
ORTI1 DIM
VOLUME IV, NUMBER 2 $2.50

INSIDE:
HARDWARECONTROL

FORTH in the Computer Toolbox Mark Bernstein 6
The FORTH Step; Stepper Motor Control Martin B. Petri & Leo Brodie 12
Handling Interrupts in FORTH Stephen Melvin 17

FEATURES:
Source Screen Documentation Tool , ... Kim Harris.. 23
The Art of Recursion Bob Gotsch 24
A Recursive Decompiler Robert D. Ackerman 28

DEPARTMENTS:
Letters , 3

Standards Corner .. Robert L. Smith 19

A Techniques Tutorial; Defining Words I t Henry Laxen 20

Technotes.. 30

New Products/Reviews ... 32

YWAY DETAIL
C-

N O I 1901 - 32 UNF THREAD
25 16 41 DEEP MIN

3 HOLES EOUALLY SPACED AS

0151 38ICHAMFERMAX

I31 751

K 1 W W lor .4W WOODlUFF K E I
,he” .IIYIMI SHOWNON3000(76ZOlDBC 1 1 HARDWARE CONTROL

2-80@ and 8086 FORTH
FORTH Application Development Systems i ncl ud i ng in terpre ter-com-
piler with virtual memory management, assembler, full screen editor, line
editor, decompiler, demonstration programs, and utilities. Standard random
access disk files used for screen storage. Extensions provided for access
to all operating system functions. 120 page manual.
2-80 FORTH for CP/M@ 2.2 or MP/M $ 50.00
8086 FORTH for CP/M-86.. $100.00
PC/FORTH for lBM@ Personal Computer $1 00.00
Floating point extensions for above systems. Specify software floating
point,AMD9511,AMD9512,orIntel8087support.. .. additional$l00.00
Nautilus Cross Compiler systems allow you to expand or modify the
FORTH nucleus, recompile on a host computer for a different target
computer, generate headerless code, and generate ROMable code with
initialized variables. Supports forward referencing to any word or label.
Produces load map, list of unresolved symbols, and executable image in
RAM or disk file. (Prerequisite: one of the application development
packages above for your host system)
2-80 host: 8080 or 2-80 target.. $200.00
2-80 host: 8080, 2-80, or 8086 target.. $300.00
8086 or PC/FORTH host: 8080, 2-80, or 8086 target.. $300.00
FORTH Programming Aids by Curry Associates. Includes Translator,
Callfinder, Decompiler, and Subroutine Decompiler. 40 page manual.
Used with Cross-Compiler to generate minimum size target applications.
Specify 2-80 or 8086 FORTH screen file or fig-FORTH style

diskette ... $1 50.00
2-80 Machine Tests. Memory, disk, console, and printer tests with all
source code. Specify CP/M 2.2 or CP/M 1.4.. $ 50.00
AMD-9511 arithmetic processor S-1 00 interface board.
Assembled and tested, without AMD 951 1 $200.00
Assembled and tested, with AMD 951 1.. $350.00
PC/FORTH distributed on 5% inch soft sectored double density diskettes.
All other software distributed on eight inch soft sectored single density
diskettes. North Star and Micropolis formats available at extra charge.
Prices include shipping by UPS or first class mail within USA and Canada.
Overseas orders add US $10.00 per package for air mail. California
residents add appropriate sales tax. Purchase orders accepted at our
discretion. No credit card orders.
2-80 is a trademark of Zilog, Inc. IBM is a trademark of International
Business Machines Corp. CP/M is a trademark of Digital Research, Inc.

Laboratory Microsystems
41 47 Beethoven Street
Los Angeles, CA 90066

(21 3) 306-741 2

FORTH Dimensions 2 Volume IV, No. 2

Letters . . .
Making It In Japan

Dear FIG,
According to a recent report of the

Association of Electronic Industry the
popularity of various languages in
Japan for application software devel-
opment is changing as follows:

Assembler 4 1.7% 2 . 0%
BASIC 23.1 6.5
PLlM 18.6 14.1
FORTRAN 10.1 6.5
C 1.5 21.6
COBOL 1.0
FORTH 1 .o 10.6
PASCAL 0.5 32.2
ADA - 5.0
The figure for FORTH seems surpris-
ing considering the lack of integrate
publication about this language in
Japan.

Toshio Inoue
Professor of Mineral Processing

University of Tokyo

Ever experienced Wish to use
or using in future work

-

China News
Dear FIG,

It has been almost six months since
I last reported on our FORTH discus-
sion group at Taipei. It is alive and
well. We are now meeting at the EE
Department in the National Taiwan
University every fourth Saturday from
2 to 5 p.m. Participants vary from 20
to 50. An encouraging sign of the
strength of this group is that people
are bringing programs to be distri-
buted in the meetings.

I am also teaching a course on
FORTH to the EE seniors in the EE
Department of Chung Yuan Christian
University. Its head, Dr. Lo, imple-
mented a ROMmable FORTH on his
ZDS system, which was used to
develop an intensive care unit for local
hospitals. It was a success, I just
learned.

At this moment, we have about 10
FORTH programmers at the profes-
sional level and about 100 enthusiasts.
FORTH literatures have been spread
to more than 1,000 people. About 20
FIG-FORTH systems are in regular
use. FORTH is still far from being a
household name here, but it is known
to most micro hobbyists.

Dr. C. H. Ting
Taipai, Taiwan

6809 Gift
Dear FIG,

I am herewith releasing my
copyright on the 6809 fig-FORTH
source code listing and placing it in
the public domain to be distributed by
the FORTH INTEREST GROUP. You
are hereby authorized to alter the
listing to give the standard FIG nota-
tion that the listing may be copied pro-
vided that due credit always be given
the source.

Raymond J. Talbot, Jr.
Talbot Microsystems
Redondo Beach, CA

Hunting Figheads
Dear FIG,

Enclosed is my check for member-
ship renewal. I would like to compli-
ment you on the quality and economy
of your work and publications.

I have been contacted by a local
head-hunter (employment agency)
who mentioned that he got my name
and telephone listing from a FIG
membership list. I do not know
whether it was a local or global list. I
feel neutral about such a practice
presently, provided the head-hunter
does not persist in an obnoxious man-
ner after being told to cease and desist.
If other FIG members have had similar
experiences, and found them objec-
tionable, some guiding policy on dis-
tributing member lists to head-hunters
vs. to vendors should be discussed.

Larry Pfeffer
Son Diego, California

Here is FIG’s policy on the utilization
of our mailing list. The list is available
for rent, but with two conditions: first,
FIG itself will do the actual mailing, the
renter never actually gets any list.
Second, the material has to be approved
as being appropriate. Of course, anyone
on the list who does not wish to receive
such material can make a written
request to be excluded from the rental
list - our data base has this capability
built in.

As for the incident you described, Roy
Martens does not remember renting
any list to a head-hunter. It’s possible
that someone could get a list of local
members from the local chapter. This
would depend on the local chapter’s
policy. -Editor

VAX
And Ye Shall Receive?

Dear FIG,
We are interested in implementing

FORTH on our VAX 11-780 computer.
I’ve noticed that among the FORTH
vendors there is no reference to the
VAX. There is, of course, the package
distributed by John James for the
PDP-11. We would be able to run this
version in compatibility mode, but a
version that runs in native mode
would have obvious advantages. I
would appreciate your help in locating
such a vendor.

James H. Rapp
C-010 Computer Center

UCSD, La Jolla, California

Nice Work, Chuck
Dear FIG,

I was very impressed with the last
issue of FORTH Dimensions, especi-
ally Michael Perry’s article on Charles
Moore’s BASIC compiler. It took me
quite a while to figure it out, but when
I did, was I ever impressed. It’s one of
the slickest pieces of software I’ve ever
seen. When people ask me “What
makes FORTH so damn good?” I ask
them what languages have they work-
ed with that you can write a BASIC
compiler in just 8 screens? Keep up the
good work.

Marc Perkel
Springfield, Missouri

Letters continued on next page

FORTH Dimensions

Published by FORTH Interest Group
Volume IV, No. 2 JulylAugust 1982

EditoriallProduction
Leo Brodie
Publisher

Roy C. Martens
FORTH Dimensions solicits editorial

material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. Unless noted
otherwise, material published by the
FORTH Interest Group is in the public
domain. Such material may be
reproduced with credit given to the
author and the FORTH Interest Group.

Subscription to FORTH Dimensions
is free with membership in the FORTH
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address andlor to submit
material, the address is: FORTH
Interest Group, P.O. Box 1105, San
Carlos, CA 94070

Volume IV, NO. 2 3 FORTH Dimensions

Letters (continued) . . .

Minor Errors
Dear FIG,

I have a few notes on F.D. 111-6. In
regard to J.T. Currie, Jr.’s letter, good
FORTH code, looking neat, improves
readability and brings out structure.
Since my own code doesn’t always
live up to this standard, I best not be
too preachy keen. In Henry Laxen’s
article, the stack diagram for (ASSIGN)
should read (pfa. . .).

I am completely confused by Marc
Perkel’s article on control structures.
Where are BRANCH and OBRANCH; what
is C, doing in IF; what is C3; why aren’t
the control words immediate??

In E.H. Fey’s article on a general
case statement on page 194, screen
171, line 7, there should be a 1+ be-
tween the DUP and the C@. Of course,
the DEFAULT; at the bottom of the col-
umn before should be DEFAULT: .

So much for minor errors. Everyone
I talked to said it was the best issue of
F.D. yet published. We like lots of code
and ideas to look at and think about.

Robert Dudley Ackerman
San Francisco

Apple Code FORTH Users

Thanks for the comments, R.D. Regar-
ding Marc Perkel’s article on control
structures. Marc was referring to
(although he didn’t say so) the
ASSEMBLER’S structures. See John
Cassady’s 8080 assembler in the same
issue, and Marc’s article will make a
whole lot more sense. (C3 is an 8080
IMP instruction in hex.) Also thanks,
R.D., for your article on the recursive
decompiler, which appears in this issue.
-Editor

Poor Documentation
Dear FIG,

I purchased a fig-FORTH model and
machine-readable source code from
Mountain View Press late last year.
Earlier in the year, I purchased Leo
Brodie’s “Starting FORTH,” on the
basis of a recommendation that it was
the best introduction to FORTH
available.

While I was (am) a novice FORTH
programmer, I am not a novice com-

puter programmerlsystem designer,
having been involved in systems soft-
ware development for both minis and
micros during the last 6 years. I am
writing to you because, having read
Leo’s book, I had some serious
misconceptions about how fig-FORTH
operated. I was only able to clear these
up after I spent much time and effort
reading both ASM-86 and FORTH
sources. If you are able to integrate the
information provided below with the
installation guide, others who follow
the same route I did (i.e., Brodie + fig-
FORTH) will have much less trouble
with “Starting FORTH” than I.

The most important things:
The treatment of the disk in fig-

FORTH appears to be completely dif-
ferent from that described in chapter
10 of Brodie. This distinction becomes
important as soon as you want to copy
blocks and maintain the disk, because
the techniques Brodie describes don’t
work. A section which describes how
fig-FORTH treats the disk and what
the extra bytes in a disk buffer are for
(referred to in 5.0 of the installation
manual) would clear this up, if added
to the installation manual.

EXECUTE or ’ (tick) work differ-
ently. In Brodie, the following works:
: GREET .” Hello, I speak FORTH ’ I ; OK
’ GREET EXECUTE Hello I speak FORTH OK
(pg. 216)
In fig-FORTH, you have to say:
’ GREET CFA EXECUTE
to get FORTH to return Hello I speak
FORTH. (leave out CFA, and FORTH
crashes).

Aside from the above, there are two
other areas where naming conven-
tions differ:
- fig-FORTH DP is FORTH ‘79
- disk-related words (BU, BLOCK, SCR,
etc.) don’t work as expected from
reading Brodie. (I haven’t figured this
out yet - but I will, eventually -
hopefully).

In the installation manual, the user
variables IN and HLD are not identified
with the ‘U’ identifying them as such.
In general, User variables are not well
enough described (When do they get
changed? Under what conditions?).

The variable CURRENT is not des-
cribed (It’s a user variable).

The ‘parameters’ CIL (characters per
line, 64)) BIBUF (bytes per disk sector)
and BlSCR (buffers per screen, 8) are
not defined anywhere (that I could
see). The assembler code defines them,
however.

On another subject, I plan to build
some FORTH words which allow you
access to CPIM-86 files as an alter-
native to the use of FORTH ‘screens’
and no directories. If you know of
anyone already doing this work (or if
you are interested in adding it to your
repetoire of products), please let me
know.

Derek Vair
Weston, Ontario

The situation you’re describing is both
real and unfortunate. The FIG model
was created in 1978 and generously
placed in the public domain by its
implementors to spread the popularity
of the language. The model was not,
however, the only version of FORTH
around, and the 79-Standard was later
adopted to resolve the many diflerences
between these versions.

“Starting FORTH” was written more
in accordance with the 79-Standard
than with the FIG model. (The book
took some exceptions to the 79-Stan-
dard, and many of these exceptions
are being incorporated into the 83-
Standard.) “Starting FORTH” was
generously financed by FORTH, lnc.,
again with the goal to spread the
popularity of the language.

The problem is neither with fig-
FORTH, nor its documentation, nor
with “Starting FORTH,” but simply
with the fact that they were created at
different times. Many vendors are now
selling versions of FORTH compatible
with the 79-Standard. Mountain View
Press has even placed such an imple-
mentation in the public domain, and
Glen Haydon has published a book,
“A11 About FORTH” which describes
this implementation, carefully noting
differences between it and other com-
mon versions.

For those who will continue to use the
FIG model, perhaps there is some other
generous volunteer who will write and
publish additional documentation to
integrate the discrepancies. -Editor

0

Volume IV. No. 2 4 FORTH Dimensions

Now Available On

HEWLETT PACKARD DESKTOP COMPUTERS

HARDWARE

The HP 9826A and 9836A are two of Hewlett-Packard's
newest and most powerful desktop computers. Each is based
on the Motorola MC68000 microprocessor. Both machines
have full graphics capability and up to 2 full megabytes of
user read/write memory. Both operate on 5%'' flexible disc
drives (the 9836A has two) which feature 264K bytes of
mass storage. While the 9826A has an integral 7" (178mm)
CRT which makes it useful for computer-aided testing (CAT)
and control, the 9836A has a full 12.2" (310mm) CRT
which makes it ideal for computer-aided engineering (CAE)
applications. Each model features the following:

Seven levels of prioritized interrupt
Memory-mapped I10
Built-in HP-IB interface
Standard ASCII keyboard with numeric keypad and

Ten (20 with shift) user-definable soft keys with soft labels
Rotary-control knob for cursor control, interrupt generation

System clock and three timers
Powerfail recovery option for protection against power lapses
Seven additional interface cards

international language options

and analog simulations

- DMA controller (up to 2.4 mb/sec)
- 8/16 bit bi-directional parallel
- Additional HPlB interface
- Serial RS232/449

- Color video(RGB) 3 planes 512 x 512 8 color
- BCD

SOFTWARE

HP 9826/36 Multi-FORTH
HP PRODUCT # 97030JA

Multi-FORTH was developed in 1979 by Creative Solutions,
Inc. The standard product has been substantially modified to
take full advantage of the 9826/36 hardware features.

Multi-FORTH features
79 standard programming environment
Multitasking
Full screen editor
In-line structured assembler
I/O and graphics extensions
Loadable H.P. floating point (IEEE format)
Extensive user manuals and documentation

Optional Features:
Meta compiler
Multi user
Data access methods library

This product is part of HP PLUS - a program for locating user software. It has been
developed by an independent software supplierto run on HPcomputer systems. It is
eligible for HP PLUS as determined by references from satisfled end users. Support
services are available only through the software supplier. Hewlett-Packard's
responsibilities are described in the Responsibilities Statement below.

HP iLUS software was developed by an independent software supplier for operation
on HP computer systems The supplier is solely responsible for its software and
support services HPisnot themanufacturerordeveloper ofsuch softwareorsupport
HPdisclaims any andall liabilities for andmakes no warranties, expressedor implied.
with respect to this software Distribution of this product or information concerning
this product does not constitute endorsement of the product. the supplier. or support
services Tha customer is rasponribla for selection of the software it purchases

For more information, please write

Marvel Ross, Hewlett Packard Company
3404 East Harmony Road, Ft. Collins, CO. 80525

Volume IV, No. 2 5 FORTH Dimensions

FORTH in the Computer Toolbox

__- computer toolbox

Mark Bernstein
Department of Chemistry

Harvard University

1

A prominent, but misguided, goal of
lab computer design has become the
“program-free’’ instrument - one
that can plug into an experiment and
collect data without explicit program-
ming. To retain some degree of flex-
ibility, a limited “programmability” is
achieved through some form of menu
selection, using either conventional
menu trees or special-purpose, dedi-
cated keyboards to select the actions
which may be performed.

In practice, “keystroke function
selection” is completely equivalent to
programming in a small, very-high-
level language. Indeed, in some com-
mercial systems’ the computer trans-
lates each key stroke into a FORTH
word for immediate execution. To
comfort timid users, the control
language is made to be very simple
and very rigid.

Despite its superficial appeal, this
approach ignores the real needs and
abilities of scientific users. Research
is unpredictable, indeed often chaotic.
Scientists need flexibility, even at the
cost of complexity, since the labora-
tory environment changes constantly
as new results demand new methods
and techniques. Lab computers ought
to promote creative research. Too
often, though, rigid pre-programmed
instruments actively inhibit creativity,
freezing experimental procedures into
a fixed, unchangeable mold.

Rather than attempt to provide a
“program-free’’ facility, we have tried
to build a “computer toolbox”2 for
our laser spectroscopy work. The
toolbox concept embraces hardware
and software design, with the goal of
providing a powerful and flexible
array of tools to knowledgeable,
capable users.

We don’t avoid programming. On
the contrary, we make program writ-

disk

plotter

: WIGGLE
MOVE 1 MM FORWARD
MOVE 1 MM BACK
BEEP ;

Listing 1. FORTH lets a user define macro-operations without significant effort.
In the example, WIGGLE wiggles a translation stage over a precisely controlled
distance, an operation useful in testing and lubricating the motor.

ing a commonplace, everyday activity.
We build programs to run experi-

ments, often on the spur of the
moment, using existing FORTH and
assembly-language procedures. Sim-
ple program-building tools, including
decent editors and modular device
drivers, help make programs easy to
write, and easy to document for later
reference. Most programs are short,
take a few minutes to write and test,
and are simple to understand and use,
for most laboratory procedures are
fundamentally simple. The complexity
of lab computing lies not in the
complexity or subtlety of individual
procedures, but in the vast variety of
procedures which may be required.

Toolbox Components
Given adequate tools, i t is almost
always easier to build a simple home-
made program than to subvert a com-
plicated, program-free system which
doesn’t quite do its appointed task.
FORTH, by providing powerful
mechanisms for program construc-
tion, facilitates impromptu program-
ming and experimenting, and so
promotes creativity in the lab.

Most obvious, and perhaps most
useful, is FORTH’s inherent macro
facility. Any important sequence of
operations can be given a name and
treated as a logical unit (Listing 1)3.
Temporary macros can be defined at
the keyboard, or in “scratch screens”

Figure 1. This block diagram represents a typical configuration for our computer
toolbox. Note the relative complexity of the computer node - toolbox design
encourages the computer to get involved with many aspects of the experiment. The
detailed configuration tends to change every few weeks, as instruments and
experimental needs change.

Continued on page 7

Volume IV, No. 2 6 FORTH Dimensions

Computer Toolbox (continued from page 5)

: AVERAGE-POWER (-> power)
0
100 0 DO

100 I ;
POWER@ + LOOP

Listing 2. AVERAGE-POWER measures the mean laser power, measured by a
device-driver called POWER@, by averaging 100 shots. Loops like this take only
a few seconds to write, and can provide answers to many unanticipated
questions.

- work areas for writing temporary
tools. Particularly useful sequences
can be stored permanently, to be
called up whenever needed. Disk resi-
dence is ideal for plotting procedures,
data reformatters, and analysis pro-
grams that are used intermittently, and
are not especially useful in building
new tools. FORTH’s compactness also
allows us to retain a variety of tool
components in memory at all times, so
that device drivers and tool-building
aids are always online and available.
In fifteen months of active experimen-
tal work, we have yet to run short of
dictionary space in our 24K 6502
system.

FORTH’s stack architecture pro-
vides a convenient mechanism with
which to pipeline data from one
instrument to another (Figure 2). The
stack is also a good place to average

data accumulated over many runs
given POWER@, a routine which
fetches a reading from the laser power
meter, we can readily write AVERAGE-
POWER (Listing 2), which provides the
averaged power over 100 laser shots.

It is more pleasing to work with the
computer rather than against it, to
build a procedure out of simpler tools
and device drivers than to try to
subvert a powerful but rigid procedure
which doesn’t quite do the job.
Planning For Disaster
The laboratory can be a difficult envir-
onment for a computer, especially one
which is connected to many indepen-
dent alien devices. Cables come un-
stuck or short circuit, power supplies
malfunction, ICs fail. Unpredictable,
minor failures crop up constantly; the
computer must be able to cope
gracefully with unexpected mishaps.

M w
STACK

Figure 2. The FORTH stack provides a useful channel for the simplest and most
common lab computing function - moving data from one instrument to another. Since
PLOT! and PRINT! are functionally equivalent, they can be interchanged freely as
experimental needs alter. The FORTH stack is also useful for format coversion and
scaling required by many instruments.

Extra hardware helps accommodate
failure or accident. But hardware
redundancy is virtually useless unless
software design provides consistent
support. If the address of parallel port
A appears explicitly in dozens of lines
of program code, backup ports B and
C will not help the unhappy researcher
who finds that port A is not working
properly. Faced with the task of loca-
ting every reference to port A’s physi-
cal address, users may find it easier to
wait for repairs than to use backup
equipmentwhich the software cannot
easily support.

FORTH’s modular structure helps
accommodate necessary repairs with-
out demanding extensive program
changes. Last winter our laser’s

We build programs to run
experiments, often on the
spur of the moment, using
existing FORTH and assem-
bly-language procedures.

grounding system started to fail. A
blizzard made repair impossible, and
left us with large, fast noise spikes
everywhere. Normally, we invoke
?FIRED to detect laser pulses:

?FIRED (-> f)
?FIRED waits for the laser to fire, and
returns a logical flag to indicate
whether the laser fired successfully
or failed. Laser firing is detected by
the photodiode interface bit.

Because of the grounding problem,
?FIRED started to respond to noise
spikes as well as to valid laser shots.

Since the offending noise pulses
were very short, we thought the com-
puter might be able to adapt to the
noise by ignoring anamolously short
trigger signals. A 500 microsecond
delay was inserted into ?FIRED, after
which FORTH double-checked: was
the trigger signal still active? After an
hour or so of tinkering, mostly spent
fine-tuning the delay time, the com-
puter was able to ignore the noise
pulses without missing a single genu-
ine shot.

Continued on next page

Volume IV. No 2 7 FORTH Dimensions

Computer Toolbox (continued from page 7)

XV PLOTTER
device driver

Abstract Devices
Most instruments are conceptually
simple; they either generate data for
the computer to read, or they take in-
structions from the computer and act
upon them. We would like to treat in-
struments like memory, to be read and
written at will. In FORTH terms, we
like to think of PRINT! and PLOT! and
DISK!, of VOLTS@, of ?BUSY or ?FIRE.

Of course, the detailed operation of
many real devices is complicated by
details of interfacing and lack of stan-
dardization. Typically, a single experi-
ment may include a dozen different
instruments, each demanding unique
data formats and transmission pro-
tocols. Some instruments accept num-
bers in binary, some insist on BCD,
others require ASCII strings. Data in-
compatability poses a serious obstacle
to communication, since a program-
mer frequently faces a bewildering
array of detail, which she must
remember, without fail, at all times.

FORTH encourages designers to use
instruments via “device drivers.”
These procedures translate data from
standard FORTH internal representa-
tion into the peculiar language under-
stood by individual instruments, map-
ping the real (complicated) device onto
a simple abstract device that behaves
the way the user expects. Device
drivers hide implementation details,
so that users need not remember (or
understand) exactly what data format
each instrument requires.

In addition to simplifying the pro-
grammer’s task, device drivers help
the system adjust to new and modified
equipment. Device-specific informa-
tion is restricted to the device driver,
and not allowed to propagate through-
out the toolbox system.

If every program that used the
printer handled that printer’s peculiar-
ities, then replacing the printer would
mean modifying every individual pro-
gram. Bizarre devices should not be
permitted to contaminate and infect
system software; their needs should be
respected, but their oddities ought to
be quarantined within device drivers,
where they can be monitored and
modified when necessary.

Abstract devices can also provide
powerful conceptual aids (Figures 3,
4). For example, our toolbox hardware

HARDWARE
OAC - devicedriver -

includes a pair of DACs. What could
be more obvious than to connect them
to an XY recorder? Of course, we don’t
want plotting programs to know about
the details of the DAC interface; these
are hidden in DAC!:

DAC! (millivolts chnl - >)
Sets the output of digital-to-analog
channel chnl to the indicated
voltage.
Much of the time, though, we want

to send the plotter to a designated
point on the paper. Also, we don’t
really want to keep talking about
“DAC channel 1” when we mean “the
X coordinate.” So, after a few days we
wrote XY!:

XY! (x-coord y-coord ->)
moves the plotter pen to a position
{x-coord, y-coord}, measured
relative to { XORIGIN, YORIGIN}.
Later, we realized that “turtle

graphics” were better than Cartesian
plot routines for some jobs. So the pen
became a turtle, whose current
heading is stored in a variable
HEADING, and which responds to com-
mands FORWARD, LEFT, and RIGHT. FOR-
WARD is built out of XY!, which in turn
was built from DAC!. Only DAC! knows
the intimate details of the plotter in-
terface, and users can choose to think
of the plotter as either a Cartesian or

Continued on page 11

TURTLE

IEEE 488 Interface

I - *
1 I

Figure 4. A classic example of an abstract device is the FORTH mass-storage im-
plementation. Programmers almost always work with BLOCK, which maps the disk
into a conceptually simple format. Within the system, on the other hand, RMI may
view the disk very differently; here, WW addresses three distinct abstract devices.
The abstract devices, in turn, access the disk drive indirectly through device drivers,
thus shielding RMI and BLOCK from future hardward changes.

Volume IV, No. 2 8 FORTH Dimensions

Develop FORTH code for any target
8080/280 system on your current 8080/280
or Cromemco CDOS based system I

FORTH WORKSHOPS
ONE-WEEK WORKSHOPS - ENROLLMENT LIMITED TO 8 STUDENTS

FORTH Advanced FORTH Advanced FORTH
Fundamentals Applications Systems
0 Program Design 0 FORTH Tools 0 FORTH lnternals
0 Program Documentation 0 Engineering Applications Assemblers and Editors
0 FORTH Architecture 0 Floating Point 0 Other Compilers
0 FORTH Arithmetic 0 Communications Cross-Compilation Theory
0 Control Structures 0 Sorting & Searching 0 Romability, Multitasking,

1 0 Input/Output 0 Project Accounting System Timesharing
0 The Vocabulary Mechanism 0 Process Control File Systems/
0 Meta-Defining Words 0 Simulations Database Systems

OCT. 4-8 NOV. 8-12 NOV. 15-19 OCT. 11-15
JAN. 3-7 FEB. 7-11 FEB. 14-18 JAN. 10-14

$395 Incl. Text $495 Incl. Text $495 Incl. Text

Instructors: LEO BRODIE, GARY FEIERBACH and PAUL THOMAS
(For further information, please send for our complete FORTH Workshop Catalog.)

8080/280 METAFORTH
CROSSCOMPILER
0 Produces code that may be downloaded to any Z80 or

8080 processor
0 Includes 8080 and 280 assemblers
0 Can produce code without headers and link words for up to

30% space savings
0 Can produce ROMable code
0 79 Standard FORTH
0 Price $450

No downloading - No trial PROM burning.
This port-addressed RAM on your S-lo0 host
is the ROM of your target system

WORD/BYTE
WIDE ROM SIMULATOR
0 Simulates 16K bytes of memory (8K bytes for 2708 and 2758)
0 Simulates 2708, 2758, 2516, 2716, 2532, 2732, 2564

and 2764 PROMS
0 The simulated memory may be either byte or 16-bit

word organized
0 No S-100 memory is needed to hold ROM data
0 Driver program verifies simulated PROM contents
0 Price $495 each

~ ~

CONSULTING SERVICES
Inner Access provides you with Custom Software Design. We have supplied many clients with
both Systems and Application Software tailored to their specific needs. Contact us for your
special programming requirements.

Inner Access Corporation
P.O. BOX 888 BELMONT, CALIFORNIA 94002 (415) 591-8295

9 Volume IV, No. 2 FORTH Dimensions

MVP=FORTH
A Public Domain Product

ORDER TODAY!!!

In keeping with the public domain release of FORTH by its inventor, Charles
Moore, and the promotion of the language by the FORTH Interest Group, MVP-
FORTH (for Mountain View Press) and the companion book, ALL ABOUT FORTH,
are also placed in the public domain and may be used freely without restriction.

MVP-FORTH contains a kernal for transportability, the FORTH-79 Standard
Required Word Set, the vocabulary for the instruction book, STARTING FORTH,
by Brodle, editor, assembler, many useful routines, and utilities.

MVP-FORTH PRODUCTS
0 MVP-FORTH Programmer's Kit including disk with documentation, ALL ABOUT

$100
0 MVP-FORTH Dlsk with documentation. Assembly source listing version. $75

$300
0 MVP-FORTH Programming AM8 for decompiling, callfinding, and

translating. $150

FORTH, and STARTING FORTH. Assembly source listing versions.

0 MVP-FORTH Cross Compiler with MVP-FORTH source in FORTH.

0 MVP-FORTH Assembly Soum Printed listing.
0 ALL ABOUT FORTH by Haydon.

$20
$20

* * *MVP-FORTH operates under a variety of CW's, computers, and
operating systems. Specify your computer ana operating system. * *

MORE FORTH DISKS

fIQ-FORTH Mode/ and Source, with printed Installation Manual
and Source Listing.
0 APPLE 11" ,51k 08080i280@,8

8088188,8 0 H89IZ89, 5%
$65 Each

FORTH with editor, assembler, and manual. .Source provided.
Specify disk size!
0 APPLE 11/11 + by PET@ by FSS $90

0 APPLE Ii by Kuntze. $90 Systems. $90
0 TRS-Wi@ by Nautilus MicroMotion

ATARI" by PNS $90 8800 by Talbot
0 CPIM" by Microsvstems $100

MicroMotion $100 0 8809 by Talbot
0 CROMEMCOQ by Inner Microsystems $100

Access $100 U)O by Laboratory
0 HP-85 by Langer $90 Microsystems $50

Microsystems $100 Microsystems $100
0 IBM-PP by Laboratory 8088/88 by Laboratory

Enh.ncad FORTH with: F-Floating Point, G-Graphics,
T-Tutorial, S-Stand Alone, M-Math Chip Support, X-Other
Extras, 79-FORTH-79. Specify Disk Size!

APPLE 11111 i- by Micro- TRS-Wi or 111 by Miller
Motion, F, G, 8.79 $140 Microcomputer Services,

F a 7 9 $140 0 8809 by Talbot Micro-
0 HM/Z89 by Haydon, systems, T d X $150

T & S $250 0 280 by Laboratory Micro-
0 H M by Haydon, TS175 systems, F M $150

0 PET by FSS, F 8 X $150 Microsystems, F 8. M $150

CROSS COMPILERS Allow extending, modifying and compiling
for speed and memory savings, can also produce ROMable
code. *Requires FORTH disk.

CPlM by MicroMotion, F, x, a 79 $130

0 8088/88 by Laboratory

0 CPIM $200 IBM. 5300
0 H89E89 $200 8088. 5300
0 TRS-80Il $200 280. $200
0 NorthstaP $200 06809 $350

callfinding, and translating. $1 50
0 flg-FORTH Programming Aids for decompiling,

0 FORTH Encyclopedia by
Derick 8. Baker. A com-
plete programmer's
manual to figFORTH with
FORTH-79 references.
Flow charted $25

0 1980FORMLP~. $25
0 1981 FORML Proc.

2 VOl. $40
0 1W1 Rochester Univ.

PrOC. $25
Using FORTH $25

0 A FORTH PrlmcH $25
0 Threaded Interprdw

Languws $20
0 AIM FORTH User's

Manual $12

MicroMotion $20

MMSFORTH $19

0 APPLE U W S Manual

0 TRS-80 U W 8 Manual,

FORTH MANUALS, GUIDE$& DOCUMENTS
0 Starting FORTH by

Brodie-hst instructional
manual available (soft
cover) $16

0 Starting FORTH (hard
cover) $20

0 METAFORTH by Cassady.
Cross compiler with 8080
code $30

0 Systems Guido to fig-
FORTH $25

0 Cattech FORTH

0 Invltatlon to FORTH $20

Manual $20

MicroMotion $20
0 FORTH-79Stand.d $15
0 FORTH-79 S t a m d

COnWnlOn $10

flg-FORTH $10

Manua! $12

0 PDP-11 FORTH U W 8

0 CPlM User's Manual.

0 Thy P a m i in

0 Installation Manual for fig-FORTH, contains FORTH
model, glossary, memory map and instructions
Source Listings of fig-FORTH, for specific CPU's and
computers. The Installation Manual is required for
implementation. Each $15

515

0 1802 6502 8800 AlphaMicro
0 8080 8088188 0 9900 0 APPLE11

PACE 0 6809 0 NOVA 0 PDP-11ILSI-11

Ordoring Intormatlon: Check, Money Order (payable to MOUNTAIN VIEW
PRESS, INC.). VISA, MasterCard or COD'S accepted. No billing or unpaid
Po's. California residents add sales tax. Shipping costs in US included in
price. Foreign orders, pay in US funds on US bank, include for handling and
shipping by Air: $5 for each item under 525, $10 for each Item between $25
and $99 and $20 for each item over $100. Minimum order $10. All prices and
products subject to change or withdrawal without notice. Single System
andlor single user license agreement required on some products.
DEALER & AUTHOR INOUlRiES INVITED

THE FORTH SOURCETM

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (41 5) 961 -41 03

Volume IV, No. 2 10 FORTH Dimenslons

Computer Toolbox (continued from page 6)

A turtle device, without concern for
the hardware which underlies these
essentially simple concepts.

Command-Driven Systems
Rigid command structures may
simplify programming, but ultimately
they lead only to frustration. Unless
the designer gets everything exactly
right, users will need simple features
which the machine could obviously
manage, but which it cannot be told
to do.

Menu and prompt-driven systems
are useful, indeed invaluable, in per-
forming and regulating repetitive and
well-defined tasks. Both help protect
system integrity. But, while a payroll
program needs good protection from
casual users or systematic abuse, lab
computers really ought not to protect
themselves from their users, at least
not without good reason.

A decent command language is not
difficult to learn. Once learned, it
should not be difficult to use. FORTH
and its kin make command language
interpreters very simple to write, since
such interpreters simply subset the
language. The payoff is substantial; far
from being a “write-only’’ language as
is sometimes claimed, in control appli-
cations FORTH can be substantially
more straightforward than BASIC or
FORTRAN.4

Implementation
The second generation microproces-
sors, the 6502, 808012-80 and 6800
machines, are frequently CPU bound
in common lab operations. Implemen-
tation efficiency is essential, and
FORTH’s simple lexical analysis,
vestigial parser, and threaded archi-
tectures ’ match the limited computa-
tional power of these machines quite
well.

In the coming three to five years,
newer and more powerful machines
should relax the CPU constraints
under which lab computers now labor,
permitting implementors to overcome
some annoying limitations of the fig-
and 79-STANDARD systems. By
relaxing the CPU’s workload, such
enhancements will also help simplify
laboratory programming, since fewer

and fewer tasks will require critical
programming to meet their timing
restraints.

These developments hold great pro-
mise for lab computer design. Greater
CPU throughput will permit lab sys-
tems to dispense with some FORTH
atavisms, notably the strict reverse-
Polish grammar necessitated by
FORTH’s primitive parser and the
absence of data typing and run-time
security, features now omitted in the
interest of increasing CPU throughput.
On the other hand, greater CPU power
could also be harnessed to the conven-
tional FORTH model, permitting
faster data acquisition. But, of greater
importance, the next five years should
bring a general recognition of the im-
portance of true programmability to
creative experimental work, accom-
panied by further understanding of the
role of software tools in small systems.

Acknowlegements
The author expresses his sincere
appreciation to Dr. Kevin S. Peters for
continued support of this research.

1. For example, the Princeton Applied
Research OMA controller, a popular and suc-
cessful instrument, operates in FORTH. A
number of functions have I-letter names, and
so can be invoked by pressing a single key.
2. M. Bernstein, “The Computer Toolbox,”
BYTE (May 1982, p. 456).
3. The motor control commands used in
WIGGLE are described in M. Bernstein’s
“Stepper Motor Control; A FORTH
Approach,” MICRO (February 1982).
4. M. Bernstein and D. P. Gerrity, “Micro-
computer Interfacing; FORTH vs. BASIC,”
MICRO (June 1982, pg. 77).
5. Peter M. Kogge, “An Architectural Trail
to Threaded-Code Systems,” IEEE Computer
(March 1982, p. 22).
6. James R. Bell, “Threaded Code,” Corn-
munications of the ACM 16, (June 1973, p. 370);
J. B. Phillips, M. F. Burke and
7. G. S. Wilson, “Threaded Code for Labor-
atory Computers,” Software - Practice and
Experience 8 (1978, p. 257).

Mark Bernstein is a graduate student
in Harvard’s Department of Chemistry.
His current research combines ultrafast
lasers and sensitive microphones, a11
controlled by a FORTH-based micro-
computer, to study fast chemical
reactions. 0

TO HORSE!

THE

FORTH
CAVALRYM

IS COMING!

COME TO YOUR

IBM P.C.’s
CALL!

REWARD!
INCREASED

PROGRAMMING
PRODUCTIVITY!

BOUNTY
of BENEFITS

to those who JOIN

FORTH, Inc.
AVAILABLE AT SELECTED

COMPUTER TRADING POSTS

11 FORTH Dimensions Volume IV. No. 2

The FORTH Step
Stepper Motor Control

Application by Martin B. Petri

Text by
Martin B. Petri b Leo Brodie

Stepper motors supply the muscle for
computer applications with compli-
cated movements, such as computer
disk drives and printers, industrial
robots, telescopes, laser systems, etc.
Unlike regular motors, stepper motors

Our approach will be
to control the stepper
motor lines directly. In
effect, we will build a
driver chip in software.

can be controlled with exacting resolu-
tion - on some motors the resolution
is .005 degrees of rotation or less.
Their speed is also directly con-
trollable, and stepper motors can stop
on a dime, or a micrometer.
Operation
Most stepper motors are controlled by
either four or eight lines. In our exam-
ple, we’ll assume a four-pole motor. A
“step” is a one-quarter revolution of
the internal shaft of the motor - the
smallest amount we can cause the
motor to turn. Each step corresponds
to a certain combination of the motor’s
four input “poles” being turned on.

Most stepper motors, including the
one in our example, contain a gear
mechanism. The motor in our exam-
ple is geared such that one complete
cycle produces 7.2 degrees of rotation.
Interfacing Techniques
There are several ways to control the
stepper motor. One is to buy a stepper
motor driver IC. The most advanced
of these driver chips allows the com-
puter to simply output the desired
motor position. The microprocessor-
based chip will then produce the
appropriate number of signals on the
control lines to move the motor to the
stated position.

Figure 1

.

CONTROLEX
STEPPER

Figure 2

a .

(1 00,100)

b.

(400,400)

/-• (400’900)
(100,100)

Producing a direct diagonal (Fig. 2a) between the two points above requires
the Y-motor to run a suboptimal speed, and greater complexity of the soft-
ware. Producing a 45degree diagonal, then a straight line (Fig. 2b), runs no
slower and allows software simplicity. In the latter case, both motors run at
full speed in step with one another, until the correct y-coordinate is reached;
then the Y-motor shuts off.

Volume IY. No. 2 12 FORTH Dimensions

Screen # 1
0 (The FORTH S t e p 1 of 1 0
1 4 CONSTANT PORT-A
2 10 CONSTANT MIN-TIME
3 10 CONSTANT ACC-TIME
4 15 CONSTANT ACC-STEP
5 ACC-TIME ACC-STEP * MIN-
6 CONSTANT MAX-TIME
7 0 VARIABLE STEP-TIME
8
9

10
11
12
13
14
15

0 VARIABLE X-POSITION
0 VARIABLE Y-POSITION
0 VARIABLE X-PTR
0 VARIABLE Y-PTR
0 VARIABLE X-COUNT
0 VARIABLE Y-COUNT
0 VARIABLE X-DIR
0 VARIABLE Y-DIR

QZJUN82MBP)

(a d d r e s s o f motor 110 p o r t)
(minimum Q-Step t i m e)
(a c c e l e r a t i o n i n t e r v a l t i m e
(a c c e l e r a t i o n s t e p s)

TIME + (c a l c u l a t i o n for)
(maximum (a-Step time)
(h o l d s c u r r e n t Q-Step t i m e)

(c u r r e n t X p o s i t i o n)

(c u r r e n t Y p o s i t i o n)
(x-phase t a b l e p o i n t e r)

(y-phase t a b l e p o i n t e r)

(# of s t e p s to g o)

(# of s t e p s to go)

(d i r e c t i o n f l a g)

(d i r e c t i o n f l a g) i s

Screen # 2
0 (The FORTH S t e p 2 of 1 0 02JUN82MBP)

1
2 : ACCELERATOR (---)

3 STEP-TIME a (g e t o l d v a l u e)
4 ACC-TIME - (s u b t r a c t a c c e l e r a t i o n t i m e)

5 MIN-TIME MAX (but MIN-TIME is minimal v a l u e)
6 STEP-TIME ! ; (s a v e new v a l u e)

7 (Accelerate t h e Q-Step t i m e u n t i l MIN-TIME is r e a c h e d)
8
9 : XY-MOTORS (x-addr y-addr ---)

10 Ca SWAP Ca + (xy-phase ---)
11 PORT-A P! (set t h e new p h a s e s)

12 STEP-TIME @ (g e t t i m e v a l u e)

13 0 DO LOOP ; 4 and w a i t i t o u t)

14 (Move s t e p p e r 1 Q-step and w a i t)

1 5 ;S

S c r e e n # 3
0 (The FORTH S t e p SUBSTITUTE f o r XY-MOTORS)

1
2 (S u b s t i t u t e t h i s s c r e e n for XY-MOTORS to g e t a v i s u a l)
3 (d i s p l a y of t h e motor b i t s and t i m e d e l a y)

4 (y - b i t x - b i t t i m e r)

5
6 : BINARY 2 BASE ‘ ;
7 : (XY-MOTORS) (x-addr, y-addr ---)

8 C@ 16 / CR (x-addr, y-phase --- 1
9 B I N A R Y 4 . R (d i s p l a y i n b i n a r y)

10 4 SPACES (s e p e r a t o r)

1 1 C3 4 . R (d i s p l a y x-phase)

1 2 DECIMAL (back t o decimal)

13 STEP-TIME 3 (g e t t imer v a l u e)

14 4 SPACES U. ; (and d i s p l a y i t)

15 ;S

S c r e e n # 4
0 (The FC!HTH S t e p 3 of 1 0 QZJUM62MBP)

1
2 : CTABLE BUILDS DOES: + :

4 HEX CTABLE PHASES
5 05 C, 07 C, CIA C, 06 C,
6 06 C, 09 C, 05 C, (3 6 C ,
7 06 C. d6 C, 06 C , 06 C,
8
9 50 13, 90 C , A 0 C , 60 C,

10 A 0 C, 90 C, ‘ 0 C. 60 C,
1 1 60 C, 6O C, 60 C, 6 V C ,
12 DECIMAL
13
14 : S
15

- >

(X-Forward)

(X-Reverse)

(X-stop)

(Y-Forward)

(Y-Reverse)

c ’+Stop)

Listing continued on next page

Older driver designs also produce
the appropriate signals to the motor,
but need the computer to send the
driver two signals: a step signal that
turns the motor one step, and a direc-
tion signal that tells the driver which
way to turn the motor. One such
driver chip is the SAA1027 by AIR-
PAXlNorth American Phillips and
Signetics. (A FORTH system which
communicates with this driver has
been described in “Stepper Motor
Control: a FORTH Approach,” by
Mark Bernstein in MICRO - The
6502/6809 Journal.)
Software Driver
Our approach in this example will be
to control the stepper motor lines
directly. In effect, we will build a
driver chip in software.

The only interface between our com-
puter’s output ports and the motor
itself will be an inexpensive transistor
circuit designed to boost the milliamp
of driving power at the port to handle
the four amp load required to drive a
single motor pole. The circuit is called
a Darlington Array (see Fig. 1).

Eliminating an integrated circuit
driver and taking direct control of the
motor has certain advantages. For one
thing, of course, we eliminate the cost
of the chip, without making the cir-
cuitry any more complicated. Also we
can, if needed, step the motor in half
step increments for finer resolution
(although we won’t provide this capa-
bility in our example).

Perhaps the most important advan-
tage is our ability to control accelera-
tion or deceleration, which the chips
do not provide. For heavier loads, the
stepper motor must be accelerated
gradually if it is to supply the neces-
sary torque to get the load moving.
Also, the motor can run at higher
speeds. Trying to start a motor at too
great a speed can cause it to stall. Our
example will use an acceleration
technique.
The Example
Our example controls two separate
stepper motors. Together they control
the x and y coordinates of some posi-

Continued on next page

Volume IV, No. 2 FORTH Dimensions 13

The FORTH Step (continued from page 13)

Screen 4 l 5
0 < The FORTH Step 4 of 10 CQJUNBZMBP)

1
Z I XY-RUN
3 ACCELERATOR (want to ramp up the speed)

4 Y-PTR PHASES (y-addr)

5 X-PTR a PHASES (y-addr x-addr)
6 4 0 (4 phases = 1 f u l l step
7 DO
8 2DUP I + SWCIP I + get x , y offsets >
9 XY-MOTORS f x-addr y-addr ---

) (---

1 0 LOOP
11 ZDROF’ ; (or DROP DROP i f y o u don’t have I t i
12
13 < XY-RUN calculates the table address, then c a l l s XY-MOTOR i
14
15 IS

Screen Y 6
0 (The FORTH Step 5 of 10 OZJUNBZMBP)

1
2 x X-STEP (---)

3 X-COUNT a
4 IF -1 X-COUNT +! X-DIR a
5 I F 0 X-PTR ! 1 X-POSITIDN +!
6 ELSE 4 X-PTR ! -1 X-POSITION +!
7 END I F
B ELSE 8 X-PTR !
9 ENDIF 8

10
11 (X-STEP sets the forward or reverse b i t pointw i f there i S)

12 (more steps t o do and adjusts the position variable, else,)

13 (i t sets the stop pointer.)
14 ;S
15

Screen # 7
0 (The FORTH Step 6 of 10 023WS2HBP)

1
2 8 Y-STEP (---)

3 Y-COUNT 3
4 IF -1 Y-CWHT +! Y-PIR a
5 IF 12 Y-PTR ! 1 Y-POSITION + !
6 ELSE 16 Y-PTR ! -1 Y-POSITION +!
7 THEN
0 ELSE 20 Y-PTR !
9 THEN ;

10
11 (Y-STEP sets the forward or reverse b i t pointer i f there 1s)
12 (more steps t o do and adjusts the position variable, else,)

13 (i t sets the stop pointer.)

14
15 ;s

Screen I) B
0 (The FORTH Step 7 of 10
1
2 : XY-STEPPER
3 MAX-TIHE STEP-TIME !
4 Y-COUNT a X-CWNT a
5 UAX
6 -DUP
7 IF 0 W
8 X-STEP Y-STEP
9 XY-RUN

10 LOOP
11 THEN 8
12
13 (XY-STEPPER assumes the X &
14 (were set before entry)
15 ;s

OZJUN82MBP)

) (---
(Setup for timer)

(get x , y counts)

(want the larger of the 2)
(duplicate i * not zero)

(t h i s i s the number of loops)
(get b i t patterns)
(and step the motors)

Y counts and direct ion flags)

Listing continued on page 16

tioning device. An example applica-
tion might be a drill press which must
drill a series of holes in a circuit board.
This routine will control the stepper
motors that position the board under
the drill bit, before each hole is drilled.

In this application, it isn’t necessary
to produce diagonals other than 45
degree angles (see Fig. 2). Because
there is no time penalty, we’ve chosen
to simply interlace the pulses to the
two motors so that, when both are run-
ning, they run in step with one
another. Any other approach would
involve unnecessary complexity.

Since we are powering the coils of
the motor directly, we need to supply
the proper sequence of pulses. The
table in Fig. 1 shows the four-step
cycle of pulse patterns that will turn
the motor one complete revolution (7.2
degrees). After the fourth pattern is
output, the first pattern is sent again,
and the cycle repeats.

These bit patterns are stored as bytes
in a table called PHASES (Block 4 of
the listing). The bit sequence in the
first four bytes produces one forward-
going cycle of the “X” motor. The next
four bytes contain the same sequence
in reverse. The final phase of both
sequences is hex 6, which is phase 1,
so that the motor will always stop at
phase 1.

The next four bytes in the table
PHASES each contain the phase-1 pat-
tern. Cycling through these four bytes
will cause the motor to stay at its stop-
ping position.

The second half of the table contains
the same bit patterns, but stored in the
high-order nibble of the byte, where
they will be output to the “Y” motor.

The four-byte sequence is cycled-
through by the 4 0 DO . . . LOOP in
Block 5. The appropriate sequence in
the table is selected by the values in
variables X-PTR (0 for forward, 4 for
reverse, and 8 for stop) and in Y-PTR
(12 for forward, 16 for reverse, and 20
for stop). These two variables are set
up by the words X-STEP and Y-STEP
respectively (Blocks 6 and 7). These
words refer to the “count” and “direc-

Continued on page 16

Volume IV, No. 2 FORTH Dimensions 14

FIG NATIONAL CONVENTION
October 9, 1982

RED LION INN/SAN JOSE
2050 Gateway Place, San Jose, CA 95110

9:00 a.m.-6:30 p.m./Conference and Exhibits 7:30 p.m./Dinner and Speakers
FORTH APPLICATIONS

Learn about the latest FORTH applications and how to develop your own application programs.

Preregistration Form

Name@)

Company

Address

City State *P

Telephone Ext.

c] I am interested in presenting a paper on:

0 Enclosed is a check for:

-@ $5.00 registration(s) $

@ $22.50 dinner(s) $
Reservations must be received
before October 1, 1982.

exhibit booth(s) with draped
table and 500 watts power.
(Space limited, reserve early.)

Q $135.00 FORTH Vendor: 8'xlO' $

TOTAL $

Return to: FORTH Interest Group P.O. Box 1105 San Carlos, CA 94070

SPECIAL HOTEL RATES
for Convention Attendees
Special hotel rates are available for
attendees at the fourth FORTH
Interest Group National Conven-
tion at the newly opened Red Lion
Inn/San Jose. The special room
rates may be obtained by telling
the Red Lion Inn reservation desk
that you will be attending the Con-
vention. A room with two queen
beds is $60.00 for one person or
$70.00 for two persons. Alternately
a room with one king bed may be
reserved at the same rates. Write
to the Red Lion InnlSan Jose, 2050
Gateway Place, San Jose, CA
951 10 or telephone directly by call-
ing (408) 279-0600.

The Red Lion InnlSan Jose is
located near the San Jose Airport
and has courtesy car service.
Notification of your flight number,
carrier, and time of arrival will help
with scheduling airport pick up.

The FORTH Interest Group Na-
tional Convention conference pro-
gram and exhibitor displays are all
scheduled at the Red Lion Inn/San
Jose, making it the most conve-
nient hotel for attending the
convention.

1 proFORTH COMPILER
8080/8085,280 VERSIONS

SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS
0 INTERACTIVELY TEST HEADERLESS CODE

MULTIPLE, PURGABLE DICTIONARIES
IN-PLACE COMPILATION OF ROMAQLE TARGET CODE

FORTH-79 SUPERSET
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $2250

2 MICROPROCESSOR-BASED PRODUCT DESIGN
SOFTWARE ENGINEERING

ELECTRONICS AND PRINTED CIRCUIT DESIGN
PROTOTYPE FABRICATION AND TEST
REAL-TIME ASSEMBLY LANGUAGE/proFORTH

0 MULTITASKING
DIVERSIFIED STAFF

DESIGN STUDIES - COST ANALYSIS

Volume IV, No. 2 FORTH Dimensions 15

The FORTH Step (continued from page 14)

tion” variables X-COUNT, Y-COUNT,
X-DIR, and Y-DIR, to plug the correct
values into X-PTR and Y-PTR.

The word XY-STEPPER (Block 8)
defines a DO . . . LOOP that will run
as many times as the greater of X-
COUNT or Y-COUNT, to step the
motors the right number of times.
Inside the loop, X-STEP and Y-STEP
check to see if the “x” or “y” count has
gone to zero, and if so, stop the appro-
priate motor (refer back to Fig. 2).

The final three blocks put it all
together to create a word called
GOTO-XY, which uses the current
position and the desired position to
calculate the appropriate number of

steps to move for each motor, then
calls XY-STEPPER. For example,
GOTO-XY could be given the coor-
dinates for the position of a hole to be
drilled in the circuit board. The step-
per software will do all the rest.

Martin Petri is a consultant specializ-
ing in application software, hardware
design, manufacturing and marketing.
His most recent product is the Con-
trolex CS-105 which he deomonstrated
at the June 26,1982 &FORTH meeting
in Palo Alto.

Leo Brodie is Editor of FORTH
Dimensions. 0

Screen 0 9
0 (The FORTH Step 8 of 10 OZJUN82MBP)

1
2 : ?X-STEPS (x-pos ---)
3 X-POSITION a (get o ld count)
4 - (new-pos old-pos -)

5 DUP
6 0 < (see i f negative number)

7 I F MINUS (get compliment)

B X-COUNT ‘ (set the count)
9 0 X-DIR ’ (set d i r e c t l o n reverse)

10 ELSE X-COUNT (set t h e count)
11 1 X-DIR ’ (set d i r e c t i o n forward)

12 THEN ;
13
14 (7X-STEPS ca lcu la tes the W of steps and d i r e c t i o n t o m V I)
15 ;s

Screen Y 10
0 (The FORTH Step 9 of 10 OZJUN82MBP)

1

3 Y-POSITION a (get o l d count)

5 DUP
6 o < (see i f negat ive number)
7 I F MINUS (get compIiment J
8 Y-COUNT ! (set the count)
9 0 Y-DIR ! (set d i r e c t i o n reverse)

10 ELSE Y-COUNT ! (set the count)
11 1 Y-DIR ! (set d i r e c t i o n forward)

12 THEN ;
13
14 (?Y-STEPS ca lcu la tes t n e W of steps and d i r e c t i o n t o move)

2 : ZY-STEPS i Y-pos ---)

4 - (new-pos old-pos -)

15 ;s

Scrern W 11
0 (The FORTH Step 10 of 10 02JUN82MBP)
1
2 : GOTO-XY (X-co-ord, Y-co-ord ---)
3 7Y-STEPS (ca lcu la te Y steps)
4 7X-STEPS (c a l c u l a t e X steps)

5 XY-STEPPER ; (and move thera)
6 (GOTO-XY is the high l e v e l word, expecting X L Y co-ordinates)
7
8 : INCHES 1000 & : TENTHS 100 : ; : HUNDREDTHS 10 t ;
9 (Conversion rout lnes assumes 1 step = -001 inch)

10
11 : X-PLOT 0 Y-COUNT ! X-POSITION 3 + ?X-STEPS XY-STEPPER 8
12 : Y-PLOT o X-COUNT I Y-POSITION a + ?Y-STEPS XY-STEPPER ;

15 ;S

13 (Can be used i n the form 5 INCHES X-PLOT or -5 TENTHS Y-PLOT
14

End of listing

THE
FORTH

CAVALRY”
IS

pcrsonolFORTH
for the IBM PC
by FORTH Inc.

Multi-tasking,full screen
editor, floating point
support, 00s file handler,
color monitor support,
turnkey compiler.

$300

MULTI-TASKING
FORTH

8’ CPIW , Northstar 8
Micropolls

A-FORTH by Shaw Labs,
Ltd can make your micro
operate like a mainframe.
You can be printing,
sorting, and in ter-ac t ivel y
inputing data all at the
same time. Hardware
permitting, you can even
have mult i-users operating.

$395

FORTH
TUTORIAL SYSTEM

by Laxen & Harris, Inc.
Two 8’ CP/M disks with
documentation and a copy
of Starting FORTH by
Brodie. An inexpensive way
to start learning and
programming in FORTH.

$95

MOUNTAIN VIEW PRESS, INC.
P.O. Box 4658

Mountain View, Calif. 94040
(41 5) 961 -4103

I

Volume IV. No. 2 FORTH Dimensions 16

Handling Interrupts in FORTH

Stephen Melvin

When FORTH is used in a process
control application, it is often
desirable to have a high-level FORTH
word execute in response to an exter-
nally generated interrupt. This article
stemmed from a motor controller pro-
ject and the desire to use FORTH for
everything, including the interrupt
service routine. The implementation
shown in Figure 1 was used for the
pulse width modulation control of a
DC motor. An 8253 interval timer was
the central element in the system. An
interrupt occurred every 250 ms and
the interrupting word updated the
speed and provided feedback informa-
tion to the main routine through a
shared variable. FORTH was extreme-
ly helpful in debugging the system and
undoubtedly saved much time. Fur-
thermore, all of the software fit in
three screens.

Although an interrupt processing
scheme must by definition be hard-
ware dependent, the ideas presented
here are very general and can be ap-
plied to most FORTH systems.

Theory of Operation
In the discussion that follows, the
definitions below are used.
HIGH-LEVEL DEFINITION: A list of
addresses of words to be executed.
Each address actually points to the cfa
of the word to be executed. Each cfa,
in turn, is a pointer to executable code.
IP: The interpreter pointer. Points to
an element inside a high-level defini-
tion; thus a pointer to a pointer to a
pointer to executable code (yes, three
levels of indirection).
NEXT: A routine that advances the IP
and jumps to the code pointed to by
the location pointed to by the location
pointed to by the previous value of the
IP.
DOCOL: The DOES> portion of : . A
routine which loads the IP with a
parameter field address (PFA) passed
to it after first pushing the previous
contents of the IP onto the return
stack.

Figure 1.

SCR #1
0 (INTERRUF?C HANDLING)
1 CODE RETURN PSW POP H POP D POP B POP RE” E N M O D E
2 1 m B E L L & r n ;
3 COl% INTSRV
4 * I N T B L X I N M T J M P E W b C o D E
5 t FUT fCOMPIU33 * CPA * INT ! ;
6 : TESP * ;S IilTSRV ;
7 8 SETINT C3 OVER C! 1+ * INTSRV SWAP 1 ;

B PUSE D PUSI H FTJS PSW PUS3

;S: The word compiled b y ; . A
routine which loads the IP with the
value on top of the return stack.
(Editor’s Note: In 79-Standard and Star-
ting FORTH, this word is called EXIT.)
EXECUTE: A routine which jumps to the
location pointed to by the location
pointed to by the value on the top of
the data stack.

The processing of an interrupt in
FORTH requires seven basic steps:
1) upon receipt of an interrupt,

passing control to the interrupt
service routine;
2) saving the state of the

processor;
3) passing control to FORTH;

4) executing the FORTH

5) returning to the interrupt
word;

service routine;
6) restoring the state of the

7) returning to the routine that

The term “interrupting word” will
be used to refer to the FORTH word
which is intended to be executed upon
receipt of the interrupt. Steps 1, 2, 6
and 7 are relatively simple and most
microprocessors provide for handling
them quite easily. Note, however, that
the “state” of the processor may in-
clude external variables as well as in-
ternal registers. Generally, the saved
information is pushed onto the system
stack in step 2 and popped off the
stack in step 6 (the CPU’s stack may
correspond to FORTH’s data stack, its
return stack or neither).

The main problem comes with steps

processor; and

was interrupted.

3 and 5. There are several different
ways to handle them as there are many
potential entry points into FORTH. All
methods, however, must sooner or
later load the IP and they can be
classified according to how it is done.
There are three categories of methods
as follows:
1) those which initialize the IP

directly (i.e., from assembly
language);

2) those which depend on DOCOL
to initialize the IP; and

3) those which depend on ;S to
initialize the IP.

Note that a particular method may fall
into one of these categories indirectly
(for example, if EXECUTE is jumped to
without first initializing the IP, then
the method would fall into category 2
since it would have to jump to DOCOL
to work]. Those methods falling into
category 2 have the disadvantage of
having to clean up the garbage on the
top of the return stack and may have
to deal with passing the PFA to
DOCOL. The methods of category 3
are sometimes even more involved
since some assemblers don’t provide
easy access to the return stack. So,
category 1 seems to be favorable since
loading the IP directly shouldn’t pre-
sent a problem. However, there are
three basic methods within group 1.
They are:
1) loading the IP and jumping to

2) loading the IP and jumping to

3) loading the IP and jumping to

EXECUTE;

DOCOL; and

NEXT.

Continued on next page

Volume IV, No. 2 FORTH Dimensions 17

Hrndling Interrupts in FORTH (continued from page 17)

If EXECUTE is used, then the top of the
data stack must be initialized. Further-
more, to use DOCOL would require a
PFA (or something to be treated like
a PFA) to be passed. However, the
third method doesn’t require any other
initialization.

Now the question arises of passing
control back to the “restore and
return” routine (steps 6 and 7). To do
this, a pointer to a pointer to the ex-
ecutable code must be left somewhere
that the IP will point to after the inter-
rupting word is finished. The easiest
way to do this is simply to set up a
place in the dictionary with the inter-
rupting word’s code field address
(CFA) followed by the return routine’s
CFA (recall that a CFA is a pointer to
a code field, which points to ex-
ecutable code). Then, by initializing
the IP to the address of the first loca-
tion and jumping to NEXT, execution
will naturally continue with the return
routine after the interrupting word is
done.

A final consideration of the inter-
rupt processing scheme is how to
achieve goal #2 (the ability to reassign
the interrupting word). Since we have
to reserve a location in memory for the
word’s CFA, the obvious approach
would be to allow the CFA of another
word to be stored there.

Specific Implementation Details
This section provides an example of
the method described above for an
8080-based FORTH system with sug-
gestions for systems based on other
processors. As illustrated in Figure 1,
the complete implementation is fairly
short and has little assembly language.

The first question is: what informa-
tion is saved by the processor when an
interrupt occurs? Some CPUs (e.g.,
8080,280 and 2650) push just the pro-
gram counter (PC) onto the stack,
others (e.g., 6502 and 28) save the PC
and a status register while others still
(e.g., 6800, 6809) save the PC and all
registers. The code on line three of
Figure 1 is what is necessary to save
the information which has not already
been saved. Note that if the IP and the
so-called W registers do not reside in
the processor, then they must be
retrieved from memory and saved.

Also note that stack pushes need not
be used. For example, a 280 user
might want to perform EX AF,AF’ and
EXX to switch register banks or a 28
user might want to simply reload the
register pointer register.

The next task is to load the IP (in this
example, the IP is stored in register
pair BC of the 8080). The IP is loaded
with the PFA of INT (which is a pointer
to the CFA of the interrupting word
[initialized to BELL]). Then, there is a
jump to NEXT which will cause the
interrupting word to be executed by
the FORTH system. Finally, RETURN
will be executed, which is the opposite
of line three followed by a return
instruction.

Note that the CFA and the ter-
minating ;S of INT are never used and
to save space they could be eliminated
(for example, if the ; in line two is
replaced by [SMUDGE then no ;S will
be compiled into the dictionary). In
fact, the header could be eliminated
also but retaining it makes things
easier by allowing ’ to be used.

PUT is fairly straightforward. It simp-
ly stores the CFA of a new word into
the location pointed to by the PFA of
INT. See Figure 2 for an example of
how it is used. The word TEST simu-
lates an interrupt and is hardware
dependent. It should be rewritten to
reflect what an interrupt does, preten-
ding that the machine is executing ;S.
In this example, the PFA of ;S is
pushed onto the data stack (which in
this case is the same as the 8080’s
stack) in order to fake a PC push.
Then, INTSRV is jumped to. TEST can be
entered directly from the terminal to
test the system (see Figure 2).

SETINT is specific to the 8080. It puts
a jump to the PFA of INTSRV at a cer-
tain location in memory. For example,
typing 20 SETINT would set up for a
RST 4 instruction. SETINT must be
modified to accommodate whatever
method is used to define the interrupt
service address.

Implementation of Multiple Interrupts
Consider the problem of handling
multiple interrupts in FORTH. The
most direct way would simply be to
define a new INT, INTSRV, PUT, TEST
AND SETINT for each interrupt (only

one RETURN would be required). This
approach would be quite reasonable
for a small number of interrupts since
INT and INTSRV are relatively short and
the other three words would probably
only be needed for debugging. In fact,
any other kind of multiple interrupt
processing scheme would cost addi-
tional speed. However, if space is
scarce and speed isn’t too important,
another method could be adopted. The
type of method used would depend
heavily on the hardware but the
general idea would be to be able to
have only one interrupt service
routine. One such method which used
a look-up table was implemented on
an 8080-based system but it was not
found to be very useful. If any readers
have come up with multiple interrupt
routines that they like, please send
them in.

This article has attempted to provide
a basis for interrupt handling in
FORTH which can be applied to most
systems with some basic knowledge of
the particular configuration. However,
if there were considerations which
were neglected then please let us
know. Also, there must be many other
interesting applications of interrupts
in FORTH so send them in!
(Editor’s Note: This code was written
for fig-FORTH. To run the code on 79-
Standard or Starting FORTH imple-
mentations, change ’ to [’I, except in
line 5 change the phrase [COMPILE] ’ to
’ . Change ;S to EXIT.)

Stephen Melvin is a graduating senior
in Electrical Engineering at the Univer-
sity of California at Berkeley.

Figure 2.

1 LOAD OK
: s m T 2 DlIT ; OI;
: STARS 10 0 Do STAR LOOP ; OI;

OK -

Volume IV. No. 2 FORTH Dimensions 18

FORTH Standards Corner

Towards a New Standard

Robert L. Smith

The Standardization Effort
The FORTH Standards Team met in
May at the National 4-H Center,
Washington, D.C. The team decided to
work towards a new FORTH Stan-
dard, tentatively called FORTH-83.
The mechanism of producing a
FORTH Standard seems to be evolv-
ing. Previously the team members met,
discussed, and then voted on a variety
of topics during a three day session.
Ambiguities and smooth wording
were worked out by a smaller group
of referees. The resulting document
was then offered for acceptance as a
whole by at least two-thirds of the
voting members. One of the problems
with this method is that the time for
deliberation is far too short for the pro-
posals and implications to be thor-
oughly understood.

The next Standard will evolve
through various working drafts. It is
intended that there be opportunities
for public examination and input. By
having more than one meeting prior
to acceptance of the next Standard,
changes and corrections can be made
which should reduce the inconsisten-
cies in the final document.

Perhaps the future standardization
efforts should be split into separate
functions somewhat like that of the
COBOL or MUMPS standardization
committees. At the lowest level a
language development committee
meets regularly to make changes to the
language. Their output is published as
a journal, for consideration and testing
by implementers and users. A separate
Standards committee generates an
actual Proposed Standard document
on the time scale of five years. They
freeze the output of the language
development committee (who con-
tinue to work independently]. After a
suitable voting process, this document
becomes the new Standard. Thus the
community of users has an adequate
chance to make their views known.

Additional steps in the process involve
approval by an ANSI committee, then
perhaps other governmental or quasi-
governmental committees.
Vocabularies
The area of greatest concern for the
next Standard is that of vocabularies.
FORTH-79 has a very weak vocabu-
lary structure. It was chosen as the
minimum subset of most FORTH
implementations. The only weaker
structure is the complete lack of
vocabularies in older versions of
FORTH, such as DECUS or OVRO
(Cal Tech] FORTH. In FORTH-79, the
search order at a given time is through
two vocabularies: the one specified by
CONTEXT and then the FORTH
vocabulary. Some other FORTH
systems (like fig-FORTH] have vocab-
ularies linked together in a tree struc-
ture determined when the vocabu-
laries are created. The search order is
determined by the vocabulary last
activated and its predecessors in the
tree structure down to the trunk of the
tree (which is usually FORTH). In poly
FORTH systems the search order
when a given vocabulary name is
invoked is determined by a four
nybble (in one word) parameter given
when the vocabulary name is created.
Typically this limits the total number
of separate vocabularies to 7 or
possibly 15.

A dynamic method for determining
search order uses the “vocabulary
stack.” This is a concept taken from
STOIC. Each wordset is “sealed,” i.e.,
not linked to any other. A wordset is
pushed onto the vocabulary stack
from, say, the value in CONTEXT by
using a word such as VPUSH (my
favorite name for this function is
ALSO]. Another word is used to drop
the top member of the vocabulary
stack, or perhaps to clear it out
entirely. Bill Ragsdale uses the word
ONLY for the latter purpose. By first
searching CONTEXT and then the
vocabulary stack we can maintain a
reasonable amount of upward com-
patibility. This is an idea advanced by
George Shaw at the last FORML
Conference.

There are many other possibilities.

Don Colburn has suggested a defining
word like SEARCH-ORDER which
would name a word which specifies
the search order. John James has sug-
gested that the invocation of a
vocabulary or wordset name would
push itself onto the vocabulary stack
if it was not currently on the
vocabulary stack. Otherwise the stack
would be truncated back to its first
appearance on the stack.

There are other designs for vocab-
ulary mechanisms. Almost any of
them would be an improvement over
FORTH-79. In my opinion it is impor-
tant that the next Standard have a
significant improvement in vocabu-
lary structures. If you have any strong
opinions on this matter, please com-
municate them in writing to the
FORTH Standards Team.

FORTH Standards Team
Upcoming Working Meeting

A working session in the develop
ment of the FORTH language 1983
standard (FORTH-83) has been
scheduled this October 3rd through
5th in Carmel Valley, California.
Space will be limited with priority for
existing standards team members.
Accommodations will cost US150
based on double occupancy
including meals. Room reserva-
tions require a deposit of US$50
and should be received by July 31.

This working session will attempt
to resolve the FORTH-83 Standard
working draft in anticipation of an
accepted standard near the begin-
ning of 1983. This working draft will
be available for U S 1 5 beginning
August 1. Comments on this work-
ing draft are encouraged. Stan-
dards team sponsors additionally
receive all mailings to team
members prior to the October
meeting, including copies of sub-
mitted proposals and comments.
Standards team sponsorship is
available for USSO.

Please send orders, deposits or
inquiries directly to the FORTH
Standards Team, P.O. Box 4545,
Mountain View, CA 94040, USA; or
telephone Mr. Roy Martens at (415)
962-8653.

Volume IV, No. 2
FORTH Dimensions 19

A Techniques Tutorial

Defining Words II

Henry Laxen

Last time we took a look at defining
words and went through two simple
examples. One was a defining word
that sent strings of characters to the
terminal, and the other one gave
suitable responses to simple com-
mands. This time I will continue on
the theme of defining words, and look
at a more meaty example. We will con-
struct a defining word that constructs
defining words. Try saying that 5
times real fast backwards.

One of the problems with many of
the published examples on defining
words is that they seem to be trivial at
first glance. You get the feeling that
you are being cheated when you see
a 1 line definition of ARRAY or VEC-
TOR. After all, we know how com-
plicated arrays and vectors are and it
doesn’t seem possible that they can be
implemented so trivially in FORTH.
Well, today’s example is a little
rougher, but if you just keep a few sim-
ple principles in mind it will be easy
to follow. In a nutshell, defining words
consist of
1. The word CREATE, which when
executed takes the next word in the
0 Laxen & Harris Inc.

input stream and makes a dictionary
entry for it. The word thus created is
called a member word.
2. The words between CREATE and
DOES > which specify the compile time
behavior of the defining word. These
execute when the word containing the
CREATE and the DOES> executes.
3. The words between DOES> and ;
which specify the run time behavior of
the member words. These execute
when the word defined by the CREATE
DOES> pair is executed. As a bonus,
before the words between the DOES >
and the ; are executed, the parameter
field address @fa) of the member word
is pushed onto the parameter stack.

Remember these three facts, and
apply them whenever you see a defin-
ing word. They completely describe
the compile and run time behavior of
the FORTH machine. If the above
aren’t clear to you, I suggest you
reread the defining words article
printed in the last issue of FORTH
Dimensions, and apply the rules to the
examples presented. We will now
apply them to a new example.

The problem we want to solve is to
be able to create classes of items, and
ask questions about whether an item
belongs to a given class or not. We
would also like to know whether or
not two items are the same or not.

Notice we have two levels of definition
going on here. The first level is the
name of the class, and the second is
the individual elements of the class.
For example, the name of a class could
be COLOR and the elements of the class
COLOR could be RED, WHITE, and BLUE.
One way to implement this is to create
a defining word, called CLASS which
creates classes of things, such as
COLOR. Now COLOR itself can be
another defining word which creates
items belonging to its own CLASS. Only
one question remains before we can
implement the CUSS concept, and that
is the matter of representation. There
are several ways we could indicate
that an item is a member of a CLASS,
for example each class could define an
array, with items belonging to the
class being elements of the array.
Another approach is to store a CLASS
identifier with each element of the
class. The approach we will take is to
create a linked list of items belonging
to a particular class. The advantages
of this approach are that we do not
need to specify the size of the class at
compile time, we do not need to store
redundant information, and it is very
easy to implement.

Now let’s take a look at the code in
Block 24. We will represent each class
by a unique class number, and each

24 149
0 i Set Theory lbJUN82HHL i Set Theorv lLJUNB2HHL
1 VARIABLE I T E M 0 iTEH4 ! ITEHY Uniquely i d e n t i f i e s the name as an item number
2 VARIABLE CLASS8 0 CLASS4 ! CLASS# Uniquely i d e n t i i i e s the class as a c iass number
3 VARIABLE NULL 0 NULL ! NULL Aiwavs zero, for f i n i s h i n q a l inked search
4 : LINK IS addr -- i LINK (S addr -- 1
5 HERE OVER a , swap ! : Add a l i n k t o a l inked l i s t chain. Addr is the head.
6 : CLASS CLASS
7 CREATE il , (L I N ~ CLASS# a i cussc t ! A def in inq rord that creates def in ing words. A unique
B DOES> class nurber is assigned t o a class. The c lass name can
9 CREATE LINK I T E M a , 1 I T E M t ! be used t o create items belonging t o the class. An i tem

1 0 DOES:) 2+ 5 : number is assianed t o each member. tleebers are l inked.
11 : HEHBER?
12 0 -RUT EE6IN 0 DUP WHILE 2DUP 2t 3 Takes an i t e a nuaber and a pointer t o a class, and returns
13 = I F ZDROP DROP 1 1 NULL THEN REPEAT 2DROP : True i f the i tem is a member of the Class. E lse False.
14 : HEHBERS (S p f a -- ! HENBERS (S p f a --)

15 BEGIN 3 DUP VHILE DUP NFA ID. REPEAT DROP ; Takes a pointer t o a c lass and l i s t s its members.

(5 n p i a -- f I NENBER? (S n p f a -- f 1

Volume IV, NO. 2 20 FORTH Dimensions

item by a unique item number. The ted, determining the compile time
word LINK is used to add a new item behavior of the word CLASS. They do
to a linked list. The address it expects the following. First the ZERO , is ex-
on the stack contains the address of ecuted, which initializes the linked list
the head of the list. Let’s look at LINK to empty. Next the class number is
in detail. Sumose that HERE is at stored and incremented. That is all -.
17000, then: that happens at compile time.

addresses contents 15000 LINK [CR] contents
10000 0 0
12000 10000 10000
15000 12000 17000
17000 ????? 12000

Stack
15000 LINK 15000

HERE 15000
OVER 15000
@ 15000

15OOO
SWAP 17000
! Empty
7

Location 15000
12000

17000 12000
17000 15000 12000
17000 12000 12000
17000 12000
15000 12000

17000

Location 17000
I????
?????
I????
?????
12000
12000
12000

Thus after the execution of LINK, 3. When the word defined by CLASS,
location 15000 now points to the new
head of the linked list, namely 17000,
which now points to the previous head
of the linked list, namely 12000. Also,
after LINK has executed, HERE would be
at 17002, due to the , that was execu-
ted as part of LINK. We have just
created what is called a singly linked
list; that is, a list where the pointers
only run in one direction. As an exer-
cise, you might try to create a doubly
linked list, that is, a list where pointers
point to the next and the previous ele-
ment. For extra credit, figure out how
to create a double linked list using only
a single cell for the pointer!!

Now then, let’s continue on with our
CLASS example. We will apply our
three rules to the definition of CLASS.
I. We see a CREATE, so we know that
CLASS is a defining word. Thus when
CLASS is used, we expect it to be
followed by a yet undefined word
which it will define, such as COLOR.
COLOR would be called a member word
of the defining word CLASS.
2. When CLASS is executed, the words
between CREATE and DOES > are execu-

such as COLOR, is executed, the para-
meter field address of COLOR is pushed
onto the parameter stack, and then the
words between the DOES> on line 8
and the ; on line 10 are executed.
(Question: What is the significance of
the parameter field address of COLOR?
Answer: It contains the pointer to the
head of the item list, which was initial-

ized to ZERO and is followed in the next
cell by the class number of this class.
Thus the parameter field address
allows us to uniquely identify the
CLASS of COLOR, as opposed to some
other class.)

Now then let’s look at what happens
when COLOR is executed. We start with
the pfa of COLOR on the stack. Next we
encounter a CREATE. That means we
are executing a defining word!! It
looks like we’ll have to apply rules 1-3
one more time, but this time they
describe the behavior of COLOR, not of
CLASS.
1. The word CREATE is executed, and
it gets the next word in the input
stream and adds it to the dictionary.
Thus we expect COLOR to be followed
by another word, say RED. Note the pfa
of COLOR is still on the parameter stack.
2. The words between the CREATE and
the DOES> are executed, and deter-
mine the compile time behavior of the
word COLOR. The first thing they do is
LINK up the pfa of the member word,
RED, to the pfa of the defining word
COLOR. Next the Item number is stored
and incremented. That is all that hap-
pens at the compile time of COLOR,
since the next word we see is DOES > .

Continued on next page

Volume IV, No. 2 FORTH Dimensions 21

Defining Words 11 (continued from page 21)

3. When the word defined by COLOR,
say RED, is executed, we push the
parameter field address of RED on the
stack, and execute the code between
the DOES> and the ; on line 10. It
simply increments this pfa by 2 and
fetches the contents of that location.
In Step 2 just above we saw that we
stored the item number corresponding
to RED in that location. Thus the run
time behavior of an element of a class
is to push its item number on the stack.

We have succeeded in creating a
defining word, called CLASS, which in
turn defines more defining words.
Look at Block 25 to see how it can be
used. We use CLASS to define the
classes of COLOR and TEXTURE. Next we
use the word COLOR to define some
members of its class, such as RED,
WHITE, and BLUE. Furthermore we use
the word TEXTURE to define some
members of its class, such as HARD and
SOFT. Now we want to be able to ask
questions like, is YELLOW a member of
the class COLOR or is WHITE a member

of the class TEXTURE? To answer this
question we define a word called
MEMBER? on lines 11 thru 13 of Block
24. It expects an item number and a
pointer to a CLASS on the stack. It
returns a flag indicating whether the
item number is a member of the class.
We can get an item number by simply
executing the name of an item, such
as RED or SMOOTH. It’s a little trickier
to get a pointer to a class, since when
we execute a class name we define a
new word, and we don’t get a pointer.
We solve this problem by using ’ (tick)
to get a pointer to a class. Thus to
determine if YELLOW is a member of
COLOR we would have to type:
YELLOW ’ COLOR MEMBER? [CR]

MEMBER? is defined to run through
the linked list and see if the item
numbers match. If they do, it returns
true, otherwise it returns false. Notice
the use of the NULL variable to ter-
minate the search in the event of a
match. The search continues until the
zero link is found, however if we get

a match, we want to terminate imme-
diately. We arrange this by throwing
away the pointer we have been chas-
ing and replacing it with a pointer to
a zero, which is exactly what NULL
provides.

Finally, on lines 14-15 of Block 24
we define the word MEMBERS which
lists all of the members of a particular
class. It too expects a pointer to a class
on the stack, which must be provided
by ’ .

Next time we’ll finish up our series
on defining words by generalizing the
concept of CLASS to an arbitrary
number of levels, and by combining it
with recursion to create ‘In’’-way trees
and other linked structures. Stay tuned
to this station for all the details. That’s
all for now, good luck, and may the
FORTH be with you.

Henry Laxen is part of Laxen &
Harris Inc., a FORTH teaching and
consulting company based in
Hayward, California. 0

-=-=-=-=-
-=-=-=- 8080/280 FIG-FORTH for CP/M & CDOS systems -=-=-=-

-=-=-=_=-
$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and

debugging them. You receive TWO 8 inch diskettes (single sided, single density, soft sectored
only). The first disk is readable by Digital Research CP/M or Cromemco CDOS and contains 8080
source I keyed from the published listings of the FORTH INTEREST GROUP (FIG) plus a translated,
enhanced version in ZILOG 280 mnemonics. This disk also contains executable FORTH.COM files for Z80
& 8080 processors.

-=-=-=-=-
The 2nd disk contains FORTH readable screens including a extensive FULL-SCREEN EDITOR p l u s many

items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data base handler, an
8080 ASSEMBLER and formatted memory dump and 1/0 port dump words. The disks are packaged in a ring
binder along with a complete listing of the FULL-SCREEN EDITOR and the FIG-FORTH INSTALLATION MANUAL
(the language model of FIG-FORTH, a complete glossary, memory map, installation instructions and the
FIG line editor listing and instructions).

it is based. Copies may be distributed when proper notices are included.

USA Foreign

-=-=-=-=-
This entire work is placed in the public domain in the manner and spirit of the work upon which

-=-=-=-=-

AIR
+- +
+-+
+-+
I I Above described package $50 $60

I I Printed 280 Assembly listing w/ xref........$15 $18
+-+ (Zilog mnemonics)
+- +
I I Printed 8080 Assembly listing $15 $18 +-+

TOTAL $- -
-=-=-=-=-

Price includes postage. No purchase orders without check. Arizona residents add sales tax.
Make check or money order in US Funds on US bank, payable to:

Dennis Wilson c/o
Aristotelian Logicians
2631 East Pinchot Avenue

Phoenix, A2 85016
(602) 956-7678 - =_ =- =- =_

Volume IV, No. 2 22 FORTH Dimensions

Source Screen Documentation Tool

Kim Harris
Laxen 6 Harris, Inc.

This article describes a simple but powerful program
which extracts and prints information from FORTH
source screens. This tool will print lines of a screen which
start with a non-blank in the first column. It also prints
the screen number and line 0. If source screens are entered
according to a simple, natural FORTH style, then this tool
extracts most of their useful information.

Two words are defined for the tool:
10UTLINE #screen -

Print “outline” of one block. Display the #screen, line
zero, and any lines containing a non-blank in the first
column.

Print lines as described in 10UTLINE above for the range
of screens from #lst-screen through #lastween. It is
used like INDEX.

An example of using this tool on its own source screen
is shown below. The first line of the compressed “listing”
shows the screen number and line 0.

The next four lines are indented and are copies of lines
2, 3, 11, and 12 of the source screen. These lines have a
non-blank in the first column. Lines with a blank in the
first column are ignored.

This tool works best if a particular style for the layout
of a source screen is used. The style is simple to remember

OUTLINE # I s t w e e n blast-screen -

and fits well with normal Forth programming. The goal
is to permit OUTLINE to find the words defined in a screen
and selected comments.
1) Overall format:

a) Line 0 should be used for a comment only.
b) Line 15 should be left blank.
c) Any line may have text from the first column UP

TO the last column. The last column of each line
should be blank to avoid running into the start
of the next line.

2) Start each definition in the first column of a new line.
This applies to colon definitions and all other classes
(e.g., CONSTANTS, VARIABLES, etc.)

3) Follow each defined name by a “stack comment”
similar to that of a glossary entry.

4) Follow each stack comment by a “purpose comment”
(i.e., WHAT the word does, not HOW it does it). If the
comment is continued to the next line, put an open
parenthesis in the first column of the second line.
Although this is not required for FORTH, it allows
OUTLINE to pick up this comment line.

The documentation tool is compatible with the following
dialects (except as noted below): 79-STANDARD, Starting
FORTH, fig-FORTH, and polyFORTH.

The implementation assumes 1024 byte disk buffers and
64 byte lines for screens. On a single-user FORTH system,
TYPE may be used instead of >TYPE. On a multi-user
system, >TYPE is needed to avoid conflicts between shared
disk buffers and interrupt controlled Inputloutput opera-
tions. >TYPE copies its string to PAD before typing it.

Screen * 155
0 (Source screen documentation tool WF25 2Apr02 KRH 1
1
2 : 1OUTLIIJE (*screen --) (Print line 0 & lines with
3 (non-bIanK in column 1)

4 CR CR . * ’ Screen * ” UUP . 1024 0 DO
5 I3UP BLOCK I + DUP CB BL = NOT I 0= OR IF
6 3 SPACES 64 -TRAILING)TYPE CR ELSE
7 DROP THEN
8 64 +LOOP
9 DROP :

1 0
I f : OUTLINE (rlst-screen *last-screen --) (Print line (3 b
12 (lines with non-blank in column 1 for range of screens)

13 1+ SWAP UO I lOUTLINE LOOP i
14

~~ ~~ ~ ~ ~

Above is the source for this documentation tool. Saying 155 10UTLINE produces the “listing” below.

Screen * 155 (Source screen document at ion too I WFZS 2 A ~ 1 - 8 2 KHH)
: lOUTLINE (*screen --) (Print line 0 & lines with
(non-blank in column 1)
: OUTLINE (*lst-scrcen *last-screen -- 1 (print line 0 4
(lines with non-blank in colunm 1 for range of screens)

Volume IV, No. 2 FORTH Dimensions 23

The Art of Recursion

Bob Gotsch

Inspired by the interesting “Roundtable on Recursion” in
Vol. 111, No. 6, FORTH Dimensions, I would like to offer
some models for recursive style in FORTH. Several kinds
of recursion are possible in FORTH, so long as stack limits
are recognized. Whether to use recursion at all may be
questioned by some; it has the distinction of being much
more interesting - and slower - than branching and
iteration with conventional control structures.

To begin, two words are needed, MYSELF which calls the
word-as-a-whole in which it is used, and RETURN, which
is simply
: RETURN R> DROP ;
(Editor’s note: The 79-Standard word EXIT has the same func-
tion.) RETURN is used in a “stoprule” which stops and
returns execution to the calling level. Remember, when
RETURNing, FORTH lets you decide whether to DROP local
variables associated with that instance of the procedure.
The following procedure COUNTUPTO illustrates this.
: COUNTUPTO (level# ---)

MYSELF (level# ---)

DUP O = IF DROP RETURN THEN (stoprule)
DUP 1 -

CR . ” LEVEL ”
- 1 (remove 1 stack param)

(put 1 param on stack)

The procedure-as-a-whole destroys the parameter it starts
with, so MYSELF must behave the same way.

If there is a risk of exceeding data stack capacity (93 in
the FORTH I use), an alternative to piling up so many local
variables is to have the procedure reverse the parameter
change it makes. PROCEDURE.IN&OUT decrements by 3
before calling itself and increments by 3 upon RETURNing.
Also it draws a diagram of its own action.
0 VARIABLE LIMIT
: PROCEDURE.IN&OUT (size --- size +6)

DUP LIMIT Q c
IF 135 RIGHT 4 FORWARD 135 LEFT 6 +
RETURN THEN (stoprule)

DUP FORWARD
90 LEFT

3 - (change stack for next level)
MYSELF (size --- size + 6)

3 + (reverse change upon return)
90 RIGHT
DUP BACKWARD ;

If you will accept as self-evident the relative turning and
displacement commands FORWARD, BACKWARD, RIGHT, and
LEFT, each consuming one parameter, here is the figure
it draws.
(Editor’s note: The author is using the syntax of “turtle

graphics,” where lines are drawn as though they were tracks
left on the screen by a cursor [called the “turtle’7. The com-
mands used to move the cursor are these:
n FORWARD Moves the cursor n units forward in the

direction it is already pointing.
n BACKWARD Negates n, then calls FORWARD.
n RIGHT Changes direction by adding n [in

degrees] to the current heading.
n LEFT Negates n, then calls RIGHT.)

A minor disadvantage is that as MYSELF had to leave a
value on the stack for each next level coming back up, SO

does the procedure-as-a-whole leave a value. A named
variable could have been used instead, or in this example
a “setup word” could also do stack cleanup.
: IN&OUT (startsize, limit ---) LIMIT !

GRAPHINIT POSITION ARROWHEAD
PROCEDURE.IN&OUT DROP ;
This variation minimizes use of data stack but could

reach return stack limits (112 in the FORTH I use). Some
practical applications of recursion, with branching, have
more “lateral” activity rather than going to such depth.
I will RETURN to branching, with examples, a little later.
But another way to avoid return stack limits is to write
a procedure that does its work “as it goes” rather than “as
it comes back” up the levels. If it invokes itself repeatedly
as the last instruction, without coming back, it is called
“tail recursion” or sometimes “not true recursion.” Some
folks even claim that the job can be done more efficiently
with iterative structures such as DO LOOP and BEGIN AGAIN.
Probably such practical people will not see any point in
this article-as-a-whole.

Here is a simple example that draws a diagram of “tail
recursion,” jumping out of the cycle when a limit condi-
tion is reached.

Volume IV. No. 2 FORTH Dimensions 24

: CYCLEUNTIL (startsize ---)
DUP 5 <
IF 90 RIGHT 95 + FORWARD ARROWHEAD
RETURN THEN (stop rule)

6 LEFT DUP FORWARD
1 -
R > DROP MYSELF :

m 1.atice the same form, a “stoprule” at the beginn..ig of
the procedure. R > DROP prevents useless build-up on the
return stack, allowing unbounded repetition. But if
CYCLEUNTIL were called from within another word, the R>
DROP first removes from the return stack the address of
the next action in the “calling word,” jumping over,
instead to the level that called the “calling word.” To avoid
this little inconvenience I propose to have the recursive
word push its own PFA on the return stack with a variant
of MYSELF called TAILMYSELF.
: TAILMYSELF (---)

LATEST PFA [COMPILE] LITERAL
COMPILE >R ; IMMEDIATE
I show its use here in a division-by-subtraction opera-

tion that ACCUMULATES the quotient in a variable of the
same name. You don’t have to tell me that /MOD is available
to do the same thing at a saving of 30 seconds. Note the
recursive call is the last word in the procedure.
0 VARIABLE QUOTIENT
: ACCUMULATE (divdnd, divsr --- remndr)

2DUP <
IF DROP RETURN THEN (stoprule)

TAILMYSELF (divdnd, divsr --- remndr)

1 QUOTIENT +!
2DUP - ROT DROP SWAP

1

: DIVISION (dividend, divisor ---)
0 QUOTIENT !
ACCUMULATE
CR . I ’ QUOTIENT IS ’ I QUOTIENT ?

Returning to “depth recursion,” that RETURNS in order
to branch, this next procedure draws a branching tree.
PENDOWN or PENUP determine whether the moving “turtle”
draws or not. BI-TREE includes two recursive calls, one for
each side of the “V.” The “Y-shaped” element spans two
levels. Comparing with IN&OUT above, this procedure
returns with the parameter still on the stack - for use on
the other branch. In stepping thru, trust that the
procedure-as-a-whole is transparent and ignore the
MYSELFs. In fact the Zen of reading or writing recursive
procedures is to be NOT distracted to other levels by the
MYSELF. Just be in this instance.
0 VARIABLE LEVEL
: BI-TREE (size --- size)

.I9 REMAINDER IS ” . ;

LEVEL @ 1 c IF RETURN THEN (stoprule)
PENDOWN DUP FORWARD

-1 LEVEL +!
45 LEFT
DUP 6 9 RANGERAND 11 *I (branchsiz)

90 RIGHT

DROP (branchsiz)
45 LEFT
1 LEVEL +!

MYSELF (size --- size)

MYSELF (size --- size)

PENUP DUP BACKWARD ;

LEVEL ! GRAPHINIT FULLSCREEN
: SETUP.BI-TREE (size,level---) 2 ENUF?

PENUP 95 BACKWARD BI-TREE DROP ;

Continued on next page

Volume IV, No. 2 FORTH Dimensions 25

The Art of Recursion (continued from page 25)

In one last example that parallels the first, parameters
are piled on the stack, to be used for drawing on the way
back up the levels, after the stoprule has been encountered.
The pattern was drawn with starting size of 180, so it’s
somewhat possible to see why there are six sizes of
triangles. Excuse the mixing of iteration and recursion.
It just seemed more readable that way.
: HALVE 2 I ; : TIMES 0 ;
: PROC.NESTED-TRI (size ---)

DUP 5 <
IF DROP RETURN THEN (stoprule)
3 TIMES DO

DUP HALVE
MYSELF (size ---)
DUP FORWARD
120 RIGHT

LOOP
DROP ;

Bob Gotsch is a graphics programmer for Time Arts,
Inc. and a teacher of graphic arts at California College
of Arts and Crafts. He’s interested in exploring the use
of computers as aids to artists.

OmniFORTH is a high-level
language and operating

FORTH-79 Standard with Pro ramming Aids, Utilities,
Double-Number Standard
Extensions Listings and Source on Disk
Full 31-Character Uni ue Full Screen Video EDITOR

ASSEMBLER for the 8080/Z80 Complete with 150+ pages of
Processors easy to understand manual

an 8 Examples Illustrated with

Names (based on fig-F B RTH) for 16x64 and 24x80 Displays

(Florida residents add sales tax
U S Funds only Forelgn orders INTERACTIVE COMPU

Volume IV
FORTH Dimensions 26

OmniFORTH 3.0 OmniFORTH 3.0

(Requires 1 Drive & 32K) $1 30
for the TRS-80 Model Ill for the North Star DOS

8080. 8085 and Z80 Compatible

OmniCROSS
Prints a cross reference of your

FORTH application Identifies

(Requires 1 Drive & 32K) $1 30
OmniEDlT

full screen Video EDITOR for
cursor addressable displays

(Included in OmniFORTH 3 0) $30 $30 each w o r d that you use

OmniEDlT and OmniCROSS both require
fig-FORTH or FORTH-79 Packages

source on disk

COMING SOON
OmniFORTH 3.0 for the North Star

come w i th documentation and ADVANTAGE
I I

NANDGATE LABORATORIES I NOTE: Please specify your system and
disk density with each order

BOX 270426, TAMPA, FL 33688-0426

FORTH PROGRAMMING AIDS FPA by curry Associates
FORTH PROGRAMMING AIDS is a software
package containing high level FORTH routines
which allow the FORTH programmer to write
more efficient programs more quickly, and they
are especially useful for those who are using
a metacompiler or cross compiler.
FORTH PROGRAMMING AIDS allow the pro-
grammer to

0

0

Minimize memory requirements for target
systems by finding only those words used
in the target application. 0

words) to specific needs by decompiling
Tailor existing words (including nucleus

the word to disk editing, and recompiling.

Build on previous work by transferring
debugged FORTH routines (including
constants and variables) from one appli-
cation to another.

Speed program loops by finding all words
called from the loop for possible merging
or recoding to assembler.

Patch changes into compiled words in
seconds.

- ~~~ -

FORTH PROGRAMMING AIDS comes with complete source code and a 40-page manual. FPA
contains the following modules:

(NFAWFA: 4094 4108)

: INTERPRET DECOMPILER This is a true decompiler which

control words such as IF, ELSE, THEN, BEGIN, etc.
If you ask FPA to DECOMPILE the nucleus word

converts the FORTH words in RAM into compilable,
structured FORTH source code, including program

REGIN -FIND
I F STATE 3 <

I F CFA ,
ELSE CFA EXECUTE
THEN ?STACK INTERPRET, you get the following output displayed

on your terminal within 3 seconds: I F CCOMPILEI DLITERAL
ELSE HERE NUMBER DPL 3 1+

ELSE DROP CCOMPILEI LITERAL
THEN ?’STACK

THEN
AGAIN :

You may DECOMPILE one word, or a range of words at one time - even the whole FORTH system!
This decompliled output may be sent by FPA options to the console, printer, or to disk. DECOMPILE is
useful for looking up words, or for obtaining variations of words by decompiling to disk editing, and
recompiling.
SUBROUTINE DECOMPILER The subroutine
decompiler finds words called by a specified
word to all nesting levels. This makes FORTH
PROGRAMMING AIDS especially useful for
metacompilers or cross compilers and for finding
words called within a loop. The found words
may be DECOMPILEd to disk.
CAUFINDER This set of routines is designed to
find the calls to a specified word or set of words,

System Requirements FORTH nucleus based on the fig-FORTH model or 79-STANDARD; a minimum
of 3K bytes and a recommended 13K bytes of free dictionary space.

Yes, send me a copy of FORTH PROGRAMMING AIDS, including all source code and the 40-page manual.
0 fig-FORTH model $150 Calif. residents add 6.5% tax.
0 FORTH-79 STANDARD (specify system)
0 Manual alone (credit toward program purchase)
0 Send more information

either within the context vocabulary or across all
vocabularies. Useful to locate and merge infre-
quently called words, or to see which words will
be affected by changing the specified word
-swoR This program a one-to-
one translation of the high level FORTH words in
RAM. (This is sometimes called decompilation,
but the output is not suitable input for a FORTH
compiler). Useful for debugging, patching into
compiled words, etc.

Ren Curry 415/322-1463 or Tom Wempe 408/378-2811 _ - - - - - - - - - - _ _ _ _ - - - - - - - - - - - - - -

$150
$25

Foreign air shipments add S 15.

0 Master Charge 0 Visa Account Number Exp Date

Name Indxate d s k format

Company

Street

City State Zip

Send to Curry Associates PO. Box 11324 Palo Alto, CA 94306 415/322-1463 or 408/378-2811

0 8” ss/sd fig-FORTH screens
0 8“ ss/sd CP/M” 2 2 file
0 Apple 3 3
0 PCFORTH
0 Other

_-
FORTH Dimensions 27 Volume IV. No. 2

A Recursive Decompiler

SCF: # 55
0 f GOES INTO)
1 : HYSELF LATEST PFA CFA 9 i IHHEDIATE
3 (REGULAR FIG PFA 6 LFA)
3 0 VARIABLE GIN f t TO INDENT 1
4 : GIN+ CR GIN P 2 t DUP GIN ! SPACES i
5 : D I N CR GIN F SPACES i
t
7 : GCHK DUP F 2+ ’ COHPILE =

9 ELSE DUP @ 2 t DUP ’ L I T =
3 IF 2 t DUP e 2 t NFA ID, 2t

10 OVER ‘ BRANCH = OR
11 OVER ‘ OBRANCH = OR
12 OVER ’ (LOOP) = OR
13 SWAP ’ (+LOOP) = OR

15 ELSE DUP I! 2t ‘ CLIT =
14 I F 2 t DUP F SPACE + 2t

1s I F 2t DUP C@ SPACE 1t
17 ELSE DUP F 2t ‘ (e n >
13 I F 2 t DUP COUNT TYPE
19 DUP CI) It t
20 ELSE 2+ THEN THEN THEN THEN
21 -2 G IN t ! i
12 (HANDLE SPECIAL CASES)

SCR t 56
0 (GOES INTO)
1
2 : (GOESINTO) (PFA. .+)
3 DUP CFA @ ‘ : CFA @ =
4 OVER ’ ERROR = O= AND

6 BEGIN DUP @ DUP ’ i s CFA =
7 OVER ’ (;CODE) CFA = OR O=
8 WHILE (HIGH LEVEL 6. NOT END OF COLON
P DEFINITION 1

11 I F (‘l?‘) SP! QUIT
12 ELSE 13 = (RETURN)
13 I F (GO DOWN ONE LEVEL) flYSELF
14 ELSE DROP THEN
15 THEN GCHK
16 REPEAT (SHOW LAST UORD)
17 21. D I N NFA ID ,
18 THEN DROP i
19
20 : GOESINTO -FIND I F DROP 0 GIN !
21 (GOESINTO) ELSE +” NOT FOUND“ THEN i
22

5 I F (COLON DEF. 6. NUT ’ERROR‘)

10 2t DUP GIN+ NFA I D , KEY DUP 81 =

Robert Dudley Ackerman

Editor’s Note: A FORTH “decompiler”
is a tool that scans through a compiled
dictionary entry and tells you what has
been compiled. In the case of a colon
definition, it prints the names of the
words that are pointed to inside the
definition. In an ideal programming
environment, in which you have the
source for your system right on your
disk, you may not need a decompiler.
But otherwise, it beats all the hit and
miss “ticking” and dumping you would
have to do. Decompilers can also be
useful learning tools.

A very thorough decompiler was writ-
ten by Ray Duncan of Laboratory
Microsystems and published in Doctor
Dobbs, September 1981. The following
decompiler, while not as complete as
Ray’s [and not as elegantly written -
beware of long definitions), introduces

a clever feature: recursive descent. In
this version, pressing the space bar
steps you through each name used in
a colon defintion, but pressing carriage
return instead causes the word whose
name was just printed to be itself
decompiled. This allows you to weave
your way through the threaded inter-
pretive code down to any level you
want.

On occasion it is desirable to know
what words a given word is made up
of and what words those words are
made up of in turn. Thus the word
GOESINTO, which naturally calls for
recursion. I used MYSELF defined with
a few standard FIG words.

GIN keeps track of indentation (Goes
IN). DIN does an indentation (Does IN-
dent). GCHK does special cases, par-
ticulary where a word is followed by
a literal (or a one bite literal, called CLIT
in Lyon’s FORTH). The main word,
(GOESINTO) is straight-forward. For a
colon definition, it goes through each
code field printing a name and waiting
for a key.

A ‘Q’ ends execution; a carriage
return calls (GOESINTO) recursively,
printing out the names in the last word
shown; any other key continues until
a ;S signals the end of a colon defini-
tion, or (;CODE) signals a drop into
machine language from high level.

One improvement I envision is be-
ing able to back up one level, rather
than quiting altogether. This would
avoid the problem of having to avoid
‘error’ and other words which use
words which use themselves. You
could back up one level rather than
quiting, not being able to finish the
original word. Another improvement
would be to use a fence to avoid see-
ing low level words of no immediate
interest.

To use this utility with a Starting
FORTH system, change the ticks to
bracket-ticks. ’ -> [’I .

RobeTDudley Ackerman is head of
the San Francisco Apple Core
FORTH Users. 0

FORTH Dimensions 28 Volume IV, No. 2

TESFFL!‘Y
A 2 0 MILUON JET

ON AN APPLE?
At the Bethesda Naval Research Center, they’ve
discovered the power of MicroSPEED. The Navy’s
engineers use this remarkable hardwarehoftware
combination to “fly” an advanced fighter aircraft
in real time-even making vertical landings on a
simulated carrier deck. A “crash” is merely another
learning experience, and an opportunity to modify
the research aircraft-inside the Apple-to improve
tomorrow’s combat planes.
Surprised that such a sophisticated task is possible
on the Apple? So were the Navy’s officials, and many
others who have discovered.. .
THE MICROSPEED DIFFERENCE This extraordinary
Language System exploits the real potential of the
microcomputer for the first time. The difference
between MicroSPEED and other programming lan-
guages is that with MicroSPEED, there is virtually no
limit to what you can achieve. It may well be the
ultimate language for the Apple I1 and I11 (and soon
the IBM Personal Computer). MicroSPEED literally
combines the performance of a minicomputer with
an exhaustive set of user-friendly capabilities:

hardware math processing, fast hi-res graphics
and text, turtle graphics, print formating, two text
editors, unlimited data types, and incredible FORTH
extensibility-all at speeds up to 100 times faster
than Basic.
USER-FRIENDLY, EASY-TO-LEARN Starting with
simple commands that are comfortable even for
non-programmers, MicroSPEED extends and builds,
allowing you to create your own tailored application
languages. The capability of your computer will
grow exponentially, as you work in an active part-
nership with the machine, exploring and develop-
ing new problem-solving facilities-creating, cor-
recting, refining your increasingly powerful system.
DEMANDING JOBS AT LOW COST Developed
by a team of standout computer professionals,
MicroSPEED has been put to the test in fields as
diverse as medicine, the stock market, oceanography,
and the arts. In even the most challenging appli-
cations, MicroSPEED users have been unanimous
in their praise of the System and manual. Typical
comments are:
“Very high marks:’

“Tbe more I use MicroSPEED, the more I love it:’

“Great!. . .A joy to use:’

Thomas Tosch Ph.D., Tosch Information Management.

Prof. James L. Hockenhull, University of Washington.

H e n n Harris, Mission Designer, Cal Tech’s Jet Propulsion Lab.
“rfuou plan to use the Apple or IBM Personal
Computer for
MicroSPEED for y a : ’
Sam Cottrell, President of Applied Analytics.

I single disk. MicroSPEED I1 includes 2 MHz math processor.

demanding task, then we built

I
I
I

lollllllll-l--ll-lllll--

I Micro SPEED I1 + includes 4 MIIz math processor.

MicroSPEED requires the Apple o r IBM Personal Computer with

I Applied Analytics Incorporated
18910 Brookridge Drive
I Upper Marlboro, Manland 20772 (301) 627-6650
I I’m interested! My computer is: I

I
I
I
I
I
I
I
I

I Please send me:
-MicroSPEED 11, $495.00
I -MicroSPEED I1 +, $645.00
I Name:
I Company
I Address,
I city State-Zip-Phone No. () ! Use this coupon to order, or for more information

160 Page Manual, $15.00
Detailed Information

APPLE I\ A TRAUE\IAHK OF API’Lt COVPI TEK IUC I

FORTH Dimensions 29 Volume IV. No. 2

6502’s U/ BUG
Jack Haller
Boonton, NJ

I have discovered a bug in the fig-
FORTH 6502 ASSEMBLY SOURCE
LISTING RELEASE 1.1 involving the
word UI . I came across this problem
while trying to implement Glen
Hayden’s “A Serial Day Date Com-
pression which appears in the 1981
FORML Proceedings. After typing in
Mr. Hayden’s screens and running
them I noticed that after a certain date
the program came back with errone-
us dates. Upon further debugging I
traced the problem to the word UI and
proceeded to test. I found that the
following terminal entries provide a
valid illustration of the problem:
1007671. 36525 UI . 27 OK

(Quotient is correct)
1007672. 36525 UI . 24 OK

(wrong, should be 27)
Apparently, any unsigned divisor

SCR # 49
0 (U/ F I X E D) HEX
1 CODE U / N 1+ STY,

SEC LDY, 2 SEC 2+ LDA,

4 SEC 3 + LDA, SEC l + LDY.
SEC 3 + STY, .A ROL. SEC 1 + STA.

6 10 # LDA. N STA.
7 BEGIN. SEC 2+ ROL. SEC 3 + ROL, N l+ ROL.
8 SEC, SEC 2+ LDA, BOT SBC, TAY,

SBC. FLA,

3 SEC 2+ STY, .A ASL, SEC STA .
c

9 SEC 3 + LDA, BOT l+ SBC. FHA,
1 0 N l+ LDA, 0 #
11 CS IF, SEC 2+ STY, SEC 3 + STA, THEN,
12 SEC ROL, SEC 1 + ROL, N DEC, Q= UNTIL ,
13 POP JMP. END-CODE
14 DECIMAL i s
15

greater than or equal to 8000H will
exhibit the symptoms.

Tracing thru the machine code of UI
step by step for the two examples
above, I found that at the 13th itera-
tion in the division loop the MS word
of the dividend assumes the value of
8000H. Since the divisor is 8EADH,
the carry to the quotient is not set. The
MS word of the dividend is then
shifted left, and since the arithmetic is

only to 16-bit precision, what should
be lOOOOH becomes OOOOH and the
next iteration is not valid.

In order to put forth a solution, I
have written a modified version of UI
which uses an extra byte of precision
where needed (above). I do not claim
that my analysis or solution is the
definitive one, but only would like to
inform any user about the possible
problem.

BACKTOACKERMANN
Don Russ

Lake Forest, IL
I recently received Volume 111,

which was most interesting and enjoy-
able. There was, however, at least one
error that may have been brought to
your attention by now. On the chance
it was not, a working listing of the Fig-
FORTH version of the Ackermann
function from page 89 follows:
(Ackermann function)

1 CALLCNT + I OVER
IF

: ACKERMANN [SMUDGE] (K J - F)

DUP
IF

OVER OVER 1- ACKERMANN
ROT ROT DROP 1- SWAP ACKERMANN

DROP 1- 1 ACKERMANN
ELSE

ENDlF
ELSE

SWAP DROP I+
ENDIF [SMUDGE] ;
This was transferred to a text file

from a FORTH screen that executed

with the same results published, so be
assured it is typographically correct.
May I suggest that the same procedure
could make your publication easier to
publish and increase the integrity of
its contents?
Thanks for your letter. Regarding your
final comment, we agree in principle.
Unfortunately, the quality of your
printer was such that we could not
reproduce your listing. Writers, please
use black ribbon on plain white paper.
-Editor

FLUSH IS TOO MUCH
Bruce Walker
San Pedro, CA

FLUSH in the FIG model of FORTH
writes out the memory buffers, and
invalidates them at the same time, so
that the next time one is needed, it has
to be reread from disk again. That is
logically fine, but leads to quite a lot
of IIO and in the normal edit-compile-
test-edit-. . . sequence can be frustrat-
ing. The enclosed code writes out the
buffers but leaves the buffers still

marked as valid. This protects you
against disasterous edits or test cases
which run away, but still keeps 110 to
a minimum. (Curiously, SAVE-BUFFERS,
the FORTH-79 standard analog of
FLUSH, is silent on whether the
memory buffers are valid after its
execution.] I believe that this version
is better as FLUSH can be defined as
: FLUSH FL EMPTY-BUFFERS ;
but FL cannot be made out of FLUSH.

Naturally, this definition is valid
only for Fig-model FORTHs.
: FL FIRST LIMIT FIRST
- BIBUF4 + I O D O
DUP @ Oc
IF DUP @ 32767 AND OVER
DUP 2+ OVER @ 0 RMI THEN
BIBUF 4 + + LOOP DROP ;

All true. The current FLUSH combines
two logically distinct functions: writing
changed buffers to disk, and marking
the buffers as empty. The second func-
tion, sometimes called a “mount” com-
mand, allows you to change disks after
a FLUSH. -Michael Perry

,

Volume IV. No. 2 30 FORTH Dimensions

RANDOM BUGS
Donald P. Madson
Minneapolis, MN

While using the random number
generator that has appeared in
FORTH Dimensions (111/5, pg. 152), I
noticed a problem. If the seed is $3954
the scaling ratio becomes one and the
result is equal to the range instead of
the range -1. Depending on the pro-
gram this could cause anything from
minor irritations to program self-
destruction.
Thanks Don. I’d like to point out that
a different high-level random number
generator appears on p. 265 of Starting
FORTH. The code for this version was
provided by Dean Sanderson of
FORTH, Inc., and I doubt if there are
any problems with it. -Editor

6800 “CONTEMPLATIONS“
Ronald Zech

West Germany
Now that I’ve worked with FORTH

about two years I would like to share
some observations regarding the
FORTH kernel and especially the
8080- and 6800- listings.

I have implemented the FIG ver-
sions of both the 8080- and the 6800-
FORTH into several machines, and I
think that the 8080 version is fairly
bug-free. But the 6800 version isn’t! At
first, the word M * is not included in
6800 FORTH, but copying it from the
8080 version (not in accordance to the
FIG model screen 57!) leads to a work-
ing completion. But this also requires
the inclusion of a “DDUP” word into
the 6800 dictionary doing the job of the
8080-fig-word 2DUP (which is named
not following the usual name conven-
tion with “DXXX” for double-length
operators; please watch this danger-
ous practice).

[Editor’s Note: The choice of the
prefix “2” was not accidental. It was
chosen because this class of words
handles two 16-bit cells, regardless of
whether or not they comprise a double-
length number.)

The worst bug in the 6800 FORTH
occurs at signed division and is based
at the fact that in the word /MOD a call

of the word IU occurs instead of calling
the appropriate word MI . Furthermore
the word MI doesn’t exist in the 6800
version. (Look also for the words “+-
and D+- .) When I included IM and
replaced it with the U I in the word I
then the behavior of the slash-operator
was not yet okay.

That lead to the detection of a fur-
ther bug in 6800- FORTH: the word
S- > D is defined in the 8080 Listing as
a primative similar to screen 56 in the
installation manual, but not so in the
6800- definition. Here it is defined in
high-level by saving 4 (four!) bytes but
missing a conditional branch and its
literal. Including this “missing link”
lead to a completely exact perfor-
mance of the signed divide.

But this latter bug leads to a more
fundamental question regarding the
high-1eveUlow-level balance especially
regarding the 6800- version (but with
not as great extent also regarding
8080) of FORTH. Especially the 6800
version seems to show the attempt of
a rigorous byte-saving. In the special
case of the bug above the byte-saving
compared to an appropriate primative-
definition disappeared completely
after debugging the 6800-high-level
definition. Compare with the defini-
tion below which I’m using for myself
instead.

count

STOD (*+2)
S->, D+80

TSX
LDAB #255
LDAA 0,X
BMI STOD1
INCB

in a little speed-up of looping and
branching with no memory-space
penalty.

In some cases it is not time effective
and acceptable to make bit-level deci-
sions by using 16-bit-arithmetic. Look
for example to hand-shake-procedures
at ports in high-speed communication
applications. The problem that lan-
guages inherently show a time penalty
compared to assembler programming
leads typically to the smart definition
of ‘clever’ language-elements. Such a
smart word I have found in (Charles
Moore may forgive me) some Micro-
soft BASICS: it’s the WAIT command.

This is a word which expects an
address, a mask and an optional select
(the later two are bytes). It fetches the
address contents, XOR’s it with the
select and makes a AND with the
mask; if result equals zero then repeat.
Select-byte default value is zero. I will
suggest the following definition as a
exact copy of this construct as follows
(6800 code):

count
‘WAI’, ‘T’+80
link

WAIT * + 2
TSX
LDX 2,X get addr.
LDAB o,X get (adr)
TSX
EORB o,X bit polarity
ANDB l , x bit select
BEQ WAlT+2
PULA
PULA
PULA
PULA
JMP NEXT

STODl TBA
JMP PUSHBA

Look also at the word TOGGLE in the
6800 listing. I have found this word $%- AaaRESS _ _ worthwhile not only as a system word
but in aplications. Therefore its time =&@===========
penalty as a high-level word for only $. KASK (b~t~?!
toggling a single byte with a pattern is ----------- --
not at all acceptable.

I’ll close the 6800-Fig-FORTH con-
templations with a little remark
regarding the loop run-time proce- I think that it is not good if FORTH
dure: following label XLOOP in that isn’t able to do a smart thing that
listing you will find the instruction BASIC can (although of course
“BRA XPLOPZ” which can become FORTH is able to include special
replaced by “BRA XPLOF” resulting assembler-defined words).

i g h - --------- SZLZCT lyl T.O.S. --------------
data stack

Volume IV, No. 2 31 FORTH Dimensions

look to
TlMlN
t ngi neer ing

for FORTH
software of
professional quality.

*ready to-run
FORTH development
systems

*application programs
in FORTH

*Consulting services,
including custom
program development

Our latest product:
DUAL TASKING
FORTH
Now you can run your
process control programs
in background while still
using your FORTH
system in the normal way.
Background and
foreground tasks may
each be written in high
level FORTH. They can
execute simultaneously
and exchange data. The
foreground task can
control the background
task.
(currently available as a
custom installation only)

Write for our FORTH
information booklet

9 qTimin Engineering Co. 409 6044 Erlanger St.

(714) 455-9008

NEW PRODUCT ANNOUNCEMENTS

PROGRAMMABLE CONTROLLER WITH SOLID STATE DISK
Controlex Corp.’s CS105, an intelligent controller intended for industrial and process control
applications, operates in ROM resident FORTH to allow program development directly
on the CS105. System memory is configured as a “solid state disk” to provide fast access
and high reliability in hostile environments where rotating memories are failure prone.
The system includes RS-232 serial port, cassette interface, printer interface, real-time clock,
hostltarget switch, and protected programming switch for EEPROMS.

The CS105 serves as its own development system in the “host” mode, obviating an
emulator and the need for downloading to the target machine. Compiled applications may
be saved in the nonvolatile portion of the solid state disk. When the hostltarget switch is
in the target position, the system can easily be configured to boot up the user’s application.

Controlex Corporation 16005 Sherman Way Van Nuys, CA 91406 (213) 780-8877
Unit price is $2995, including FORTH software and full user documentation.

FORTH-79 VERSION 2 FOR APPLE AND 2-80 CPlM
FORTH-79 Version 2 for APPLE 11/11 + ,2-80 CPlM 2.x, and NorthStar DOS users. Floating
Point and HIRES Graphics are also available (HIRES on APPLE & Northstar ADVAN-
TAGE only].

Base system price is $99.95. With enhancements, $139.95 (Northstar Advantage users
add $49.95 to include HIRES).
MicroMotion 12077 Wilshire Blvd., #506 Los Angeles, CA 90025 (213) 821-4340

pns-FORTH FOR ATARl 400l800
fig-FORTH includes full screen editor, Atari CIO interface and graphics commands, debug
ging tools, 6502 assembler, string package, tiny multi-tasking kernal, playerlmissile graphics,
sound and manual controller interface.

Requires 32K min., 1 disk drive. 250 page manual covers all features and includes brief
FORTH tutorial. $90, includes shipping, manual, diskette and four newsletters. Order from
Mountain View Press or directly from:

Pink Noise Studios P.O. Box 785 Crockette, CA 94525

SOURCE FOR MARX FORTH
Complete source code for Marx FORTH only $30, sold as an ideas package and tutorial.
Includes Z-80 assembler and metacompiler. Features “links first,” all math in machine
code, 1-byte relative branching, arguments-results, unique compiler security techniques,
headerless code, printer control, fast find and %Standard. Vendor package available for
$450.00.
Perkel Software Systems 1636 N. Sherman Springfield, MO 65803 (417) 862-9830
~~ ~ ~ ~

FORTH LANGUAGE CARD FOR APPLE II
Plug this Language Card into Slot 0 and run FORTH without a disk drive. Minimum 16K
required; however, it prefers 48K of RAM, because you will then have a 24K byte pseudo
disk. The entire pseudo disk can be dumped back to cassette for storage. This Card is com-
patible with the Apple Integer BASIC Card, with the 8K FORTH dictionary replacing the
Integer BASIC. Implemented by Dr. C.H. Ting. Price is $100.00.

OFFETE Enterprises 1306 S. B Street San Mateo, CA 94402

DUAL TASKING FORTH
Dual Tasking FORTH by Timin Engineering is the first microcomputer language to per-
mit simultaneous execution of two programs. No interrupts or real time clocks are required,
dthough they may be used if desired. Less than 10% of processor time is devoted to the
Dual Tasking function.

Two demonstration programs are included. Requires 2-80 hardware systems with at least
32K RAM and any verison of CPlM or CDOS. $285.
rimin Engineering Company 6044 Erlanger St. San Diego, CA 92122 (714) 455-9008
‘Editor’s Note: This product is not “the first microcomputer language to permit simultaneous
:xecution of two programs. ” Several FORTH vendors offer multi-tasking systems.)

fig-FORTH FOR INTERACT HOME COMPUTER
Modified for use with cassette. Auto-adjusts to use 16K, 32K, or 48K. Includes FIG line
%ditor, an 8080 assembler and graphics interface.
3nly $12 includes cassette and documentation of differences from fig-FORTH.

Russell Schnapp 8062 Gold Coast Drive San Diego, CA 92126

fig-FORTH ON PETlCBM
Fig-FORTH version for CBM disk systems allows up to eight units (16 drives) treated as
jingle mass storage. Employs CBM’s screen editor. Also includes FIG editor, 6502 assembler,
String package, data-base demo, calendar program, case statement and decompiler. $45
includes two disks and very minimal documentation. Assumes familiarity with fig-FORTH.
[nclude description of your hardware.

Juergen Pfeifer Oranjerring 28 4150 Krefeld West Germany

FORTH Dimensions Volume IV, No. 2 32

Book Review

Discover FORTH:
Learning and Programming
the FORTH Language
Thorn Hogan
Osborne/McGraw-Hill, 1982
Reviewed by Glenn S. Tenney,
Fantasia Systems Inc.

In his introduction, the author
states that the book will discuss
developing work habits that suit the
FORTH environment. This goal,
however, has not been fully achieved
due to many technical errors, omis-
sions and misconceptions.

In describing manipulations of the
stack, which is strangely referred to
as a “poor man’s array,” the author
unfortunately places the top of the
stack to the left. This notation is
especially confusing when showing
the operation of comparison words.

In the chapter about memory
manipulations, the description of
CONSTANT is evidently based on
the misconception that some
FORTH implementations do not
initialize the constant with a value
from the stack when defined.

The chapter on control structures
never explicitly states that LOOP
adds one to the increment. UNTIL
is described backwards, with loops
continuing while true. Booleans are
described as “further mathematical
possibilities.” The chapter con-
cludes with a half page discussion of
the virtues of having a CASE state-
ment, while never mentioning the
word LEAVE.

A later chapter states that the
variable BLK contains the number of
the last block accessed.

Discover FORTH concludes with
six appendices: a coding sheet, a
79-Standard glossary, a table of
ASCII characters, suggested alter-
natives to the FORTH system,
typical error messages and some
FORTH extensions. Because the
79-Standard glossary has been
rewritten incorrectly in places, that
appendix must be ignored.

If all of these errors and
misconceptions were corrected, this
book could be a good introduction
to FORTH. In its current condition,
it cannot be recommended. In the
meantime, Starting FORTH is a
much better alternative.

Course Review
Laxen & Harris
By Brian Donovan
Editor’s note: The reviewer attended a
general FORTH course taught by
Laxen b Harris in February, 1982.
This course is fantastic! I went from

code I couldn’t read myself to imple-
menting multitasking in two days. Kim
Harris and Henry Laxen are two
incredible programmers and great
people to learn from.

FORTH Is much, much more than
a language. It is the implementation of
an incredibly powerful philosophy for
solving complex problems in a way
that is not only effective but fun.

Now all this was not apparent to me
before this course. In ten sessions,
twice weekly, three hours per night,
the class went from simple stack
operations to metacompilation. More
than just an understanding of how to
use FORTH’s various tools, I learned
the difference between “good”
FORTH and “bad” FORTH, and why
there can be such a difference.

Kim Harris and Henry Laxen have
been so intimately involved in the
building of what FORTH really is that
you can’t help but get a feeling for the
philosophy, the style, and the com-
munity of FORTH.

The Laxen & Harris course is a great
way to get up to speed fast. You’d
better hurry though; the price of the
course limits it to professionals and
very serious amateurs.

Upcoming Issues
Here’s the planned schedule of
themes for the remaining issues of
Volume IV, including the deadline for
theme articles:

3 Operating Systems -
4 Coding for ROM 9mi
5 Business Applications 10/15
6 Teaching FORTH 12/15

The projected themes for Volume V
are: Project Management, FORTH in
the Arts, Serial Communications,
Laboratory Workstations, The
FORTH Environment, and Looking
Back (FORTH History).

FOR TRS.80 MODEL I OR 111 ’
IBM PERSONAL COMPUTER

t MORESPEED

t MOREROOM
I020 1- Ias1.r men nlarpreted W i C

Very COmP8Cl compiled ccde pius VIRTUAL MEMORY

buffer8. 31Ch.r .unique wordn8mes use only 4 bytes in
makes YOUr RAM 8 C l larger Varl8ble numb8r Of block

h*8del!
t MORE INSTRUCTIONS

Add YOUR commands lo its 7S~STANDARD.plus intlruc.
l ion sol!
F8r more complete Ih8n mosl Forths: single h double
preciaion 8rr8y8 slrinp.h8ndllng clock gr8phiCs. (IBM
lOw.ra8. dives 16:color or MOlinl’displiy).

t MOREEASE Excallml lull.scraan Editor. structured a modular

progr8mming
Word -8rCh ullli ly
THE NOTEPAD iell8r writer
Opliml2.d lor your TRSdO or IBM with ka W8rd repe8ls.
UPP8rllOW~r C88e dl8Pl8Y driver. lull ASCIl

t MOREPOWER
Forth owral ing syslem
Concurrent In18rpn18r AND compil8r
VIRTUAL 110 lor video 8nd printer. disk 8nd tape
((OM8 .byte h8rd disk 8v8ll8blel
Full sddo Or WE8 Assemblar abo8rd
lZB0 A8Sembler 8180 8V8II8bIe lor TRSgO)
Inlermlx 35.10 BOlr8ck disk dnves
iBM c8n r88d. write and run M 3 Disks
M 3 disks can read wnle and run M 1 dusks

THE PROFESSIONAL FORTH SYSTEM

(Thousands of svstems in usel
FOR ins- I IBM PC

MMSFORTH Dlsk S slem (requires I dmk drlve. 32K RAM)

VZ 1 IBM Personal Compuler (80col scrwnl
V2 0 Radio Shack TdS.80 Model I or 111 s1n.05*

S2U.W

AND MMS GIVES IT PROFESSIONAL SUPPORT
Source code provided
MMSFORTH Newslellei
Many demo programs aboard
MMSFORTH User Groups
InOXDenSIve upgrades lo Ialesl version
Programming slal l can provide advice modillcal~ons and
Custom programs 10 111 YOUR needs

MMSFORTH UTILITIES DISKETTE includes FLOATING POiNl
MATH (BASIC ROM roulines pius Complex numbers Reclan
gular Polar coordinate conversions Degrees mode more)
ITRSWI a lull Forth slyle 280 ASSEMBLER) plus a powerlul
CROSS REFERENCER lo lisl Forth words by block and line
plus all on One dlskelle (requires MMSFORTH VZO 1 drive 8

FORTHCOM communicalions package provides RS 2Ji
driver dumb terminal mode transfer 01 FORTH blocks, ana
host mode 10 operate a remole TRS 80 (requires MMSFORTU
V20 1 drive (L 32K RAM) sa.05‘

THE DATAHANDLER a very Soph~sliCa1ed database manage
men1 syslem operable by non progfammers (requires
MMSFORTH Y20 1 drive (L 32K RAM) S5095‘

FORTHWRiTE last powerlul Word Processor wleas)
keystfokes Help screens manual L demo files Full propor
Ilona1 wllabs Ouldenling Include olher blocks documenls 8
keyboard mpuls- Ideal lor form letters (requires MMSFORTH
VZ 0 2 drives (L 48K RAM) $175.00‘

MMSFORTH GAMES DISKETTE real lime graphics 8 marc
games wlsource code Includes BREAKFORTH CRASH
FORTH CRYPTOOUOTE FREEWAY (TRS801 OTHELLO 8
TICTACFORTH (requires MMSFORTH V2 0 1 drive L 32K RAM

S39.95‘

32K RAM1 sa.05.

Olh8r MMSFORTH proQuCl8 undu dewloprmnl

FORTH BOOKS AVAILABLE
MMSFORTH USERS MANUAL wlo Appendices S17.50’

STARTING FORTH best’ s15.05’
THREADED INTERPRETIVE LANGUAGES advanced analysis
01 FORTH mlerals $18 05.
PROGRAM DESIGN L CONSTRUCTION tnlro 10 SlruClYrh:
programming good lor Forth $13 05‘
FORTH 79 STANDARD MANUAL o f l~c la l relerence l c
79 STANDARD word set elc S1595’

FORTH SPECIAL ISSUE BYTE Magazine lAug 19801 A collec~
lor s Item lor Forth users and beginners n.w
* ORDERING INFORMATION Sollware prices includt
manuals and require signing 0 1 a single computer license 101
0ne.perSon support Describe youf Hardware Add $200 W
plus $3 00 pef MMSFORTH and $1 00 pel addllional book
Mass orders add 5 % lax Foretgn Orders add 20% UPS COD
VISA h MrC accepted no unpaid purchase orders please

Sena SASE 10, free MMSFORTH oroimawo
Good dealers sougrl

Gel MMSFORTH products from your
comp~ler dealer of

MILLER MICROCOMPUTER
SERVICES (68)

61 Lake Share Road Nalick MA 01760

FORTH Dimensions 33 Volume IV. No. 2

~ ~ ~
~

I I

1

I I
i

us.
Arizona

Phoenix Chapter
Peter Bates at 6021996-8398

California
Los Angeles Chapter

Monthly, 4th Sat., 11 a.m., Allstate
Savings, 8800 So. Sepulveda Blvd.,
L.A. Philip Wasson 2131649-1428

Northern California Chapter
Monthly, 4th Sat., 1 p.m., FORML
Workshop at 10 a.m. Palo Alto area.
Contact FIG Hotline 4151962-8653

Orange County Chapter
Monthly, 3rd Sat., 12 noon, Fuller-
ton Savings, 18020 Brockhorst,
Fountain Valley. 7141896-2016

Weekly, Thurs.. 1 2 noon. Call Guy
Kelly, 7141268-3100 x4784

San Diego Chapter

Massachusetts
Boston Chapter

Monthly, 1st Wed., 7 p.m. Mitre
Corp. Cafeteria, Bedford, MA. Bob
Demrow, 617/688-5661 x198

Michigan

Call Dean Vieau. 3131493-5105
Detroit Chapter

Minnesota
MNFIG Chapter

Monthly, 1st Mon. Call Mark Abbot
(days) 6121854-8776 or Fred Olson,
6121588-9532, or write to: MNFIG,
1156 Lincoln Ave., St. Paul, MN
55105

New Jersey

Call George Lyons, 2011451-2905
eves.

New Jersey Chapter

New York
New York Chapter

Call Tom Jung, 2121746-4062

Fig Chapters
Oklahoma

Monthly, 3rd Tues., 7:30 p.m., The
Computer Store, 4343 So. Peoria,
Tulsa, OK. Call Bob Giles,
9181599-9304 or Art Gorski,

Tulsa Chapter

918/743-0113

Oregon
Portland Chapter

New Chapter! Call Timothy Huang,
9529 Northeast Gertz Circle,
Portland, OR 97211, 5031289-9135

Pennsylvania

New Chapter! Call Barry Greebel,
Continental Data Systems, 1 Bala
Plaza, Suite 212, Bala Cynwid, PA
19004

Philadelphia Chapter

Texas

Call John Hastings, 5121327-5864

Monthly, 4th Thurs. 7 p.m., Soft-
ware Automation, 1005 Business
Parkway, Richardson, TX. Call
Marvin Elder, 2141231-9142 or Bill
Drissel, 214/264-9680

Austin Chapter

DallaslFt. Worth Chapter

Utah

Call Bill Haygood, 8011942-8000
Salt Lake City Chapter

Vermont

New Chapter! Monthly, 4th Thur.,
7:30 p.m., The Isley Library, 3rd
Floor Meeting Rm., Main St.. Mid-
dlebury, VT 05753. Contact Hal
Clark, RD #1 Box 810, Starksboro,
VT 05487, 8021877-2911 days;
8021453-4442 eves.

ACE Fig Chapter

Virginia

Monthly, 1st Tues. 7p.m.. Lee
Center, Lee Highway at Lexington
St., Arlington, Virginia. Call Joel
Shprentz, 7031437-9218 eves.

Potomac Chapter

Washington
Seattle Chapter

Call Chuck Pliske or Dwight
Vandenburg, 2061542-7611

FOREIGN I.

Australia

Contact Lance Collins, 65 Martin
Rd., Glen Iris, Victoria 3146, or
phone (03) 292600

Australia Chapter

Canada

Contact Dr. N. Solnseff, Unit for
Computer Science, McMaster
University, Hamilton, Ontario L8S

Southern Ontario Chapter

4K1, 4161525-9140 ~ 2 0 6 5

Quebec Chapter
Call Gilles Paillard, 4181871-1960 or
643-2561

England
English Chapter

Write to FORTH Interest Group, 38
Worsley Rd., Frimley, Camberley,
Surrey, GU16 5AU, England

Japan
Japanese Chapter

Contact Masa Tasaki, Baba-Bldg.
8F, 3-23-8 Nishi-Shimbashi, Minato-
ku, Tokyo, 105 Japan

Netherlands
HCC-FORTH Interest Group

Chapter
Contact F.J. Meijer, Digicos, Aart
V.D. Neerweg 31, Ouderkerk A.D.
Amstel, The Netherlands

West Germany

Contact Wolf Gervert, Roter Hahn
29, D-2 Hamburg 72, West Ger-
many, (040) 644-3985

SPECIAL GROUPS

West German Chapter

Apple Corps FORTH Users
Chapter

Twice monthly, 1st & 3rd Tues.,
7:30 p.m., 1515 Sloat Blvd., #2 , San
Francisco, CA. Call Robert Dudley
Ackerman, 4151626-6295

Nova Group Chapter
Contact Mr. Francis Saint, 2218
Lulu. Witchita, KS 67211.
3261261-6280 (days)

MMSFORTH Users Chapter
Monthly, 3rd Wed., 7 p.m.,
Cochituate, MA. Dick Miller,
6171653-6136

Volume IV, No. 2
FORTH Dimensions 35

FORTH WJTEREST GROUP MAE- ORDER

0 Membership i n FORTH INTEREST GROUP and Volume IV of

0 Volume IIl of FORTH DIMENSIONS (6 iwues)

0 Volume I1 of FORTH DIMENSIONS (6 issues)

0 Volume I of FORTH DIMENSIONS (6 i w m)
0 figFORTH Inatallation Manual, containing the language mods1 of

0 Aglembly Language Source Listing of fig-FORTH for specific C W r

FORTH DIMENSIONS (6 issues)

fig-FORTH, a complete glossary, memory map and installation inatructiorrcr

m d machines. The above manual is required for inatallation.
Check eppropriate boxes. Rim per each.
0 1802 0 6502 0 6800 0 6809
0 8080 El 8086/8088 0 9900 0 APPLEII
0 PACE 0 NOVA 0 POP-11 0 ALPHA MICRO

0 "Start ing FORTH' by Brodie. BEST book on FORTH. (Paperback)
0 "Starting FORTH' by Brodie. (Hard Cover)

0 PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference

0 PROCEEDINGS 1981 FORTH University of Rocheater Conference

0 PROCEEDINGS 1981 FORML Conference, Both Volume8

0 Volume I, Language Structure
0 Volume II, Systems and Applications

0 FORTH-79 Standard, a publication of the FORTH Standarda Team

0 Ki t t Peak Primer, by Stevens. An indepth wlf-8tudy primer

0 BYTE Magazine Reprints of FORTH articlw, 8/80 to 4/81
0 FIG T-shirts: D Small 0 Medium 0 Large 0 X-Large
0 Poater, Aug. 1980 BYTE cover, 16 x 22"
0 FORTH Programmer Reference Card. I f ordered reparately, d a

stamped, addressed envelope.
TOTAL

USA
$15

15

15

15

15

15
16

25
25
40
25
25
15
25

5
10
3

m

MROW

$27

18

18

18

18

m

18

20
25

35
35
5s
35
35
18

35
10
12

5
FREE

NAME MAIL STOP/APT
ORGANIZATION (if COmpOfty 8-1
ADORESS
CITY STATE ZIP COUNTRY
VISA # MASTERCARD #
EXPIRATION DATE (Minimum of $10.00 on chvw cardd

Make check or money order in U S Funds on US bank, payable to: FIG All price8 include
postage. No pmchaae ardera without check. California residents add aaler tax.

ORDER PHONE (415) 962-8655
FORTH -EST GROUP Po Box 1105 !iANCARLOS,CA 94070

FORTH INTEREST GROUP
PO. Box 1105
San Carlos, CA 94070

Address Correction Requested

BULK RATE
U.S. POSTAGE

PAID
Permit No. 261
Mt. View, CA

