book on FORTH. (Paperback)

.~ c - TMAGAZINES ABOUT FORTH: BYTE Repr in ts 8/80-4/81
1 D r Dobb's J r n l , 2 9/81, (2 9/82, 5 Poplar Computing, 9/83 $3.50USA/$5Foreign EACH. Tot a1

9/83

12 FIG T-sh i r t s : 11 Small 1 - 7 Medium 3 Large a X-Large
n Poster , BYTE Cover 8/80, %'x22" -
DFORTH Programmer's Reference Card. I f ordered s e p a r a t e l y , send

a stamped, s e l f addressed envelope.

LSA
$15

$15

$15

$15

$18
$23

FORRGN
AIR
527

$18

$18

$18

$22
$28

$
$
$25 $35

$
$10 $12
$ 3 $ 5

Free

TOTAL

NAME MS /APT

ORGANIZATION PHONE()

ADDRESS
C I T Y STATE ZIP COUNTRY

VISA# MASTERCARD#

AMERICAN EXPRESS# Card Expi ra t ion Date

Make check o r money o r d e r i n US Funds on US Bank, payable to: FTG.
postage. No purchase o r d e r s without check. C a l i f o r n i a r e s i d e n t s add sales tax. 10183

(Minimum of $15.00 on Charge Cards)

A l l p r i c e s i n c l u d e

FORTH INTEREST GROUP+ PO BOX 1106 * SAN CARLOS, CA 94070

FORTH INTEREST GROUP
PO. Box 1105
Sari Carlos, CA 94070

Address Correction Requested

