
,

t ' l 1 *

w

FORTH UlrnEflSlONS
FORTH IWTIRI8T OROUP
P.O. Box 1105
S e n Carlos, CA 94070

Volume II
Number 6

Price 52.00

154 Forgiving FORGET

156 Some New Editor Extensions

162

165 SEARCH

166 Greatest Common Divisor

To VIEW or not to VIEW

168 Programming Hints

170 Development of a Dump

175 Letters

178 Announcements

Utility

180 Meetings

182 FORTH Vendor List

184 FORTH, nc. News

FUATH OlmEflSlUflS

EDITOR'S COLUMN

Published by Forth Interest Group

Volume I I No 6

Publisher

Guest Editor

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick

March April 1981

RoyC Martens

C J Street

FORTH DIMENSIONS so;icits editorial material. com-
ments and letters No responsibility is assumed for accuracy
of material submitted ALL MATERIAL PUBLISHED BY
THE FORTH INTEREST GROUP IS IN THE PUBLIC
DOMAIN Information in FORTH DIMENSIONS may be
reproduced with credit given to the author and the Forth
Interest Group

Subscription to FORTH DIMENSIONS is free with mem-
bershipin theForth lnterestGroupat$1200peryear($24 00
overseas air) For membership. change of address and/or to
submit material. the address is

Forth Interest Group
P 0 Box 1105
San Carlos, CA 94070

The theme of this month s FORTH DIMENSION IS prdctl-
cal applications

During the last two years or so I have heard from many FIG
members who seem to have a common problem) No& that
I have FORTH where do I go from here' in addition m a n {
of us seem to be reinventing code thdt other5 hdit. d l r L J G y

running just because we are una%are of its existence

In short FIG members dre sufferiiy froni a C J - T ' ~ JV
problem-failure tn commcinicate Folunately this ' 5 a7
easily cured problern FORTH DIMENSIONS IS o,ir corn
municat,ons vehicle all we have to do is use it

The mechanics are simple FORTH DIMENSION5 is
seeking short universal tool type code segments for pubilca-
tion If you have some code tnat VOLJ have found especial y
useful and can explain its funrtior arid use please conlac!
the editor at FORTH DIMENSIONS

YOU DON T HAVE TO BE A WRITER' YOU wil l be sent d
publication kit that leads you through the writing procesr
You will also be given all the help necessary by the FORTh
DIMENSIONS editorial staff

FIG members already have a reputation as creatiJe
problem solvers now i f we will just share and exchange O u r
ideas. the permutations of that process boggle the mind I
am looking forward to enthusiastic response to this new
approach that will benefit all

C J Street

PUBLISHER'S COLUMN
HISTORICAL PERSPECTIVE

FORTH was created by Charles H. Moore in 1969 at the
National Radio Astronomy Observatory. Charlottesville, VA
It was created out of dissatisfaction with available program-
ming tools, especially for observatory automation.

Mr Moore and several associates formed FORTH, Inc in
1973 for the purpose of licensing and support of the FORTH
Operating System and Programming Language, and to
supply application programming to meet customers' unique
requirements

The Forth Interest Group is centered in Northern Caldor-
nia Our membership is over 2,800 worldwide It was formed
in 1978 by FORTH programmers to encourage use of the
language by the interchange of ideas through seminars and
publications

It's the end of the FIG year and renewals are Diling in
(Have you renewed?) Some of our newer members might
be confused about renewing I f you recently joined FIG
and received back issues of Volume I1 of FORTH DIMEN-
SIONS then it is time to renew for Volume Ill and your
March 1981 to March 1982 membership

A number of other items of interest
FIG now has over 2800 members. worldwide
FIG will have booths at the Computer Faire, April 3-5 in
San Francisco and at the Jersey Computer Show in
Trenton on April 25
There are a number of new listings - see order form
at back
Several reports from new chapters - lets see more
Proceeding of 1980 FORML Conference is now avail-

Looks like this is going to be our biggest year
able - see order form

Roy Martens

Page 153 FORTH DIMENSIONS II/6

FORGIVING FORGET
Dave Kilbridge

Ac know 1 edgme n t

I want t o describe a FORTH system
word which has come to be known as
"smart FORGET" or even "Dave
Kilbridge's smart FORGET." But the
ideas involved appear in the State
University of Utrecht, The Nether-
lands' FORTH system at least as early
as 2 3 May 1970. The code presented
here is a straightforward adaptation
t o the F I G model.

The Problem -
The principal function of FORGET

is t o reclaim memory by locating in
t h e dictionary the next word in the
input stream and resetting the
dictionary pointer (DP) to the
beginning of the definition of that
word. To avoid destroying vital
parts of the system, no FORGETting
is allowed below the address stored
in FENCE. In the "dumb FORGET" of
the original FIG model (see Screen
7 2) , this address check is made on
line 8.

But merely truncating the dic-
tionary, even at a safe place, is
not enough. The dictionary has a
linked-list structure which allows
it to be searched. If a link is
left pointing into the "never-never-
land" beyond the new value of DP,
then the system may crash the next
time a dictionary search uses that
link.

These links are of two types:
(1) VOCABULARY words have a link to
the latest word in the vocabulary
they name. "Dumb FORGET" ad juste
this link (line 9) to point to the
latest word which you don't FORGET,
but only for the CURRENT and CONTEXT
vocabularies. (Line 7 verifies that

these are the same; this test was
thought to give some extra protection
against crashing. Any vocabulary not
in CURRENT o r CONTEXT may be trashed.
(2) CURRENT and CONTEXT themselves
point to vocabularies. I f you FORGET
the name of the CURRENT vocabulary,
or any word before it in the dic-
tionary, you may crash.

The Solution

"Smart FOKGET" overcomes these
hazards so effectively that I have
never crashed by doing a FORGET.
This is made possible by linking all
the VOCABULARY words in the system
into another linked list, enabling
them to be located. The head of the
list is stored in VOC-LINK. See the
figure for the various fields in a
VOCABULARY word.

How It Works

Refer to the code on Screen 18.
On line 7 , the name-field-address of
the next input word is located in
the dictionary; this is the point at
which the dictionary will be cut off.
An error message issues if this
address is below the contents of
FENCE. This cutoff address is saved
on the return stack, and the head of
the vocabulary list is put on the
parameter stack. Now everything is
ready for the real work.

The BEGIN ... WHILE ... REPEAT
loop on lines 9-10 runs through all
VOCABULARY words above the cutoff
address and unlinks each from the
list. If any such vocabularies are
found, both CONTEXT and CURRENT are
pointed to FORTH. This removes any
links described as type (2) above.

Now the outer BEGIN ... UNTIL
loop on lines 11-13 runs through the
remaining VOCABULARY words. For
each such word, the loop on line 12
finds the highest word below the
cutoff address in the corresponding
vocabulary. The vocabulary head is

FORTH DIMENSIONS II/6 Page 154

then pointed to this word, thus
fixing the links of type (1) above.

Finally, DP is reset to point to
the cutoff address (line 14).

Improvements

Executing FORTH DEFINITIONS if
any VOCABULARY word is found beyond
the cutoff address is unnecessarily
drastic. One could test CURRENT and
CONTEXT and only change them if they
point beyond the cutoff, but it's
probably not worth the trouble.

Extensions

1. In systems which allow dynamic
chaining of vocabularies, one
must check whether a vocabulary
chained to is beyond the cutoff
address. If so, it I s replaced
by FORTH. (The Utrecht system
does exactly that.)

2 . In later versions of the author's
PACE system, a base-page pointer
is allocated for each new de-
fining word. These are released
by FORGET. This is done by com-
paring pointer values with the
cutoff address and does not
involve the vocabulary structure.

SCR # 72
0 (', FORGET, WFR-79APR28)
1 HEX 3 WIDTH !
2 : ' (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
3 -FIND 01 0 ?ERROR DROP [COMPILE] LITERAL ;
4 IMMEDIATE
5
6 : FORGET (FOLLOWING WORD FROM CURRENT VOCAIULARY *)
7 CURRENT @ CONTEXT @ - 18 ?ERROR
8 [COMPILE] ' DUP FENCE @ < 15 ?ERROR
9 DUP NFA DP ! LFA @ CURRENT @ ! ;

10
11
12
13 -->
14
15

SCR # 18
0 (Smart FORGET DJK-WFR-79DEC02)
1 : ' (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
2 -FIND o= 0 ?ERROR DROP [COMPILE] LITERAL ;
3 IMMEDIATE
4 HEX
5
6 : FORGET (Dave Kilbridge's Smart Forget)
7 [COMPILE] NFA DUP FENCE @ u< 15 ?ERROR
8 >R VOC-LINK @ (start with latest vocabulary)
9 BEGIN R OVER u< WHILE [COMPILE] FORTH DEFINITIONS

10 @ REPEAT DUP VOC-LINK ! (unlink from voc list)
11 BEGIN DUP 4 - (start with phantom nfa)
12 BEGIN PFA LFA @ DUP R u< UNTIL
13 OVER 2 - ! @ -DUP 01 UNTIL (end of list ?

15 This replaces Screen 72 of the F.I.G. Model.
14 R> DP ! ; -->

FORTA D I ~ S I O ? 8 11/6 Page 155

SOME NEW EDITOR EXTENSIONS
Kim Harris

This article shows how to add
t w o new commands to the FORTH editor
which permit the replacement or
insertion of multiple lines of a
screen. This is a mini-application
which demonstrates string input and
output, adding new commands to the
Forth editor, manipulating vocabu-
laries, and a "terminal input proces-
sor" which prompts for input then
processes it. Several variations in
implementation are shown to illus-
trate different styles and refine-
ments. If you are only interested
i n the final result, you can type in
Screen 4 5 (in this article) into any
standard fig-FORTH system which
already has the FIG line editor (from
screens 87 to 91 in the Installation
Manual).

The use of the new commands will
be illustrated by an example. Input
i s underlined; output is not. The
symbol (CR) means to push the
Carriage Return key (or equivalent).

To begin any editing of screen
100 you say

100 LIST EDITOR (CR)
0 (TEST SCREEN)
1 old 1st line
2 old 2nd line
3 old 3rd line . . .
To replace one or more lines

starting at line 2 , say

2 NEW (CR)
0 (TEST SCREEN)
1 old 1st line
2 -

The cursor is at the start of
line 2 and waiting for you to enter
new text. If you enter some text
and a (CR), it will prompt you for a
new line 3 and so on. This continues

until you replace line 15 or enter
only a (CR) at the etart of a line.
Then that line and any remaining ones
are listed unchanged.

2 NEW (CR)
0 (TEST SCREEN)
1 old 1st line
2 new text for line 2 (CR)

-~
3
4 (CR) old 4th line

something for line 3 (CR)
-

5 'old 5th line . . .
A similar command UNDER lets you

Insert one or more lines starting at
a specified line number.

2 UNDER (CR)
0 (TEST SCREEN)
1 old 1st line
2 new text for line 2
3 inserted line (CR)
4 another inserted line (CR)
5 - (CR) something for line 3
-

6 old 4th line
7 old 5th line . . .

Any lines pushed off line 15 are
lost

Let's design this application
starting from the top. First con-
sider the control flow for N E W and
draw a flowchart. The one below is
a traditional ANSI standard one.

I

FORTH DIMENSIONS II/6

This flow chart is poor. It is
unstructured (i.e. , "print line" is
improperly shared by two IF struc-
tures), the loop structure requires
two boxes which can be performed by
the single word DO, and no symbol
exists f o r the word LOOP. To program
this flowchart, you either have to
cheat or change the flowchart. An
example of cheating is in Screen 12.
This implementation of NEW is by Bill
Ragsdale and works fine. The tricks
are the words inside square brackets
on lines 6 and 8. These are manipu-
lating the stack at compile-time,
modifying the compiled branch struc-
tures. Such tricks reduce readabil-
ity and modifiability, increase
complexity, are neither "standard"
nor transportable to non-FIG
~ystems, and are not necessary.

Let's try modifying the flow-
chart to make it structured.
Repeating "print line" under the 2
top decision boxes makes this
proper. A different kind of flow-
chart prevents this kind of error
and is ideally suited to FORTH. It
is called D-charts and was described
in FORTH DIMENSIONS, Vol. 1, No. 3.
Not only is a D-chart inherently
structured, but also there 16 a
one-to-one correspondence between
the chart symbols and FORTH words.
In the D-chart of N E W , the correspon-
dence between symbols and words is
as follows:

+-- Do

1 LOOP

Y THEN

Line #=O to 15
1

prin't , line Y
I

enter new line? 6
read line

A null?

print line print line replace old
line with I new one

We will certainly want to use as
much of the existing editor as we
can to reduce our work. The line
Replace and Insert commands are good
candidates:

R line# -
Replace line with text from
PAD.

I line# -
Insert the text from PAD at
line line#, old line line#
and subsequent lines are
moved down. Line 15 is lost.

We can use FORTH as a Program
Design Language (PDL) by:

. L I NEII

1) starting with the top word
(e.g., N E W o r UNDER),

2) making up names for lower
words (i.e., forward
references),

3) and using the postfix order
and FORTH control structures
but not worrying about cor-
rect stack manipulation.

Later the result can be finished
by defining all the words used,
supplying necessary stack manipula-
tion operators, and typing them in
and debugging each in bottom-up
order.

From the previous D-chart we
could write the following
pseudo-definition for NEW:

: NEW 16 0
DO

CR .LINE#
ENTER? IF

ENTER NULL? IF
.LINE ELSE

(EDITOR'S) R THEN
ELSE

.LINE THEN
LOOP

*

This incomplete definition does
not take care of passing data on the
stack or switching vocabularies.
Look at the other command UNDER.
The only change needed to the above
code is t o use the EDITOR'S I
instead of R. Because the two
definitions are so similar, we will
want to share some of the common
parts.

To finish the definition of N E W ,
let's consider each undefined word.

needs to print the current l i n e
number right justified in 7
columns followed by a space.
But should the line# be passed
as a stack argument? The fol-
lowing definition sets it from
the stack:

; .LINE// (line# -) 3 .R
SPACE ;

The FORTH word I could be used
before the reference to .LINE#
in NEW'S definition to supply
the DO-LOOP index (which is the
current line number). But what
about using I inside .LINEll's
definition instead? Unf or-
tunately it's not the same. In
fig-FORTH DO keeps its indices
on the return stack, so I doesn't
return the index in another
definition even though it was
called from a DO-LOOP body.
Another word which does that is
called I I (pronounced I prime).
Then .LINE# could be written:

: .LINE# (- I' 3 .R
SPACE ;

A high level definition for I'
is :

: I'
FORTH R> R> R ROT ROT >R >R ;

(A CODE definition would be
preferred.)

Considering the inefficiency of
I' and readability, let's pass
the line number on the stack.

The next choice is should we use
a separate definition for .LINE#
(as above) or copy the contents
of its definition into NEW. Exe-
cution speed would be indistin-
guishable. Using the name .LINE#

FORTH DIMENSIONS II/6 Page 158

migh be more readable, but not Passing I on the stack would
much. The dictionary sizes are make ENTER? look like:
different for the two choices.
(Sizes are in bytes.) : ENTER? (start-line# current-line#-)

OVER = ;

.LINE# separate included in NEW
6 UNDER

literal 3 4 2 x 4 = 8
.R SPACE 4 2 x 4 = 8
.LINE# head 5 + name size= 10
9 2
references 2 x 2 3 4

So for only 2 references to
.LINE#, it doesn't pay to define
it separately. (3 references
would make it close: 24 to 26
bytes .)

ENTER?

This should be true:

1) when the current line #
equals the starting line #

2) while new text is being
entered

3) but not after a (CR) only
has been entered.

We never want to use a VARIABLE
for temporary storage if we can
help it. The starting line
number comes in from the stack,
so (1) is simple

start-line# I =

(The argument must be preserved
each iteration, so a DUP must be
added; a DROP will have to follow
LOOP to compensate.) Case (2)
can be achieved by incrementing
the start-line# while in enter-
mode. This can be done with a
1+ after the Editor's R. Finally
(3) falls out by not incrementing
it after either .LINE in NEW'S
definition.

But more words are needed in
NEW's definition to complete the
enter-mode control. As with
.LINE# before, the contents of
ENTER? could be copfed in NEW's
definition instead of being
defined separately. The size
tradeoffs would favor that, but
in this case readability would
be greatly enhanced by keeping
the name. This also eliminates
the need to comment each part of
that IF structure (as in the
version on Screen 12).

ENTER

must wait for terminate input,
then copy the entire line to PAD
for later use by the editor.

QUERY reads a line of input, and
TEXT can copy it to PAD:

TEXT c -
Copy text from the
Terminal Input Buffer
t o PAD until the
delimiter c is found.

So we could define ENTER with:

: ENTER (-)
QUERY 1 TEXT ;

h e 159 FORTE DIMENSIONS 11/6

NULL?

should be true only if a (CR)
was ENTERed. fig-FORTH puts a
null character (i.e., binary
zero byte) in the Terminal Input
Buffer (TIB) when a (CR) is
entered. To tell if it is at
the start of the buffer, we can
use:

: NULL? (- f)
TIB @ C@ 01 ;

Although keeping this definition
separate would take up more
space than using its contents
inside N E W and UNDER, readabil-
ity is improved, so we'll keep
it.

Finally, .LINE

needs a screen number and line
number. The line number can be
supplied by the DO-LOOP index.
So before each .LINE in N E W or
UNDER add:

I SCR @ .LINE

Incorporating all the above
refinements into the previous
pseudo-definition of N E W produces
the following code:

The only rm;n ing ; /21=ge~
needed concerns rocabulrricr- a -

add these definitions to t L Lwm
vocabulary, use the phrase

- *

EDITOR DEFIW1TIO.S

before the first deflnitiim, d tLr
phrase

FORTH DEFINITIONS

after the last. But within m's
definition we need to specify which
I and R are intended. FORTH uses
pairs of names to resolve such
ambiguities. It's like last names
in people's proper names:

JOHN DOE

JOHN DEERE

But in good postfix style, the
vocabulary name must precede the
word it applies to, and remains in
effect until changed. Vocabulary
names in fig-FORTH are IMMEDIATE, so
they can be used inside definitions
the same way as outside. Within
NEW'S definition, we need to insert
FORTH before DO to make sure all the
1's are DO-LOOP words and not editor
words.

: ENTER? (atart-line# current-line# - f) OVER - :

: E N T E R (-) QUERY 1l"T :

: NULL? (- f) TIB e ce 0- ;

: (atart-line# -) 16 0 DO

CR I 3 .a SPACE

I ENTER? IF

ENTER NULL? IF

I SQ e .LINE ELSE

I (EDIIOP'a) R 1+ TEEN

ELSE

I SCR @ .LINE THEN

LOOP

DROP :

FORTH DIMENSIONS 11/6 Page 160

NEW PRODUCT Also we need to put EDITOR before
the R (the editor's Replace command),
and FORTH after R to make the
remaining 1's be DO-LOOP words.

Adding the vocabulary names
makes the previous definitions
testable. Trying them reveals that
it all works except the line printed
after the (CR) o n l y was entered
(i.e., leaving enter-mode) has one
additional space before it. This
skews that line from a l l the others.
This is because fig-FORTH echos a
space when the (CR) is entered. To
fix this ugliness, back up the cursor
1 column before printing that line.
For most terminals, a Back Space
character will do the trick. (Not
so on a memory-mapped terminal.)
Defining the following will output a
Back Space:

: .BS (-) 8 EMIT' ;

It should be inserted after the
phrase NULL? IF in NEW'S definition.
Because this function is terminal-
dependent, it definitely should be a
separate definition.

The final working version
follows :

HOME GROWN APPLE I1 SYSTEM:

As an avid FORTH user, I would
like to share my work with other
Apple I1 users. Assembling the
fig-FORTH model source code on CP/M
and other systems with assembly
language development tools i s rela-
tively straight forward, but for the
primarily turn-key Apple a lot o f
additional, undocumented information
is required. To equalize this
situation I will supply my home
grown Apple I1 system on disk to
anyone for $30.00. No documenta-
tion, support, or instruction is
provided save for technical notes on
the disk supplementing the F I G
installation manual. An assembler,
screen editor, source code and asso-
ciated compiler are included. The
idea is to be able to upgrade and
patch the system in various ways
from listings (standards, any-
one?). Not for beginners, not a
commercial product, at your own
risk. Contact George Lyons, 280
Henderson St.; Jersey City, NJ 0 7 3 0 2

SCR # 45
0 (EDITOR EXTENSIONS: NEW UNDER KRH 9 F E B 8 1)
1 EDITOR D E F I N I T I O N S
2 : ENTER? (start-line# current-line# - f) OVER = ;
3 : ENTER (-) QUERY 1 TEXT ;
4 : NULL? (- f) T I B @ C@ 0 s ;

6
7 : NEW (start-line# -) FORTH 16 0 DO CR I 3 . R SPACE
8 I ENTER? I F ENTER NUL? I F .BS I SCR @ . L I N E ELSE
9 I EDITOR R FORTH 1+ THEN ELSE I SCR @ . L I N E

10 THEN LOOP DROP ;
11 : UNDER (start-line# -) FORTH 1+ 16 0 DO CR I 3 . R SPACE
12 I ENTER? I F ENTER NULL? I F .BS I SCR @ . L I N E ELSE
13 I EDITOR I FORTH 1+ THEN ELSE I SCR @ . L I N E
14 THEN LOOP DROP ;
1 5 FORTH D E F I N I T I O N S

5 : . B S (-) 8 EMIT ;

TO VIEW OR NOT TO VIEW

(TO VIEW OR TO VIEW NOT?)
George William Shaw I1

Sometime back, about one year
ago, a fig-FORTH package was distri-
buted t o the members at the monthly
FIG meeting. One of the programs in
the package was a command called
VIEW. This command would allow you
to find the source text for a com-
piled definition and list it on the
screen by simply typing VIEW, fol-
lowed by the name of the command you
wish to see the source text of.

I have been asked by Carl Street,
the guest editor for this issue of
Forth Dimensions, to write a commen-
tary on this command which is to
describe how the code originally
submitted in the goodies package
works and what other additions or
changes I would make to the code.

So why have VIEW? VIEW adds
convenience to writing and editing
programs. The command allows you to
get directly back to the source
screen of a compiled definition,
rather than trying to remember just
what screen it was an. Most of us
can remember approximately what
screen o r screens we have been
working on, but if we have been
working with more than a few screens,
we would usually have to list a
couple of screens to find the source
to review o r edit a given defini-
tion. VIEW eliminates this problem
by allowing us to reference the
source on the disk by the name of
the compiled definition.

VIEW also takes very little
system overhead. The entire com-
piled source for VIEW with all
extensions mentioned in this article

1

takes less than 170 bytes c ~ r av
system. The compiling overhead i s
just as small. Only one o r two bytes
per definition and a negligible
addition to compile time. V e r v
inexpensive for the convenience and
power it gives.

In order for VIEW to work, some
of the resident defining words must
be redefined. In pre-compiled fig-
FORTH systems, the defining words
CONSTANT, VARIABLE, VOCABULARY, :
(colon), and <BUILDS must be re-
defined to contain a word called
>DOC<. >DOC< will store in memory
the disk screen number which con-
tains the source of the definition
being compiled. (On systems which
can recompile themselves, >DOC< need
not be placed in each one of the
defining words. It need only be
placed in the word CREATE, which is
used by each of the defining words
to enter a definition into the
dictionary .)

With >DOC< in either CREATE o r
each of the defining words, the disk
screen number which contains the
source will be stored in memory to
allow later referencing by the
command VIEW. The command VIEW,
then, has the task of finding the
requested definition in the dic-
tionary, fetching the screen number
from memory, and listing the screen.
This entire procedure is quite
simple in FORTH and can be accom-
plished in a single line of source
code (excluding the comment):

The word [COMPILE] causes the
word ' (tick) to be compiled into
memory, rather than being executed
a t compile time (' is immediate).
When VIEW is later executed I will
search the dictionary for the name
which follows VIEW. NFA takes the

Page 162 FORT% DIMENSIONS II/6

address left on the stack by ' (the
parameter field address) and changes
it to the Name Field Address. 1 -
then gives the address of the byte
immediately preceding the name field.
C@ extracts the screen number (which
was stored at compile time) where
the source of the definition is
located. LIST prints the source of
the definition. The second [COMPILE]
allows EDITOR to be compiled (EDITOR
is immediate) to select the editor
vocabulary when VIEW is executed.
This last step allows convenient
entry into the editor for editing if
desired.

: >DOC< BLK @ B/SCR / C, ;

>DOC< stores a one byte screen
number in memory of the screen from
which source text is currently being
interpreted or compiled. BLK con-
tains the block number as above. In
fig-FORTH, the block number and the
screen number may not be the same
(there may be several blocks per
screen), so a division is performed
with B/SCR (blocks per screen) to
obtain the screen number. If in
your system B/SCR is one
may eliminate the division
and additionally speed the
of >DOC<.

(11, YOU
by B/SCR
execution

. CbNSTANT > M C < iCOWILL! COIISIAtiT ,

: VARIABLE >DOC< [C O W I L E l VALIMLL ,
: VOCMbLABY)DOC< [COWILL] V O C A B L U Y ;
. . . . >DOC< (COPWILE] :
. <IUILm >wc< [CoPWlLr! (ICIIDS ;

>DOC< is then placed immediately
preceding each defining word to
store into memory the screen number
currently being interpreted. Since
for most of us our fig-FORTH is
pre-compiled (we can't recompile the
basic FORTH system), each defining
word is simply redefined to be
preceded by >DOC<. The [COMPILE] in
each of the words is actually only
necessary in the redefinition of :
(colon) because it is immediate and
would attempt to execute at compile

time rather than being compiled a s
desired. The other words are riot
immediate and would not have this
problem.

Now, when any one o f the defining
words executes, >DOC< is executed,
storing the screen number being
compiled immediately preceding the
name field of the definition. The
area immediately preceding the name
field was selected because this area
can be addressed directly with
existing FORTH words. The parameter
field area of FORTH words i s of vari-
able length, so the area immediately
following the end of the definition
would not be as easily addressed.

When it is desired to VIEW a
viercompiled word, the source screen
number can easily be accessed and
the definition listed. If a word
which has not been compiled with the
screen number preceding it is VIEWed,
the screen determined by whatever
byte immediately precedes the defini-
tion will be listed.

The current definition of VIEW
works great except for a few minor
idiosyncrasies. First, only a single
byte is stored in memory for the
source screen number. If you have
screens above 255 and compile from
them, the source cannot be viewed
directly. A larger number is then
needed. By simply changing the C,
and C@ to , and @ in >DOC< and VIEW
respectively, any screen currently
accessible by the FORTH system could
be VIEWed. Note that the address
calculation must also be changed
from 1 - to 2 - to account f o r the
additional byte, as shown below:

Page 163 FORTH DTMENSIOffS t I /6

A l s o , to the list of words being
redefined I would add USER, CODE and
CREATE. Redefining USER will allow
the location of the definition of
the user variable. Redefining CODE
will allow the VIEWing of words
defined in assembler. Redefining
CREATE will cause all defining words
2 at e r compiled to bui Id VIEWable
(vo rds .

: USER >DOC< USER ;
: CODE >DOC< CODE ;
: CREATE >DOC< CREATE ;

It should be noted also that if
y o u have changed the structure of
y o u r dictionary by placing links
first (as I have) that the address
calculation in VXEW will have to be
changed as below:

The additional 2 - (to 4 -) is
necessary to skip the link which
precedes (rather than follows) the
name field in these systems.

And lastly, the current defini-
tion of VIEW will even try to list
the source screen for definitions
which have been created at the key-
board. The block number stored for
these definitions is zero (0), which
is not where the source is at all.
If you don't mind having block zero
(0) listed when you request to VIEW
a definition which you created at
the keyboard, then there is no
problem. But, if this does bother
you, you can put in the test below:

In addition to the above, a test
may be put in >DOC< to prevent the
storing of the screen number when
compiling from the keyboard:

FIGURE 6

Note that if the test for block
zero (0) is placed in >DOC<, then
VIEW will try to list those defini-
tions which would have had a s c r e e n
number of zero (0) with the same
result as attempting to VIEW a
definition which was not defined
with the redefined defining words.

George W. Shaw I1
SHAW LABS, LTD.
P.O. Box 3471
Hayward, CA 94540

NEW PRODUCT

FORTH-79 FOR APPLE:

MicroMotion has announced the
release of FORTH-79 for the Apple
computer. MicroMotion FORTH-79 is a
structured language that is claimed
to conform to the new FORTH-79
International Standard. MicroMotion
FORTH-79 :omes with a screen editor
and macro-assembler. Vocabularies
are included for strings, double
precision integers, LORES graphics
and modem communication. Its
operating system allows multiple
disk drives and is 13 or 16 sector
disk compatable. MicroMotion
FORTH-79 runs on a 48K Apple I1 or
Apple I1 Plus. Retail price is
$89.95 including a professionally
written tutorial and user's guide
designed to make learning FORTH-79
easy for the beginner. MicroMotion;
12077 Wilshire Blvd., Suite 506; Los
Angeles, CA 90025; (213) 821-4340

(Editor's note -- The manual is
excellent. It notes the differences
between fig-FORTH and FORTH-79 where
pertinent)

RENEW TODAY!

FORTH DIMENSIONS II/6 Page 164'

SEARCH
John S. James

When you are debugging or
modifying a prcgram, it is often
important to search the whole program
text, o r a range of it, for a given
string (e.g., an operation name).
The 'SEARCH' operation given below
does this.

To use 'SEARCH', you need to
have the FIG editor running al-
ready. This is because 'SEARCH' uses
some of the editor operations in its
o m definition. The 'SEARCH' source
code fits easily into a single
screen; it is so short because it
uses the already-defined editing
functions. Incidentally, the FIG
editor is documented and listed in
the back of FIG'S Installation
Manual.

Use the editor to store the
source code of 'SEARCH' onto a

Example of Use:

39 41 SEARCH COUNT
00 VARIABLE COUNT ER -

1 COUNT ER +! COlTNTER @
1 COUNTER +! COUNT ER @

12 EMIT 01 TEXT 0 COUNT ER !
56 > IF o COUNT ER-! - -

screen. Then when you need t o
search, load the screen. (Of course
if you are using a proprietary
version of FORTH, it may have an
editor and search function built in
and automatically available when
needed. This article-ette is mainly
for FORTH users whose systems are
the ten-dollar type-it-in-yourself
variety .)

Here is an example of u s i n g
'SEARCH'. We are searching f o r t i i t
string 'COUNT' in screens 39-41; the
source code of 'SEARCH' is on screen
40. The screen and line numbers a r c
shown for each hit. Incidentally,
the search string may contain blanks.
Just type the first screen number,
the last screen number, SEARCH fol-
lowed by one blank and the target
text string. Conclude the line with
return. ~ The routine will scan over
the range of screens doing a text
match for the target string. All
matches will be listed with the line
number and screen number.

Happy SEARCHing !

2 40
4 40
4 40
5 40
8 40 OK

CORRECTION:

CROMEMCO DISKETTES described on
page 145 of Vol. 11/5 are suppl i ed
by :

Inner Access Corp.
PO Box 888
Belmont, CA 94002
(4 1 5) 591-8295

AREYOUA-- - - - FIGGER?
YOU CAN BE!

RENEW TODAY!

GREATEST COMMON DIVISOR
Robert L. Smith

The problem of finding the
greatest common divisor (GCD) of two
integers was solved by Euclid more
than 2200 years ago at the great
library in Alexandria. The technique
is known to this day as Euclid's
Algorithm. The method is essentially
an iteration of division of a prior
divisor by a prior remainder to yield
a new remainder. The quotients gen-
erated by this process are useful in
other applications, such as rational
fraction approximations, but are not
required for finding the greatest
common divisor.

For readers unfamiliar with the
process, an example should clarify
the method. Suppose we wish to find
the GCD of 24960 and 25987. Divide
one number into the other, and find
the remainder or modulus:

25987 24960 MOD -> 1027

Divide the previous divisor 24960 by
the remainder 1027 to yield:

24960 1027 MOD -> 312

Continue the process as follows:

1027 312 MOD -> 91

312 91 MOD -> 39
91 39 MOD -> 13

39 13 MOD -> 0
The last non-zero remainder is

our desired answer, 13. This process
must converge since the remainder is
always less than the divisor. The
process will terminate for finite
numbers and integer division.

On Screen 2 0 , wt' see a version
of the greatest common divisor
routine called G-C-D written in fig-
FORTH. Line 1 begins a colon
definition. In lines 2 and 3 the
two arguments at the top of the
stack are conditionally swapped to
force the larger of the two arguments
to be the first dividend. This step
is used to avoid an unnecessary
division in the succeeding part.
However, lines 2 and 3 can be omitted
entirely with no effect on the
answer. The body of the calculation
is in lines 4-7 . At the start of
the BECIN-WHILE-REPEAT loop, the top
element of the stack is the prior
divisor and the second element is
the prior remainder. In line 4 the
new divisor (prior remainder) is
saved, and the order of the top two
elements reversed to prepare for the
division. In line 5 the division
with remainder is performed, and the
remainder copied to the top of the
stack for testing in line 6 . For
cases of non-zero remainders, the
quotient is discarded but the remain-
der is kept in preparation for the
next stage in the loop. The process
terminates with a zero remainder.
At line 8 the final quotient and
remainder are dropped to yield the
preceding remainder, which is the
desired answer. Finally, the answer
is printed out. The semicolon at
the end of line 8 terminates the
definition.

When Screen 20 is loaded, lines
9-11 are executed to print an invi-
tation to the user to try the
routine.

There are three areas in which
this routine can be improved. The
first is to remove lines 2 and 3
entirely, since the code does not
usefully contribute to the final
result. Furthermore, there i s
probably not even a speed advantage
for machines with a hardware divide.
Secondly, since the quotient is not

used, the /MOD function can be re-
placed by the MOD function with a
little reworking of the code.
Finally, the printout function can
be separated from the calculation
function. It is usually advanta-
geous in FORTH to write each defini-
tion so that it does as little as
possible! The advantage of the
separation in this case is that the
calculation function can be applied
repeatedly for finding the greatest
cornon divisor of more than two
arguments.

Our modified screen is shown
be low:

: GCD
BEGIN

UNTIL
SWAP OVER MOD ?DUP 01

: G-C-D
GCD CR ." The G-C-D is " .
,

CR ." Input two numbers, then"
CR ." execute 'G-C-D'. The"
CR ." greatest common divisor"
CR ." of these numbers will be"
CR ." displayed."
CR

The sequence in GCD is quite
easy to follow now. The two argu-
ments on the stack are swapped, and
the 2nd element is copied over the
first, in preparation for the
division implied by the MOD function.
The word ?DUP is the 79-Standard
version of the fig-FORTH word -DUP.
The function of ?DUP is to duplicate
the top element of the stack (the
remainder from the division in this
case), but only if the remainder is
non-zero. The function O= reverses
the logical value of the top stack
element, so that the test in UNTIL
will cause a branch back to the BEGIN
part when the MOD function results
in a non-zero value. When the re-
mainder is zero, the zero value is
not duplicated. Instead, the O=
function converts it to a 1, which
in turn is dropped by the action of
UNTIL. Furthermore, control is then
passed from the BEGIN-END loop, and
the function terminates, leaving
only the previous non-zero remainder.

Note that the number of FORTH
words in the basic definition has
been effectively cut in half, com-
pared to the original version in
Screen 20.

The author gratefully acknow-
ledges discussions with LaFarr
Stuart in the preparation of this
article.

SCR #
0 (Greatest common divisor, a demo WFR-79DEC09)
1 : G-C-D
2 OVER OVER <
3 IF SWAP THEN (use larger as quotient)
4 BEGIN SWAP OVER (save divisor third)
5 /HOD OVER (test remainder zero)
6 WHILE (not zero) DROP (this dividend)
7 REPEAT
8 DROP DROP CR ." The G-C-D is *' . ;
9 CR ." Input two numbers, then execute 'G-C-D'. The greatest"
10
11 CR
12
13
14 ;S
15

." common divisor of these numbers will be displayed."

Page 167 FORTH DIMENSIONS 11/6

PROGRAMMING HINTS

>.Tr i; \dve i u r r e n t DP on r e t u x s t a c k
- F \ ! I L i T E M i , i : e : runtime : J r . - . .

s 7 ' :ecuritv, s t i l r t :ompiling
~ 3EC;!t
' :!.:ERF'R!: Compile bhat is t v p e d
- i T A T E ' -H!ii (i ' n t l ! 5 t a t e changes

i TEPF.4:
2 <wL'zL.l- ' : : d o uha: ; d i d

: h - X f i . ? ~ \ow do u5at ~ s e : wanted
. ? :r ' , i i n d r e s t u r e dictionarv

' 9 . : 'ER1 G e t another l i n e from TTY

. . . -

. _ _ -

. .

: : is an excellent example of
the flexibility of FORTH. Certain
constructs in FORTH cannot be typed
in from the terminal unless the user
is in compilation mode. These con-
structs include: DO, LOOP, IF, ELSE,
THEN, and all of the conditional
compiling words. However, :: allows
you to do this if you so desire.
The idea is simple enough; you create
an "orphan" word in the dictionary,
execute it, and then forget it. (An
orphan is a definition without a name
header).

Let's step through the above defini-
tion line by line and see what is
happening at each point:

1 HERE > R

HERE is the location of the
next available dictionary entry.
This location is saved on the return
stack so it can be restored later.

2 [' QUIT CFA @] LITERAL ,

[changes from compilation mode
to interpretation mode. QUIT has
been previously defined as a high
level : definition, and hence we
use ' QUIT to get the address of
its PFA. The CFA then converts
this PFA to the CFA for QUIT.
Since QUIT is a : definition,
this CFA points to the runtime
for : , which controls the nesting
level in FORTH. The @ gets this

address aiid l l l c i . t \ 1 1 0 . 1 t t l r . p . i r . 1
meter stack. Now the] places u s
back into compilation mode. The
value we have thus computed, namely
the runtime address of : , is then
compiled as a literal i n the defini-
tion for : : . When :: is exe-
cuted, this literal i s compiled
inline by the , that follows. This
has set up what follows as a : defi-
nition, so that i t will execute
properly when the time comes.

3 !CSP]

The !CSP is used for compile
time error checking. The check is
made when the user types ; to end
his definition. The] puts the
user into the compile state. What
is typed from now on will be compiled
instead of interpreted.

4 BEGIN

This denotes the beginning of
some kind of looping structure.

5 INTERE'RET

This is the main word in FORTH.
It either executes o r compiles the
words it encounters depending on the
current state. In our case it is
compiling the words it encounters.

6 STATE @ WHILE

STATE is the variable which
determines whether one is inter-
preting or compiling. When it is
non-zero one is compiling, hence the
loop is repeated as long as the user
is still compiling. When you type
; STATE is set to zero, and this
loop is exited.

7 CR QUERY

This simply gets another line
from the terminal so that INTERPRET
can compile it.

FORTH DIMENSIONS II/6 Page 168

8 REPEAT NEW PRODUCTS

This is the end of the BEGIN
loop.

9 SWDCE

SMUDGE is used to undo the
SMUDGE present inside of ; . It
has no other purpose in this context.

10 K EECUTE

'This executes the word we have
been building until now. If a11 goes
well it will return.

11 I0 DP !

And now we restore the dictionary
t o its previous state.

Note that there are still things you
should not do with this implemen-
tation of :: , namely if what you
are executing alters the dictionary,
say by compiling additional words,
the system will crash. An inter-
esting exercise f o r the reader would
be to redefine :: so that this is
not the case.

This article contributed by Henry
Laxen; 1259 Cornell; Berkeley, CA
94706

NEW PRODUCT

GO-FORTH FOR THE APPLE 11:

The CAI FORTH Instruction System
by Don Colburn is now available for
the Apple. The GO-FORTH CAI System
takes the novice FORTH programmer
through the pitfalls of learning
FORTH and lets him fly. Requires
48K Apple I1 plus Apple disc. Price
is $45.00 per system (1-3 units),
$30.00 per system (more than 4
units). International Computers;
110 McGregor Avenue; Mt. Arlington,
NJ 07856; (201) 663-1580 (evenings).

CROSS-COMP1 LLR I 'RO(.KAM :

Nautilus Syst t .ms iiow dffcrs . i

cross-compiler prograin tor FORTH
users. % c h i n ? reari,+hle ~ 7 c : r s i c ~ n s
are f iow ; i : ~ d i 1 i l h l t ~ l o r t t.!(> toll ow in^

TRS-80, A p p l e , H - 8 3 , , ind X,.)rthsL<ir.
Each version i n c 11 id t . s : A I I t . ~ e (. u : , i b l t ,
version o f tigFOR'!?i model 1 .O;
Cross-corpilahle sc;urcc.; C t i l i t i c s s ;

and Documentcit ion. r i l e croc:.-
compiler is writte:i eilt i r e l y in tiigti
level f igFORTtl. Progam fed t tires
include: Automatic forward relerrn-
cing to any word o r l a b e l ; i l cade r i c s s
code production capability; R O K l b l e
code productior! capability; Load
map; Comprehensive l i s : of ufidei i n e d
symbols. Price is Si50 .00 including
shipping. (Ca1iforni.a residt.nts
please add sales : a x) . Nautiltis
Systems; P.O. Box 1098; Santa C r u x ,
CA 95061; (4 0 8) 4 7 5 - 7 4 6 1

hardware s y s t e m s : LS 1 - 1 ! , C !) ; P1,

TIMIN ENGINEERING F O R T H :

Timin Engineering i s now o i l t a r -
ing a version of figFORTH for 808oq/
8085/2-80 or CDOS systems witti at
least 24K of memory. The Timin syscem
features a FORTH styie editor with
20 commands, a virtual memory sub-
system for disk I / O , a 2-80/8080
assembler, and an interleaved disk
format to minimize disk access
time . Documentation includes a
manual that may be purchased
separately for $20 (credited towdrds
purchase of disk). Price $95.0C on
IBM compatible 8 inch single density
disk (other disk formats $110) --
California residents please add 6%.
sales tax. -- and includes shipping
by mail in U . S . Mitchell E. Timin
Engineering Company; 9575 Genesee
Avenue, Suite E-2; San Diego, CA
92121; (7 1 4) 455-9008

Page 169 FORTH DIMENSIONS II/6

DEVELOPMENT OF A DUMP UTILITY
(DEVELOPMENT O F A DUMP UTILITY By John Bumgarner
Cli
0 'h

!7 h:

OK

March 81)

i (DLXP MEMORY BYTES. ADDRESS COUNT. . . 1 OK

2 : i)LT1P 0 DO DUP I + C@ 3 .R LOOP DROP ; OK

3 H E X OK
4 1 2 3 HERE 10 DUMP CR . . . 4 4 4 55 4D 50 20 20 20 20 2 0 2 0 20 20 20 2 0 2 0
5 3 2 1 OK

b (Test f o r non-printing ASCII Character. CH .. . T/F) OK

7 : ?NON-PRINTING DUP 20 < SWAP 7E > OR ; OK
8 : Q ?NON-PRINTING . ; OK
9 - 1 O Q O Q l O Q 1 F Q 2 O Q 4 0 Q 1 1 1 1 0 0 OK

OK

OK

l o 7E Q 7 F Q 100 Q 7FFF Q 8000 Q 0 1 1 1 1 OK
11 FORGET Q OK
OK
OK
12 (Type any memory bytes using . for non-printing characters) OK
13 (Address Count ...) OK
OK
l b : &TYPE 0 DO DUP I + C@

DUP ?NON-PRINTING IF DROP 2E (.) THEN EMIT LOOP DROP ; OK
OK
1 5 1 2 3 HERE 10 &TYPE CR6TYPE
16 3 2 1 OK
OK
OK
17 (Print address , DUMP &TYPE 16 bytes.
OK
18 : A-LINE CR DUP 0 6 D.R SPACE 10 OVER
OK
19 HERE A-LINE,

OK
OK
20 2 3 4 HERE A-LINE CR . . .
4 3 2 OK
OK
OK

2419 6 41 2D 4C 49 4E 4 5 20 20 20 20

2419 6 41 2D 4C 49 4E 4 5 20 20 20 20

Address ...) OK

OVER DUMP 2 SPACES &TYPE ; OK

20 20 20 20 20 .A-LINE OK

20 20 20 20 20 .A-LINE

21 (Can't think of a better name. Address count ...) OK
OK
22 : DUMP 0 DO DUP I + A-LINE 10 +LOOP DROP ; DUMP isn't unique OK
OK
2 3 HERE 40 DUMP

243A 4 44 5 5 4D 5 0 20 20 20 20 20 20 20 20 20 20 20 .DUMP
244A 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

246A 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5P 5F 5F
- - 2 4 5 A 2 0 20 32 84 44 55 4D DO 5F 5F 5F 5F 5F 5F 5F F5 2.DUM.

OK - -
OK
OK

FORTH DIMENSIONS II/6 Page 170

Program development in F O R T H can
--and should--be done in a "top down"
manner as this type of design pro-
duces error free programs in a
minimum of time. However, the road
to a solution is not always direct;
and experienced FORTH programmers
often play with a programming problem
on the terminal to get ideas. These
idea sessions usually result in the
data necessary for "top down" program
design. The development steps in-
volved in producing a really useful
tool from a very simple DUMP word
will illustrate just such a design
session.

I begin by setting down in the
comment on line 1 the functions and
parameters for the fundamental DUMP
word to be defined -- I simply want

it to dump values from memory. Given
the starting address and number of
bytes to dump as parameters on the
stack, the word defined in line 2 is
short and simple. The count. value
is on top of the stack which suggests
using a DO ... LOOP to do the work.
Inside the loop we put the code to
generate an address, fetch and print
a byte. The l o o p parameters are the
count value on the stack and the zero
put inside the definition just in
front of the DO.

FORTH DO loops increment the loop
index and check it against the limit
at the end of the loop. If the newly
incremented index is less than the
limit, the loop body is executed
again. If the index is greater than
the limit, the loop is terminated
and execution continues with the
next word. This method of loop
control results in the loop index
(fetched for use by the word I)
going from 0 to count 1- (that is
Count-1 for non-FORTH persons) by
1's for this FORTH DUMP word. The
loop index then is just what we need
to add to the starting address to
obtain successive byte addresses for
dumping.

The inside o i the loop first
duplicates the address (the only
thing remainicg on the stack after
DO removed its two arguments) to
save a copy and then ddds the loop
index to it. Using this new address
we fetch a byte with CE and print
it, right justified in a '3 column
field using 3 . R , In the saint'
manner we keep looping (incrernenting
the index by 1 each timc) adding,
fetching and printing. When the l o o p
index equals the count, the i o o p
exits and drops the extra copy of the
address to clean up the parampter
stack--A very important step!

FORTH is highly interactive and
nothing is more natural than LO test
the new DLWP word immediately. I n
line 3 I switch t o hexadecimal I / O
to enable easy interpretation of the
dump results in line 4 . Before I
actually execute DUMP in line 4 I
put a few numbers on the stack so
that I can check to see that the
stack is not altered by DLJMP .
The word HERE provides a starting
address for DUMP and then I select
10 (in decimal, 10 hex is 16) bytes
to dump. The CR . . . after DUMP
prints (on a new line) and removes
the top three numbers of the stack.
Lines 4 and 5 show the execution of
the word and also show my check
numbers are where they should be.
This simple check shows that DUMP
is very likely to be free of errors
and we may proceed with confidence.

I happen to like dumps that dump
both byte values and ASCII char-
acters and so my next task was to
make a word that could dump in ASCII
what DUMP output as numbers. I
have also learned from frustating
experience that printers and termi-
nals should not be given byte values
that are non-printing characters
lest they do some strange things in
response. By thinking ahead a
little bit I can see a definite need
f o r a word to alter the memory byte

Page 171 FORTH DIMENSIONS II/6

v d l u e s t o an acceptable range for
the output device. The result of
this advanced thinking is shown on
! i r ies 6 and 7. Given a character
~~alue on the stack ?NON-PRINTING
K i l l return a True (plus one) value
if i t i s a non-printing character
and an False (zero) otherwise. The
test is made for values less than
hex 20 (a space) and greater than
h e x 7 E (a tilde).

A t t h i s point I am still in hex
f o r numeric I/O (see line 3) and so
I use 20 and 7E directly in the
definition without having to look up
their equivalent decimal values. The
OR at the end of ?NON-PRINTING

combines the results of the two
limit checks and produces a single
true/false value for the output if
either limit is exceeded.

The verification of a limit
checking word like ?NON-PRINTING
requires careful testing with data
that exercises the word over its
entire range and especially at
critical places such as the limits.
With ? NON-PRINTING this means
testing 10 or more times with care-
fully chosen input values. The name
of ?NON-PRINTING is nice and des-
criptive but is too long for a poor
typist like me to type often so on
line 8 I have defined the word Q
to execute ?NON-PRINTING and print
the result. On lines 9 and 10 I try
my new Q word out with some numbers
designed to make it fail if it will.
Numbers such as small negatives,
zero, small positives, on either
side of the lower limit, mid range,
either side of the upper limit,
larger positives and at the magic
place where the sign bit changes
value. The results show that ?NON-
PRINTING is not fooled by these
tests and so on line 11 I discard my
test word Q .

FORTH DIMENSIONS II/6 Page 172

On lines 12 and 13 1 put down my
ideas for the word which will type
the ASCII character equivalents for
my memory byte values and begin the
definition on line 1 4 . This defini-
tion is just like the one for DUMP
except f o r what happens to the byte
value after it is fetched. In place
of the 3 . R of DUMP we check f o r
non-pr i n t ing c harac t er s with ? NON-
PRINTING and if they are non-
printing we DROP the value and
replace it with the hex code for a
dot, 2E. Then we EMIT the byte to
see the ASCII character for that
byte's value.

Some programmers will want to
mask the byte value with hex 7F to
zero the high bit before testing for
non-printing characters. One reason
to do this is so fig-FORTH names
will show up better in dumps since
the "traverse" bit on the last kept
name character would otherwise turn
that character into a non-printing
value and it would appear as a dot.
My reason for not doing it is that
getting rid of the high bit turns
too much data into ASCII and clutters
~p that part of the dump. The
testing of &TYPE is done exactly
like the testing for DUMP , the
.&TYPE after the CR . . . is the
output of &TYPE . The dot before
the ampersand is the count byte of
the string getting turned into a dot
by ?NON-PRINTING .

Incidentally, the string found
at HERE when a given word is
executing in the interpretive mode
(outer or name interpreter in this
case) is the name of the word. Look
up the ASCII characters for the byte
values dumped in line 4 and you will
find they spell DUMP . This bit
of magic is performed by the word
WORD in figFORTH.

With t h e two words DUMP and
&TYPE w e a r e i n a good p o s i t i o n t o
wr i te a word t h a t w i l l dump one l i n e
of i n fo rma t ion on t h e t e r m i n a l .
T h i s word can then be execu ted i n a
l o o p , once f o r each l i n e dumped. I
c a l l t h i s word A-LINE and d e f i n e
i t i n l i n e 18 a f t e r n o t i n g i n l i n e
1 7 t h a t i t should p r i n t t h e s t a r t i n g
a d d r e s s of t h e dumped l i n e . P. normal
l i n e w i d t h on a CRT t y p e t e r m i n a l i s
80 columns and s o t h e r e i s room f o r
16 b y t e s dumped (3 16 * columns) ,
typed (16 more columns) and an
a d d r e s s and spaces f o r s e p a r a t o r s (9
co lumns) . The room used adds up t o
73 columns but t h i s cou ld be reduced
a F e w columns. If t h e a d d r e s s were
always p r i n t e d a s an uns igned hex
number i t would o n l y t a k e up 4
s p a c e s . Then by a l l o w i n g o n l y one
space between t h e t h r e e f i e l d s on a
l i n e t h e l i n e wid th would be 70
columns (4 1+ 48 + 1+ 16 +). I f you
have a s m a l l e r o u t p u t l i n e t h e n you
must g i v e up t h e ASCII c h a r a c t e r s o r
t h e s p a c e s between t h e b y t e v a l u e s
o r dump less b y t e s p e r l i n e .

The a c t u a l work done by A-LINE
i s t o f i r s t do a CR t o g e t a new
l i n e t o use and t h e n o u t p u t t h e
a d d r e s s as an uns igned number, r i g h t
j u s t i f i e d i n a 6 column f i e l d . The
a d d r e s s o u t p u t i s done by t h e ph rase :

DUP (Save a copy of t h e a d d r e s s)
0 (Put a z e r o on t o p of)

(t h e s t a c k t o make a p o s i t i v e)
(32 b i t number)

6 (6 column f i e l d)

(i n a f i e l d)
D . R (Output a 32 b i t number)

Next w e o u t p u t a SPACE t o h e l p
s e p a r a t e t h e a d d r e s s from t h e b y t e
v a l u e s ; pu t 16 (16 i s hex 1.0) on t h e
s t a c k and copy bo th t h e saved a d d r e s s
and o u r count of 16 by u s i n g OVER
OVER (i f you have i t u s e 2DUP)
. The s t a c k i s now set up w i t h two
se t s of a d d r e s s e s and c o u n t s r eady

f o r o u r two words DUMP and &TYPE . I put 2 s p a c e s in t o s e p a r a t e t h e
b y t e v a l u e s from t h e ASCII
c h a r a c t e r s .

On l i n e s 19 and 2 0 o f tlir p r i n t -
o u t I t e s t A-LIKE: f o r s t , i c k
problems and func t iona I i t y , i nd i c
seems t h a t e v e r y t h i n g I 5 b a r k i r ~ g
c o r r e c t l y .

A t l a s t I am now re<idy t o w r i ! c . tt::
a c t u a l dump word. T h e Z C) I T I ~ ~ ~ C f i n
l i n e 2 1 s t a r t s me o f f w i t t : ti\:,
d e s i r e d pa rame te r s and a n t , t e ~;i:o\; i :;v,
my l i m i t e d pe r sona l v o c a b u l s r y . YY
i n a b i l i t y t o t h i n k o f another name
i s not go ing t o be a problem, how-
e v e r , s ince FORTH a l l c w s y o c t o
r e d e f i n e names and use thein o v e r .
A l l t h a t happens i s t l la t a warning
message (i s n ' t un ique) i s d i s p l a y e d
t o a l e r t you t o t h e r ede f i r : i t i o n .
The warning message a p p e a r s h e r e
a f t e r t h e end of t h e d e f i n i t i c n on
l i n e 2 2 . When t h e new d e f i n i t i o n
wi th t h e re-used name s u c c e s s f u l l y
compi l e s , t h e e a r l i e r d e f i n i t i o n o f
t h e same name becomes u p a v a i l a b l e
f o r f u t u r e use - - e i the r by compi l ing
i n t o new words o r i n t e r p r e t i v e l y
execu ted from t h e t e r m i n a l . S ince I
do no t want my o l d d e f i n i t i o n of
DUMP on l i n e 2 anymore, I c o n s i d e r
t h i s t o be an advan tage . I !lave an
improved DUMP and I dc n c t have to
t h i n k of a n o t h e r name f o r i t ! What
is more, e v e r y t h i n g w i l l work
p r o p e r l y a s b e f o r e because t h e u s e
o f t h e o l d DUMP i n t h e d e f i n i t i o n
of A-LINE does n o t g e t changed--
what is compiled s t a y s compiied a s
i t was. A l l t h a t happens a s far 3s
a u s e r of DUMP i s concerned i s
t h a t i f DUMP i s now asked f o r , t h e
new one w i l l be found f i r s t a u t c -
m a t i c a l l y and t h e search w i l i s t o p
t h e r e -- t h e sys tem neve r s u s p e c t s
t h a t a n o t h e r , d i f f e r e n t v e r s i o n or
DUMP i s h i d i n g down t h e d i c t i o ; l a r y
a ways.

Page 173 FORTH DIMENSIONS rIr6

The actual definition of the
new DUMP is very similar to the
old DL'MP except that we are sub-
stituting A-LINE for the C@ 3 .R
arid since we are dumping 16 bytes on
a line we dse +LOOP to terminate
the CO and give it a 16 (10 hex)
to add onto the loop index each
time. Now the address computation
done hy the DUP I + phrase will
start aL the specified point and go
up by l h bytes each time through the
loop a

The useful tool that I set out
to develop at the start of this
session is now complete and only
needs to be tested. Line 2 3 does
this final test, but because of my
earlier successful test of A-LINE
and also because the new DUMP is
so similar to the old DUMP I did
not bother to try putting some
numbers on the stack to see if it
adds o r removes any values. I now
have h i g h confidence that DUMP
will work correctly and it does.

This article contributed by John
Bumgarner; FORWARD TECHNOLOGY; 1440
Koll Circle, Suite 105; San Jose,
CA 95112

NEW PRODUCT
MICROPOLIS FORTH:

Acropolis now offers FORTH for
Micropolis. Acropolis FORTH
(A-FORTH) runs under Micropolis MDOS
on 8080/8085 and 2-80 systems running
at 2 o r 4 MHz with 32K memory and at
least one MOD I or MOD I1 disk.
A-FORTH has 2 program/data file
editors -- a line editor for standard
serial terminals and a screen editor
for memory-mapped terminals. A-FORTH
has an 8080/8085 macro-assembler that
allows use of any mixture of A-FORTH
and assembly code desired in a single
definition. A-FORTH has all the
features of figFORTH plus: Double
precision math d stack operations
(3 2 bit); Double precision variables
& constants (3 2 bit); Multi dimen-
sional arrays up to the limits of
available memory; Virtual arrays up

to the limit of disk storage on a l l
disks; Case statements; Printer
support using MDOS ASSIGN statc-
ments; Forgetting across vocabulary
boundaries; Enhanced disk procedures
that reduce response time, compiling
time, d number o f disk accesses;
Physical disk support for disk
diagnostics and disk copy and direct
access to MDOS file directory.
Acropolis A-FORTH has an 89 page
users manual. Acropolis provides
A-FORTH updates 6 patches at no
charge for 1 year after purchase.
Price $150.00 including shipping
(California residents add 6% sales
tax). Acropolis division Shaw Labs,
Ltd.; 17453 Via Valencia; P.O. Box
3471; 'Hayward, CA 94540; (4 1 5)
2 76-6050 __ _____c

NEW PRODUCT
ALPHA MICRO REENTRANT FORTH:

Sierra Computer Company is now
offering version B of their AM-FORTH
for Alpha Micro system AM-100 compu-
ters. Version B i s said to be re-
entrant, allowing the basic FORTH
dictionary to be loaded as part of
the AMOS system and shared by any
number of users in the multi-user
Alpha Micro system. Other new
features include: An assembler;
Screen oriented editor; Support of
special AMOS CRT handling features;
Floating point math operations;
Utilities for string handling and
building data structures and access
to system TIME and DATE functions;
More versatile 1/0 to AMOS sequen-
tial and RANDOM files; and use of
lower case characters. All features
of version A are included in version
B. AM-FORTH version B is available
on AMS o r STD disk that contains
complete source code; executable
object code; FORTH utilities for the
editor, assembler and data struc-
tures and some sample FORTH programs.
Complete documentaton describing
AM-FORTH implementation, installa-
tion procedures, operating instruc-
tions and glossary. Price is $150.00
($120.00 to licensed version A
purchasers at $40.00). Contact George
Young; Sierra Computer Company; 617
Mark NE; Albuquerque, NM 87123

FORTH DIMENSIONS II/6 Page 174

Dear FIG,

I have been using the May '79
release of 6800 fig-FORTH since it
was issued. A question that isn't
apparent on the order form is, has a
further release been made either on
the assembly source listing or
installation manual? This may be a
saving fo r us by preventing a dupli-
cation of our software.

N.H. Champion
Prescott, A2

Two small changes have been made
to the FIG model. In screen # 2 3 ,
U* has been corrected for a carry
bug. Screens 93 and 94 have been
converted from assembly to high
level. The assembly listings have
not changed in the last year.
are the revisionlpublication
f o r each FIG publication:

Publication Release

Installation Manual 1.0

Listing

8080
6800
6809
6502
9900
80861 88
PDP- 11
PACE
ALPHA MICRO

Hope this
question. -- ed.

Dear FIG,

I would like

1.1
1 .o
1 .o

1 .o
1 .o
1.3
1 .o
1

clarifies

Here
dates

Date

11/80

-

9/79
5/79
6/80

3/81
3/81
1/80
5/79
9/80

your

to see programming

LETTERS

Also publishing programming
examples would be helpful. I, for
one, find examples the best method
of learning and attempting to reach
the point where I start building
FORTH programs efficiently.

I also recognize that one person
can't do it all, and that a success-
ful users group depends upon
contributions from everyone. I am
not sure how I can help at this
time, but I am willing t o do my
share.

J. Arthur Graham
Orinda, CA

Glad to hear it! See this
month's edition for programming
examples and this month's editor's
column regarding helping out. -- ed.

Dear FIG,

I am interested in corresponding
with others interested in FORTH on
larger machines. I can be reached
at the address below.

Stewart Rubenstein
HARVARD UNIVERSITY CHEMICAL LABS
12 Oxford St., Box 100
Cambridge, MA 02138

Dear FIG,

Would it be possible to include
some tutorial artt-cles on the inner
workings of FORTH in FORTH
DIMENSIONS?

Being new to this language, [I
find] the functions of the inter-
preters and the compiler somewhat
mysterious.

examples as part of every meeting
agenda. Perhaps a theme could be
established for each meeting.

h e 175 FORTH DIMENSIONS II/6

Le71LRS

FORTE DIHENSIONS II/6 Page 176

Given the extensibility of FORTH,
a better understanding of the guts
of the language is an advantage. I
hdven't found a publication that
completely describes these functions.

R. Stockhausen
Milwaukee, WI

See Dr. C.H. Ting's SYSTEMS
GUIDE TO flg-FORTH, available from
FIG -- you can use the order blank
a t the back of this issue. -- ed.

Dear F I G ,

Our membership is growing and I
have delivered fig-FORTH8 to several
of the Black African countries.

Rhodes University has adopted
6809 fig-FORTH for its curriculum
this year. UNISA will follow, God
willing, next year in its micro-
processor course, and several other
universities are using various
versions of fig-FORTH for research
purposes.

I've written several articles,
both local and abroad on FORTH and
I'll send you copies of these.
Please give us some support and
coverage. I'll write you at least
once a month.

Ed Murray
FORTHWITH COMPUTERS/FIGSA
P.O. Box 29452
Sunnyside, Pretoria, 0132
South Africa

Always happy to hear from our
international contingent! Your
meeting announcements are in our
announcement section. -- ed.

DEA- FIG,

I AM A FOR-- PRO------- CUR- - - - _ _
Em----- BY FOR-- INC. 1 IIAV- NOT
WOR--- ON ANY FIG TYP- SYS---- AND I
AM EXC---- BY THE VAR----- LEN---

FOR-- MOD-- SO THA- I MAY TRY IT OUT
HER- AT FOR-- IiJC.

NAM- IDE-• PLE--- SEN- ME THE FIG

FRE- THO----

Your request is answered. Next
edition you will be able to communi-
cate with four+ letter words! -- ed.

Dear FIG,

I am a long time FIG member and
am seriously devoted to FORTH as a
programming language and system.
Like many others, I have FORTH
running now and after all the talk
about how great it is, I find few
(hardly any) complete examples of
its use in solving real, practical
problems.

The point of all this is a
suggestion that FIG publish more
articles and papers on practical
applications -- programs which can
be easily put into everyday use by
any programmer. One can go to the
magazine counter at any computer
store and find many examples of
practical programs in BASIC. FORTH
should be even more appropriate for
such applications.

I believe that the organization,
and each of us as members, can
contribute to this end. I propose
FIG strongly solicit contributions
of articles dealing with practical
programing projects developed in
FORTH.

George 0. Young I11
Albuquerque, NM

You took the words right out of
our editorial mouths. We hear you
and are looking forward to receiving
contributions. -- ed.

Dear FIG,

I have developed a g e n e r a l i z e d
d a t a s t r u c t u r e f o r v o c a b u l a r i e s
which removes many of t h e l imita-
t i o n s now found i n b o t h FIG and
o t h e r FORTH models.

Xy new s t rcct i l re h a s most of t h e
advan tages of t h e p r e s e n t FIG model,
p i u s i t a l lows m u l t i p l e t h r e a d s per
vocabu la ry w i t h d i f f e r e n t numbers of
t! ireads i n e a c h , i f d e s i r e d . With
t h i s m u l t i p l e t h r e a d concep t vocabu-
l a r i e s a r e p h y s i c a l l y l i n k e d w i t h a
s i n g l e p o i n t e r and a r e bo th s e a l e d
and l i n k e d s i m u l t a n e o u s l y .

I have a l s o deve loped a "vocabu-
l a r y s t a c k " t o a l l o w c o n t e x t s p e c i -
f i c a t i o n i n l i n e w i t h t h e FORTH '79
s t a n d a r d . I i n t e n d t o make my
f i n d i n g s a v a i l a b l e a t t h e n e x t FORML
confe rence .

I f anyone would l i k e t o c o n t r i -
b u t e s u g g e s t i o n s o r deve lopments
a l o n g t h e s e l i n e s (e s p e c i a l l y t h e
vocabu la ry s t a c k) f o r release i n t h e
p u b l i c domain p lEase write m e a t t h e
a d d r e s s below:

EXIT (i n l i n e w i t h t h e 79-s tandard)

George W. Shaw I1

P.O. Box 3471
Hayward, CA 94540

SHAW LABS, LTD.

Dear FIG,

Help! A w h i l e back I g o t my copy
of TigFORTH-8080 v e r s i o n . I'm bogged
down a t t h e "MATCH" p r i m i t i v e of t h e
"EDITOR" f u n c t ion. I 'm working alone
a t i t as home computers are rare u p
h e r e and FORTH is a "Very F o r e i g n
Language". A l l I need t o know is
what i n t a r n a t i o n one u s e s t o in te r -
p r e t s c r e e n s 93 & 94 t o 8080 (or
280) code?

I have t h e rest of t h e FIG model
working , a l t h o u g h I ' v e had moments
w i t h i t r a n g i n g from t e a r s t o
apoplexy . I'VC d i s c o v e r e d 'joint? of
t h e no-no 's t h e hard wc3:r', a l s o known
as "How t o r e c o n f i g u r e \ c) , i ~ d i s k --
unexpec ted ly . " o r " r h c r e a i d t h e
CPIM go?".

I h a v e n ' t had so IXUC ti t uL1 s i lice

I b u i l t t h i s "Unirr2.d X ~ t i o n s
computer '* .

Regard- ,
Glenn F d r n s w a r t t i
Weed, CA

E d i t o r ' s n o t e -- T h e e d i t o r w a s
i n c l u d e d wi th t h e mgdei ,is a n e x t r a
"goodie" . A l i t t l e f o r e s i g h t would
have t o l d us the b 5 0 2 assembly
s o u r c e would prove t o be a n i r r i t a n t .
The h i g h l e v e l e q u i v a l e n t is g i v e n
below. A f u l l s c r e e n sea rc? i w i t h a
code MATCH t a k e s about l 50 msec,
w h i l e t h e h igh l e v e l form r e q u i r e s
o v e r a second. Try t h e h igh l e v e l
v e r s i o n and t h e n recode f o r your
p r o c e s s o r . T h i s a d d i t i o n t o t h e
model was made i n September 1980
t hanks t o Peter Midnight who
provided a n e a r l i e r d e f i n i t i o n .

Keep s m i l i n g ! -- e d .

Page 177 FORTH DIMENSIONS I1/6

ANNOUNCEMENTS

PREVIEWS OF C O Y I K G ATTRACTIONS (IN
FPRTH DI?ENS!CIKS) :

IsSLle Editori2.l Content

?lay/Jun Applic I i o n s , utilities &
11 s ea b 1 e programs

- 1 ~ 1 , Aag C,irnes 14 game type appli-
cations

sep: or t L'niversity of Rochester &
i't restit conferences

N n v / l k i Graphics ri music

If you would like to be a contri-
buting author to any of the above
please write to: Editor; FORTH
DIMENSIONS; P.O. Box 1105; San
Carlos, CA 9 4 0 7 0 . You will be sent
a writer's kit that will make your
job easier. Please note deadlines
for each issue are several months in
advance of publication dates so
allow plenty of time to produce your
article.

FIG GOES TO COMPUTER FAIRE: FIG
will have booth number 1137C at the
West Coast Computer Faire being held
April 3 to 5 at Brooks Hall in San
Francisco.

FREE BUG FIXES: The 8080 Renovation
Project wants bug reports so they
can get to work on fixing them. If
you have found an 8080 Bug send it
to 8080 Renovation Project; c/o
FORTH Interest Group; P.O. BOX 1105;
San Carlos, CA 94070

DR. DOBBS NEEDS YOUR HELP: The
editor of Dr. Dobb's Journal of
Computer Calisthenics & Orthodontia
is very interested in articles on
FORTH. If he can get enough, he

will d e v o t e an entire issue to
FORTH. Interested authors s11ouId
contact Marlin Ouverson, E d i t o r ;
PEOPLE'S COMPUTER COElPAh'Y; PO Box E;
Menlc, P a r k , C X 91,025
____. . . - - - . _ _ - __ -

CALL FOR PAPERS

FI1.. STAhl'AXDS 7 LA:'. I t e FOZ?H
Stdnd.irds 7 , ~ i i - 3 aniio'li't e s tllr Sprinv
Conference hosted by the University
of Rochester on May 13th through May
15th, 1981. Larry Forsley is the
session o r g a n i z e r . This conference
will have three coinponents: Formal
papers, Sub-team working groups, and
Poster sessio:is.

Formal papers must be received by
May 1st. Later material and informal
presentations will be assigned to
the "Poster session"; at which the
authors will conduct clustered work-
shops, with attendees moving among
the presentations. The Sub-teams
will prepare short reports after
topic oriented working sessions.

Working sessions are scheduled from
the morning of May 13th through
lunch on May 15th. A reception will
be held on the evening of May 12th
for early arrivals. Accomodations
are $12.00 single occupancy and
$9.00 each, double occupancy. A
combination of campus and off-campus
meals are planned.

Papers are specifically requested on:

1. Implemtation aspects of FORTH-79

2 . Refinements of vocabulary
structure, extensible control
structures, definition of input
and output streams.

3 . File sytem extension

4 . Floating point extensions

Page 178 FORTH DIMENSIONS II/6

The contact for submittal of papers
and room reservations is Larry
Forsley; Laboratory for Laser Ener-
getics; University of Rochester, NY
1 4 6 2 3 . Send room requests without
delay; a confirmation with exact cost
will be returned with the conference
schedule and travel suggestions.

MEE’CI KG,’EVENT ANKOUNCEMENT FORMAT

In order t o have uniformity and
insure complete information in all
meeting and special event announce-
ments, FORTH DIMENSIONS requests
that yo11 use the following format:

1.

2 .

3 .

4 .

5 .

5.

7 .

8 .

WhO is holding the event
(crganization, club, etc.)

WHAT is being held (describe
activity, speakers’ names, etc.)

WHEN is it being held (days,
times, etc.; please indicate if
it is a repetitive event --
monthly meeting etc.)

WHERE is it being held (be as
complete as possible -- room
number, etc.)

WHY is it being held (purpose,
objectives, etc.)

REMARKS & SPECIAL, NOTES (i s
there a fee, are meals/
refreshments being provided,
dress, tools, special require-
ments, pre-requisites, etc.)

PERSON TO CONTACT

ATTENTION 65’32 USERS:

The following seem to me t o be
errors in the 6502 Assembly Source
Listing (May 1980). I think I can
correct these errors easily enough,
but I worry if maybe they have
generated more subtle errors that I
have not found. I have no experience
with FORTH at all, so I ’ m n o t sure
what should be happening, and I have
no one I know with a n y experience t o
call upon.

Page 0 0 6 1 UPDATE !+issing SEMIS at
end? (There is one in the
installation manuX)

0064 Line 3075 Shouldn’t this be a
backward branch with F6 FF as
displacement?

0067 Lines 3204 - 3205 Two STX
XSAVE’s. Is one superfluous or is
it replacing something else that
really should be there?

0069 Lines 3280 - 3284 Two SEMIS.
Again, is something being destroyed
by the extra one?

C.A. McCarthy
Department of Mathematlcs
Vincent Hall
UNIVERSITY OF MINNESOTA
Minneapolis, MN 55455

PHONE h’UMBER/ADDRESS (include
area codes, times t o call & give
work & home numbers in case we
need clarification)

RENEW TODAY!

I

Y

Page 179 FORTE DIMENSIONS 11/6

MEETINGS
:i"KTi: I?.T:I.REST GROCP C .K. : Chair-
' V < i I? : !) i (- k dc. Grandis-Harrison;
StBi.re t ii rv./Trea~urtr: Harry Dobson;
? k t . w $ i e t : tar Editor: Gil Filbey;
(' o m m i t t t ' c Mcrnbers: Bill Powell,
3 i l 1 S t c ~ , d d a r t . Meetings are held at

p . 3 . on t h e 1st Thursday in every
: ' . r ' ~ : r , ; ; t i , . ! t :

T h e Folvtechnic of the Southbank
Roon $08
8ol-ough Road
i-O!iD('X

'!ai i i n g A d d r e s s :

tORTtf INTERZST GROUP U . K .
c ' c) 36, Worsley Road
FrirnleL, Camberley,
Surrey, G U l h 5AU
EXGLAND

PORTI.AND FORTH USERS GROUP: Held
its first meeting in January. Demos
were given on an Apple 11. Also
shown were a Hires graphic package
writ ten in FORTH; A "de-FORTHer"
program that takes FORTH words down
to their component parts; and a 64
bit quad precision math package.
FORTH concepts such as the word
DEPTH and .S (a non-destructive
stack print out) were also dis-
cussed. Meetings are held monthly
at THE COMPUTER 6 THINGS STORE; 3460
S.W. 185th, Suite D; Aloha OR 97006

TULSA COMPUTER SOCIETY: A FORTH
Interest Group has been formed in
Tulsa, OK under the auspices of the
Tulsa Computer Society. The group
has 6502 figFORTH running on several
Apple 11's and 8080 figFORTH running
on a Compucolor and a MITS Altair
using CP/M and Micropolis Drives.
For meeting information contact Art
Gorski; c/o The Tulsa Computer
Society; P.O. Box 1133; Tulsa, OK
74103 or call (918) 743-0113; (918)
743-4081

t i .i'~xi~itJR I)L SOCTETE D' i ? I F , .. .
QUEBEC: Iias c~ FORTH group (French!)
that meets e'Jery o t h c > r b e c k . Anyone
from the Quebec .+rt',i who w o u l d i i k t s
meeting informa~ion is i n v i t c > d I O

contact Gilles Paillard; 1310 D t a s
Pins Est; Ancienne-l.oret te; Quebec,
Canada G2E 1C2 o r call (4 1 8)
871-1960

FIGSA: South Africa has a very active
FORTH Interest Croup mLeting monthly
and currently is offering FORTH
mini-courses to ground users in the
fundamentals. Interested persons in
the Johannesburg and Pretoria locales
can get more information regarding
meetings and courses by contacting
Ed Murray; FORTHWITH COMPUTERS;
PO Box 27175; Sunnyside Pretoria
0132, South Africa

SOUTHERN CALIFORNIA fig: Attendees
numbered approximately thirty-five
and most had up and running FORTH
systems. Three books were reported:
Threaded Interpretive Language by
Loeliger, which steps the reader
through Z-80 source code of fig-FORTH
for the TRS-80; MINT, Machine-
Independent Organic Software Tools,
by Godfrey, et al.; and FORTH SYSTEM
GUIDE by Ting which now has the
assembler in its final chapter. The
formation of an Organge County fig
group was begun.

Martin Tracy of MicroMotion
discussed Implementing Strings in
FORTH, their 8th chapter in "FORTH-79
Tutorial and Reference Manual" (for
the APPLE 11). This string package
compares, concatenates, converts and
arrays with words like GET$, INPUTS
and IN$ (which i.ndexes into the
String).

FORTH DIMENSIONS I I / 6 Page 180

A N OPEN RESPONSE Requirements derived from the
FOKT11-79 Standard :

-

We continually receive letters
asking if FORTH can be installed on
a particular computer, particularly
those without direct access mass
storage o r an ASCII terminal (i.e.
PET, Vip, and Kim). Often, similar
queries reflect a desire to use
cassette tape. This summary gives
the general characteristics of a
system in which FORTH will be
responsive. For fig-FORTH instal-
lation, an assembler is also needed.

FORTH is an interactive, compiled
language. This statement may be
expanded to conclude that compilation
requires mass storage fo r source
text; if must be random access to be
interactive. A terminal is also
needed, as a hex keypad cannot be
deemed interactive. The character
set must be complete for program
portability, reflecting the common-
ality of language.

Requirements to execute:

1. A random access mass storage
device with direct access to
sector readlwrite i.e. disk or
diskette.

2 - 16 Kilobytes of ram.

3 . A keyboara input with at least
the fu31 upper case ASCII char-
acter set.

4. A display of at least 64 charac-
ters by 16 lines.

Requirements to install:

1. An assembler that can accept
about 80K of source producing
about 5.5K of object, either
memory or disk.

If you are m i s s i n g .:r,y i t< t t , c se
elements, we express ot i t - coni l i , i e n r e s .
YOU will h a v e t o tolc>r,~tr a n i r -
regular insLa1lation iud c ~ t ! c > r
portability prnblemr.. C!is c\lrst: j s
not caiised by FOGTII Init by t!ie
s ho r t s i g h t r d 2 e s s o f t i ci r d w I’ t’ 1: c A-j d o c s .
FORTH is an environment t n which Y O U

can operate ‘3s a professional. We
know of n o professional wh.3 kould
demand to have his trrmirial l i n e
width reduced to 40 ctliiracterb, have
six ASCII characters removed rrom
his keyboard or returri h i s dlsk to
the manufacturer as unnecessary. If
FORTH were compromised to i ess than
the above guidelines, we uould
ultimately be operating from a hex
keypad with paper tape.

Page 181 FORTH DIMENSIONS II/6

BENCHMARKING:

Because there is almust universal
disagreement on which are the most
valid benchmark tests; and because
in FORTH memory compactness may be
traded off for execution speed at
the implementor’s option, it is the
policy of FORTH D1MENSIi)fZS i3 nini-
mize the use of benchmark tests that
measure speed alone. Such single
d imens iona 1 tests more precise 1y
measure the speed of d given CPU
than the implementation d f FORTH
itself and encouraging such simplis-
tic testing will probably mean the
compactness of FORTH will inevitably
suffer. For tbese rezisons FORTH
DIMENSIONS is normally oniy inter-
ested in benchmark tests fhat measure
both productivity (useful work) and
speed as a better indicator of a
given implementations value.

I

I

I

Tn ’>!!-w ng vendors have venlm of
FORTH available or are conaultmtr. (FIG
rnarcs rrr I 1 5 n ~ o t 00 any producta.)

A L W MlcRo
Rsfr33 ??RI Wanagernent Services
7 2 4 .I*astradero Rd. 1109
>-‘o a!m, C 4 94306
J;‘’ E’8-2?18

Sirrra ‘omputcr Co.
b17 4 v k NE
4i:~uquerque, NM 87123

M E
:LIj ‘Cap‘n Software)
261 Arlington Avenw
Rcrkclsv. C A 94704

525-9452

Lcorqr: Lyons
.‘PO uenderson St.
Jrrsri City, NJ 07302
2 0 :) 651-2905

Mi croMot ion
12977 Wilrfr ire Blvd. I506
Los Angelen, CA 913025
‘ZlJ! 821-4340

CROSS COM-s
Nnu t ilus Syatsma
P.0. Box 1098
Sante Cruz, CA 95061
(408) 475-7461

p lyFORTH
FORTH, Inc.
2309 Pacific Coart W y .
Herrnma Beach, CA 90254
(213) 372-8493

LYNX
3301 Ocean Park 1301
Santa Monica, CA 90405
(213) 450-2466

M & B Deeign
820 Sweethay D r h
Sunnyvale, CA 94086

Mlcropollr
Shaw Laba. Ltd.
P. 0. Box 5471
Hayward, CA 94540
(415) 276-6050

mstr
The Software Work., Inc.
P. 0. Box 4386
Mountain Vlcw, CA 96040
(408) 756-4738

PDP-11
L-boratory b f t w u e Syrtsm, Inc.
3634 Mandevllle C m y m R d
Lor Angolea, CA 90049
(213) 472-6995

0s
Coneurner Computem
8907 LaMese Blvd.
LaMesa, CA 92041
(714) 698-8088

Software Federation
M Lhiversity Dr.
Arlington Heights, IL boo00
(J12) 259-1355

Technic~l RoduCtr CO.
P. 0. Box 12983
Gainaville, FL 32604
(904) 372-8439

Tom Zlrnmer
292 Fslcato Dr.
Milpitar, CA 95035

Talbot Microryatem
5030 Kenringtm Way
Rlverride, CA 92507

6mo&6Kl9

(714) 781-0464

TRm
Miller Microcomputer Sorvlcxm
61 Lake Shore Rd.
Natlck, MA 01760
(617) 653-6136

The b f t w u e Fum
P. 0. B o x 2304
ROrtOn, VA 22090

Slrlur Syrtemr
7528 Oak Rldps W y .
Knoxvllle, TN 37921
(61s) 693-6585

6m
Glc C. Rehnke
WO 5 Ranch Wow Clrclo #61
Anaheim Hlllr, C A 92087

Lmboratay M l c r a y r t b m
4147 Beethoven St.
Loa Angolea, C A 90066
(213) 390-9292

Tlmln Englneerlnq C a

Son Dlsgo, C A 92121

mlmwnlQEPrn

9575 C e n e ~ ~ AVO. I€-2

(714) 455-9008

APpUdm Rdupr
InnoSyr
2150 Shottuck A v m w
Berkeley, C A 94700

Declrlon Rsrourcea Cap.
28203 Rlckjefem Ct.
Rancho Palo Verd~, CA 90274
(213) 377-3533

K W 3 Carp.
PO Box 27246

(415) 843-8114

TUCOOII, AZ 85726

cam
Ernperical Rer. Crp.
PO Box 1176
Milton, WA 98354
(206) 651-4855

f i l n w U 8 , ~ r d -
Oatrlcon
7911 NE 33rd Or.
Portland, OR 97211
003) 284-8277

Forward Technology
2595 Martin Avenue
h n t a Clara, CA 95050
(408) 295-8993

Rockwell Internatlone1
Mlcroelectronlca D e v l n r
P.O. Box 3669
Anaheim, CA 92803
(714) 632-2862

Zendex Corp.
6398 h q h e r t y Rd.
Dublln. CA 94566

V W d y of FORM W
Interactive Computer Syrt.mr, Inc.
6403 Di Marco Rd.
Tampa, FL Y3614

Mountain Wow R.r
P. 0. Box 46s6
Mountaln View, C A 9oooO
(415) 961-4103

Sqmnoft Anoc1at.r

Champaign, IL 61820
P.O. BOX 1628

(217) 359-2112

Crmltmh
Cmatlve Solutlar, Inc.
4801 Randolph Rd.
Rockvllla, MD 20852

Dove Boul tm
581 Ookridge Dr.
Redwood Clty, CA 94062

Elmer W. Fl t tery
110 Mc Cmgm Avenue
Mt. Arlington, NJ 078%

(415) 368-3217

(21s) 66s-is80

Co FORTH
504 Lakemeed Woy
Redwood Clty, C A 94062

inner AIXOU
Sl7K Marine Wow
Belmnnt, CA 94002

(415) S66-6324

(415) 591-8291

Hwrry-
1259 Cnrnoll
8.?ksloy, C A 947M
(415) 525-8582

Jahn!Lhnea

Serkoley, CA 94701
P. 0. Box SMI

FORTH DIMENSIONS 11/6 Page 182

NEW PRODUCT

ANNOUNCEMENT FORMAT
In the interests of comparison

uniformity and completeness of data
in new product announcements FORTH
DIMENSIONS requests that all future
new product announcements use the
following format:

1. Vendor name (company)

2. Vendor street address (P.O.
Boxes alone are not acceptable
for mail order)

3. Vendor mailing address (if
different from street address)

4 . Vendor area code and telephone
number

5. Person to contact

6. Product name

7. Brief description of product
uselfeatures

8. List of extras included (editor,
assembler, data base, games,
etc.)

9. List of machines product runs on

10. Memory requirements

11. Number of pages in manual

12. Tell what manual covers

13. Indicate whether or not manual
is available for separate
purchase

16. Approximate number of product
shipments tc date (product must
have active installations as of
writing -- no unreleased
product 6)

17. Product Price

18. What price includes (shipping,
tax, etc.)

19. Vendor warranties, post sale
support, etc.

20. Order turn around time

HELP WANTED

Openings for a project manager
and senior programmer. Both positions
offer the opportunity to work on a
wide variety of projects, including
systems programming and real-time
scientific and industrial applica-
tions. Salary and benefits are
excellent. A starting bonus is
available for anyone with a substan-
tial FORTH background. Cont ac t
FORTH, Inc.; 2309 Pacific Coast
Highway; Hermosa Beach, CA 90254;
(213) 372-8493

Programmer analyst to work and
live in the Miami area who is trained
and experienced in the CYBOS lan-
guage. Contact Keller Industries,
Inc. , 18000 State Road 9, Miami, FL
33162; (305) 651-7100, ext. 202.

14. If manual is available indicate
separate purchase price and
whether or not manual price 1s
credited towards later purchase

FORTH programer for computer
graphics. Contact Cornerstone Asso-
ciates, 479 Winter St., Waltham, MA
02154; (617) 890-3773.

15. Form product is shipped in (must
be diskette or ROH - no IUH
only or tape systems) RENEW TODAY!

FORTH, INC. NEWS PAGE
ThIs I s the first in a series

of columns highlighting various
activities at FORTH, Inc.

RECENT APPLICATIONS:

I n December Chuck Moore com-
pleted work on a 24-channel video
mixer for Homer & Associates, a
producer of films for promotioal and
entertainment purposes in Hollywood.
This 2-80 based system controls 16
slide projectors, four movie projec-
tors and audio tape. It has mas-
tering and sequencing capabilities
which Peter Conn, Homer's president,
says are unique In the industry.

In early January American Air-
l i n e s performed the final acceptance
of the LAX outbound baggage system
developed by Dean Sanderson and Mike
LaManna. The system runs on two
PDP-11 computers (one functions as a
backup), and controls several con-
veyor belts, bag encoder stations,
electric eye sensors, and printers.
It i s more accurate and has 25%
better performance than the all-
assembly language system it replaced.

NEW PRODUCTS:

EXORset polyFORTH pF6809/30,
developed by Mike LaManna, is our
newest product and runs on the
Motorola EXORset 30 -- a micro-
computer featuring a 6809 processor,
graphics CRT and two mini-floppies
in a single compact box. EXORset
polyFORTH sells for $4750 and
incudes a secial screen editor; a
high-speed graphics option with
software vector and character
generation; labeled graphs with
several plotting modes; a "strip-
chart" function with snap-shot
capabilities, and several demon-
stration routines. EXORset polyFORTH
sells for $4750.00. The option
package sells for $500.00. Both
will be featured at FORTH, Inc.'s
spring seminar series.

FORTH - 79 :
Al Krever is working on a new

release of polyFORTH scheduled for
March. This new release will
feature many improvements in all
systems, plus greater compatability
with the FORTH - 79 Standard.

The FORTH - 79 edition of USING
FORTH has been sent to the printers
and will be available after mid-
February.

POLYFORTH COURSES:

FORTH, Inc. offers two courses--
an introductory course for program-
mers unfamiliar with polyFORTH and
an advanced course designed for those
with considerable FORTH experience
who desire greater familiarity with
system level functions, target com-
piling and other advanced techniques.

FORTH, Inc.'s course schedule
for the next few months is:

Month Introductory Advanced

13 - 17 April 6 - 10
May 11 - 15 (tentative)

Contact Carol Ritscher at FORTH,
Inc. (213) 372-8493 for more infor-
mation.

SEMINARS d WORKSHOPS:

A series of completely new
half-day seminars and one-day work-
shops has been scheduled in several
cities. Both present an overview of
the features and benefits of poly-
FORTH for professional users. The
EXORset and tls new graphics package
will be featured.

city Seminar Workshop

Washington, DC 3/19 3/20
4/21 4/22 Houston

Boston 4/23 4/24

Contact Carol Ritscher at FORTH,
Inc. (213) 372-8493 for mare
information.

FORTR DIMENSIONS 11/6 Page 184

!

now to

1.

2.

3.

4.

form a FIG Chapter:

You decide on a time and place
for the first meeting in your
area. (Allow about 8 weeks for
steps 2 and 3.)

Send to FIG in San Carlos, CA
a meeting announcement on one
side of 8-1/2 x 1 1 paper (one
copy I s enough). Also send
list of ZIP numbers that you
want mailed to (use first three
digits if it works for you).

FIG will print, address and
mail to members with the ZIP'S
you want from San Carlos, CA.

When you've had your first
meeting with 5 or more atten-
dees then FIG will provide you
with names in your area. You
have to tell us when you have
5 or more.

Northern California
4th Saturday FIG Monthly Meeting,

1:00 p.m., at Southland
Shopping Ctr., Hayward,
CA. FORML Workshop at
1O:OO a.m.

Southern California
4th Saturday

Maesachuset ts
3rd Wednesday

San Diego
Thur sdaye

FIG Meeting, 11:OO a.m.
Allstate Savings, 8800
So. Sepulveda, L.A.
Call Phillip Wasson,
(213) 649-1428.

MMSFORTH Users Group,
7:OO p.m., Cochituate,
MA. Call Dick Miller
at .(617) 653-6136 for
site.

Seattle

Potomac

Tulsa

Texas

Phoenix

Oregon

New York

Detroit

England

Japan

Chuck Pliske or
Dwight Vandenburg at
(206) 542-8370.

Paul van der Eijk at (703)
354-7443 or Joel Shprentz
at (703) 437-9218.

Art Gorski at (918) 743-Oil3

Jeff Lewis at (713) 729-3320
or John Earls at (214)
661-2928 or Dwayne Gustaus
at (817) 307-6976. John
Hastings (512) 835-1918

Peter Bates at
(6 0 2) 996-8398

Ed Krammerer at
(503) 644-2688.

Tom Jung at (212) 746-4062.

Dean Vieau at
(313) 493-5105.

FORTH Interest Group, c/o
38, Worsley Road, Frimley,
Camberley, Surrey, GU16 5AU,
England.

Mr. Okada, President, ASR
Corp. Int'l, 3-15-8, Nishi-
Shimbashi Manato-ku, Tokyo,
Japan.

Quebec, Canada
Gilles Paillard at
(418) 871-1960.

Publishers Note:

Please send notes (and reports)
about your meetings.

FIG Meeting, 12:00
noon. Call Guy Kelly
at (714) 268-3100
x 4784 for site. RENEW TODAY!

hgc! 185 FORTH DIMENSIONS 1116

