0 FOSTH IIMENSIOTS

FORTH INTEREST GROUP Volume Ii
P.0O.Box 1105 Number 6
San Carlos, CA 94070 Price $2.00

L
el
o L nsIoE
el

154 Forgiving FORGET
156 Some New Editor Extensions
162 To VIEW or not to VIEW
T SEARCH
T~ 166 Greatest Common Divisor
168 Programming Hints
‘ I 170 Development of a Dump Utility
\ 175 Letters
,—_—'}“ 178 Announcements
180 Meetings

}
! 182 FORTH Vendor List
: 184 FORTH, Inc. News

HORTH IIMETSIOS

Published by Forth Interest Group

Volume Il No 6 March ‘April 1981

Pubhisher Roy C Martens
Guest Editor C J Street
Ecdnornial Review Board

Bill Ragsdale
Dave Boulton
Kim Harns

John James
Dave Kilbridge
Henry Laxen
George Maverick

FORTH DIMENSIONS soiicits editorial material. com-
ments and letters. No responsibility 1s assumed for accuracy
of matenal submitted. ALL MATERIAL PUBLISHED BY
THE FORTH INTEREST GROUP IS IN THE PUBLIC
DOMAIN information in FORTH DIMENSIONS may be
reproduced with credit given to the author and the Forth
interest Group.

Subscription to FORTH DIMENSIONS is free with mem-
bership inthe Forth Interest Group at $12 00 per year ($24.00
overseas air). For membership, change of address and/or to
submit matenal, the address is.

Forth interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Charles H. Moore in 1969 at the
National Radio Astronomy Observatory. Chariottesvilie, VA.
It was created out of dissatisfaction with available program-
ming tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, inc. in
1973 for the purpose of licensing and support of the FORTH
Operating System and Programming Language, and to
supply application programming to meet customers’ unique
requirements.

The Forth Interest Group is centered in Northern Califor-
nia. Our membership is over 2,800 woridwide. It was formed
in 1978 by FORTH programmers to encourage use of the
language by the interchange of ideas through seminars and
publications.

EDITOR’S COLUMN

The theme of this month s FORTH DIMENSION s practi-
cal apphcations

During the lasttwo years or so | have heard from many FIG
members who seem to have acommon probiem— ‘Now that
I have FORTH, where do i go from here? !'n addiion many
of us seem to be re-inventing code that others have already
running. just because we are unaware of its existence

In short. FIG members are suffering from a commoan
problem—faiture to communicate Fortunately this is an
easily cured problem FORTH DIMENSIONS s our com-
munications vehicle alt we have 10 do 1s use 1t

The mechanics are simple FORTH DIMENSIONS s
seeking short universal tool type code segments for pubiica-
tion 1f you have some code that vou have found especial’y
usefut and can explain its function and use. please contac!
the editor at FORTH DIMENSIONS

YOU DON'T HAVE TO BE A WRITER! You wilt be sent a
publication kit that leads you through the writing process
You will also be given alt the help necessary by the FORTH
DIMENSIONS editorial statt

FIG members already have a reputation as creative
problem solvers. now if we will just share and exchange our
ideas. the permutations of that process boggle the mind |
am looking forward to enthusiastic response to this new
approach that will benefit ail

C. J. Street

PUBLISHER’'S COLUMN

It's the eng of the FIG year and renewals are pthing in.
(Have you renewed?). Some of our newer members might
be contused about renewing. If you recently joined FIG
and received back issues of Volume Il of FORTH DIMEN-
SIONS then it is time to renew for Volume IlI and your
March 1981 to March 1982 membership.

A number of other itemns of interest

e FIG now has over 2800 members, worldwide

¢ FIG will have booths at the Computer Faire, April 3-51n

San Francisco and at the Jersey Computer Show in
Trenton on April 25.

e There are a number of new listings — see order form

at back

o Several reports from new chapters — lets see more

* Proceeding of 1980 FORML Conference is now avail-

able — see order form

o Looks like this is going to be our biggest year

Roy Martens

Page 153

FORTH DIMENSIONS 11/6

FORGIVING FORGET

Dave Kilbridge

Acknowledgment

I want to describe a FORTH system
word which has come to be known as
"smart FORGET" or even “Dave
Kilbridge's smart FORGET.” But the
ideas involved appear in the State
University of Utrecht, The Nether-
lands' FORTH system at least as early
as 23 May 1978. The code presented
here is a straightforward adaptation
to the FIG model.

The Problem

The principal function of FORGET
is to reclaim memory by locating in
the dictionary the next word in the
input stream and resetting the
dictionary pointer (DP) to the
beginning of the definition of that
word. To avoid destroying vital
parts of the system, no FORGETting
is allowed below the address stored
in FENCE. 1In the "dumb FORGET" of
the original FIG model (see Screen
72), this address check is made on
line 8.

But merely truncating the dic-
tionary, even at a safe place, is
not enough. The dictionary has a
linked-11ist structure which allows
it to be searched. If a 1link 1is
left pointing into the “never-never-
land” beyond the new value of DP,
then the system may crash the next
time a dictionary search uses that
link.

These 1links are of two types:
(1) VOCABULARY words have a link to
the latest word in the vocabulary
they name. “Dumb FORGET" adjusts
this 1link (line 9) to point to the
latest word which you don't FORGET,
but only for the CURRENT and CONTEXT
vocabularies. (Line 7 verifies that

these are the same; this test was
thought to give some extra protection
against crashing. Any vocabulary not
in CURRENT or CONTEXT may be trashed.
(2) CURRENT and CONTEXT themselves
point to vocabularies. If you FORGET
the name of the CURRENT vocabulary,
or any word before it in the dic-
tionary, you may crash.

The Solution

“Smart FORGET" overcomes these
hazards so effectively that I have
never crashed by doing a FORGET.
This is made possible by linking all
the VOCABULARY words in the system
into another linked 1list, enabling
them to be located. The head of the
1ist is stored in VOC-LINK. See the
figure for the various fields in a
VOCABULARY word.

How It Works

Refer to the code on Screen 18.
On line 7, the name-field-address of
the next input word is located in
the dictionary; this is the point at
which the dictionary will be cut off.
An error message issues 1f this
address 1s below the contents of
FENCE. This cutoff address is saved
on the return stack, and the head of
the vocabulary 1list 1is put on the
parameter stack. Now everything is
ready for the real work.

The BEGIN ... WHILE ... REPEAT
loop on lines 9-10 runs through all
VOCABULARY words above the cutoff
address and unlinks each from the
list. I1f any such vocabularies are
found, both CONTEXT and CURRENT are
pointed to FORTH. This removes any
links described as type (2) above.

Now the outer BEGIN ... UNTIL
loop on lines 11-13 runs through the
remaining VOCABULARY words. For
each such word, the loop on line 12
finds the highest word below the
cutoff address in the corresponding
vocabulary. The vocabulary head is

FORTH DIMENSIONS 11/6

Page 154

then pointed to this word, thus Extensions

fixing the links of type (1) above.
1. In systems which allow dynamic

Finally, DP is reset to point to chaining of vocabularies, one
the cutoff address (line 14). must check whether a vocabulary
chained to is beyond the cutoff
Improvements address. If so, it is replaced
by FORTH. (The Utrecht system
Executing FORTH DEFINITIONS 1if does exactly that.)
any VOCABULARY word is found beyond
the cutoff address is unnecessarily 2. In later versions of the author's
drastic. One could test CURRENT and PACE system, a base-page pointer
CONTEXT and only change them if they is allocated for each new de-
point beyond the cutoff, but it's fining word. These are released
probably not worth the trouble. by FORGET. This is done by com-

paring pointer values with the
cutoff address and does not
involve the vocabulary structure.

SCR # 72

0 (', FORGET, WFR-79APR28)
1 HEX 3 WIDTH !

2 ! (FIND NEXT WORDS PFA; COMPILE 1T, IF COMPILING *)
3 -FIND 0= O ?ERROR DROP [COMPILE] LITERAL ;

4 IMMEDIATE

5

6 : FORGET (FOLLOWING WORD FROM CURRENT VOCABULARY *)
7 CURRENT @ CONTEXT @ - 18 ?ERROR

8 [COMPILE] ' DUP FENCE @ < 15 ?ERROR

9 DUP NFA DP ! LFA @ CURRENT € ! ;

10
11

12
13 -=>
14

15

SCR # 18

0 (Smart FORGET DJK-WFR-79DEC02)
1" (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
2 -FIND O= O ?ERROR DROP [COMPILE] LITERAL ;

3 IMMEDIATE

4 HEX

5

6 : FORGET (Dave Kilbridge's Smart Forget)
7 [COMPILE] ' NFA DUP FENCE @ u< 15 ?ERROR

8 >R VOC-LINK @ (start with latest vocabulary)

9 BEGIN R OVER u< WHILE [COMPILE] FORTH DEFINITIONS

10 @ REPEAT DUP VOC-LINK ! (unlink from voc list)
11 BEGIN DUP 4 - (start with phantom nfa)
12 BEGIN PFA LFA @ DUP R u< UNTIL
13 OVER 2 - ! @ -DUP O= UNTIL (end of list ?)

14 RO DP ! -—>

15 This replaces Screen 72 of the F.I.G. Model.

Page 155 FORTH DIMENSIONS 11/6

SOME NEW EDITOR EXTENSIONS

Kim Harris

This article shows how to add
two new commands to the FORTH editor
which permit the replacement or
insertion of multiple 1lines of a
screen. This is a mini-application
which demonstrates string input and
output, adding new commands to the
Forth editor, manipulating vocabu-
laries, and a "terminal input proces-
sor” which prompts for input then
processes it. Several variations in
implementation are shown to illus-
trate different styles and refine-
ments. If you are only interested
in the final result, you can type in
Screen 45 (in this article) into any
standard fig-FORTH system which
already has the FIG line editor (from

“screens 87 to 91 in the Installation
Manual).

The use of the new commands will
be illustrated by an example. Input
1s underlined; output 1is not. The
symbol (CR) means to push the
Carriage Return key (or equivalent).

To begin any editing of screen
100 you say

100 LIST EDITOR (CR)
0 (TEST SCREEN)
1 old 1lst line
2 old 2nd line
3 o0ld 3rd line

To replace one or more lines
starting at line 2, say

2 NEW (CR)
0 (TEST SCREEN)
1 old lst line
2 -

The cursor is at the start of
line 2 and waiting for you to enter
new text. If you enter some text
and a (CR), it will prompt you for a
new line 3 and so on. This continues

until you replace line 15 or enter
only a (CR) at the start of a line.
Then that line and any remaining ones
are listed unchanged.

2 NEW (CR)
0 (TEST SCREEN)

1 old 1lst line
2 new text for line 2 (CR)
3 something for line 3 (CR)
4 (CR) old 4th line
5 old 5th line

A similar command UNDER lets you
insert one or more lines starting at
a specified line number.

2 UNDER (CR)

(TEST SCREEN)
old lst 1line
new text for line 2
inserted line (CR)
another inserted line (CR)
(CR) something for line 3
old 4th line
old 5th line

SNV W= O

Any lines pushed off line 15 are
lost.

Let's design this application
starting from the top. First con~
sider the control flow for NEW and
draw a flowchart. The one below is
a traditional ANSI standard one.

priat @ . linet

x

| prine line ! Yes ull® %o

Ll.__f— — < Y
~

'——-A-————-—-
l | ceplace line |
—_—
{ N "
|1u:r.cn: lines

Tea line¥ No

7

regura

FORTH DIMENSIONS 11/6

Page 156

This flow chart 1s poor. It 1is
unstructured (i.e., "print 1line" is
improperly shared by two IF struc-
tures), the loop structure requires
two boxes which can be performed by
the single word DO, and no symbol
exists for the word LOOP. To program
this flowchart, you either have to

cheat or change the flowchart. An ///\\\

DO

LOOP

example of cheating is in Screen 12.

This implementation of NEW is by Bill
Ragsdale and works fine. The tricks
are the words inside square brackets

THEN

on lines 6 and 8. These are manipu- NEW

lating the stack at compile-~time,

modifying the compiled branch struc- Line #=0 to 15

tures. Such tricks reduce readabil- T

ity and modifiability, increase print , line #

complexity, are neither “standard”
nor transportable to non-FIG ///’/////L\\\\\ES:fr new line?
systems, and are not necessary.
read line
null? /l\

print line print line replace old

SCR # 12 line with
0 i NEW, A full screem editor WFR=79JUNIG)
I FORTH DECIMAL new one
2 : NEW (line # -= suilde frome this line, downward)
b) 18 0
3 DG CR ! 3 R SPACE
S i1 OVER =
6 CF) DROP ! (ervor) OUERY | TEXT PAD le C4
H (F (not at aull) U C<OITOR R FORTH |«
8 ELSE (before or itcer ' 8 EMIT [ROT 2 |
9 THEN I SCR & L.LINE
10 THEN
1 LouP DRUP ; CR . NEW 1s loaded ;S
12 This editor dbuilds a NEW screen. Elther list the screen or
1} set SCR manually. Then gise: “n NEW where o i3 che ‘irsc y/
I+ nev line. Previous llnes are !lsted; an emoty 'ine will
15 terminate Suflding che new screen.

Let's try modifying the flow- We will certainly want to use as
chart to make it structured. much of the existing editor as we
Repeating "print 1line"” under the 2 can to reduce our work. The line
top decision boxes makes this Replace and Insert commands are good
proper. A different kind of flow— candidates:
chart prevents this kind of error
and is ideally suited to FORTH. It R line# -
is called D-charts and was described Replace 1line with text from
in FORTH DIMENSIONS, Vol. 1, No. 3. PAD.

Not only 18 a D-chart inherently

structured, but also there is a I 1linef -

one-to-one correspondence between Ingert the text from PAD at
the chart symbols and FORTH words. line 1line#, old 1line line#
In the D-chart of NEW, the correspon- and subsequent lines are
dence between symbols and words 1is moved down. Line 15 1s lost.

as follows:

Page 157 ~FORTH DIMENSIONS 11/6

We can use FORTH as a Program
Design Language (PDL) by:

1) starting with the top word
(e.g., NEW or UNDER),

2) wmaking up names for lower
words (i.e., forward
references),

3) and using the postfix order
and FORTH control structures
but not worrying about cor-
rect stack manipulation.

Later the result can be finished
by defining all the words used,
supplying necessary stack manipula-
tion operators, and typing them in
and debugging each in Dbottom-up
order.

From the previous D-chart we
could write the following
pseudo-definition for NEW:

NEW 16 0O
DO
CR .LINE#
ENTER? IF
ENTER NULL? IF
.LINE ELSE
(EDITOR's) R THEN
ELSE
.LINE THEN
LOOP

.
»

This incomplete definition does
not take care of passing data on the
stack or switching vocabularies.
Look at the other command UNDER.
The only change needed to the above
code 1s to wuse the EDITOR's 1
instead of R. Because the two
definitions are so similar, we will
want to share some of the common
parts.

To finish the definition of NEW,
let's consider each undefined word.

.LINE#

needs to print the current line
number right justified in 3
columns followed by a space.
But should the line# be passed
as a stack argument? The fol-
lowing definition sets it from
the stack:

: LJLINE# (1line# -~) 3 .R
SPACE ;

The FORTH word I could be used
before the reference to .LINE#
in NEW's definition to supply
the DO-LOOP index (which is the
current line number). But what
about using I inside .LINE#'s
definition instead? Unfor-
tunately it's not the same. 1In
fig-FORTH DO keeps 1its indices
on the return stack, so I doesn't
return the 1index in another
definition even though 1t was
called from a DO~LOOP body.
Another word which does that is
called I' (pronounced I prime).
Then .LINE# could be written:

.LINE# (-) I' 3 .R

SPACE ;
A high level definition for I'
is:
HID &

FORTH R> R> R ROT ROT >R >R ;

(A CODE definition would be
preferred.)

Considering the inefficiency of
I' and readability, let's pass
the line number on the stack.

The next choice is should we use
a separate definition for .LINE#
(as above) or copy the contents
of its definition into NEW. Exe-
cution speed would be indistin-
guishable. Using the name .LINE#

FORTH DIMENSIONS 11/6

Page 158

might be more readable, but not
much. The dictionary sizes are
different for the two choices.
(Sizes are in bytes.)

.LINE# separate

literal 3
.R SPACE
.LINE# head

references 2 x 2=

So for only 2 references to
.LINE#, it doesn't pay to define

it separately. (3 references
would make it close: 24 to 26
bytes.)

ENTER?

This should be true:

1) when the current 1line #
equals the starting line #

2) while new text is being
entered

3) but not after a (CR) only
has been entered.

We never want to use a VARIABLE
for temporary storage if we can
help 1it. The starting 1line
number comes in from the stack,
so (1) is simple

start-line# 1 =

(The argument must be preserved
each iteration, so a DUP must be
added; a DROP will have to follow
LOOP to compensate.) Case (2)
can be achieved by incrementing
the start-line# while in enter-
mode. This can be done with a
1+ after the Editor's R. Finally
(3) falls out by not incrementing
it after either .LINE in NEW's
definition.

Passing I on the stack would
make ENTER? look like:

: ENTER? (start-line# current-line#-)

5 + name size= 10

OVER = ;
included in NEW
& UNDER
4 2 x4 =28
4 2 x4 =28
2
4
24 16

But more words are needed in
NEW's definition to complete the
enter-mode control. As with
.LINE# before, the contents of
ENTER? could be copied in NEW's
definition instead of being
defined separately. The size
tradeoffs would favor that, but
in this case readability would
be greatly enhanced by keeping
the name. This also eliminates
the need to comment each part of
that IF structure (as in the
version on Screen 12).

ENTER

must wait for terminate 1input,
then copy the entire line to PAD
for later use by the editor.

QUERY reads a line of input, and
TEXT can copy it to PAD:

TEXT c¢ -~
Copy text from the
Terminal Input Buffer
to PAD until the
delimiter ¢ is found.

So we could define ENTER with:

: ENTER (-)
QUERY 1 TEXT ;

Page 159

FORTH DIMENSIONS 11/6

NULL? The only Temaining cha=ges
needed concerns vocabular:ies. Tz

should be true only if a (CR) add these definitioms to the EBITOR
was ENTERed. fig-FORTH puts a vocabulary, use the phrase

null character (i.e., binary

zero byte) in the Terminal Input EDITOR DEFINITIORS

Buffer (TIB) when a (CR) is

entered. To tell if {1t 1is at before the first definition, amd the
the start of the buffer, we can phrase

use:

FORTH DEFINITIONS
: NULL? (- £)

TIB@ C@ 0= ; after the last. But within NEW's
definition we need to specify which
Although keeping this definition I and R are intended. FORTH uses
separate would take up more pairs of names to resolve such
space than using 1ts contents ambiguities. It's 1like 1last names
inside NEW and UNDER, readabil- in people’'s proper names:
ity 1is improved, so we'll keep
it. JOHN DOE
Finally, .LINE JOHN DEERE
needs a screen number and line But in good ©postfix style, the
number. The line number can be vocabulary name must precede the
supplied by the DO-LOOP index. word it applies to, and remains in
So before each .LINE in NEW or effect until changed. Vocabulary
UNDER add: names in fig-FORTH are IMMEDIATE, so
they can be used inside definitionms
I SCR@ .LINE the same way as outside. Within
NEW's definition, we need to insert
Incorporating all the above FORTH before DO to make sure all the
refinements into the previous I's are DO-LOOP words and not editor
pseudo~definition of NEW produces words.

the following code:

: ENTER? (start~linef current-line# - f) OVER =
: ENTER (-) QUERY 1 TEXT ;
: NULL? (-¢) TIB@ (@ O H
: NEW (start-linef ~) 16 0 DO
CR I3 .R SPACE
I ENTER? IF
ENTER NULL? IF
1 scré@ .LINE ELSE
I (EDITOR's) R 1+ THEN
ELSE
I SCR @ .LINE THEN
Loop

DROP H

FORTH DIMENSIONS 11/6 Page 160

NEW PRODUCT

Also we need to put EDITOR before
the R (the editor's Replace command),
and FORTH after R to make the . HOME GROWN APPLE I1 SYSTEM:

remaining I's be DO-1OOP words.
As an avid FORTH user, 1 would

Adding the vocabulary names like to share my work with other
makes the previous definitions Apple II users. Assembling the
testable. Trying them reveals that fig-FORTH model source code on CP/M
it all works except the line printed and other systems with assembly
after the (CR) orly was entered language development tools is rela-
(1.e., leaving enter-mode) has one tively straight forward, but for the
additional space before it. This primarily turn-key Apple a lot of
skews that line from all the others. additional, undocumented information
This 1s because fig-FORTH echos a is required. To equalize this
space when the (CR) 1is entered. To situation I will supply my home
fix this ugliness, back up the cursor grown Apple 1II system on disk to
1 column before printing that line. anyone for $30.00. No documenta-
For most terminals, a Back Space tion, support, or instruction s
character will do the trick. (Not provided save for technical notes on
s0 on a memory-mapped terminal.) the disk supplementing the FIG
Defining the following will output a installation manual. An assembler,
Back Space: screen editor, source code and asso-

' clated compiler are included. The
.BS (- 8 EMIT H idea is to be able to upgrade and
patch the system 1in various ways

It should be inserted after the from listings (standards, any-
phrase NULL? IF in NEW's definition. one?). Not for beginners, not a
Because this function is terminal- commercial product, at your own
dependent, it definitely should be a risk. Contact George Lyons, 280
separate definition. Henderson St.; Jersey City, NJ 07302

The final working version
follows:

SCR # 45

0 (EDITOR EXTENSIONS: NEW UNDER KRH 9FEB81)
1 EDITOR DEFINITIONS

2 : ENTER? (start-line# current-line# - f) OVER = ;

3 : ENTER (-) QUERY 1 TEXT ;

4 : NULL? (-f) TIB @ ce o= H

5:.B8 (-) 8 EMIT ;

6

7 : NEW (start-line# -) FORTH 16 0 DO CR I 3 .R SPACE
8 I ENTER? IF ENTER NUL? IF «BS I SCR @ .LINE ELSE
9 I EDITOR R FORTH 1+ THEN ELSE I SCR @ .LINE

10 THEN LOOP DROP s

11 : UNDER (start-line# -) FORTH 1+ 16 0 DO CR I 3 .R SPACE
12 I ENTER? IF ENTER NULL? IF .BS I SCR @ .LINE ELSE
13 I EDITOR I FORTH 1+ THEN ELSE I SCR @ .LINE
14 THEN LOOP DROP H

15 FORTH DEFINITIONS

Page 161 | FORTH DIMENSIONS 11/6

TO VIEW OR NOT TO VIEW

(TO VIEW OR TO VIEW NOT?)

George William Shaw 1II

Sometime back, about one year
ago, a fig~FORTH package was distri-
buted to the members at the monthly
FIG meeting. One of the programs in
the package was a command called
VIEW. This command would allow you
to find the source text for a com—
piled definition and 1list it on the
screen by simply typing VIEW, fol-~
lowed by the name of the command you
wish to see the source text of.

I have been asked by Carl Street,
the guest editor for this issue of
Forth Dimensions, to write a commen-
tary on this command which 1s to
describe how the code originally
submitted 1in the goodies package
works and what other additions or
changes I would make to the code.

So why have VIEW? VIEW adds
convenience to writing and editing
programs. The command allows you to
get directly back to the source
screen of a compiled definition,
rather than trying to remember just
what screen it was on. Most of us
can remember approximately what
screen or screens we have been
working on, but if we have been
working with more than a few screens,
we would wusually have to 1list a
couple of screens to find the source
to review or edit a given defini-
tion. VIEW eliminates this problem
by allowing us to reference the
source on the disk by the name of
the compiled definition.

VIEW also takes very little
system overhead. The entire com-
piled source for VIEW with all
extensions mentioned in this article

takes less than 170 bytes on a2y
system. The compiling overhead is
just as small. Only one or two bytes
per definition and a negligible
addition to compile time. Very
inexpensive for the convenience and
power it gives.

In order for VIEW to work, some
of the resident defining words must
be redefined. In pre-compiled fig-
FORTH systems, the defining words
CONSTANT, VARIABLE, VOCABULARY,
(colon), and <BUILDS must be re-
defined to <contain a word called
>DOCL. >D0CK will store in memory
the disk screen number which con-
tains the source of the definition
being compiled. (On systems which
can recompile themselves, >DOC< need
not be placed in each one of the
defining words. It need only be
placed in the word CREATE, which is
used by each of the defining words
to enter a definition into the
dictionary.)

Wwith >DOCC in either CREATE or
each of the defining words, the disk
screen number which contains the
source will be stored in memory to
allow later referencing by the
command VIEW. The command VIEW,
then, has the task of finding the
requested definition in the dic-
tionary, fetching the screen number
from memory, and listing the screen.
This entire procedure is quite
simple 1in FORTH and can be accom-
plished in a single line of source
code (excluding the comment):

T VIEW (list source screen of definition)
(COMPILE] ° NFA 1 - C® LIST (COMPILE] EZDIIOR ;

The word [COMPILE] causes the
word ' (tick) to be compiled into
memory, rather than being executed
at compile time (' is immediate).
When VIEW is later executed ' will
search the dictionary for the name
which follows VIEW. NFA takes the

FORTH DIMENSIONS II/6

Page 162

address left on the stack by ' (the
parameter field address) and changes
it to the Name Field Address. 1 -
then gives the address of the byte
immediately preceding the name field.
C@ extracts the screen number (which
was stored at compile time) where
the source of the definition 1is
located. LIST prints the source of
the definition. The second [COMPILE]
allows EDITOR to be compiled (EDITOR
is immediate) to select the editor
vocabulary when VIEW {is executed.
This last step allows convenient
entry into the editor for editing if
desired.

>DOCK BLK @ B/SCR / C, ;

>DOCK stores a one byte screen
number in memory of the screen from
which source text is currently being
interpreted or compiled. BLK con-
tains the block number as above. 1In
fig~-FORTH, the block number and the
screen number may not be the same
(there may be several blocks per
screen), so a division is performed
with B/SCR (blocks per screen) to
obtain the screen number. If in
your system B/SCR is omne (1), you
may eliminate the division by B/SCR
and additionally speed the execution
of >DOCKL.

: CONSTANT >DOC< {COMPILE] CONSTANT
: VARIABLE >DOCC [COMPILE] VARIABLE
: VOCABULARY >DOCC [COMPILE] VOCABULARY
D >DOCC [COMPILE] : B
: <BUILDS >DOCC [COMPILE] <BUILDS

>D0C< is then placed immediately
preceding each defining word to
store into memory the screen number
currently being interpreted. Since
for most of us our fig-FORTH 1is
pre—compiled (we can't recompile the
basic FORTH system), each defining
word 1is simply redefined to be
preceded by >D0OC{. The [COMPILE] in
each of the words is actually only
necessary in the redefinition of :
(colon) because it is immediate and
would attempt to execute at compile

time rather than being compiled as
desired. The other words are not
immediate and would not have this
problem.

Now, when any one of the defining
words executes, >DOC is executed,
storing the screen number being
compiled immediately preceding the
name field of the definition. The
area immediately preceding trhe name
field was selected because this area
can be addressed directly with
existing FORTH words. The parameter
field area of FORTH words is of vari-
able length, so the area immediately
following the end of the definition
would not be as easily addressed.

When it is desired to VIEW a
view-compiled word, the source screen
number can easily be accessed and
the definition 1listed. If a word
which has not been compiled with the
screen number preceding it is VIEWed,
the screen determined by whatever
byte immediately precedes the defini-
tion will be listed.

The current definition of VIEW
works great except for a few minor
idiosyncrasies. First, only a single
byte 1s stored in memory for the
source screen number. If you have
screens above 255 and compile from
them, the source cannot be viewed
directly. A larger number 1is then
needed. By simply changing the C,
and C@ to , and @ in >DOCK and VIEW
respectively, any screen currently
accessible by the FORTH system could
be VIEWed. Note that the address
calculation must also be changed
from 1 - to 2 - to account for the
additional byte, as shown below:

: VIEW / list source scfeen of deficition }
[COMPILE] * NFA 2 ~ @ LiST [COMPILE] EDITOR
: Opoc< BLx 9 a/scx / 3

Page 163

FORTH DIMENSIONS 11/6

Also, to the list of words being
redefined 1 would add USER, CODE and
CREATE. Redefining USER will allow
the location of the definition of
the user variable. Redefining CODE
will allow the VIEWing of words
defined 1in assembler. Redefining
CREATE will cause all defining words
later compiled to build VIEWable
words.

: USER >D0OC< USER 3
: CODE >DoC< CODE 5
: CREATE >DOC< CREATE ;

It should be noted also that if
vou have changed the structure of
your dictionary by placing 1links
first (as I have) that the address
calculation in VIEW will have to be
changed as below:

LIFW List soufce screen of definitfon)
MPILE! NFA + -~ ¥ LIST [(COMPILE] EDITOR ;

The additional 2 - (to 4 -) 1is
necessary to skip the 1link which
precedes (rather than follows) the
name field in these systems.

And lastly, the current defini-~
tion of VIEW will even try to list
the source screen for definitions
which have been created at the key-
board. The block number stored for
these definitions is zero (0), which
is not where the source 1s at all.
If you don't mind having block zero
(0) listed when you request to VIEW
a definition which you created at
the keyboard, then there 1is no
problem. But, if this does bother
you, you can put in the test below:

VIEW { list source screefr of definftfon)
[COMPILE] * NFA 2 - 1
-DUP IF LIST {COMPILE] EDITOR THEN

In addition to the above, a test
may be put in >DOC{ to prevent the
storing of the screen number when
compiling from the keyboard:

o’ BlX 4 - P F R R . THEN

FIGURE 6

Note that if the test for block
zero (0) 1is placed in >DOC{, then
VIEW will try to list those defini-
tions which would have had a screen
number of zero (0) with the same
result as attempting to VIEW a
definition which was not defined
with the redefined defining words.

George W. Shaw II
SHAW LABS, LTD.
P.0. Box 3471
Hayward, CA 94540

NEW PRODUCT

FORTH-79 FOR APPLE:

MicroMotion has announced the
release of FORTH-79 for the Apple
computer. MicroMotion FORTH-79 is a
structured language that 1is claimed
to conform to the new FORTH-79
International Standard. MicroMotion
FORTH-79 :omes with a screen editor
and macro-assembler. Vocabularies
are 1included for strings, double
precision integers, LORES graphics
and modem communication. Its
operating system allows multiple
disk drives and is 13 or 16 sector
disk compatable. MicroMotion
FORTH-79 runs on a 48K Apple II or
Apple II Plus. Retail price 1is
$89.95 including a professionally
written tutorial and user's guide
designed to make learning FORTH-79
easy for the beginner. MicroMotion;
12077 Wilshire Blvd., Suite 506; Los
Angeles, CA 90025; (213) 821-4340

(Editor's note -- The manual {is
excellent. It notes the differences
between fig-FORTH and FORTH-79 where
pertinent)

RENEW TODAY!

FORTH DIMENSIONS 1I/6

Page 164

SEARCH

John S. James

When you are debugging or
modifying a prcgram, it 1is often
important to search the whole program
text, or a range of it, for a given
string (e.g., an operation name).
The 'SEARCH' operation given below
does this.

To wuse 'SEARCH', you need to
have the FIG editor running al-
ready. This is because 'SEARCH' uses
some of the editor operations in its
own definition. The 'SEARCH' source
code fits easily into a single
screen; it 1s so short because it
uses the already-defined editing
functions. Incidentally, the FIG
editor 1s documented and listed in
the back of FIG's Installation
Manual.

Use the editor to store the
source code of 'SEARCH' onto a

Example of Use:

39 41 SEARCH COUNT

screen. Then when you need to
search, load the screen. (Of course
if you are using a proprietary
version of FORTH, it may have an
editor and search function built in
and automatically available when
needed. This article-ette is mainly
for FORTH users whose systems are
the ten-dollar type-it-in-yourself
variety.)

Here is an example of |using
'SEARCH'. We are searching for thle
string 'COUNT' in screens 39-41; the
source code of 'SEARCH' is on screen
40. The screen and line numbers arc
shown for each hit. Incidentally,
the search string may contain blanks.
Just type the first screen number,
the last screen number, SEARCH fol-
lowed by one blank and the target
text string. Conclude the line with
return. The routine will scan over
the range of screens doing a text
match for the target string. All
matches will be listed with the line
number and screen number.

Happy SEARCHing!

00 VARIABLE COUNI_ER 2 40

1 COUNT ER +! COUNTER @ 4 40

1 COUNTER +! COUNT_ER @ 4 40

S6 > IF 0 COUNT ER ! 5 40

12 EMIT 01 TEXT 0 COUNI_ER ! 8 40 OK
CORRECTION:

CROMEMCO DISKETTES described on
page 145 of Vol. II/5 are supplied AREYOUA — - - - — FIGGER?
by: . N c YOU CAN BE!
nner access (orp. RENEW TODAY'

PO Box 888
Belmont, CA 94002
(415) 591-8295

Page 165

FORTH DIMENSIONS 11/6

GREATEST COMMON DIVISOR

Robert L. Smith

The problem of finding the
greatest common divisor (GCD) of two
integers was solved by Euclid more
than 2200 years ago at the great
library in Alexandria. The technique
is known to this day as Euclid's
Algorithm. The method is essentially
an iteration of division of a prior
divisor by a prior remainder to yield
a new remainder. The quotients gen-
erated by this process are useful in
other applications, such as rational
fraction approximations, but are not
required for finding the greatest
common divisor.

For readers unfamiliar with the
process, an example should clarify
the method. Suppose we wish to find
the GCD of 24960 and 25987. Divide
one number into the other, and find
the remainder or modulus:

25987 24960 MOD -> 1027

Divide the previous divisor 24960 by
the remainder 1027 to yield:

24960 1027 MOD -> 312
Continue the process as follows:

1027 312 M0D -> 91

312 91 MOD -> 39

91 39 MOD ~-> 13

39 13 MOD -> O

The 1last non-zero remainder 1is
our desired answer, 13. This process
must converge since the remainder is
always less than the divisor. The

process will terminate for finite
numbers and integer division.

On Screen 20, we see a version
of the greatest common divisor
routine called G-C-D written in fig-
FORTH. Line 1 begins a colon
definition. In lines 2 and 3 the
two arguments at the top of the
stack are conditionally swapped to
force the larger of the two arguments
to be the first dividend. This step
is wused to avoid an unnecessary
division in the succeeding part.
However, lines 2 and 3 can be omitted
entirely with no effect on the
answer. The body of the calculation
is in lines 4-7. At the start of
the BECIN-WHILE-REPEAT loop, the top
element of the stack is the prior
divisor and the second element is
the prior remainder. In line 4 the
new divisor (prior remainder) is
saved, and the order of the top two
elements reversed to prepare for the
division. In line 5 the division
with remainder is performed, and the
remainder copied to the top of the
stack for testing in 1line 6. For
cases of non-zero remainders, the
quotient is discarded but the remain-
der 1is kept in preparation for the
next stage in the loop. The process
terminates with a zero remainder.
At line 8 the final quotient and
remainder are dropped to yield the
preceding remainder, which 1is the
desired answer. Finally, the answer
is printed out. The semicolon at
the end of 1line 8 terminates the
definition.

When Screen 20 1is loaded, lines
9-11 are executed to print an invi-
tation to the wuser to try the
routine.

There are three areas in which
this routine can be improved. The
first is to remove lines 2 and 3
entirely, since the code does not
usefully contribute to the final
result. Furthermore, there is
probably not even a speed advantage
for machines with a hardware divide.
Secondly, since the quotient is not

FORTH DIMENSIONS II/6

Page 166

used, the /MOD function can be re. The sequence 1in GCD 1is quite

placed by the MOD function with a easy to follow now. The two argu-
little reworking of the code. ments on the stack are swapped, and
Finally, the printout function can the 2nd element is copiled over the
be separated from the calculation first, in preparation for the
function. It 1is wusually advanta- division implied by the MOD function.
geous in FORTH to write each defini- The word ?DUP is the 79-Standard
tion so that it does as 1little as version of the fig-FORTH word -DUP.
possible! The advantage of the The function of ?DUP is to duplicate
separation in this case 1is that the the top element of the stack (the
calculation function can be applied remainder from the division in this
repeatedly for finding the greatest case), but only if the remainder is
common divisor of more than two non-zero. The function 0= reverses
arguments. the logical value of the top stack
element, so that the test in UNTIL
Our modified screem 1is shown will cause a branch back to the BEGIN
below: part when the MOD function results
in a non-zero value. When the re-
: GCD mainder is zero, the zero value is
BEGIN not duplicated. Instead, the O=
SWAP OVER MOD ?DUP 0= function converts it to a 1, which
UNTIL in turn is dropped by the action of
H UNTIL. Furthermore, control is then
passed from the BEGIN-END loop, and
: G-C-D the function terminates, leaving
GCD CR ." The G-C-D is " . only the previous non-zero remainder.
’
Note that the number of FORTH
CR .” Input two numbers, then" words 1in the basic definition has
CR .” execute 'G-C-D'. The" been effectively cut in half, com-—
CR ." greatest common divisor” pared to the original version 1in
CR ." of these numbers will be" Screen 20.
CR ." displayed.”
CR The author gratefully acknow-

ledges discussions with LaFarr
Stuart in the preparation of this
article.

SCR # 20

0 (Greatest common divisor, a demo WFR-79DEC09)

l : G-C-D

2 OVER OVER <

3 IF SWAP THEN (use larger as quotient)

4 BEGIN SWAP OVER (save divisor third)

5 /MOD OVER (test remainder zero)

6 WHILE (not zero) DROP (this dividend)

7 REPEAT

8 DROP DROP CR ." The G-C-D is " . ;

9 CR .” Input two numbers, then execute 'G-C-D'. The greatest”
10 ." common divisor of these numbers will be displayed."”
11 CR
12
13
14
15

;S

Page 167 FORTH DIMENSIONS 11/6

PROGRAMMING HINTS

SROCRANING APPLICATIONS, DEMONSTRATIONS & EXFLAMATIONS

U guest writer Henry Laxen Teb 31
VRT R dave current DP on return stack
LoD FA P Y UITERAL , (Gel runtime Ior
CosE Jecuritv, start compiling
-~ BECGIN
TNTERPRET Compile what {s tvped
3TATE © WHILE (Unttl state changes
SR OUVERY v et another line from TTY
S REPEAT
RS a3 "ndo what ; did
R CAFCUTE . Mow do what user wanted
RN L i and resteore dictionarvy

H is an excellent example of
the flexibility of FORTH. Certain
constructs in FORTH cannot be typed
in from the terminal unless the user
is in compilation mode. These con-
structs include: DO, LOOP, IF, ELSE,
THEN, and all of the conditional
compiling words. However, :: allows
you to do this 1if you so desire.
The idea is simple enough; you create
an “orphan” word in the dictionary,
execute it, and then forget it. (An
orphan is a definition without a name
header).

Let's step through the above defini-
tion line by line and see what is
happening at each point:

1 HERE >R

HERE is the 1location of the
next available dictionary entry.
This location is saved on the return
stack so it can be restored later.

2 [' QUIT CFA @] LITERAL ,

[changes from compilation mode
to interpretation mode. QUIT has
been previously defined as a high
level : definition, and hence we
use ' QUIT to get the address of
its PFA. The CFA then converts
this PFA to the CFA for QUIT.
Since QUIT is a definition,
this CFA points to the runtime
for : , which controls the nesting
level in FORTH. The @ @gets this

address and plaves it on the para

meter stack. Now the] places us
back into compilation mode. The
value we have thus computed, namely
the runtime address of : |, is then
compiled as a literal in the defini-
tion for :: . When HH is exe-
cuted, this literal is compiled
inline by the , that follows. This
has set up what follows as a : defi-

nition, so that it will execute
properly when the time comes.

3 1CSP)

The !CSP is used for compile
time error checking. The check is
made when the user types ; to end
his definition. The] puts the
user into the compile state. What
is typed from now on will be compiled
instead of interpreted.

4 BEGIN

This denotes the beginning of
some kind of looping structure.

5 INTERFRET

This is the main word in FORTH.
It either executes or compiles the
words it encounters depending on the
current state. In our case it is
compiling the words it encounters.

6 STATE @ WHILE

STATE is the wvariable which
determines whether one 1is {inter-
preting or compiling. When it {s
non-zero one is compiling, hence the
loop is repeated as long as the user
is still compiling. When you type
;7 STATE 1s set to zero, and this
loop is exited.

7 CR QUERY
This simply gets another 1line

from the terminal so that INTERPRET
can compile it.

FORTH DIMENSIONS I1/6

Page 168

8 REPEAT

This is the end of the BEGIN
loop.

9 SMUDGE

SMUDGE is wused to undo the
SMUDGE present inside of ; . It
has no other purpose in this context.

10 R EXECUTE

This executes the word we have
been building until now. If all goes
well it will return.

11 B DP !

And now we restore the dictionary
to its previous state.

Note that there are still things you
should not do with this implemen-
tation of :: , namely if what you
are executing alters the dictionary,
say by compiling additional words,
the system will crash. An inter-
esting exercise for the reader would
be to redefine so that this is
not the case.

This article contributed by Henry
Laxen; 1259 Cornell; Berkeley, CA
94706

NEW PRODUCT

GO-FORTH FOR THE APPLE II:

The CAI FORTH Instruction System
by Don Colburn 1is now available for
the Apple. The GO-FORTH CAI System
takes the novice FORTH programmer
through the pitfalls of learning
FORTH and lets him fly. Requires
48K Apple II plus Apple disc. Price
is $45.00 per system (1-3 units),
$30.00 per system (more than 4
units). International Computers;
110 McGregor Avenue; Mt. Arlington,
NJ 07856; (201) 663-1580 (evenings).

NEW PRODUCTS

CROSS-COMP1ILER PROGRAM:

Nautilus Systems now offers a
cross—compiler program for FORTH
users. Machine readable versions
are now available tor the tollowing
hardware systems: Lsi-11, CPyM,
TRS-80, Apple, H-89, and Northstar.
Each version includes: An executable
version of tigFORTH model 1.0,
Cross-compilable scurce; Utilitices;
and Documentation. The crocs—
compiler is written entirely in nigh
level figFORTH. Progam features

include: Automatic forward referen-
cing to any word or label; ileaderless
code production capability; ROMable
code production capability; Load
map; Comprehensive list of undefined
symbols. Price is $150.00 including
shipping. (California residents
please add sales tax). Nautilus
Systems; P.0. Box 1098; Santa Cruz,
CA 95061; (408) 475-7461

TIMIN ENGINEERING FORTH:

Timin Engineering is now ofrfer-
ing a version of figFORTH for 8082/
8085/Z-80 or CDOS systems with at
least 24K of memory. The Timin system
features a FORTH style editor with
20 commands, a virtual memory sub-
system for disk 1/0, a 2-80/8080
assembler, and an interleaved disk
format to minimize disk access
time. Documentation includes a
manual that may be purchased
separately for $20 (credited towards
purchase of disk). Price $95.0C on
IBM compatible 8 inch single density
disk (other disk formats §110) --
California residents please add 6%
sales tax. -— and includes shipping
by mail in U.S. Mitchell E. Timin
Engineering Company; 9575 Genesee
Avenue, Suite E-2; San Diego, CA
92121; (714) 455~9008

Page 169

FORTH DIMENSIONS 11/6

DEVELOPMENT OF A DUMP UTILITY

(DEVELOPMENT OF A DUMP UTILITY By John Bumgarner March 81)

CK
OK
i1 (DUMP MEMORY BYTES. ADDRESS COUNT. . .) OK
oK
> : DUMP O DO DUP I + C@ 3 .R LOOP DROP ; OK
0K
3 HEX OK
4« 123 HERE 10 DUMP CR . . . &4 44 55 4D 50 20 20 20 20 20 20 20 20 20 20 20
S 321 oK
0K
¢ (Test for non-printing ASCII Character. CH .. . T/F) OK
OK
7 : ?NON-PRINTING DUP 20 < SWAP 7E > OR ; OK
8 : Q 7NON-PRINTING . ; OK
9 -10Q0Q1l0Q 1FQ 20Q 40Q111100 oK
1 7EQ7F Q100Q 7FFFQ8000Q 01111 OK
11 FORGET Q@ OK
CK
0K
12 (Type any memory bytes using . for non-printing characters) OK
13 (Address Count ...) OK
oK

14 : &TYPE O DO DUP I + C@
DUP 7?NON-PRINTING IF DROP 2E (.) THEN EMIT LOOP DROP ; OK

OK
15 1 2 3 HERE 10 &TYPE CR&TYPE
16 321 oK
oK
OK
17 (Print address , DUMP &TYPE 16 bytes. Address ...) OK
OK
18 : A-LINE CR DUP O 6 D.R SPACE 10 OVER OVER DUMP 2 SPACES &TYPE ; OK
OK
19 HERE A-LINE
2419 6 41 2D 4C 49 4E 45 20 20 20 20 20 20 20 20 20 .A-LINE OK
OK
OK

20 2 3 4 HERE A-LINE CR . . .
2419 6 41 2D 4C 49 4E 45 20 20 20 20 20 20 20 20 20 .A-LINE
4 32 OK
OK
oK
21 (Can't think of a better name. Address count ...) OK
OK
22 : DUMP O DO DUP 1 + A-LINE 10 +LOOP DROP ; DUMP isn't unique OK
OK
23 HERE 40 DUMP

2434 4 44 55 4D 50 20 20 20 20 20 20 20 20 20 20 20 .DUMP
244A 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
245A 20 20 32 84 44 55 4D DO SF SF S5F SF S5F SF SF F5 2.DUM._ _
246A 5F SF SF SF SF SF SF 5F SF SF SF SF SF SF SF SF _ ¢
OK
oK

FORTH DIMENSIONS 11/6 Page 170

Program development in FORTH can
--and should--be done in a "top down”
manner as this type of design pro-
duces error free programs in a
minimum of time. However, the rocad
to a solution is not always direct;
and experienced FORTH programmers
often play with a programming problem
on the terminal to get ideas. These
idea sessions usually result in the
data necessary for "top down” program
design. The development steps in-
volved in producing a really useful
tool from a very simple DUMP word
will 1illustrate just such a design
session.

I begin by setting down in the
comment on line 1 the functions and
parameters for the fundamental DUMP

word to be defined -- I simply want
it to dump values from memory. Given
the starting address and number of
bytes to dump as parameters on the
stack, the word defined in line 2 is
short and simple. The count value
is on top of the stack which suggests
using a DO ... LOOP to do the work.
Inside the loop we put the code to
generate an address, fetch and print
a byte. The loop parameters are the
count value on the stack and the zero
put inside the definition just in
front of the DO.

FORTH DO loops increment the loop
index and check it against the limit
at the end of the loop. If the newly
incremented index is less than the
limit, the 1loop body 1is executed
again. 1f the index is greater than
the limit, the loop 1is terminated
and execution continues with the
next word. This method of loop
control results in the loop index
(fetched for use by the word I)
going from O to count 1- (that is
Count-1 for non-FORTH persons) by
1's for this FORTH DUMP word. The
loop index then is just what we need
to add to the starting address to
obtain successive byte addresses for
dumping.

The 1inside of the loop first
duplicates the address (the only
thing remaining on the stack after
DO removed its two arguments) to
save a copy and then adds the loop
index to it. Using this new address
we fetch a byte with €& and print
it, right justified in a 3 column
field using 3 .R . In the same
manner we keep looping (incrementing
the index by 1 each time) adding,
fetching and printing. When the loop
index equals the count, the 1ioop
exits and drops the extra copy of the
address to clean up the parameter
stack-~A very important step!

FORTH is highly interactive and
nothing is more natural than to test
the new DUMP word immediately. In
line 3 I switch to hexadecimal 1/0
to enable easy interpretation of the
dump results in line 4. Before 1
actually execute DUMP in line 4 I
put a few numbers on the stack so
that 1 can check to see that the
stack is not altered by DUMP
The word HERE provides a starting
address for DUMP and then I select
10 (in decimal, 10 hex is 16) bytes
to dump. The CR . . . after DUMP
prints (on a new line) and removes
the top three numbers of the stack.
Lines 4 and 5 show the execution of
the word and also show my check
numbers are where they should be.
This simple check shows that DUMP
is very likely to be free of errots
and we may proceed with confidence.

I happen to like dumps that dump
both byte values and ASCII char-
acters and so my next task was to
make a word that could dump in ASCII
what DUMP output as numbers. I
have also learned from frustating
experience that printers and termi-
nals should not be given byte values
that are non-printing characters
lest they do some strange things in
response. By thinking ahead a
little bit I can see a definite need
for a word to alter the memory byte

Page 171

FORTH DIMENSIONS I1/6

values to an acceptable range for
the output device. The result of
this advanced thinking is shown on
lires 6 and 7. Given a character
value on the stack ?NON-PRINTING

will return a True (plus one) value
if it 1is a non-printing character
and an False (zero) otherwise. The
test i{s made for values 1less than
hex 20 (a space) and greater than
hex 7E (a tilde).

At this point I am still in hex
for numeric I/0 (see line 3) and so
1 use 20 and 7E directly in the
definition without having to look up
their equivalent decimal values. The

OR at the end of 7NON-PRINTING
combines the results of the two
limit checks and produces a single
true/false value for the output {if
either limit is exceeded.

The verification of a 1limit
checking word like ?NON-PRINTING
requires careful testing with data
that exercises the word over 1its
entire range and especially at
critical places such as the limits.
With ?NON-PRINTING this means
testing 10 or more times with care-
fully chosen input values. The name
of 7NON-PRINTING 1is nice and des-
criptive but is too long for a poor
typist like me to type often so on
line 8 T have defined the word Q
to execute ?NON-PRINTING and print
the result. On lines 9 and 10 I try
my new Q word out with some numbers
designed to make it fail 1f it will.
Numbers such as small negatives,
zero, small positives, on either
side of the lower limit, mid range,
either side of the upper 1limit,
larger positives and at the magic
place where the sign bit changes
value. The results show that ?NON-
PRINTING is not fooled by these
tests and so on line 11 I discard my
test word Q .

On lines 12 and 13 I put down my
ideas for the word which will type
the ASCII character equivalents for
my memory byte values and begin the
definition on line l4. This defini-
tion is just like the one for DUMP
except for what happens to the byte
value after it is fetched. 1In place
of the 3 .R of DUMP we check for
non-printing characters with ?NON-
PRINTING and if they are non-
printing we DROP the value and
replace it with the hex code for a
dot, 2E. Then we EMIT the byte to
see the ASCII character for that
byte's value.

Some programmers will want to
mask the byte value with hex 7F to
zero the high bit before testing for
non—-printing characters. One reason
to do this is so fig-FORTH names
will show up better in dumps since
the “traverse” bit on the last kept
name character would otherwise turn
that character into a non-printing
value and it would appear as a dot.
My reason for not doing 1t is that
getting rid of the high bit turns
too much data into ASCII and clutters
4p that part of the dump. The
testing of &TYPE is done exactly
like the testing for DUMP | the
.&TYPE after the CR . . . 1is the
output of &TYPE . The dot before
the ampersand is the count byte of
the string getting turned into a dot
by ?NON-PRINTING .

Incidentally, the string found
at HERE when a given word is
executing in the interpretive mode
(outer or name interpreter in this
case) is the name of the word. Look
up the ASCII characters for the byte
values dumped in line 4 and you will
find they spell DUMP . This bit
of magic 1is performed by the word
WORD 1in f1igFORTH.

FORTH DIMENSIONS 11/6

Page 172

With the two words DUMP and
&TYPE we are 1in a good position to
write a word that will dump one line
of information on the terminal.
This word can then be executed in a
loop, once for each line dumped. I
call this word A-LINE and define
it in line 18 after noting in 1line
17 that it should print the starting
address of the dumped line. A normal
line width on a CRT tvpe terminal is
80 columns and so there is room for
16 bytes dumped (3 16 * columns),
typed (16 more columns) and an
address and spaces for separators (9
columns). The room used adds up to
73 columns but this could be reduced
a few columns. If the address were
always printed as an unsigned hex
number it would only take up 4
spaces. Then by allowing only one
space between the three fields on a
line the 1line width would be 70
columns (4 1+ 48 + 14+ 16 +). If you
have a smaller output line then vyou
must give up the ASCII characters or
the spaces between the byte values
or dump less bytes per line.

The actual work donme by A-LINE
is to first do a CR to get a new
line to use and then output the
address as an unsigned number, right
justified in a 6 column field. The
address output is done by the phrase:

DUP (Save a copy of the address)
0 (Put a zero on top of)
(the stack to make a positive)
(32 bit number)
6 (6 column field)
D.R (Output a 32 bit number)
(in a field)

Next we output a SPACE to help
separate the address from the byte
values; put 16 (16 is hex 10) on the
stack and copy both the saved address
and our count of 16 by using OVER
OVER (if you have it use 2DUP)

The stack is now set up with two
sets of addresses and counts ready

for our two words DUMP and &TYPE

I put 2 spaces in to separate the
byte values from the ASCII
characters.

On lines 19 and 20 of the print-

out 1 test A-LINE for stack
problems and functionalitvy and it
seems that everything is workiog

correctly.

At last I am now ready to write the
actual dump word. The comment on
line 21 starts me off with the
desired parameters and a note showing
my limited personal vocabulary. My
inability to think of another name
is not going to be a problem, how-
ever, since FORTH allews you to
redefine names and use them over.
All that happens is that a warning
message (isn't unique) is displayed
to alert you to the redefinition.
The warning message appears here
after the end of the definiticn on
line 22. When the new definition
with the re-used name successfully
compiles, the earlier definition of
the same name becomes unavailable
for future use-—-either by compiling
into new words or interpretively
executed from the terminal. Since 1
do not want my old defirition of

DUMP on line 2 anymore, 1 consider

this to be an advantage. I have an
improved DUMP and I dc¢ nct have to
think of another name for it! What

is more, everything will work
properly as before because the use
of the old DUMP in the definition
of A-LINE does not get changed--
what is compiled stays compiled as
it was. All that happens as far as
a user of DUMP is concerned is
that if DUMP 1is now asked for, the
new one will be found first autc-
matically and the search will stop
there -- the system never suspects
that another, different version ot
DUMP is hiding down the dictionary
a ways.

Page 173

FORTH DIMENSIONS 11/6

The actual definition of the
new DUMP is very similar to the
old DUMP except that we are sub-
stituting A-LINE for the €@ 3 .R
and since we are dumping 16 bytes on
a line we use +LOOP to terminate
the DO and give it a 16 (10 hex)
to add onto the 1loop 1index each
time. Now the address computation
done by the DUP I + phrase will
start at the specified point and go
up by 16 bytes each time through the
loop.

The useful tool that I set out
to develop at the start of this
session 1s now complete and only
needs to be tested. Line 23 does
this final test, but because of my
earlier successful test of A-LINE
and also because the new DUMP is
so similar to the old DUMP I did
not bother to try putting some
numbers on the stack to see 1if it
adds or removes any values. I now
have high confidence that DUMP
will work correctly and it does.

This article contributed by John
Bumgarner; FORWARD TECHNOLOGY; 1440
Koll Circle, Suite 105; San Jose,
CA 95112

NEW PRODUCT

MICROPOLIS FORTH:

Acropolis now offers FORTH for
Micropolis. Acropolis FORTH
(A-FORTH) runs under Micropolis MDOS
on 8080/8085 and Z-80 systems running
at 2 or 4 MHz with 32K memory and at
least one MOD I or MOD II disk.
A-FORTH has 2 program/data file
editors -~ a line editor for standard
serial terminals and a screen editor
for memory-mapped terminals. A-FORTH
has an 8080/8085 macro-assembler that
allows use of any mixture of A-FORTH
and assembly code desired in a single
definition. A-FORTH has all the
features of f1igFORTH plus: Double
precision math & stack operations

(32 bit); Double precision variables
& constants (32 bit); Multi dimen-

sional arrays up to the limits of
available memory; Virtual arrays up

to the limit of disk storage on all
disks; Case statements; Printer
support using MDOS ASSIGN state-
ments; Forgetting across vocabulary
boundaries; Enhanced disk procedures
that reduce response time, compiling
time, & number of disk accesses;
Physical disk support for disk
diagnostics and disk copy and direct
access to MDOS file directory.
Acropolis A-FORTH has an 89 page
users manual. Acropolis provides
A-FORTH wupdates & patches at no
charge for 1 year after purchase.
Price $150.00 including shipping
(California residents add 6% sales
tax). Acropolis division Shaw Labs,
Ltd.; 17453 Via Valencia; P.0. Box
3471; ‘Hayward, CA 94540; (415)
276~6050

NEW PRODUCT

ALPHA MICRO REENTRANT FORTH:

Sierra Computer Company 1s now
offering version B of their AM-FORTH
for Alpha Micro system AM-100 compu-
ters. Version B is said to be re-
entrant, allowing the basic FORTH
dictionary to be 1loaded as part of
the AMOS system and shared by any
number of users in the multi-user
Alpha Micro system. Other new
features include: An assembler;
Screen oriented editor; Support of
special AMOS CRT handling features;
Floating point math operations;
Utilities for string handling and
building data structures and access
to system TIME and DATE functions;
More versatile 1I/0 to AMOS sequen-
tial and RANDOM files; and use of
lower case characters. All features
of version A are included in version
B. AM-FORTH version B is available
on AMS or STD disk that contains
complete source code; executable
object code; FORTH utilities for the
editor, assembler and data struc-
tures and some sample FORTH programs.
Complete documentaton describing
AM~FORTH implementation, installa-
tion procedures, operating instruc-
tions and glossary. Price is $150.00
($120.00 to 1licensed version A
purchasers at $40.00). Contact George
Young; Sierra Computer Company; 617
Mark NE; Albuquerque, NM 87123

FORTH DIMENSIONS II/6

Page 174

Dear FIG,

I have been using the May '79
release of 6800 fig-FORTH since it
was issued. A question that isn't
apparent on the order form is, has a
further release been made either on
the assembly source listing or
installation manual? This may be a
saving for us by preventing a dupli-
cation of our software.

N.H. Champion
Prescott, AZ

Two small changes have been made
to the FIG model. 1In screen # 23,

U* has been corrected for a carry
bug. Screens 93 and 94 have been
converted from assembly to high
level. The assembly 1listings have
not changed in the last year. Here
are the revision/publication dates
for each FIG publication:
Publication Release Date
Installation Manual 1.0 11/80
Listing
8080 1.1 9/79
6800 1.0 5/79
6809 1.0 6/80
6502
9900 1.0 3/81
8086/88 1.0 3/81
PDP-11 1.3 1/80
PACE 1.0 5/79
ALPHA MICRO 1 9/80
Hope this clarifies your
question. =-- ed.
Dear FIG,

I would like to see programming
examples as part of every meeting
agenda. Perhaps a theme could be
established for each meeting.

LETTERS

Also publishing programming
examples would be helpful. 1, for
one, find examples the best method
of learning and attempting to reach
the point where 1 start building
FORTH programs efficiently.

I also recognize that one person
can't do it all, and that a success-—

ful users group depends upon
contributions from everyone. I am
not sure how I can help at this
time, but I am willing to do my
share.
J. Arthur Graham
Orinda, CA
Glad to hear it! See this
month's edition for programming
examples and this month's editor's
column regarding helping out. -- ed.
Dear FIG,

I am interested in corresponding
with others interested in FORTH on
larger machines. I can be reached
at the address below.

Stewart Rubenstein

HARVARD UNIVERSITY CHEMICAL LABS
12 oxford St., Box 100
Cambridge, MA 02138

Dear FIG,

Would it be possible to include
some tutorial articles on the inner
workings of FORTH in FORTH
DIMENSIONS?

Being new to this language, (I
find] the functions of the inter-
preters and the compiler somewhat
mysterious.

Fage 173

FORTH DIMENSIONS 11/6

Given the extensibility of FORTH,
a better understanding of the guts
of the language is an advantage. I
haven't found a publication that
completely describes these functions.

R. Stockhausen

Milwaukee, WI
See Dr. C.H. Ting's SYSTEMS
GUIDE TO fig-FORTH, available from
FIG you can use the order blank
at the back of this issue. -- ed.

Dear FIG,

Our membership 1s growing and I
have delivered fig-FORTHs to several
of the Black African countries.

Rhodes University has adopted
6809 fig-FORTH for its curriculum
this year. UNISA will follow, God
willing, next year 1in 1its micro-
processor course, and several other
universities are using various
versions of fig-FORTH for research
purposes.

I've written several articles,
both local and abroad on FORTH and
I'l1l send you copies of these.
Please give us some support and
coverage. 1'l1 write you at least
once a month.

Ed Murray

FORTHWITH COMPUTERS/FIGSA
P.0. Box 29452

Sunnyside, Pretoria, 0132
South Africa

Always happy to hear from our
international contingent! Your
meeting announcements are in our

announcement section. —- ed.

LETTERS

DEA- FIG,

I AM A FOR-- PRO~—--~-- CUR-——~—-
EMP-~--- BY FOR-- INC. 1 HAV- NOT
WOR--- ON ANY FIG TYP- SYS---- AND I
AM EXC---- BY THE VAR-—--- LEN---
NAM- 1IDE-. PLE--- SEN- ME THE FIG

FOR-- MOD-- SO THA- I MAY TRY IT OUT
HER- AT FOR-- INC.

FRE- THO-—---

Your request is answered. Next
edition you will be able to communi-
cate with four+ letter words! -- ed.

Dear FIG,

1 am a long time FIG member and
am seriously devoted to FORTH as a
programming language and system.
Like many others, I have FORTH
running now and after all the talk
about how great it is, I find few
(hardly any) complete examples of
its use in solving real, practical
problems.
of all this 1is a
suggestion that FIG publish more
articles and papers on practical
applications programs which can
be easily put into everyday use by
any programmer. One can go to the
magazine counter at any computer
store and find many examples of
practical programs in BASIC. FORTH
should be even more appropriate for
such applications.

The point

I believe that the organization,

and each of us as mwmembers, can
contribute to this end. I propose
FIG strongly solicit contributions
of articles dealing with practical
programming projects developed in
FORTH.

George 0. Young III
Albuquerque, NM

You took the words right out of
our editorial mouths. We hear you
and are looking forward to receiving
contributions. -~ ed.

FORTH DIMENSIONS I11/6

Page 176

e

Dear FIG,

I have developed a generalized
data structure for vocabularies
which removes many of the limita-
tions now found in both FIG and
other FORTH models.

My new structure has most of the
advantages of the present FIG model,
plus it allows multiple threads per
vocabulary with different numbers of
threads in each, if desired. With
this multiple thread concept vocabu-
laries are physically linked with a

single pointer and are both sealed

and linked simultaneously.

I have also developed a "vocabu-
lary stack”™ to allow context speci-
fication in line with the FORTH '79
standard. I intend to wmake my
findings available at the next FORML
conference.

If anyone would like to contri-
bute suggestions or developments
along these 1lines (especially the
vocabulary stack) for release in the
public domain plecase write me at the
address below:

EXIT (in line with the 79-standard)

George W. Shaw II
SHAW LABS, LTD.
P.O. Box 3471
Hayward, CA 94540

Dear FIG,

Help! A while back I got my copy
of FigFORTH-8080 version. I'm bogged
down at the "MATCH"” primitive of the
"EDITOR" function. I'm working alone
at it as howe computers are rare up
here and FORTH is a “Very Foreign
Language”. All I need to know 1is
what in tarnation one uses to inter-
pret screens 93 & 94 to 8080 (or
Z80) code?

LETTERS

I have the rest of the FIG model
working, although I've had monments
with 1t ranging from tears to
apoplexy. I've discovered some of
the no-no's the hard way, also known
as "How to reconfigure your disk --
unexpectedly.” or “where did the
CP/M go?".

I haven't had so muct fua since
1 built this “United Nations
computer”.

Regards,
Glenn Farnsworth
wWeed, CA

Editor's note -- The editor was
included with the model as an extra
"goodie”. A little foresight would
have told wus the 6502 assembly
source would prove to be an irritant.
The high level equivalent 1is given
below. A full screen search with a
code MATCH takes about 150 wusec,
while the high 1level form requires
over a second. Try the high level
version and then recode for your
processor. This addition to the
model was made in September 1380
thanks to Peter Midright who
provided an earlier definition.

Keep smiling! ~- ed.
SCR # 148
0 (double aumbar support SFR~30APRIe
1 { operates ou)2 dic doubdie numbars of two .6 LI .ntagers’
2 FORTH DEFIMITIONS
3
4 @ 20mOP droP OROP « Jrop coutla aumber !
5
6 . 2DUP ovER OVER « duplicate s doucls numder
7

3 ; 2SwAP ROT O>f ROT B

1] ¢ bring a second 3oubie =3 9p -¢ stack
10 EDITOR DEFINITIONS -

il

12
1]
Y
13

SCR ¢ 19

0 (String MATCH for editor PM-wE-8CAPRDS

1 - ! addrese-}, count=2, addtess-l ===)

2 SWAP -~DUP 1f { lsave booiesn mstched=moo-tero, Tupe~zefo’

3 OVER + SWAP [neichor 4daress say oe efo! !}
Do DUr C¢ FORTH I Ct -

b IF O= LEAVE SLSE .+ THES LCOP

[] ELSZ OROP 0= THER

7 : MATCH {cutsor eddress~-s, bytes laft-J, icriag sddvess-2.'
3 (string count=1, -==- bocisen~2, cursor acvemeut-.

3 OR OR IDLP W K ISUAP WER ¢ SHAP

10 (caddr-%, dleft-3, Saddr-4, Slen-3, caddreblefr-1, ~addr-.:
11 50 2DUP FORTH I -TEXT

12 IF >R 2080F B> - I SWAP - O SWAP O O LEAVE
1 { caddr blefc Saddr Slec or else © offset " 0 H
14 TREN LOOP 2DROP (~addr-2, clefc~i, ov O-2, offset-1)
13 SWAP 0= SWAP

Page 177

FORTH DIMENSIONS 11/6

ANNOUNCEMENTS

PREVIEWS OF COMING ATTRACTIONS (1IN
FORTH DIMENSIONS):

Issue Fditorial Content

Mav/Jun Applic tions, utilities &
useable programs

Jul, Aug Cames & game type appli-
cations
Sep/Qct University of Rochester &

{trecht conferences
Nov/Dec Graphics & music

If you would like to be a contri-
buting author to any of the above
please write to: Editor; FORTH
DIMENSIONS; P.O. Box 1105; San
Carlos, CA 94070. You will be sent
a writer's kit that will make your
job easier. Please note deadlines
for each issue are several months in
advance of publication dates so
allow plenty of time to produce your
article.

FIG GOES TO COMPUTER FAIRE: FIG
will have booth number 1137C at the
West Coast Computer Faire being held
April 3 to 5 at Brooks Hall in San
Francisco.

FREE BUCGC FIXES: The 8080 Renovation
Project wants bug reports so they
can get to work on fixing them. If
you have found an 8080 Bug send it
to 8080 Renovation Project; c/o
FORTH Interest Group; P.0. BOX 1105;
San Carlos, CA 94070

DR. DOBBS NEEDS YOUR HELP: The
editor of Dr. Dobb's Journal of
Computer Calisthenics & Orthodontia
is very interested in articles on
FORTH. If he can get enough, he

will devote an entire issue to
FORTH. Interested authors should
contact Marlin Ouverson, Editor;
PEOPLE'S COMPUTER COMPANY; PO Box E;
Menle Park, CA 94025

CALL FOR PAPERS

FI. STANDARDS TeAM’ Lhe FORTH
Standards Tear annoances the Spring
Conference hosted by the University
of Rochester on May 13th through May
15th, 1981, Larry Forsley is the
session organizer. This conference
will have three components: Formal
papers, Sub-team working groups, and
Poster sessiolns.

Formal papers wmust be received by
May lst. Later material and informal
presentations will be assigned to
the "Poster session”; at which the
authors will conduct clustered work-
shops, with attendees moving among
the presentations. The Sub-teams
will prepare short reports after
topic oriented working sessions.

Working sessions are scheduled from
the morning of May 13th through
lunch on May 15th. A reception will
be held on the evening of May 12th
for early arrivals. Accomodations
are $12.00 single occupancy and
$9.00 each, double occupancy. A
combination of campus and off-campus
meals are planned.

Papers are specifically requested on:

1. Implemtation aspects of FORTH-79

2. Refinements of vocabulary
structure, extensible control
structures, definition of input
and output streams.

3. File sytem extension

4, Floating point extensions

FORTH DIMENSIONS I11/6

Page 178

|

The contact for submittal of papers
and room reservations is Larry
Forsley; Laboratory for Laser Ener-
getics; University of Rochester, NY
14623. Send room requests without
delay; a confirmation with exact cost
will be returned with the conference
schedule and travel suggestions.

MEETING/EVENT ANNOUNCEMENT FORMAT

In order to have uniformity and
insure complete information in all
meeting and special event announce-
mnents, FORTH DIMENSIONS requests
that you use the following format:

1. Who is holding the event
(crganization, club, etc.)

2. WHAT is being held (describe
activity, speakers' names, etc.)

3. WHEN is it being held (days,
times, etc.; please indicate if
it is a repetitive event --
monthly meeting etc.)

4. WHERE 1is it being held (be as
complete as possible ~-- room
number, etc.)

5. WHY is it being held (purpose,
objectives, etc.)

6. REMARKS & SPECIAL NOTES (is
there a fee, are meals/
refreshments being provided,
dress, tools, special require-
ments, pre-requisites, etc.)

7. PERSON TO CONTACT

8. PHONE NUMBER/ADDRESS (include
area codes, times to call & give
work & home numbers in case we
need clarification)

ATTENTION 6502 USERS:

The following seem to me to be
errors in the 6502 Assembly Source
Listing (May 1980). 1 think I can
correct these errors easily enough,
but I worry 1f maybe they have
generated more subtle errors that I
have not found. I have no experience
with FORTH at all, so I'm not sure
what should be happening, and I have
no one I know with any experience to
call upon.

Page 0061 UPDATE Missing SEMIS at
end? (There is one in the
installation manual)

0064 Line 3075 Shouldn't this be a
backward branch with F6 FF as
displacement?

0067 Lines 3204 - 3205 Two STX
XSAVE's. 1Is one superfluous or is
it replacing something else that
really should be there?

0069 Lines 3280 - 3284 Two SEMIS.
Again, is something being destroyed
by the extra one?

C.A. McCarthy

Department of Mathematics
Vincent Hall

UNIVERSITY OF MINNESOTA
Minneapolis, MN 55455

RENEW TODAY!

Page 179

FORTH DIMENSIONS 11/6

—— e —— ———

o T —— ————— T

MEETINGS
SORTH INTEREST GROUP U.K.: Chair-
mAan Dick de Grandis-Harrison;
Secretarv/Treasurer: Harry Dobson;
Newsletter Editor: Gil Filbey;
Committee Members: Bill Powell,

Ri1] Stoddart. Meetings are held at
7 p.m. on the lst Thursday in every

cven montihoate

The Polvtechnic of the Southbank
Room 408

Borough Road

LONDON

Mailing Address:

FORTH INTERCZST GROUP U.K.
c/o 38, Worsley Road
Frimlev, Camberley,
Surrey, GUl6 5AU

ENGLAND

PORTLAND FORTH USERS GROUP: Held
its first meeting in January. Demos
were given on an Apple 1I. Also
shown were a Hires graphic package
written in FORTH; A “de-FORTHer"”
program that takes FORTH words down
to their component parts; and a 64
bit quad precision math package.
FORTH concepts such as the word
DEPTH and .S (a non-destructive
stack print out) were also dis-
cussed. Meetings are held wmonthly
at THE COMPUTER & THINGS STORE; 3460
S.W. 185th, Suite D; Aloha OR 97006

TULSA COMPUTER SOCIETY: A FORTH
Interest Group has been formed in
Tulsa, OK under the auspices of the
Tulsa Computer Society. The group
has 6502 figFORTH running on several
Apple II's and 8080 figFORTH running
on a Compucolor and a MITS Altair
using CP/M and Micropolis Drives.
For meeting information contact Art
Gorski; c¢/o The Tulsa Computer
Society; P.0O. Box 1133; Tulsa, OK

74103 or call (918) 743-0113; (918)
743-4081

SOCIETE D INF.. ... AriacsUR O Do
QUEBEC: Has a FORTH group (French!)
that meets every other weeck. Anyone
from the Quebec area who would like
meeting information is invited 1o
contact Gilles Paillard; 1310 Des
Pins Est; Ancienne-lorette; Quebec,
Canada G2E 1G2 or call (418)
871-1960

FIGSA: South Africa has a very active
FORTH Interest Group meceting monthly
and currently is offering FORTH
mini-courses to ground users in the
fundamentals. Interested persons in
the Johannesbhurg and Pretoria locales
can get more information regarding
meetings and courses by contacting
Ed Murray; FORTHWITH COMPUTERS;
PO Box 27175; Sunnyside Pretoria
0132, South Africa

SOUTHERN CALIFORNIA fig: Attendees
numbered approximately thirty-five
and wost had up and running FORTH
systems. Three books were reported:

Threaded Interpretive Language by

Loeliger, which steps the reader
through Z-80 source code of fig-FORTH
for the TRS-80; MINT, Machine-
Independent Organic Software Tools,
by Godfrey, et al.; and FORTH SYSTEM
GUIDE by Ting which now has the
assembler in its final chapter. The
formation of an Organge County fig
group was begun.

Martin Tracy of MicroMotion
discussed Implementing Strings in
FORTH, their 8th chapter in "FORTH-79

Tutorial and Reference Manual” (for

the APPLE II). This string package
compares, concatenates, converts and
arrays with words 1like GETS$, INPUTS
and IN$ (which indexes 1into the
$tring).

FORTH DIMENSIONS 11/6

Page 180

_

AN OPEN RESPONSE

We continually receive letters
asking if FORTH can be installed on
a particular computer, particularly
those without direct access mass
storage or an ASCII terminal (i.e.
PET, Vip, and Kim). Often, similar
queries reflect a desire to wuse
cassette tape. This summary gives
the general characteristics of a
system in which FORTH will be
responsive. For fig-FORTH instal-
lation, an assembler is also needed.

FORTH is an interactive, compiled
language. This statement may be
expanded to conclude that compilation
requires mass storage for source
text; it wust be random access to be
interactive. A terminal 1is also
needed, as a hex keypad cannot be
deemed interactive. The character
set must be complete for program
portability, reflecting the common-
ality of language.

Requirements to execute:

1. A random access mass storage
device with direct access to
sector read/write i.e. disk or
diskette.

2. 16 Kilobytes of ram.
3. A keyboard input with at least
the full upper case ASCII char-

acter set.

4. A display of at least 64 charac-
ters by 16 lines.

Requirements to install:

1. An assembler that can accept
about 80K of source producing
about 5.5K of object, either
memory or disk.

Requirements derived from the
FORTH-79 Standard:

1. 2000 bytes of memory for applica-
tion dictionary (beyond FORTH,
stacks and disk burrers).

2. Stacks of b4 and 4% bvics

3. Mass storage of 32 olocks of
1024 byies

4. An ASCIL1 terminal
If you are missing iny ot these

elements, we express our condciences.

You will have to tolerate an ir-

regular installation and cutfer
portability problems. This curse is
not caused by FORTH but by the

shortsightedness of hardware veadors.
FORTH is an environment in which you
can operate as a professional. We
know of no professional who would
demand to have his terminal line
width reduced to 40 characters, have
six ASCII characters removed rrom
his keyboard or return his disk to
the manufacturer as unnecessary. If
FORTH were compromised to less than
the above guidelines, we would
ultimately be operating from a hex
keypad with paper tape.

BENCHMARKING:

Because there is almost universal
disagreement on which are the most
valid benchmark tests; and because
in FORTH wmemory compactness may be
traded off for executicn speed at
the implementor's option, it is the
policy of FORTH DIMENSIONS t¢o mini-
mize the use of benchmark tests that
measure speed alone. Such single
dimensional tests more ©precisely
measure the speed of a given CPU
than the implementation of FORTH
itself and encouraging such simplis-

tic testing will probably mean the
compactness of FORTH will inevitably

suffer. For these reasons FORTH
DIMENSIONS is normally oniy inter-
ested in benchmark tests that measure
both productivity (useful work) and
speed as a better indicator of a
given implementations value.

Page 181

FORTH DIMENSIONS I1/6

The fall:wing vendors have versions of
FORTH available or are consultants. (F1G
makes no 1odgment on any products.)

Al PHA MICRO
Prafessional Management Services
724 Arastradero Rd. #109
Pelo Alte, CA 94306
415Y £58-2218

Sierra Zomputer Co.
617 Mark NE
Ajbuquerque, NM 87123

APPE
LS (Cap'n Software)
281 Arlington Avenue
Rerkelay, CA 94708
(415) 525-9452

George Lyons

280 Henderson St.
Jerse, Tity, NJ 07302
1201) 451-2905

MicroMotion

i 12977 Wilshire Blvd. #506
Los Angeles, CA 90025
(213) 821-4340

CROSS COMPRERS
Nautilus Systems
P.O. Box 1098
Santa Cruz, CA 95061
(408) 475-7461

polyF ORTH
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Basch, CA 90254
(213) 372-8493

LYNX

330! Ocean Park #301
Santa Monics, CA 90405
(213) 450-2466

M & B Design
820 Sweethay Drive
Sunnyvale, CA 94086

‘& Micropolls

Shaw Labs, Ltd.
P. 0. Box 3471
Heyward, CA 94540
(415) 276-6050

North Star
The Software Works, Inc.
P. 0. Box 4386
Mountain View, CA 94040
(408) 736-4938

i POP-11
Laboratory Software Systems, Inc.
) 3634 Mandeville Canyon Rd.
! Los Angeles, CA 90049
(213) 472-6995

FORTH VENDORS

ost
Consumer Computers
8907 L.aMesa Blvd.
LaMess, CA 92041
(714) 698-8088

Software Federation

44 University Dr.

Arlington Heights, IL 60004
(312) 259-1355

Technical Products Co.
P, 0. Box 12983
Gainsville, FL. 32604
(904) 372-8439

Tom Zimmer
292 Fslcato Dr.
Milpitas, CA 95035

6800 & 6809
Talbot Microsystems
5030 Kensington Way
Riverside, CA 92507
(714) 781-0464

TRS-80

Miller Microcomputer Services

61 Lake Shore Rd.
Natick, MA 01760
(617) 653-6136

The Software Farm
P, O. Box 2308
Reston, VA 22090

Sirius Systems

7528 Oak Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

6502
Erie C. Rehnke
540 S. Ranch View Circle #61
Anaheim Hills, CA 92087

8080/Z80/CP/M
Laboratory Microsysterme
4147 Beethoven St.
Los Angeles, CA 90066
(213) 390-9292

Timin Engineering Co.
9575 Genesse Ave, #E-2
Sen Dlego, CA 92121
(714) 455-9008

Agplicstion Puckages
InnoSys
2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

Decision Resources Corp.
28203 Ridgefern Ct.

Rancho Palo Verde, CA 90278
(213) 377-3533

KV33 Corp.
PO Box 27246
Tucson, AZ 85726

68000
Emperical Res. Grp.
PO Box 1176
Milton, WA 98354
(206) 631-4855

Firmware, Boards end Machines
Dstricon
7911 NE 33¢d Or.
Portlend, OR 97211
(503) 284-8277

Forward Technology
2595 Martin Avenue
Santa Clara, CA 95050
(408) 293-8993

Rockwell International
Microelsctronics Devices
P.0. Box 3669

Anaheim, CA 92803
(718) 632-2862

Zendex Corp.
6398 Dougherty Rd.
Dublin, CA 94566

Variety of FORTH Products
Interactive Computer Systems, Inc.
6403 Di Marco Rd.

Tampa, FL 33614

Mountein View Press

P. O. Box 4656

Mountain View, CA 94040
(415) 961-4103

Supersoft Associates
P.O. Box 1628
Champaign, IL 61820
(217) 359-2112

Consultants
Crestive Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852

Dave Boulton

581 Omkridge Dr.
Redwood Clty, CA 94062
(415) 368-3257

Elmer W, Fittery

110 Mc Gregor Avenue
Mt. Arlington, NJ 07856
(213) 663-1580

Go FORTH

504 Lakemead Wey
Redwood City, CA 98062
(415) 366-6128

Inner Access

517K Marine View
Belmont, CA 94002
(415) 591-8295

Henry Lexen

1259 Cornell
Berkeley, CA 94706
(415) 525-8582

John S. James
P. O. Box 348
Berkeley, CA 94701

FORTH DIMENSIONS II/6

Page 182

O —

NEW PRODUCT
ANNOUNCEMENT FORMAT

In the 1interests of comparison
uniformity and completeness of data
in new product announcements FORTH
DIMENSIONS requests that all future
new product announcements use the
following format:

l. Vendor name (company)
2. Vendor street address (P.O.
Boxes alone are not acceptable

for mail order)

3. Vendor mailing address (if
different from street address)

4. Vendor area code and telephone
number

5. Person to contact
6. Product name

7. Brief description of product
use/features

8. List of extras included (editor,
agssembler, data base, games,
etc.)

9. List of machines product runs on

10. Memory requirements

11. Number of pages in manual

12. Tell what manual covers

13. 1Indicate whether or not manual
is available for separate
purchase

14. If manual is available indicate
separate purchase price and
vwhether or not manual price is

credited towards later purchase

15. Form product is shipped in (must
be diskette or ROM -- no RAM
only or tape systems)

16. Approximate number of product
shipments tc date (product must
have active installations as of
writing - no unreleased
products)

17. Product Price

18. What price 1includes (shipping,
tax, etc.)

19. Vendor warranties, peost sale
support, etc.

20. Order turn around time

HELP WANTED

Openings for a project manager
and senior programmer. Both positions
offer the opportunity to work on a
wide variety of projects, including
systems programming and Treal-time
scientific and industrial applica-
tions. Salary and Dbenefits are
excellent. A starting bonus 1is
avallable for anyone with a substan-
tial FORTH background. Contact
FORTH, 1Inc.; 2309 Pacific Coast
Highway; Hermosa Beach, CA 90254;
(213) 372-8493

Programmer analyst to work and
live in the Miami area who is trained
and experienced in the CYBOS lan-
guage. Contact Keller Industries,
Inc., 18000 State Road 9, Miami, FL
33162; (305) 651-7100, ext. 202.

FORTH programmer for computer
graphics. Contact Cornerstone Asso-
ciates, 479 Winter St., Waltham, MA
02154; (617) 890-3773.

RENEW TODAY!

Page 183

FORTH DIMENSIONS 11/6

A S -

R R L e T . G s 5

————

FORTH, INC. NEWS PAGE

FORTH - 79:
This is the first in a series
of columns highlighting various Al Krever is working on a new
activities at FORTH, Inc. release of polyFORTH scheduled for
March. This new release will
RECENT APPLICATIONS: feature many improvements in all
systems, plus greater compatability
In December Chuck Moore com- with the FORTH - 79 Standard.
pleted work on a 24-channel video
mixer for Homer & Associates, a The FORTH - 79 edition of USING
producer of films for promotioal and FORTH has been sent to the printers
entertainment purposes in Hollywood. and will be available after mid-
This Z2-80 based system controls 16 February.
slide projectors, four movie projec—
tors and audio tape. It has mas- POLYFORTH COURSES:
tering and sequencing capabilities
which Peter Conn, Homer's president, FORTH, Inc. offers two courses—-
says are unique in the industry. an introductory course for program—
mers unfamiliar with polyFORTH and
In early January American Air- an advanced course designed for those
iines performed the final acceptance with considerable FORTH experience
(of the LAX outbound baggage system who desire greater familiarity with
developed by Dean Sanderson and Mike system level functions, target com-
LaManna- The system runs on two piling and other advanced techniques.
PDP-11 computers (one functions as a
backup), and controls several con- FORTH, 1Inc.'s course schedule
veyor belts, bag encoder stations, for the next few months is:
electric eye sensors, and printers.
It 1s more accurate and has 25% Month Introductory Advanced
better performance than the all-
assembly language system it replaced. April 6 - 10 13 - 17
May 11 - 15 (tentative)

NEW PRODUCTS:
Contact Carol Ritscher at FORTH,

EXORset polyFORTH pF6809/30, Inc. (213) 372-8493 for more infor-
developed by Mike LaManna, 1is our mation.
newest product and runs on the
Motorola EXORset 30 -- a micro- SEMINARS & WORKSHOPS:
computer featuring a 6809 processor,
graphics CRT and two mini-floppies A serles of —completely new
in a single compact box. EXORset half-day seminars and one-day work-
polyFORTH sells for $4750 and shops has been scheduled in several
incudes a secial screen editor; a . citles. Both present an overview of
high~-speed graphics option with the features and benefits of poly-
. software vector and character FORTH for professional users. The
_ generation; labeled graphs with EXORset and tis new graphics package
' several plotting modes; a “strip- will be featured.
chart” function with snap-shot
capabilities, and several demon- City Seminar Workshop
stration routines. EXORset polyFORTH
t sells for $4750.00. The option Washington, DC 3/19 3/20
! package sells for §$500.00. Both Houston 4/21 4/22
1 will be featured at FORTH, Inc.'s Boston 4/23 4/24

spring seminar series.
Contact Carol Ritscher at FORTH,
Inc. (213) 372-8493 for more
j information.

' FORTH DIMENSIONS II/6 Page 184

{

Seattle Chuck Pliske or
Dwight Vandenburg at

How to form a FIG Chapter: (206) 542-8370.

1. You decide on a time and place Potomac Paul van der Eijk at (703)
for the first meeting in your 354-7443 or Joel Shprentz
area. (Allow about 8 weeks for at (703) 437-9218.
steps 2 and 3.)

Tulsa Art Gorski at (918) 743-0i13

2. Send to FIG in San Carlos, CA
a meeting announcement on one Texas Jeff Lewis at (713) 729-3320
side of 8-1/2 x 11 paper (one or John Earls at (214)
copy 1s enough). Also send 661-2928 or Dwayne Gustaus
list of ZIP numbers that vou at (817) 387-6976. John
want mailed to (use first three Hastings (512) 835-1918

digits 1f it works for you).
Phoenix Perer Bates at

3. FIG will print, address and (602) 996-81398
mail to members with the ZIP's
you want from San Carlos, CA. Oregon Ed Krammerer at

(503) 644-2688.
4. When vyou've had your first

meeting with 5 or more atten-~ New York Tom Jung at (212) 746-4062.
dees then FIG will provide you ;

with names in your area. You Detroit Dean Vieau at

have to tell us when you have (313) 493-5105.

5 or more.
England FORTH Interest Group, c/o

Northern California 38, Worsley Road, Frimley,
4th Saturday FIG Monthly Meeting, Camberley, Surrey, GUl6 5AU,
1:00 p.m., at Southland England.
Shopping Ctr., Hayward,
CA. FORML Workshop at Japan Mr. Okada, President, ASR
10:00 a.m. Corp. Int'l, 3-15-8, Nishi-
Shimbashi Manato-ku, Tokyo,
Southern California Japan. i
4th Saturday FIG Meeting, 11:00 a.m. E
Allstate Savings, 8800 Quebec, Canada i
So. Sepulveda, L.A. Gilles Paillard at i
Call Phillip Wasson, (418) 871-1960. !

(213) 649-1428.
Publishers Note:

Massachusetts
3rd Wednesday MMSFORTH Users Group, Please send notes (and reports)
7:00 p.m., Cochituate, about your meetings.
MA. Call Dick Miller
at (617) 653-6136 for
site.
San Diego RENEW
Thursdays FI1G Meeting, 12:00
noon. Call Guy Kelly
at (714) 268-3100
x 4784 for site. RENEWTODAY!
Page 185 FORTH DIMENSIONS 1176

e

