
VOLUME IV. NUMBER 3 $2.50 

I_ .. ... 

INSIDE: 
OPERATING SYSTEMS 
Forte’ . A FORTH-Based Operating System ........................... John James .................................... 5 

A Standardized Microcomputer Operating System Interface .. Gary Feierbach ................................. 6 

A FORTH Based File Handling System ................................. Dr . Donald Delwood ......................... 8 

FEATURES: 
Checksum for Hand-Entered Source Screens ................ Klaxon Suralis & Leo Brodie ..... 15 
QTF . Quick Text Formatter ........................................... Leo Brodie ................................. 16 
The Sheer Joy of Clipping Recursively .......................... Bob Gotsch ................................ 21 
DO LOOP-83 .................................................................. Klaxon Suralis ............................ 25 

DEPARTMENTS: 
Letters ................................................................................................................................ 3 

Standards Corner ............................................................................................................... 24 

A Techniques Tutorial ........................................................................................................ 28 

Technotes ........................................................................................................................... 31 

Products Announcements/Reviews ..................................................................................... 32 

OPERATING SYSTEMS 



Develop FORTH code for any target 
8080/280 system on your current 8080,280 r or Cromemco CDOS based system 

8080/280 METAFORTH 

No dcrumbading - No trial PROM burning. 
This port-addressed RAM on your S-100 host 
is the f#OM of your target system , 

WORD/BYTE 
WIDE ROM SIMULATOR 
0 Simulates 16K bytes of memory (8K bytes for 2708 and 2758) 
0 Simulates 2708, 2758, 2516, 2716, 2532, 2732, 2564 

and 2764 PROMS 
e The simulated memory may be either byte or 16-bit 

word organized 
0 No $100 memory is needed to  hold ROM data 
0 Driver program verifies simulated PROM contents 
0 Price $495 each 

I CONSULTING SERVICES 
Inner Access provides you with Custom Software Design. We have supplied many clients with 
both Systems and Application Software tailored to their specific needs. Contact us for your 
special programming requirements. I 

FORTH WORKSHOPS 
ONE-WEEK WORKSHOPS - ENROLLMENT LIMITED TO 8 STUDENTS 

FORTH Advanced FORTH Advanced FORTH 
Fundamentals Applications Systems 
0 Program Design 0 FORTH Tools 0 FORTH lnternals 
0 Program Documentation 0 Engineering Applications 0 Assemblers and Editors 
0 FORTH Architecture 0 Floating Point 0 Other Compilers 
0 FORTH Arithmetic 0 Communications 0 Cross-Compilation Theory 
0 Control Structures 0 Sorting & Searching 0 Romability, Multitasking, 
0 Input/Output Project Accounting System Timesharing 
0 The Vocabulary Mechanism 0 Process Control 0 File Systems/ 
0 Meta-Defining Words 0 Simulations Database Systems 

OCT. 11-15 OCT. 4-8 NOV. 8-12 NOV. 15-19 
JAN. 3-7 FEB. 7-11 FEE. 14-18 JAN. 10-14 

$395 Incl. Text $495 Incl. Text $495 Incl. Text 

Instructors: LEO BRODIE, GARY FEIERBACH and PAUL THOMAS 
(For further information, please send for our complete FORTH Workshop Catalog.) 

Inner Access Corporation 
P.O. BOX 888 BELMONT, CALIFORNIA 94002 (415) 591-8295 

'1 

2 Volume IV, NO. 3 FORTH Dimensions 



Letters 
Cordic Erratum 

Dear FIG, 
Someone just pointed out an error in 

my algorithm outline, shown in Vol. 
IV, No. 1, page 14  (box], line 7: “begin 

YLAST<- -X end; .” 
ANGLE <-ANGLE-Z”.*; XLAST <- -Y; 

The minus sign in front of the “X” 
should be deleted. The minus sign in 
front of the “X” on line 9 i s  correct. 

Alan Furman 
Palo Alto, CA 

Pushing Frontiers 
Dear FIG, 

The Math Edition was one of the 
best issues I have ever read. While the 
commercial magazines have all turned 
very one dimensional (business), yours 
is still looking at new ideas and 
pushing the software frontier. 

Kenneth B. Butterfield 
Graduate Student 

University of New Mexico 

Thanks for the feedback, Ken, we’ll try 
to stay Four Dimensional. -Editor 

FORTH in College 
Dear FIG, 

This Fall, I will be teaching an intro- 
ductory FORTH course at San Diego 
State. I will be running a modification 
of James’ PDP-11 fig-FORTH on our 
VAX in RSX-11 compatibility mode. 
(The modifications will be mainly to 
make the FORTH follow Starting 
FORTH.) It’s a bit strange to teach it 
on a time-sharing system, but we are 
embarrassingly short of micros. There 
will be some advantages, though: I will 
be able to distribute materials and con- 
sult with students over the phone net 
more easily than if we were using a 
roomful of micros. 

I hope to have an article about my 
experiences teaching FORTH in time 
for your Teaching FORTH issue. 

Vernor Vinge 
Dept. of Math Sciences 

San Diego State University 

Good luck with your class. We’ll be 
looking forward to your article. -Editor 

Holland Hobbyists 
Dear FIG, 

I am in charge of software distribu- 
tion in our 150 + member Hobby Com- 
puter Club here at Philips Data Sys- 
tems, in Apeldoorn, Holland, and we 
have decided to add FORTH to our 
standard club-supported languages. 

Our current “PI” (!) is based on 2650 
processor, and we are now modifying 
an excellent 2650 FORTH implemen- 
tation made by Dr.E. J. Hannivoort, 
here in Holland. We are now busy 
selecting a new CPU design for use 
this year (probably 2-80), and will of 
course be offering FORTH on the new 
design too. 

Interest in FORTH here in Holland 
is well started - there was a local 
FORTH Interesse Groep (as we call it 
here in Holland!) meeting yesterday 
under The0 van Lottum’s chairman- 
ship, and they are providing an excel- 
ent range of information on FORTH. 
However, with more and more of our 
members asking what FORTH actual- 
ly can do in practice, I would like to 
ask your help in two areas, namely: 
a) FORTH Training Course - We will 
be organising a Training Course in 
FORTH in our Hobby Club this 
autumn. While Starting FORTH is an 
excellent work book for such a course, 
we really need some more structured 
material for a 6 to 10 lesson introduc- 
tion. Any ideas? 
b) Actual FORTH Applications - 
Where can I get a few self-contained 
applications written in FORTH as ex- 
amples for our members? The screens 
given in FORTH Dimensions are fine, 
but I am looking for a few example 
Games, a Word Processor, a very basic 
BASIC, that sort of thing, just to show 
our members what they can expect 
from FORTH. 

Looking forward to hearing from 
you, and receiving FORTH Dimen- 
sions regularly. 

1. M. Preston 
The Netherlands 

Congratulations on the success of your 
club! As for the applications, any that 
we know of we’re publishing here. 
There were three games described in 
IIU5, a “very basic BASIC” in 11116, I’m 
including the code for my simplified 
word processor in this issue, and we 
expect Jots more applications to come. 
-Editor 

Volume IV. No. 3 FORTH Dimensions 3 i 

Infecting the Mumps 
Dear FIG, 

I would appreciate receiving some 
of your publications for book reviews 
in the publications I edit. In addition 
to being an editor for the MUMPS 
Users Group (MUG) Quarterly, I am 
softwarelfirmware editor for EDP 
News Service, and manage the Soft- 
ware Digest newsletter. I would like to 
begin getting information about 
FORTH into the trade news in the 
computer industry on a regular basis. 

Since December, I have been able to 
accomplish the following: 
- arranged for a full-day tutorial on 
FORTH at the Annual MUMPS Users 
Group in Denver; 
- arranged for George Shaw’s book 
review of Leo Brodie’s text to be 
reprinted in the MUG Quarterly; 
- persuaded Bob Wickizer to include 
some paragraphs on his use of FORTH 
as a complement to MUMPS in his 
radiology system; 
- planned for including future arti- 
cles on FORTH in the MUG Quarterly 
and in Software Digest. 

Henry G. Heffernan 
Washington, D.C. 

FORTH Dimensions 
Published by FORTH Interest Group 

Volume IV, No. 3 
SeptemberlOctober 1982 

EditoriallProduction 
Leo Brodie 
Publisher 

Roy C. Martens 

FORTH Dimensions solicits editorial 
material, comments and letters. No 
responsibility is assumed for accuracy 
of material submitted. Unless noted 
otherwise, material published by the 
FORTH Interest Group is in the public 
domain. Such material may be 
reproduced with credit given to the 
author and the FORTH Interest Group. 

Subscription to FORTH Dimensions 
is free with membership in the FORTH 
Interest Group at $15.00 per year 
($27.00 foreign air). For membership, 
change of address andlor to submit 
material, the address is: FORTH 
Interest Group, P.O. Box 1105, San 
Carlos, CA 94070 



Letters . . . (cont.) 
Freedom and Formatting 

Dear FIG, 
J q  T. Currie has provoked me (as was 

his stated intention). His statements 
concerning the formatting of FORTH 
source lines are not only provocative 
but outrageous, ignoring many of the 
diverse user environments in which 
FORTH is a useful tool and within 
which the “good” FORTH program- 
mer” may find himself working. 

I have used FORTH for many pur- 
poses on many machines in many user 
environments since within a year of its 
emergence from NRAO. For some 
types of problems and some user en- 
vironments it is a marvelous language. 

Lately I have been working with 
high energy physicists and their 
engineers and technicians. FORTH 
has been used to: 1) set up and check 
out an enormous data acquisition 
system and the apparatus it is con- 
nected to, 2) simulate, debug and 
monitor a very large special purpose 
processor used in real time data selec- 
tion, and 31 check out and manage the 
operation of a multi-processor used for 
analyzing the data collected. 

Our users might be divided into 
three categories: 1) Novices, who use 
words already defined and restrict 
extension of the system to temporary 
simple lists of existing words; 2) 
Normals, who extend the system with 
permanent colon definitions and use 
those definitions to solve their pro- 
blems; 31 Nuts, who may reassemble 
the kernel, write code definitions to 
connect to new hardware, define new 
defining words . . . 

At any one time, our users are about 
half novices and half normals with a 
nut or two hanging around. It’s not 
that the novices and normals are dull 
slobs who couldn’t get beyond that 
level; they are people who exercise 
their creativity in other areas and use 
FORTH as one tool among many to get 
a job done. 

One might wish, indeed I do wish, 
that everybody learned FORTH in 
grammar school. Until that happy day 
arrives, I must work in an environ- 
ment where most of the users will 
be non-experts (to say no more). A 
local prison warden, criticized for 
the appalling condition of his jail, 
responded that things wouldn’t get 
better until they got a “better class of 
prisoners.” It makes no more sense for 
me to yearn for “a better class of 

technicians.” Our programming en- 
vironment must seek to do the best it 
can in an imperfect world. 

Our engineers and technicians have 
grown up on Pascal and BASIC and 
Assembler; the physicists are addicted 
to FORTRAN. They are used to “lines 
of code” and conventions of indenta- 
tion. Novices look at a block of unfor- 
matted FORTH code the way I look at 
Bengali script - incredulity that 
squiggles speak of truth or beauty or 
even the proper function of a time 
digitizer. A screen made up of a hun- 
dred or so terse words that look like 
they were run through a trash compac- 
tor on their way to disk is a formidable 
barrier that I see no point in imposing 
on our novices. I’m glad that FORTH 
doesn’t insist that code for inner loops 
be indented three spaces from the next 
highest level, ecstatic that it allows me 
to insist on it. 

At about the time a user starts 
advancing from Novice to Normal, I 
suggest, club in hand, that he adhere 
to a short list of formatting conven- 
tions. Definitions start on the left and 
are preceded by comments in plain 
English. Loops and conditionals are 
indented. Definitions do not (usually) 
span screens. Screens that change 
BASE when loaded must save and 
restore it. Use of a word for different 
functions in different vocabularies is 
strictly forbidden; in general, use of 
non-default vocabularies is forbidden. 
Words are to have clear mnemonic 
value whenever possible, even at some 
expense in brevity. Lots of empty 
space is left to make later amendment 
easy. 

This does not insure that the code 
written is good - cleanly factored, 
concise, fast, sufficiently general, easi- 
ly used for further extension. That will 
come with time and training. What it 
does do is to insure that most of our 
users and especially our inexperi- 
enced and occasional users can use 
and begin to understand the code as 
quickly as possible. Formatting is help- 
ful to most of our users, even when the 
code being studied is excellent. For 
badly written code (and there is lots of 
that around in our kind of environ- 
ment) it is yet more helpful. Unlike the 
deeper aspects of “good programming 
practices,” the formatting rules can be 
mastered and applied without serious 
error within about five minutes of the 
time they are first explained. That’s a 

pretty low cost for even an incremen- 
tal improvement in readability. 

By now, I have seen about 100 
people start FORTH. None has ever 
complained seriously about formatting 
requirements. Scores have bemoaned 
FORTH’s tendency to be a “write-only 
language.” As more of our code has 
been formatted, the moaning of the 
novices has decreased markedly. To 
me that’s important. 

Suppose that FORTH allowed 
screens to be written backwards or 
that spaces between words might be 
omitted unless an ambiguity was 
thereby created. The latter would cer- 
tainly result in much more compact 
code. .ti daer ot nrael yllautneve thgim 
secivoN But what’s the point? 

In designing a language, as in 
designing a government, building in a 
lot of freedom is good. In each case, 
it is not always a virtue (or even kind 
to yourself) to use all of it. It’s a virtue 
of FORTH that it leaves the user com- 
munity free to decide on formatting 
conventions appropriate to the task at 
hand and the needs of the community. 
There is no forthly imperative to hang 
yourself just because FORTH gives 
you enough rope to do so. 

Stephen B. Bracker 
Fermilab Users Office 

Batavia, Illinois 

~ 

/I 

Charles Moore’s New Venture 
Dear Fig, t 

I wish to announce a new company 
in the FORTH arena, Charles H. 
Moore & Associates. Of the many 
opportunities available in the growing 
FORTH community, we plan to spe- 
cialize in custom applications. At the 
moment, that means software. But 
when the FORTH chip becomes avail- 
able, so will custom hardware. 

Moore & Assoc. will be a distributed 
network of programmers linked to 
each other through their computers. 
Thus half of the associates will be com- 
puters, and the others humans. Toge- 
ther we will have the flexibility of 
working at home, at the customer’s 
site, or at the place of our choosing. 

Anyone knowing of applications 
demanding more than one FORTH 
programmer is invited to contact me: 
Charles H. Moore & Assoc., Drawer 
CP-66, Manhatten Beach, CA 90266. 

I’ll keep you informed of develop- 
ments. 

Charles H. Moore I 
i FORTH Dimensions 4 Volume IV, No. 3 



c 

Forte - 
A FORTH-Based Operating System 

John S. James 
CoIon Systems 

Does FORTH need an operating 
system? If so, what requirements are 
most important, and how can a system 
be designed to provide them? We 
believe that the answers to these ques- 
tions are crucial to the future role of 
FORTH. 

FORTH includes its own operating 
system, and for years most users have 
been content to run it on a stand-alone 
basis. The advantages of fast develop- 
ment, transportability among different 
types of CPUs, interactive flexibility, 
and reliable and efficient software 
development are available without any 
other operating system. But the one 
major capability which stand-alone 
FORTH fails to provide is becoming 
increasingly important - namely, an 
effective mechanism for reusing soft- 
ware components which may have 
been developed independently. Forte’ 
is intended to answer this need. 
Two Kinds of Transportability 
While FORTH solves the problem of 
moving software between different 
CPUs, there is another kind of 
transportability - moving modules 
between different installations, each 
with different teams of developers, dif- 
ferent conventions, tools and environ- 
ments. For example, suppose you are 
developing a fairly large software 
system and realize that most of the 
logic has already been coded by 
others. You would like to tie together 
a number of FORTH routines from, 
say, ten different installations, which 
have developed them independently of 
each other, without coordination. 
Naturally you want to treat these 
modules as “black boxes” and not 
make any changes to them. Treating 
each module as a unit avoids the need 
to learn the internals, and avoids the 
risk of introducing errors in work 

which may have been well tested by 
use in dozens of different projects. In 
addition, the developers may only 
want to release running modules, not 
the source. 

This kind of modularity and trans- 
portability (which UNIX [*] handles 
well, a large part of the reason for its 
success) is not available in stand-alone 
FORTH. Instead, most FORTH devel- 
opment projects are written from 
scratch, except for routines which 
may have been copied (or more usu- 
ally, adapted) out of listings and 
retyped, or subroutine packages from 
a single source, usually provided as 
part of the system package. 
Obstacles to Modularity 
What are the obstacles to inter- 
installation use of pre-developed soft- 
ware modules? These are presented in 
the order in which they might affect 
a project. 

(A) Incompatible media formats. 
Available programs can help over- 
come this problem by transmitting 
source code serially (see Grotke, G.T., 
“Transfer of FORTH Screens by 
Modem, FORTH Dimensions, 111/5, 
p.162), but such programs are not 
widely used, probably because of the 
other problems which are outlined 
below. 

(B) Only source can be transported 
- if the developer will release it. 

(C) Stand-alone FORTH does not 
have directories or named files, so 
screen ranges must be considered 
when source modules are copied. The 
source may need to be edited to get it 
in a reasonable order. 

(D) Any word-name conflicts must 
be resolved. These conflicts will usu- 
ally involve words internal to the 
modules, which the developer who is 
using those modules should be able to 
ignore. 

(E) The final system may not fit in 
memory. Even if more than 64K is 
available, stand-alone FORTH is not 
automatically set up to use it. 

(F) If the system does not fit, a special 
overaly technique may need to be 
developed, and the modules may have 
to be changed to accommodate it. 
Perhaps the modules can be rewritten 
to use extended memory for data. 

(G) Due to these problems, there is 
no library of modules in widespread 
use. Each project is developed from 
scratch. 

(H) Even within the same installa- 
tion, it is difficult to use unchanged 
source-program segments for different 
application systems. New projects 
often must recode or at least modify 
previous work. 

FORTH otherwise provides such a 
powerful environment for fast devel- 
opment of correct programs that the 
major penalty resulting from these dif- 
ficulties is often overlooked or found 
acceptable. The opportunities which 
are lost because the FORTH environ- 
ment does not easily produce inter- 
changeable libraries of large program 
segments are not missed, because they 
have not been experienced. But in the 
future, FORTH must increasingly 
compete with systems such as UNIX. 
which do support this function. (For 
example, when UNIX is distributed. 
hundreds of modules written by many 
different users at different installa- 
tions go with it.) 
What’s Needed? 
The most important requirements for 
modularity are a file system, and a pro- 
gram library. The entire operating 
system can be smaller and simpler 
than most, since FORTH itself pro- 
vides many of these functions. Several 
simplifying assumptions are used in 
the Forte’ operating system: 

(A) We are assuming a single-user 
system. Multitasking will be provided. 
but not inter-task protection. Many of 
the micros on which FORTH is custo- 
marily used do not have facilities for 
real inter-user protection: instead. 
protection should be provided at the 
local-network level. Simple multitask- 

C2ri:z:k 

VJ,.?e i k 3 FORTH Dimensions 5 



ing allows utilities such as printer or 
communication spoolers to be used by 
a single developer or operator. 

(B) The file system provides files of 
FORTH blocks, so that existing pro- 
grams which were not written for a 
file system can be run without modifi- 
cation. Normal source code and con- 
ventional screen editors can be used. 
But under the operating system, all 
disk access is invisibly constrained 
within those files which the user is 
authorized to open. There is no error 
message for attempting to access 
unauthorized data; instead, there is no 
such thing as ’BLOCK’ accessing out- 
side of open files. Effective data pro- 
tection becomes especially important 
as non-removable hard disks replace 
floppies, because in many installations 
a single micro will serve several users 
who all keep data on line. 

(C) Not only is ’BLOCK’ defined on 
top of the file system; the file system 
is defined on top of ’BLOCK’. Besides 
the obvious advantage of transpor- 
tability of the operating system, this 
design also isolates any complexity 
below ’BLOCK’ (such as support of dif- 
ferent types of devices, and support of 
the use of non-error-free media) from 
the rest of the system. The operating 
system only sees sets of block-number 
ranges; since it can be configured for 
any ranges desired, it can organize 
only parts of disks if desired. 
The File System 
Allocation is dynamic and non- 
contiguous. All files are created with 
length zero, and any access to a block 
number allocates a block of blanks to 
it. If contiguous allocation is desired 
it can easily be forced. 

Hierarchical directories, and UNIX- 
style pathnames, are provided. Both 
require low overhead, and are increas- 
ingly important for large disks. A 
branch of the file hierarchy can be a 
dismountable volume. 

All files start with a header block, 
which contains the information neces- 
sary to restore the file. Therefore files 
can be recovered even if directories 
are destroyed. 

A special file type important enough 
to be provided separately is the auto- 
matically-sorted file, e.g., using B- 
trees. Many applications need to keep 
online files of records sorted by fields 

such as part number or customer 
name; the data should always be cur- 
rent, and the user should not have to 
wait for batch sorts. 
The Program Library 
We have chosen a simplified library 
mechanism, to keep down overhead, 
by taking advantage of facilities 
already available in FORTH. 

The goal is to support a library of 
precompiled routines, called “mod- 
ules,” which can be called from other 
modules, from a main program, or 
from the keyboard, in exactly the same 
way. 

Each module lives in a file in the 
hierarchical directory. When run, the 
module may be identified by name or 
pathname. If the module is not found 
by a search starting in the “current” 
directory, other directories in a search 
vector may be checked automatically. 
Usually the search vector specifies 
program libraries. 

All modules have the same starting 
address in memory. If one calls ano- 
ther, the calling module is saved and 
restored. Modules may or may not 
include headers. Those with headers 
link to the resident (“root”) dictionary. 

Modules normally communicate 
with each other by the FORTH stack. 
Module calls can be used like other 
words in ordinary FORTH definitions, 
as long as the modules themselves are 
available in a program library when 
needed during execution. 
Summary 
Conventional FORTH systems do not 
effectively support libraries of sub- 
routines larger than single definitions 
but smaller than complete programs. 
As a result, many software projects 
cannot take advantage of previous 
work. 

A file system and a library mecha- 
nism for precompiled routines are the 
essentials for extending FORTH’s 
usefulness in the new environment of 
larger micros, larger projects, and 
modular software development. 

*UNIX is a trademark of Bell Laboratories. 

John S. James is working for Colon 
Systems in San Jose, California, on the 
development of the Forte’ Operating 
System. 

6 FORTH Dimensions 

A Standardized 
Microcomputer 
Operating 
System Interface? 
Gary Feierbach 
The Institute of Electrical and Electronic 
Engineers (IEEE) has an active commit- 
tee PI55 dubbed MOSI which is char- 
tered to define a set of programmatic 
interfaces between microprocessor 
based operating systems and that soft- 
ware which utilizes operating system 
functions. Today we have what essenti- 
ally amounts to chaos in this area with 
the exceptions of a few proprietary 
vendor packages which have become 
defacto standard like CPlM and UNIX. 

MOSI came out with a draft docu- 
ment (Rev 3.0) which is in the process 
of being revised and is soon to be 
released (Rev 4.0 in August or Septem- 
ber) as a proposed standard. The draft 
document reveals operating system or 
modules from 1 to 6. These capability 
modules span very simple environments 
as in the case of dedicated controllers 
to complex environments involving 
memory, clock, data and process man- 
agement. 

The current draft (Rev 3.0) is quite 
bulky covering 161 pages and Rev 4.0 
promises to be under 100 pages. The 
MOSI committee is also bulky consist- 
ing of over 268 members (it was 600). 
One would think such an effort was 
doomed from the start to produce an 
dephantine monstrosity. A monstrosity 
it is not. As a matter of fact the result, 
to this point, looks quite plausible. A 
good part of the bulk is due to examples 
3f using the OIS primatives from C, 
BASIC and COBOL. They need some- 
me to provide examples from a FORTH 
2nvironment. 

Furthermore, if anyone is up to the 
Zhallenge, implementing a MOSI OIS (in 
FORTH of course) would go a long way 
in helping clean up problems in the pro- 
Josed standard. Who knows, it may 
Seplace CPIM or UNIX or both (or 
ieither). 

To get on the MOSI committee con- 
act Jack Cowan, Intel Corporation (MIS 
DV2-210), 2402 West Beardsley Road, 
Phoenix, AZ 85027. 

The FORTH community should be 
nvolved in this effort. 3 

Volume IV, No. 3 



FORTH PROGRAMMING AIDS - 
from Curry Associates 

FORTH PROGRAMMING AIDS is 
a software package containing 
high-level FORTH routines that 
allow you to write more efficient 
programs in less development 
time. It is also useful for 
maintaining existing FORTH 
programs. The FPA package 
includes four modules: 

TRANSLATOR provides a DECOMPILER generates 
one-to-one translation of 
FORTH run-time code. 

CALLFINDER finds calling SUBROUTINE DECOMPILER 
words, i.e. calls to a specific 
word. 

structured FORTH source code 
from RAM and inserts program 
control words (e.g,, IF, ELSE). 

finds called words, i.e., words 
called by a specific word, to all 
nesting levels. 

FORTH PROGRAMMING AIDS 
enables you to: 
rn Minimize memory require 

ments for target systems by 
finding only those words used 
in the target application. 

The DECOMPILER alone is 
worth a second look. This is a 
true decompiler which converts 
the FORTH words in RAM into 
compilable, structured FORTH 
source code, including program 

control words such as IF, ELSE, 
THEN, BEGIN, etc. If you ask 
FPA to DECOMPILE the nucleus 
word INTERPRET, you get the 
following Output displayed On 
your terminal within 3 seconds: 

rn Tailor existing words (includ- 
ing nucleus words) to specific 
needs by decompiling the 
word to disk, editing, and 
recompiling. 

rn Build on previous work by 
extracting debugged FORTH 
routines (including constants 
and variables) from RAM to 
disk. 
Patch changes into existing 
compiled words in seconds. 

FORTH PROGRAMMING AIDS 
comes with complete source 
code and a 50-page, indexed 
manual. 

( NFABS:FFA: 475'6 4E31i) ) 
: I NTERFKET 

BEG IN -F I ND 
I F  S T A T E  a3 <:. 

I F  C F A  , 
E L S E  L F A  EXECUTE 
THEI\I 3Sl-ACL. 

IF L COI'IF' 1 LE 3 D L  1 T E R A i  
E L S E  DKCIF' C COPIF'I L E  1 L I TERAL 
THEN 7:'Sl ACL 

ELSE HERE PJCJMBEK PF'L .3 1 + 

THEN 
k L ; A l N  : 

You can decompile one word, 
or a range of words at one 
time - even the whole FORTH 
system! This decompiled output 
may be sent by FPA options to 
the console, printer, or disk. 

DECOMPILE is useful for look- 
ing up words, or for obtaining 
variations of words by decom- 
piling to disk, editing, and 
recompiling. 

System Requirements: FORTH nucleus based on the fig-FORTH model or 79-STANDARD; a minimum 
of 3 K  bytes and a recommended 13K bytes of free dictionary space. 

For more information, call Ren Curry 415/322-1463 or Tom Wempe 408/378-2811 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Yes, send me a copy of FORTH PROGRAMMING AIDS, including all source code and the 50-page manual. 
0 fig-FORTH model $1 50 Calif. residents add 6.5% tax. 
0 FORTH-79 STANDARD (specify system) 
0 Manual alone (credit toward program purchase) 
0 Send more information 

$1 50 
$25 

Foreign air shipments add $15. 

0 Master Charge 0 Visa Account Number-- ~ ~- ~~ ~ Exp. Date 

Name- ~~~ ~ ~~ 

Company ~- - 

Street ~ ~ - ~ 

City/State/Zip ~ ~~ 

Indicate disk format 

0 8" sslsd fig-FORTH screens 
8" sslsd cP/M" 2 2 file 

0 Apple 3 3  
0 PC FORTH 

~ ~~ ~ -- ~~ 

~~ ~- ~~ 

~~ ~~ -~ ~~ ~ 

~- ~~~ 0 Other 

Send to: Curry Associates, P. 0. Box 11324, Palo Alto, CA 94306 41 5/322-1463 or 4O8/378-2811 

Volume IV, No. 3 FORTH Dimensions 7 



A FORTH Based File Handling System 

Dr. Donald Delwood 
Columbia, Missouri 

Introduction 
This article will discuss the topic of 
file handling that has been developed 
under the operating systems, TRl l  
and RSXl1, with principles applying 
to many others including CPIM. 

Fig-FORTH inspired versions typi- 
cally use one large file in which to 
store source screens of FORTH code. 
Even casual glances through FORTH 
Dimensions reveal screens labeled 
into the thousands. Finding an appli- 
cation usually involves either wide 
searches of screen ranges using the 
INDEX word or the use of documen- 
tors or documentor screens (hopefully 
meticulously maintained). Further- 
more, this approach requires much 
“housekeeping” as applications grow 
crowded requiring massive screen- 
moves or fragmented multi-linked 
screens. If several screens of code are 
to be distributed, the whole large file 
must be given out, or other methods 
such as hardcopies or telephone trans- 
fers resorted to. Furthermore, large 
files are just less convenient to mani- 
pulate on the smaller floppy disk based 
systems. 

The advantages of having an exten- 
sive files system under FORTH would 
be many. Each application or related 
applications could have a file. This is 
hardly novel, in fact it is the “usual” 
way of doing things in many other pro- 
gramming systems. A clearly named 
file may be loaded by an even clearer 
FORTH word. Specific applications 
may be passed among users with ease. 
Users of the same system at different 
times can each have their own file(s) 
or environment. Generally useful 
words created during an application 
development may be easily and clear- 
ly placed in the generally-useful-word 

file rather than linking another screen 
to the already widely disseminated 
batch of screens in the one-big-file 
system. In other words, clear, easy to 
use libraries would evolve. 

Operating systems revel in manipu- 
lating files. It seems sometimes that 
their only purpose to exist is to 
help with CREATEing, DELETEing, 
COPYing, PROTECTing, MERGEing, 
EXTENDing, DATEing, LISTing, and 
DIRECTORYing files. Since many 
FORTH users run under an operating 
system rather than stand alone, it 
makes good sense to tap into this 
resource of well debugged and 
sometimes even documented code. 

I will use examples from RT11, the 
single-user operating system by Digital 
Equipment Corp. for their PDP-11 
computers. It is quite mature, with a 
fine repertoire of useful monitor calls. 
However, the same approach was 
used in development for RSXll and is 
being used for CPIM. 
From the top down 
A useful file system would use the 
system’s specific naming convention, 
be able to either find a pre-existing file 
or create a new one, and close the file 
after access. That’s all that is really 
needed. Optionally, it might be useful 
to delete, rename, as well as those 
other utilities listed above, but cer- 
tainly that can be done later by the 
operating system outside of FORTH. 

The mechanics of file handling in 
the three operating systems RT11, 
Figure l a  

RSXll and CPlM are very similar. A 
block of memory called the File 
Descriptor Block (FDB) is loaded with 
the file name, device on which it 
resides, and other useful information 
according to a system specified con- 
vention. Then certain action words or 
verbs, which will be introduced short- 
ly, associate a channel (a logical IIO 
pathway) with the file specified in the 
FCB. 110 from then on can be specified 
simply by indicating which channel is 
to be used in subsequent reads and 
writes. Thus, the minimal system re- 
quires a word specifying the address 
of the file descriptor block, FDB; a 
word that somehow packs the file 
specifications into the FDB, FILE; a 
variable containing the currently ac- 
tive channel, CHAN; and file active 
verbs, ENTER, LOOKUP and CLOSE. See 
definitions below. 

FDB (-- addr) FDB returns the 
starting address of the system specific 
file descriptor block. 

FILE (--) FILE can have many 
forms as long as it fills the FDB with 
the proper information. This article 
will describe a FILE that expects a 
string on top of the string stack that is 
a standard RTll  file descriptor. It then 
parses it, converts it to RADSO and 
shoves the letters into the proper posi- 
tion in the FDB according to RTll  
requirements. 

CHAN (-- addr) CHAN is a 
variable that holds the value of the cur- 
rently active channel. 

CLOSE ( close current File ) 
“ DK : ED I TOR. FTH ” ( file specification strins ) 

FILE ( Pack strins into FDB ) 
LOOKUP ( try to find and open the file ) 
IF ABORT” File Lookup Error“ THEN ( error handlins 1 
1 LIST set to work ) 

Figure Ib 
CLOSE ( close current file ) 

“ DK:TEST.DAT” FILE ( fill FDB with file name TEST.DFIT ) 

LOOKUP IF ( d o e s  such a file exist? ) 
20 ENTER IF ( n o p e ,  so m a k e  one 20  screens i o n s  ) 

ABORT ( OPS, bis-time error ) 

THEN 

( Perform any o u t p u t  ) 

CLOSE ( c l o s e  file ) 

THEN 

FORTH Dimensions 8 Volume IV, No. 3 



APPENDIX A, R T l l  Files Handling Source 

This was added to FORTH in assembly language simply because the R T l l  monitor calls are 
basically macros and end u p  looking much prettier i f  left unexpanded. 

Note: The HEAD and NEXT macros used i s  exactly compatible with the FORTH PDP-11 listing 
distributed by  FIG. 

Note: Although C H A N  is included, the readlwrite routines need to  be  taught to  use C H A N  
as well. As mentioned in the text, either don't use C H A N  for now, or contact me. 

HEAD 204.CHAN.240.CHANL.DOVAR 
.WORD 0 

HEAD =03,FDB,302,XFDB,DOCCN 
.WORD FSB 

HEAD 206,LOOKUP,240.LOKUP : *+I(** LOOKUP 
110v CHANL+Z,Rl  ; GET ChANNEL FROM V A R I A B L E  CHAN 
CLR -(S) : ASSUP'E NO ERRORS 
. L C ~ ~ U P  #EMTSLK,R l ,#FDB 
i3cc 18 ; DONE I F  NO ERROR 
I NC (5) ; PUT TRUE ON STACK FOR ERROR 

1s: NEXT 

qEAD " J S r E N T E R . 3 Z 2 r E Y T E R  : ***** ENTER 
M O U  C!iANL+Z#Rl ; MOUE THE CHAhNEL TO R 1  
ASL (5) ; CONVERT FORTH-SLKS TO DEC-BL4S (Z*) 
.ENTER #EMTBLK,? l .#FDB.  (S) 
CLR (S) ; CLEAR E l R O R  FLAG TO =ALSE 
t3CC 18 ; DOhE I F  NO ERROR 
I U C  ( 5 )  ; P L T  TRUE ON STACK F O R  ER70R 

1s: NEXT 

HEAD 2 0 5 ,  CLOSE I 305 I CLOSE : ***I)* CLOSE 
MOV CHANL+Zr R l  ; GET CHANNEL FROM USER U A R I A 6 L E  CHAN 
.CLOSE R 1  ; CLOSE CHANNEL 

1s: NEXT 

EMTBLK: .BLKW 6 ; EMT BLOCK 
FDB: .RADJO /DK FORTH D A T /  ; FILE  NAME BLOCK DEFOULTS DK:FORTH.DAT 

ENTER (n -- t f )  ENTER will 
create a new file of maximum n 
FORTH blocks in length. Returns a 
flag, tf, which is 0 if successful or 1 if 
unsuccessful. 

LOOKUP (-- tf ) LOOKUP opens 
an existing file and returns an error 
flag similar to ENTER. 

CLOSE (--) CLOSE closes the cur- 
rently open file. 

A listing of the code for the imple- 
mentation (as well as some interesting 
developments under the DEC o/s) is in 
the appendix. 

An example of typical code to open 
a file appears in Figure la .  A defini- 
tion to open and write to a data file 
appears in Figure 1b. 

Note: The RTll  file specification is: 
device (DEV) which is a logical name 
assigned to the random access mass 
storage unit, followed by a maximum 
6 letter file name, followed by an 
optional 3 letter extension, e.g., 
DEV:FILNAM.EXT. 

Text continued on page 22 
Appendix B is on next page 

Ver. 2 For your APPLE II/II+ 
The complete professional software system, that meets 
ALL provisions of the FORTH-79 Standard (adopted Oct. 
1980). Compare the many advanced features of FORTH- 
79 with the FORTH you are now using, or plan to buy! 

OURS OTHERS FEATURES 

79-Standard system gives source portability. 
Professionally written tutorial & user manual 
Screen editor with userdefinable controls. 
Macro-assembler with local labels. 
Virtual memory. 
Both 13& 16-sector format. 
Multiple disk drives, 
Double-number Standard & String extensions. 
Upper/lower case keyboard input. 
LO-Res graphics. 
80 column display capability 
2-80 CP/M Ver. 2.x & Northstar also available 
Affordable! 
Low cost enhancement option: 
Hi-Res turtle-graphics. 
Floating-point mathematics. 
Powerful package with own manual, 
50 functions in all, 
AM951 1 compatible. 

YES 
200 PG. 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

$99.95 

YES 
YES 

FORTH-79 V 2 (requires 48K & 1 disk drive) $ 9995  
ENHANCEMENT PACKAGE FOR V 2 

$ 4995 
COMBINATION PACKAGE $1 39 95 
(CA res. add 6% tax COD accepted) 

Floating point & Hi-Res turtle-graphics 

M icroMotion 
12077 Wilshire Blvd # 506 
L A , CA 90025 (21 3) 821 -4340 z 

Specify APPLE CP/M or Northstar 
Dealer inquiries invited 

Version 2 For 2-80, CP/M ( 1.4 & 2.~1, 
& Northstar DOS Users 

The complete professional software system, that meets 
ALL provisions of the FORTH-79 Standard (adopted Oct. 
1980). Compare the many advanced features of FORTH- 
79 with the FORTH you are now using, or plan to buy! 

OURS OTHERS FEATURES 
79-Standard system gives source portability. YES - 
Professionally written tutorial & user manual. 200 PG. - 
Screen editor with userdefinable controls. YES - 
Macro-assembler with local labels. YES - 
Virtual memory. YES - 
BDOS, BlOS & console control functions (CP/M). YES - 
FORTH screen files use standard resident 
file format. YES - 

Double-number Standard & String extensions. YES - 
Upperllower case keyboard input. YES - 
APPLE I I/I I+ version also available. YES - 
Low cost enhancement options; 

Tutorial reference manual 
50 functions (AM951 1 compatible format) 

Affordable! $99.95 - 
Floating-point mathematics YES - 

Hi-Res turtle-graphics (NoStar Adv. only) YES - 
ENHANCEMENT PACKAGE FOR V.2: 

COMBINATION PACKAGE (Base & Floating point) 

FORTH-79 V.2 (requires CP/M Ver. 2.x). $99.95 

Floating point $ 49.95 
$139.95 

(advantage users add $49.95 for Hi-Res) 
(CA. res. add 6% tax: COD & dealer inauiries welcome) 

MicroMotion 
12077 Wilshire Blvd. # 506 

Specify APPLE, CP/M or Northstar 
Dealer inquiries invited 

LA . ,  CA 90025 (213) 821-4340 

Volume IV. No. 3 FORTH Dimensions 9 



I FOR TRS.80 MODEL I OR 111 
IBM PERSONAL COMPUTER 

I 
MORE INSTRUCTIONS 
Add YOUR commands 10 118 I9STANDARO.plua Inatruc. 
llon sail 
Far more comphla I h n  moal Foflhs slngla h doubla 
preclsbn. an8 8,  atrlng-handllng. clbck. graphlc8 (IBM 
lowns g~ws LW and 16 cotor or ZOO tint color dlaplayl 

%%n%%rebn Edllor. alruclufed h mwular 
programmlng 
Word uarcn ullllly 
THE NOTEPAD Iallef wrller 
Opllmhed lor your TRSW 01 I0M wllh keyboard repals.  
upparllowar Case dlsplay drwef. lull ASCII 

MORE POWER 
Fonh oparallng system 
Concurrenl Inlerprelar AND Compilar 
VIRTUAL in for vldw and prlnlar, dlsk and tape 
(1PM abyle hard dlsk avallablal 
Full 8% or WW Asaamblar aboard 
(ZW Assemblar also available lor TRSdOl 
lnlarmlx 35. lo W4rack dlsk drlvIa 
IBM can raid. wrlla and run M 3 Dlsks 
M 3 can read. wrlle and run M 1 dlaks 

THE PROFESSIONAL FORTH SYSTEM 
FOR TRS.80 k IOM PC 

(Thousands 01 syslems In usa1 
MMSFORTH DIsk Syslam (requires 1 dlsk d w e  32K RAMI 
V2 0 For RadlO Shack TRSW Model 101 Ill 
V2 1 For I0M Penonel Computer ~0Pcol Screen1 

sin 9s. 
S248 9s' 

AND MMS QIVES IT PROFESSIONAL SUPPORT 

Source code Pfovldad 
MMSFORTH Newslelter 
Many demo ProgIamS aboard 
MMSFORTH User Groups 
Inexpons1ve upgrades to 1atest version 
Programming slell can provide advice modilica1~ons and 
custom programs lo 111 YOUR needs 

MMSFORTH UTILITIES DlSKETrE mcludes FLOATING POINT 
MATH (0ASIC ROM roulmes plus Complex numbers Reclan 
gular  POI^^ coordlnale conversions Degrees mode morel a 
powerlul CROSS REFERENCER 10 list Forlh words by block 
and line plus (TRS 801 a lull Forth 8Iyle 280 assembler 
requires MMSFORTH V2 0 1 drive I 32K RAM1 139 95' 

FORTHCOM communiCal!ons packago provides RS 232 
driver dumb Iermlnal mode lransler 01 FORTH blocks end 
host mode 10 operate a remote FORTHCOM systems (requires 

ue 85' 

THE OATAHANDLER 0 very Iasl dalabasa managemen1 
system operable by non programmers (IeaulIeS MMSFORTH 
V2 0 1 drive I 32K RAM) SW.9S. 

FORTHWRITE la11 powerful Word Processof wIeasY 
keyslrokes Help screens manual I demo llles Full propor 
lionrl wnabs ouldanllng Include olhei blocks documents I 
keybosrd mpuls- ides1 for form Isllers (requires MMSFORTH 
V2 0 2 drwes I 48K RAMI $115 00' 

MMSFORTH GAMES DISKETrE ,081 lime pI8phlCS I board 
games WISOUICO code Includes BREAKFORTH CRASH 
FORTH CRYPTWUOTE FREEWAY (TRSBOI OTHELLO I 
TICTACFORTH (requires MMSFORTH V2 0 1 drlve 6 32K RAMI 

13995' 

0 t h ~  YYSFORW pmdusn und.r d.rrWnmnl 

FORTH BOOKS AVAILABLE 
MMSFORTH USERS MANUAL wlo Appendices SlI  50' 
STARTING FORTH bas1' si5.95. 

MMSFORTH V2 0 1 drlva I 32K RAMI 

THREADED INTERPRETIVE LANGUAGES advanced analysis 

PROORAM DESIGN I CONSTRUCTION l n U O  I 0  slruc1ured 
programming g m d  for Fonh 116.00' 
FORTH 79 STANDARD MANUAL OllUIal relerence 10 7 0  
STANDARD word WI elc 8ll.W' 
FORTH SPECIALISSUE BYTE Magulne(Au0 19801 AcoIIec 
lor s Ifem lor Forth Users and beginners U.W' 

01 FORTH Inlernels Sl8 9s. 

* ORDERING INFORMATION SOIIw8Ie Drlces include 

Send SASE lo, lree MMSFORTH lnforrnallon 
G W  dealsrr Sought 

Gel MMSFORTH prWuC1S from YOU, 
compular dealer or 

MILLER MICROCOMPUTER 
SERVICES (69) 

61 Lake Shore Road. Nalick. MA 01760 
1617)6538136 

FORTH Dimensions 

APPENDIX B 
Development of the word FILE and misc. 

Note 1: I'm sorry, but most DEC users must deal with RADSO. 
Note 2: This code uses the word WITHIN which is defined as  follows: 
: WITHIN ( n low high -- f ) ( low < = n < high ) >Rl- OVER < 
SWAP R >  c AND; 

+++*++ DK :FILES. FTH ***+*o+ 4 ***********+***+********* 

( Files routines - RAD50 conversion ) 
octal 
: >r50 ( ascii -- r a d 5 0  ) 

dUP 40 = i f  drop 0 else 
dup 44 = if drop 33 else 
dup 56 = if drop 34 else 
duP GO 72 within if 22 - else 
dup 101 133 within if 100 - else ." Illesal R A D I X - S O  character: 'I 42 emit emit 42 emit c r  
then then then then then : 

d e c i m a  1 

( basic routine to convert a n  ASCII character t o  RADSO 

) 
aiues error messase if try to conuert a n  illeeal character 

*+++++ DK:FILES.FTH +*+**++ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( Files routines - R O D 5 0  conversion ) 
octal 
: (1-502) ( r a d 5 0  -- ascii j 

d u P 0 = if drop 40 else 
dup 33 = if drop 44 else 
dup 34 = if drop 56 else 
dup 36 50 within if 22 + else 
J U P  i 33 within if 100 + 
then then then then then ; 

( basic routine t o  convert RRDJO to ASCII ) 

: rS0> ( n -- a s c 3  a s c 2  ascl ) 
0 50 u/mod 0 50 u/mod 
(r50?) rot (r50>) rot (r50:>) Vot ; 

( converts a 1 word inteser in N A D 5 0  to 3 ASCII characters ) 
d e c i ma 1 

( Files routines - R A D 5 0  Conversion ) 

octal 
: > r a d S 0  ( addr -- n ) 

dup 3 + swap d o  i c @  ?r50 1 D O P  
swap rot 50 + 50 * + ; 

( converts 3 characters, i.e. bytes startins at a d d r  1 
( into sinsle 1 w o r d  inteser RRQ50 equivalent ) 
decimai 

: rad50? ( n ad.dr -- ) 

( conuerts RAD-30 n into 3 characters. bytes, stsrtins at a d d r  ) 
> r  r 5 C Z  r@ c !  -rB 1+ c! r;' 2+ c! 

Volume IV. No. 3 10 



( P r i n t 2  f i l e  5 ~ e c i ; i c a : i o n s  stored 

: B f 1 : e f i i l  
i 4  o v e r  c 
1+ 4 0 d o  

o v e r  i 
Z J r o p  : 

( i f  4 w o r d  
( w i l l  m a k e  

( a d d r i  a d d  

2* + @ o v e r  

f i l e  s p e c i f  
a TSPEab  1 e 

i n  4 

9 

i n s  

w o r d  b l o c k  a t  a d u r  i 

2 )  
< s t o r e  l e i i s t h  b y t e  ) 

radS0: .  2 + loop 

c a t i o n s  b e r i n s  a t  a d d r l  ) 

t r i n s  a t  a d d 2  ) 

*i t***+ DK:FILES.FTH Q*+**** g . . . . . . . . . . . . . . . . . . . . . . . . .  

( F i l e s  r o u t i n e s  - f i l e  a r r a y  ) 

: O c i l b l k  . : b u i l d s  8 * a l l o t  d o e s >  c h a n  C 8 * + : 
16 O f i l b l K  c h a n b l k  
( c r e a t e  a s t r i n s  a r r a y  t o  h o l d  16 f i l e  b l o c k  s p e c i f a t i o n s  ) 

i F i l e s  r o u t i n e s  - f i l e  b l o c k  ~ a c k : n s  i 

: f i l e  ( $ C i l s p e c  -- 1 i p u t s  f:.Le 5 - e ~  i n t o  f i l S ! k  ) 
B S P  @ 2+ ( ictrnr c s ' e r  letter c o u n t  1 
f i ? b l %   UP @ + swap J c  i s e t  'XP i n J e x  ) 

dup h a d 5 0  i ! 
3 + 2 / l o o p  ! i n c r e m e n t  sdiir. a c d  l o o p  j 

$ d r o p  d r o p  i d r o p  s t r i n s  a n d  f i l b l k  ) 

f i l b i ! i  c h a n b l k  4 moue ; ( s t o r e  tile name  i n  a r r a y  i 

( p r i m i t i u e   routine^ - t a k e s  a s t r i n s  i n  t h e  f o r ! n :  i 

( o n  t h e  c t r i n s  s t a c k .  t h e n  p a c k s  i t  11-8 P r o p e r  f o r m a t  ; 
i i n t o  f i l e  s ~ e c i f i c a t i o n  b l o c k  ) 

( " DEVFILNAMEXT" ) 

Look to 
TIMIN 

I 

t ngrneerrng 
for FORTH 
software of 
professional qua1 ity, 

* ready to-run 
FORTH development 
systems 

*application programs 
in FORTH 

*Consulting services, 
including custom 
program deve I o p m e n t 

0 u r I ates t product: 
DUAL TASKING 
FORTH 
Now you can run your 
process control programs 
in background while still 
using your FORTH 
system in the normal way. 
Background and 
foreground tasks may 
each be written in high 
level FORTH. They can 
execute simu I taneously 
and exchange data. The 
foreground task can 
control the background 
task. 
Available NOW: 
8" diskette $285 

Write for our FORTH 
information booklet 

6044 Erlanger St. 

(714) 455-9008 

FORTH Dimensions 11 Volume IV, No 3 



TEST-FLY 
As20 MILLION JET 

ON AN APPLE? 
YES. WITH MICROSPEED. 
At the Bethesda Naval Research Center, they’ve 
discovered the power of MicroSPEED The Navy’s 
engineers use this remarkable hardwarekoftware 
combination to “fly” an advanced fighter aircraft 
in real time-even making vertical landings on a 
simulated carrier deck. A “crash” is merely another 
learning experience, and an opportunity to modify 
the research aircraft-inside the Apple-to improve 
tomorrow’s combat planes. 
Surprised that such a sophisticated task is possible 
on the Apple? So were the Navy’s officials, and many 
others who have discovered.. . 
THE MICROSPEED DIFFERENCE This extraordinary 
Language System exploits the real potential of the 
microcomputer for the first time. The difference 
between MicroSPEED and other programming lan- 
guages is that with MicroSPEED, there is virtually no 
limit to what you can achieve. It may well be the 
iiltimate language for the Apple I1 and 111 (and soon 
the IRM Personal Computer). MicroSPEED literally 
combines the performance of a minicomputer with 
an exhaustive set of user-friendly capabilities: 

hardware math processing, fast hi-res graphics 
and text, turtle graphics, print formating, two text 
editors, unlimited data types, and incredible FORTH 
extensibility-all at speeds up to 100 times faster 
than Basic. 
USER-FRIENDLY, EASY-TO-LEARN Starting with 
simple commands that are comfortable even for 
non-programmers, MicroSPEED extends and builds, 
allowing you to create your own tailored application 
languages. The capability of your computer will 
grow exponentially, as you work in an active part- 
nership with the machine, exploring and develop- 
ing new problem-solving facilities-creating, cor- 
recting, refining your increasingly powerful system. 
DEMANDING JOBS AT LOW COST Developed 
by a team of standout computer professionals, 
MicroSPEED has been put to the test in fields as 
diverse as medicine, the stock market, oceanography, 
and the arts. In even the most challenging appli- 
cations, MicroSPEED users have been unanimous 
in their praise of the System and manual. Typical 
comments are: 
“Verv hi& marks,” 

Thomas Toich &D., Tosch Information Management. 

Prof. James L. Hockenhull, University of Washington. 

Henry Hzrris, Mission Designer, Cal Tech’s Jet Propulsion Lab. 

“The more I use MicroSPEED, the more I love it:’ 

“Great!. . .A joy to use:’ 

“If you plan to use the Apple or IBM Personal 
Computer for Eny demanding task, then we built 
MicroSPEED for y ~ : ’  
Sam Cottrell, President of Applied Analvtics. 
I MicroSPEED requires the Apple o r  IBM Personal Computer with I 
I single disk. MicroSPEED I1 includes 2 MHz math processor. I 
I Micro SPEED I1 + includes 4 MHz math processor. I 
I Applied Analytics Incorporated I 
18910 Brookridge Drive I 
I Upper Marlboro, Maryland 20772 (301) 627-6650 I 
I I’m interested! My computer is: I 

I 
I 

111-1111111111111111111 

, Please send me: 

I -MicroSPEED I1 +, $645.00 -Detailed Information 
-MicroSPEED 11, $495.00 -160 Page Manual, 615.00 

I 
I 
I 
I 
I 

I Name: 
I Company 
I Address 
I City State-Zip-Phone No.: ( ) ! Use this coupon to order, or for more information. 

I 
I 

I 
I iMicroSPEED I API’I E I A 1KAL)EMAKK OF APPLE COZll’l 1 E K  INC 

. 

Volume IV, No. 3 FORTH Dimensions 12 



~~- 

Combining 7SlStandard FORTH 
with Existing Microcomputer 
Operating Systems 

John Arkley 
The Software Works 
Palo Alto, California 

During our recent conversion of 
Software Works FORTH into 79-Stan- 
dard FORTH, most of the problems of 
building a FORTH on top of several 
existing microcomputer operating 
systems were tackled and solved. This 
article briefly discusses the advantages 
and disadvantages of our approach. 

Building FORTH upon a wide range 
of different operating systems requires 
two virtual models for FORTH input/ 
output, one for character or device 110 
and one for disk IIO. Conveniently, 
79-Standard FORTH defines these via 
the words KEY, EMIT, EXPECT, and TYPE 
for character 110 and BLOCK, BUFFER, 
and SAVE-BUFFERS, and EMPTY- 
BUFFERS for disk IIO. 

79-Standard FORTH fails to address 
the problems of directories, directory 
management, file creation, device defi- 
nition, device assignment, special 
driver linkages, keyboard mapping, 
function keys, and the like. The philo- 
sophical reason is that no one oper- 
ating system will ever do what is 
desired, and it usually hinders rather 
than supports the programming lan- 
guage system. 
Advantages 
There are a number of advantages to 
using the native operating system, 
even though doing so increases the 
size of the FORTH system. 

A primary advantage is the ability of 
such a FORTH to co-exist on the same 
mass-storage volumes with other 
application software and languages. 
Now that we’re seeing cheap high- 
density storage, the usual FORTH 
design (which can be summarized by 
the phrase ‘I own the whole disk’) is 
an unacceptable one. The massive 
microcompuer market requires a dif- 
ferent FORTH approach, one which 

supports sharing resources with other 
software systems. 

Another advantage is the easier ac- 
ceptance of FORTH by non-FORTH 
programmers still undergoing the 
FORTHification process. 

None of the common micro com- 
puter operating systems support files 
that the system will span across multi- 
ple disk volumes. This problem can be 
solved in the interface between 
FORTH and the host system, thus 
reducing the applications program- 
mer’s concern for disk capacities. 
FORTH can circumvent deficiencies 
in these operating systems. 

A similar scenario applies to charac- 
ter IIO. The best example of this is the 
two and a half character devices in 
CPIM. FORTH can easily interface IIO 
through a vector table that allows 
patching in device drivers for 8 or 16 
devices. 

Another example is found in device 
paralleling, a means of directing the 
output stream to multiple output 
devices without having to put special- 
case code in an application. 
Disadvantages 
Using an existing operating system is 
not without some costs, some of which 
affect performance. A good example 
can be seen in the difference between 
character at a time 110 with EMIT and 
a line at a time IIO with TYPE. If the 
overhead for an output request is very 
high, software that only uses EMIT 
could easily run 10 times slower than 
if whole lines were TYPEed for most of 
its output. Disk 110 speed can also suf- 
fer if the operating system is slow at 
random access reads or writes. 

The final disadvantage is encoun- 
tered with operating systems that are 
entirely useless for FORTH or too 
complex to support the simple needs 
of FORTH. The problem is solved by 
using the directory format and disk 
allocation mechanism, and implemen- 
ting a subset operating system from 
scratch that is sufficient to support 
FORTH. This problem arises when the 
operating system is inside a disk 

BASIC, ala MICROSOFT disk BAS- 
ICS, or such first-generation systems 
like APPLE DOS 3.X which is very 
slow for large random access files due 
to its linear index structure and its 
unusual post-basic interface design. 
Implementation Considerations 

The actual cost of doing an operat- 
ing system from scratch, as we have 
done for the APPLE 11, is not as large 
as one would think. It only took 3 
weeks to create the 6502 FORTH, the 
operating system, and a new disk 
driver for the APPLE disk controller. 
This is largely due to two factors: most 
of FORTH can be written in itself, and 
110 models that are simple but elegant, 
and therefore easy to duplicate, were 
used. 

Most micro systems have the needed 
random access facilities and can have 
their disk file 110 interfaces mapped 
directly to the 79-Standard FORTH 
1024-byte definition of a block. This 
does result in not being able to use all 
possible files that the host operating 
system could create, since 79-Standard 
FORTH’s disk IIO design doesn’t pro- 
vide for partial block input or output. 
One possible solution for this problem 
is to create a character driver for KEY 
and EMIT to provide sequential charac- 
ter access to a disk file. 

The results of combining microcom- 
puter operating systems with 79-Stan- 
dard FORTH produces an environ- 
ment that remains entirely FORTH 
and at the same time allows real 
transportability that is acceptable to 
the large majority of existing micro- 
computer users. The performance and 
size costs to the resultant FORTH will, 
no doubt, be hotly argued from differ- 
ent views, but the bottom line, selling 
software products in volume, out- 
weighs all possible technical perspec- 
tives. We expect to see a much larger 
acceptance of FORTH applications 
software as the result of this approach, 
particularly from the hardware 
manufacturers like OSBORNE and 
SANYO. 0 

Volume IV, NO. 3 FORTH Dimensions 13 



Now Available On 

HARDWARE 

The HP 9826A and 9836A are two of Hewlett-Packard’s 
newest and most powerful desktop computers. Each is based 
on the Motorola MC68000 microprocessor. Both machines 
have full graphics capability and up to 2 full megabytes of 
user read/write memory. Both operate on 5%’’ flexible disc 
drives (the 9836A has two) which feature 264K bytes of 
mass storage. While the 9826A has an integral 7” (178mm) 
CRT which makes it useful for computer-aided testing (CAT) 
and control, the 9836A has a full 12.2“ (310mm) CRT 
which makes it ideal for computer-aided engineering (CAE) 
applications. Each model features the following: 

Seven levels of prioritized interrupt 
Memory-mapped I/O 
Built-in HP-IB interface 
Standard ASCII keyboard with numeric keypad and 

Ten (20 with shift) user-definable soft keys with soft labels 
Rotary-control knob for cursor control, interrupt generation 

System clock and three timers 
Powerfail recovery option for protection against power lapses 
Seven additional interface cards 

international language options 

and analog simulations 

- DMA controller (up to 2.4 mb/sec) 
- 8/16 bit bi-directional parallel 
- Additional HPlB interface 
- Serial RS232/449 

- Color video(RGB) 3 planes 512 x 512 8 color 
- BCD 

SOFTWARE 
~~ 

HP 9826/36 Multi-FORTH 
HP PRODUCT # 97030JA 

Multi-FORTH was developed in 1979 by Creative Solutions, 
Inc. The standard product has been substantially modified to 
take full advantage of the 9826/36 hardware features. 

Multi-FORTH features 
79 standard programming environment 
Multitasking 
Full screen editor 
In-line structured assembler 
I/O and graphics extensions 
Loadable H.P. floating point (IEEE format) 
Extensive user manuals and documentation 

Optional Features: 
Meta compiler 
Multi user 
Data access methods library 

This product IS part of HP PLUS - a program for locating user software. It has been 
developed by an independent software supplierto run on HPcomputer systems. It is 
eligible for HP PLUS as determined by references from satisfied end users. Support 
services are available only through the software supplier. Hewlett-Packard’s 
responsibilities are described in the Responsibilities Statement below. 

Responsibilities Statement 
HP PLUS software was developed by an independent software supplier for operation 
on HP computer systems. The supplier is solely responsible for its software and 
support services. HPis not the manufactureror developerofsuch softwareorsupport. 
HPdisclaims any andall liabilities forandmakes no warranties. expressedorimplied, 
with respect to this software. Distribution of this pmduct or information concerning 
this product does not constitute endorsement of the product, the supplier. or support 
services. The customer is responsible for selection of the soflware it p l r c h ~ ~ .  

For more information, please write 

3404 East Harmonv Road. Ft. Collins, CO. 80525 
Marvel Ross, Hewlett Packard Company 

~ ~~ ~~~ 

FORTH Dimensions Volume IV. No. 3 14 



Checksum for Hand-Entered 
Source Screens 

c 

Klaxon Suralis 
and 

Leo Brodie 

For program exchange, the medium of 
hard copy is cheap, convenient, and 
machine-independent. Its primary 
disadvantages are the time required 
for hand-typing the source code and 
the possibility of human error in the 
process. Even if the screens LOAD 
without error messages, some errors 
(omitted or transposed words, frin- 
stance) may pass undetected until 
run-time, when the system crashes 
mysteriously. 

This program can ameliorate the lat- 
ter disadvantage, although it does 
nothing about the former. Given a 
screen number on the stack, VERIFY 
calculates a 16-bit CRC value which 
may be printed above each screen’s 
listing. The check value is NOT writ- 
ten into any block or buffer. 

On the receiving end, VER is used to 
compute the check sum of the screen 
as typed in. If the number differs from 
that given on paper, something is 
definitely wrong; if the values are 
equal, chances are very good that the 
program compiles as listed. 

We’ve chosen to express the check- 
sum as an unsigned number; for the 
sake of standardization we suggest 
you do the same. By the way, VERIFY 
may take a second or two -be patient. 

Note that comments are ignored in 
the CRC generation. Also, the number 
of spaces between words makes no dif- 
ference. You may rearrange source 
words and changelomitladd com- 
ments without affecting the value 
returned by VER and VERIFY. But a 
missing space will, as you’d expect, 
change the checksum. 

The program runs on fig-FORTH 
provided you make the following 
redefinitions before loading this 
application: 

: WORD WORD HERE ; 
: > IN  IN ; 
: NOT O =  ; 
For some systems you may need to 
predefine 32 CONSTANT EL. 

The program will NOT work, 
however, on FIG systems which don’t 
have disk buffers consisting of 1024 
bytes of contiguous memory. Sorry. 

The program has been designed for 
transportability, at some expense of 
speed. It depends on WORD to parse 
groups of letters separated by spaces. 
Since certain details of WORD’s opera- 
tion vary from version to version, we 
chose an algorithm that would cover 
all bases. 

The main trick was the test to decide 
when to end the outer loop. On 
79-Standard systems, when WORD hits 
the end of the block it returns a count 
of zero; but on FIG systems, it returns 
a count of one. Therefore, a test for 
zero count isn’t transportable. 

The algorithm we chose was this: 
keep DlSPOSing word-strings until the 
next string parsed by WORD has a 
count less than two (which covers zero 
and one) and consists of an ASCII 
character less than 33 (which covers 
blank and null). Thus, in a FIG system, 
if the count is one. but the character 

is blank or null, we’re at the end of the 
block. This test is made in the word 
MORE. 

If you feel a need to optimize this 
test for your system, make sure that a) 
you get the same results as published 
here, and b) you get the same result 
whether or not the final word in a 
block occupies the last bytes of the 
block. 

Further cautions: 
The program uses FORTH-79 WORD. 

It can’t handle comments longer than 
255 characters. 

The program uses unsigned ad- 
dresses as LOOP parameters. As long as 
WORD’s buffer doesn’t cross the 32K 
boundary, everything’s okay; other- 
wise you’ll have to alter DISPOSE. 

Finally, we can’t guarantee that the 
CRC algorithm used in ACCUMULATE is 
the best on land and sea. It’s adapted 
from a book, and seems to work. We’d 
like to hear about flaws or improve- 
ments. 

We hope that this routine will 
become a standard. We’d like to see 
FORTH vendors include some com- 
patible version of it in their systems. 
Perhaps embedded as an option 
within LIST or TRIAD. 

Good luck. 

Screm 0 129 crc v w  - 56445 
0 ( Checksum for h a d - m t a o d  source screens) 
1 : CICCUWATE ( oldcrc\chu -- neucrc ) 
2 2% 8 XOR 8 0  W WP O< IF  16366 XOR DUP + 1+ 
3 ELBE DUP + THEN LWP 8 
4 : DISPOSE ( crcvalur\adr\ lm -- neucrcvalur ) 
s OVER DUP CQ 40 = s w  i+ ca EL = RND OVER 1 - AND 
6 IF  ( comment; skip it)  2DROP 41 WORD DROP 
7 ELSE 1+OVER +swcIp W I CQnCCIJWLATE LWP 
8 THEN ; ( careful? LOOP% on addresses) 
9 : MORE ( -- adr f )  BL WORD DUP Ca 2 < OVER 1+ W 33 < RND NOT 8 

10 
11 : VERIFY ( scr0 -- crcvalue) BLK Q >R >IN 3 M BLK ! 0 > I N  ! 
12 0 BEBIN HORE WHILE BL OVER C W N T  + C! CWNT DISPOSE 
13 REPEAT DROP R> > I N  ! R> BLK ! ; 
14 : VER SCR ;3 VERIFY U. ; 
15 

Screen # 130 crc vrr  = 5038 
0 ( Test scrwn) 
1 For program exchange, the lrmdium of hard copy i s  chrap, 
2 convenient, and machine-iodepmdent. I t s  primary disadvantages 
3 are the t i m e  required fw had-typing the aaurce code and the 
4 possibi l i ty  of human error i n  the process. Even i f  the screens 
5 LOAD without error  message^, some e r r w s  nay pars undetected 
6 u n t i l  run-time, nhen the system crashes mysteriously. 

Volume IV, No. 3 FORTH Dimensions 15 



Q T F  
Quick Text Formatter - Part I 

Leo Brodie 
Chatsworth, California 

Like many other writers, I’ve become 
addicted to word processors. Trying to 
write any other way seems unimagin- 
ably tedious - like plucking your own 
chickens for dinner. 

A year ago, when I left my full-time 
job and word processor, I found 
myself writing at home, trying to cope 
with a medieval device called the elec- 
tric typewriter. It was a nightmare; my 
mistakes actually appeared on paper, 
the instant I made them! Corrections 
of a sort could be made, using a 
bizarre strip of tape coated with a flaky 
white chalk, or a pungent paint which 
took three days to dry. (I have a dim 
recollection of using the electric 
typewriter and its awkward accouter- 
ments years before, only they hadn’t 
seemed so archaic. Must have been a 
previous lifetime.) 

Well, as soon as I got my IBM Per- 
sonal Computer and a version of 
FORTH, I proceeded to write a quick, 
scaled-down word processor, using 
the same syntax as that used at 
FORTH, Inc. The formatter portion 
occupied three screens, and the editor 
portion nine screens - not terribly 
sophisticated, but at least the flaky 
tape and smelly fluid were back in the 
drawer. 

This two-part article features that 
simplified application, which I call 
QTF, the Quick Text Formatter. For 
those of you who are running FORTH 
but don’t have an off-the-shelf word 
processor (whether because you don’t 
write enough to justify it, or because 
you can’t afford it this month), you 
may find this application quite 
attractive. 

The basic approach takes some get- 
ting used to, but it has some definite 
advantages aside from simplicity. In 
fact, over the past several months I’ve 
extended this approach to include 
many features I need in producing 

technical manuals. And the enhanced 
version will most likely become a 
product. 

Another reason I’m publishing the 
QTF here is this: if any authors of 
future FORTH Dimensions articles 
were to use this application, it would 
be extremely easy to transfer the text 
using any routine for transfering 
FORTH screens. Eventually I’ll be able 
to phone this directly to our typeset- 
ter, saving everyone a bit of work. 

The final reason I’m publishing the 
QTF is because we need more pub- 
lished FORTH applications. This one 
represents an interesting solution to a 
real problem. 
The Approach 
As I said, the approach takes some get- 
ting used to. The main surprise is that 
you don’t edit an image of the final 
output as it will be printed. Instead 
you edit a string of formatting com- 
mands and text into a FORTH block. 
The formatting occurs when you LOAD 
the block. That’s the key to the applica- 
tion’s simplicity: the formatter uses 
FORTH’s interpreter. As an added 
boon, the word processor becomes 
fully extensible. 

Of course if you don’t like being 
limited to 1 K  blocks of text, you can 
design the application to use block- 
based files. But if you use the present 
system carefully, you’ll find it’s actual- 
ly convenient to compose your text in 
“modules,” each module being a block 
containing one or two paragraphs. To 
edit a paragraph, you edit the module 
- you don’t have to scroll through a 
long document to find the paragraph 
you’re looking for. It’s a “random 
access” approach to text editing. 
The Syntax 
Let’s take a quick look at the syntax for 
the formatting commands. The main 
formatting word is [ (left-square- 
bracket). This word indicates the 
beginning of text, delimited by right- 
square-backet. You can think of it as 
a glorified .” that does carriage returns 
at the right margin, and formfeeds at 
the bottom of the page. 

(Yes, I know this conflicts with 
FORTH’s own square bracket, but it’s 

just too nice a word not to use here. 
If you think it’s a problem, either use 
a separate vocabulary, or save this 
definition for last, and only load this 
application when you’re formatting 
text.) 

[ This string, which would appear in 
your source formatting block, would 
format this paragraph making the ap- 
propriate line breaks at the right 
margin. ] 

Obviously, you can’t cross block 
boundaries while inside text. 

The word pp is a formatting com- 
mand for starting a new paragraph; it 
causes the formatter to do two car- 
riage returns. For instance, the source: 
[ This is paragraph A. ] pp [ This is 
paragraph B. ] 
would produce 
This is paragraph A. 

For example: 

This is paragraph B. 
Essentially, in creating a document 

you write a “program” to format the 
document, using this specialized 
language. 

The word cr does a single carriage 
return. Like pp it repositions the cur- 
sor (or printhead) at the left margin (set 
by the constant LMARGIN). 

The words tab, indent, and hang-ind 
allow you to get away from the left 
margin in very convenient ways. 

You’ll find all these formatting com- 
mands in the accompanying glossary 
(Figure I). 
What about editing? 
If you’ve looked at the code for the for- 
matting commands (Figure 3), you 
may be saying “There’s nothing here! 
This is useless.” . 

Well, you’re half right. The other 
half of this application, which I’ll 
feature in Part 11, is the text editor that 
you need to edit your text source. It’s 
impractical to use ordinary FORTH 
line editors, because they treat a block 
like 16 lines of 64 characters. If you in- 
sert a character in the middle of line 
5, any text at the end of line 5 “falls 
off.” Instead we want it to wrap 
around to line 6. Also, we don’t want 
to be editing inside a rectangle where 

Volume IV, No. 3 FORTH Dimensions 16 



Figure 1 
i?uick Text Fwna t tw  

User ' s 61 ossar y 

I 
C 

PP 
crs  
neupage 

tab 

indent 

hang-ind 

s ta r t  sets everything up. Use a t  beginning. 
c begins sett ing t r x t .  There must be a space 

between the " C "  and t h r  f i r s t  character t o  
be printed. For example: 

C This i s  your text.] 
ends sett ing text. Doesn't need a S ~ ~ C R  preceding. 
sam~ as C. but allows you t o  p r i n t  str ings with 

goes with C 
does one carriage return. Returns t o  normal 

begins a paragraph (does two carriage returns). 
does specified number of crs 
causes text  t o  begin a t  the top of a neu page, 

leaving the rest  of current page blank. 
tabs over t o  the position specified. re la t i ve  

t o  the l e f t  margin -- for the current l i n e  
only. For example. "5 tab" tabs i n  S spaces 
from the l e f t  margin. But  i f  the text  should 
continue t o  the next l i n e  below, i t  w i l i  
begin at the normal l e f t  margin. 

does a tab t o  position specified. and causes 
subsequent lines, up t o  the delimiter, t o  
be indented t o  the same tab 

subsequmt lines, up t o  the delimiter, t o  
be indented three more spaces t o  the r ight .  
This paragraph uses th i s  format, which typesetters 
c a l l  "hanging indent: 

i t  on the page. 

a st r ing of text, but r igh t - jus t i f ies  i t  
i n  a f i e l d  "n" wide. 

sub "subitem". D o e s  a c r  and a 5 hang-ind. 
Convenient for  makinp certain kinds of l i s t s ,  
including out 1 i nes. 

a 1 inside. 

tab 

does a tab t o  position specified and cau6es 

cen ter  C l i k e  C .  begins a s t r ing of  text, but centers 

r C  takes a number "n" off  the stack. Like C, begins 

subsub "sub-subitem". Does a c r  and a 10 hang-ind. 

To produce the following l i s t :  

1981 
1982 

Income 

S10.32 
$328,543.21 

Expenses 

S15.12 
S408.964.86 

we f i r s t  defined: 

: year c r  5 tab ; 
: income 20 tab 14 ; 
: expenses 40 tab 14 ; 

then wrote 

pp income r C  Income1 expenses r C  Expenses1 cc year C 19811 
income r C  S10.323 expenses r C  S15.121 year C 19821 income 
r C  S328,343.211 expenses r C  S408.964.861 

Figure 2 

73 

( F w u t t w  Qlmmuy) I a e m m  13 hmg-ind # 
m t u t  center1 Quick Text Formatter1 cr  center1 U u r ' m  Q l m r u y l  
pp C m t u t l  a m r n m  C wtr evrrything up. Ume a t  beginning.] c r  
C C )  m e m m  C begin. u t t i n g  t e x t .  There w m t  be a space between 
the "C'  and the f i r m t  character t o  be printed. For r x u p l r x l  
c r  20 tab C C T h i m  i m  your t e x t . ] )  cr  C 3)  m e r n m  C mdm w t t i n g  
t e x t .  Doemn't need a mpace prueeding.3 cr  t ( 3  aeanm C mame 
am C. but a l l a n  you t o  pr int  mtringm with a 3 inride.) cr  C 
> I  means C g w r  with C3 --> 

words may appear to be cut in half if 
they happen to straddle a 64-character 
boundary. The QTF editor surmounts 
these problems and provides some ex- 
tra features especially useful in the 
prose-writing process. 

So tune in next issue, and in the 
meantime let's look at some of the 
benefits of the QTF approach. 
Formatting Extensibly 
To illustrate how nice it is to have 
FORTH underneath you, Figure 2 
shows the formatting source that pro- 
duced the glossary in Figure 1. (Ac- 
tually Figure 2 is a reproduction of the 
display produced by the QTF Editor.) 

Let's look at the source in Figure 2, 
and see what it does: 

The document begins with a com- 
ment, just like a regular FORTH 
screen, useful in recognizing the text 
when doing an INDEX. Naturally, the 
comment uses FORTH's ordinary 
parenthesis. 

Next we find a FORTH definition! 
We're defining the word means to do 
a hanging-indent at tab-position 15. 
We'll see how this definition is used 
momentarily. 

After the definition comes the com- 
mand start which initializes certain 
variables and moves the printhead 
down several lines from the top of the 
page. 

Next we find the format command 
center[, following the text to be 
centered on the page. (The square- 
bracket is part of the word center[ to 
remind us that it also indicates the 
beginning of some text.) 

After some more titles, we format 
the first word in our glossary, which 
happens to be the word "start," by 
delimiting it on both sides by square 
brackets. Here is where our special 
purpose word means comes in: it tabs 
over to the second column, the 
glossary description. 

Using this type of special-purpose 
format command has definite advan- 
tages. Not only does it make the source 
easy to read ("this-command" means 
"that-action"), but it also lets us fiddle 
with the tabbing distance. Even after 
we've completed the entire document, 
we can shift the description column 
around by changing only one number, 
in the definition of means. 

My experience in using this ap- 
proach has taught me to use many 
such special-purpose formatting 

Continued 

FORTH Dimensions 17 Volume IV, No. 3 



Figure 3 

Screen P 33 crc ver = 53368 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

( Quick Text Formatter 08/09/82 ) 

: FORHFEED 12 E M I T  ; ( <-- w r i t e  code f o r  your own p r i n t e r )  
78 CONSTANT PAPER ( 80-column width) 
( l e f t ,  r i g h t ,  top and bottom margins:) 
10 CONSTANT LMARGIN PAPER 10 - CONSTANT RHARGIN 
6 CONSTANT THARGIN 55 CONSTANT BHARBIN 

VARIABLE DELIMITER ( current de l im i te r  character) 
VARIABLE XTRA ( amount t o  indent on auto cr ’s)  
VARIABLE ACROSS ( hor izonta l  posi t ion;  absolute) 
VARIABLE DOWNWARD ( v e r t i c a l  pos i t ion;  absolute) 
: S K I P  ( n)  DUP ACROSS +!  SPACES ; 
: \ l i n e  ( begin new l i n e  a t  appropriate l e f t  margin) 

-- > 
0 ACROSS ! CR 1 DOWNWARD +! LMARGIN XTRA i) + S K I P  ; 

Screen P 34 crc ver = 31098 
0 ( Quick Text Formatter 08/09/82 ) 

1 : s t a r t  ( begin page a t  top margin; use a t  s t a r t  of  document) 
2 0 DOWNWARD ! THARGIN 0 DO \ l i n e  LOOP ; 
3 : newpage ( begin next page) CR FORHFEED s t a r t  ; 
4 : cr  ( begin next l i ne ;  i f  a t  bottom, s t a r t  new page) 
5 DOWNWARD i) BHARGIN > I F  newpage ELSE \ l i n e  THEN ; 
6 : c r s  ( P of c r s  -- ) 0 DO c r  LOOP ; 
7 : pp ( s t a r t  new paragraph) c r  c r  ; 
8 : tab ( n) ( sk ip  t o  pos i t i on  “n”, r e l a t i v e  t o  l e f t  margin) 

10 : indent ( n)  ( tab and reset  l e f t  margin, u n t i l  next delim.) 
1 1  DUP XTRA ! tab ; 
12 : hanq-ind ( n) ( indent; subsequent l i n e s  indent 3 more) 
13 DUP tab 3 + XTRA ! ; 
14 --> 
15 

9 ACROSS i) LHARGIN - - 1 MAX S K I P  ; 

Screen # 35 crc ver = 13904 
0 ( Text Formatter 08/09/82 ) 
1 : ?NEAR ( -- true: near r i g h t )  ACROSS a RHARGIN > ; 
2 : ?WRAP ( -- true: a t  very edge) ACROSS a PAPER = ; 
3 : LETTER ( -- current char.) BLK a BLOCK >IN i) + C a  ; 
4 : FLUSH-LEFT ( a f t e r  a c r ,  don’t output a 2nd blank) 
5 c r  LETTER BL = IF  1 >IN +! THEN ; 
6 : PCIRSE ( c )  ( d isp lay t e x t  t o  de l im i te r  “c“  w i th in  margins) 
7 DELIMITER ! BEGIN LETTER 1 > I N  +! DUP 
8 DELIMITER i) = > I N  i) 1023 = OR O= WHILE DUP E M I T  
9 1 ACROSS +!  BL = ?WRAP OR IF ?NEAR I F  FLUSH-LEFT 

10 THEN THEN REPEAT DROP 0 XTRA ! ; 
11 : C A S C I I  1 PARSE ; 
12 : C A S C I I  1 PARSE ; 
13 --> 
14 
15 

Screen # 36 crc  ver = 54848 
Text Formatter Extensions O (  

1 :  
2 :  
3 :  
4 
5 :  
6 
7 :  
8 
9 

10 
11 
12 
13 
14 
15 

sub c r  5 hang-ind ; 
subsub cr  10 hang-ind ; 
centart  ( center between margins) > IN i) RHARGIN 

r C  ( n)  ( r i g h t  j u s t i f y  i n  f i e l d  ”n“ wide) > IN i) 

load LOAD 3 

5 + A S C I I  3 WORD Ci) - 2/ tab > I N  ! C ; 

A S C I I  3 HORD CO - 0 MAX S K I P  > IN ! t ; 

08/09/82 ) 

LHARGIN - 

SWAP 

Copyright 1982 Leo Brodie 09/01 182 

words for each document. The idea is 
to describe the format of a document 
in logical terms, rather than pro- 
cedural terms. For instance, if you 
begin each title of a chapter subsection 
with the word 

or some such descriptive name, then 
at any time you can change the defini- 
tion of subsection[ to print the section 
title in boldface, or perhaps to under- 
line, or perhaps to begin the section on 
a new page. 

(When you do define special words, 
there’s a peculiar caution that I almost 
hate to bring up: some FORTH 
systems print a message such as “is 
redefined” or “isn’t unique” when a 
word is defined twice. [My personal 
opinion is that this test should be user- 
switchable ...] On such systems, you 
can’t print the same document twice 
without getting the error message in 
the middle of your document, unless 
you take some special measure. For in- 
stance, you could define all your 
special formatting words in a separate 
block, and only load the block once. Or 
you could define a dummy word 
called tabs on the top of the text for- 
matter application, and begin each 
document with the phrase 

or some such.) 
Text Management 
A few more words about working 

with the block “modules”: 
Since printing a document consists 

of LOADing a series of FORTH blocks, 
you can use any method that your 
system provides for doing that. If 
you’re preparing a short document 
(one or two pages), it’s fine to use a 
series of blocks, linking one to the next 
with the word 

But for longer documents, such as 
book chapters or long articles, it turns 
out to be much easier to provide a 
“load block.” This block contains the 
main title, and all the section titles, but 
between section title will be a “load 
statement” (e.g. 98 load). By sticking to 
this approach, you give yourself a 
directory to all the blocks in your 
document. It’s easy to move sections 
around, if necessary, by just changing 
the load order. (The QTF Editor lets 
you move text strings from block to 
block, too.) 

Within each section, blocks can be 

subsection[ 

FORGET tabs : tabs ; 

-- > 

Volume IV, No 3 FORTH Dimensions 18 



linked together by arrows, or alter- 
natively, you can define the word thru 
to load a range of blocks from the load 
block. 

Notice that you can format (load) 
any block at any time. You don’t have 
to start from the beginning of the 
document. That’s the other advantage 
of using a load block: you can review 
the entire document by loading the 
load block, or just sections by loading 
the section blocks. 

Sometimes it’s convenient to define 
the load-blocks to frequently-used 
documents as CONSTANTS. In fact, for 
my correspondence I have a block 
reserved for my return address. This 
block is named as the constant address, 
so when I write a letter, I begin the 
block with 
start address load 
then continue with the date, the 
addressee’s name, etc. Saves me from 
having to remember where I live. 
Suggested Extensions 
There are a number of niceties I’ve left 
out of this published version. For one 
thing, I wanted to keep it simple. For 
another, those niceties are reserved for 
the product version (which I plan to 
sell for about $30). But I’ll give you 
some hints - if you want to spend the 
time you can add them yourself. 

Of course, there are all the obvious 
extensions, such as page numbering, 
item numbering, automatic heading/ 
footing, justification, etc. 

Perhaps less obvious additions are a 
user-switchable “log” facility, which 
optionally prints the corresponding 
block numbers beside the text in the 
formatted output. This makes later 
editing extremely easy. Also, an 
escape from formatting the document 
during output can be very handy. 

And of course there are routines to 
take advantage of your printer’s 
capabilities. My own verison, for the 
Epson printer, can print boldface 
words in the middle of normal text, or 
lines or even paragraphs in double- 
width, compressed, or both at the 
same time, keeping the natural 
margins of the paper, and of course do 
underlining. 

A word you’ll definitely want to add 

I 
1 

right away is print. It should take a 
block number on the stack, direct your 
computer’s output to the printer, LOAD 
the given block, then return output to 
your console. This is system-depen- 
dent stuff, so I don’t show it here. 
If you type it in ... 
I’ve included checksum verifications 
at the top of each screen. See the arti- 
cle on checksums elsewhere in this 
issue. 

This application is designed to run 
on FORTH-79 Standard. To run it on 
a fig-FORTH system, you should 
predefine: 
: VARIABLE 0 VARIABLE ; 
: CREATE VARIABLE -2 ALLOT ; 
: > IN  IN ; 
: WORD WORD HERE ; 
Some systems may require that you 
predefine: 
32 CONSTANT BL 
: ASCII 

BL WORD 1+ C@ 
[COMPILE] LITERAL ; 

IMMEDIATE 
(where WORD is the 79-Standard 
version) 

Finally, remember that the Format- 
ter will be frustrating to use until you 
have the Editor. Can you wait till the 
next issue? 
Notice 
Permission to use this application is 
granted for individual, personal use in 
a non-commercial manner. All com- 
mercial rights reserved. 
Acknowledgements 
I thank FORTH, Inc. for permission to 
use this syntax, which was originally 
invented by Charles Moore. The entire 
text of Starting FORTH was done on 
a word processor that used this 
general approach. 

Leo Brodie is an author, lecturer and 
consultant specializing in FORTH. He 
teaches the Advanced Systems Course 
at Inner Access Corporation, and has 
written system documentation for three 
FORTH vendors. He is also editor of 
FORTH Dimensions Magazine. He no 
longer dances to ’50’s music but in- 
stead listens almost exclusively to 
Steely Dan records. 
Copyright 1982 Leo Brodie. 

TO HORSE! 

THE 

FORTH 
CAVALRYTM 

IS COMING! 

COME TO YOUR 

IBM Poco’s 
CALL! 

REWARD! 
INCREASED 

PROGRAMMING 
PRODUCTIVITY! 

BOUNTY 
of BENEFITS 

to those who JOIN 

FORTH, Inc. 
AVAILABLE AT SELECTED 

COMPUTER TRADING POSTS 

1 

Volume IV, No. 3 FORTH Dimensions 19 



2-80@ and 8086 FORTH 
PC/FORTH'" for IBM@ Personal Computer available now! 

FORTH Application Development Systems include interpreter/compiler with virtual memory 
management, assembler, full screen editor, decompiler, demonstration programs, utilities, and 130 
page manual. Standard random access disk files used for screen storage. Extensions provided for 
access to all operating system functions. 

2-80 FORTH for CP/M@ 2.2 or MP/M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 50.00 
8086 FORTH for CP/M-86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $100.00 
PCIFORTH for IBM Personal Computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $1 00.00 

Extension Packages for FORTH systems 

Software floating point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $1 00.00 
Intel 8087 support (PC/FORTH, 8086 FORTH only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $100.00 
AMD 951 1 support (2-80, 8086 FORTH only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $100.00 
Color graphics (PC/FORTH only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $1 00.00 
Data base management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $200.00 

Nautilus Cross-Compiler allows you to expand or modify the FORTH nucleus, recompile on a host 
computer for a different target computer, generate headerless code, and generate ROMable code with 
initialized variables. Supports forward referencing to any word or label. Produces load map, list of 
unresolved symbols, and executable image in RAM or disk file. No license fee for applications created 
with the Cross-Compiler! Prerequisite: one of the application development systems above for your host 
computer. 
Hosts: 
Targets: 2-80, 8080, 8086/88, IBM PC, 6502, LSI-11 

2-80 (CP/M 2.2 or MP/M), 8086/88 (CP/M-86), IBM PC (PC/DOS or CP/M-86) 

Cross-Compiler for one host and one target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $300.00 
Each additional target.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $100.00 

FORTH Programming Aids by Curry Associates. Includes Translator, Callfinder, Decompiler, and 
Subroutine Decompiler. 40 page manual. Used with Cross-Compiler to generate minimum size target 
applications. 

Specify host system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $1 50.00 

2-80 Machine Tests Memory, disk, console, and printer tests with all source code in standard Zilog 
mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 50.00 

All software distributed on eight inch single density soft sectored diskettes, except PC/FORTH on 5'/4 inch soft sectored single 
sided double density diskettes. Micropolis and North Star disk formats available at $1 0.00 additional charge. 

Prices include shipping by UPS or first class mail within USA and Canada. Overseas orders add US$lO.OO per package for air 
mail. California residents add appropriate sales tax. Purchase orders accepted at our discretion. No credit card orders. 

Laboratory M icrosystems 
41 47 Beethoven Street 
Los Angeles, CA 90066 

(21 3) 306-741 2 

2-80 is a registered trademark of Zilog. Inc 
CPIM is a registered trademark of Digital Research, Inc 
IBM is a registered trademark of International Business Machines Corp 

Volume IV. No. 3 FORTH Dimensions 20 



The Sheer Joy of Clipping Recursively 

Bob Gotsch 

I’ve been wondering since I wrote the last article whether 
recursion would be useful for anything else but a study 
of recursion. That other thing turned out to be “clipping,” 
discarding those parts of the lines of a picture that lie out- 
side the specified “viewport,” so that plotting takes place 
only within the desired or useable portion of the display 
device. One strategy for clipping is to perform a binary 
search for the visible extremes of each line, then plot the 
segment between. 

Using the Sutherland-Cohen algorithm, 4-digit “out- 
codes” are assigned to the endpoints of a line according 
to where they lie, inside or outside the viewport. 

0101 +-t V V 

0001 P 0000 P 0010 
L R 

-kVPB+ 1001 1000 1010 

Inside is 0000. For an X-value to the left of (less than) 
the viewport boundary, the rightmost bit is set (0001). 
Below the viewport the leftmost bit is set (1001). The out- 
code for lower left is the logical OR of left and below 
(lOOl), etc. A line can be trivially rejected (no plotting at 
all) if it lies entirely to one side (outside) of the viewport. 
An efficient test for rejection, returning a true flag, is the 
logical AND of the endpoint’s outcodes. A line may be 
trivially accepted and plotted as-is when outcodes for both 
ends are zero. 

I I 

Of all the possible locations of a line, entirely inside 
viewport, entirely outside, one end in, or crossing view- 
port, every situation is handled by trivial rejection, trivial 
acceptance, or successive middle divisions of the line until 
each of the segments of the line can be trivially accepted 
or trivially rejected. The binary search for the intersection 
with viewport boundary terminates when the segment 
becomes so short that the midpoint in integer screen 
coordinates coincides with one or the other endpoint. 

I have chosen to save the three values for each endpoint, 
X-value, Y-value, and outcode together on the stack, with 
the out-of-viewport point always topmost on the stack. 
Hence a true INVIEWPORT? condition is followed by BSWAP. 
The other tests TRIVIALACCEPT?, TRIVIALREJECT?, and 
COINCIDE? as well as calculation of MIDPOINT, assignment 
of OUTCODE, and the graphics action PLOTLINE do just what 
they say and should be understandable from the forego- 
ing without listed definitions. 

These are incorporated in the recursive procedure 
REJECT? which uses the last outcode as true or false flag. 
If true, it returns to toplevel CLIPLINE having dropped one 
of the points, or at any lower level having droped off the 
half of the current line that is entirely outside of the 
viewport. Between MYSELFs is a test that drops the mid- 
point if it happened to be inside the viewport, so the search 
can continue onward for the other visible extreme of the 
line, conducted by the other MYSELF. If the actions of a 
recursive procedure are planned in advance, then the 
procedure-as-a-whole can be written to follow those rules, 
and each recursive call can be trusted to follow those rules. 
If REJECT? returns false, then CLIPLINE must plot the seg- 
ment represented by the two endpoints left on the stack. 

Continued 

Volume IV, No. 3 21 FORTH Dimensions 



: RETURN R >  DROP ; 
: REJECT? ( 2x,2y,2oc,lx,ly,1oc 

2x , 2Y 1 TF) 
( --- ~ x c ~ , ~ Y c ~ , ~ o c , ~ x c ~ , ~ Y c ~ , F F )  

___ 

TRIVIALREJECT? IF 3DROP RETURN THEN 
TRIVIALACCEPT? IF RETURN THEN 

INVIEWPORT? 
IF 3SWAP (swap endpoints) 

MIDPOINT 
COINCIDE? 
IF > R  > R  3DROP R >  R >  0 RETURN 
THEN 

OUTCODE 3SWAP 
MYSELF 

MYSELF 
DUP NOT IF 3SWAP 3DROP THEN 

3SWAP (swap ends back) 

MIDPOINT 
ELSE 

COINCIDE? 
IF > R  > R  3DROP R >  R >  0 RETURN 
THEN 

OUTCODE 3SWAP 
MYSELF 

MYSELF 
DUP NOT IF 3SWAP 3DROP THEN 

THEN ; 
: CLIPLINE ( l ~ , l y , 2 ~ , 2 y  --- ) 

OUTCODE 5 ROLL 5 ROLL OUTCODE 
REJECT? DUP 
IF DROP 2DROP 
ELSE STRIPOUTCODES PLOTLINE 
THEN ; 

I find it unnecessary (and often almost impossible] to 
step thru all the levels in planning a recursive procedure; 
if one reads the toplevel procedure as a “user” of the 
action-of-the-whole at each of its MYSELFs, or reads MYSELF 
as the typical interface between two levels, that should be 
enough for understanding. But how many levels deep 
might it actually go in the search for the viewport boun- 
dary? To determine the risk of return stack overflow I 
simulated a high-resolution (1024 wide) graphics display 
and clipped random lines from a large user space 30000 
pixel units wide. Interestingly, and reassuringly, the depth 
of recursive calls NEVER exceeded 17  - staying well 
within both parameter stack and return stack limits. Of 
course a high-level recursive search is slow; the real effi- 
ciency of this algorithm would be realized in assembler 
CODE, calculating the midpoints with two additions and 
two right shifts. 

To illustrate uses of clipping, I have included printouts 
of a decorative title for this article and a frame from an 
animation sequence in which a bird and its reduced 
likeness fly into and out of large and small viewports 
simultaneously on the screen. 0 

BIBLIOGRAPHY 
1. Foley, J.D. and Van Dam, A,, Fundamentals of Interactive Com- 
puter Graphics, Addison-Wesley Publishing Company, 1982. 
2. Newman, W.P. and Sproull, R.F., Principles of Interactive Com- 
puter Graphics, McGraw-Hill, 1979. 

Bob Gotsch is a graphics programmer for Time Arts, 
Inc. and a teacher of graphic arts at the California 
College of Arts and crafts. He is interested in exploring 
the use of computers as aids to artists. He uses FORTH- 
WARE FORTH. 

FORTH Based File Handling System 
(continued from page 9) 

The ability of having several channels active allows 
easy file to file transfer of information, or simultan- 
eous editing of several files. However, since it would 
then be possible to have several blocks with the same 
block number yet on different channels, the routines 
like BLOCK need some very minor alterations to pre- 
vent confusion. If there is enough interest from 
readers, I will discuss these changes in a future arti- 
cle. For now, I recommend that CHAN be ignored, and 
that all file IIO be performed on the default channel 
zero, and that files be opened, used and closed 
sequentially. 
Conclusion 
A FORTH that has the file handling capability has 
many advantages. The one illustrated is simple, 
requiring only file string, FDB stuffer and three 
verbs. Error recovery is as simple. Yet it clarifies 
FORTH program usage by making source code more 
modular and circumventing much code since there 
is no need for documentors or auto-indexes. The 
effort to add such to FORTH is trivial, due to the 
modest amount of additional code. The gain is easy 
file generation, be it FORTH source code, formatted 
text, target compiled FORTH object code or FORTH 
generated executable code. 0 

Volume IV, No. 3 FORTH Dimensions 22 



THE FORTH SPECIALISTS 
COLORFORTH AND PCFORTH 

Quality figFORTH compilers need not be expensive. 

COLORFORTH is a version of figFORTH for the TRS-80 Color Computer. It requires a minimum of 16K, but does 
not require Extended Basic. COLORFORTH has been customized for the Color Computer with special DUMP 
and PRINTER functions and a CSAVEM command for those owners without Extended Basic. When you 
purchase COLORFORTH, you receive both cassette and RS/disk versions, and the figEDITOR. This means no 
added expense when you upgrade your system. Complete: Both cassette and RS/disk versions with 
extensive manual. JUST ... S49.95. 

PCFORTH is FORTH tailored for the IBM Personal Computer, You receive all the outstanding qualities of 
standard figFORTH compiler and editor, plus several additional words to customize it for the Personal 
Computer. PCFORTH requires a minimum of 32K and 1 disk drive (DOS). Complete with diskette and manual. 
On Iy... $89.95. 

DEALER & AUTHOR INQUIRIES INVITED 
All items are post paid in US. . . . . . . . . . . . . . . . . . . . . . . . .  Texas bskbnts add 5 percent 

1- 
V M  Armadillo Int’l Softwar 

P.0 BOX 7661 
AUSTIN, TEXAS 78712 PHONE (51 2) 459-7325 

-=-=-=-=- 
-i-=-=- 8080/Z80 FIG-FORTH for CP/M & CDOS systems -=-=-=- 

-=-=-=-=- 
$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and 

debugging them. You receive TWO 8 inch diskettes (single sided, single density, soft sectored 
only). The first disk is readable by Digital Research CP/M or Cromemco CDOS and contains 8080 
source I keyed from the published listings of the FORTH INTEREST GROUP (FIG) plus a translated, 
enhanced version in ZILOG Z80 mnemonics. This disk also contains executable FORTH.COM files for Z80 
& 8080 processors. 

The 2nd disk contains FORTH readable screens including a extensive FULL-SCREEN EDITOR plus many 
items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data base handler, an 
8080 The disks are packaged in a ring 
binder along with a complete listing of the FULL-SCREEN EDITOR and the FIG-FORTH INSTALLATION MANUAL 
(the language model of FIG-FORTH, a complete glossary, memory map, installation instructions and the 
FIG line editor listing and instructions). 

This entire work is placed in the public domain in the manner and spirit of the work upon which 
it is based. Copies may be distributed when proper notices are included. 

USA Foreign 

-=-=-=-=- 

ASSEMBLER and formatted memory dump and 1/0 port dump words. 

-=-=-=-=- 

-I-=-=-=- 

AIR 
+-+ 
+-+ 
+-+ 
I I Printed Z80 Assembly listing w/ xref........$15 $18 
+-+ (Zilog mnemonics) 
+- + 
+-+ 

I I Above described package .................... $50 $60 

I I Printed 8080 Assembly listing ............... $15 $18 

TOTAL $- __ 
-=-I-=-=- 

Price includes postage. No purchase orders without check. Arizona residents add sales tax. 
Make check or money order in US Funds on US bank, payable to: 

Dennis Wilson c/o 
Aristotelian Logicians 
2631 East Pinchot Avenue 

Phoenix, AZ 85016 
(602) 956-7678 - =- =- =- =- 

Volume IV, No. 3 FORTH Dimensions 23 



~ 

FORTH Standards Corner 

Robert L. Smith 

A new form of the DO-LOOP has been 
accepted for the next FORTH stan- 
dard, tentatively called FORTH-83. 
The new DO will generally work as you 
would expect for indices which repre- 
sent either addresses or signed or un- 
signed arithmetic values. The index I 
covers a complete 65K range, the same 
as in FORTH-79 but twice as much as 
in fig-FORTH or poly-FORTH. An ad- 
ditional advantage occurs with + LOOP: 
the sign of the increment can change 
within the loop without necessarily 
causing an exit condition. The speed 
of the new form is faster than most 
previous loops unless I occurs fre- 
quently. A feature of the new loop is 
that when LEAVE is executed, control 
is passed to the end of the loop without 
intervening calculations. 

The price to be paid for the general 
form of the new loop is that certain 
“side-effects” of the old form are miss- 
ing. Consider the simple definition: 
: TEST 0 DO I . LOOP ; 
Under the old form, -5 TEST would 
execute exactly once. In the new form, 
the loop continues until the index I 
crosses the boundary between limit 
and limit-1, In the above case, -5 TEST 
would print out: 
0 1 2 ... 32767 -32768 -32767 ... 
-8 -7 -6 
To print only one value would require 
1 TEST. For another example, consider 
the following function: 
: CLEAR DO 0 I C! LOOP ; 
Suppose that our base is hexadecimal 
and we wish to clear memory between 
2000 and EFFF. With the new form of 
LOOP, we could simply type: 
FOOO 2000 CLEAR 
and the indicated area would be 
cleared. The routine would only clear 
one byte with the FORTH-79 or the fig- 
FORTH version of LOOP. 

The new loop considers that the 
index I lies on a “number circle” based 
on the usual 2’s complement arithme- 

tic for 16 bit numbers, Thus there is 
a smooth transition between -1 and 0 
and between 7FFF and 8000 hex 
(32767 and -32768 decimal). 

There are a variety of ways to imple- 
ment the new loop, some of which re- 
main to be discovered. There are two 
parts to the problem. One is to find a 
method of calculating the exit condi- 
tions, and the other is to allow LEAVE 
to work properly. The fastest method 
of determining the exit conditions re- 
quires that the actual value of I be 
calculated by an addition or subtrac- 
tion. The items stored on the return 
stack (or elsewhere) are related to the 
limit and the index, but are not 
necessarily the same. For machines 
with a testable overflow bit the sug- 
gested technique is to modify the limit 
and initial index so that the transition 
will lie between 7FFF and 8000 hex. 
The overflow bit is set whenever an 
addition causes the result to cross the 
7FFF to 8000 boundary. Initially put 
limit’ <-- limit + 8000 
I’ <-- init - limit’ 
To calculate I, note that 
I = I’ + limit’ 
At +LOOP, 
I’ <-- I’ + increment 
Then check for overflow. If the 
overflow bit is set, continue to loop, 
else exit from the loop. 

For machines without an overflow 
bit, such as the 8080, let 
limit’ <-- limit 
I’ <-- init - limit’ 
For LOOP, merely increment I’ by 1 and 
branch back if the result is non-zero. 
For +LOOP, one has to examine the 
combination of the carry bit and the 
sign bit of the increment. Klaus 
Schleisiek suggests the following: use 
the RAR instruction to shift the carry 
bit into the accumulator, then use XRA 
with the increment value. Only the 
sign bit of the result is of interest. If 
the result is positive, continue to loop. 
If the result is negative, terminate the 
loop. 

There have been various suggestions 
for implementing LEAVE. Bob Berkey’s 
original suggestion involves having 
the run-time operator for DO place the 

exit address for the loop on the return 
stack to be used by LEAVE. Klaus 
Schleisiek improved that by having 
LEAVE be an immediate word. By using 
the return stack at compile time to 
store the addresses of “fixup” loca- 
tions, it is possible to avoid run-time 
penalties when LEAVE does not occur 
in the loop. Bill Ragsdale has sug- 
gested a simple but clever way of 
avoiding use of the return stack (ex- 
cept as a very temporary storage 
place), since Klaus’s method may not 
be compatible with certain systems. 
Bill’s technique links the forward 
references in a simple chain and then 
resolves the chain when the LOOP or 
+LOOP is encountered at compile time. 
As a result of his work, Bill has also 
suggested an alternative form of LEAVE, 
called ?LEAVE, which appears to be 
more useful than LEAVE itself. ?LEAVE 
takes the top element from the para- 
meter stack and terminates the loop if 
the element is non-zero (i.e., true). Fur- 
ther details will probably be presented 
at the next FORML meeting. 

One interesting possibility for 
augmenting the new DO is to add a 
function called, say, ?DO. When the 
arguments to ?DO are equal, as in the 
case 0 0 ?DO, then the loop is not 
executed at all. If that appears suffi- 
ciently useful, then that function could 
be incorporated in DO itself, so that an 
additional word would not be needed. 
It would require a slight amount of 
additional time at the beginning of 
each loop, and would eliminate one 
(admittedly rarely used) case from DO. 

0 

I I / -  

Reprinted from Starting FORTH, b y  Leo Brodie, permission 
of Prentice-Hall. Inc. 

Volume IV. No. 3 FORTH Dimensions 24 



FORTH-79 Compatible LEAVE 
for FORTH-83 DO LOOPS 

Klaxon Suralis 
Sunnyvale, California 

! 

Editor’s note: This paper originally 
appeared in slightly different form on 
the Northern California FORTH tele- 
conference tree, July 21-22, 1982. 

The major controversy over the pro- 
posed FORTH-83 DO..LOOP is the 
implementation of LEAVE. Allow me an 
attempt to explain the problem, and to 
outline the solution I prefer. 

The old LOOP and +LOOP operate in 
two separable steps: first, add the in- 
crement to the index; then, compare 
that new index value to the limit. 
Static and easily understood, but the 
differing flavors of numeric compari- 
son (signed < , unsigned U < , circular 
- 0<) beget a multitude of variations: 
3 2 K  circular +LOOP, unsigned- 
incrementing /LOOP, unsigned- 
decrementing \LOOP, and that horror 
of horrors, the FORTH-79 signed LOOP 
and +LOOP. 

What’s wild is: the same form of 
LEAVE works for all of ’em. FORTH- 
79’s LEAVE works by equating the 
loop’s limit parameter to the current 
index. Thus I continues (pardon the 
grammar) to return its expected value 
while execution proceeds normally 
until a LOOP or +LOOP is encountered. 
At that point, loop termination is 
assured (in nearly all practical cases), 
whether the increment is positive or 
negative. 

The new LOOP and +LOOP fuse the 
addition and the comparison steps 
into one indivisible calculation. The 
flag for golno-go arises as a natural by- 
product of adding increment to index. 
If, during any one transition, the index 
crosses the invisible boundary be- 
tween limit and limit-1 (in either direc- 
tion, then the loop terminates. Else, 
you branch back for another go-round. 

What’s the payoff for all this confu- 
sion? For one thing, the new LOOP and 

+LOOP can run much faster than their 
two-step predecessors. For another, 
the same looping word will work for 
signed OR unsigned parameters. It’s 
compatible with all earlier LOOPS 
simultaneously, except in certain rare, 
unsavory cases. 

That quirk: the new LOOPS lack any 
common-sense conception of “less 
thanlgreater than.” If you, mistakenly 
or not, reverse the start and limit 
values, or make them equal, the new 
loop will promenade the long way 
around the 64K number circle. Oh, 
well, that may sometimes be useful. 

The overflow status in most CPUs 
(8080s can fake it) offers an efficient, 
ready-made mechanism for detecting 
our boundary crossings - provided 
the boundary is always 32, 767.5. The 
trick, then, is to make DO translate its 
limit and starting values from “true” 
external form to an adjusted internal 
form, positioning the loop limit over 
the 32K overflow threshold and add- 
ing an equal offset to the index. This 
is done only once when the loop is 
entered. 

Later, when we hit LOOP or +LOOP, 
we add the increment to the internal 
index and look for an overflow. No 
comparisons are necessary, and LOOP 
can use the “increment memory” in- 
struction found on most processors. 
Fast, simple, and no exceptions. 

Of course, J and I must undo the 
translation by subtracting the offset. 
Thus, we still carry two loop parame- 
ters on the return stack: the adjusted 
internal index, which changes; and 
the translation offset, which remains 
constant. 

Although this looping technique was 
presented just last November at 
Asilomar by Robert Berkey, accep- 
tance has been swift. It has been incor- 
porated into the FORTH-83 Draft 
Standard. 

Now, if it weren’t for LEAVE, the pro- 
posed FORTH-83 DO..LOOP would be 
too-good-to-be-true. The old LEAVE 
mechanism - efficient, utterly 
FORTH-like, and devoid of compile- 
time trickery - simply cannot work 

with the dynamic boundary-crossing 
exit criterion of the new LOOP and 
+LOOP. 

Here’s why: there is no way to zap 
those loop parameters on the return 
stack to guarantee an overflow for 
every possible increment +LOOP might 
throw at us. For plain LOOP, it’s easy; 
but in the general case, it’s impossible. 

Two currenlty proposed solutions 
both require a drastic change in 
LEAVE’S function: It must discard the 
loop parameters and jump straight- 
away to the end of the looping struc- 
ture. It sounds rather nice; LEAVE 
would actually leave, instead of fool- 
ing LOOP I + LOOP into wrapping things 
up. How comfortable and easy to 
teach! As orthodox as Pascal and apple 
pie. 

Never mind an historical disconti- 
nuity impeaching every FORTH pro- 
gram ever written; only a very few 
occurrences of LEAVE will actually 
require a change in coding. You’ll 
find them as you go along. Concen- 
trate instead on how LEAVE will know 
where to jump. These are the two 
approaches: 

In one, LEAVE is IMMEDIATE. It com- 
piles (LEAVE) and leaves space for a 
branch address which is filled in by 
LOOP or +LOOP, much the way WHILE 
compiles OBRANCH and allots a dis- 
placement later resolved by REPEAT. Of 
course, we’ll want to allow multiple 
LEAVE’S - or none at all - within a 
given LOOP structure. So, LOOP and 
+LOOP must be coded to handle this, 
possibly sharing their backfilling 
routine with REPEAT and UNTIL. It’s 
complicated, and it costs you extra 
memory every time you code LEAVE - 
but at least there’s no speed penalty at 
run-time. 

The other technique keeps LEAVE 
non-IMMEDIATE, as required by 
FORTH-83 Working Draft ‘A.’ The 
requisite jump address is available as 
a third parameter on the return (loop) 
stack - not in-line as above. It is the 
duty of DO - (DO) actually - to set up 
that pointer at the same time it com- 
putes the translation offset and inter- 

FORTH Dimensions 25 Volume IV, No 3 



nal index. How does (DO) know what 
forward jump address to push? A 
single in-line displacement, reserved 
by DO and resolved by LOOP or +LOOP. 
There’s a little more execution-time 
overhead here than above, but only 
within (DO), which does its thing just 
once at the loop’s beginning. Perhaps 
more significant is the second 
method’s appetite for return stack 
space: six bytes per nesting level. 

Folks could argue for weeks over 
which of these approaches is better; 
it’s quite an entertaining web of 
tradeoffs. A Standard specifying an 
IMMEDIATE LEAVE could allow either 
implementation to comply, imposing 
a mere few extra dictionary bytes 

IATE ) on implementors who prefer the 
second way. 

But this is still profoundly incompat- 
ible with the way LEAVE has worked in 
fig-FORTH, polyFORTH, FORTH-79, 
and others. So I’m fueling the debate 
by presenting a completely different 
solution. 

Remember the reason for messing 
up LEAVE in the first place; there was 
no setting of those two 16-bit loop 
parameters which would deliver the 
“call it quits” message to LOOP and 
+LOOP in all conceivable cases. 

We’d have to split LEAVE into two 
words: +LEAVE, which would work 
when the increment was known > 0; 
and -LEAVE, which would handle all 
negative increments. In addition to be- 
ing even less compatible with existing 
code than the immediate LEAVE, it 
makes life miserable for programmers 
who enjoy switching increment signs 
within their +LOOPS. Anyway, neither 
+LEAVE nor -LEAVE would leave cor- 
rectly for 0 +LOOP. 

These same disadvantages prevail if 
we ban the word LEAVE and replace it 
with some kind of CHANGE-LOOP- 
LIMIT word. Ugh. 

MY PROPOSAL, in its general form, 
is to keep an extra piece of informa- 
tion on the return (or loop) stack: a 
LEAVE flag. This flag would be initial- 
ized by (DO), set by LEAVE, and tested 
by (+LOOP) 

There is one quite elegant way to do 
this, which I’ll present at FORML 
Asilomar this Fall. A discussion of 

( : LEAVE COMPILE LEAVE ; IMMEDI- 

standards, however, should avoid 
concentrating on any one person’s 
implementation. The individual imple- 
mentor of a standard system must 
have the freedom to use the peculiar- 
ities of hislher CPUlenvironment to 
best advantage. 

The LEAVE flag needs only one bit, 
but may be padded to byte or cell 
width. For reentrancy’s sake, it must 
reside on the return (or loop) stack, or 
on some stack of its own. Since there 
are no naturally disallowed combina- 
tions of internal index and translation 
offset, the flag cannot be encoded into 
the four bytes already assigned to loop 
parameters. 

Thus, compatibility with old LEAVE 
costs us another byte or two on the 
return stack for each level of nesting 
(unless you use ROR, ROL, and TST 
instructions to implement a dedicated 
one-bit-wide LEAVE flag stack some- 
where). On the other hand, dictionary 
space requirements are eased com- 
pared to the jumping LEAVES described 
earlier. User programs are smaller 
because no forward-branch displace- 
ments are embedded in the code - 
and the system is smaller ’cause it 
doesn’t need complicated IMMEDIATE 
words to mark and resolve them. 

If you count clock cycles, loops 
using LEAVE flags run slower than 
equivalent ones running with im- 
mediate LEAVE. While I can’t deny that 
a microsecond saved is a microsecond 
earned, I’ll show the price of com- 
patibility with old LEAVE to be minimal. 

Here’s the real issue: assume you’ve 
got a DO LOOP (or loops) which runs too 
slow. How often will converting that 
loop from a LEAVE-flag implementation 
to an immediate LEAVE version give 
you the improvement you need? Next 
to never, I’d say. Using a faster CPU, 
going to DTC, or putting NEXT in-line 
after each system CODE definition 
would return more on your invest- 
ment. Anyway, if your loop is so tight 
and critical that the time eaten by 
(LOOP) or (+LOOP) bothers you, it’s pro- 
bably worth translating into native 
machine code. 

(From this point of view, the new 
DO..LOOP is more valuable for its dual 
signedlunsigned capability than for its 
questionable performance increase.) 

Let’s compare LEAVE-flag loops ver- 
sus immediate LEAVE loops in more 
detail: 

(DO) executes only once to initialize 
the loop. The added overhead of 
pushing a LEAVE flag can be ignored. 

LEAVE is rarely used, almost never 
more than once within a given loop. 
If we complicate it, nobody will 
notice. 

(LOOP) stands to suffer the most from 
testing an extra flag. However, if we 
put some extra functions into LEAVE, 
we can eliminate any need for (LOOP) 
to inspect that flag. In addition to set- 
ting the flag, LEAVE must set the inter- 
nal index to 32,767 (65,535 on 8080s), 
and adjust the translation offset so that 
I remains correct. Do this, and (LOOP) 
can be coded exactly the same as in 
immediate-LEAVE implementations. 

1 and J will run equally fast in both 
systems. A LEAVE flag, if present, is 
irrelevant except perhaps in determin- 
ing return stack offsets for J. 

It is (+LOOP) which bears the main 
impact of the LEAVE flag, testing it 
every time. Even here, however, the 
net effect is practically nil. For exam- 
ple, the overall degradation of the 
unusually tight loop “DO I DUP ! 2 
+LOOP” is less than 6%. (This calcula- 
tion is for my 6809 DTC FORTH, but 
other CPUs should fall in the same 
neighborhood.) 

I want boundary-crossing loops. For 
my personal taste, the complexity and 
incompatibility of a direct, jumping 
LEAVE are intolerable. Although 
flagged LEAVE can never match the old 
LEAVE for simplicity and speed, it is 
something I can live with. 

The existing LEAVE usage can work 
with the new DO..LOOP. We don’t have 
to adopt a direct-jumping LEAVE in 
order to reap the benefits of boundary- 
crossing loop termination. If the im- 
mediate LEAVE is to become standard, 
let it do so strictly on the basis of its 
own merits. I sez it LEAVES much to 
be desired. 

But which LEAVE do you prefer? 
Make up your mind, ’cause there’s not 
enough room in the standard for both 
compatible and jumping versions. 

Hey: Does the PascallFORTRANl 
COBOLlAda crowd ever have argu- 
ments over this kind of stuff? 

Volume IV. No. 3 FORTH Dimensions 26 



i 

INTRODUCING P-FORTH PUTTING P-FORTH TO WORK SOFTWARE 

The PFORTH Card is the key 
member in a family of control 
systems cards offered by the 
innovators a t  Peopleware 
Systems, Inc. P-FORTH has four 
major advantages: 

1. It is a versatile building block. 
The simple addition of a 
power supp~y and terminal 

low cost development system 
as well as a target system. 

interactive language allows for 
fast software development. 

makes the P-FORTH card both a 

2. An integrated high-level 

3. ADDlication DroQrams are 

users interactively develop 
applications through a combi- 
nation of hardware and software. 
These applications are automatic- 
ally programmed into non- 
volatile memory (EEROM). When 
the applications are proven and 
functioning, a single switch 
transforms the system from the 
developmental mode into the 
target system. 

stored automatically in non- 
volatile memory. p E ~ p ~ c w n ~ e  JYJT~MJ INC. 

5190 west 76th st. 
Mpls., MN 55435 USA 4. The STD BUS interface allows 

the use of a variety of existing 
peripheral cards. (612)831-0827 TWX 910-576-1735 

An interactive high-level 
language following the 

A monitor for system checkout 
"FORTH-type" screen editor for 
developing application 
programs 
A "FORTH-type" assembler for 
writing assembly language 
routines 
High-level interrupt-linkage 
High-level communications 

fig-FORTH model 

protocol for down loading from 
a host system. 

HARDWARE 

6801 microprocessor 
6K EEROM 
8K FORTH firmware 
2K RAM 
STD BUS interface 
RS232 serial I /O 
16 TTL I /O  lines 
Programmable timer 

CROSS-COMPILE 
FORTH ON 
APPLE OR 

ATARP 
The 6502 version of Nautilus Systems Cross-com- 
piler is now available on Apple and Atari. The 6502 
target may also be generated on any other host we 
support. The Nautilus Cross-compiler has been 
used on every major 8 and 16 bit micro computer. 

APPLE or ATARI version $300.00 

6502 target for existing users $100.00 
(plus $5.00 shipping & tax where applicable) 

IBM PC and CP/M 86 versions 
available from LABORATORY 
MICROSYSTEMS. 
79.Standard versions are avail- 
able from MOUNTAIN VIEW 
PRESS. 

Nautilus Systems 
P 0 BOX 1098 SANTA CRUZ, CA 95061 

Apple is a trademark of Apple Computer. Inc Atan isalrademarkol Alarl Computer 
CPlM IS a lrademark of Digital Research IBM PC IS a trademark of IBM InC 

FORTH Dimensions 27 Volume IV, No. 3 



A Techniques Tutorial 

Defining Words 111 

Henry Laxen 

Fig. 1 
Regular Tree Structure 

Root 

This is the third and final chapter in 
my series on Defining Words. In the 
first episode, we saw how to use defin- 
ing words to define a simple “Adven- 
ture’’ like interaction. It illustrated 
how defining words are used in most 
real world examples. In the second 
episode we saw how to create a defin- 
ing word that can define other defin- 
ing words. Unfortunately, this was 
only done for 2 levels. This time we 
will take a look at the ultimate gener- 
ality, namely iterated defining words. 
When you read and understand this 
example, you can consider yourself a 
black belt defining words champion. 
I must admit that I have never actually 
used a construct like this in a real 
world application, however I think it 
is a very good exercise in mental gym- 
nastics and the effort put into under- 
standing this will be repaid a hundred 

When you read and under- 
stand this example, you can 
consider yourself a black belt 
defining words champion. 
times over in the many simpler exam- 
ples that you will encounter in your 
FORTH career. 

The problem I pose is the following, 
implement a Tree structure with defin- 
ing words such that each node in the 
tree is a word and when it is executed 
it defines its children. The original 
defining word will define the root of 
the tree. You will have to reread that 
3 times at least. Before we descend to 
FORTH code, let’s look at some pic- 
tures. In Fig. 1 we see what we ordi- 
narily think of as a tree (inorganic). We 
have a root with 3 children. The left- 
most child has 2 children of its own, 
while the rightmost child of the root 
has 4 children. This is the kind of tree 
picture you see in many textbooks, 
including Knuth, etc. However do not 
be lulled into thinking that this is the 

only way trees can be drawn. Let me 
point out some of its disadvantages. It 
seems that each parent may have an 
arbitrary number of children. Unless 
you have some kind of slick dynamic 
storage allocation handy, this can be 
a real pain. Furthermore, with this 
kind of structure it is very difficult to 
answer a question like, Who is my sibl- 
ing? (I don’t want to be sexist and say 
sister.) 

Figure 2 shows the same tree, but 
with a different representation. In- 
stead of each node having an arbitrary 
number of points, namely to each of 
its children, we make each node con- 
tain exactly two pointers. One to its 
next sibling, and one to its first child. 
Note that as in Fig. 1, the leftmost 
child of the root has 2 children of its 
own, and the rightmost child of the 
root has 4 children. This structure also 
has some disadvantages. We can no 
Ionger answer the question: Who is the 
nth son of a node, as quickly as we 
could with the structure in Fig. 1, for 
now we must search through a linked 
list to find the answer. However now 
we no longer need a dynamic storage 
allocator, and we can quickly find the 
next sibling of a particular node. Life 
is full of tradeoffs. We will use the 
representation described in Fig. 2 for 
our solution. 

Now let’s try to figure out in English 
what this beast is supposed to do. 
Starting at the top, the thing that 
defines the root should set up the root 
word so that it has no siblings and no 
children. Put another way, we want to 
create a defining word, called ROOT, 
which initializes 2 pointers to empty. 
That much is trivial. The FORTH code 

for it is simply: 
: ROOT CREATE 0 ,  (Siblings) 

0 , (Children) 
Thus we have specified the compile 
time behavior of the word ROOT. Now 
we want to take a look at the run time. 
behavior of the word defined by ROOT. 
Suppose we said ROOT COLOR. What is 
it we want COLOR to do if we said 
COLOR RED? Well, we want COLOR to 
CREATE the word RED and then to link 
it somehow into the child field of col- 
or. Furthermore, we want to initialize 
RED to have no children of its own. 
Before we do this, let’s take a look at 
Fig. 3 which describes the action of 
LINK. It is given an address and it 
inserts a new link into a linked list 
after that address. Convince yourself 
that the code in Fig. 3 performs the 
task depicted. This is the same LINK 

Fig. 2 
Different Tree Structure 

i””’ 

Note the trees in Fig. 1 and Fig. 2 are 
equivalent. 

word we used in Defining Words I1 - 
the CLASS example. Now then, armed 
with LINK, let’s continue our definition 
of ROOT by specifying the run time 
behavior of its member word, namely 
COLOR. 
: ROOT 

CREATE 0 , (Siblings) 

DOES > 
0 , (Children) 

CREATE (name of child) 
2 +  LINK 

0 ,  
(into Children field of Parent) 

(Initialize my own Children field) 

Volume IV, No. 3 FORTH Dimensions 28 



Fig. 3 

: LINK ( addr -- ) 
Action of LINK 
Address A1 
Contents A2 

HERE OVER GZI , SWAP I ; 

A2 LINK 
Address A1 /A2 
Contents A2 HERE 

Fig. 4 

Scr 0 27 
0 \ D e f ~ n i i i q  word for T r e e s  
1 : L I N K  ( S  addr -- ) 
2 HERE OVER 0 , SWAP ; 
3 : ROOT 
4 CREATE 0 , ( Siblings ) 0 , ( Children ) 
5 BEGIN 
6 DOES, CREATE 2+ L I N K  ( Siblings ) 0 , 
7 AGAJN ; 
8 
9 

10 
11 
12 
13 
14 
15 

Fig. 5 

Scr I) ’.% 
0 D i s p l a y  T r e e  in INORDER Sequence 
1 : MYSELF (S -- 
2 LATEST PFA C F a  . ; IMMEDIATE 
3 VARIABLE INDENT 
4 .NAME (S  PFA -- ) 
5 CR INDENT 3 SPACES NFA I D .  ; 
6 : INORDEH ( S  PFA -- ) 

7 BEGIN 0 DUP WHILE DUP .N&ME 
8 3 INDENT + ’  DUP 2+ MYSELF -3 INDENT +!  
9 REPEAT DROP ; 

10 : .TREE (S -- ) 

11 CR 0 INDENT I ’ DUP .NAME CR 2+ INORDER $ 
12 
13 
14 
is 

Fig. 8 

S c r  X 29 
0 \ Sample T r e e  definition 
1 ROOT POET 

Let’s take a close look at this. After 
ROOT COLOR, we have defined the word 
COLOR and set the contents of its PFA 
and PFA + 2 to 0. The contents of the 
PFA points to the next sibling, and the 
contents of the PFA + 2 point to the 
first child. Now when COLOR RED is 
executed, the first thing that happens 
is that DOES > supplies us the address 
of the PFA of COLOR on the parameter 
stack. That’s what DOES> does, 
remember? Next we execute the word 

- HERE - A3 

2 
3 
4 
5 
6 
7 
8 
9 

1 (3 

11 
12 
13 
14 
15 
OK: 

POET KEATS POET SHELLEY POET BYRON POET MILTON 
KEATS ENDYMION KEATS NIOHTINaALE KEATS HYPERION 
SHELLEY ALfiSTOR SHELLEY ADONAIS SHELLEY PROMETHEUS 
BYRON CHILDE-HAROLD BYRON MANFRED BYRON DON-JUM 
MILTON PARADISE-LOST MILTON LYCIDAS MILTON ALLEGRO 
ENDYMION GOOD NIGHTINGALE GREAT HYPERION OKAY 
ALASTOR GOOD ClDONAIS GREAT PROMETHEUS GOOD 
CHILDE-HAROLD OKAY MANFRED GOOD DON-JUAN GREAT 
FARADISE-LOST OUTSTANDING LYCIDAS OUTSTANDING ALLEGRO GREAT 
( E v e r y o n e ’ s  a critic ) 

CREATE, which will scan the input 
stream and make a dictionary entry 
for the word RED. We still have the 
PFA of COLOR on the stack. The 2 +  
increments it so that now it is pointing 
at the Children field in COLOR, i.e., 
PFA i 2. We link our own PFA into 
this field. Why is it our PFA that we 
are linking? Well, CREATE makes a dic- 
tionary entry for us, up to and includ- 
ing the code field, but it did not do 
anything to the parameter field. Thus 
when LINK is executing, the PFA of 
RED equals HERE, which is what LINK 
will link into the list. Thus after the 2+  
LINK executes, the child field of COLOR 
will have a pointer to the PFA of RED, 
and the sibling field of RED will have 
the former contents of the child field 

Next, we execute the 0 ,  which 
simply initializes the child field of RED 
to null. Now let’s take a look at what 
happens if we said COLOR WHITE. Pretty 
much the same thing actually, except 
some of the pointers have changed. 
CREATE would make a dictionary entry 
for WHITE, and the 2+  LINK code would 
insert WHITE into the child field of 
COLOR. But now, the child field of 
COLOR contains a pointer to the sibling 
field of RED, after all that is what RED 
put there. Thus COLOR will point to the 
sibling field (PFA) of WHITE, which will 
point to the sibling field (PFA) of RED 

~SJULBZHHL 

( Chi Idre,, ) 

ZSJULBZHHL of color, namely 0. 

25JUL82HHL 

which points to 0. We have succeeded 
in making RED and WHITE children of 
COLOR and siblings of each other. 
Notice that the entries in the tree are 
in reverse order from how they are 
defined. Tough. 

Pretty slick so far eh? There is only 
one problem, and that is that it only 
works for one level. We can use COLOR 
to define a bunch of colors, such as 

Volume IV, No. 3 29 FORTH Dimensions 



RED WHITE and BLUE, but the buck stops 
there. When RED executes, nothing 
much will happen. (Exercise: What 
exactly would happen if we executed 
RED with the above definition?) 

Well, let’s see what we want RED to 
do when executed. Suppose we said 
RED ROSE. We would like to add ROSE 
to the dictionary and link it into the 
child field of RED. Isn’t that exactly 
what we wanted COLOR to do? Of 
course it is, so what we would really 
like is to have all subsequent words 
behave exactly the same. What we 
want is a (perish the thought) GOT0 
before the ; to go back to just before 
the DOES > . Well for all you structured 
programming fans who thought that 
FORTH doesn’t have a GOT0 take a 
look at the screen in Fig 4. It doesn’t 
have one, but it does. There isn’t really 
any looping going on here, I am 
simply using the AGAIN to jump to the 
BEGIN before the DOES > . Now all of the 
many descendants of the word 
originally defined by ROOT will behave 
exactly the same, and we can build a 

Fig. 7 
POET 

MILTON 
ALL E G R 0 

LYCIDAS 
GREAT 

OUTSTANDING 

OUTSTANDING 
PARADISE-LOST 

BYRON 
DON- JUAN 

GREAT 
MANFRED 

GOOD 
CHILDE-HAROLD 

OKAY 

PROMETHEUS 
GOOD 

ADONA I S 
GREAT 

ALASTOH 
GOOD 

SHELLEY 

EEATS 
HYPER I ON 

OKAY 
NIGHTINGALE 

GREAT 
ENDYM I ON 

GOOD 

OK 

completely arbitrary TREE. 
In Fig. 5 we have some code that will 

print out the tree in indented form. 
Fig. 6 contains a sample Tree defini- 
tion, and finally Fig. 7 shows the result 
of printing out the Tree defined in Fig. 
6 with the code in Fig. 5. I will not 
explain how and why the code in Fig. 
5 works, since in the next issue I will 
talk about Recursion in FORTH, and 
it is a pre-requisite for understanding 
how INORDER works. 

One final note. The code presented 
will work with either FORTH-79 
systems or systems compatible with 
Starting FORTH. It will not work as 
written with fig-FORTH. Feel free to 
enter it and try it out. Dumping the 
dictionary at  various points and chas- 
ing down the pointers by hand will be 
very illuminating. Best of luck until 
next time, and until then, may the 
FORTH be with you. 0 

Henry Laxen is a independant FORTH 
consultant. 

1 proFORTH COMPILER 
8080/8085,280 VERSIONS 

SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS 
INTERACTIVELY TEST HEADERLESS CODE 

MULTIPLE, PURGABLE DICTIONARIES 
IN-PLACE COMPILATION OF ROMABLE TARGET CODE 

FORTH-79 SUPERSET 
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $2250 

2 MICROPROCESSOR-BASED PRODUCT DESIGN 
SOFTWARE ENGINEERING 

ELECTRONICS AND PRINTED CIRCUIT DESIGN 
PROTOTYPE FABRICATION AND TEST 
REAL-TIME ASSEMBLY LANGUAGE/proFORTH 
MULTITASKING 
DIVERSIFIED STAFF 

DESIGN STUDIES - COST ANALYSIS 

- 
Volume IV, No. 3 FORTH Dimensions 30 



lechnotes 
INPUT COMMANDS AS 

TEXT LITERALS 
H.E.R. Wijnands 
Rijswijk, Holland 

Here is a technique for literal com- 
pilation to defer commands in the 
input-stream. Suppose we made a 
definition that operates on a string in 
the input stream. For instance, a file 
system command FLlST which should 
be followed by a file name. The com- 
mand FLIST gets the string, stores it in 
a buffer and searches in the file direc- 
tory for a match, etc. The command 
FLlST is compilable but it always ex- 
pects its operand in the input-stream 
on execution. Sometimes this is un- 
wanted and we wish to execute on a 
operand inserted during compilation. 
Example: : HELP FLlST Helpfilename ; 
Execution of HELP is meant to give a 
listing of a helpfile. 

The new word COMLIT which I 
derived from compile literal does the 
trick. COMLIT compiles the sequence of 
characters as literals until it encoun- 
ters the quotation mark. At run time 
it executes this sequence. 

The problem above is solved as: 
: HELP COMLIT FLlST Helpfilename” ; 
Another example of delayed execution 
(notice its order): 
: TEST .” testing ” 

: TEST1 .” one ” ; 
: TEST2 .” and two” ; 
Although TEST1 and TEST2 are not yet 
in the vocabulary, TEST will be com- 
piled. Executing TEST after compila- 
tion of TEST1 and TEST2 gives: 
TEST 
testing one and two. 
OK 
(Source of COMLIT is shown in Figure 
1 .) 

To leave arguments on the stack for 
further processing after the delayed 
execution, only the return stack is 
used by COMLIT. 

Operation of COMLIT is quite simple. 
During compilation it uses .” to store 
the string in the parameter (.”) which 
normally prints the string at run time. 
This is not our aim since we want to 
execute it. For this reason (COMLIT) is 

I 

COMLIT TEST1 TESTZ” CR ; 

compiled before (.”). At run time (COM- 
LIT) jumps over (.”) diverts the input- 
stream to the string, interprets its con- 
tents and finally restores the input- 
stream vector. 

Purists who dislike the uselessness 
of (.”) in the object, can employ the 
routine part on screen 1 which stores 
the string. Care should be taken 
because some FORTH implementa- 
tions increment the return stack 
before returning, some after returning 
from subroutine. 

COMLIT is perhaps the counterpart of 
DIRECT. DIRECT directly executes the 
string following it, as if it were a 
definition. This allows direct use of 
non-direct words like the control 
structures IF, DO, etc. 
Example: 
DIRECT 20 10 DO I LIST LOOP ; 
The idea of DIRECT is not mine, but the 
source on below 102 is. 

This looks useful. I would suggest look- 
ing at how .” is defined and creating a 

similar word, rather than wasting two 
bytes in each definition. The name COM- 
LIT strikes me as inadequately meliflu- 
ous. Perhaps something like COMPILE” 
would be better. DIRECT is very similar 
to  Bill Ragsdale’s word ::, except that 
DIRECT compiles the temporary code in 
TIB, while :: compiles it at HERE. 

-Michael Perry 

EXPONENTIATION 
George Lyons 

jersey City, New Jersey 
Below (Figure 2) is a possible defini- 

tion for interger exponentiation, using 
repeated squaring of the argument, to 
reduce the number of multiplications. 

This does indeed run faster than its sim- 
pler DO . . . LOOP equivalent. Although 
the 16-bit result will overflow for all but 
the smallest exponents, single-length 
math lets the heart of the technique 
show through. Thus its extension to 
higher precision or floating point is 
readily apparent. --Klaxon Suralis 

Figure 1 
0 ( COMPLETE SOURCE OF DIRECT FIND COPKIT ) 

1 
2 FORTH DEFINITIONS HEX 

4 : (COMLIT) R> IN a >R >R R 3 + TIE a - I” >R IN ! 
5 INTERPRET IN a R >  - 5 + R> + R> IN ! >R i 
6 
7 : COMLIT 
8 ?COMP COMPILE (COMLLIT) ‘ _ ‘ I  CFA EXECUTE 0 , ; IMMEDIATE 
9 
10 : DIRECT ?EXEC DP a TIE a 40 + DP ! !C9p 3 INTERPRET 
11 TIB a 40 + >R DP ! SMUDGE : 
12 
13 
14 
15 ;s 

Figure 2 
0 : tl ( x n -- x-to-the-n ) 

1 >R 1 SWAP ( square repeatedly ) 

2 BEGIN ( cumulatr ve prod. , lart  factor 1 
3 R 1 AND ( I. t h  b i t  of n ) 

4 I F  ( apply and preserve factor ) 

5 SWAP OVER t SWCIP THEN 
6 R> 2/ ( next bit of n 1 -DUP 
7 WHILE >R DUP t ( new factor ) 

8 REPEAT DROP ; 
9 

10 ( 2/ must be machine code s h i f t  ) 
11 ( extendable t o  higher precision 
12 and f loa t ing  point x ’ s  ) 

13 
14 
15 

Volume IV, No. 3 FORTH Dimensions 31 



NEW PRODUCT ANNOUNCEMENTS 

ATAFORTH 
The FORTH computer language designed 
for the Atari home computers. ATAFORTH 
was written by Dan Bloomquist. 

The source text for the system is in- 
cluded. Everything from the compiler core 
up can be stripped off and be recompiled 
in less than one minute. This will allow you 
to modify or dedicate the system a+ will. 
Then the new system can be saved as the 
boot system. 

There is a files utility that allows you to 
“take” sectors from the Atari Disk File 
Manager, which then sees them as if in use. 
You can then read and write data directly 
to these sectors. The directory is bypassed. 
The utility draws a sector map in graphics, 
using different colors to show the status of 
each sector. 

Our user’s manual is tutorial with numer- 
ous examples and is designed for the begin- 
ner. All the standard FORTH words have 
been used so there is no relearning. You 
work your way from adding numbers on 
the screen to maintaining a mailing list and 
producing graphics. 

Minimum system configuration: Atari 
800/400 with 16K and disk. 

$75.00 for disk and manual. (California 
residents add sales tax.) If interested in a 
cassette version, contact Dan Bloomquist. 

Nova Technology P.O. Box 688 
Clearlake, CA 95422 

(707) 994-4649 994-1332 

SEATTLE COMPUTER 
PRODUCTS 8086 fig-FORTH 
8086 fig-FORTH modified to interface 
FORTH to SCP’s 86-DOS and also com- 
patible with Microsoft MS-DOS and IBM 
PC-DOS, is available to anyone inter- 
ested in learning more about FORTH. 
This version of FORTH is useable (I am 
currently developing some applications 
using it), but is not as complete nor 
as well-documented as a commercial 
product. 

Additional changes to the source align 
definitions so that word pointers can 
always be accessed in one bus cycle, add 
code level array and string primitives, 
and support fetch and store operations 
outside the memory segment occupied 
bv FORTH. 
9 -  

Typical execution times on the IBM 
personal computer are comparable to 6 
MHz 2-80 benchmarks which have been 
published. On the SCP system at 8 MHz, 
execution times are one-half to one- 
quarter the Z-80 times. The Sieve of 
Eratosthenes benchmark (see FD 3:181) 
runs in just under 34 seconds. 

Includes the assembly source, the 
assembled system, and some FORTH 
screens (including the FIG editor and the 
Starting FORTH editor) on disks for any 
of the above systems or in CPM format, 
for $35. 

Joe Smith 
Univ. of PennJDept. of Chemistry 

34th 81 Spruce Streets 
Philadelphia, PA 19104 

(215) 243-4797 

COURSE REVIEW 

Inner Access 
Corporation 
Advanced FORTH 
Systems Class 
6 /’I496 /I 8 / 82 
Reviewed by John Clark 
San Jose, California 

This is a great class! It will be very 
easy to recommend this class to any- 
one requiring a detailed knowledge of 
the internals of FORTH or of the sev- 
ral uses of FORTH covered in this 
class. The small class size was great. 

Leo Brodie is very easy to talk with 
and was always able to understand 
what we were having trouble with. He 
also was able to jump right in and dig 
out how FIG FORTH worked when 
we found out that FIG didn’t work like 
the system he was experienced with. 
His use of the computer to illustrate 
the operations going on inside of 
FORTH while words were being com- 
piled was very easy to follow and 
made it much easier to understand 
FORTH. 

If there were more time, I’d like to 
see more on style, compiler security, 
multitasking, and performance moni- 
oring tools. But if this course had 
everything I wanted, it would take 
more than a week. 

John Clark works for an international 
computer firm with offices in San Jose, 
California. 

Laxen & Harris, Inc. 
Terminate Operations 
Effective immediately, Laxen & Har- 
ris, Inc. is ceasing operations and no 
more classes or services will be offered 
directly by Laxen & Harris, Inc. Our 
instruct ional  disk set  (working 
FORTH and Learning FORTH) will 
continue to be available under license 
through Mountain View Press, P.O. 
Box 4656, Mt. View, CA 94040; (415) 

Both Henry Laxen and Kim Harris 
will remain active in the FORTH com- 
munity and will be offering consulting 
services. If you would like to contact 
them individually you will find them 
listed under Consultants in the 
Vendor’s List of FORTH Dimensions 
magazine. 

961-4103. 

THE 
FORTH 

CAVALRY” 

personalFORTH 
for the IBM PC 
by FORTH Inc. 

Mu1 ti-tasking ,full screen 
editor, floating point 
support, DOS file handler, 
color monitor support, 
turnkey compiler. 

$300 

MU LTI-TASK1 NG 
FORTH 

8’ CPM@ , Northstar & 
Micropolis 

A-FORTH by Shaw Labs, 
Ltd can make your micro 
operate like a mainframe. 
You can be printing, 
sorting, and inter-actively 
inputing data all at the 
same time. Hardware 
permitting, you can even 
have mu1 ti-users operating. 

$395 

FORTH 
TUTORIAL SYSTEM 

by Laxen 81 Harris, Inc. 
Two 8’ CPlM disks with 
documentation and a copy 
of Starting FORTH by 
Brodie. An inexpensive way 
to start learning and 
programming in FORTH. 

$95 

MOUNTAIN VIEW PRESS, INC. 
P.O. Box 4656 

Mountain View, Calif. 94040 
(41 5) 961 -41 03 

FORTH Dimensions 32 Volume IV. No. 3 



I 

THE FOURTH SOURCE'" 

NEW FORTH PRODUCTS 
0 Personal FORTH for the IBM-PC by FORTH Inc. 

Multitasking, full screen editor, floating point support, DOS 
file handler, color monitor support, turnkey compiler. 

0 MULTI-TASKING FORTH CPIM. Northstar & Micropolis. 
A-FORTH by Shaw Labs, Ltd. can operate your micro like 
a mainframe. Print, sort, and inter-activly input, all at the 
same time $395 

0 FORTH TUTORIAL by Laxen & Harris. Two 8' CPlM disks 
with documentation and a copy of "Starting FORTH' by 

$300 

Brodie. The easy way to learn FORTH. $95 
0 "And so FORTH" by Huang. An indepth how-to book 

about FORTH with a 280 implementation. Follows the fig- 
FORTH model. $25 

MORE FORTH DISKS 

FORTH with editor, assembler, and 
Specify disk size! 
0 APPLE 11/11 + by 

MicroMorlon $1 00 
0 APPLE II by Kuntze. $90 
0 ATARP by PNS $90 
0 CP/W by $1 00 

MicroMotion 
0 CROMEMCOm by Inner 

Access $1 00 
0 HP-85 by Lange. $90 
0 lBM-PC@' by Laboratory 

Microsystems $1 00 

manual. *Source provided. 

0 PET@ by FSS $90 

Systems- $90 

Microsystems $1 00 

Microsystems $1 00 

Microsystems $50 

Microsystems $1 00 

0 TRS-8OII" by Nautilus 

0 6800 by Talbot 

0 6809 by Talbot 

0 280 by Laboratory 

0 6088188 by Laboratory 

Enhanced FORTH with: F-Floating Point, G-Graphics, T-Tutorial, 
S-Stand Alone, M-Math Chip Support, X-Other Extras, 79-FORTH-79. 
Specify Disk Size! 
0 APPLE 11/11 + MicroMotion, 0 TRS-8011 or Ill by Miller 

F. G. & 79 $1 40 Microcomputer Services, 
0 CP/M by MicroMotion. F, X, & 79 $1 30 

F & 79 $1 40 0 6600 by Talbot Micro- 
0 H89R89 by Haydon. systems, T & X $250 

T & S  $250 0 280 by Laboratory Micro- 
0 H89lZ89 by Haydon. T $1 75 systems, F & M Each $1 00 

0 PET by FSS, F & X $150 Microsystems' 

0 8086188 by Laboratory 

Each $1 00 

CROSS COMPILERS Allow extending, modifying and compiling for 
speed and memory savings, can also produce ROMable code. *Requires 
FORTH disk. 

F & M  

0 CPlM $200 0 IBM- $300 
0 H89lZ89 $200 0 8086- $300 
0 TRS-8011 $200 0 280. $300 
0 Northstar" $200 0 6809 $350 

0 flg-FORTH Programming Aids for decompiling, callfinding, 
and translating. $1 50 

flg-FORTH Model and Source, with printed Installation Manual and 
Source Listing. 
0 APPLE Ila .5'k 
0 8086188. 8 0 H891289. 5% Each $65 

0 8O8O/Z80@JI 8 

MVP-FORTH - A Public Domain Product 
MVP-FORTH contains a kernal for transportability, the FORTH-79 
Standard Required Word Set, the vocabulary for the instruction book. 
STARTING FORTH, by Brodie. editor, assembler, many useful routines, 
and utilities. 

MVP-FORTH PRODUCTS for CP/M@ IBM-PC@ and Applem 
0 MVP-FORTH Programmer's Kit including disk with 

documentation, ALL ABOUT FORTH, and STARTING 

0 MVP-FORTH Disk with documentation. Assembly source 

0 MVP-FORTH Cross Compiler with MVP-FORTH source in 
FORTH. $300 

0 MVP-FORTH Programming Aids for decompiling, 
callfinding, and translating. $1 50 

$20 
$20 

*MVP-FORTH operates under a variety of CPU's, 
computers, and operating systems. Specify your computer and 
operating system. * * * 
FORTH MANUALS, GUIDES & OOCUMENTS 

FORTH. Assembly source listing versions. 

listing version. $75 

$1 00 

0 MVP-FORTH Assembly Source Printed listing. 
0 ALL ABOUT FORTH bv Haydon. 

0 FORTH Encyclopedia by 0 Starting FORTH by Brcdie. 
Best instructional manual Derick & Baker. A complete 

programmer's manual to fig- available. (soft cover) "1 6 
FORTH with FORTH-79 
references. Flow charted, 
2nd Ed. $25 
1980 FORML Proc. $25 0 METAFORTH by Cassady. 

Cross compiler with 8080 
code $30 

$40 

FORTH $25 
$25 0 Caltech FORTH Manual$l2 

0 Starting FORTH (hard 
cover) $20 

0 I981 FORML Proc. 

0 1981 Rochester Univ. 

0 Using FORTH 

0 Threaded Interpretive 

0 Systems Guide to flg- 2 Vol. 

Proc. 

$25 Invitation to FORTH $20 
A FORTH Primer $25 0 p ~ p - 1 1  FORTH User's 

0 AIM FORTH User's MicroMotion $20 

Manual $20 
Languages $20 0 CPlM User's Manual, 

Manual 

MicroMotion 

MMSFORTH 

$12 0 FORTH-79 Standard $15 
$20 0 FORTH-79 Standard 0 APPLE User's Manual 

Conversion $1 0 
$19 0 Tiny Pascal in 0 TRS-80 User's Manual, 

fig-FORTH $1 0 

0 Installation Manual for fIg-FORTH, contains FORTH 
$1 5 

Source Listings of fig-FORTH, for specific CPU's and computers. The 
Installation Manual is required for implementation. Each $1 5 

model, glossary, memory map and instructions 

0 1802 0 6502 0 6800 0 AlphaMicro 
0 8080 0 8086188 0 9900 0 APPLE II 
0 PACE 0 6809 0 NOVA 0 PDP-111LSI-11 

Ordering Information: Check, Money Order (payable to MOUNTAIN VIEW PRESS, 
INC.), VISA, Mastercard or COD'S accepted. No billing or unpaid PO'S. California 
residents add sales tax. Shipping costs in US included in price. Foreign orders, pay 
in US funds on US bank, include for handling and shipping by Air: $5 for each item 
under $25, $10 for each item between $25 and $99 and $20 for each item over 
$1 00. Minimum order $1 0. All prices and products subject to change or withdrawal 
without notice. Single System andlor single user license agreement required on 
some products. 
DEALER & AUTHOR INQUIRIES INVITED 

MOUNTAIN VIEW PRESS, INC. 
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (41 5) 961 -41 03 

Volume IV, No 4 33 FORTH Dimensions 



Start Your Own FIG Chapter 
Whet is a FIG Chapter 

There are two kinds of FIG chapters: 
local, and special-interest. Local 
chapters are centered in a city or 
region. special-interest chapters may 
be non-geographical; they focus on an 
interest area such as an application 
(e.g., robotics, telecommunication), or 
on FORTH for a particular computer. 

All chapters must provide a contact 
point, and some form of regular 
public access (usually meetings). Non- 
geographical chapters will normally 
provide other forms of access, such as 
a newsletter or telecommunications, 
instead of meetings. 
Why Have a FIG Chapter? 
A chapter lets you share information 
with other FORTH users in your 
geographical or application area. In 
addition, FIG provides several specific 
benefits: 

(A) FIG will list your chapter in 
FORTH Dimensions, so that others can 
find your group. 

(B) FORTH Dimensions will give 
priority to publishing chapter news, 

which can help you make professional 
contacts in the areas of your particular 
interests. 

(C) FIG will occasionally supply 
material, such as meeting handouts or 
tapes, which can serve as a discussion 
topic at local meetings. 

(D) FIG will supply its publications 
at bulk rates; local chapters can sell 
them to raise money, and to provide 
immedite local access to the material. 

(E) Chapters can apply to FIG for 
one-time funding for activities. 
How to Start a FIG Chapter 
To be recognized as a chapter, a group 
must have (1) a contact person, (2) 
regular public access (usually by 
meetings which are open to the 
public), and (3) at least five members 
of FIG. If you don't know five 
members in your area, FIG can help 
you contact them. If you want to start 
a chapter, send a request for a FIG 
Chapter Kit to the Chapter coor- 
dinator, FORTH Interest Group, P.O. 
Box 1105, San Carlos, CA 94070. 

List of FORTH System Vendors 
(e.g., A1 signifies AB Computers, etc.) 

Processors 
1802 ............................. C1, C2, F3, F6, L3 
6502 (AIM, KIM, SYM). R1, R2, s1 
6800 ............................. F3, F5, K1, L3, M6, T1 
6809 ............................. F3, F5, L3, M6, T1 
68000 ........................... C4, E l  
8080185 ........................ A5, C1, C2, F4, 15, L1, L3, M3, 

M6, R 1  
280189 .......................... A3, A5, C2, F4, 13, K1, L1, M2, 

M3, M5, N1 
28000 ........................... I3 
8086188 ........................ F2, F3, L1, L3, M6 
9900 ............................. E2, L3 

Operating Systems 
CPIM ........................... A3, C2, F3, 13, L3, Ml,  M2, M6 

Computers 
Alpha Micro ............... P3, S3 
Apple ........................... A4, F4, 12, 14, Jl, L4, M2, M6, 0 2 ,  

0 3  

FIG 
Chapter 
News 

Potomac Chapter 
At the August 3rd meeting, Joel 

Shprentz described a keyboard and 
display controller written in FORTH. 
Multifield commands are entered on 
a thirteen-key keyboard (10 numeric 
and 3 control keys). As each field is 
entered it is displayed on a 4-digit LED 
display. 

The 24 possible commands require 
different combinations of fields. Most 
languages would force the program- 
mer to write either voluminous code 
or an elaborate table driven system. 
With FORTH the code is simple and 
direct; words controlling individual 
field input are combined in various 
ways to define higher level words 
which control groups of fields and 
entire commands. 

Other Chapters? 
Let's hear from you! 

Atari .............................. M6, P2, Q1 
Cromemco ..................... A5, M6 
DEC PDPILSI-11 ........... C2, F3, K1, L2, S3 
Heath-89 ........................ M6 
Hewlett-Packard 85 ...... 
IBM PC ......................... C2, F3, L1, M5, M6 
IBM Other ..................... L3 
Micropolis ..................... A2, M2, S2 
North Star ..................... 15, M2, PI, S7 
Ohio Scientific .............. A6, B1, C3, 01, s6, T2 
Osborne ......................... 
Pet SWTPC ................... A l ,  A6, B1, C3, 01, S6, TZ, T5 
TRS-80 I, 11, I11 ............. 15, M5, M6, S4, S5 
TRS-80 Color ................. A3, F5, M4, T1 

Other Products/Services 
Boards, Machine .......... F3, M3, R2 
Consultation .................. C2, C4, N 1  
Cross Compilers .......... C2, F3, 13, M6, N1 
Products, Various ......... CZ, F3, 15, S8 
Training ......................... F3, I3 

Volume IV, No. 3 FORTH Dimensions 34 

a 
II 



FORTH Vendors 
The following vendors offer FORTH systems, applications, or consultation. FIG makes no judgement on any product, and takes no respon- 

sibility for the accuracy of this list. We encourage readers to keep us informed on availability of the products and services listed. Vendors 
may send additions and corrections to the Editor. and must include a copy of sales literature or advertising. 

FORTH Systems 
A 

1. AB Com uters 
252 Bethrehem Pike 
Colmar, PA 18915 
2151822-7727 

17453 Via Valencia 
San Lorenzo, CA 94580 
415/276-6050 

P.O. Box 726 
Clinton, TN 37716 

4. Applied Anal tics Inc 
8910 Brookridrge Drive, #300 
Upper Marlboro. MD 20870 

5. Aristotelian Logicians 
2631 East Pinchot Avenue 
Phoenix, AZ 85016 

6. Aurora Software Associates 

2. Acropolis 

3. Advanced Technology Corp. 

3.  On-Going Ideas 
RD #1, Box 810 
Starksboro, VT 05487 
602/453-4442 

P 
1. Perkel Software Systems 

1636 N. Sherman 
Springfield, MO 65803 

Boards 6 Machines Only 
see System Vendor Chart for others 
Controlex Corp. 
16005 Sherman Way 
Van Nuys, CA 91406 
2131780-8877 

I 

1. IDPC Company 
P.O. Box 11594 
Philadelphia, PA 19116 
215/676-3235 

2. IUS (Cap’n Software) 
261 Arlington Avenue 
Berkeley, CA 94704 
415/525-9452 

3. Inner Access 
517K Marine View 
Belmont, CA 94002 
4151591-8295 

Datricon 
7911 NE 33rd Drive, #ZOO 
Portland, OR 97211 

. -  

2. Pink Noise Studios 
P.O. Box 785 
Crockett. CA 94525 

503/284-8277 
Golden River Corp. 
7315 Reddfield Court 
Falls Church, CA 22043 

415/787-1534 
3. Professional Management 

4. Insoft 
10175 S.W. Barbur Blvd., #202B 
Portland. OR 97219 

Peopleware Systems Inc. 
5190 West 76th Street 
Minneapolis, MN 55435 
612/831-0872 
Zendex Corp. 
6398 Dougherty Road 
Dublin. CA 94566 

- 
Services 

724 Arastradero Road, #lo9 
Palo Alto. CA 94306 

5031244-4181 
5. Interactive Computer 

Systems, Inc. 
6403 Di Marco Road 
Tampa, FL 33614 

J 

1. JPS Microsystems, Inc. 
361 Steelcase Road, West, Unit 1 
Markham, Ontario, 
Canada L3R 3V8 
416/475-2383 

L 
1. Laborator Microsystems 

4147 Beetgoven Street 
Los Angeles, CA 90066 
213/306-7412 

2. Laboratorv Software 

4081252-2218 
Q 

1. Quality Software 
6660 Reseda Boulevard, # lo5  
Reseda, CA 91335 

R 
1. Rehnke, Eric C. 

540 S. Ranch View Circle, #61 
Anaheim Hills, CA 92087 

Microelectronics Devices 
P.O. Box 3669 
Anaheim, CA 92803 
714/632-2862 

2. Rockwell International 

5 
1. Saturn Software, Ltd. 

P.O. Box 397 
New Westminister. BC 
V3L 4Y7 Canada 

2. Shaw Labs, Ltd. 
P.O. Box 3471 
Hayward, CA 94540 
415/276-6050 

3. Sierra Computer Co. 
617 Mark NE 
Albuquerque, NM 87123 

4. Sirius S stems 
7528 O a i  Ridge Highway 
Knoxville, TN 37921 

5. Software Farm, The 
P.O. Box 2304 
Reston, VA 22090 

6. Software Federation 
44 University Drive 
Arlington Heights, IL 60004 

61516934583 

312/259-1355 
7. Software Works, The 

1032 Elwell Court, #210 
Palo Alto, CA 94303 

8. Supersoft Associates 
P.O. Box 1628 
Champaign, IL 61820 

415/960-1800 

2 17/3 59-2 112 
T 

P.O. Box 99553 
Cleveland, OH 44199 Application Packages Only 

see System Vendor Chart for others 
R.E. Curry & Associates 
P.O. Box 11428 
Palo Alto, CA 94306 
Decision Resources Corp. 
28203 Ridgefern Court 
Rancho Palo Verde, CA 90274 
213/377-3533 
InnoS s 
2150 $hattuck Avenue 
Berkeley, CA 94704 
4151843-8114 

e 
1. Blue Sky Products 

729 E. Willow 
Signal Hill, CA 90806 

C 

1. CMOSOFT 
P.O. Box 44037 
Sylmar, CA 91342 

2. COMSOL, Ltd. 
Treway House 
Hanworth Lane 
Chertse , Surrey KT16 9LA 
Englandl 

3. Consumer Computers 
8907 La Mesa Boulevard 
La Mesa, CA 92041 
714/698-8088 

4. Creative Solutions, Inc 
4801 Randolph Road 
Rockville, MD 20852 

D 

1. Datentec Kukulies 
Heinrichsallee 35 
Aachen, 5100 
West Germany 

E 

Systems, inc. 
3634 Mandeville Canyon Road 
Los A n d e s .  CA 90049 

Consultation 6 Training Only 
see System Vendor Chart for others 
Boulton, Dave 
581 Oakridge Drive 
Redwood City, CA 94062 
Brodie, Leo 
9720 Baden Avenue 
Chatsworth, CA 91311 

Girton, George 
1753 Franklin 
Santa Monica, CA 90404 
213/829-1074 
Go FORTH 
504 Lakemead Way 
Redwood City, CA 94062 

Harris, Kim R. 
Forthright Enterprises 
P.O. Box 50911 
Palo Alto, CA 94303 
4151858-0933 
Laxen, Henry H. 
1259 Cornell Avenue 
Berkeley, CA 94706 

Petri, Martin B. 
15508 Lull Street 
Van Nuys, CA 91406 

Redding Co. 
P.O. Box 498 
Georgetown, CT 06829 

Dr. Walter Schrenk 
Postfach 904 
7500 Krlsruhe-41 
W. Germany 
Software Engineering 
317 W. 39th Terrace 
Kansas City, MO 64111 
816/531-5950 

213/998-8302 

415/366-6124 

415/525-8582 

213/908-0160 

203/938-9381 

213/472%995 

3301 Ocean Park, #301 
Santa Monica, CA 90405 
2131450-2466 

4. Lyons, George 
280 Henderson Street 
Jersey City, NJ 07302 
201/451-2905 

3. Lynx 

M 

1. M & B Design 
820 Sweetbay Drive 
Sunnyvale, CA 94086 

12077 Wilshire Boulevard, #506 
Los Angeles, CA 90025 
213/821-4340 

2. MicroMotion 1. Emperical Research Group 
P.O. Box 1176 
Milton. WA 98354 
206/631-4855 

2. Engineering Logic 
1252 13th Avenue 
Sacramento, CA 95822 

F 

1. Fantasia Systems, Inc. 
1059 Alameda De Las Pulgas 
Belmont, CA 94002 
415/593-5700 

5227 Highland Road 
Minnetonka, MN 55343 

2.  Fillmore Systems 

3. Microsystems, Inc. 
2500 E. Foothill Boulevard, # l o 2  
Pasadena. CA 91107 
213/577-1417 

4. Micro Works. The 
P.O. Box 1110 
Del Mar, CA 92014 
714/942-2400 

5. Miller Microcomputer Services 
61 Lake Shore Road 
Natick, MA 01760 
617/653-6136 

1. Talbot Microsystems 
1927 Curtis Avenue 
Redondo Beach, CA 90278 

2. Technical Products Co. 
P.O. Box 12983 

3. FORTH, Inc. 
2309 Pacific Coast Highway 
Hermosa Beach. CA 90254 

6. Mountain View Press 
P.O. Box 4656 
Mountain View, CA 94040 
4151961-4103 

N 

1. Nautilus Svstems 

213/372-8493 
4. FORTHWare 

639 Crossridge Terrace 
Orinda, CA 94563 

130 Midtown Plaza 
Syracuse, NY 13210 
315/474-7856 

5. Frank Hogg Laboratory, Inc. 

6. FSS 

Gainsville, FL 32604 

3. Timin Engineering Co. 
6044 Erlanger Street 
San Diego, CA 92122 
714/455-9008 

904/372-8439 

4. Transuortable Software, Inc. 

P.O. Box lb98 
Santa Cruz, CA 95061 
408/475-7461 

0 

1. OSI Software & Hardware 
3336 Avondale Court 
Windsor, Ontario 
Canada N9E 1x6 
519/969-2500 

P.O. Box 1049 
Hightstown, N] 08520 
609/448-4175 P.O. Box 8403 

Austin, TX 78712 
512/477-2207 Technology Management, Inc. 

1520 S. Lyon 
Santa Ana, CA 92705 

z 
1. Zimmer, Tom 

292 Falcato Drive 
Milpitas, CA 95035 2.  Offete Enterprises 

1306 S “B” Street 
San Mateo, CA 94402 

Volume IV, No. 3 FORTH Dimensions 35 



FORTH WTEREST GRWP MAIL ORDER 

0 Membership in FORTH INTEREST GROUP and Volume I V  of 

0 Volume III of FORTH DIMENSIONS (6 issues) 

0 Volume I1 of FORTH DIMENSIONS (6 issues) 

0 Volume I of FORTH DIMENSIONS (6 issues) 

0 f ipFORTH Installation Manual, containing the language model of 
fig-FORTH, a complete glossary, memory map and installation instructions 

0 Assembly Language Source Listing of fig-FORTH for specific CPU's 
and machines. The above manual is required for installation. 
Check appropriate boxes. Pric8 per each. 
0 1802 0 6502 0 6800 0 6809 
0 8080 fl 8086/8088 0 9900 0 APPLE I1 
0 PACE 0 NOVA 0 PDP-11 0 ALPHA MICRO 

0 "Starting FORTH' by Brodie. BEST book on FORTH. (Paperback) 
0 *IStarting FORTH* by Brodie. (Hard Cover) 

0 PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference 

0 PROCEEDINGS 1981 FORTH University of Rochester Conference 

0 PROCEEDINGS 1981 FORML Conference, Both Volumes 

FORTH DIMENSIONS (6 issues) 

0 Volume I, Language Structure 
0 Volume 11, Systems and Applications 

0 FORTH-79 Standard, a publication of the FORTH Standards Team 

0 Kitt Peak Primer, by Stevens. An indepth self-study primer 

0 BYTE Magazine Reprints of FORTH articles, 8/80 to 4/81 
0 FIG T-shirts: 0 Small 0 Medium 0 Large 0 X-Large 
0 Poster, Aug. 1980 BYTE cover, 16 x 22" 
0 FORTH Programmer Reference Card. If ordered separately, send a 

stamped, addressed envelope. 
TOTAL 

FOREIGN 
USA AR 
$15 $27 

15 18 

15 18 

15 18 

15 18 

15 18 

16 20 
20 25 

25 35 

25 35 

40 55 

25 35 
25 35 

1s 18 

25 35 

5 10 
10 12 
3 5 

FREE 

$ 

NAME MAIL STOP/APT 
ORGANIZATION (if company address) 
ADDRESS 
CITY STATE ZIP COUNTRY 
VISA # MASTERCARD # 
EXPIRATION DATE (Minimum of $10.00 on charge cards) 

Make check or money order in U S  Funds on U S  bank, payable to: FIG All  prices include 
postage. No purcham arders without check. California residents add sales tax. 

ORDER PHONE NUMBER: (415) 962-8653 
FORM INTEREST GROW PO BOX 1105 SAN CARLOS, C A  94070 

1 I - 
FORTH INTEREST GROUP 
PO. Box 1105 
San Carlos, CA 94070 

BULK RATE 
U.S. POSTAGE 

PAID 
Permit No. 261 
Mt. View, CA 

Address Correction Requested 


