HONTH IMIESIONS

FORTH INTEREST GROUP Volume H
P.O. Box 1105 Number 1
San Carios, CA 94070 Price $2.00

st

1 General Information

l Publisher’'s Column

3 FORTH for the Motorola 6809

6 Recursion —
The Eight Queens Problem

7 A ‘TINY’ Pseudo-Code

9 FORTH in Literature
10 News & FIG Doings
12

New Products

15 Letters

FOSTH IMIENSIONS

Published by Farth Interest Group

Volume II No. 1 May/June 1980

Publ isher Roy C. Martens

£ditorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Gearge Maverick

FORTH DIMENSIONS solicits.editorial material, comments
and letters. NOo responsibility is assumed for accwracy
of material submitted. ALL MATERIAL PUBLISHED BY THE PORTH
;N'I‘EREST GROUP IS IN THE PUBLIC DOMAIN. Information
in FORTH DIMENSIONS may be reproduced with credit given to
the authar and the Forth Interest Group.

Subscr iption to FORTH DIMENSIONS is free with membership
in the PForth Interest Group at $12.00 per year ($15.00
overseas). For membership, change of address and/or to
submit material, the address is:

Farth Interest Group
P.0. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in 1969 at the
National Radic Astronomy Observatory, Charlottesville,
VA. It was created out of dissatisfaction with available
programming tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Inc. in
1973 far the purpose of licensing and support of the PORTH
Operating System and Programming Language, and to supply
application programming to meet customers unique require-
ments.

The Parth Interest Group is centered in Northern Cali-
farnia, although our membership of 1100 is world-wide. It
was farmed in 1978 by FORTH programsers to encourage use of
the language by the interchange of ideas through seminars
and publications.

IMPORTANT DATES

Axil 26 FIG Monthly Meeting, 1:00 pm, at Liberty
House, Hayward, CA. Come to the PORML Work-
shop at 10:00 am and stay on.

May 20 National FIG Meeting, Disneyland Hotel,
Anaheim, CA at the NCC Personal Computing
Festival. Dinner in the evening and technical
sesgions all day. Contact: Jis Flownoy,
(408) 779-0848.

May 24 FIG Monthly Meeting, 1:00 pm, at Liberty
House, Hayward, CA, Come to the PORML Work~
shop at 10:00 am and stay on.

June 8-13 American Chemical Society

June 21 So. Cal. FIG Meeting, MSI Data Corp., 300
Fischer Ave., Costa Mesa, CA. Noon.

June 28 FIG Monthly Meeting, 1:00 pm, at Liberty

House, Hayward, CA. Came to the FORML Work-
shop at 10:00 am and stay on.

PUBLISHER'S COLUMN

Don't let your membership in FIG crash. Renew today!
It's easy. Just send in yow check for $12.00 ($15.00
overseas) and you'll be all set for the next six issues of
PORTH DIMENSIONS and the FIG notices. If you are in doubt
as to whether your membership is up, just look at the
address label. If it reads "Renew March 1980" then its
time to get that check off. Do it today.

The next issue of FORTH DIMENSIONS is going to be
super. It will be a technical issue with all the entries
submitted in the Case Contest. Make sure that you receive
this important issue, renew your membership in FIG today.

This may sound like a hard pitch for your membership but
FIG needs you. The only way that we can keep on publishing
PORTH DIMENSIONS and spreading the FORTH waxrd is by having
your suppart. In fact, how about getting others to sign
up.

Roy Maxrtens

KiM HARRIS COURSE

A five day intensive cowse on programming with PORTH
will be held July 21-25 at Humbolt State University in
Arcata, California. The course will cover the FORTH
approach to producing computer applications including: (1)
analyzing the requirements of a problem, (2) designing a
logical solution, and (3) implementing and testing the
solution. Topics will include the usage, extension, and
internals of the FORTH language, compiler, assembler,
virtual machine, multitasking operating system, mass storage
virtual memary manager, and file system. Computers will be
available for demonstrations and class exercises. The
course will be taught by Kim Barris, and Humbolt State
University will give 4 units of credit through the office of
Continuing Bducation. Tuition for the course is $112 per
student. The text will be "Using FORTH"; copies will be
available at the course for $25 each. Housing is available
in very nice dormitory rooms for $9 per person per night or
at several nearby motels. Cafeteria meals may be p\zchased
individually or at $10.25 per day. For more information
and registration materials write, before June 23:

Prof. Ronald Zammit
Physics Department
Humbolt State University
Accata, California 95521

Page 1

FORTH DIMENSIONS 11/1

FORML NEWS

FORML (FORTH Modification Laboratory) is a research
group cooxdinating individual efforts on the technical
evolution of FORTH. wWorkshop meetings are held the fourth
Saturday of each month at 10:00 a.m. at the Liberty House,
Hayward, CA. (Make a day of it by staying for the FIG
meeting in the afternoon.) Working groups determine
and document: the objectives (what problems need to be
solved), status of topic (what has already becn done),
the challenges (what has to be done), the methods (the
appropriate approach), the list (detailed topics and
problems), the specifications (requirements of valid
solutions). You can input directly to the technical
committees ar to FIG Chairman Kim Harris (see Files DBMI).
The committees and leaders are:

Conmittee Leader

Numer ic Extensions &
Floating Point

LaFarr Stuart
P.O. Box 1418
Sunnyvale, CA 94088
(408) 296-62136

Committee

MetaFORTH - Nucleus

Concurrency, Multitasking,
Executive Communication
Synchronization

strings

Documentation

Graphics

Files DBMS

Leader

Armand Gambera

TTI Inc.

555 Del Rey Ave.
Sunnyvale, CA 94086
(408) 7358080

Terry Holmes
808 Coleman, #21
Menlo Park, CA 94025

John Cassady

11 Miramonte Road
Orinda, CA 94563
(415) 254-2398

John S. James
P. O. Box 348
Berkeley, CA 94701
(415) 526-8815

Howard Pear lmut ter
1055 Oregon Ave,
Palo Alto, CA 94303
(415) 856-0450

Kim Harris
1055 Oregon Ave.
Palo Alto, CA 94303

(415) 856-0450

FORML needs your help. Come to the next meeting!

THIS IS THE BEGINNING!
THE BEGINNING OF FIG TWO!
THE BEGINNING OF FORTH DIMENSIONS Ii!
IT'S TIME TO RENEW!

RENEW YOUR MEMBERSHIP IN FIG!
RENEW YOUR SUBSCRIPTION TO FORTH DIMENSIONS!
DO IT ALL FOR ONLY $12.00!

DO IT TODAY!

s EASY!

CHECK THE LABEL FOR RENEW DATE!

IF IT READS “Renew Mar. 1980” SEND A CHECK!

SEND IT TO: FIG, P.O. Box 1105, San Carlos, CA 94070 RENEW NOW!

FORTH DIMENSIONS 11/1 Page 2

FORTH, for the Motorola 6809

Raymond J. Talbot, Jr.
7209 Stella Link, Suite 112
Houston, Texas 77025

68'FORTH is an implementation of
fig-FORTH for the 6809 microprocessor.
It is available on 5" disk configured
for an SWTPC SS-50 Buss system with
SWIPC MF-68 dual 5" disks and the TSC
FLEX 9.0 disk operating system, but it
is easily modifiable for other systems
(write author for information).

The 6809 is a greatly improved
version of the Motorola 6800 8-bit
microprocessor., It is almost like
having a 16-bit microprocessor, since
there are several l6-bit instructions.
It has two 16-bit index registers X amd
Y, and a 1l6-bit accumulator register D
which may also be used as two 8-bit
registers A and B. There are many
addressing modes, including indirect,
autodecrement, and autoincrement.

The two hardware stack registers
make it ideal for FORTH — it is almost
a FORTH machine in silicon. I have
implemented FORTH by the following
register assignments:

The FORTH variable

stack — U stack register

The FORTH return

stack -~ 5§ stack register
The FORTH in-

struction

pointer (IP) -— Y index register

The FORTH register W (which points
to the machine code being exe-
cuted) is never stored (to save
an instruction which is usually
unnecessary), however, upon
entry to a word's machine code,
that address is in the -- X
index register

Inside a word, one may use X and
D without bothering to save their
values on entry. If one wants a second
index register (very handy for zome-
thing like (MOVE), then one or nmore of
Y, S, or U registers may be saved in
memory (or on one of the stacks).

Before listing the ocode which makes
the FORTH machine, let me describe the
notation used to make dictionary
entries with the TSC assembler MACRO
facility:

LASTNM SET o] 1nitialize last nare oddvus U e
2070; this will mars teqinming
of dictionary
WORDM MACRO macro called WORDM *o make entry
NEXTNM SET sets NMEXTNM equal %o present location
which will e first vte of name
IFC b4, IMMEDIATE conditional omprlation for [METIATE
wox 35
FCB slesSCy first oyre iv . O har, with sign
and 1mmed. hit
ELSE
FCB sleSbg no 1mmed. bit
ENDIF
IPNC 61,1 special case of a i -haracter wxd
wiil skip this
e 82/
ENDIF
3] $8g+'s] last character has Sign bit et
FOB LASTNA link to previous waxd 1n dict
LASTNM SET NEXTNM reset LASTNM to point to this word
ENDM erd of maaxo

A-10

The &n quantities refer to parameter
to the MACRO. E.gq.,

MACRO 4,BAS,E
will assemble as

84 42 41 53 C5 LI NK
Where LI NK is the link address to the
previous entry. This macro coupled
with assembly of addresses allows one
to write assembly language code that is
essentially just colon definitions,
e.g., the macro definition of COLON
itself below.

- Here 1is the assembly language
listing for the portion of the code
which defines the 6809 FORTH machine:

WORDM 1,,:, IMMEDIATE
COLON FoB DOCOL, QEXEC, SCSP, CURRENT, AT, CONTXT, STORE
FOB CREATE, RBRAK, PSCODE
oooL PSHS Y push IP = Y to ret stack = 5
LEAY 2,x increment Y o first parametec afteéx
CFA inW =X
NEXT LDX R get W into X and then increment IP » Y
to point to next lnatruction
NEXTP JP {.X) jurp indirect to code pointed to by
WX
WORDM 2,;,8
SEnIS FoB 2
PSEMIS Y S reset IP = Y to next address (found

by popping from the ret stack = S).

Page 3

FORTH DIMENSIONS I1/1

Some arbitrarily chosen examples of
the great economy achieved by this use
of the stack registers is given by some
words shown here (note: depending on
location, some of the BRA have to be
the long branch instruction LBRA).

T, EXECUT,E
2

WORIM
ExXBC B
AL X pul!l address fram var. stack =« U
and put INto W = X -- one of
very few cases requiring W
BRA NEXTP
WORDM 1,.¢
LS FoB8 2
PULL o] et wp item from stack into D
accunulatar, add second 1tem,
now top N{ stack
ADOO R
RITD sT* S store sum back on stack
BRA NEXT
WORDM 2.1,
ONEP FoB 2
o A get top item into D
ADOOC [N add 1
BRA AJTD put back onto D
WORIM 1.0
AT FOB 2
Loo Ul get ¢ pointed to by add. on stack
BRA AUTD replace p of stack with ¢
WORDM 1.
STORE 30 :] 2
PULY X,0 gets top 1nto D, second i1nto X
> 9 X,D exchange
ST X store second 1nto lacation pointed
t by top
BRA NEXT
WORDM 1)>.R
TOR OB *e2
PULL 0 pull top item from var. stack
PSHS D push onto ret. sack
BRA NEXT

A-12

These various fragments of 6809
code can be compared with the cor-
responding 6800 code in the FIG 6800
ASSEMBLY SOURCE LISTING. Specifically,
the 6809 NEXT routine takes 14 machine
cycles whereas the 6800 NEXT routine
takes 38 cycles.

The 68'FORTH implementation for the
6809 is essentially identical with the
6800 fig version except for the machine
code for the words defined that way.
Many words which are coded (like PLUS)
are shorter in 6809 code because of
the 16-bit math. For all of the
colon-definition-like-words in 6800
fig-FORTH, I just used my WORDM MACRO;
that keeps the source file short.

68'FORTH implements the full
fig-FORTH vocabulary as given by the
May 1979 6800 ASSEMBLY SOURCE LISTING
and the fig-FORTH Installation manual.
In addition, particular installation
dependent code for EMIT, KEY, and disk
read and write are given for a 6809
system with all disk I/0 being done
via the disk sector read/write routines
of the TSC FLEX 9.0 disk operating
system., FLEX formatted text files may

be read or written in 1lieu of the
terminal. (The word READ switches KEY
to read a text file, similarly WRITE
switches EMIT to write a text file).
Consequently, it is possible to com-
municate data between FORTH and other
FLEX programs (Horrors - BASIC even!!),.

Another feature of 68' FORTH is
something which should be part of any
FORTH system which operates under a
host DOS — It has a word {underscore
on some terminals, left arrow on
others) which is followed by a text
string (delimited by carriage return or
double quote). The text string is
passed to the DOS command processor.
While in 68'FORTH one can do any FLEX
command, e.qg., CAT (catalog of FLEX
files), DELETE, RENAME, etc., by,
e.qg.

__ CAT 1.F (carriage return)

to get a catalog of all files on drive
1 with name starting with F. This type
of facility is extremely useful for the
exchange of data with other types of
programs and for using FORTH in time-
sharing systems where other people use
other languages. For example, at Rice
we operate a PDP-11/55 with the UNIX
operating system and FORTH functions as
just one time-shared process along with
many others. As yet ouwr PDP-11 FORTH
does not have this word, but I plan
to include it in order to take advan-
tage of the many extremely useful
utility programs which exist in UNIX.
In particular, in that environment, we
want to be able to transfer data
between tapes and disks as background
jobs while we are working with files
interactively with FORTH. Also, for
number crunching work, other languages
are more convenient and faster than
FORTH, so we plan to implement certain
tasks in other languages to be done as
background jobs supervised by UNIX
while we use FORTH for just those
interactive tasks for which it is
ideal.

My main reason for pointing out
these FORTH connections to another DOS

m—

FORTH DIMENSIONS II/1

Page 4

is to encourage the FORTH standards
team to think about standard vocabulary
words for these links, FORTH grew up
and still largely exists as a stand
alone operating system. However ,
already it is used in some places as
simply one language in a multi-language
time shared system. I know of two
places —— here at Rice where we have
begun a rudimentary connection between
FORTH and UNIX, and at Kitt Peak
National Observatory where their CDC
6400 has very elaborate inconnections
between FORTH and CDC's SCOPE.

Editors Note -- This is an excellent
example of conversion of a FIG assembly
listing to another processor. However
one more change is in order. NEXT on
the 6809 is only 4 bytes long and the
code jump to NEXT takes 3 bytes. On
processors this powerful, the code for
NEXT is repeated, in-~line, wherever
needed. This costs one byte but saves
3 clock cycles on each interpretive
cycle. The time overhead of indirect
threaded code is then 12 cycles.
Similarly, PUTD should be expanded in
line.

Page 5

IONS I

Recursion —
The Eight Queens Problem

Jerry LeVan
Dept. of Math Science
Eastern Kentucky University
Richmond, KY 40475

The Eight Queens problem has been
often used as a textbook problem in
programming, particularly to illustrate
recusion. I present here a solution in
FORTH.

Recusion is the technique of
allowing a procedure (a FORTH word
definition) to call itself. This
is normally blocked during FORTH
compilation, to allow a old word name
to be used in a new definition of the
same name. For example:

: HELP CR CR HELP CR CR ;

The new definition of HELP will
execute a previous definition, but
with two carriage returns before and
after. This is a necessary and common
capability.

How then to have a word call itself,
if not by name? The answer is MYSELF.
This word will compile a call to the
word in which it is located:

DEMO

IF MYSELF EISE — THEN ;

In this example, if the test is
true at IF, at MYSELF a call to DEMO
will occur. This is accomplished by
defining MYSELF as IMMEDIATE. At
compile time, MYSELF executes and
compiles the execution (code field)
address of the most recent (actually
incomplete) definition in the CURRENT
vocabulary. The fig-FORTH definition
is:

: MYSELF
LATEST PFA CFA , : IMMEDIATE

The Four Queen Problem at hand finds
the board row and colum locations on
which eight chess queens would be safe
from mutual attack. This example
doesn't check for board rotations or
reflections, so more answers are
printed than necessary.

The output gives the calculation
number on which the answer was found
and a list of the eight row numbers,
colum by colum on which the queens
are located. Now it's your turn to
DO-IT.

$ 3

- -~

7
8 queens by Jerry LeVan WIFR-79DECO2)
-

2 DUP + ; (double & value)

3 MYSELF (allow & word to call tteelf, by recursfon)

o-wovoun—-og

LATEST PFA CFA , ;| IMMEDIATE
: TARRAY (makes sn array of 1’s, as given by input)
<BUILDS O DO 1 , LOOP
DOES> SWAP 2* + . (leave address within array)
10 8 LARRAY A (these form workspace for the solutions)
11 16 IARRAY B
12 16 IARRAY C
13 8 IARRAY X (chis contains trial solutions)
14 ==>
15
SCR # 38
0 (wore 8 queens WFR-79DECO2)
1 : SAre
2 SUAP OVEIR OVER OVER OVER
3 - 7 ¢« C @ >
L] + b & R
5° DROP A & B> B> o @
6 : MARK
? SWAP OVER OVER OVER OVER
] - 7 + C 0 SwAP !
9 + B 0 suAr
10 DROP A O SWAP I
11 : UMMARK
12 SUAP OVER OVER OVER OVER
13 - 7 + C | SWAP !
14 + B) SuAr |
15 DROF A | SUAP ! -—>
sc # 59
0 (more § queens WFR-79DBCO2)
1 O VARIABLE TRIES
2 : PRINTSOL (print ose solutiom)
3 " found on try " TRIES @ S .R 8 O
4 DO I X @ 1+ S .k LOOP CR ;
S:my 8 0 (sesrch for answers)
6 DO 1 TRIES 41 ITERMINAL IF QUIT THEN DUP 1 SAFE
? IF DUP I MARK
[] DUP I Svwar Xx !
9 P 7 <
10 IF DUP 1+ ISTACK MYSELF KELSE PRINTSOL THEM
11 DUP 1 UWMARK
12 THEN

13 Loor DROP
14

1S : DO-IT OTRIES ! O CR TRY ; { This rums the problem)

FORTH DIMENSIONS II/1

Page 6

A ‘TINY’ Pseudo-Code

Bill Powell
Sawbridgeworth, Herts
England

There are some interesting speed/
memory trade-offs which depend on the
pseudo-code adopted in implementing
FORTH. The discussion by David Sirag
(1] for the PDP-11 shows DIC to be both
faster and more compact, but less
flexible (?) than ITC which is the
de facto standard. But 6502 FORTH
(Programma Consultants) appears to use
the JSR/RTS structure. This 1is
faster, but must lead to a lot of code
since it now takes 3 instead of 2 bytes
to reference each low level (CODE)
routine in a high level (COLON)
definition.

On my 6502, an 8 bit machine, it
seems attractive to call the most
frequently used FORTH words with a
single byte. My 'TINY' code reads the
first byte and then shifts it left to
write bits 6 and 7 into the sign and
carry flags. For codes $80 thru S$FF
(carry set) a branch is taken to a 2
byte COLON instruction. The even value
we now have is used for the Lo byte for
the Instruction Counter (IC). The Hi
byte is read by the original IC before
being saved on the return stack. This
is still a two byte p~code which allows
us a vast number of Colon definitions.
But we no longer need the Code Address,
saving 2 bytes. But we must start
these entries at even addresses which
will cost 1/2 byte on average.

Next the sign bit is tested. If
clear, a branch is taken to a routine
for low Literals which pushes the
numbers 0 thru $3F on the stack. Then
this routine drops back into the 'TINY'
interpreter. These low literals (0-63)
thus compile into fast single byte
p-codes. Frequently used Variables can
be stored at these memory addresses
making this doubly useful, e.g., User
Variables.

For codes $40 thru $7F the above
branches fail and we drop into a

nucleus QODE routine. This is done by
a look-up table which costs two bytes
per entry just as the Code Address
normally does. We can support up to
64 CODE routines this way. Despite
the time taken for bit testing this
structure works out quite fast because
only one byte has to be fetched. Of
course we could arrange for more than
64 QODE entries by defining one that
gives acoess to a three byte structure,
but 64 should be enough.

The effect of these one byte
instructions is to make the body of
COLON definitions much smaller.
Literals require 1, 2 or 3 bytes
instead of 2, 3 or 4 bytes. On the
other hand OONSTANTS and VARIABLES will
usually reguire 3 instead of 2 bytes
since in TINY they are compiled
like Literals. But these words are
infrequent in FORTH because parameters
are passed on the stack.

TNy JSR/XTS orC m
1. ooDE cycles 21 12 X; ‘5
d.bytes S 1
(NEXT) p.mbytn 1 3 2 2
2% 5" cycles 100 24 i 105
d.bytes 1-1/72 1 5 4
p-bytes 2 3 2 2
3. Storage cycles X w 48 ? to 58 7t 8 7 to 63
e.9. d.bytes 1 3 3 2
CONSTANT p.bytes 1w 3 3 2 2
4. Literals les 30 to 48 ?to % 49 to 4 72t &8
;’.ﬁmz 1w) 1w S 2w 4 2w 4
S. A Line cycles 30 146 84 40
1o level p.bytes 14 » n 3
6. A Line cycles *e00)237 1056 1412 159)s00e
Hi level p.bytes 17 2 % 2
7. Program d.bytes -3 155 465 435
sc;q:w p.bytes 930 17% 1440 1300
wtal.bytes 0001215 1895 1905 1035000
Table comparing p-codes: d.bytes = dictionsry overhead

p.bytes = length of p-oude roquired

17

Page 7

FORTH DIMENSIONS I

The table above analyses three forms
of overhead:

1. Time overhead in cycles

2. Dictionary building

overhead d.bytes
3 P-code required each

time the entry is

called p.bytes

Sections 1, 2 and 3 analyse FORTH
words of type CODE, COLON, CONSTANT,
and Section 4 analyses Literals.

In Section 5 we find the time ower
head to execute a line assumed to
contain 6 CODE, 1 Literal, and 2
Storage (CONSTANT) words, as well as
the space for its p-code. Some of the
numerals have been assumed low.

Section 6 is like Section 5 except
that 3 of the CODE words have been
replaced by 3 COLON words of the type
in Section 5. At this level we can get
a good idea of comparative speeds of
execution.

Section 7 gives the storage required
for a program of 35 CODE, 20 storage,
and 60 COLON words (drawing equally
from Sections 5 and 6). This does not
include the space for actual data nor
for the machine code of the nucleus,
but does include all p-code and
dictionary overheads apart from the
headers.

Taking ITC as 100% we see that the
per formance becomes:
TINY JSR/RTS DIC

Time Overhead 78% 66% 89%
Space Required 66% 103% 104%

The benchmarks are for the 6502, but
similar ranking seems likely for other
8 bit micros. Clearly, longer programs
will favor TINY even more. On the
other hand JSR/RTS may execute even
faster than indicated because the
nucleus can make freer use of the cpu
registers.

An important aspect of FORTH is the
access it gives the user to the struc-
ture of the language. Therefore 1
would still like to see ITC remain the
preferred form because of its elegence
and flexibility. But TINY has much to
offer on small 8 bit systems.

(1] Sirag, D: "DIC v/s ITC for FORTH"
FORTH DIMENSIONS Vol. 1, No. 3, Oct./
Nov. 1978

RENEW NOW!

RENEW NOW!

RENEW NOW!

FORTH DIMENSIONS 11/1

FORTH in Literature

At the FORTH Convention, October,
1979, Dan Slater gave a short report on
an experiment on communication with
killer whales. By use of a touch
sensitive plate, the orca could learn
to physically equate touching a posi-
tion with a concept or object.
Interest was expressed in using the
syntax of FORTH to define new items.
By this method a man/whale vocabulary
can be built.

The evening Charles Moore read a
FORTH poem by Ned Conklin. It is
loosely based on a classic of English
literature.

SONG
SIXPENCE !

BEGIN RYE @ POCKET +! ?FULL END

24 0 DO BLACKBIRD I + @ PIE +! LOOP
BAKE BEGIN ?20PENED END

SING DAINTY-DISK KING ! SURPRISE ;

A-21

Bill Ragsdale has submitted two
more. This is a familiar quotation,
with apologies to Browning:

: LOVE
CR ." How do 1 love thee?"
CR ." Let me ocount the ways."
1 BEGIN CR DUP . 1+ AGAIN

RHYME
JACK DUP NIMBLE BE

DUP QUICK BE
CANDLE-STICK OVER JUMP ;

Finally here is an actual, full
poem. It is taken from "The Space
Childs Mother Goose" by Frederick
Winsor, Simon and Schuster, 1958. It
consists of eleven stanzas and is
almost recursive.

The first two screens compile
the primitives from which the poem
is recited, by loading of the last
screen. The computer's recitation
occurs stanza by stanza with the

operator indicating his interest and
approval by operating any terminal key
at the REST after each stanza.

SCR # 108
0 (The Theory that Jeck built MFR=-9DECLS)
1| (Fros The Space Child’s Mother Goose, Fredertck Winsor)

2 : RECITE 110 LOAD QuiT ; (say this poes)

3 : THE M the *

4 : THAT [+ 3 " That " H

5 : TH1S [+ 3 " This {0 " THE :

6 : JACK o Jack buile”

7 : SUMMARY o Suamary”

8 : FLAW " Flav"

9 : MUMMERY " Mummery”

10 : k ." Constant K"

11 : MAZE +" Zrudite Verbal Haze™ ;

12 : PHRASE " Turn of @ Plausible Phrase” ;

13 : surr ." Chaotic Confusion and Bluff" ;

14 : stTury " Cybernetics and Stuff” ;

15 : THEORY " Theory " JACK ; -=>
sCr 4 109

0 (More Poem WrR-79DEC1S)

1 : BUTTOM +* Button to Start the Machine”

2 ¢ CRILD ™ Space Child with Brov Serene” ;

3 : CYBERNETICS " Cybernetics and Stuff” ;

4 : HIDING CR ." Riding " THE FLAW ;

5 : LAY THAT .” lay in " THE THEORY ;

6 : BASED [« 3 " Based on ¥ THE WINMERY ;

7 : SAVED THAT ." saved " THE SOMMARY ;

8 : CLOAK CR ." Cloaking " Kk

9 : THICK IF THAT ELSE CR ." And " THEN ." Thickened " THE MAZE ;
10 : HUNG THAT .” hung on * THE PHRASE :

11 : COVER IF THAT ." covered " ELSE CR ." To cover " THEN BLUPY ;
12 : MAKE CR ." To sake wich " THE CYBRRMETICS ;

13 : PUSHED CR ." Who pushed ™ BUTTON ;
14 : REST 46 EMIT 10 SPACES KEY DROP CR Ch Ck ;
1S : WITHOUT CR .* Without Confusion, exposing the Bluff™ ; RECITE

Recite our poem WPR-9DECLS)
CR CRh THIS THEORY REST

IS PLAW LAY REST

3 THIS MUMNERY NIDING LAY REST

SUMMARY BASED WIDING LAY REST

S THIS K SAVED BASED HIDING LAY REST

6 THIS WAZE CLOAK SAVED BASED HIDING LAY REST

7 TRIS PMRASE 1 TMICK CLOAX SAVED BASED HIDING LAY REST

8 TNIS BLUPY WUNG | THICK CLOAK SAVED BASED WIDING LAY REST

9 THIS STUFF | COVER HUNG O THICK CLOAK SAVED BASED RIDING

10 LAY REST

11 THIS BUTTON MAKE O COVER HUMG O THICK CLOAK SAVED

12 SASED KIDING LAY REST

I3 THIS CHILD PUSMED CR ." That made vith ™ CYBERNETICS WITHOUT

14 NUMG CR ." And, shradding " THE MAZE CLOAK CR ." Wrecked " THE

15 SUMMARY BASED HIDING CR .“ And Demolished " TNEORY REST

Page 9

FORTH DIMERSIOS 11/1

FORTH, Inc. News

A series of free seminars and paid
($100-125) workshops is being offered;
pPolyFORTH will be presented. The
schedule is: Palo Alto, May 8 & 9;
Rochester, NY, May 13; Boston, May 14 &
15; New York, June 10; Cherry Hill,
June 11; Washington-Baltimore, June 12
& 13; Houston, June 16 & 17; New York,
June 18; Palo Alto, June 24 & 25.
For more information and/cxr to regis-
ter: Call Kris at FORTH, Inc. (213)
372-8493.

FIG DOINGS

Intensive Short Course

The American Chemical Society is
offering a number of five day, hands-
on, in-depth lab courses on micro-
processors and minicomputers. The
participants will have access to a
PDP-1]1 network running FORTH. Sessions
are June 8-13, September 7-12 and
December 14-19 at VPI, Blacksburg,
VI at a cost of $485 for ACS members
and $550 for non~-members. For more
information contact ACS Short Courses,
1155 Sixteenth St., N.W., Washington,
DC 20036.

FIG GROUPS FORMED OR FORMING

Call Guy Kelly (714)
268-3100 ext 4784 or Tom
Boyle (714) 571-7711

San Diego -

Seattle - Call Dwight Vandenburg
(206) 542-8370 ar Terry
Dettman (206) 821-5832
Mass. - Third Wednesday at 7:00
pm in Cochituate, MA.
Call Dick Miller (617)
653-6136

Virginia Call Joel Shprentz (703)
437-9218 or Paul van der
Eijk (703) 354-7443
In Houston, call Jeff
Lewis (713) 729—3320,
in Dallas, call John
Earls (214) 661-2928 and
in Denton, call Dean
Vieau (313) 493-5105
Arizona - Call Dick Wilson (602)
277-6611 ext. 3257

Call Ed Kammerer (503)
644-2688

Qregon -

New York - Write Tom Jung, 704
l66th St., Whitestone,
NY

Michigan - Call Dwayne Gustaus
(817) 387-6976

OTHER PUBLICATIONS

Dick Miller has sent the first issue
of the MMS FORTH Newsletter. 1It's jam
packed with news, tips and updates for
MMS FORTH users on the TRS~-80.

It's a service to registered owners,
and Dick would be glad to send a sample
copy to prospective users. Write
Miller Microcomputer Services, 61 Lake
Shore Road, Natick, MA 091760.

] * *

Thanks to Fig member Frank Dougherty
(325 Beacon Street, Belvedere, IL
61008) for the writeup in the Blackhawk
Bit Burners Newsletter. Frank dis-
cussed the language and our efforts, as
well as the dialect STOIC.

FORTH for Microcomputers by John S.
James originally published in Dr
Dobbs Number 25 May 1978 has been
reprinted first in ACM SIGPLAN NOTICES,
Oct. 1978 and now in an IEEE Tutorial:
MICROCOMPUTER PROGRAMMING AND SOFTWARE

FORTH DIMENSIONS II/1

Page 10

SUPPORT, IMSONG LEE, EDITOR, IEE cat
No. EHO 140-4 to quote from this
publication "James gives a compact, but
not necessarily easy, introduction to a
stack oriented, interactive programming
language called FORTH. A better
tutorial presentation may be found in
the manual, PROGRAM FORTH, A PRIMER, by
Gregg Howe, Steward Observatory,
University of Arizona, 1973." The
current availability of this document
is unknown.

More on STOIC-II

Technical Report TR-001

"EDIT79, A STOIC-I1 Programming
Example" (63 pages) $7.00

This report represents and example
of a non-trivial program written
entirely in STOIC-II. The program,
a text editor, was cross-compiled to
produce a stand-alone object program,
thus facilitating benchmark comparisons
with the CP/M editor which it closely
resembles. Included in the report are
the benchmark results, a brief user's
guide, and source code for the editor
along with extensive comments.

Contact: Jeff Zurkow
Avocet Systems
804 South State Street
Dover, DE 19901

KIM HARRIS COURSE

A five day intensive course on
programming with FORTH will be held
July 21-25 at Humbolt State University
in Arcata, California. The course will
cover the FORTH approach to producing
computer applications including: (1)
analyzing the requirements of a prob-
lem, (2) designing a logical solution,

solution. Topics will include the
usage, extension, and internals of the
FORTH language, compiler, assembler,
virtual machine, multitasking operating
system, mass storage virtual memory
manager, and file system. Camputers
will be available for demonstrations
and class exercises. The course will
be taught by Kim Harris, and Humbolt
State University will give 4 units of
aedit through the office of Continuing
Education. Tuition for the course is
$112 per student. The text will be
"Using FORTH"; copies will be available
at the course for $25 each. Housing is
available in very nice dormitory rooms
for $9 per person per night or at
several nearby motels. Cafeteria meals
may be purchased individually or at
$10.25 per day. For more information
and registration materials write,
before June 23:

Prof. Ronald Zammit
Physics Depar tment
Humbolt State University
Arcata, California 95521

RENEW NOW!

Page 11

FORTH DIMENSIONS 11/1

t iny-FORTH

A version of fig-FORTH tailored to
the TRS-80, Level II with 16K bytes of
memory minimum. I/0 devices supported
are: keyboard, display and cassette
tape recorder. New words can be
defined to control other devices. The
editor is identical to the fig-FORTH
editor and the output format is modi-
fied slightly to fit the TRS-80
display. Documentation includes:
introduction, editor, graphics,
assembler, advanced tiny-FORTH and
applications. The style is tutorial
with hundreds of examples that teach
tiny-FORTH in a hands-on mode. $29.95
for tiny-FORTH cassette and full
documentation for the Level II, 16K
TRS-80 plus $1.50 for shipping and
handling ($5.00 outside the US). The
Software Farm, P.O. Box 2304, Reston,
VA 22090,

NEW PRODUCTS

KIM-1 FORTH

This version was written from the
FIG model by Ralph Deane of Vancouver,
Canada. It contains a complete
programming system which has an inter-
preter /compiler as well as an assembler
and editor. All terminal 1/0 is
funnelled through a jump table near the
beginning of the software and can
easily be changed to jump to user-
written I/0 drivers. 6502 FORTH
resides in 8K of RAM starting at $2000
and can operate with as little as 4K of
additional contiguous RAM. $94.00 for
6502 FORTH system on KIM cassette.
$16.50 for 6502 FORTH user manual.
Eric C. Rehnke, 540 S. Ranch View
Circle, #61, Anaheim Hills, CA 92087.

Heath H89 and H8

FORTH for the Heath 89 and 8 is
possible with the £fig-FORTH 8080,
Version 1.1 (as demonstrated by Jim
Flournoy at the January FIG meeting).
Walter Harris implemented and brought
up the code on his dual disc H8 and
reassembled it for the HB89. For more
information, contact: FORTH Power, P.O.
Box 2455, San Rafael, CA 94902.

HONEYWELL FORTH SYSTEM

Source Data Systems announces a
language for non-programmer data
definition, transaction definition,
file definition and report generation
for Honeywell Level 6 Minis. Designed
for information management and retre-
vial when used together is SDS's Source
Data Entry package. For more informa-
tion, contact: Source Data Systems, 208
2nd Avenue, S.E., Cedar Rapids, IA
52406.

AMD 2901 FORTH PROCESSOR

Functional Automation unleashes the
I/0 thing, a FORTH based front end
processor for its AMD 2901 based 64 bit
wide microprogrammed computing engine.
The system programming language is FASL
(Functional Automation System Language)
which is available users. For more
information, contact: Functional
Automation Inc., 3 Graham Drive,
Nashua, NH 03060.

STOIC

STOIC, essentially an extension of
FORTH, is a general purpose interactive

FORTH DIMENSIONS 11/1

Page 12

program, assembler, debugger, loader
and operating system within a single
consistant architecture. With core
efficiency and high running speeds,
the langquage is extremely flexible
permitting the user to develop a
working vocabulary of subroutines
tailored to specific applications.

The entire package, including a
library of predefined subroutines,
is copyrighted but available to
educational users. STOIC requires
three discs, two are STOIC itself and
the third contains a bootstrap that
permits the entry of STOIC through CPM
and the continued use of CP/M disc I/0
under STOIC. For more information,
contact: Steven Burns, Massachusetts
Institute of Technology, Room 20-119,
Cambxr idge, MA 02139.

68 'FORTH FOR 6809

68'FORTH is a 6809 implementation
of the FORTH Interest Group standard
vocabulary of this powerful language.

68 'FORTH consists of full FORTH
Interest Group standard (May 1979)
vocabulary with names to 31 characters,
16 and 32 bit integer math, compiler
error checking, and source text
editor. System is supplied with
additional vocabulary to simulate disk
in memory (useful for modifying to work
with other disk systems or enabling
cassette-only operation), to use disk
for virtual memory (allows large data
sets to be used in small memory), to
interface with FLEX 9.0 text files for
input and output, and to perform
standard FORTH disk block read and
write, System is supplied on 5" floppy
disk configqured for SWTPC MF-68.
Minimum memory requirement is 8k for
FLEX plus 12K of user space. Docu-
mentation contains description of all
vocabulary words, information on
configuring for individual systenm,

and basic tutorial for FORTH language.
Information is available for recon-
figuring to interface witn other disk
operatings systems.

FLEX 9.0 format 5" disk plus
documentation: $39.95.

Talbot Microsystems
7209 Stella Link, Suite 112
Houston, TX 77025

PRODUCT RELEASE

8080 Assembler Available

John Cassady, who did the original
fig~-FORTH 8080 listing, has now re-
leased an 8080 FORTH assembler. John's
assembler handled all Intel nmemonics
and can easily be altered to Zilog, as
it is published as source code. It
handles structured assembly condi-
tionals IF, ELSE, THEN, BEGIN, UNTIL,
WHILE, and REPEAT. It is integrated
with the FIG security package to verify
ocorrect structuring of conditionals,
during assembly. John provides for
named subroutines as well as CODE
definitions.

Send $3.25 (includes postage) to

John Cassady, 339 15th Street, Oakland,
CA 94612.

PolyFORTH-CP/M

polyFORTH-CP/M is FORTH Inc.'s
polyFORTH, interfaced to run on nearly
any 32k or larger CP/M based system.
When loaded, polyFORTH-CP/M finds and
links-up to the CP/M I/0 drivers,
initializes itself, and responds "up"
on the system console. At this point,

_true polyFORTH is running, that is,

FORTH structured (screen oriented)
diskettes must be used. It is impor-
tant to realize that polyFORTH-CP/M
does not run under CP/M, it runs in
place of CP/M, utilizing only the CP/M
1/0 drivers.

Page 13

FORTH DIMENSIONS II/1

The polyFORTH-CP/M system, as
supplied by M&B DESIGN, is a value-
added system. FORTH 1Inc.'s complete
8080 polyFORTH system is supplied, plus
an additional diskette and manual
containing interface material. Also
provided, is a CP/M utility that allows
transferring polyFORTH blocks (screens)
to a CPM file, and transferring a CPM
file to polyFORTH blocks. Source is
supplied for the entire polyFORTH
system, the polyFORTH-CP/M components,
and the transfer utility.

polyFORTH-CP/M is available directly
from M&B DESIGN for $4,000 on a wide
variety of diskette formats. Contact:

M&B DESIGN

820 Sweetbay Dr.
Sunnyvale, CA 94086
(408) 243-0834

FORTH for Poly-88

fig-FORTH for the 8080 as imple-
mented by John Cassady and modified by
Kim Harris is now available for the
Poly-88.

This version uses cassette and
ram simulation of disc, and includes
full use of upper and lower case
characters as well as the Greek
character set, as well as high speed
graphics. An editor and an assembler
are included.

The complete

system price is $50.00

FORTH on cassette
(needs 8K RAM
2000-40005) e o o o 0 o o o 25-00

Poly-88 Forth
User's Guide . . « ¢ « « & 10.00

8080 fig-FORTH
Source Listing 10.00

Installation Manual
(F.I‘G. ml) L) . - * » L] 10.00

(CA residents add 6% tax)
Write: Jeff Fox

2223 Byron
Berkeley, CA 94702

(415) 843-0385

LOTS OF FORTH

ANCON provides a wide variety of
PORTH products, including: Hobby
versions; TRS-80 Cassette, $29.95;
Heath H8-H89, $49.94; 8080 CP/M 8in,
$49.95; 6809 5" Flex, $49.94.

Personel systems; TRS-80 Tape,
$45.95; Disc, $65.95; 8080 Cp/M 8"
$125.00; pdp-11, $140.00; Northstar,
Micropolis.

Commercial/Industrial/Scientific
versions available for specific
requirements. Jim Flournoy, ANCON,
17370 Hawkins Lane, Morgan Hill, CA
95037, (408) 779-0848.

RENEW NOW!

FORTH DIMENSIONS 11/1

Page 14

LYON'S DEN

(Editors note — George Lyons has
cor-esponded on FORTH topics over the
full life of FORTH DIMENSIONS. He
addresses technical and philosophical
topics. We're formalizing his con-
tributions into a bylined column.
Welcome to the Lyon's Den.]

I suspect that a paramount issue
in decisions on whether to use FORTH or
another language 1s a tradeoff between
language convenience and compiler
oonvenience. By implementing a complex
syntax a PASCAL compiler, say, auto-
mates part of the programming task at
the expense of a time-consuming source
entry and processing operation.
Standard FORTH seems to be at the other
extreme, leaving more explicit details
to be coded by the programmer, for the
gain of easier processing with an
interactive resident compiler.

The polarization of FORTH and its
alternatives on this scale may only be
due to the absence of standard FORTH
vocabularies to provide the same degree
of automation traditional languages
supply. I wonder if a quantum jump in
FORTH's popularity would result from
supplying compilers for traditional
lanquages implemented in FORTH.
Possibly, transparently obvious FORTH
lanquage features could be provided
achieving the same results. The areas
where the qgreatest impact might come
are PASCAL data structures, ALGOL
procedure argument passing and dynamic
local storage allocation, and APL
matrix algetra.

If techniques for these operations
in FORTH were widely known no one would
make the mistake of referring to FORTH
as a species of macro assembler. By
demonstrating that traditional language
convenience is available in FORTH users
might be motivated to take advantage of
the extensibility of FORTH to go beyond

LETTERS

the limitations of the traditional
approaches.

March 14, 1970
George B. Lyons

280 Henderson Street
Jersey City, N.J. 07302

Programma was nice enough to supply
me with a reassembled version of their
Apple-FORTH Kernel plus screens of the
dictionary entries for my KIM-1. This
was all entered by hand, painfully
debugged, editor programs written (in
their FORTH), etc. I then tried to
duplicate the "PI" routine in the Ir.
Dobbs Journal, only to find that
Programma didn't carry extra bits of
intermediate accuracy in the multiply
routine. Then another week of spare
time (midnight oil) work to rewrite the
math routines to allow "*/MOD" to work
properly. It finally worked.

I'm not bitter though. Through all
of this I learned enough of FORTH-like
programming to be more enthusiastic
than ever, but disappointed that the
example programs I've received from
you are not usable by the Programma
version. I am therefore eagerly
awaiting the availability of the 6502
version of fig-FORTH for my KIM-1l.

Edward J. Bechtel, M.D,
Newport Beach, CA

Should you have any books, manuals
or other documents pertaining to FORTH
which are available by special order, I
would like to have a list. There seems
to be a real need for textbooks or
tutorials which will carry a user fram
the most simple FORTH constructions to
the very elaboarate ones like <BUILDS
and DOES>. (See #1 below.)

Page 15

FORTH DIMENSIONS II/1

For your information, I am working
with the mmsFORTH implementation from
Miller Microcomputing Services. I am
guite satisfied with the system to
date, and loock forward to other exten-
sions. I have distributed several
FORTH programs to MMS which they may
use in their newsletter. Should the
FORTH Interest Group have a program
exchange or publish programs, I will
submit these programs to you also.
(See #2 and #3 below.)

Andrew W. Watson
Vinton, VA

Editor...

#1 - Use the Mail Order page and see
Information and New Products
sections of FD.

#2 - Send programs to FD!

#3 - Address for Miller Micro-
computing Services, 61 Lake
Shore Road, Natick, MA 01760.

I want to tell you how impressed I am

at the quality of the Installation
Manual and the 6800 Assembly Source
Listing!

The 6800 listing provided everything
I needed to build an identical source
file. The Symbol Table and hex dump
were especially useful in tracking down
the last small typos. (I used the
check sums for the 'Sl' dump to locate
typos such as INS instead of INX.) To
get FORTH running on my system, all I
did was to modify the ACIA address and
delete the coding for Trace.

I notice a peculiar behavior
regarding the stack. If I type . when
the stack is empty, I get an error
message, as expected. But after the
error message, there are two numbers on
the stack. 1Is this normal?

Gordon Stallings
Bartlesville, OK

Editor...

The numbers left on the stack after
an error are the block number and
character offset. See ERROR. This
allows WHERE (Scr88) to display the
offending text.

Thanks to John James and FIG,
I've upgraded my sub-FORTH to what I
now call 2650-FOURTH. To date, except
for the disk I/O verbs, my FORTH more
or less matches Mr. James' FORTH with
the exception that I've incorporated an
assembler, it's fully ROM based and it
has a few more primitives. I do
support a cassette I/F but can't use
the full power of the fast virtual
storage. I will release a copy of my
2650-FORTH to FIG as well as any
application work that I've done.

Myself being broadly classified
as a computer architect or computer
designer, I have a very keen interest
in turning out a FORTH engine (to
borrow a phrase from Western Digital),
and will attempt the implementation. I
will probably use the 2900 series bit
slices since I have all the development
tools. 1Is there someone in this wvein
that I could contact?

Edward J. Murray
Pretoria, Union of South Africa

miw...
Look forward to receiving your

2650-FORTH. Address for John S. James,
P.O. Box 348, Berkeley, CA 94701.

I was somewhat disconcerted when I
read the article by Mr. David J. Sirag,
"DTC Versus ITC for FORTH on the
the PDP-11", FORTH Dimensions, Volume
1, No. 3. The author has, I believe,
misunderstood the intent of the article
by Mr. Dewar.

FORTH DIMENSIONS II/1

~Page 16

In Mr. Dewar's ariticle, the
definitions of direct threaded oode
(DIC) and indirect threaded code (ITC)
ae:

"DTC involves the generation
of code consisting of a linear
list of address of a linear list
of address of routines to be
excuted."

"ITC..." (involves the generation
of code consisting)"... of a
linear list of addresses of words
which contain addresses of
routines to be executed."”

As applied to the FORTH type of
hierarchial structure (hierarchial
indirect threaded code?), I would
extend Mr. Dewar's definition to
be:

"ITC involves the generation of
code consisting of a linear list
of addresses of words which
contain addresses of routines to
be executed. These routines may
themselves be ITC structures.”

However, Mr, Sirag based his conclu-
sions on the following loose defini-
tion:

"The distinction between DIC and
ITC as applied to FORTH is that
in DTC executable machine code
is expected as the first word
after the definition name; while,
in ITC the address of the
machine code is expected."”

Obviously, the two men are not
referring to the same things. Mr.
Dewar is referring to the list of
addresses which define the FORTH word,
while Mr. Sirag is referring to the
implementation of the FORTH inter-
preter. If indeed Mr. Sirag's state-
ment were true (which it is not) that
their "analysis contradicts the
findings of Dewar”, then they should
have implemented a DIC language rather
than the ITC language of FORTH!
Indeed, a careful examination of what
is actually occuring in LABFORTH

reveals that their techniques are
logically identical to Dewar's ITC.
They have simply, through clever
programming, taken advantage of a
particular instruction set and archi-
tecture. It is beyond the scope of
this letter to prove this equivalence,
or to suport the FIG desire to have a
common implementation structure for all
versions of FIG FORTH.

Please note that I am not quibling
over semantics with Mr. Sirag. All
definitions are arbituary. {However ,
the value of a definition lies in its
consistency, precision, and use-
ability. I find Mr. Sirag's definition
of DIC and ITC to be inconsistent with
the environment in which he operates,
FORTH, and thus quite useless.) My
intent is two fold: (1) I am a self-
appointed defender of the excellent
work of Mr. Dewar, and (2) I want to
correct any misconceptions concerning
this issue for readers of this news-
letter who did not have access to
Dewar's (better) definition of DTC and
ITC.

Jon F. Spencer
Sherman Oaks, CA

Many thanks to John Cassady for
writing an excellent 8080 FORTH and
to Kim Harris for implementing the
necessary mods. I received 8080
fig-FORTH Ver. 1.1 on 2 October
1979 and within a few days had the
assembly language source typed in and
assembled. A day or two later the
editor with a suitable patch for
the MATCH code was up and running
along with the disk based long errox
messages. I have been learning and
gaining experience with fig-FORTH ever
since.

After more than a year of using
STOIC from volume #23 of the CP/M Users
Group it is really nice to be using a
true FORTH that is consistant with the
examples in the FORTH Inc. manuals and

Page 17

TORTH DIMERSTONS 11/1

the several articles that have appeared
on FORTH. I cannot over-emphasize how
well documented the fig-FORTH system is
and how easy the system was to bring
up. No bugs or errors have been
uncovered in nearly six months of
use.

The only thing missing from this
otherwise nearly perfect package is
the assembler vocabulary. Is an
8080/2-80 assembler vocabulary avail-
able from the FORTH Interest Group or
if not is any planned? 1If an 8080
assembler is available or is planned a
short note or a word about future plans
in the next issue of FORTH DIMENSIONS
would be sufficient.

In any case I hope I get to see
some of you at NCC in May so that I can
personally thank you for making FORTH
available to me...

Sincerely,

M. Paul Farr
2250 Ninth Street
QOlivenhain, CA 92024

Editor —

Yes! An 8080 assembler is now
available in source code to complement
8080 fig~-FORTH. Send $3.25 (includes
postage) to John Cassady, 11 Miramonte
Road, Orinda, CA 94563.

Many thanks for the fig-FORTH
installation manual glossary and FORTH
Model, which have been difficult but
enjoyable items of study since they
arrived a couple of weeks ago.

Like many of your members I became
interested in FORTH without having
access to a FORTH system, and gained my
first practical familiarity by using
the FORTH low level interpreter style
of linkage on machine code programs.

With help from the Model I have now
got to grips with the outer interpreter
and virtual memory system, and will be
getting together with Bill Powell and
other FORTH fanciers over here on an
cooperative implementation effort.

Many thanks for your effort and
creativity, which are not unapprecia-
ted!

Bill Stoddart
15 Croftdown Road
London NW5, England

Editor's note -- Bill had a marginal
note to this letter: "certainly grows

on you. This really is ‘'Computer
Liberation.' BASIC was just a red
herring.”

Do you have a 280 version of fig-
FORTH? It is not listed on your arder
sheet but reading the text I got the
impression that you do.

By the way, I have a tutorial paper
discussing assembly programming in
FORTH environment for both 8080 and
280. It is available, including source
listing written in fig-FORTH, from
KALTH microsystems. The price is
$5.-US for 8080/85 wversion, $7.-US for
280 version or $10.-for both (add 15%
in Canadian funds).

Also, I am working on the assembler
for the Intel 8086/88. If I knew that
there are also other people interested
in it, that would motivate me getting
it complete sooner. (It is a cross-
assembler that can be run on any FORTH
based system.)

Yours truly,

Kalman Fejes

KALTH microsystems

P.0O. Box 5457, Station "F"
Ottawa, Ont., Canada

FORTH DIMENSIONS II/1

Page 18

Editor —

Fig doesn't have a plan a 2-80
version of fig-FORTH. We would be
pleased to publish a contributed
version, if as complete as the 8080
Version 1.1

As a participant in the Forth Inter-
national Standards Team, I cast a yeah
vote for the inclusion of "TO" and its
requisite definition of VARIABLE
{though I prefer the name FIELD).
Although I was first exposed to this
definition on Catalina Island, it
has many similarities to my own
implementation of FIELD and RECORD.

- In its simplest form, as outlined
by Paul Bartholdi, FORTH DIMENSIONS
1/4, integer variables of predetermined
precision are defined to behave as
bidirectional constants. Normal
behavior is to push their stored value
onto the stack. A momentary, alternate
behavior is to pop the stack value
into their confines. This temporary
behavior occurs only when referenced
after the word "TO", which sets a
direction flip-flop. Thus

VARIABLE A
10 TO A

VARIABLE B
ATOB

will place 10 into A and B without
using the @ (fetch) and ! (store)
operators.

Each of us, who has implemented
a version of "TO", encounters some
exasperation in dealing with the
addresses appearing on the stack.
Since, in the prior illustration,
neither A nor B supplied its address
for TO's execution we ponder the
shortcomings of this newly offered
definition and reluctantly sprinkle our
procedures with @ and !.

FORTH is an elaboration on the
indirect threaded list program archi-
tecture. As programmers we are free to
add indirection to our methods of

accessing and manipulating data.
Indirection, however, is only a
navagation technique for constructing
the address required by the hardware to
implement our desired operation. When
at the end of our circuitous logic, are
we then to complain "What can I do
about this address”.

Let's face it, @ and ! are perfect
operators.

I value TO and its implications 1in
system structure. The procedures
written using "TO" are more readable
than standard Forth, and result in
fewer visits to NEXT as they are
executed. "TO" will be included in any
system I generate, together with other

essential words, which include @ ard
1

As a Forth fanatic and a FORTH
DIMENSIONS fan I sincerely hope that
the newsletter will continue. If there
is some assistance I can render please
advise.

Williams S. Emery
2700 Peterson Place, #53D
Costa Mesa, CA 92626

Editor —

You're doing it! By thoughtful
correspondence and participation in
group events people such as Bill are
multiplying our efforts.

STRUCTURED VARIABLES

From time to time at the Fig meet-
ings the question of structured
variables arises. This is a proposal
for how they might be handled.

The December 1978 issue of com-
munications of the ACM contaiqed a
paper by John Backus on "Functional

Page 19

FORTH DIMENSIONS 11/1

Programming™ (also called variable free
programming). I believe a variation of
his ideas could be implemented in
FORTH. Suppose we are given a pair of
queues with bases at opposite ends of
available memory pointing toward each
other. Then enter an array into one of
them and begin processing it. Let the
results go to the other queue as they
are developed. Multiple steps would
alternate between the queues until a
final result is obtained. These
alternating queues can give some of the
effects of functional programming (1)
large state changes, (2) limited memory
of past states, {(3) no concern with
garbage collection, 4) variables not
named or declared.

Backus placed operators within the
data. This could be done or not, as
experience dictates. 1These queues are
not to replace the stack which FORTH
already has. The stack could be used
to hold what I would call operator
var iables or modifiers.

Let us look at a couple of simple
examples. Suppose we wanted to trans-
pose an array. 1 2 3

456

Enter it into one queue. [1 2 3 4 5
6]. Type in the transpose command. 2
1 TP. The 2 and the 1 go on the stack
so the transpose function knows what
kind of a transpose is desired. The
result will come out on the other
queue: 1 4 2 5 3 6]

Should we wanted to sum a vector.
(12 3 4 5 6]. Type in a reduction
command. ' + RD. The 'Tick' put the
address of 'Plus’ on the stack so the
reduction function knows what kind of
reduction to perform. The other queue
receives the result: 21}

W. H. Dailey
47436 Mantes Street
Fremont, CA 94538

FORTH IN THE PUBLIC VIEW

After the survey article in March
15, 1979 Electronics, Mr. Robert
Gaebler wrote the usual letter to the
editor critiquing FORTH's postfix
notation. We are reprinting a well
stated rebuttal to this letter which
also appeared in Electronics.

To the Editor:

I want to reply to Robert Gaebler's
letter on expression format in the
FORTH language [Electronics, July 5,
1979, p. 6].

Gaebler notes, and I agree, that
compilers can do the translation from
infix to postfix notation and thus save
the programmer both work and the risk
of errors. Unfortunately, these
advantages are not available without
same penalty for extensible languages
such as FORTH. If the compiler is to
translate, it must know how to parse
expressions. The parsing rules for
primitive operators are supplied with
the compiler, but those for the added
operators must be supplied by the
programmer at compile time, which makes
the parser much more complicated.

Examination of almost any program
will reveal that the majority of
program statements are nonalgebraic
o can easily be converted to a non-
algebraic form. Thus the advantages
of infix notation, when present,
apply only to a fraction of the
program statements., For most function
definitions, the prefix notation of
subroutine or macro calls is required,
and this can be replaced by postfix
notation with little or no loss of
clarity.

Use of postfix notation l-zaves
the parsing of all expressions in the
hands of the programmer. It means that
arguments for an operator may be

FORTH DIMENSIONS 11/1

Page 20

wepared using the full power of the
fxogramming language, without any
restrictions being imposed by the
ompi1ler. With this freedom comes the
scssibility of error, and argument
weparation is one of the most error-
xcne portions of programming in a
language such as FORTH. If effort is
> be spent on improving the ease of
srogramming, it should be spent on
si:mplifying argqgument preparation
and stack manipulation. Postfix
notation, with the applicative style of
xogramming that it produces, has so
many advantages that it should not be
sacrificed to an algebraic notation
that is not "natural,” but only some-
thing we all learned in school.

|

THIS IS THE END!

THE END CF VOLUME Hl #1!
THE END OF YOUR MEMBERSHIP?
DON'T LET IT HAPPEN!

RENEW TODAY!

CHECK THE LABEL FOR RENEWAL DATE!
SEND A CHECK TO F!G TODAY!
MAKE THIS YOUR BEGINNING!

RENEW NOW!

%

5

]

MAKE A COPY FOR A FRIEND!
POST COPY ON YOUR BULLETIN BOARD!

4‘#.1

Page 21

FORTH DIMERSTORS I11/1

