
FORTH INTEREST GROUP Volume Ill
P.O. Box 1 105 Number 4
San Carlos, CA 94070 Price $2.50

101 FORTH and the University

102 FORTH in Laser Fusion

Proceedings of the 1981 Rochester
104 * FORTH Standards Conference

Implementing FORTH-Based
105 Microcomputers

Data Structures in a
110 Telecommunications Front End

Mapped Memory Management
11 3 Techniques

116 A High Level Interrupt Handler in FORTH

Optimized Data Structures for
118 Hardware Control

121 The String Stack

125 Complex Analysis in FORTH

A FORTH-Based, Micro-sized
126 Micro Assembler

Published by Forth Interest Group

Volume 111 No. 4

Publisher
Editor

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner

Roy C. Martens
C. J. S t ree t

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is assumed for accuracy of material
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

EDITOR'S COLUMN

A special thanks this month goes t o Mr. Larry Forsley and the
University of Rochester. The majority of this issue comes from
his efforts and those of his asociates. While acting a s guest edi-
tor for this issue of FORTH DIMENSIONS, Mr. Forsley was also
compiling and editing the proceedings from this year's FORTH
conference a t the University of Rochester. Even with this
"double duty," Mr. Forsley has done an excellent job.

The quality of material we have received from the University
of Rochester is excellent and greatly encourages me in my plans
to "de-Californize" FORTH DIMENSIONS through the use of re-
gional guest editors. While Mr. Forsley and the University of
Rochester may be a tough ac t to follow, 1 will welcome contacts
frorn anyone e!se (person and/or organization) who would like to
try guest editing an issue. For your peace of mind, let me assure
you tha t production (typesetting, proofing, printing, etc.) will be
handled for you. If you think you have what i t takes, give me a
call or drop me a line.

You may find that some of this issue's sections have been re-
duced is size and/or eliminated. This is a temporary concession
because of the volume of material we have t o publish in this
issue. Postal costs prohibit expanding the size of FORTH
DIMENSIONS to publish all we receive, so when we have a quan-
t i ty of quality material we publish those i tems tha t would seem to
have the greatest reader interest.

I hope to meet many of you a t the FIG National Convention in
Santa Clara, California on November 28th. Meanwhile,
GO-FORTH and ge t additional members.

Subscription to FORTH DIMENSIONS is f ree with membership '' J' Street
in the Forth Interest Group a t $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

PUBUSHER'S COLUMN
Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070 We are heading into some busy t imes for FIG. By the t ime you

get this copy of FORTH DIMENSIONS we'll have completed the
Mini-Micro Show in Southern California and be deep into the
details of the FORML Conference and FIG National Convention.
Remember tha t the Convention is Saturday, November 28th a t
the Marriott Hotel in Santa Clara, California. Expect t o see
many of you there.

HSTORICAL PERSPECTIVE
We've sent out packets to FORTH vendors about exhibiting a t

the FIG National Convention. If you are interested in exhibiting
FORTH was created by Mr. Charles H. Moore in 1969 a t the and haven't received a packet, call the FIG line and request one:

National Radio Astronomy Observatory, Charlottesville, VA. It (415) 962-8653. Only $50 for a table!
was created out of dissatisfaction with available programming
tools, especially for observatory automation. This issue is the much awaited University of Rochester

effort . Its packed with useful material. You ought t o order the
Mr. Moore and several associates formed FORTH, Inc. in 1973 Proceedings of the 1981 Rochester FORTH Standards Conference.

forthe purpose of licensing and support of the FORTH Operating It has 378 pages of excellent papers
System and Programming Language, and t o supply application
programming t o meet customers' unique requirements. "Starting FORTH' by Leo Brodie is available from FIG '-- ---------- and replaces "Using FORTH" a s the book t o have

The Forth Interest Group is centered in Northern California. about the FORTH language.
Our membership is over 2,400 worldwide. I t was formed in 1978
by FORTH programmers to encourage use of the language by the Now, a l i t t le lecture. We have conducted an unscientific
interchange of ideas through seminars and publications. survey and Found tha t in many locations there are people who are

using FORTH and aren't members of the FORTH Interest Group.

ORDER YOUR COPY! You a s a member should work on them to join. All you have to do

proceedings of t h e 1 9 8 1 Roches ter FORTH Standa rds is make a the Order Form------------------- and

Conference have your associates fill in their name and adaress. If we each
$25 .00 US, $35- 0 0 ~ ~ ~ ~ i ~ ~ . send check o r MO t o ge t One more person t o join we'll have over 5,000 members. Let's

F I G i n US funds on U S bank. do it.

" S t a r t i n g FORTH" Roy C. Martens
Hard Cover - $ 2 0 . 0 0 U S , $ 2 5 . 0 0 F o r e i g n
S o f t Cover - $ 1 6 . 0 0 US, $ 2 0 . 0 0 Fo re ign

Page 100 FORTH DIMENSIONS 11114

FORTH AND THE UNIVERSITY

Lawrence P. Forsley
Laboratory for Laser Energetics

University of Rochester

Welcome to the wonderful world of
URTH, or, University of Rochester
FORTH. URTH was developed several
years ago and has been used for many
applications, some of which are
documented here. Beginning wi th the
1978 FORTH Internatinal Standards
Conference, held on Catalina, we have
followed the FORTH standardization
effort. As a result, the majority o f our
systems are close to beirtg FORTH-79
Standard, although not FIG model. Very
few papers i n this issue v:ill refer to
URTH.

The 1981 Rochester FORTH Standards
Conference was held at the University.
The major reason for this, aside from the
delightful weather at that t ime of year, is
the FORTH act iv i ty at the University.
This work shows up i n several divisions and
departments including the Univarsity
Computing Center; Optics; Physics and
Astronomy; Chemical Engineering;
Mechanical Engineering; Department o f
Radiology, Division of Diagnostic Ul tra- -.
sound; Department o f dytopathology;
Electrical Enqineerinq and the Laboratory
for Laser ~nerget ics. Indeed, we ark
indebted to the original work by Dick
Berg, who i n 1976 was an assistant profes-
sor of Physics and Astronomy, for deriving
the f i rst URTH system; and to Ken
Hardwick, who i n 1977 was with the
University Computing Center, for bringing
up the IBM 360/65 TSO version based on
Dick's work. A t this time, Ken, Dick and I
were the only FORTH users at the
University. I believe the name URTH was
coined by Ken, although Dick was part ia l
to PARTH, for Mike Williams'
multitasking In te l 8080 FORTH system.
Unfortunately, Ken and Dick are no longer
with the University; and Mike's commit-
ments prevented his authoring a paper.
However, their work is reflected i n the
material presented here.

This issue starts with three overview
papers. The f i rst paper is mine and covers
the development of FORTH at the Labora-
tory for Laser Energetics, which remains
the largest university FORTH user. The
second paper, by Peter Helmers, reflects
on the uses of FORTH i n medical research
and clinical applications. The third, by
John Lefor, covers one of the more visible
university FORTH systems: The IBM 3032
telecommunications front-end.

The next three papers demonstrate a
variety of ways by which FORTH can be
used to interact w i th hardware. The f i rst
paper, by Rosemary Leary and Carole
Winkler, deals w i th three methods of using
mapped memory. A second paper, by Bob

Keck and me, demonstrates a high ievel
interrupt handler used in plasma physics
experiments. The third paper i n this
section is by Joe Sawicki, and suggests
powerful structures for easily and
eff ic ient ly interfacing hardware,

The last section illustrates the diff i-
culty wi th defining the difference berween
systems and applications. The f i rs t paper
is by Michael McCourt and Richad Marisa,
and describes a transportable String
Stack. The second paper is by Al fred
Clark and covers a FORTKbased complex
arithematic calcuiator. The last paper is
by Greg Choimondeiey and documents a
microprocessing tool simiiar t o one
supplied by Signetics.

These papers have many things i n
common. One exampie is the di f f icul ty i n
discriminating between users and imple-
mentors. Bab Keck, a user, worked wit11
me to devolop a tool for high level inter-
rupt handling. Likewise, A1 Clark, also a
user, has augmented a fioatinq point
package with words appropriate to the
complex plane. The String Stack is clearly
a system tool. Complex arithmetic is less
so, and a rrricroprogramming system :s
clearly an application. Or is i t ? I n the
context o f i ts user, the microprogramming
words are a system. We seem to be for-
ever chasing our ta i l when determining a
FORTH context. But 1 think that this i s
the power o f FORTH.

Another facet is the use o f defining
words used throughout the papers. An
extension of definin words, Paul
Bartholdi's TO concept,' is used i n both
Joe Sawicki's and Greg Cholmonde y's
code. Mike McCourt's "IN" concept' is
used by Peter Helmer's to implement the
TO concept. However, a student, Carole
Winkler, thought that TO complicated
things unnecessarily, so she doesn't use it.

This last comment illustrates one o f
the virtues o f universities: freedom of
dissent. Unfortunately, I have found that
most groups, and many people, using
FORTH are intolerant of different views.
During my involvement w i th FORTH I
have watched many groups rise to
ascendency, tout the true way, and then
be replaced by another group. This has
been especially true of the FORTH
Standards e f for t where K i t t Peak,
FORTH, Inc., the European FORTH User's
Groups and FIG have all played this role.
But another view is possible, which is
more i n keeping wi th FORTHs nature.

Many of us see FORTH as being a
system ' of controlled, or directed,
anarchy. Since every man, or woman, can
be for himself it is highly idiosyncratic
and anarchistic i n form. Anyone who has
t r ied a teem approach to FORTH
programming is familiar wi th the :endency
towards a Tower of Babel. On the other-
hand, people comfortable with thie

unstructured environment f ind both their
pmductivity and creativity increased.
But, some direction must be applied to
share code among users. I suggsst that
this direction should be one of form, and
not o f content.

It is appropriate t o define documenta-
t ion standards which imply a form. But is
is inappropriate t o state that something
can be done only ens (with the implied
right) way. However, people who !earn
something by doing it the wrong way
understand much better than people who
are the r ight way.

I think an example o f this can be foun
i n a conversatior! I had wi th K i m Harris. 9
K i m took erceptioq to an ear!ier paper by
Peter Helmers on ~ s e r s t a c k s . ~ I was told
that the approach was wrong. Period. But
on further discussion, I found that I agreed
with Kim, The faul t was that Peter had
found oniy a part ia l solution t o data
typing, and i n a multitasking system his
technique rn i jh t be very cumbersome.
That's fine. Peter Helmers does not use
multitasking systems, as his systems are
a l l single user, interruptlevent driver;.
thus, it is worth remembering that eac of
us has different, and valid, viewpoints. !

As a major promoter of FORTH at the
University o f Rochester, I have tr ied to
define an environment conducive t o this
type of interplay. This has resulted i n a
learning environment with many student
opportunities; and wi th Leo Brodie's book,
Startinq Forth, and Don Colburn's study
guide, Goinq Forth, we can begin teaching
with FORTH. Not teaching FORTH, but
teaching with it. Four o f the authors i n
this issue are students and three other
authors teach courses or seminars. I f
FORTH is ever t o catch on l ike Pascal, or
FORTRAN, then it must begin wtih
university teaching as those two languages
did. I n f ive years my present students wi l l
be i n industry, as my f i rs t student con-
tacts already are. A univeristy environ-
ment coupled wi th i t s students' enthusiasm
and their eventual employment w i l l
further FORTH more than any seminar
series or interest group. But it w i l l take
time.

1. FORTH DIMENSIONS Vol. I No. 4 and
Vol. I No. 5.

2. FORTH DIMENSIONS Vol. !I No. 4

3. Personal conversation on May 10, 1981
prior to the Rochester Conference.

4. FORTH DIMENSIONS Vol. 11, No. 2

5. Since that paper, Peter has published
another one, entit led "Alternative
Parameter Stacks," which can be found
in the Proceedings o f the 1982
Rochester FORTH Standards Con-
ference.

-..-----
FORTH DIMENSIONS 11114 Page lr

FORTH IN LASER FUSION

Lawrence P. Forsley
Laboratory for Laser Energetics

University of Rochester

Inertial confinement fusion research
using lasers has resulted i n the laboratory
creation o f extraordinary conditions o f
temperature and pressure, duplicating
those found i n the cores of white dwarf
stars. The machines which create these
conditions and the diagnostics that moni-
tor them have become increasingly auto-
mated. The demands of this research have
forced us to adopt new techniques, l ike
FORTH, for enhancing interactions
between engineers, physicists and their
experiments.

Introduction

Lasers have been used to simulate
plasma conditions of high density (ap-
proaching solid) and temperature (over 60
mil l ion degrees) for several years. The
goal of these experiments has been either
for weapons e f fec t simulation, practiced
a t the national laboratories, or for the
possible commercial generation of
power. This lat ter program has been
exclusively pursued by the Laboratory for
Laser Energetics (LLE) for almost a
decade. As can be expected, these exper-
iments have resulted in the development
of new diagnostics, and these diagnostics,
i n turn, have resulted i n new fields o f
physics. Besides the Laser Fusion Feasi-
b i l i t y Project, there are research
programs in: sub-picosecond lasers, nano-
second X-Ray sources, X-Ray lasers,
laboratory astrophysics, and materials
damage testing.

These research programs, and the main
supporting lasers, are highly automated.
About one half of the computer systems
on the 24 beam 13 terrawatt infrared
Omega laser and al l o f the computers on
the single beam Glass Development Laser
(GDL) are implemented i n FORTH. This
paper w i l l explore the development of
FORTH-like languages at LLE.

The laboratory is also part of the
College o f Engineering o f the University
of Rochester. Thus, there is an important
interplay between the staffs, and students,
of LLE and the University. Most of our
FORTH systems have been partially, or
totally, implemented by students f rom
chemistry, electrical engineering, physics
and computer science. Four of the other
papers i n this journal issue have a student
author who is also a member o f LLE.

Standardization

LLE was one o f the f i rst Laser Fusion
laborato ies to automate i t s laser
systems! Whenever possible, we relied

upon standard computers, interfaces and
software. Originally, in 1971, we chose
the Hewlett Packard 2100 series com-
puter, and the RTE (Real Time Executive)
Operating System wi th Fortran, Assembler
and Algo!. We used the HP backplane for
our instrument interface. This system ran
for over f ive years and 15,000 shots, but
building a completely automated laser
with 24 instead of 4 beams required a
different approach.

The Hewlett Packard computer back-
plane was l imited In the number and vari-
ety of devices which could be procured
and attached to it. We overcame this
di f f icul ty by adopting CAMAC (5) .
CAMAC provided us with a large capacity,
computer-independent backplane. It was
also a widely used standard i n the nuclear
physics community w i th Instrumentation
and interfaces appropriate to our needs
available f rom several sources.

The problems of computer and soft-
ware standardization were more di f f i -
cult. Some of our applications were real-
time, and appeared to require a fast
interrupt response. I n other cases, we
were interested i n direct image digitiza-
t ion and needed a large address space.
Other requirements suggested the need for
a powerfi l l multiprogramming operating
system. Unfortunately, no one computer
type and operating system supported a l l of
our applications; and yet, w i th l imited
manpower, it was d i f f i cu l t to support a
variety o f hardware and software.

Computer languages, including
FORTRAN, are different f rom one vendor
to another, and especially when operating
system calls were taken into account. The
problem o f software consistency and sup-
port was not l imited to dissimilar com-
puters. Ehrman (4:16,17) has shown that as
many as 12 di f ferent languages may be
encountered by a pi-ogrammer when edi-
tors, linkers, and loaders are included i n
addition t o the programming language.
Therefore, a unifying software approach
was needed among various operating sys-
tem functions and languages on the same
and different computers. We did not know
of the unix System f rom Bell Laboratories
(11:1905-1929) and the 'C' programming
language of Richie and Stevens (121991-
2019) i n 1976. However, I had talked wi th
people a t K i t t Peak i n 1976 and travelled
there in the spring o f 1977 to see FORTH
being used.

FORTH

FORTH was originally developed as a
small, real t ime operating system for tele-
scope control and image processing by
Moore (8:497-511), (9) and Rather (10:223-
240) at the K i t t Peak and NRAO facil i t ies
which are funded by the National Science
Foundation. I found three groups a t these
faci l i t ies using FORTM' scientists, com-
puter engineers and technicians. I n some

cases, the scientists were very knowledge-
able about FORTH, whereas i n other
cases, they only knew a few words. I was
especially impressed by Dr. Mark Alcott,
who was, a t the time, with Cai Tech and
was observing on NRAO's 36 foot radio
telescope. He was pleased wi th his abil i ty
t o change the graphics routines and other
"systems" software while continuing to
collect data. Similarly, I found many
technicians programming and writ ing test
programs. This appeared to make good
use of their time, especially when they
would be familiar wi th a device, l ike a
Varian computer disk controller, and did
not have to e x ~ l a i n i ts function t o a pro-
grammer. It also appeared that many of
the computer group's staf f enjoyed
FORTH, although there were problems
with dandardization and change. I found
out several years later, talking wi th Jeff
Moler, wha was then i n operations a t K i t t
Peak and is now with the Livermore
Tandem Mirror Experiment, how d i f f i cu l t
i t was to maintain programs i n this envi-
ronment.

FORTH seemed to have many desirable
characteristics, and it provided the same
programming environment on many
machines. It allowed both very low level
access to hardware and high level struc-
tures to shield users from that hardware.
There was an assembler, a compiler, and
an interpreter. What we did not know
then was the care required i n documenting
it, and the tendency to create personal-
ized applications and words. But, we
needed a version o f FORTH a t the Univer-
sity.

Dick Berg, an assistant profess r in
physics and astronomy at the time! de-
compiled a K i t t Peak Varian nucleus circa
1974. He recoded it for the National
Semiconductor PACE microprocessor.
Ken Hardwick, t h with the Univerity
Computing Center? used this as a model
f o r the IBM 360165 under TSO and Mike
Williams developed a multitasking version
on the INTEL 8080. This was the bir th of
URTH.

We also procurred a version for the
Zilog Development System from FORTH,
Inc. a t about the same t ime to demon-
strate an automated X-Ray spectrometer.
Although I had a system for the Hewlett
Packard 2100 f rom K i t t Peak and a "disk-
less" version from Don Berrian a t Prince-
ton, f decided that we should develop our
own version based upon the URTH model.
Ken Hardwick and I did this i n la te 1977.
Since then, other members of the Univer-
sity community and the Laboratory for
Laser Energetics have worked on various
versions o f FORTH for Data General,
Modcomp, PDP 212 and IBM 3032 compu-
ters. Through the ef forts of Mike
McCourt, originally wi th the Department
of Cytopathology and then wi th LLE, we
developed a FORTH-79 system. A l l of
these were multitasking systems (2:314-

Page 102 FORTH DIMENSIONS 11114

The f i rst FORTH applications a t LLE
were hardware testbeds. There are two
distinct phases i n dealing with hardware.
The first occurs during i t s in i t ia l checkout
and reoccurs when it fails, or you suspect
it of failing. A t this stage, one is con-
cerned with device and interface imple-
mentation, and it is important to be able
to interactively set and test data and ad-
dress lines.

A testbed must be capable of exer-
cising hardware a t a rate of about 1 kilo-
hertz. Devices which operate i n a faster
t ime domain wi l l usually be buffered, as
an example, w i th transient digitizers.
Most other devices, such as relays,
operate i n a 10 Hz or slower t ime
domain. A t a 1 kHz rate, sufficient sam-
ples can be taken f rom AID'S and D/A's to
quickly check their accuracy and range,
and thereby checkout many parts of a sys-
tem quickly.

Several language features are required
for tests like these. A means must be pro-
vided to individually and collectively set
address and data lines. There must also be
a way of repetit ively issuing data/ address
patterns. Often, a hardware problem is
intermittent, and a test and branch capa-
bi l i ty is necessary to allow loopiung unt i l a
failure occurs.

Thus, the specification for a testbed
language grows quite large, wi th a major
role occupied by the command processor,
or text interpreter. Regardless of
whether the testbed language is imple-
mented i n Fortran, Basic, Pascal or most
other programming languages, a substan-
t ia l ef fort w i l l be spent on the text inter-
preter. One of the virtues of FORTH is
that it comes wi th a generalized tex t
interpreter, suitable for testbeds and
other applications.

Our FORTH testbed applications in-
cluded: power conditioning testbed for
checking out laser amplifiers; alignment
testbed for debugging and calibration of
automated components; and, general
CAMAC module testing. Other testbeds
have been used to develop image pro-
cessing hardware and software, and one-
dimensional reticon arrays.

The laser amplif ier testbed was
developed along the following schedule:

1. October 1977-Ken Hardwick and I
began writ ing a FORTH system
for the H P 2114.

2. January 1978- The FORTH system
was completed and CAMAC soft-
ware started.

3. March 1978- A laser amplif ier
testbed was demonstrated.

4. Apr i l 1978- Single laser amplif ier
testbed was operational a t laser
hardware subcontractor's site,
wi th a duplicate a t LLE.

By April, it was clear that the
Ornega Power Conditioning corn-
puter would not be available unt i l
August, 1978. Since ihe Depart-
ment of Energy four-beam mile-
stone was originally scheduled for
early September, 1978, this l e f t
insufficient t ime for laser prepar-
ation.

5. Apr i l 1978- An LLE engineer, John
Boles, and a consultant w i th the
software subcontractor developing
the power conditioning software,
began coverting the single ampli-
f ier testbed t o run 4 laser beams
synchronized with the laser oscil-
lator.

6. June 1978- A six beam laser sys-
tem was operational.

7. August 1978- Preliminary delivery
of f u l l 24 beam system which was
Fortran-based.

8. October 1978- Department of
Energy Milestone passed.

There were substantial differences be-
tween the 24 beam Fortran based system
and the 6 beam FORTH version. These
included the lack of an error detecting
command processor, a graphic display and
error archiving on disk. However, whereas
the FORTH version used 16K words of
memoiy and a floppy disk, the Fortran
based system required 196K words of
memory and a 15 megabyte hard disk.

This application also made us aware o f
FORTH'S compactness end the speed with
which applications could be developed. It
is my feeling that this, and several other
applications, were brought up i n cne half
the time i t would have taken i n Fortran,
including ' FORTH training time. Once
good documentation is available, FORTH
wi l l prove even better.

Also, I have found FORTH systems to
be more maintainable than comparable
Fortran systems, because FORTH uses 10
times fewer source lines. Some care is
needed when writ ing FORTH. Another
advantage can b e gained by the ease of
using data base technology when building
process control systems in FORTH.

Spatial and Temporal Relationships

The f i rst phase of dealing with hard-
ware is over when the hardware works.
The relationships among devices then
become important. One can hierarchically

organize related devices into subsystems.
This hierarchy consists of both spatial and
temporal relationships among components
(11, (3). The manipulation of these rela-
tionships requires the development of a
data-base-like language. My ini t ia l work
wi th Fortran and RTE, and discussions
wi th Ray Helmke a d Er ic Knobil a t the
Wilson Synchrotron? led me to develop
such a language for process control called
Maps, because it "maps" relationships
6:109,110.

A Map contained two types of struc-
tures, or Tags. A tag was either a collec-
tion o f date, or a set of pointers t o other
Tags. The Map contained an inverted l ist
of pointers to each tag, so that al l tags
were unique and accessible. Two special-
ized programs, SETUP and BUILD, were
developed to manipulate and create the
in i t ia l Maps from text files. About a dozen
subroutines were developed to allow tags
t o be accessed. Data could then either be
placed into one or more Tags, or retrieved
from them. In the interest of speed, this
system was recoded i n assembly language
and later microcoded on a Hewlett
Packard 21MX-E computer. This com-
puter currently runs the Omega 24 beam
power conditioning, and was mentioned i n
the Testbed Section of this paper.

Alternatively, by using the text inter-
preter and FORTH's capability to define
arbitrary data structures, several data-
base-like systems have been developed. In
i ts simplest form, everything i n FORTH is
an executable data structure. Thus,
FORTH allows one t o define spatial and
temporal relationships i n a simpler, and
more concise fashion than Maps. In ad-
dition, it is internally consistent, whereas
Maps had Fortran, assembler, microcode
and operating system interface facets.

Roductim Sys tem

Once FORTH had proven viable for
small systems, we decided to implement
production systems i n it. These systems
included automated diagnostics as wel l as
the laser control systems. The prototype
Omega 24 beam calorimetry system was
an example of an early production
system. It used simple, vector l ike struc-
tures to contain the addresses, relation-
ships and values associated with various
calorimeters, analog to digital convertors
and calibrators. It was capable of display-
ing beam energies and calculating expo-
nential f i ts to the data.

The Omega 24 beam Alignment System
is more complex. It has run on an LSI 1112
with 5 CAMAC crates and 3 color dis-
plays, controlling over 1000 devices.
Initially, the operators used the FORTH
text interpreter for a l l commands and
queries. One advantage was their abil i ty
t o wri te new "macros" to setup compli-
cated alignment procedures more
quickly. However, there was a risk asso-

FORTH DIMENSIONS 11114 Page 103

ciated with let t ing operations' personnel
directly program the system. Therefore,
the iiew Alignment System has a more
complete command processor imple-
mented in FORTH, but which does more
error detection than the simple tex t inter-
preter. This system also uses the defining
words capability and has a large disk resi-
dent data base for describing components.
With the advent of the command proces-
sor, the system was switched ovef to an
LS1 11/23 with mapped memory. This
addition allowed approximately 20 tasks to
handle various functions, communicating
via a queue-based message protocol.

The laser beam quality is also impor-
tant to us. We use streak cameras inter-
faced to Princeton Applied Research
Optical Multichannel Analyzers for this
purpose. The PAR OMA includes a
FORTH-based LSI 11 for acquisition and
reduction. As with the early Alignment
and Calorimetry systems, it is pro-
grammed directly in FORTH.^ Unlike
those systems though, this was originally
not a turnkey system provided by software
engineers, but rather was incrementally
developed by physicists and students.

We also use FORTH exclusively on the
Glass Development Laser (GDL) with simi-
lar computer systems. A FORTH based HP
2100 is used for power conditioning and
interlocks for the main bay and three sur-
rounding laboratories. A DEC LSI 1112
collects laser and target calorimetry data,
reduces it, and also maintains a d a t a base
on disk. A second LSI 11 is used in a PAR
OMA for processing streak camera data.
This is especially significant since GDL is
engaged in converting the infrared light t o
ultraviolet, and the f irs t harmonic IR, a
second harmonic green and the third har-
monic, UV a r e observed with the same
streak camera. This required a very flexi-
ble system to allow reduction in a quasi-
two dimensional mode. Another Hewle t t
Packard 2100 has two video digitizers and
a color graphics unit. It is used for
determining absolute beam intensity and
modulation for materials damage testing.
This system is being converted to a DEC
LS1 11/23 with an RLOl disk attached. A
third LSI 11 has been used by a graduate
student to observe ta rge t plasma produced
X-raysa7 Finally, an LSI 11/23 is used
with the nanosecond X-Ray facility for
the real t ime acquisition and reduction of
2D X-ray diffraction patterns. Recently,
this system has had an array processor
interfaced to it to allow real-time f a s t
fourier transforms of sample diffraction
rings. All of these systems a r e FORTH
based, with the automated imaging diag-
nostics serving a s prototypes for Omega
diagnostics.

Conclusion

Although FORTH was relatively un-
known, i t has made a positive impact on
the development of systems and instru-

mentation a t LiE. i t has allowed the
computer sy tems group t o adopt the phi-
losophy of providing tools to scientists and
engineers, equipping them to do a job
themselves. Sometimes, i t was questioned
whether this was the best use of their
time: and, for some people, i t wasn't. But,
for t h e majority of people in GDL, and e
fa i r number on the Omega systems end
other laboratories a t LLE, FORTH has
been a success.

I would like to thank an almost endless
list of people for their help over t h e past
f ive years. Most important among them
though, a r e Ken Hardwick, Dick Berg,
Chip Nimick and Ivlike McCourt. Also,
without the help of many students during
this period, many of these sytems wotrld

PROCEEDINGS OF THE
1981 ROCHESTER FORTH STANDARDS

CONTCRMCF

Many have been waiting for this con-
ference proceedings to come out, frorn
what was a very interesting, and different
conference. I t was t h e f irs t conference to
address the FORTH Standard since the
Catal ina meeting of October 1979. Al-
though it was suggested tha t t h e
Rochester conference was only a regional
meeting, at tendees came from six coun-
tr ies aid thir teen states. Also notable, we
successfully divided papers into serial oral
sessions one morning and had parallel
poster sessions t h a t afternoon. This way,
almost everyone of the seventy partici-
pants presented something, and no one
missed anything (we think).

never have been built. In addition, we added travel sponsor-

This work was partiaily supported by
ship this year. The Standard Oil Company

the following sponsors: Exxon Research (Ohio), Friends Amis, Inc., Miller Micro-

and Engineering Company, General Etec- computer Services, and Software Ventures

tric Company, New York Energy contributed over $5,000. This t ravel fund
covered partial t ravel expenses for at ten-

Research arid Development Authority, dees from far away as iiawaii, Chile,
Northeast Utilities, The Standard Oil
Company (Ohio), the University of Germany and the Netherlands, and a s
Rochester, Emoire S t a t e Electr ic Eneray close a s California and Kentucky. . .
Research Corporation, and the U. 3.
Department of Energy inertial fusion pro-

The original call for papers was in
under number DE-AC08- three major areas: the Standard, floating

80DP40124.
point and files management. These a reas
a r e well represented in t h e proceedings.

Lawrence P. Forsley is group leader of In addition, there a r e sections on Philoso-
phy, Vocabulary, Multi-tasking and Data

the Computer Systems Group at the Acquisition, Data Structures and the
Laboratory for Laser Energetics, Univer- Future ~f FORTH. The organization we
sity of Rochester , Rochester, N.Y. adopted combined poster sessions, oral

Footnotes
sessions and some material not
a t the conference. There is an entire sec-

1 The four-beam system, Delta, had tion devoted to working groups on a reas
like Standards clarification, FORTH tech- and monitoring in niques, Floating point and Files Manage- 1972. (6:lOl). ment. There a r e 378 pages covering the

We is now with the Defense Mapping s t a t e of FORTH. The Proceedings a re
Agency in -Washington, D.C. available for $25. See the FIG Order

Form.

Men is now with Network Systems Inc.,
in Minneapolis, MN.

Corneli Univerity in the summer of
1977. This facility is now known a s t h e
Cornell Electron Storage Fiing.

The mapped memory techniques a r e
discussed by Leary end Winkler in the
"Mapped Memory Techniques in
FORTH1' paper in this issue.

15 PAR purchased this system f rom
FORTH, Inc.

This is mentioned in Bob Keck's and my
paper, "A High Level Interrupt Handler
in FORTH", which can be found in this
issue.

For those who are interested, there
will be another Rochester FORTH Confer-
ence the third week of May, in 1982. The
ten ta t ive subject a rea will be Process
Control and Data Acquisition. We expect
t h a t there will be subareas dealing with
microprogramming, FORTH machines,
personal computing, and t h e Standard.
For information, please contac t the con-
ference chairman:

Lawrence P. Forsley
Laboratory for Laser Energetics
250 East River Road
Rochester, NY 14623

Page 104 FORTH DIMENSIONS 11114

IMPLEMENTING FORTH BASED
MICROCOMWTERS AT THE

UNIVERSlTY OF ROCHE!XER
MEDICAL CENTER

Peter H. kielmers

Introduction

"The micros are coming!" Everyone
has heard this so that i t is not unexpected
that physicians and researchers at the
Clniversity of Rochester Medical Center
ask the question: "How can they be put to
use?" Over the past four years I've been
attempting to answer this question by
assembling a series of microcomputers for
both research and ciinical applications.
These systems are all similar i n their use
of an 5-100 bus hardware architecture and
a FORTH software environment. Yet they
differ significantly when i t comes to
specific hardware interfaces, appiication
software, and types of system users.

In this article, I am going to focus on
both these similarities, end these differ-
ences in microcomputer systems. I am
going to start out by discussing their
common hardware foundation, and then
explore peripheral devices unique to each
system's design. Because the ultimate
users of a system have a significant
impact on application software, I am going
to try to characterize the types of users I
have dealt with, and their specific soft-
ware capabilities and needs. From here I
will discuss some common software pack-
ages that were written to transcend both
variable hardware, and variable user,
requirements. By discussing a l l of this in
terms of how FORTH has aided system
development, I hope to fully support my
contention that FORTH is an ideal envi-
ronment to meld many different types of
users to just as diverse hardware configu-
rations.

General Hardware Organization

So let's start out by considering the
common architectural arrangement of
these microcomputers. They are a l l Z-80
based machines with typical memory sizes
of from 32K to 48K bytes of static read/
write memory and 1K to 2K of EPROM
memory used to contain machine specific
implementations of commonly needed 110
routines such as console and disk drivers.
Each microcomputer uses one or two eight
inch single density floppy disk drives. The
primary system console is comprised of a
16 line by 64 character memory mapped
video display along with detached ASCII
keyboard. Each machine also has an R5-
232 serial port for printer hookup.

These computers are all organized
around the 5-100 (IEEE-696) bus with from
ten to fifteen card slots available. With
the basic setup described above using from
four to six of these slots, the customiza-
tion to specific sysLem configurations Is

accomplished by a mixture of standard
commercial endfor wire-wrapped peri-
pheral interface cards. Let's consider
some of these systems in greater detail,
looking at special hardware and how this is
reflected in the syseems' software.

The UDA microcomputer is part of an
experimental system to explore the scat-
tering (diffraction) of medical ultrasound
signals through tissue samples. The
scattering is a function of both frequency
of the ultrasound siqnat (2 to 8 Mhz! and
the angular position of a receive trans-
ducer relative to the ultrasound transmit-
ter. The UDA system thus must ccntrol
three primary functions: analog carrier
signal generation, tissue sample position-
ing, and received signal analog process-
ing,. At present, only samp!e positioning
(uslng stepper motors) is not directly
handled by the UDA microcomputer.

Carrier signal generation is controlled
by means of a Hewlett-Packard 8165A
programmable signa! generator interfaced
to the microcomputer by means of an
IEEE-a88 (GP-IB or HP-16) instrumenta-
tion bus. An opto-isolated parallel TTL
output port is used to control a program-
mable attenuator on the output of the
8165A. With a range of 0 to 130 db, the
attenuator can be used to automatically
adjust gains for maximum signal dynamic
range.

The most crit ical aspect of the UDA
hardware is the generation of gating
signals used by the analog processing
circuitry. This is accomplished by using
high speed analog mixers driven by digital
timing circuitry with a resolution of 100
nsec., and an accuracy of 0.01%.

Study of Vein Mechanics

The basis of this system is an experi-
ment to measure axial force, diameter and
transmural pressure in a blood vein (in
vitro) while controlling axial strain and
pressure. The system consists of a verti-
cal chamber for the vein specimen, a pre-
fusion and pressure clan:ping apparatus,
force and pressure transducers, and a
microprocessor for data acquisition.

The microprocessor contains a sixteen
channel, twelve b i t multiplexed analog to
digital (AID) convertor to digitize the
force and pressure signals under high level
program control-

In conjunction with this A/D is a com-
mercial video (TV) digitizer capable of
programmed resolution up to 240 lines of
256 picture elements. The input to this
digitizer is from a TV camera aimed at
the blood vessel under study. A special
code definition was written to analyze a
programmable area of the TV image for an
indicalion of vessel diameter. This works

by first threshholding, then detecting
vessel edges via a software algorithm. By
using FORTH/ZBO assembly language, the
diameter determination executes in less
than one second.

This data acquisition system also con-
tains a dual mode graphics display capable
of 128x128~4 grey scale images or 256x
240 dot graphics. Digitized video images
use the former mode while acquired pres-
sure and force data use the dot graphics.
In addition, the TV signal dynamic range
can be studied by a dot graphic plot of TV
signal amplitude versus time.

Also included in this system, to aid in
data reduction, is an Advanced Micro
Devices AM9511 high speed floating point
processor IC. This circuit's speed, com-
bined with the memorv maooed oraohics
display, allows real-Gme 'analysis ' and
display of acquired data, thus giving
continuous feedback on the progress of the
experiment.

Overall, this system replaced a manual
strip chart and photographic recording
setup that required several days for data
collection and analysis. Now data can be
automatically acquired and processed
within a couple of hours.

Pulmonary Microcomputer

The pulmonary clinic uses a micro-
computer identical to that just described
except without the TV video data acquisi-
tion interface. Used in a clinical setting,
this pulmonary microcomputer is inte-
grated with a mass spectrometer and a
breathing chamber to allow analysis of
pulmonary tissue volume and capillary
blood flow. The basic procedure requires
keeping track of the patient's breathing
(by monitoring volume within the flexible
breathing chamber) while analyzing the
decreasing concentration of two soluble
gases: dimethyl ether (DME) and acetylene
(C2H2), referenced to the concentration
of an ~nsoluble gas: helium (He).

The hardware floating point unit facili-
tates rapid (30 seconds) analysis of the
acquired data, including several curve f i t -
ting operations, and analysis of signals for
relative maximafminima. The graphics
interface allows immediate viewing of the
acquired data to ascertain proper signal
leve!s, and to compare raw data to the
curve f i t data.

X R a y Scanning System

This experimental scanner uses a
slotted wheel and two horizontal slots
(mounted at 90' to the radial orientation
of the wheel) to achieve a mechanically
raster scanned X-ray source. The wheel
and horizontal slots are controlled by
means of three separate stepper motors
pulsed under control of the
nricrocomputer. X-ray exposure is also

FORTH DIMENSIONS 11114 Page 105

controlled by the computer as a function
of measured patient X-ray attenuation.

The microcomputer contains a
counterftimer chip which is used to
control the stepper motors, a seven
channel multiplexed eight b i t A I D con-
verter (used to measure patient X-ray
attenuation and X-ray power), and an
eight b i t D/A converter to control the
exposure t ime of each X-ray pulse.
Several digital I/O lines are used to start
the X-ray rotor, turn on the X-ray genera-
tor, and control stepper motor direction.
Other lines are used to sense mechanical
l im i t switches.

The software used i n this machine is
primarily concerned with controlling
exposure t ime for each X-ray pulse in
synchrony with the motor movement. The
system ramps the motors up to speed from
an init ial stopped condition. In addition, it
gradually increases speed to compensate
for linear speed as the horizontal slots are
moved radially towards the center of the
wheels. 'he software also controls expo-
sure t ime by sampling the attenuation o f
X-rays through the patient once each
motor step, and using table look-up tech-
niques t o set the next pulse's exposure
time. In addition, total x-ray power is
sampled and accumulated to keep track of
total patient dosage and X-ray tube usage.

How Usem' Needs Impact These System

I n my development o f these systems, I
have encountered three types of users:
system developers, researchers, and physi-
cians (and their cl inical technicians). This
grouping of users also roughly corresponds
to levels of FORTH software utilization.
The system developer--myself and pre-
sumably yourself--is expected to know a l l
the in's and out's o f system operation. I f
something is missing, it's generally easy t o
add it; this is a primary reason why many
of us l ike FORTH. However we don't
actually apply a system, we only set up
the software foundation for the system.
As users, we don't count!

A true end user, whether researcher or
physician, cannot be sold on FORTH
because missing capabilities can be easily
f i l led in; they don't have the knowledge to
do so. Nor do they really want to learn t o
do so. They have to be sold on other
virtues o f FORTH.

In my experience, researchers have
been very receptive to FORTH. In general
they have sophisticated technical back-
grounds but l i t t l e practical computer
knowledge. This is a prime benefil: they
may have used FORTRAN on a large
machine for number crunching, but other-
wise they have few preconceived notions
about computer organization. They are
less impressed with structured program-
ming techniques or f i le systems than they
are by the fact that they can physically,

and interactively, control peripheral
devices. A research scientist may not
understand how a word l ike RAMP or
SAMPLE works, but can readily learn what
they do.

For example, the FORTH software
wri t ten for the UDA system allows
explicit user control o f the hardware for
setup purposes as wel l as automatic con-
t ro l during experimental data acquisition
runs. Setup can be done through words
such as:

OK 25 DB -
(Rm's a n a t u r a l here l)

" FRQ 2500 KHz" TALK

(v ia the GPIB)

A data acquisition experiment can be set
up using words such as:
OX 100 2000 SWEPT-FRmUmCY -
(define c o n t r o l o f HP8165A)
OK FIXED-ATTENUATION
(def ine c o n t r o l o f a t t e n)
OK DON' T-SHOW-ATTENUATIONS

1500 32 NOVA-COhlTROL -
(l e t the minicomputer take
over c o n t r o l o f the micro.)

I n addition, the researcher car? build
upon basic words to create custom appli-
cation programs as needed. Thus the X-
ray scanner system can be easily program-
med by:
OK MOTDR WHEEGMOTOR -
(def ine a 'MOTOR' data t&)

: ROTATE-Ex
OK m -
OK - WHEEL-MO'lQR RAMP

(ramp stepping motors)
OK LIMIT-SWIXHES?

(e x i t loop i f motor l i m i t e d)
OK - SYNCHRONIZE
(synchronize to motor pulse)
OK LOOP -
OK ; -

A physician or clinical technician is
much more of an end-user than the
researcher. As such, they are less
concerned with words that allow them
flexibil i ty i n control o f peripheral
hardware; instead they want words that
control hardware i n specific ways towards
some specified clinical objectives. Thus
they need to impl ic i t ly use both basic
FORTH words and peripheral driver words,
but want to only explicit ly know words
that achieve specific aims. But even here
FORTH can be appreciated. It allows a
flexible, conceptual system with a non-
confining syntax. With the pulmonary
microcomputer, the physician might
typically have the following dialog:

OX PUWNARY CALCULATIONS -
(acquire data, and calc i t)
OK PRINTE8 SHOW RESULTS -
(p r i n t results)

OK DME VIZW -
(view p l o t s o f gases m r
OK C2H2 VIM -
(... graphics disnlpy)

By learning a limited, yet full, vocabulary
o f perhaps twenty to f i f t y well chosen
words, these non-technical users can
effectively use a FORTH based micro-
computer with l i t t l e training or under-
standing of programming. And without
fail, they learn to use colon definitions to
group these basic words to their own
specific usage patterns.

Ccmmon Software Packages

As we have just seen, I group FORTH
software i n three coarse categories cor-
responding to types of users: basic
FORTH system software, peripheral sup-
port extentions, and custom applications.
The basic system software does not vary
a t a l l while custom application software is
unique to each end-user system. Peripher-
a l support software is i n a hazy area.
From the point o f view of documentation
and support, any given type o f peripheral
should appear uniform between systems;
but at the hardware level, each type of
peripheral varies i n myriad details. By
creating common software packages with
this i n mind I have been able to avoid
constantly recreating software because of
hardware variations.

Common software packages can do
more than just ease support for similar
systems. It can effectively hide hardware
details f rom the user, thus making dis-
similar AfD converters, for example.
appear identical f rom the software point
o f view. And a well designed set o f driver
software also imparts increased capabili-
t ies to a system than just those of the
"raw" hardware. Let's look a t a few
examples o f software peripheral drivers to
reinforce these points.

Many of these microcomputers are
used for data acquisition purposes involv-
ing different types of A I D converters and
real t ime clocks. From a hardware point
o f view, some of these AID'S have eight
b i t versus twelve b i t resolutions. Some
have seven or eight analog multiplexer
channels while others have sixteen. Some
of the real t ime clocks have fixed 60 Hz
resolutions, others are programmable.

From a conceptual point o f view, these
data acquisition systems a l l operate
identically: they can randomly sample
multiple analog signals a t some specified
rate. The driver software implements
these concepts using two words: SAMPLE
and DELAY. SAMPLE takes an integer
multiplexer channel number as an input
argument, and returns an integer ampli-
tude value. It works identically no matter
what hardware is controlled by it; the
multiplexer addressing and A I D digital

Page 106 FORTH DIMENSIONS I I I f O

- --- -- -. .-

output format a r e hidden from the user.
Similarly, the real t ime clock works in a
manner transparent to hardware
specifics. DELAY requires only an input
argument to specify the number of real
t ime clock "ticks" to delay.

But the conceptual basis of the da ta
acquisition package transcends just the
A/D hardware; there must be some place
to put the data. This may be on t he para-
meter stack, in data arrays, or in disk
based virtual arrays. When this capability
is added, the da ta acquisition specific
hardware c rea tes a synergy with t he fund-
amental system hardware such a s read/
write rnemory or floppy disk.

Another example of a peripheral driver
package t ha t I developed is a memory-
mapped video graphics package* The
typical hardware interfaces ranged frorn
240x256 resolution up to 512x480 resolu-
tion, with as many different methods of
addressing specific dots on the display.

Conceptually, we want, f irst of all, t o
be able to plot physical X,Y points inde-
pendent of hardware specifics. A word
such as PLOT, using X and Y integer para-
meters on the stack top, can give us this
capability very readily.

But to really use graphics effectively,
i t is nice to be able to specify different
a reas on the video screen t o plot different
data, as well as scaling functions to adopt
logical coordinates to this specified
graphics area. The GRAPH data type
(built with a defining word) allows these
different graphics areas and scaling func-
tions to be associated, and invoked, by a
common name. Further capabilities were
added to allow easy creation of vectors,
grids, tick marks, axes, and boxes. All of
a sudden, a very proletarian graphics peri-
pheral is transformed into a powerful
tool. And because these new functions a re
all built on t he PLOT word, they a r e
readily tansferred between systems with
different hardware interfaces.

A final software driver to consider is
tha t of the hardware floating point unit.
It is interesting to consider this from both
a FORTH, and a conventional language
point of view. In a language such a s
PASCAL, the system generally has built in
software based operators for floating
point. Because t he system is not inherent-
ly extensible, the addition of a hardware
floating point peripheral requires ei ther a
manufacturer rewrite of the PASCAL
floating point routines, or else a user
interface through PASCAL functions or
procedures. The former requires manu-
facturer acceptance and support of a new
hardware peripheral; unless a very popular
device, such support will be reluctant a t
best. The la t te r requires a very awkward
language syntax t o invoke hardware fioat-
ing point capabilities. Either way, the

problem is tha t the hardware has to be
forced to conform tu the manufacturer's
language btandard.

A t the Medical Center , a hardware
floating paint package was easily added a s
an extention to the basic FORTH system;
t he language adopted the hardware!

Anachronism op Portent?

At this juncture i t is valid to ask if
FORTH justified itseif in i ts use at the
University of Rochester Medical Center .
Is i t an anachronism of the past, nr a phil-
osophy portending the future'?

Admittedly, FQRTH is somewhat
limited without such things %s a file
system or procediiral name senping of
variables. Perhaps there should also be
lsss explicit knowledge nf addresses, end
more system security. Perhaps. But if so,
then these things will be evolved as
FORTI-I matures.

It is what FORTH espouses, though,
t ha t justifies i t s use, I t al:ows hardware
components to d ic ta te the software
design, thus allowing rapid incorporation
of technoiogical advances. Other lang-
uages force conformance of hardware t o
language standards--a slow, expensive
process.

FQRTH allows isolation of users from
hardware dependencies, and adds capabili-
t i es to the basic hardware. The resuit is e
user environment t ha t supersedes specific
machine configurations with concept
oriented, ye t f ree syntax, computer opera-
tion. The FORTH system developer might
need to know -1, but the system user
need only know "what". Conventional
systems, to the contrary, generally require
everyone concerned to ask: "why?"

FORTH encourages an exploratory
development technique. A user can
choose between interactively trying con-
cepts, writing full programs, editing pro-
grams. compiling programs, and/or debug-
ging programs. He or she can do this in a
single, consistent FORTH environment,
utilizing any of these phases of develop-
ment as required. The result is eff icient
use of all system resources.

The embodiment of the FORTH philos-
ophy is tha t programming is what i t is
v i ten taught t o be: the application of top-
down programming techniques 60 a single
problem. Instead, it involves a series of
interrelated problems all related to
system use. This might mean a s e t of
words tha t allow a researcher to control a
TV digitizer, or i t may mean a series of
words t o calculate and graphicaily display
the results nf a mathematical analysis.
While the series of capabilities needed will
aiways vary between different systems, i t
is only by providing a rich enouqh vocabu-

Iery t ha t a user can have a flexible, effec-
tnve, and Friendly system, FORTH is
unlque among lsnguages in tha t i t ericour-
ages the programming of sohrtion$

Peter Helmers is a senior laboratory engi-
neer in the diagnostic ultrasound research
laboratory within :he Department of
Radiology a t the University of Rochester
Medical Center.

9elmex-s' a r t i c l e cont inued
on nex t .two pages

BUG FIXES

Sorry you had trouble with FEDIT. The
listing was retyped a t FIG and several
typos creeped in. They are:

1. SCR 64 Line 10: compile should be
COMPILE

2. SCR 65 Line 23: 1+ /MOD should be 1+
16 /MOD

3. SCR 67 Line 48: B/RUD should be
BiBUF

4. SCR 67 Line 49: : E should be : .E

5. SCR 67 Line 50: + ALIN should be
+ALIN

You a r e perfectly right tha t source
tex t should be loadable. I talked to some
of the people a t FIG about this and they
were acutely aware of the problem but
they are simply not se t up to directly
reproduce listings in F D a t the present
time. They do the best job they can with
the resources available to them, and they
work darn hard a t it. I can't fault them.

REPL is a pseudonym for the fig-
FORTH line editor definition, R . I used
the pseudonym because FEDIT was t he
f irst program i wrote in FORTH and 1
wasn't really familiar enough with
Vocabularies to comfortably use a word
tha t was already used in the FORTH
vocabulary.

Le t me know how it works for you. If
you would like a machine produced listing,
I could run one for you from my current
version. Le t me know. Good luck.

Edgar H. Fey
18 Calendar Court
La Grange, Ih 60525

FORTH DIMENSlQNS III/4 Page 107

FLOPPY DISC

Fig. 1: Block diagram of a typical S l O O b d microcomputer; this one is used to study
blood vein mechanics.

MTECTOR DAS

Fig. 2: Block diegram of UDA analog electronics timing control interface. Mim-
computer sets up interface parameters, but timing then rum independently using
PRFSYNC and ACK handshaking signals from Nova Minicomputer data acquisition
system. Because the microcomputer can synchronize to timing hardware, other capabil-
ities such as attenuator end frequency control can be utilized.

SsDO B s S
4--

Page 108 FORTH DIMENSIONS I I I / O

4

DIGITAL RNING P/CTWORh

<s-ma C ~ ~ I F A C E)

* 4 c k

Force
1ran.lduc.r

T ransducer

Fig. 3: Diagram of vein mechanics experimental chamber. Microcomputer aamples
pressure and force sicpals, end determines vein diameter fmm eoftware analysis of N
image.

Microcomputer - +
I Grid tank interface

Scanning beam

Film cass'ette .
X- ray detector

Fig. 4: Diagram of X-ray smnner apparatus showing how wheel collimator end fore and
aft b i z m t a l collimators, controlled by stepper motors, create a mechanically seamed
X-ray raster. The micmmmputer, with A/D and D/A interfaces, also monitors and
controls X-ray exposures.

FORTH DIMENSIONS 11114 Page 109

DATA STRUCTLIRES
I N A

TELECOMWCATIONS FRONT END

John A. Lefor
University of Rochester

URTH, the University of Rochester
dialect of FORTH, was used to implement
a telecommunications front end for an
IBM 3032. This package provides access to
the IBM 3032 f rom as many as 160 ASCII
terminal at speeds up to 9.6Kb. Each o f
these terminals contend for 128 simulta-
neous connections a t the IBM computer.

The reasons for choosing URTH as the
development language and a review o f the
major advantages and disadvantages o f
using Ur th for this project is discussed.
Also, some conclusions as to the applica-
bi l i ty of URTH, and the data structures
used i n this application is reviewed. The
use of conventional data structures for
providing information paths between the
various components of the system is
examined and the possihle advantage of
less conventional data structures more
f i rmly based in URTH constructs is ex-
plored.

A plan for development of similar sys-
tems is presented which integrates some
of these concerns and promises a better
structured system.

Introduction

I n 1977, the University of Rochester
Computing Center f i rst got involved wi th
the FORTH language. The ini t ia l devel-
opment i n FORTH was the irnplementation
of various flavors of the FORTH system
known collectively as URTH. Most of the
URTH systems developed have provided
multitasking capability on a variety o f
micro-, mini-, and mainframe computers.
During the development of the various
URTH systems, a number of people within
the Computing Center showed interest in
using an URTH based system for develop-
ment of real projects rather than viewing
URTH as just another academic curiosity.

Concurrent wi th the development of
the URTH system, was the growth of tele-
communications i n computing a t the Uni-
versity. A need for additional tele-
communications lines in to the computer
was fast becoming a necessity and the
financial support fo r such a purchase was
on the verge of becoming a reality.

In this environment, the design and
implementation o f a locally designed tele-
communications front end was beginning
to emerge. The front end had to exist i n
an academic computing center where the
need for teleprocessing was growing. The
front end had to communicate with an IBM
host (i t was generally believed that. the

XBM environment was a t the University for
many years t o come). The front and had
t o provide access for the ever growing
number of ASCII terminals being
purchased for both computing and non-
computing environments. Importantly, the
front end had t o provide for access to the
IBM host f rom more terminals than could
be dedicated to the host a t any one time.
The ~ n l y f ront end which could possibly
meet these goals and be reasonably cost
ef fect ive had to be one o f !ocai design.
meeting local requirements.
Featurea b i d e d

The front end designed a t the Uni-
versity of Rochester Computing Center
does provide some unique features t o the
users of our IBM 3032 computer. To be
sure, the features are not unique within
the context o f computing, but are not
generally available i n an IBM mainframe
environment.

One o f the major advantages provided
by the locally desigced front end is the
abi l i ty to switch between systems from
the same terminal. I n a tradit ional (non-
SNA) IBM mainframe, it is not always
convenient to have a terminal switched
between different software teleprocessing
applications. Typically, a terminar either
is connected t o one application or an-
other. With the locally designed front
end, it is possible to choose the appii-
cation ot which the terminal is attached.
I n effect, the front end is a port contender
for various applications on the mainframe.

The second major feature arising from
a local f ront end is the abil i ty to support
an XON/XOFF protocol. Since the IBM
mainframe communicates with i ts termin-
als i n a half duplex mode, XON/XOFF
support is not tradit ionally available. The
local f ront end is based on fu l l duplex
communication to the terminal so
XONJXOFF can be supported i n a ful ly
ef fect ive fashion. Those terminals which
have buffers which can overflow can turn
o f f the input a t will, a feature not avail-
able without special support i n the IBM
world.

The front end is today running a t the
University of Rochester Computing Cen-
ter. It is supporting 160 ASCII terminals
contending for 128 host computer ports.
Each terminal can select connection speed
between 110 and 9600 Baud as well as a
few other tailored features. The fac t that
the implementation continues to run fre-
quently appears to be a miracle but repre-
sents some fa i th that the concept is a t
least esscntlally sound.

Hardware Decisions

I n order t o implement the telecom-
munications f ront end to an IBM
computer, the processor chosen for the
irnpiernentation had to provide the capa-
b i l i t y to interface to an IBM byte multi-

plexor channel. Since the protocol for
channel interfacing is non trivial, there
are e l imited number of vendors of mini-
computers who were able t o provide this
interface capability. Another important
consideration in the design of a telecom-
munications front end is the realization
that if a failure should occur i n the front
end, there is a perception that the host
computer failed. Because there is great
need to access the host computer, i t is
undesirable to have hardware failures
affecting the front end. To this end, the
mini-computer chosen as the front end had
t o have both a history of reliable service
and a maintenance team capable of
repairing any di f f icul ty wi th a minimum of
fuss.

I n evaluating the available inini-
computers against these criteria, the pro-
cessor which was fina!ly chosen was a
Dig i ta l Equipment Corporation PDP
11/34. The interface to the channel is via
a DX-1lB, and the ASCII terminals are
supported by DZ-11's (actually many of
the terminals are supported by a Dig i ta l
Communications Associates 205, which
emulates 32 lines of DZ-11 on a single
quad height board).

I n retrospect, we can see that though
the PDP 11/34 does work i n the required
environment there are some deficiencies.
The most notable is i n the maintainabil i ty
o f the DX-11B (the channel interface
which connects the PDP 11/34 processor
t o the IRM ~rocessor). There are so few
DX-11B's i n production throughout the
United States that the DEC customer
engineers are relatively unfamiliar wi th
the details o f i t s operation. When subtle
problems have occurred, the repair of the
problems has taken considerable t ime and
talent. To be sure that the subtle diff icul-
ties were discovered and corrected is a
tribute to the engineers dedication to the
problem, but a more popular interface
would probably have been repaired i n a
shorter time.

Software Decisians

I n determining the nature of the soft-
ware to run for this application, i t was
necessary to evaluate the probable struc-
ture of the end goal and to consider al l the
concerns o f a project of this sort. A f ter
the major considerations are evaluated,
the best software choice can be made
based on the concerns and knowledge of
what is available.

A telecommunications front end is a
realt ime device which must be able to
handle e relatively large number of poten-
t i a l V D devices. I n particular. many ter-
minals are expected to be connected to
the front end. Also, there were consid-
erations for attachment of synchronous
lines for support o f Hasp Bisync, Remote
3170'3, and local area network communi-
cations. A l l these considered together, it

Page 110 FORTH DIMENSIONS III/4

was important to choose a software
implementation which provides support fo r
reltime device handling.

The wide variety of I f 0 devices which
were contemplated for the front end also
reuired tha t the software provide tools t o
help the designers of the system gain
understanding of a wide variety of hard-
ware devices. There were going t o b e
asynchronous and synchronous devices a s
well as a channel interface which had no
well defined characteris t ics (the bes t
documentation of how the OX-118 worked
was found in the diagnostic programs sup-
plied for hardware maintenance). In
addition, there was always the possibility
of needing t o support a new and different
class of 1/0 device. Though the manuals
documented how the hardware worked,
any software which would allow inter-
action with the unfamiliar hardware would
be beneficial in the debugging of the over-
all system.

Another area of debugging which was
considered in t h e software choice was t h e
software protocols. The connection t o the
channel of an IBM computer by asyn-
chronous ASCII devices invokes a non-
trivial se t of software protocols. A simple
example of the kinds of problems is in the
transmission of any single ASClI charac te r
t o the channel. In the IBM environment,
the software running in the processor
expects tha t any ASCII characters trans-
mit ted from a telecommunications front
end are sent not a s simple ASCII
characters (as generated by the terminal),
but rather demands t a t each ASCII char-
ac te r be bi t reversed? Though this is not
a difficult fea t t o accomplish, i t points
out the nature of some of the software
protocol issues which must b e dealt with
in a telecommunications f ron t end.
Suffice i t to say the software used t o
design the front end wouid benefit t h e
designer if i t helped t o identify, and
resolve, software protocol issues.

In the development of any real t ime
software project, i t is recognized t h a t t h e
throughput of the system is important.
The telecommunications front end is no
exception. Since there a re t o be a large
number of I f 0 devices providing input t o
the software application asynchronous t o
the operation of the software, i t is imper-
ative tha t the application software be able
to keep pace with the demand. On t h e
other hand, the inability of the front end
t o keep pace with t h e demand is not criti-
ca!. If a character destined t o a terminal
is lost, a human being will not die but a
programmer may ge t upset. Keeping
these priorities in mind the project had t o
be implemented in an environment which
was not wasteful of processor time, but
there was no need t o b e alarmed if there
was the potential t o loose data.

The hardware decision made specific
features of the processor had to b e con-

sidered in the software choice. Specl-
fically, the PDP 11/34 had 64K bytes of
memory. We had t o have some degree of
confidence t h a t the entire system could be
packaged in 64K bytes. If tha t was not
possible, the development t ime could be
s!owed down waiting for &ipment of addi-
tional memory. The speed of the Ill)&
processor led us t o believe we would have
sufficient CPU t o do the job, but not a lot
t o spare.

The final and perhaps major consider-
ation which affected the choice of
software was the perceived development
time. The project was initiated a t a t ime
when there was en ex t ra EBM processor a t
the University. It would b e possible t o
design and debug t h e entire front end on a
processor which was not in use. That was a
real opportunity not t o b e passed up.
However, the processor could not remain
idle for too long a time. Any software
package which could help t o shorten t h e
development t ime and thereby allow de-
bugging of the front end on the unused
processor would be of g rea t benefit t o tne
implementation.

Alternative Software Strategies

Examining the issues in making t h e
software choice, there appear t o be three
al ternative software strategies. The use of
assembler language, t h e use of a high level
language such a s C or Fortran, or the use
of URTH.

Assembler language provides a number
of solutions to the problems outlined. i t
tends t o b e compact in memory usage, i t
certainly has the potential to make most
eff icient use of the limited CPU, and i t is
quite capable of handling the foreign
devices needed for a front end. However,
the assembler has a few drawbacks.
Probably the major difficulty with assem-
bly language is the extended development
time. Debugging is slow and tedious and
design of code and da ta structures t o aid
debugging is totally a responsibility of the
programmer. Thus. develbpment of a
major application in assembly language is
concerned both with the solution of t h e
problem but also much ef for t is spent on
good design and coding techniques.
Another difficulty with the assembler is
maintainability. Each programmer has an
individual design style. The documenta-
tion rests largely in design of the code. If
the original designer is no longer available
for maintenance of the project, there is a
long learning curve to train a new indi
vidual.

High level languages solve many of the
difficulties with assembly language. If the
language is well conceived for a real t ime
problem, i t will support the difficult
hardware issues and will provide a frame-
work for da ta s tructure design which pro-
vides readability' and maintainability of
the software. A major difficulty with high

l w e i languages is their use of memory,
and sophisticated operating system ser-
vices. These two concerns may make a
larger fas te r CPU needed for effect ive
execution of the appiication. Another
drawback of both the assembler and high
level solution is the lack of inherent inter-
act ive develoment and debugging tools.
They typically can b e designed into the
system, but they generally a r e not present
in the basic environment.

Evaluation of U I T H

URTH appears t o meet many of the
goals in the software choice. Though
there a re limitations, the advantages seem
t o outweigh t h e disadvantages especially
when design t ime is so important a consid-
eration.

When looking a t URTH, a clear advan-
tage qffnrded by URTH is implementation
time. Most of the other advantages pro-
vided by URTH can be directly tied t o the
speed of implementation. URTH provides
easy access t o any s e t of unusual devices,
because the device handlers a re ach tai-
lored t o the system and the hardware.
Once a program is debugged in URTH,
there is good reaspf t o believe i t will
continue t o work. Another major
advantage offered in t h e URTH environ-
ment is the enormous flexibility in design
of both source codes and d a t a structures.
The ability t o code both high level URTH
and machine level code and t o achieve a
uniform interface provided many oppor-
tunities t o speed up inefficient code. The
ability t o design new da ta strucutres t o
work in a large scale environment offers
much flexibility in design.

The URTH environment is not without
fault. The f a c t tha t URTH is an inter-
preter does mean t h e code is not a s
eff icient in CPU speed a s possible. Of
course, the ease of generating assembly
code helps alleviate this problem. How-
ever, a major drawback of t h e URTH
environment s tems from i t s flexibility in
da ta s tructure design.

The very f a c t tha t i t is possible t o
design any needed da ta structures coupled
with the implementation of the traditional
data s tructures of arrays, constants, and
variables created some difficulties in the
design of system which had so much pres-
sure for development in a short time.
There was not a lot of t ime spent on
development of the best data s tructure for
the problems encountered. Rather, tradi-
tional data s tructures were used t o meet
individual demands. In particular, many
arrays were implemented for storing of
information relating t o specific I f 0
devices, and queues (obtained from a free-
pool) were used t o Suffer da ta between
devices. The use of such data structures
had two major impacts on the project.
First, the queues were sufficiently diffi-
cult to handle a s to have impact on the

FORTH DIMENSIONS 11114 Page 111

speed of the overall systems4 The use of
the arrays to hold information for later
processing yielded much difficulty in
debugging individual words and tended t o
leave side e f fec ts which had impact on
words already debugged.

Thus, the use of URTH has many vir-
tues but i t is crucial to recognize the
particular issues which may lead t o
difficulty in debugging. Using data
structures such as arrays and variables t o
communicate information between tasks
in the front end tended t o leave open
many portential pitfalls in the debugging
and design of a system as complex and
highly integrated a s a front end.

Alternative Design Strategies

In examining the resulting front end
for difficiencies, it becomes clear tha t
there are some strategies for alternative
design which could limit the difficulties
encountered in any similar realtime
project, and would make URTH a vehicle
for well designed, well integrated, and
effective systems design.

The issues of code design are well con-
sidered in URTH. The ability t o switch
between machine level code and high level
URTH provides a classic tradeoff between
speed of execution and memory utili-
zation. The f ac t tha t the interface
between bofh environments is standard
allows all design in high level URTH, and
conversion t o machine code when and
where appropriate. In this area, URTH
provides suffficent tools and a good s e t of
options.

In the data design area, URTH provides
so many options that the best data struc-
t u r e choice is very much a t the control of
the programmer. In the case of the front
end design, the traditional data structures
were not sufficient t o e f fec t the job but
there was ipufficient t ime t o design an
optimal data structure. In retrospect, i t is
possible to peruse the alternatives and
choose a structure which provided t he
flexibility needed, and also limits the side
e f fec ts from preventing effective debug-
ging of words.

One of the major advantages URTH
provides over alternative software
approaches is the stack. Proper design of
URTH words with parameter passing via
the stack helps to insure that a debugged
word will tend to continue t o work, and
will have no side e f fec ts Given this
observation, it would be natural t o use t he
stack t o pass parameters in the telecom-
munications environment. Unfortunately,
the stack is not useful in communication '

between tasks, and the stack is difficult to
address and use when too much informa-
tion is passed. In the front end, there a r e
so many unrelated parameters which need
t o be passed between tasks t ha t t he stack
is not useful. But, t he concept of a stack

does solve one of the major difficulties
encountered in the front end design. Given
this set of considerations, it seems like a
good jdea t o define a "named object
stack" for each I/O entity defined in the
teleconlmunication environment. When a '

particular I/O device needs some form of
service, the named stack is invoked and all
data relating t o the I/O device is availa-
ble. The stack can contain pointers t o
ring buffers a s well as current s ta tus of
the device. Using this strategy provides
an environment that naturally f i ts within
the basic strucutre of URTH program-
ming, makes effective use of constructs
within the URTH system, and promotes
good URTH programming practices which
minimize the side e f fec t problems. Over-
all speed of the application is not
significantly impacted and many old
functions can take advantage of the data
structure.

The stack will contain sufficient
volumes of information about each 110
device that i t may be advisable t o c rea te
a "framing" of the stack. This would allow
access t o individual parts of tke stack a s
if i t were the current top of stack, thus
allowing access t o more data in a conve-
nient notation.

Summary

The telecommunications front end
designed and implemented a t t he Univer-
sity of Rochester Cornpuring Center is a
useful model of many realtime applica-
tions. In the design a r e found a number of
flaws which are primarily related to the
particular pressures present a t the t ime of
the design. The choice of URTH a s the
software vehicle appears to have been an
excellent one however, the choice of data
structures t o use within the IJRTH envi-
ronment was not a s well conceived.

URTH provided a software
environment which clearly effected t ime
effective development of a complex
system. I t provided a comprehensive
interactive debuggirlg environment with
the ability t o address specific speed
inefficiences in a uniform manner. The
major drawbacks t o the URTH environ-
ment resulted from the choice of data
structures for intertask communication
within the application.

URTH does provide tools t o develop
the optimal data structures for any par-
ticular application. In the case of real-
t ime applications, the choice of da ta
structures is particularly critical. From
my experience, I believe that a data struc-
ture similar t o the named object s tack
would benefi t many realtime applications
in URTH both function provided and in the
limiting of side e f fec ts so prevelant in
global data strucutres such a s arrays.

A second fea ture which would be valu-
able in an URTH environment wwld be

sny useful stand-alone dump with indexing
t o help the programmer walk through the
dictionary. When total application col-
lapse occurs, URTH is not very informa-
tive a s t o the nature of the problem. A
memory dump (with a good index for the
dictionary) would help t o debug some
rather sticky timing problems.

Overall, URTH is a good choice for
development of real t ime applications, but
c a r e in the design of data structures
should help to make the overall mainte-
nance of the application a simpler chore.

Footnotes

1. This is not simple an example of a per-
verse IBM, but instead is another f a c t
of IBM computing history. The stan-
dard device IBM used t o connect ASCII
terminals t o the host (a 270x1 was not
designed using today's UARTS, rather
i t collected the bit serial da ta in a
register. The data was collected in a
register in such a way a s t o cause the
characters t o be captured in bit
reverse order. Rather than correcting
t he problem in the front end, they
transmitted the bit reversed ASCII t o
the host, and translated the bit
reversed ASCII t o EBCDlC for pro-
cessing. The software stayed, so the
need for bit reversed ASCII exists
today.

2. This advantage was certainly realized
in the actual project. The basic system
was operational within four months
from beginning of the project.

3. This is dependent upon good URTH
programming practices. But, in our
project there became clear a self
evident truth. We attempted t o debug
so many "words" which were already
correct, we began t o believe tha t i t is
very difficult t o debug a working pro-
gram.

4. Converting most of the queues t o indi-
vidually assigned ring buffers speeded
up overall processing by 20% or more.

5. See Pe ter Helmers, "Userstack",
FORTH DIMENSIONS, Vol. 111, No. 1
and Peter Helmers, "Alternative
Parameter Stacks", Proceedings of the
1981 Rochester FORTH Standards
Conference.

Acknowledgements

I would like t o thank Richard Marisa, Ken
Hardwick, Mike Armstrong, and Mike
Williams for their assistance.

J.A. Lefor was senior systems programmer
at the University Computing Center a t the
University of Rochester and is now Data
Communications Manager.

Page 112 FORTH DIMENSIONS 11114

MAPPED MEMORY MANAGEMENT
TECHVlQUES IN FORTH

Rosemary C. Leary
Carole A. Wink!er

Laboratory for Laser Energetics
University o f Rochester

Abstract

Three techniques for using memory
management hardware i n a FORTH system
have been implemented at the Laboratory
for Laser Energetics at the University o f
Rochester. One method uses mapped
memory for data storage by creating a
''data window" i n the logical address
space. A second method increases the
available space for programs by mapping
tasks i n a multi-tasking system. The third
uses mapped memory for data storaqe by
taking advantage of special instructions
and a second set of memory management
registers.

introduction

The problem of insufficient memory
for programs or data is commonly encoun-
tered on computers with a 16 b i t word
size. Many manufacturers now offer hard-
ware to alleviate this problem. A t the
University of Rochester's Laboratory for
Laser Energetics we have devised sola-
tions to three different aspects of the
problem using FORTH on PDP-11/23 and
PDP-11/34 computers.

Two applications at the Laboratory had
a need for large image processing arrays
(up to lOOK words). We solved this by
using a double precision array index which
maps physical memory into a logical mem-
ory "data window" within the FORTH sys-
tem.

On a different, very large FORTH ap-
plication, we needed both more program
space and more data space. We increased
the amount of program space by imple-
menting a multi-tasking system in which
certain portions o f memory contain the
nucleus and common code, while other
portions are task specific and are period-
ically switched i n and out o f active use.

To increase the available data space
we are using special instructions and a
second set of memory management regis-
ters on the PDP-11/23 and PDP-11/34
computers.

Additional material on these systems
can be found i n "FORTH i n Laser 'Fusion,"
by Larry Forsley, i n this issue o f FORTH
DIMENSIONS.

Hardware

The memory management hardware on
the PDP-11/23 and PDP-11/34 computers
consists of two sets of registers that map
16 b i t logical addresses in to 18 b i t phys-

ica l addresses. One set of registers is Figure 2 shows the loqical address
used when the processor is i r i "kernel" space.
mode, the cther when it is i n "user"
mode. The mode is determiner! by two page 7 v} 4
bits o f the processor status word.

The 16-bit logice! address space is
divided into eight 'pages" shown i n Page 3
Table i. When the memory management
uni t is enabled, any access t o memory w i l l
be mapped through the APR for that Page 2
address.

I
1

Each set s f registers contains eight 32- Page 6
b i t Active Page Registers (APRrs). Each
APR is actually two registers: the Page
Address Register (PAR) which contains a Page 5
base address, and the Page Descriptor
Register (PDR) which contains the page
length and the access control key. . Page 4

Pase L o s i c a l Add ress Ransc

block bu f fe rs - - - - - - - - - - , - -
r e t u r n stack - - - - - - - - -

parameter stack

(o c t a l)
0 0 - 17776
1 20000 - 37776
2 40000 - 57776
3 60000 - 77776
4 100000 - 117776
5 120000 - 137776
6 140000 - 157776
7 160000 - 177776

Tab le 1. L o s i c a l A d d r e s s Space.

The physical memory address that wi l l
actually be accessed is a combination o f
the logical address and the PAR for that
page. Figure 1 shows how the logical
address is deriv: d. Bi ts 15-13 o f the
logical address give the page (or APR)
number. The PAR for that page gives the
base address i n 64 byte blocks. This value
is added to the block number f ie ld o f the
logical address (bits 12-61 to f ind bits 17-6
o f the physical address. Bi ts 5-0 o f the
physical address are the same as bi ts 5 6
of the logical address.

I 1 -

Figure 2. Logical address space f o r
s ing le task wi thout mapped memory.

Page i t

Additional information on the PDP-11
memory management it can be found i n
the processor handbookT.

page 0

Data Window and Memory Management

d i c t i ona ry - - - - - - - - - - - - - -
nucleus

One way to ut i l ize the memory man-
agement hardware and additional memory
is t o use i t for data storage. Two of our
applications a t LLE require large data
arrays (up to lOOK words) for image pro-
cessing. We solved this problem by
creating a "data window" i n our logical
address space. Figure 3 shows the logical
address layout of a system with a data
window.

I\ 0

Page Address F i e l d I
I

Page

Act ive Page
Register

1 1 t 0

Physical Block No. DIB Physical
Address

Block No.

L !

(Displacement
i n blocks)

Figure 1. Construct ion o f a Physical Address

DIB

(der ived from f igure 7-9 of [I] and
rep r in ted w i th permission from DEC.)

Logical
Address

FORTH DIMENSIONS 11114 Page 113

Figure 3. - I

Page

Page

Page

Page

6 data window

block buffers 5 - - - - - - - - - - - - - -
r e t u r n stack - - - - - - - - - - - - -

parameter stack

3 I
Page 2 I
Page I I

I d i c t i o n a r y
p a g e 0 - - - - - - - - - - - - -

nucleus I I
Logical Address Space With Data Window.

The block buffers, return stack, and
parameter stack are moved down to the
top of the next 4K word page of logical
memory, leaving a 4K word gap i n the log-
ica l address space. I n a 128K word sys-
tem, lOOK words of physical memory are
then accessed through this window.

The X and Y coordinates of the image
array are converted to a double precision
index. This is done by multiplying the Y
coordinate by the number of pixels per
line and adding the X coordinate. This
index is divided by the number o f pages
per image. The quotient indicates which
page the pixel i s in, and tine remainder w i l l
be the address offset o f the pixel in to the
page.

The relocation constant for the needed
page is set i n the PAR so that i t can be
accessed through the data window. The
logical address o f the pixel is obtained by
adding the address offset t o the starting
address o f the data window.

Multi-tasking and Memory Management

Our version of FORTH implements
multi-tasking i n the following manner.
Each task has a "state vector" which
contains "user" variables that can d i f fe r
f rom task t o task. This includes:

- Dictionary and stack pointers
- Program counter and interpreter

pointer
- Status flags and state indicators
- Terminal 110 routines and buffer

pointers
- Vocabulary pointers
- Number base

The state vector for the master task is
included i n the nucleus.

Each task also has i t s own terminal
buffer, dictionary, parameter stack, and
return stack. New tasks are created with
a routine called BLDTASK which allocates

space for them i n the master task's dic-
tionary. Figure 4 shows the logical
address spece i n an unmapped mult i -
tasking system.
I --I \

Page 7 I I / O

1 b lock b u f f e r s
Page 6 - - - - - _ - - - - - - - ,

r e t u r n stack - - - - - - - - - - - - - - .
Page 5

parameter stack

1

Page 4 I
I TASK 2 I {e

d i c t i o n a r y - - - - - - - - - - - - - -
nucleus I

I I

Figure 4. Log ica l address space f o r
unmapped system w i t h two tasks.

r.?turn stack
parameter s tsck
t

d i c t i o n a r y
4

TTY b u f f e r
s t a t e vector

Task state vectors are l inked t o each
other i n a circular fashion, one pointing t o
the next and the last back to the first. A
"round robin'' scheduler starts running a
new task when the current task executes a
PAUSE. PAUSE stores the current
machine state into the state vector o f the
existing task and sets the new machine
state according to the new task's state
vector.

Additional information on mult4-
tasking y n be found i n works by Forsley ,
McCourt , and Leary end ~ c ~ l i m a n s ~ .
Figure 2 shows the logica! address space
of a FORTH application wi th a single task
and not using memory management.

To add program space to our mult i -
tasking system, we reserved a "task win-
dow" i n the logical address space. The
master task occupies the low five pages of
address space. Code i n this area is usable
by a l l tasks.

Mapped tasks occupy pages 5 and 6 o f
the logical address space. Definit ions and
data within a mapped task arp accessible
only t o itseif. Each task must have a
separate vocabulary. I f definitions i n a
mapped task are entered into the FORTH
vocabulary, the dictionary l inks w i l l be
gone when the next task becomes active.
This usually results i n a system crash.
Figure 5 shows the logical address space i n
a mapped multi-tasking system.

Page 7 I
parameter stack

Page 5 d i c t i o n a r y a
P

block buf fers - -, - -. - - - - - - -
r e t u r n stack

Page 1 ! T I 1 d i c t i o n a r y
Page 0 -.. - - - - - - -

1 nucleus I I
Figure 5. Log ica l Address Space fo r

Mapped Mu1 t i - task ing System.

Implementing this technique required
the following changes:

- Modify the scheduler PAUSE so
that it sets the page 5 and 6
memory management registers, as
wel l as swapping i n the usual state
vector information.
Move the block buffers and master
task stacks t o the top of page 4.

- Change the routine BLDTASK to
assign the new task's return stack,
parameter stack, and dictionary t o
pages 5 and 6, instead o f giving
them space i n the master task's
dictionary.

- Change BLDTASK to assign physi-
ca l memory t o the task. It must
calculate the appropriate settings
for APR 5 and APR 6 and save
them i n the task's state vector so
that they can be loaded into the
memory management registers by
PAUSE.

User Space for Data

The two approaches discussed pre-
viously both ran i n processor "kernel"
mode. To increase our memory resident
data storage i n the multi-tasking appli-
cation described previously, we use the
"user" mode memory management regis-
ters.

The processor status word has two
mode fields: current mode and previous
mode. The instruction MFPD moves a
word from the "previous" mode address
space t o the "current" mode processor
stack (the return stack i n our FORTH
implementation). The instruction MTPD
moves a word f rom the "current" mode
processor stack t o the '9previous" mode
address space.

Using these instructions it is possible
t o retrieve and store data quickly and

Page 114 FORTH DIMENSIONS 11114

efficiently, and the data stored there is
accessible to a l l kernel mode programs,
whether they are mapped tasks or not.
Data tables that would otherwise need to
be disk resident because o f their size can
now be memory resident to speed response
time.

The source l isting o f the user mode
data storage code is included at the end o f
this article.

The first technique, the data window,
has been used for two image processing
applications. One is used to view infrared
and ultraviolet laser beams in materials
damage testing experiments. The system
does circular averaging and calculates an
absolute intensity within the 10 minute
shot cycle.

The other image processing application
observes X-ray diffraction patterns pro-
duced by a nanosecond X-ray source. A
technique of radial averaging is also used
here to enhance the diffraction pattern
and study changes induced by samp!e stim-
ulation.

The second and third techniques are
used on the Omega Alignment System,
which now has 17 tasks installed and uses
about 140,000 bytes o f memory for pro-
gram space. The user mode data storage
method is used by the data base software
and for the intertask message queues.

Although this paper describes tech-
niques used with DEC PDP-11 series com-
puters, the techniques are similar t o those
used with any l imited address system with
logical/physical mapping hardware. Thus,
they are applicable to minicomputers l ike
the Hewlett-Packard 1000 series and the
much newer 16 b i t microcomputers l ike
the Motorola 68000 and Zilog 8000. The
techniques are especially appropriate i n a
FORTH-79 context where the FORTH
machine is defined as having a 64K byte
address space, carved out o f an arbitrari ly
large physical address space.

Acknowledgements

The following people played a major
role i n the development of the software
described i n this article: Donald P.
McClimans, Lawrence P. Forsley, Reade
8. Nimick, Robert D. Frankel, Joseph A.
Abate, and Robert L. Keck.

This work was partial ly supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
t r ic Company, New York State Energy
Research and Development Authority,
Northeast Uti l i t ies, The Standard O i l
Company (Ohio), the University o f
Rochester, Empire State Electric Energy
Research Corporation, and the U.S.
Department o f Energy inert ia l fusion
program under contract number DE-ACO8-
80DP40124.

LL$Y*ttl**tt*X***Xt**t BLOCK t 445 *ttS$SL*$S*tt*t*t*ll$tt

(UEHORY MANAGEKNT - Ui?, U !)

CODE UE' (cAl3RS3---CUAT#l RETRIEVE FROM USER NODE MEMOhY
7 7 7 7 7 6 0 @# 3 0 0 0 0 0 # HOW, (SET PROCESSOR STATUS UOHD: i

(CURRENT=hERNELt PREV=USER)

s @) t FPDs (FKOf4 ADHS ON SSACh TO RP)

7 7 7 7 7 6 0 Qt 0 # ?IOU, (PSW EACh TO NORMAL)

5 -) RP) + HOV, (HP T O S T A C ~ :
NEXT* (RETURN

CODE U I (CDATA3CADRS3---EI STORE I N USER HOIIE HEHORY)
RP -) 2 s I) nou, (D A T A FROM S T A C K T O RP)

7 7 7 7 7 6 0 BC 3 o o o o o # nov? (SET PROCESSOR STPTUS UORD:)

(CURKENTrKERNEL, PREV=USER)
S @)t TPDr (FROM RP TO ADRS ON STACh)

7 7 7 7 7 6 0 @ # 0 # HOW, (PSU RACK TO NORHAL)

POP Jt (RETURN WITH CLEAN STACK) --.

(MEHORY HANAGEMENT - K.:.U)

SOElE K>U (LK ALrKSIEU ADRSIECOUNTI---C1 COPIES 'COUNT' 1
(WDRDS FROH KERNEL SPACE TO USER SPACE)
W S) + nov, (W=COUNT >
R 0 S) f HOW? (RO=USER SPACE ADDRESS)

R l S) $ HOVg (RI-KERNEL SPACE ADDRESS)
7 7 7 7 7 6 0 3 0 0 0 0 0 # HOVt i SET PROCESSOR STATUS WORO:)

f CURRENT=KERNELr PREV=USER
B E C i I N l

R P -) R l f + MOV, (FROU KERNEL SPACE TO RP)
KO) + TPDv (FROM RP TO USER SPACE)

W SOBI (DEC W P BRANCH I F NOT ZERO)

7 7 7 7 7 6 0 @ # 0 # HOV, (PSU BACK TO NORHAL)

NEXT, (RETURN) - - :.

*b*b$t*tS*S1XISU*X1*** BLOCK # 447 Xt*tXXSXI*****tt**X****

(MEMORY MANhGEMENT - U:.K)

CODE U>K (fU ADRS3EK ADRSIECOUNTI-- - [I COPIES 'COUNT' f
(WORDS FROM USER SPACE TO KERNEL SPACE

W S) + MOV, (W=COUNT
R 0 S) + M U V P (RO=KERNEL SPACE ADDRESS)

R 1 S It MOW, (R1-USER SPACE ADDRESS)

7 7 7 7 7 6 0 e# 3 o o o o o # nou, (SET PROCESSOR STATUS WORU:)

(CURRENT=KERNELt PREU=USER)
BEGIN,

R l) + F P D t (FROn USER SPACE TO RP f
R O) + RP) + MDVv (FHOH RP TO KERNEL SPACE)

U SOB, (DEC W s LOOP I F NOT ZERO)

7 7 7 7 7 6 0 @ # 0 # MOVv (CURRENT=KERNEL, PREV=KERNEL)

NEXT, (RETURN

R.C. Leary is a consultant employed by
the Engineering Division of the Laboratory
for Laser Energetics. C.A. Winkler is an
undergraduate i n the Department o f
Mathematics, University o f Rochester.

1. Microcomputers and Memories, D ig i ta l
Equipment Corporation, Maynard, MA
01754,1981.

2. Lawrence P. Forsley, "FORTH Mult i -
tasking i n URTH," Proceedings o f the
4 th West Coast Computer Faire, 1979.

3. Michael A. McCourt, PDP-11 FORIH-
79 Implementation Guide, University
of Rochester. Laboratorv for Laser
Energetics, 250 East ~ i v e r ~ o a d ,
Rochester, N Y 14623, 1981.

4. Rosemary C. Leary and Donald P.
~ c ~ l i r n a n s , Omeqa ~ l i g n m e n t System
Software Maintenance Manual, Univer-
sity of Rochester, Laboratory for
Laser Energetics, 250 East ~iver.Road,
Rochester, N Y 14623,1981.

FORTH CLASSES

November 16-20
December 7-11
January 11-15

Calf: Inner Access
(415) 591-8295

FORTH DIMENSIONS 11114 Page 115

A HGH LEVEL BJTEFtRUPT
HANDLER lN FORTH

R. L. Keck and L. P. Forsley
Laboratory for Laser Energetics

Unversity of Rochester

A system for writing interrupt service
routines in high level FORTH is des-
cribed. An example of the utility of high
level interrupt service in a dynamic da ta
acquisition situation is provided.

b tmhc tim

X-ray data from laser-plasma inter-
action experiments on the GDL laser
system a t LLE has in the past been
acquired frorn photographs of oscilloscope
traces. Because of the large number of
detectors currently being employed, this
method has become impractical and we
have chosen t o use 12 channel integrating
A/D converters for da ta acqu'sition. These I AID converters a re CAMAC compatible
modules and because of the extensive
CAMAC vocabulary available in the UR
FORTH-79 system, as well as the
suitability of FORTH for use in a dynamic
programming environment, FORTH is used
for the acquisition software.

The AID modules integrate the signal
a t each of their 12 inputs for the duration
of a gate signal, which is derived from the
laser oscillator. The oscillator is fired
once every 10 seconds t o keep i t in stable
operation, however, our da ta signal occurs
only when the full system of laser ampli-
fiers is fired a s well, an event which
occurs when a f ire sequence is carried out
by the laser system controller on com-
mand from the operator. We require a
means of clearing the A/D modules just in
advance of the oscillator pulse a t which
the full system will fire. This is accom-
plished by feeding a ready-to-fire signal,
provided by the laser system controlier 4
seconds in advance of fire-time, t o a
CAMAC contact sense input module. Our
acquisition sequence then is: look for a
ready-to-fire signal from the contact
sense input module, clear the AID module,
wait for da ta available indication from the
A/D module and read the da ta from the
AID module.

The above sequence could be imple-
mented directly, using the available
CAMAC vocabulary, by simply continu-
ously interrogating a module until the
desired condition occurs and then pro-
ceeding t o the next step. This method
needlessly ties up the computer executing
loops and prevents i t from handling any
other task while the sequence is in
progress. Since both the contac t sense
input module and A/D module will gener-
a t e CAMAC Look At Me's (LAM'S) when a
signal occurs a t their inputs and a CAMAC
LAM can generate an interrupt, we can

use an interrupt driven acquisition system
which will avoid needless looping. This
requires the writing of interrupt service
routines in machine code, which is a t best
cumbersome. I t wwld b e nice to be able
t o write high level FORTH interrupt ser-
vice routines which could be readily
changed. This can, in fact , be done and
our method for doing this is discussed
below.

Implementation

Our system consists of UR FORTH-79
running on a Digital Equipment Corpora-
tion LSI-11 microcomputer under DEC's
RT-11 operating system. While a com-
plete description of the implementation of
this system may be found in the imple-
mentation guide2, we will briefly cover
FORTH's usage of processor registers for
reference in the following discussion.

Four of t he processor's general purpose
registers a re dedicated FORTH registers.
R6, the system stack pointer, serves a s
FORTH's return stack pointer (RP). R5 is
used a s the stack pointer (S). R4 is used
as the FORTH interpreter pointer (IC); i t
contains the address of the compilation
address (also referred to a s the code field
address or CFA) of the next word to be
executed. Finally, R1 is the s t a t e veetor
pointer (SV); more will be said about the
SV later.

The procedure for executing a FORTH
word from code is essentially quite simple
and is accomplished by the word
XEQ.MACR0 (a listing is ~ncluded in the
appendix!. It accepts an address, into
which will l a te r be placed the compilation
addrsss of the interrupt service word, on
the stack and generates code which will
place the compilation address of the
service word on the stack [MOV @iMDDR>
,-(5) 1, loads t he IC with the address of the
compilation address of the return frorn
interrupt code [MOV iHERE+E>,IC 1 (note
tha t cHERE+E> contains the compilation
address of RTI (COMPILE RTI), the return
from interrupt code word) and then jump
to the executable code for EXECUTE t o
begin execution of the interrupt service
word [JMP ' EXECUTE]. The net e f fec t
of this code sequence is t o s t a r t execution
of a high level interrupt service word and
subsequently execute the return from
interrupt code.

Before execution of the code gener-
ated by XEQ.MACR0 can begin, the con-
ten ts of the processor registers must be
preserved by pushing them onto the sys-
tem stack. Code t o do this is generated
by REG.SAVE.MACR0. We must addi-
tionally ensure tha t the S and SV registers
point t o valid memory areas. In t he multi-
tasking UR FORTH-79 system, this is
most easily accomplished by having a
separate interrupt task area. The task
a rea contains return and parameter stack
memory allocations a s well a s a s t a t e

vector allocation. The SV register points
t o t he s t a t e vector and the s t a t e variables
contained in the s t a t e vector are addres-
sed relative t o the value of the SV
register.

I t should be noted tha t it is not
necessary t o have a multi-tasking system
in order t o implement high level interrupt
routines. This is because the values of the
s t a t e variables referenced by the interrupt
routine a re in general identical t o those
for the master task. On a non multi-
tasking system we would simply reserve a
parameter stack area for the interrupt
routines and s e t S t o point t o it. I t is
necessary, however, tha t FORTH be coded
reentrantly for this scheme to work.

The SV.SET.MACRO is used t o gener-
a t e code which will set t he SV and S
registers. Note tha t i t also changes the
return stack location. This would not be
necessary, except for the f a c t tha t the
FORTH stack checking routines require
tha t the return stack be located in mem-
ory immediately above the parameter
stack. The value of the interrupted task's
return stack pointer is stored in a f ree
vector location [52T(SV) I.

SETUP.INT se ts the interrupt vector,
in this case specifically for CAMAC (the
vector for the device in slot N for the
CAMAC c ra t e is located a t 400+N+4).
The processor is run a t priority 7 during
interrupt service t o prevent further
interrupts from occurring.

To make i t simple t o c rea te interrupt
service rcutines, the macros previously
discussed a r e combined t o produce a
defining word called

This word when executed, accepts a task
a rea and CAMAC slot number on the stack
and crea tes a word which contains the
code sequences previously developed
starting a t the second parameter field
location of the newly created word and
s e t s the interrupt vector t o point t o this
code. The first parameter field location is
reserved t o hold the compilation address
of the word t o be executed when an
interrupt occurs. The DOES* part of the
new word will load this reserved location
with the compilation address of the
desired interrupt service word.

An Example

The listing for blocks 3 and 4 illustrate
how the interrupt handler is used in our
acquisition system. A task area (ITASK)
is created and initialized for the interrupt
routines t o use. I t must be delinked from
the multi-tasking system to make i t trans-
parent to the multi-tasking dispatcher.
Then two interrupt service routines a r e
defined (RDY.WORD and FIRE.WORD)
each with an associated CAMAC slot (or

Page 116 FORTH DIMENSIONS 11114

device). They share the same task area
since only one interrupt service routine
can be active a t a time.

I n block 4, the high level service
routines are defined. RDY.INT is used to
clear the A/D module, enable A I D LAM'S
(XCLR XENLAM) and then clear and dis-
able further LAM'S from the contact sense
input module, on occurrence of a L A M
from the contact sense module. FIRE[
collects the A I D data, disables further
A ID LAM'S (XCOLLECT XDISLAM) and
activates another task which wi l l p r in t the
results (ZTASK DISPATCH) on occurrence
of a L A M f rom the A I D module. These
high level routines are installed as the
interrupt service routines for the appro-
priate CAMAC devices with the sequen-
ces: RDY.WORD RD'f.INT and
FIRE-WORD FIRE[. Changing an interrapt
service routined with this system requires
only defining a new high level handler
word and installing it as the handler word,
e.g., FIRE.WORD FIRE?[w i l l make the
word FIRE2[the new interrupt service
routine for the A/D module.

Conclusions

We have shown that it is possible to
write high level interrupt service routines
i n FORTH. This makes it possible for pro-
grammers unfamiliar wi th interrupt pro-
gramming to easily wr i te interrupt service
routines. In addition, the faci l i ty wi th
which this system permits changes to be
made to the interrupt handlers makes this
an ideal way to handle data acquisition i n
a rapidly changing experimental environ-
ment.

Acknowledgement

The authors would l ike to thank
Michael McCourt for assistance with
details on the internal operation o f UR
FORTH-79.

R.L. Keck is a graduate student i n Mech-
anical Engineering at the University of
Rochester. L.P. Forsley is Group Leader
of Computer Systems at the Laboratory
for Laser Energetics, Universitv of
Rochester.

1. Modular instrument and digital
interface system (CAMAC, IEEE STD.
583-1975)

2. McCwrt , Michael, "University of
Rochester PDP-11 FORTH-79 Imple-
mentation Guide," Release Number
1.0, May 1981, unpublished.

APPENDIX
UORD LISTINGS

ELOCK 1 ****S***************************X**X***t*****%*******

(SiHh level FORTH interrupt handler rlk lrf 25-mar-Bl

: REG.RESTORE.flACRO (<>-<>r restore resisters 0-5 1)
ASSEHBLER 0 5 DO I RP)+ MOVr -1 +LOOP FORTH ?

C9DE RTI E restore resisters, return from interrupt *)

XF 5 2 ~ sv I) nou, REGIRESTOREIMACRO RTII FORTH
I: XEO.MACR0 (<addr of xea wordr assemblr time>-<> $)
ASSEMBLER S -) SWAP @C HOUI (rush handler uord addr on stack)

IC HERE 8 + I MOVt (preset the IC)

' EXECUTE P JMPr (dumr to execute)

COMPILE RTI (pointer to next instruction)

FORTH i
: REGISAVE~MACRO (<>-<>r save registers 0 - 5 t)
ASSEMBLER 6 o DO RP - 1 I nov? LOOP FORTH i

--3.
ELOCK 2 * * * * * * * * * * * * * t * * * t * * * t * * * * * * X * t *

(more interrupt stuff 25-mar-81 rlk)

: SETUP.INT (Cslot#>.<code addr>-<> set camac vector *)

SWAF 4 * 4000 + DUP ROT SWAP !
2+ 3400 SWAF ! i

: SVoSET'oMACRO ((SV lot>-0 set SV for interrupt routines X)
ASSEMBLER SV SWAP # MOVr S 14T SV I) MOV, 52T SV I) RP MOVP
HP 16T SV I) MOvr FORTH i

: CREATE+CAMhC+INT.WORD (.<SV loc>~:::slot#>-0.7 create int. 1)
(defin. word* *)

<BUILDS 0 9 HERE SETUP.INT HERE 2- REG.SAVE.MACR0
SWAP SVISETIMACRO XEO.MACRO
DOES> CCOflPILE3 INSTALL SWAP ! i

-- :>
BLOCK 3 *S***********S***S***********************************

(Interrupt task area initialization rlk 16SEP81)

20 30 0 47 BLDTASK lTASK (create a task area *)

ITASK TCLEAR (initialize task area *)
1TASK DUP ! SV DUP ! (delink task from task list *)

lTASK DISPATCH (merk task as active f)

(create e readr to fire handler word for CAMAC slot 6 t)
ITASK 6 CREATEtCAMAC.INT+WORD RDY-WORD

(create a fire time uord for the A/D module L)
ITASK XAD CREhTE+ChMAC+INT+WORD FIREeWORD

i S
BLOCK 4 ****$******$*t**$********Y*$$*f$******Y**********$*******

(xrar interrupt service
40 I20 0 47 BLDTASK 2TASK

13-arr-81 rlk)

(task area for post fire uord *)

: RDY INT (rdu fire int handler t)
XCLR XENLAM 6 N 0 A 2 F DROP 24 F i

: FIRE!
XCOLLECT XDISLAM 2TASK DISPATCH ;

(fire tire har~dler *)

RDY WORD RDY + INT (make RDYIINT the readr to fire f)
(interrupt service routine Y)

FIRE.WORD FIRE! (make FIRE! the fire time interrurt handler *)

FORTH DIMENSIONS IIIlh Page li7

OPTIMIZED DATA STRUCTURES
FORHARDWARECONmOL

Joseph D. Sawicki
Laboratory for Laser Energetics

University of Rochester

Abstract

Data structures have been developed to more easily control hardware. A disk driver is used as an example for exploring alternative
FORTH data structures and ways of optimizing them. These examples show that FORTH data structures are well suited to minimizing
programming time and increasing software efficiency.

Introduction

While work' g at the Laboratory for Laser Energetics this summer one of my projects was to write a general purpose backup routine I? for a DEC-like RXD2 rnode floppy disk drive. In doing this certain commonly used FORTH tools became useful. This paper will serve to
illustrate these tools, and the modifications necessary due to the nature of the project.

Data Structurw

The TO concept was developed by Dr. Paul Bartholdi and was described in FORTH DIMENSIONS Vol. I No. 4 and Vol. I No. 5 concept2
in variables. This could be implemented in high level as follows:

0 VARIABLE %To
: TO 1 %TO ! ;
: VAL <BUILDS (<#>-<> , ACCEPTS INITIAL VALLE)

,
DOES> (<~-o;o-< i '~ , STORES OR GIVES "VAL")
%TO @
IF !

0 %TO !
ELSE @
THEN ;

It would be used like a variable. Entering O VAL<NAME>would define a variable with an initial value of zero. To change the value to a
six one would say 6 TOcNAMEr; sayingcNAME>would now put a six on the stack.

This technique makes the code more readable by eliminating the use of @ and [with variables (and ' with constants) to access and
modify them. The backup driver is no exception to this and i n fact offers the opportunity to carry the concept one step furthef. In the
DEC POP-11 architecture, 110 is memory mapped so that, for instance, the Disk Control Status Register is at location 1771700 and the
Data Buffer Register is at location 1771720. One way to communicate with these addresses is to define two constants:

1771700 CONSTANT CSR
1771720 CONSTANT DBR

but then the use of 9 and [becomes necessary. A way around this problem is to define a data structure similar to VAL except that i t
contains an address in i ts parameter field instead of a value. I t would also be useful to fetch the address as well as to send data to and
from the address. An easy, though by no means optimal, implementation of such a structure is given below.

: TO (SETS FLAG.SO THAT A NUfi U I L L BE STOKED I N A R E G *)
I %TO ! i

: FROH (SETS FLAG SO THAT A NUt l U I L L RE GOTTEN FROH A REG)
-1 %TO ! i i b

(TEST BED FOR BEGINING OF RX02 DRIVER JD5 1 5 J U N b l
: REGISTER \BUILDS t

(\ADD,-\>, B U I L D S A DATA T r P E CALLED A REGISTER)
DOES (GIVES REGISTER ADD, CONTEdTS OR SENDS D A ? # a

TO THE REGISTER IIEPENDING ON THE STbTUS OF a0
Q XTO @ (GET ADDRESS OF REG AND 96TO

DUP -1 = IF SWAP e s u n p (G E T CONTENT)
THEN

I = IF ! (STORE VALUE IN REG ;
THEN 0 Po

Once these two structures are implemented it becomes very easy to talk to the disk drive. For example, i f a VAL had been defined
called IN-TRACK# which contained the track to be read, sending it to the DBR would simply consist of saying IN-TRACK# TO DBR.

Page 118 FORTH DIMENSIONS III/4

In the RXOZ mode there are e:ght disk commands. They are a11 similar i n t ha i they need to have a drive ana ciensity bit set and they
are sent t o the CSR. The first problem is soived by a VAL called DRIVEfDENSITY and the four words shown below:

: SINGLE-DENSITY (cow,:-ccon.::., S E T S THE DENSITY B E T T O o)
D R I V E / D E N S I T Y '256 B I C TO I iK IOE/ ' i lENEITY 1

: DOUBLE-DENSI_TY (tcon.:>-. ..con::: , SETS TYE-DENSITY HIT T O i)
D R I V E / D E N b I T Y 256 P I S TO I I R I V E . ' ~ ~ E N S I T 8 r

: OUHIVE i .:COW.>-.;COn.:'r SETS THE D R I V E B I T TO 3)
D R I V E / D E N S I T Y 16 BIC TO D H I V E / U E N S I l Y 7

: l D R l V E (.:'COH.:*-.:..CKfM,> 9 SET THE D R I V E B I T TO 1
D R I V E / D E N S I T Y 16 B I S T O U R I V E / D E N S I T Y i

After setting the drive and density as desired, the VAL DRIVE/DENSTTY can then be ORed wi th the command t o produce the desired
results. There are two approaches that can be taken a t this point. For example, takc the cofnrnand to format a disk in a single or double
density; call it (SET-DEN). A word could be defined, aionq with seven others l ike it, as shown:

: (SET-DEN) 110 DRIVE/DENSITY OR TC) CSR ;

The second approach would be to again use e defining word:

: DISh-COKHANF - B U I L D S (..Cot4 - TAhES THE CON FOh A D I S h OF',)
I

IIOES (GET con AHD DRIVE BEN INFO OR, ANU SEND)
@ D R I V E / I I E N S I T Y OK TO CSL v

1 1 0 XI iSh-COEMAf lD (SET-DEN) (USED TO FOREAT t lX5KS S I N G OR D DEN)

As usual we have a classic FORTH space-time tradeoff. The second approach executes somewhat slower (see figure 1) because the
constant needs t o be fetched, but whereas the f i rst approach takes 18 bytes per command or a total o f 144 bytes, the second approach
takes only 10 bytes per command plus 24 bytes for the defining word for a total of 104 bytes. Because of the space savings the philoso-
phy that very similar things should be grouped together could override the execution speed losses and the second approach was used.

A l l of this would have been fine except that when doing the track t o track backup a sector interleaving technique must be used to
keep backup times down to a reasonable level. Since these VAL'S and REG'S have high level IF statements i n them and they are used each
t ime a sector is read or written, they require an overly large interleave step size, The solution t o this problem is t o use ;CODE instead
of DOES? Thauqh this makes the word less transportable i t isn't seen as a problem since this is a PDP-11 specific disk backup. The V A L
word now can be defined as follows:

: VAL (B U I L D S (# - ., TAhES THE I N I T I A L VALUE O f f THC STACK f
1

;CODE (% t , - , OR <% .- .# , r GETS VALUE OR STORES VALUE)
%TO F T S T r (S E t I F %TO P O S I T I V E I
Ei I F ,

UPAPAH M I) S) t HOV? (STORE VALUE !
X T O F G t n o v ~ t ZERO OUT % T O FLAG ,

ELSE,
s -, WPAKAK u I) nov, (FETCH VALUE OF VIL)

THEN, NEXT, --

where W is the POP-11 register containing the CFA (code f ie ld address) of the word executing, WPARAM is a constant equal to the
offset f rom the CFA to the PFA, and I) indicates indexed addressing. No t only is the coded VAL faster than the high level version, but it
is also faster than a VAR at fetching and the same speed a t storing (see figure 2). It was also necessary to code REG as shown below:

: REG B U I L D S (HUIL I IS A DATA TYPE CALLED A REGISTEK)
?

!CODE (~~..#:*-~.. .~,. : i -<#~~ GETS ADDI VALUE OR STORES VAL)
%TO P TST, (CHECK I F %TO I S POS NEG OK Z E R O)
GT I F ,

UF'ARAM U P I) S) + HO'Jr (STORE VALUE I N REG !
E L S E r

L T I F ,
5 -) UPARAM W @ I) MOV, (GET VALUE i

ELSE 9

S -) WF'ARAK U I j HOV! i PUT T.O,S,)
THEN,

THEN I
ITO P 3 # n u v ~ NEXT, --.

To il lustrate the use of these concepts the FORMAT-DISK word w i l l be shown. But f i rst t o insure that the program doesn't t r y t o do
things before the disk controller is ready, two more words are needed that wait for the done and transfer request b i t t o be asserted i n the
CSR.

: TR.WAIT (WAITS FOR THE DATA TRANSFER B I T TO 3 E S E I)

B E G I N 2 0 0 0 FRO6 CSR ,AN11 EN11 : DONE.WAIT (WAITS FOK THE !JON(B I T TO HE ASSERTED)
B E G I N 400 f H O n CSR AN11 EN11 9

FORTH DIMENSIONS 11114 Page 119

The disk command a s shown before was called (SET-DEN). After receiving this command the disk controller waits for a "key" byte
(1110, the le t te r I in ASCII) to be sent t o t he DBR, therefore the entire command is coded a s shown:

: F O R H A T - D I S h (<;.-i.>, S E T 5 THE L l E N S I T Y OF A DISK)
(SET-DEN) TR.U$IT
1110 TO D B F (bENa 'kEYm hYTE
DONE+UAIT r

To format the disk in the drive one double density one would enter IDRIVE DOUBLE-DENSITY FORMAT-DISK; t o format the disk in
drive zero single density one would enter ODRIVE SINGLE-DENSITY FORMAT-DISK.

Timing

To show the ef fec ts of the different approaches timing tests were run. The first contrasts the difference between the two types of
disk commands. In all tes t s the action was placed inside a double loop like:

: TEST 10 0 DO 30000 0 DO LOOP LOOP ;

This routine took 23 seconds which was then subtracted from the other results t o give the t ime t o do the operation 300,000 times. This
was then divided by 300,000 t o give the time per operation. These are the results on a DEC LSI 1112:

To Send Disk Command

Colon d e f i n i t i o n

Defining word

. 23 msec.

. 28 msec.

Then a high level VAL was compared t o a coded VAL and a VAR:

high level VAL

coded VAL

VAR

f e t c h i n g (msec) s t o r i n g (msec)

.237 .39

. 0 6 7 .ll

.083 .093

Summary

This paper not only showed the usefulness of certain techniques in FORTH but also illustrates some general properties of the
language. The first of these is the ease of implementation of new data structures. Through the use of BUILDS ... DOES or BUILDS ...
;CODE one can first build the structure t o suit the needs of the application and then imbed in the executable code necessary operations
for the structure. Also a structure can easily be given variable execution a s in the case of VAL and REG. Another important benefit of
FORTH is the ease of optimization of the word by the use of assembly code. Changing the VAL and REG words t o ;CODE took less than
a half hour.

Acknowledgements

I would like to thank Mike McCourt, Bob Keck. Lawrence Forsley and Peter Paulson for their help in getting the hardware running and
for comments on the software.

This work was partially supported by the following sponsors: Exxon Research and Engineering Company, General Electric rompany,
New York Sta te Energy Research and Development Authority, Northeast Utilities, The Standard Oil Company (Ohio), the University of
Rochester, Empire State Electric Energy Research Corporation, and the U.S. Department of Energy inertial fusion program under
contract number DE-AC08-BODP40124.

J. Sawicki is an undergraduate with the Electrical Engineering Department of the College of Engineering a t the University of Rochester.
He is a D J in his spare time.

1. DEC and POP-11 a r e trademarks
2. The TO concept by Paul Bartholdi FORTH DIMENSIONS Vol. I No. 4 and Vol. I No. 5.
3. Where an 0 suffix indicates octal

Page 120 FORTH DIMENSIONS 11114

ME STRENG STACK

Michael McCourt
Laboratory for Laser Energetics

University of Rochester

Richard A. Marise
Production Automation Project

University of Rochester

Abstract

Applications which require a tex t data
type a re supported by a group of functions
which operate with string variables and a
string stack. The string stack is analogous
t o the parameter stack, however, the data
type with which i t operates is the string,
containing length and character data.

String Defining Words

Two defining words are available for
the creation of string data entities. The
f irst is:

<maxlen> STRING-VAR <NAME>

which crea tes a varying length character
string with maximum length cmaxlen>.
Invoking~NAMGplaces

<beginning address><maximum string length>

on the parameter stack. The f irst byte
atcbeginning addressris the current string
length; the string tex t begins a t the next
byte.

The second string defining word is:

which crea tes an array of variable length
strings. Invoking

<i ><NAME>

places caddress of the i - t h string, ~maxlen>

on the parameter stack. Note tha t
(number of elements) x (rnaxlen) bytes will
be allocated to hold the string array.

String Stack Manipulation

A string stack, separate from the para-
meter stack, is maintained in memory for
the purpose of manipulating string data.
Several words which manipulate the string
stack are defined in the string stack
library which can be compiled by execut-
ing >STRINGS (which loads in t he string
stack package). Currently 20@ (decimal)
bytes are allocated for the string stack.

The quote word (") is available for
placing a string on the string stack. To
stack a string, type:

" <text>"

" is followed by exactly one space, then
<text> delimited by a quotation mark.

A string print word .SS is used t o print
the top element of the string stack,

! STRING STACK--FIXED LENGTH STRING COKPARISON LAR 19-SEP-79)
SS v ! NOTE: P A R k n ORDER NOU CADR><LEN> H A 6 11 -JUN-80 I
(C I D D A r ADD RI LEN l r - - -CADDAr ABBBr = OH + OR - I)
(COHPARES CHARS. I N STRINGS A 8 B P A R I U l S E i RETURNS 0 I F
(STRINGS I R E = r t I F A>Bv - I F A..iB)

1 STFDO o SNAP o DO DROP OVER ce OVER CB - HOT
ROT 1+ ROT DUP 31 NOT I F LEAVE THEN LOOP ,

(CADD A r ADD B r LEN]---[= OR t OR - 1 9 SAHE AS S?FDO)
(EXCEPT ADDRESSES NOT RETURKED)

: S?F S t F D O ROT ROT ZDROP i
([ADD A t LEN]---C= OR + OR - 3 r COKPhRFS STRING A TO)
(A STRING OF PLANKS--RETURNS 0 I F TWO A R E EQUAL J : S?B o SWAP o DO DROP DUP ce BL - SWAP I+ SWAP DUF 0,::

I F LEAVE THEN LOOP SNAP DROP i -- .>
t S S t S t t t t X t S l X l t S S BLOCK 97 S t t $ t t S t t X S S S $ $ t S L t

- -

S X S t t % t t X S t S S $ t t S t BLOCK 98 * S S t S t S t S t L S S S t t S t S

(STRING STACK WORDS LAR 19 -SEP-79)
SVAR SSO O.SVAR SSH 0 SVAR SST

e SSTOP SST @ r . SSTOP! SST !
: SSDAG SSD B 6 : SSHAX SSfl @ I

(EFROHr TO, L E N 3---['I CHEChS FOR S T I C K ROUNDARIE
: SOVCHECK OVER SSORG U+:

I F SSHRX S S T O f ! 1 4 T TARORT THEN i
f CADBI - - - [I INSURES THAT ADDRESS P O I N T S TO STRING

: SSVER DUP DUP ce t SSKAX u>=
IF ssnax SSTOP ! 1 3 ~ TABORT THEN i

(ADD OF TOP STRINGI - - - [AD OF NEXT STRING I IOUNI)
: SSDDMN DUP C@ 1t t 7

(C h D D l - - - [I PUSHES STRING AT AIIDH. TO TOS 1
: SSPUSH DUP Ce I t SSTOP OVER - DUP SSTOP! S U l P RHOVE

-->
S t t t t t t t L S t t S S t S t S BLOCK 9 9 t t t S S t S t S S S t t t t X t t t

! 2 T R i N G STACK WORDS LAR 19-SEP-79 1
* DROP (C I - - - C l REYOVES TOP STRING FROM STACK t j

$STOP SSVER SSDOWN SSTOP!
: LEN (.CI---CI R E ~ U R N LEN OF TOS STRING $!

:STOP SSVER CQ r

: EL,!!& 1+ :
([I - - - E l RETURN ADDR OF TOS STRING t)

w w , . , . . . ,
: 'DUP ([I---[] COPY TOS STRING Xj

!STOP SSVER SSPUSH i
: SUAP ([I---[I EXCHANGE TOP 2 STRINGS 8)

SSTOP DUP SSDOUN DUP s s P u s n SSDOUN SSTOP SUAP SSTOP!
SWAP SSPUSH SSPUSH r

: 'ROT (E l - - - E l ROTATE TOP THREE STRINGS ARC->BCA 1)
SSTOP DUP SSDOUN DUP SSDOWN DUP SSPUSH.SSDOWfl SSTOP SUAP
SSTOP! SbJAP SSPUSH SUAP SSPUSH SSPUSH r

S t X t S t t t S S t t X t L \ S X BLOCK 1 0 0 I S t X t S S S t t S S t S S S S S t

(STRING STACK YORDS HAH 13-JUN-80 i

: 'OVER ([I---[I PUSH 2ND STRING DOYN ONTO TOS \)
;STOP SSDOWN SSVER SSPUSH i

: 2DUP ! [I---El COPY TOP 2 STRINGS S)
'OVER 'OVER

: *2DROP (El - - -C3 DROP TOP 2 STRINGS I)

FORTH DIMENSIONS 11114 Page 121

removing the top element in the process.
For example,

tlIttltfISlSttIIII BLOCK 1 0 1 t I t I I I ~ I ~ I X l 1 ~ t I l ~ ~

(STRING STbCK YORUS CONT'B HAH 13-JUN-80)

OK " STACK THIS STRING " <CR> : ' ! (EADRIELENI---[I STORE TOS AT ADDR. L DROP TOS t)
SSTOP 'DROP SNAP OVER Ce HIN, ZDUP SUAP C! 1t
ROT SYAP RfiOVE

(ESTRIMGI---C: STONES STRING I N PAD THEN HOVES I T FHOH)
(THERE TO THE TOSS -- WORKS DURING EXECUTION T I M E)

: X * 4 2 0 WORD 0 'e I
: $ * K> DUP o * e DUP ce b u r 2 non

I F I t ELSE ?t THEN t >R i
(CSTRINGI-- -C3 STORES STRING AT TOP OF D ICT. STACK)
(DURING COHPILATION)

: C ' COW' ILE $ ' 4 2 0 UQKD CE ?UP ? HOD
I F 1 i ELSE 2 t THEN ALLOT T

: ' STATE @ I F C' ELSE X ' THEN i I H P '

STACK THIS STRING OK

Notice that the functions .SS and. are
similar. Several other functions operate
on the string stack in a manner analogous
to words which operate on the parameter
stack. These are:

WORD
"DUP
"SWAP

FUNCTION BEFORE AFTER
.---

copies top of stack B A A
reverses top two
strings on the stack B A A B

B A B
B A B A B
C B A B A C

B A B A B A
C E A C
O C B A B A D C
D C B B D C B A D C
B A B A

"DROP
"OVER
"ROT

"ZDUP
"ZDROP
"2SWAP
 OVER
'I+

removes top of stack
copes 2nd string onto top

moves 3rd string to top

copies top 2 strings
removes top 2 strings
reverses 1 6 2 with 3 & 4
copies 3 & 4 to top

string addition (catenation)

: .SS (E l - - - [] TYPE OUT STRING AT TOSS 1)
$STOP SSVER 'DROP COUNT TYPE

t <'>-<>P PUT STRING I N DIC~IONARY~ HAKE EVEN LENGTH 1
: 4 2 0 WORD COUNT DUP HERE SUAP 1t - 2 AND ALLOT SWbP CnOVE 9

Just as the parameter stack relational
operators -emove their arguments from
the parameter stack, the following string
stack relational operators remove their
arguments from the string stack. The
logical result of the string relation is
placed on the parameter stack. The avail-
able relationals are:

I*= "<=

(SOHE F I X E D LENGTH STRING D E F I N I T I O N S)
([ADDRvHAX L E N I - - - E l PUSH STRING AT ADDR TO TOSS)

: '@F DUP SSTOP OVERa- 1- SSTOP! SSTOP C ! SSTOP I+ SUAP C n o v E r
t CAUDRrMAX LEN3--- [I COPY CHARS ONLY FROn TOSS TO ADBR)

: ' ! F 2DUP BLANK 'LEN H I N SSTOP 1t ROT ROT CMOVE 'DROP r

SI~~I l t t I t t t$ t ISII BLOCK 103
String Variable Storage and RetrievaJ

(STHING STACK YORDS CONT'D LAR 19 -SEP-79)
: t ([I---[I ADD TOP 2 STRINGS ON STACK L E F T TO RIGHT I

'SWAP SSTOP SSDOWN SSVER C@ SSTOP Ce DUF ROT t
SSTOP C! SSTOP DUP I t ROT 1+ RHOVE SSTOP 1t SSTOY! i

([L E N ? BEGINNING CHAR 1 3 - - - E l REPLACE TOSS WITH)
(SUBSTRING OF LENGTH [LEN]+ STARTOHG WITH S P E C I F I E D)
(CHAR OF O R I G I N A L STRING)

: "UBSTK 1- SSTOP SSVEK 'IIROP .+ DUP ROT ROT C ! SSPUSH i
([ADD OF 2ND S T R + l r 1ST CHAR OF 1 S T STKr L E N OF 2NDr 0
(---[OFFSET OR 0 I SEARCHES 2ND STH+ FOk 1ST CHAR OF
t 1 S T S T R + r I F FOUNDr COHPARES 2ND STR. FROM THAT P O I N T
I T n 1ST STP 1

The string store word, It[, places the
top of the string stack in the string vari-
able described by the parameter stack,
popping the string stack. The string
retrieve word, If@, places the string
referred to by the parameter stack onto
the string stack.

: *IN~L!XDI~'D~'OVER I t ce OVER =
I F OVER I t SSTOP 1t 'LEN S?F 0-

I F DROP I 1t ROT ROT LEAVE THEN THEN LOOP i
OK 30 STRING-VAR MYSTRING <CR>

" string text " MYSTRING "! <CR>

OK

MYSTRING "@ MYSTRING 'I@ "+ .SS <CR> string text string text

Page 122 F O R T H DIMENSIONS II I /4

Invoking the name of the string variable
MYSTRING in the preceding example
placed <address> <maulen> on the para-
meter stack. String store and string
retr ieve check the maximum and current
length of the string variable when moving
string data.

When i t is required to move fields of
fixed length which do not contain an
embedded current length in the f irst byte,
fixed length string store and retrieved
words may be used, The syntax is:

String Functions

"LEN returns on the parameter stack,
the length of the string on top of the
string stack. The string remains on the
string stack. The address of the f irst byte
of the string (one byte a f t e r t he length
field) is found by executing "LOC.
<length> Cbegizning character number>

"SUBSTR
replaces the top of the string stack with a
substring of length <length>, beginning
with the specified character of the
original string. For example,

" abcde" 2 3 "subs t r .SS
cd OK

The "INDEX function searches for the
first occurrence of the string in the
second string. If an occurrence is found,
i ts offset is returned on the parameter
stack. If an occurrence is not found, -1 is
returned. The top of the string stack is
popped-

String Stack Errors

Two errors a r e reported by the string
stack package: string stack underflow and
overflow. As s ta ted previously 200 bytes
a re initially allocated for the string
stack. If repeated overflows a r e gener-
a ted more space can be allocated for t he
string stack by changing the parameter
passed to "INIT in the string stack
library. String stack initialization is the
last function performed when t he string
stack library is loaded.

Summary

This was t he f irst major software
package transported throughout t he
University URTH community. Originally,
i t had a few code routines which were
machine specific t o reduce execution
time. However, these were removed on
all the systems but the Intel 8080. The
package has run, without change (except
for the above mentioned machine-specific
code) on Hewlett Packard 2100, DEC
PDP-11, IBM 360 and the INTEL 8080.

t t S t S t S S t t t Y l i t t t U BLOCK 104 I t S U S t S t t S t U t X S L l l t

(STRING STACK UORDS CONT'D LAR 19-SEP-79 1
([I - - - [- I OR OFFSET1 SEARCHES FOR I S T OCCURENCE OF)
(TOP STH+ I N 2ND STR.--- IF FOUND OFFSET I S RETURNED)
(ON PARAM STACK ELSE -1 I S RETURNED. TOSS I S POFPED

: 'INDEX -1 SSTOP DUP C@ 0<>
IF DUP SSDOWN SSVER PUP ce ROT I+ ce ROT 1 t SUAP
ROT 0 'INDEXDO
ELSE 0 ROT ROT THEN 2DROP 'PROP i
(TI---El COMPARE S DROP 7'0r 2 STR~NGSI LEAVE 0,<0 OR >O)

: '? SSTOP DUP SSDOUN S? 'DROP 'DROP r
([I - - - C T / F I LOGICAL =, TESTS TO? 2 STRINGS) : 's *? O r ;
(El---ET/F3 LOGICAL LESS THAN TESTS TOP 2 STRINGS) : * < * ? O > i

***tS*S*t*S**SSt*u BLOCK 105 S*S*St* * t tSS*$&St&t

I STRING STACK WORDS CONT'D
s '> n A n is- MAR-^^)

(C l - - - C T / F l TESTS TOP 2 STRINGS FOR 5 X)
'To'; ;
./= . . (C l - - -KT/F l TESTS TOP 2 STRINGS FOR <= X) '> NOT i : * I:, = ! Cl - - -ET/F l TESTS TOP 2 STRINGS FOR >= t)
-.: NnT .

: ' S P ~ ~ E S ' (<N>-i>, PUSH A STRING-OF N SPACES ON SS $)
DUP 0 DO SSTOP I- BL SOVCHECk OVLR C! SSTOP! LOOP
SSTOP 1- DUP ROT SUAP C ? SSTOP! i

: ' I N I T (<#CHARS TO ALLOCATE FOR S S > - O r I N I T SS- INTO DICT)
1 ?# HERE SSO ! ALLOT HERE 2- DUP SSM ! SST ! 9

200T ' I N I T (ALLOCATE 2 0 0 CHARS FOR STRING STACK)
-->

t l t t t i t t t t S t t t t S t t BLOCK 1 0 6 t S U S S t U S t t t U S S S S t t S

(STRING VARIABLE AND STRING ARRAY HAH 13-JUN-80)

(CnAx LEN]---[] ALLOTS SPACE IN DICT FOR n h x LEN AND)
(HAX t OF CHARS*)

: STRING-SPACE DUY , 0 9 2/ D P t !
(CHAX LEN1 STRING <NAME> --- ~UILDS A STRING VARIABLE)
(UHEN <NAME; I S EXECUTED THE BYTE ADDR. OF THE STRING)
(STAR! AHD LENGTH ARE LEFT ON THE STACK)

: STRING-JAW (BUILDS STRING-SPACE
,CODE s -) u nov, (PUSH PARAW ADDR)

S) 4 # ADD* (POINT TO COUNT ANb F I R S T CHhR
S -) 2 U I) MOV, (PUSH hAX LENGTH)

NEXT ,

U S t t S t t S S S U S t S t l t S BLOCK 1 0 7 S S S S U U U t S 8 t S U S S l t l t

! STRING ARRAY ROUTINE HAM 13-JUN-80) . O S T R I N G (I# OF ELEMENTS, HAX LEN1 ---<NhME:> t)
<BUILDS SUAP DUP , (BUILD HEADER, STORE t OF STRINGS)
0 8 0 DUP STRING-SPACE (ALLOT D I C SPACE, STORE HAX LEN

LOOP DROP

DOES> 2+ DUP @ ROT ROT 3 PICK (ADUH OF 1ST ELEHENT)
DUP 2 MOD I F 3 t ELSE 4 t THEN (i t TO MAX LEN I F ODD)

(2 t I F EVEN, 2 t FOR MAXLEN
ROT t 2 t t SUAP i (STRING ADDR t ELEHENT OFFSET)

(RETURNS COUNT AND ADDR)

--)

t S t S t S t t L S S t S $ $ t t $ BLOCK 1 0 8 t U t S S t S U X $ t t S S t t t S t

(STRING EXECUTION ROUTINE LPFFHAM 18-HAR-81)

: 'EXEC i <WORD NAtlE ON TOSS>-O, EXECUTE UORD I F FOUND)
HERE 'LEN '!
F I N D ?DUP I F EXECUTE

ELSE 0 TABDRT THEN i f UNDEFINED UORD ERROR)

: 'FORGET ((WORD NbHE ON TOSS>-<>, FORGET UORD I F FOUNn)
HERE 'LEN '!
F I N D ?DUP I F UPARAH + SFORGET

ELSE 0 TABORT THEN i (UNDEFINED UORD ERROR)

FORTH D I M E N S I O N S III/4 Page 1 2 3

The first application was for a screen-
oriented data entry system. Later appli-
cations included an ISAM data base, a
menu-driven interface for f low cytometry
and a word processing system. The pack-
age consists almost entirely of i ts original
code written i n 1977 by Mike Willisms, of
the University Computing Center. The
major change has been the addition of
comments.

We would l ike t o thank the following
people for their assistance: Mike
Williams, of the University Computing
Center, who developed the original String
Stack Package for URTH on the IBM 360
and the Intel 8080; and two undergradu-
ates who worked for Lawrence Forsley,
Lynn Raymond and Dan Blumenthal, for
documenting this package.

This work was partial ly supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
t r ic Company, New York State Energy
Research and Development Authority,
Northeast Utilities, The Standard Oi l
Company (Ohio), the University of
Rochester, Empire State Electric Energy
Research Corporation, and the U.S.
Department o f Energy inert ia l fusion
program under contract number DE-ACU8-
80DP40124.

R. Marisa is the manager s f the computing
facil i ty of the Production Automation
Project i n the College of Engineering a t
the University of Rochester. M. McCourt
was a senior laboratory engineer with the
Laboratory for Laser Energetics at the
University of Rochester and is now an
applications . engineer for Harvey
Electronics.

HELP WANTED

Associate Systems Manager,
Pulmonary Computer Systems

Primary responsibility for designing,
debugging and implementing major soft-
ware projects on the Pulmonary Computer
System. Programming experience wi th
PDP-11 Assembly language and FORTH
desirable. Some hardware experience wi l l
be useful.

Salary range to $35,000. Superior
benefits package, three weeks vacation
first year.

Contact:

John Gilbert, Employment Off icer
Cedars-Sinai Medical Center
8723 Alden Drive
P.O. Box 48750
Los Angeles, C A 90048
(213) 855-5529

Released on two 5.25" diskettes with
source i n 280 assembler 820080-25 ($80).

FORTH Application Modules
D i e t t e Released on one 8" diskette with

source i n Z80 assembler 8@0080-Z8 ($80).

The diskette of FORTH application
moduels, a new product by Timin
Engineering, is a variety package of
FORTH source code. It contains hundreds
of FORTH definitions not previously pub-
lished. Included on the diskette are data
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calcuIator, a typing
practice program, and a menu genera-
tion/selection program. In addition, the
diskette provides examples o f recursion,
<BUILDS ... DOES> usage, output number
formatting, assembler definitons, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
i n exemplary FORTH programming style.

The FORTH screens, wr i t ten by Scott
Pickett, may be used wi th Timin FORTH
or other fig-FORTH. The price for the
diskette o f FORTH application modules is
$75 (i f other than 8'' standard disk, add
$15). To order the FORTH modules, wr i te
Timin Engineering Company, 9575
Genesee Ave., Suite E-2, San Diego, CA
92121, or cal l (714) 455-9008.

INNER ACC'ESS FORTH
SOFTWARE AND DOCUMENTATION

Fig-FORTI-4 compilerfinterpreter for
PDP-11 for RT-11, R S X l l M or stand-
alone with source code i n native as-
sembler. Included in this package are an
assembler and editor wr i t ten i n FORTH
and installation documentation.

Manual for CP/M (or CROMEMCO)
fig-FORTH above 620080-99 ($20).

METAFORTH Cross-Compiler for
CP/M or CROMEMCO CDOS to produce
fig-FORTH on a target machine. The
target can inclilde an application without
dictionary heads and l ink words. It is
available on single density diskettes with
128 byte 26 sectorltrack format. Target
compiles may be readiIy produced for any
of the following machines.

CROMEMCO--all models
TRSBO Model I1 under CP/M
Northstar Horizon
Prolog Z80

Released on two 5.25" diskettes
1/20100-85 ($1,000).

Released on one 8" diskette t20100-88
($1,000).

Complete Zilog (AMD) 28002
develoment system that can be run under
CP/M or CROMEMCO CDOS. System
includes a METAFORTH Cross-Compiler
which produces a 28002 fig-FORTH
compilerfinterpreter for the Zilog 28000
Development Module. Package includes a
28002 assembler, a Tektronix download
program and a number o f utilities.

Released on two 5.25" diskettes
W29102-85 ($4,000).

Released on one 8" diskette #29102-88
($4,000).

This is available on a one 8" single
density diskette only. 120011-01 ($80)

Zilog 28002 Develoment Module fig-
Reference Manual for POP-11 fig- FORTH ROM set. Contains fig-FORTH

FORTH above. 620011-99 ($20) w i th 28002 assembler and editor in 4
(2716) PROMS. #38002-00 ($850).

Fig-FORTH compiler/interpreter for
CP/M or CROMEMCO CDOS system
comes complete with source code wri t ten
in native assembler. Included i n this
package are an assembler and editor
wr i t ten i n FORTH and installation
documentation.

A l l diskettes are single density, witk
5-25'' diskettes i n 128 byte, 18
sectorftrack format and 8" diskettes i n
128 byte, 26 sectorltrack (IBM) format.

For orders and further information,
contact:

INNER ACCESS CORPORATION
Software Division
Box 888
Beimont, CA 94002
(415) 591-8295

ANNOUNCEMENTS

Released on two 5.25" diskettes wi th Sym-FORTH Newsletter now available,
source i n 8080 assembler 120080-85 ($80). contact: Saturn Software Ltd., PO Box

397, New Westminister, Brit ish Columbia,
Released on one 8" diskette with V3L 4 W , CANADA.

source i n 8080 assembler #20080-88 ($80).

Page 124 FORTH DIMENSIONS 11114

COMPLEX ANALYSIS IN FORTH

Al f red Clark, Jr.
Department o f

Mechanical Engineering
University o f Rochester

3uring my years as an engineering
educator and a researcher i n theoretical
f luid mechanics, 1 have often wished for
the perfect calculator--a compact
machine which would perform intr icate
and useful mathematical tasks i n response
to a few keystrokes. The pocket scientif ic
calculators, amazing as they are, never
seemed t o have quite the power and flexi-
b i l i t y (and certainly not the graphics
ability) that I hoped for. I always sup-
posed that my hopes were unreasonable
unt i l I discovered FORTH two years ago.
Having been a FORTRAN programmer for
20 years, I found the transition to FORTH
somewhat di f f icul t and even painful at
times. Originally, 1 took up FORTH out of
curiosity, but gradually I realized that the
quest for the perfect calculator was over-
-it is FORTH plus a microcomputer.

Perhaps I should say a l i t t l e more
about what a perfect calculator is sup-
posed to do. Among other features, it
should have (1) standard trigonometric and
exponential functions, (2) other common
special functions (e.g., Bessel functions),
(3) graphics and automated plot t ing o f
functions, (4) numerical integration, (5) a
root-finder, (6) special purpose applica-
tions, such as a direction f ie ld plot ter for
f irst order differential equations, and (7)
complex arithmetic, including complex
transcendental functions. Further, a l l
procedures should be executable with a
few keystrokes.

The last i t em in the list-complex--is
i n some ways the most stringent test of
any would-be perfect calculator. It's
certainly not available on any pocket
calculator. Although it can be imple-
mented i n BASIC, it is cumbersome and
requires a large package of subroutines.
The versions of FORTRAN available for
small machines generally, omit the com-
plex arithmetic and complex functions
which are available on large machines.
With FORTH, however, the extension t o
complex f rom rea l f loating point is simple
t o implement, easy to use, and powerful.
Since complex arithmetic is not yet very
common in FORTH on small machines, I
thought it would be worthwhile t o sketch
br ief ly my implementation.

The most fundamental question i n
introducing complex analysis is how to
represent complex numbers. Here i t turns
out that the pure mathematician's defini-
t ion of a complex number as an ordered
pair of real numbers is exactly what we
need. Thus the complex number 3.5 + 7.2i
is regarded as an ordered pair, and is
pushed on the stack by typing 3.5 7.2 .
With this convention established, i t is easy

t o define a l l o f the important stack mani-
pulations such as ZDROP, ZDUP, ZOVER,
ZROT, and ZSWAP, which perform exactly
l ike their integer and floating point
counterparts. The basic load and store
operators, Z@ and Z[, can be defined i n
terms o f @ and I.

There are many single number opera-
tions which are useful. These include the
rea l pert REZ, the imaginary part IMZ,
the complex conjugate CONJ, the modulus
1.71, the square of the modulus /Z/2, the
reciprocal l /Z , and the phase ARGZ
(radians). Most o f these are quite simple
to define. IMZ, for example, is just
: IMZ FSWAP FDROP ; where FSWAP and
FDROP are floating point stack oper-
ations. As another example, consider 1/Z

defined by I 1/z ZRlP /2/2 PEwr F/

F F U n ! p r a a r ~ / r n ~ ;

For ARGZ it is very important to establish
a precise range and to implement it care-
fuily. The conventional range, which I
have used, is -PI < ARGZ <= PI. Any care-
lessness i n the definit ion of ARGZ wi l l
lend to disasters later when multi-valued
functions are introduced. Many engineer-
ing applications require the phase in
degrees, and it is convenient t o bui ld i n a
function DARGZ which supplies this.

Conversion words between rectangular
and polar forms are also very useful. To
go from retangular t o polar, w i th the
phase (in radians) on top of the stack and
the modulus just below, we have

: m u m Z D U P / z / F I I O T m A R G Z ;

A similar word, DPOLAR, leaves the argu-
ment i n degrees. For conversion from
polar t o rectangular, we have RECT (angle
i n radians)

: m m v E F (F O V W a x F * C F I I D T m s n ? P

and a word DRECT for the angle i n
degrees. A very useful application o f
these is a rotat ion operator ROTZ, defined
so that the sequence Z F ROTZ rotates
Z by F radians and leaves the result on the
stack. The definit ion is

:lwrz# m m P O l A R R W T F + ~ ; .

There are several different useful
formats for complex output. ("y system
has 8 different formats, which is handy
but a l i t t l e extreme.) The word Z. prints
the number as an ordered pair -- 3.5 7.2 ,
for example. The conventional mathema-
t ica l notations is obtained by ZI. -- (3.5) +
(7.211. Words t o pr in t in polar form are
also useful. For example, ZP. is defined
so that the sequence 3.5 7.2 ZP. gives

KID = 8.00%2303 AEG = 1.11832144 (IUU)) .
A l l o f these output words are defined i n
terms o f the basic f loating point pr in t
word F. . For example, Z. is defined by

: Z. J S i A P F. 2 SPAI3ES F. :

The binary complex operations are Z+,
Z-, Z*, and Z/. These are quite easy t o

define. For example, Z+ is defined by

where FROT is a floating point ROT, end
F + is a floating point add.

Higher functions can be defined, pro-
vided the underlying real f loating point
has the standard real functions SIN, COS,
ATN, and EXP. The complex exponential,
for example, is then defined by

Other useful functions such as ZSIN,
ZCOS, ZTAN, ZSINH, ZCOSH, and ZTANH
are defined similarly.

O f the multi-valued functions, the
most useful are the square root ZSQR, the
logarithm ZLOG, and the power Z**. As
an example of the definitions, consider the
principa! value of the square root:

The basic words described above can
be the building blocks for substantial
applications. One such application, which
is particularly useful pedagogically, is
conformal mapping. I have defined a word
MAP such that the sequence

wi l l take any previously defined curve i n
the 2-plane and any previously defined
complex function, and produce a graph
showing the curve and i ts image under the
transformation. This tool allows students
(and the instructorD t o improve their
understanding of the geometry of complex
functions.

Notes an Implementation

The code described above runs on the
author's 48K Apple 11. The underlying
integer FORTH is the excellent version
wri t ten by William Graves and distributed
by SOFTAPE. The real floating point
arithmetic and functions have been
implemented by interfacing the SOFTAPE
FORTH wi th the Applesoft ROM rou-
tines. The same data stack is used for
integers (2 bytes), reals (6 bytes), and
complex numbers (12 bytes). The code for
the complex routines was wri t ten entirely
in FORTH, and, i n compiled form, occu-
pies about 2K. The conformal mapping
code compiles to about 1K additional.

ORDER NOW!
Proceedings of t h e 1 9 8 1 Roches ter

FORTH S tanda rds Conference
$25.00 US, $35.00 Fore ign . Send
check o r MO t o F I G i n U S funds
on U S bank.

" S t a r t i n g FORTHn
H a r d - $20.00 U S , $25.00 Fore ign
Soft - $16.00 US, $20.00 Fbreign

ORDER NOW!

FORTH DIMENSIONS 11114 Page 125

A FORTH BASED
MICRO-SEED

MICRO ASSEMBLER

Gregory E. Cholmondeley
Laboratory for Laser Energetics

University of Rochester

Abstract

The FORTH programming language can
be used t o implement a very small and
useful micro assembler. Functions ranging
from automatic field alignment to user
definable macros can be written and
altered easily, permitting a flexible and
easy t o use microcoding technique. This
paper also serves to illustrate several of
the many programming features found in
FORTH.

Computer central processors often
contain an iternal data form called
"microcode." This code defines the
instruction se t of the processor. The
creation of this internal code is called
"microcoding."

Microcoding by hand is a t best a tedi-
ous and wasteful undertaking where a slg-
nificiant portion of a programmer's t ime is
spent aligning fields, formatting output
and correcting typographical errors.
Understanding (let alone debugging) a
microcode program is difficult due to the
lack of readability from a human point of
view. Through the use of comments, auto-
matic field positioning, labels and other
such tools, a good micro assembler should
minimize the above problems making
microcoding a much more agreeable form
of programming.

There already are micro assemblers
written which handle these along with
other problems associated with micro-
coding, but most of them share one rather
serious drawback: they are large pro-
grams. The micro assembler presente
here is based heavily upon the Signetics f
micro assembler but requires only a f ew
"blocks" of FORTH code. Thus i t is pos-
sible to have a micro assembler on a small
home computer[Such an assembler could
be used a s a design tool a s well a s an
inexpensive and effective teaching aid. I t
would allow even wide instruction words
to be built in a simple to use, high level
form.

There a re two main phases associated
with this micro assembler: instruction
definition and actual programming. A
third phase will be implemented shortly t o
allow the user to explicitly and easily
define output formats. The first of these
phases t o be explored is the instruction
definition phase. This is the t ime when
the various instruction word formats a r e

defined. A simple example of such a
definition would be as follows:

INSTRUCTION WIDTH 8
Define an 8-bit instruction.

FORMAT
FIELD GG WIDTH 16 DEFAULT 65535

FORMAT. Ern
FIELD HH WIDTH 8 DEFAULT 255

FIELD A WIDTH 4 DEFAULT 3 Figure (1) : Sample I n s t r u c t o n De f in i t i on
Define field A a s the 4 most signifi-
cant bit positions in the instruction,
having a default value of 3. i n s t r u c t i on

FIELD I3 WIDTH 2
/

Define field 6 as the next 2 bit posi- /
/

tions, having a default value of 0. AA-->BE-->HH f i e l d s AA, BB and HH

FIELD C WIDTH 2 DEFAULT 1
I

Define field C as the 2 least signifi-
I
----> f i e l d BB has 2 a l t e r n a t e

cant bits, having a default value of 1. / I formats

END.INSTRUCTION
/ I

/
Close the instruction definition.

I
CC-->DD GG format 1 con t a in s f i e l d s CC

I and DDformat 2 con t a in s f i e l d
The resulting instruction word would 1 S.G
appear in the following form: *

1 f i e l d DJI has 1 a l t e r n a t e : 7 4 : 3 2 : l 0:

1 / format A I B I C L /
EE-->FF f i e l d s EE and FF

From this point on the field names A, B,
and C will be unique and may not be used
t o define other fields. F igure (2) : S t r u c t u r e of F igure (1)

While the preceding example is rather
trivial an instruction definition may
become quite complex., I t is, for instance,
possible t o define multiple formats for
every field, with each of these containing
multiple sub-fields. This is useful when i t
is deemed t ha t fields shwld have different
meanings depending upon the context of
the rest of the instruction word (vertical
versus horizontal programming). Sub-
fields a re treated in the same manner a s
fields so tha t they too may have multiple
formats and sub-fields. This feature is
implemented as a t r e e structure allowing
an unlimited nesting of fields, formats and
sub-fields. Figures (1) and (2) should
clarify this concept.

This part of the micro assembler has
error checking capabilities which prevent
unintentional overwriting of fields. For
example, if field EE of figure (1) is filled,
then fields BB, DD and GG (and of course
EE) could not be used. Automatic field
defaulting uses the same mechanism so
t ha t if field EE is the only field filled
(using the format from the previous
example) then fields AA, CC, F F and HH
will be defaulted.

INSTRUCTION WIDTH 32
FIELD AA WIDTH 8 DEFAULT 255
FIELD BB WIDTH 16 DEFAULT 65535

FORMAT
FIELD CC WIDTH 4 DEFAULT 15
FIELDDDWIDTH12 DEFAULT4095

FORMAT
FIELD EE WIDTH 10 DEFAULT 1023
FIELD FF WIDTH 2 DEFAULT 3

FORMAT.END
FORMAT. END

The programming phase of the micro
aasembIer is where the actual microcoding
takes place. An instruction is created by
typing the name of a field followed by a
number or expression representing the
value t ha t t ha t field should take. This is
continued for a s many fields a s needed in
the instruction word. When the instruc-
tion is complete a "$" (dollar sign) is typed
and the computer readies itself for
another word. A t this point any undefined
fields a re s e t t o their default values, the
instruction and other related information
is stored in memory, and the location
counter is incremented. Figures (3) and
(4) demonstrate a simple microcoded pro-
gram which merely se ts one field a t a
t ime equal t o a zero.

PROGRAM lEXAMPLE WIDTH 32

ORG 512

END. PROGRAM

Figure (3) : Sample Program

Page 126 FORTH DIMENSIONS In14

AA used
BB used
CC used
DD used
EE used
FF used
GG used
HH used

BB & HH de fau l t ed
AA C HH de f au l t ed
AA, DD & HH d e f a u l t e d
A A , CC & HH d e f a u l t e d
AA, CC, FF & HH de fau l t ed
AA, CC, EE & HH d e f a u l t e d
AA & HH de fau l t ed
AA 6 BB de f au l t ed

F igure (4) : Sample Output

While automatic field alignment is in An example of this microp in use would be
itself a vast improvement over hand found in the programming phase and might
coding, there are a few other tools avail- look like:
able t o the programmer which make
microcoding even easier. A "(." denotes a
comment allowing anything up t o and
including a ".)" to be ignored. Typing ORG A A 7 H H (L C) $

and a number or an expression will s e t the AA 8 EX1 $

location counter (LC) to tha t value.
SET <new v a r i a b l e name>

TO <number o r expression>

will declare and initialize a variable, while

typing EQU <old v a r i a b l e name>-

WITH <number o r express ion>
will s tore a new value into a previously
declared variable. These variables return

NOTE: LC in the preceding example is
a variable, the It(" and ")" a r e required
for i t s proper execution. They do not
denote a comment in t he MICRO
vocabulary context. This is also true
when building microps. In the MICRO
vocabulary comments a re delimited by
I f / 11 --A I1 \ I1 \. CaIIU .I .

their value when they a r e typed (similar t o
a constant in FORTH) and can be used in Being simple colon definitions, microps

a t any time and in any phase can do internal testing, looping and every-
of the micro assembler. thina else offered in FORTH. M i c r o ~ s can

expect parameters on t he stack as well a s
One of the most versatile tools avail- numbers or expressions from the input

in this a*emb1er is the buffer via a function called GETW. For
MICROP function. Microps are user- example:
definable functions desioned to eliminate
a large part of the repetitious program-
ming associated with microcoding. For
example there may be times when several
fields will always take on constant or
relative values. Rather than cluttering
the program by having t o set all of these
fields every time, a microp can be written
to do this automatically. A program writ-
ten using well named microps can in turn
be quite a bit easier t o read and under-
stand than one which merely se ts the
fields.

The definition of a microp requires a
unique name and a set of commands which
will be executed whenever i ts name is
called. Any FORTH programmer will soon
realize tha t a microp definition is nothing
other than a colon definition, thus allow-
ing the full power of FORTH t o b e easily
accessed directly from the micro assem-
bler[An example of a simple microp tha t
se t s a few fields to zero would be:

MICROP EX1 (. s e t f i e l d s CC, FF,
CC 0 and HH t o 0 .)
FF 0
HH 0

END.MICROP

HICROP ?GT (. <expr l> ?GT <exF
GET# >

IF AA 0 BB 0 CC 0
ELSE HH (LC)
THEN

END.MICROP

This could be used like:

Finally, microps have macro capabilities
in that they can be nested and may even
crea te several lines of code in one call (as
may be needed in a tes t and branch, or
jump substitute routine).

MICROP EX3
LC 100 >

IF EX1 $
LC ?GT 1000 $

ELSE AA 0 $
CC 0 HH 0 $

THEN
END.MICROP

Another way t o increase readability in
the micro assembler is through the use of
labels. This feature is only partially
implemented a t this time but will work as
follows. Labels must have unique names
and must be declared via LABEL state-
ments before they are used. When a label
is found immediately preceding a new
instruction word (or in other words;
immediately following a 'I$'? the current
value of the location counter (LC) is
stored a s the value of the label. Multiple
labels may be used to represent the same
line of code. When a label is used inside
an instruction definition af te r i t s value
has been set, i t will be t rea ted a s any
other variable. If the label has not been
se t t o a value (i.e., forward referencing) a
zero will be returned and all information
necessary t o resolve t he reference will be
stored in memory for the second pass.
During the second pass the micro assem-
bler will shift the cor rec t value(s) of the
label(s) into the proper place(s) and then
add t he resulting number t o the res t of the
word. This allows labels t o be referenced
more than once in a single instruction. It
also allows addition and subtraction of
other non-label expressions to labels (i.e.,
AA (1LABEL + 2 or AA (ILABEL - 1)
but not AA (1024 - lLABEL)). When this
is implemented another extended precision
function (E+) will be needed to perform
the extended precision addition.

1r2> -- t e s t s i f exp r l is > expr2 .)

The last major feature of the micro
assembler concerns output formatting.
This has not been developed at all but will
consist of a basic instruction s e t for
programmers to use t o define specific
output formats (i.e., hex, insertion of
special delimiting characters, etc.). The
programmer will define a function (similar
t o a microp or colon definition) for each
type of output format. The executable
code field address of the current format-
ting function is stored along with the
other instruction word information on the
first pass. On the second pass the format-
ting function will be executed to produce
the desired result. I t will be possible t o
change the current format function
between instruction words by using a
command of the form:

SET.FORMAT <format func t ion name>

allowing multiple output formats within a
single program. By installing different
formats in currently existing ones, i t will
be possible t o view the code in punched
card format a s well a s a format suitable
for blowing PROMS!

FORTH DIMENSIONS 11114 Page 127

Implementing Techniques

The f irs t problem t h a t I addressed was
how to align the fields in an instruction
word definition. For words t h a t a re 32 or
fewer bits wide the solution is simple,
merely do logical shifting and ORing.
Since 32 bits is a rather stringent limit on
the word width, I have kept the same basic
strategy but have defined a se t of func-
tions which can do logical operations upon
extended precision words. The precision
(in terms of 16-bit words) is stored in a
variable called PRECISION and is se t a t
the PROGRAM WIDTH statement. These
a re the extended precision functions which
I needed:

1. EXT.PREC - This is a defining
word tha t c rea tes an extended
precision variable which uses the
Bartholdi "TO concept" t o store
and fetch extended precision
numbers. EXT.PREC expects t h e
desired precision of the new
variable on the stack.

2. E.FILL - E.FILL expects a number
and the precision of tha t number
in te rms of 16-bit words on the
stack. It uses this t o fill in the
most significant places with zeros
until the number has a precision
equal t o the current value of
PRECISION. Notice tha t the
value of PRECISION must b e
larger or equal t o the length of
the given number.

3. E-DROP - This function drops an
extended precision number from
t h e top of the stack.

I. ESI- - The ESL function performs
a logical shift t o the l e f t on an
extended precision number. It
expects the extended precision
number and the number of shif ts
on the stack and returns t h e
shifted number.

5. EOR - This takes two extended
precision numbers off of t h e
stack, logically ORs them togeth-
e r and r e t u m s t h e resulting
number.

6. EXOR - This executes an exclu-
sive OR operation between two
extended orecision numbers. I t
expects two extended precision
numbers and r e t u m s the result.

7. ECOM - ECOM does a 1's comple-
ment of the given extended preci-
sion number.

One extended ari thmetic function will b e
needed to implement forward referencing
of labels. This function has already been
mentioned and will b e called E+.

t J t l t S t S S S t t X t X l t S BLOCK 160 t t S t S L t S S l t t $ t C 1 C t X

(a l s e b r a i c n o t a t i o n GEC 15-JUL-81 ,
: GET# t L<t--<input express1on:s va luer1

32 UORB NUtiBER NOT (g e t next i n r u t charlnum)

I F R> R:> SWAP >R >R THEN i (i f c n a r then t r e a t a s ' (' I

: (. ECOnPILEl (i I M E D I A T E (d e f i n e (. a s comment d e l i m i t e r J

YOCABULARY HICRO NICkO DEFINIT ION5 . + GFT* + i (. E<#l>--<#l t #2>1 r e d e f i n e t ,)
(, C<#l>--r#l - #2/3 redefane - . I
(. C%#l?--,#l t # ? , I r e d e f i n e t . t

: / GET# j ; i, [,;?I)--‘. .#l i #2,3 r e a e t l n e / + /
:) R;, R> SNAP i R >R i (. Cc.,--<:>l end e x r r e s s l o n .)
' 0 ; (. C<>--.iil s t a r t e x ~ r e s s i o n I I
~ O R T H DEFINITIONS --

(value and f l i p f l o p t ~ ~ e f GEC 10-JUfl-81)
0 UAR %TO (f l a *) . TO 1 %TO ! ;

: V A L - (r e t u r n s value of v a r ~ a b l e f not address 3)
*.BUILDS DOES)

%TO I? I F ! 0 XTO ! (s t o r e va lue J
ELSE e push va lue 1
THEN i

: FLIYFLOP (r e t u r n s 0/1 and s t o r e s 1 / 0)
<BUILDS O 9

([<:>--.!.,. .,I i n i t i a l i z e F.F
DOES), %TO @

I F ! 0 XTO ! (C<l/Oi- -<>I s e t F . F .)
ELSE ?UP e uur NOT ROT ! (E ~ > - - C I / O ; ~ I f l l r F . F .
THEN r - -

(v a r i a b l e d e f i n i t i o n s GEC 19-JUN-81)
0 VAL CUH.ADUF: (c u r r e n t address

t c u r r e n t f i e l d)
(c u r r e n t format)

(c u r r e n t i n s t r u c t i o n word)
(f i e l d l e r ~ s t h I

(f i e l d r o s i t i o n)
(l o c a t l o n counter 1

(i n s t r u c t i o n width)
(l a s t f l r l o i

O VAL L.FORH (l a s t format J
O VAL L.INSTH (l a s t ~ n s t r u c t ~ o n)
0 VAL HEf4 (c u r r e n t memory addr f o r p r l n t r o u t l n e s 1

0 VAL NEY.UORD (f l a S s e t a t s t a r t of new i n s t r , uord I
0 VAL OFFSET (o f f s e t of s h i f t Iused i n ESL))

- - .

(v a r i a b l e d e f i n i t i o n s - 2 GEC 19-JUN-81)
0 VAL
0 VAL
0 VAL
0 VAL
0 VAL
G VAL
0 VAL
5 VAL
F L I P F I
0 XEO
0 XEQ

OVFLI. (overf low f l ad t
PLACE (addr of temp s t o r a d e I n extended o r e r a t l o n s J
PRECISION (recision of word ~n 16 b i t units 1
TEST-FLAG (f l a s used I n e r r o r checkln* and d e f a u l t i n d)
TSHIFT (~ n t e r m e d i a t e number of s h i f t s IESL) 3
TIIEF (d e f a u I t rhase I O . u s e / l + s e t / ? . ~ n i t i a l ~ z e ?)
LFLAG (value t o s t o r e ~n f l a g 5 I 0 / 1 > I
%PRINT*FORB6T (addr of o u t r u t format code i

.OP FLD.FF (f i e l d F.F. f o r e r r o r checkind S d e f a u l t i n g :
BROTHER (b r o t h e r of c u r r e n t field!format 1
PARENT (p a r e n t of C.FIELD)

0 XEQ SELF
0 XEQ UNCLE

r FIELD)
(uncle of C.FIELU)

t ~ t t t $ t t X t t t t t t S S t BLOCK 164 t t t X S t t t S S t t t S S S I f X

(extended p r e c i s i o n f u n c t i o n s GEL 12-JUN-81 !

: EXT.PREC i <prec is ion ; ' -0 b u i l d s an extended p r e c i s i o n # f
(BUILDS DUP 2* r 0 DO 0 I LOOF
DOES:., ((3-..< .leu-order ..+ hi3h-order; o r reversed i f %TO)

DUP OUP e + 2 t suAr 2 t
XTU e IF DO I ! 2 +LOOP 0 %TO ! (s t o r e s #)

ELSE SWAP 2 - DO I C -2 +LOOP f f e t c h e s t)
THEN i

: E - F I L L f <# 1en)-i# 0 4 . . 0) r u t s 0 ' s i n h i 3 h o r d e r . ~ l a c e s i
PRECISION SUAP PBUP i I F DO 0 LOOP ELSE 2DROF THEN r

: EDROP (i::low-order ... hi?h-order>-<:? d r o r s e x t . r r e c r s i o n #
PRECISION 0 DO DROP LOOP ,

Page 128 FORTH DIMENSIONS 11114

When a field is assigned a value and is
aligned, the following process occurs. An
extended precision number with a preci-
sion equal to PRECISION is on the stack.
This is the value of the current line of
microcode. After the field-name is typed,
an extended precision number with a
precision equal to the width of the field is
accepted. E.FILL is used on this number
to make i t the same precision as the
instruction word, ESL is used t o shift it
over the proper number of bits, and EOR
is used t o update the micro-instruction.
This is repeated until a "$" is encountered
which will clear the flags, se t any defauft-
ed fields, s tore the extended precision
instruction word in memory and leave an
extended precision number equal t o zero
on the stack (for the next micro-
instruction).

The second main problem tha t I faced
dealt with how to handle multiple for-
mats. I implemented a t ree structure
where the instruction is the root with the
list of fields a s its children. Each field
has a list of formats or a zero for i t s
children. Every format has a list of fields
a s i ts children and the cycle continues.
Each node in this t ree has pointers to i ts
parent, "oldest" child, and next youngest
brother. Each node also contains a flag
denoting whether i t is a valid field or not,
a value corresponding to its starting posi-
tion in the instruction word, i ts field
length and i ts default value. Thus when a
field is accessed a test is executed t o
determine whether it is valid or not. This
is accomplished by traversing up the t ree
and checking the validity flag. If the first
se t flag is found in a field, then the
programmer is trying to overwrite another
format in the same field. If no flaq is s e t
and this is not a new line of microcode,
then this field is not defined in the same
instruction word as the previous one(s) and
another error condition is found. If , how-
ever, the field is determined t o be valid,
then the flag bit of tha t field will be s e t
along with the flag of i ts parent, and i ts
parent, continuing up t o the root. When a
"$" is encountered, the t ree is traversed in
tho same manner but from the root down
and all flags are reset. A t the same t ime
any unused brothers of the lowest level
fields used will be assigned their default
values.

INSTRUCTION FORMAT FIELD

INSTRUCTION FORMAT FIELD
--

I f i e l d I
Brother 1
Used Flag I 0 /1 I I 0 / 1 I
C h i l d 1 f i e l d] 1 f i e l d I
Field S t a r t i n g P o s i t i o n
F i e l d Length
Default Value

o r Zeros

I format (
/ f i e l d I
I 0 / 1 I
I format l
1- I
I- I
I - - - - I
1 - .- - - 1

XXttt$XSttt\t1:ttt1: BLOSk 165 $SXt1:$$1:1:$1:tX$f$$X~

! e.:tended r r e c . f u n c t ~ c n s - 2 GEC 12-JUN-81 ? . ESL ! (leu-ord , + . h:sh-ord t - s h x f t s -d lou-orb ... hlsh.ord:
s h i f t s # - s h l f t s t o l e f t i d r o r s high cv S s h l f t s i n 3 ' s >

0 TO OVFLG HERE PPEC!S!Og 2 X 4 DUF TO PLACE HECE
DO 0 I I 2 +LOOP c r e a t e worksrace

0 PRECISION 1 - ?t DO I TO OFFSET 3UP TO TSHIFT SYA?
(f o r byte from h l s b t o low du

HEGIN ?SHIFT 16 >=
iF (#-shift r = 16 r

OFFSET ? + TO OFFSET
TSHIFT 16 - TO TSHIFT
1 TO OVFLG i s e t overflow f l a 3

ELSE t t - s h i f t . 16 < s h l f t ncrmal l r) !
DUF TSHIFT -L OFFSET HERE +
DUP @ POT OR SUAP 1

-->

tlil1:tX1SSStSS%tfS BLOCK 165 $t1:SXSft$t~XXXlt1:~$

< extended r r e c . f u n c t ~ u n s - 3 GEC 11-JUN-61 j

OFFSET 2 4 HERE + DUP e (handles #s t h a t a r e s r l i t i
ROT 16 TSHIFT - ->L OR SWAP 1 (~ n t o 2 h r t e s br s h i f t)

THEN OVFLG NOT 0 TO OVFLG
FNTi

-2 ~GOP DROP
PLACE HERE DO I 2 +LOOF i (f e t c h # from temp uorksrace)

: EGET (E-.addr of v a r i a b l e , - - < . e x t . ~ r e . t . 3 ,
DUP PRECISION 1 - It + BO I @ -2 +LOOP i

(extended prec. functions - 4 GEC 15-JUN-BI i
: EOF (. e x t . r r e . # e x t , ? r ~ . t - e c t . r r e + t ? Uh ' e - t . ~ l e ts)
HERE FRECISION 91: t 1 - DUP TO PLACE HERE DO o i 1 " ~ +LOOF'
1 FRECISIGN DO

I PhECISION + PRECISION I - + PICh
F'RECISION 1 + F'iCh OR - 2 +LOOP

HEhE PLACE DO I 1 - 2 +LOOP
PRECISION 2$ 0 DO DROP LOOP
PLACE HERE DO I t? 2 SLOOP Y

: ECOt! (C<ext.#.r--.;MOT ex: . # > I one comrlements e x t .?re.#
HERE PRECISION 2$ t 1- DUP TO PLACE HERE
SMAP DO I I -2 +LOOP
PLACE HERE DO I e con 2 +LOOP ;

: ERROR.FUNCT .' ERROR CODE: ' . CR i -- .
$ ~ N ~ : ~ x s x x ~ ~ x $ ~ : Y x s ~ BLOC^ 168 %urtutr$$rxr$trtur

f u n c t ~ o n s - 5 GEC I
. r r e . # e c t . r r e . #>- tex t , r re .# .> OR
21: + 1 - DUP TO PLACE HERE DO O
+ PRECISION I - + PICK + PICK XOR -1 +LOOP
I ' -2 +LCiOP
DO DROP LOOP

I @ 2 +I-OOF i

XXlLlttttttttttttt BLOCK 1 0 9 XSt$tSX1:$ttttXlltYf

i o f f s e t s i n f i e l d s t r u c t u r e GEC 3-JUL-81 i
: 0FF.VAL + KT0 @ IF ! 0 %TO 1 ELSE DUP O i > IF @ THEN THEN i

: ?FARENT O OFF.VAL i : ?BROTHER 2 OFF,VAL i
: ?FLAG 4 OFFeVAL i : ?CHILD 6 OFF.VAL Y

: ?ANCESTOR ?PARENT ?PAkENT i
: ?INSTRUCTION.UIDTH 8 0FF.VAL i i INSTKUCTIGN i
: ?FiELD,START C.FIELD 0 OFF+VbL i A (FIELC!)
: 7FIELD.LENGTH C.FIELD 10 OFF,VAL r (FIELII 1
: ?DEFAULT C.FIELD 12 + i (FIELD f
! NEU.SON
DUP 'CHILD DUP ROT AN13

IF O SWAf BEGIN DUP ?BROTHER ROT DROP DUP NOT END DROP
ELSE nRnr o
THEN TO HkOTHER i -->

FORTH DIMENSIONS III/L Page 129

With the structures defined, the task
of creating a program comes to light, An
explanation has already been given des-
cribing how the words are constructed.
The following diagram should help clarify
how a "program" is actually stored in
memory in its first pass form.

General First Pass Structure for
Micmcode Programs

............... 1 - L . I Forth
For th 1 1 1 Name
Header (-I-,--- Link
. I +:--I ----- Description
Program 1- *--I ----- Ins t ruct ion Word Width
Header 1 0 1 " - - I - - - - - I- Address of Label

* - - I -,--- I-. F ie ld (ie . it of s h i f t s)

Complete
F i r s t Pass
Data For
One
Ins t ruc t ion
Word

I-:-I
12zIl----- Address of Label

;\- - 1 - - --- I- F i e ld
1 0 1 " - - I ----- I- Output Format IAI----- LC

- -

I _ _ - 1 I n s t ruc t ion
I - - I Word
- - I- I)+--!----- Address of Label

1 2 1 ----- Field
/ : I
I-:-I
1 - - 1 Ins t ruct ion

1- I Word
1 1 1 End of Program

Each program has a unique name which
defines a FORTH header. When this name
is typed, the program is listed in a basic
binary and hex form along with the format
address, LC, and any unresolved labels.

One of the primary objectives of this
micro assembler is to make microcoding
easier by making it more readable, and
there are quite a few places where the
reverse polish notation found in FORTH
does not appear quite as nice as an infix or
prefix form. Hence, I have written a f ew
short functions to allow FORTH functions
to accept numbers and expressions from
the input bufter as well as from the para-
meter stack.

This method uses the return stack v i a a
function GET# which accepts input from
the input buffer. If the input is a number
GET# places i t on the stack and returns.
If t h e input is not a number then GET#
assumes that the programmer typed a left
parentheses "(" meaning that there is an
expression or a variable in the input
buffer. If this is the case then GET# will
swap t h e last two values on the return
stack and return. When a right parenthe-
ses is found, the top two values of the
return stack are again swapped and the
system is back to normal. This is simple
and fast, although i t has no method of
checking whether a set of parentheses is
properly closed. However, a variable
could be used which would be incremented

4tttSStttSStSttttt BLOCK 170 SltttSStttXttSStSSt

! headers o f f i e l d s formats GEC 3-JUL-81
t ?NAME DUP 0 0 IF CFA,TNAME ELSE DROP THEN i
: IGNORE 32 WORD DROP r

: HEADER (creates 1st 4 f i e l d s i n FIELD and FORfiAT)
0 TO UNCLE HERE TO SELF
BROTHER O i Z IF SELF BROTHER TO ?BROTHER

ELSE SELF PARENT TO ?CHILD
THEt4 SELF TO BROTHER

PARENT r 0 0 , 0 P i (rarent/brother/f las! /child)

: FORMAT.HEABER (def ines FORHAT relat ives 8 executes HEADER !
INSTALL LeFIELD IN UNCLE INSTALL CeFIELD IN PARENl
INSTALL L-FORM IN BROTHER INSTALL CeFORh IM SELF
CeFIELD NEUtSON HEADER 0 TO C.FIELD r --,..

YXStftYttStttttttt BLOCK 171 tttYSttSttSt*lYtSt*

(i n s t r u c t i o n and f o r h a t defs . GEC 3-JUL-81

: INSTRUCTION (INSTRUCTION <name> WIDTH < w i d t h >)
0 TO C.FIELD FORMAI.HEADER
IGNORE GET#
PUP i i n s t r u c t i o n u i d t h
DUP ;O F.LENGTH TO F.POS i (f i e l d l e n d t h / f i e l d r o s l t l o n ?

: FORMAT ! FORMAT
?FIELD.LENGTH TO F.LENGTH (f ~ e l d l e n + t h)
?FIELD.START F:LENGTH t TO F.POS i f i e l d ~ o s l t l o n f
FORMAT.HEADER t

: SET,FLAGS t <#>-<I:> sets f l a d s from CIFIELD UP t o #)
TO XFLAG

k i ~ ~ k L ~ p A R ~ N ~ XFLAG TO OVER ?FLAG DVP NOT END M'OP
%FLAG C,FIELD TO ?FLAG i

ttSStSttttttSSSSt1 BLOCK 172 SSttttt%tSttSttStlS

! f o r m a t , e n d and f i e l d header GEC 3-JUL-81)
FORMAT*END (ENII,FORHAT I
C.FIELD ?ANCESTOR DUP TO L.FIELD TO C.FIELD
CeFIELD ?PARENT IF ?FIELU.START ELSE 0 THEN FtPOS 0

IF 2 ERROR*FUNCT RESTART
ELSE ?FIELD+LENGTH TO FeLENGTH

IFIELD+START TO F+POS
THEN r

: FIELB.HEADER
INSTALL L,FORH IN UNCLE INSTfiLL C*FORM IN PARENT
INSTALL LeFIELD IN BROTHER INSTALL C.FIELD IN SELF
SELF O<> IF SELF ?PARENT ELSE C,FORM THEN
DUP T O PARENT NEU.SON

HEADER P -- :.

StttXttttttXtttttt BLOCK 173 t%t%IZtSSStt%kXSI%$

! er ro r c h e c k i n d fo r used f i e l d s GEC 3-JUL-ill) . ER.CHECK (check t o see i f f i e l d is rermitted 1
0 TO FLBtFF CeFIELD
RFRTN

DUP ?FLAG TO TEST.FLAG
FLD,FF DfiOP
?PARENT
DUP NOT TEST.FLAG OR

END DROP
TEST-FLAG FLD.FF AND

IF 4 ERROR+FUNCT RESTART
ELSE TEST+FLAG NOT +LFz ERROR+FUNCT RESTART

(set TEST+FLAG=FLAG)
(f l l ? f i e l d . f l l r t f ' l o ~ j

(so t o p a r e n t)
(i f f l a g found o r root reached)

(f i e l d d e f i n e d t u l c e)

(not p roper i n s t r u c t i o n)

SS%%$XXStSStSS$S%I BLOCK 174 t$OX%S%tXtX%%$St%tS

.."
i., 0 ==> DROP '

: DEFAULT
GET# TO.DEF DO.BEFAULT i

Page 130 FORTH DIMENSIONS In/&

when a 'I(" is encountered and decrement-
ed when a ")" is found. This would catch
any errors involving too many closing par-
entheses. A "]" function could be wri t ten
which would behave i n the same manner as
the UCI LISP function of the same name.
It would use the variable mentioned above
to close a l l open parentheses for a suc-
cessful evaluation o f the expression.

G E T I and i t s related algebraic func-
tions have some interesting features i n
that there is no hierarchial ordering of
functions (i.e., 2 + 3 5 = 25 while 5 * 3 +
2 = 17), however, expressions enclosed i n
parentheses wi l l be solved before others
(i.e., 2 + (3 + 5) = 17). The entire code for
this is only a few lines long and is as
follows:

: GET!i 32 WORD NUEIBER
KOT IF R> R> SWAP >R >R
THEN ;

ttSt$ttStitStSSSff BLOCK 175 SfXSStttllttttXttXX

(f i e l d s t ruc tu re GEC 3-JUL-81 j

: FIELD
'BUILDS IGNORE GET#

DUP F,LENGTH <=

' FIELII .riame WIDTH .,uldth,)

IF FIELDSHEADER
F-LENGTH OVER - TO F,LENGTH
FaPOS OVER - DUP T O F-POS
r 7 (f i e l d s t a r t l f i e l d l ens th i INIT+IIIF ,DO+DEFAULI

ELSE 1 EKKOLaFUNCT RES T A R T
THEN

DOES;. TO C.FIELD
NEM.UORD IF O TO NEU,UORB ELSE ER.CHECK THEN 1 SETSFLAGS
GET# ?FIELD.LENGTH ?PRECISION EeFILL
?FIELD.STAHT ESL €OR - - .Z

g e t s number
swap i f not a number

VOCABULARY ALGEBRAIC ALGEBRAIC DEFINITIONS redef ine functions

: + GET# + ; : - GET# - ;
: * GET// ; : / GET{/ / ;
:) R> R> SWAP >R >R ;
: o ;
FORTH DEFINITIONS

re-swap return stack
swap return stack

A typical usage of this function could
be:

Current 1 I Parameter I Return
Function 1 Command I Stack I Stack
--------- --------- ----------- -

main 1 3 1 3 I invut a 3
{+I
GET#

main
t+?
GETS
(+ I
main

1

{+I
main

I main
1 main {+)
I {+) main
I {+?
[{+) main
I {+) main (+
1 {+I main
1 { + I
I {+) main
I main (+)
1 main
I

There are a few general concepts
which are used throughout this micro
assembler, one o f which is the "TO con-
cept" (see Joe Sawicki's paper entit led
Optimized Data Structures for Hardware
Control). This concept allows the use of
variables without the programmer having
t o deal directly w i th the address. While
this may be thouqht o f as beinq a b i t un-

c a i l function {+)
c a l l function GET{/
swap return stack
return and input a 4
c a l l (+) again

) input a 5
return and add
return to main
c a l l function)
swap return s tack
return and add
return and pr in t

FORTH-like, it does result i n much
cleaner code. I adapted the concept i n
one place t o build a f l ip-f lop function.
This function creates a data type which
alternately returns zeros and ones when-
ever i t is celled and makes use of the "TO
concept" t o allow itself t o be init ial ized to
either state. The micro assembler also
makes use o f multiple vocabularies to
allow the same function to have di f ferent
meanings i n different contexts. While this
is not absolutely essential fo r the assem-
bler to run, it again makes the code
cleaner and easier t o use.

The reason why I have chosen to wr i te
this micro assembler i n FORTH is simpli-
city. As I mentioned earlier, this "pro-
gram" is based largely upon a very lengthy
micro assembler wr i t ten by Signetics and
yet the FORTH code is only a few pages
long. The t ime spent programming was
equally short. It took roughly hal f o f my
t ime a t work f rom around June 10 through
July 15 to complete the micro assembler
to this point (although I have occasionally
gone back to add or change a feature or
two). Two o f the features that I did
change, labels end forward referencing
through the f i rs t pass, brought up another
quality o f FORTH: i ts modular nature.
These are rather major additions and yet
they only required one new "block" o f
code, a few minor changes in the old code
and took only a few hours to implement[

Once the forward referencing is com-
pleted and the output formatt ing is imple-
mented, this code wi l l be a micro assem-
bler by itself as wel l as a kernel fo r more
extended versions. An example of an
extended feature is the compilation o f a
symbol table a t the end of a program. A
further extension would involve tying this
symbol table to other symbol tables to
allow external references. Through the
use o f external symbol tables the micro-
code could be maintained i n the f i rst pass
format so that the external references
could be resolved several t imes for labels
w i th differing va luer This could result i n
a modular microcoding technique.
Another extension could be a FORTH pro-

-
FORTH DIMENSIONS 11114 Page 1 3 1

gram which wwid be used, in much the
same manner a s the micro assembler, and
similar t o Hardware Description Lang-
uages, t o describe a simulator for the
microcode. These two programs would
constitute a powerful ye t inexpensive
teaching aid as well as an effective design
tool. Programmers and students would not
need t o waste their t ime punching cards or
blowing PROMS in order t o discover the
errors in their coder A dozen other "nice"
features can be imagined (i.e., prohibiting
forward referencing t o allow interactive

tXtlXSXSStltlttXSt BLOCK

(end . i n s t r 8 f i n d root 8 h ro the r GEC

: ENI I - INSTRUCTION (c h e c k s fa r a n y u t d e f l n e d f i e l d s i
BEGIN FORtiAT,END C.FIELD ?ANCESTOR NOT END r

: ROOT 0 SUAP (f i n d s i n s t r u c t i o n I
BEG1 N (t X s e l f l - - [s e l f r a r e n t l j

DUP 'PARENT ROT DROP DUP NOT
END DROP i

: FIND.BROTHER O SWAP
BEGIN

DUP ?BROTHER HOT DROF
OUER ?FLAG OVER MOT OR

END DROP DUP
?FLAG NOT IF DROP 0 THEW i

(f i n d s h ro the r u i t h f l a s s e t i

(El s e l f l - - [s e l f b ro the r1 j
(f l a s OR not hro ther)

(Chrother OR 9 I) --.>
microcoding, or thedevelopment of intrin-
sic m i c r o ~ s to define commercial c h i ~ s . XllttXXStlXtSttX$S BLOCK
etc.), bu t ' the point is t ha t they could 'ali
be based around the small "kernel" micro
assembler presented here.

(default - 2 GEC a-JUL-81 i

FLAG ?CHILD
AG NOT
D DUP ?BROTHER (no f l a g s e t - d e f a u l t /

. - - . - - - - -
: DEFAULT1

CeFIELD ROOT 0 OVER TO ?
BEGIN DUP TO C.FIELB ?FL

IF BD*DEFAULT CaFIEL
CeFIELD CR ?NAfiE ,' DEFAULTED '

ELSE CsFIELD 0 OVER TO ?FLAb i f l a g s e t - r e s e t t o 5
DUP ?CHILD FIND.BROTHER DUY (f i n d sub-format used

IF 0 OUER TO ?FLAG (, r e s e t f o r r a t t'les t o O)
? C H I L D t c t m r k sun-t I r l d i I

I would like t o thank Lawrence Forsley
for the time and effort he expended help-
ing to direct and complete this project. I
would also like to extend thanks t o Dr.
Charles Merriam for his useful comments
and suggestions.

. - . . - - - - . . - - - - - , - - - - -.
ELSE DROP DUF ?BROTHtR rt: format u s e d - f ~ n u b ro the r ;

.FIELD CR ?NAnE , USED
EN BUP NOT
N DROP ?ANCESTOR DUP ?BROTHER OVER NOT OVER OR END

THEN SUAP NOT
i DROP CR i

C
THEN THi
IF REG11

This work was partially supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
tric Company, New York Sta te Energy
Research and Development Authority,
Northeast Utilities, The Standard Oil
Company (Ohio), the University of
Rochester, Empire S ta te Electric Energy
Research Corporation, t he Center for
Naval Analysis, under grant number CNA
SUB N00014-76-C-0001 and the U.S.
Department of Energy inertial fusion
program under contract number DE-ACOB-
80DP40124.

t ~ S t t t X t l t t l t S S t t t BLOCK

(mlcrn-assembler: foruard r e f . GEC 17-JUL-81)
: LABEL (LABEL rname?

.iBUILLD
0 0 (d e f . f l a 3 / va l)

DOES/ NEUIWOHD
IF DUF @ IF , Lahel ~ r e v i o u s l r def ined ' CK RESTflRT THEN

1 OVER ! (s e t f lart)
2t LC SUAP ! i s e t va lue)

ELSE BUP e
IF 2t e
ELSE ?FIELD.START SUAP r r 0

THEN THEN r

G.E. Cholmondeley is currently an under-
graduate student in t he department of
Electrical Engineering a t the University of
Rochester. His interests lie in computer
software and hardware design.

lltXXtXtt$XtttSStt BLOCK

(end of uord 8 o r i g i n

179 X$XtSlXSStX~lfSSSlt

GEC 11-JUN-81)

: C (ends uord ~n program mode)
CeFIELD ROOT IF DEFAULT! THEN
0 9 ! end of l a b e l s !
XPRINT.FOHHAT 9 LC UUP r 1t TO LC
PRECISION 0 DO DUY Be , LOOP CR
9 1 E.FILL

1. Signetics Micro Assembler Reference
Manual

: ORG
GET# TO LC i

HELP WANTED

FORTH Software Engineer

Program, edit and maintain files for
8080. Ability t o troubleshoot the
sof tware-hardware interface.

ltXf$SStXSlllXSSt~ BLOCK

(p r i n t i n s r ou t i ne GEC 18-JUN-81)
: U.ZEFiO

DUP 4096T U>= IF OT
ELSE DUP 256T U>= IF 1T

ELSE DUF 16T U>= IF 2T
ELSE 31

THEN THEN THEN
our IF DUP OT !O OT IT U,R Loor THEN
4T SUhP - U + R T

Call:

Wendy Palmer
1-800-225-4040
Instrumentation Laboratory, Inc.
Analytical Instrument Division
Jonapin Road
Wilmington, M A 01887

Page 132 FORTH DIMENSIONS 11114

i p r ~ r t t z n s rout ines - 2 GEC

: #PRINT (<e>:t.rre.#.addr>-.:> p r i n t e::t.rre+# in h ina r r 8 hex)

DUF' !hEFISI?N ZT $ t SUAP ?[[UP DO I P Be 2T +LOOP . DO I @ U.ZERO ? T +LOOP 7

: MEH.INC HEH DUP ?t TO HEM P ;

$ X I X X 1 S $ t l t t t t $ $ t t BLOCh 182 X t $ X X L t X X t Y l t $ t Y . t i t

t r r l r ~ t l r ~ s rout ines - 3 GEC 16-JUN-81)
: 1,FASS.PRINT

DUF T0,kEH @ 1 AND
IF ERROR - PROGRAM LENGTH 0 ' CH
E L S ~ 16 BASE ! CR BEGIN HEN @

IF BiGIN
, LABEL i ' HEM DUP @ CFA TNAME CR ?t TO MEh
' SHIFTED. ' HEM DUP @ . CR CR ?+ DUP TO IiEM @ NOT

~ N D
THEN flEh :+ TO MEIY

, ' F9RHAT; HEk 11uP @ . CF ?t 10 HEh . 1 , MEU DUP e c~ zt , o wEn
?lEh #PhINT CR HEM PRECI~ION 2* + TO hEM
C f i CR-CR hEk P 1 = END CR 10T BASE I
THEN T

I $ $ X $ t % t l l t $ t X X X $ i BLOCK 1R3 $ $ t S t t t S X f * X $ $ l t * * $

(program statement GEC la-JUW-81 i

: PKOGRAH
-,E!L!IL.LIS !ENORE GET# DUP , ?PRECISION TO F'RECISION 0 7

1 TO NEW.WORD
I:? 1 E.FILL

DOES:- DUP P ?PREC?SION TO PRECISION 4 t 1.PASS.PRINT i --;

L # I x x # ~ ~ % x ~ L x ~ ~ x $ BLOCK 184 t $ $ t t t r $ * $ $ $ $ t t $ x $ $

! end ~ r o s r a m S Micror comaanls GEC 17-JUN-81 ;
, ENLI.F'ROGF:AH

EClF:CIF' 1 r i

; MICROP fCOHPILE1 : :
: Et41f.HICROF CCOHPILEJ i i IMMEDIATE

: SET i def lnes a v a v ~ a h l e data t r r e)
<BLlILClS IGNORE GET# r (SET .Ivar.name, TO .:e::pressiort> i
UOES.: @ ; (-.:.var,narnr.:. re turns value)

: EOU (ERU :var.name:.~~ WITH t ec r ress ion i)
I'L IGNORE GET# SUAP ! i

~ I C W O DEFINITIONS i S

I N W s l R Y N E W S

FORTH-Based Savvy Lets User
Talk to Computer

FORTH, Inc. is working wi th i ts parent
company, Technology Industries, Inc. of
Santa Clara, California, to develop a new
software package for the Apple 11, using a
ZBO processor. With it, the Apple w i l l
offer the kind o f casual and eff ic ient man-
computer interface that unt i l now, existed
only i n movies l ike 2001 and Star Wars.

The project calls for Savvy--the trade
name for Excalibur Technology Corpora-
tion's Adaptive Pattern Recognition Pro-
cessor--to be used as a unique language
interpreter. Savvy permits a user to com-
municate with a computer i n the user's
native language and normal praseology--no
special language and formm are needed.
Specifically, Savvy:

o Recognizes wri t ten words strung
together i n idiomatic phrases.
(Future versions w i l l understand
spoken words and respond to
Spanish commands as well as
English. Other languages wi l l
follow.)

o Translates these imprecise
patterns into precise computer
commands.

Savvy's unique interactive approach to
dealing wi th computers is an importent
development for the 80s. The powerful
combination o f FORTH and Savvy w i l l be
significant i n realizing the system's fu l l
potential and demonstrating the power o f
FORTH. A special development team has
been formed for this project, including A r t
Gravina, Chuck More, Dean Sanderson,
and another programmer who has not been
identified.

NO ROOM FOR THE ORDER FORM T H I S TIME!
ORDER - Proceedings 1981 Rochester FORTH Standards Conference. Send
check o r MO t o FIG i n U S funds on U S bank, $25.00 U S , $35.00 Fore ign.

FORTH DIMENSIONS 11114 Page 133

g?Jn
3 og
o m 4 gg s
0 A - m-z

