HOSTH IMIESIONS

FORTH INTEREST GROUP Volume 1
P.O. Box 1105 Number 5
San Carlos, CA 94070 Price $2.00

NSIOE

uﬂ _ Historical Perspective
l Publisher’'s Column
U" CASE Statement Contest
'JB “To”" Solution Continued
IJB Dictionary Headers
al FORTH-85 “CASE"” Statement
sg Another Generation of Mistakes?
33 Installation Reports
I Meeting Notices

su Letters

| More From George

57 New Products

38 FORTH, Inc. News

FOSTH MIMIENSIONS

published by Forth Interest Group
volume 1 No. 5 Jan/Feb 1980

Publisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
George Maverick

FORTH DIMENSIONS solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP
IS IN THE PUBLIC DOMAIN. Information
in FORTH DIMENSIONS may be reproduced
with credit given to the author and the
Forth Interest Group.

Subscription to FORTH DIMENSIONS is
free with membership in the Forth
Interest Group at $5.00 per year
($9.00 overseas). For membership,
change of address and/or to submit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H.
Moore in 1969 at the National Radio
Astronomy Observatory, Charlottesville,
VA. It was created out of dissatis-
faction with available programming
tools, especially for observatory
automation.

Mr. Moore and several associates
formed Forth, Inc. in 1973 for the
purpose of licensing and support of
the FORTH Operating System and Pro-
gramming Lanquage, and to supply
application programming to meet
customers unique requirements.

The Forth Interest Group is centered
in Northern California, although our
membership of 950 is world-wide. It
was formed in 1978 by FORTH programmers
to encourage use of the language by the
interchange of ideas through seminars
and publications.

PUBLISHER’'S COLUMN

Forth Interest Group has come of
age. FIG now has a publisher for FORTH
DIMENSIONS. Roy Martens will handle
all facets of putting together and
getting out future issues of FORTH
DIMENSIONS. He comes to FIG with a
solid background dating back to Hughes
Aircraft Company in the 50's to
Singer Business Machines and American
Micro Systems in the 70's. He has
publication experience gained from
Hayden Publishing Company (Electronic
Design, Computer Decisions, etc.), CBS
and EW Communications. Welcome aboard,
Roy!

S. Figgie

Thanks. I look forward to working
with FIG and hope that we can make
FORTH DIMENSIONS a useful and timely
tool for all members. Please send in
your letters, cases, suggestions. Your
input will make FORTH DIMENSIONS
successful.

Roy C. Martens

Page 46

si
St

Cc

fi

Pc
wi

Ju

FB2CEARSC

$$$$ CASE STATEMENT $$$$
CONTEST

FIG is sponsoring a contest for the
best CASE statement for FORTH.

Prize......$100 ($50 from FIG and $50
from FORTH, Inc.)

Furthermore, entries will be oon-
sidered as experimental proposals for
possible inclusion in the future FORTH
Standard.

Contest Rules......

Submit a CASE Statement, as speci-
fied below, to

FIG CASE CONTEST
P.0O. Box 1105
San Carlos, CA 94070

Postmarked on or before March 31, 1980.

All entries will be judged by
selected, non~entering members of
Forth Interest Group. All entries
will become public domain and may be
published by FIG.

Judging Criteria......

A. Conformity to rules

B. Generality of statement
C. sSimplicity of statement
D. Self-identifying function
E. "FORTH-like" style

Entry Requirements......

Your entry should contain descrip-
tions of a coollection of FORTH words
which allow the selection of one of
several actions based on a selection
criteria. The actions may be single
words or groups of words. The selec-
tion criteria may be simple or com-
plicated. A variety of situations
should be accommodated. Included in
your entry should be.... .

A. An overview of the statement
B. Source definitions in fig-

FORTH words for the needed
compiler and support words

C. An "English" explanation of how
these words work

D. Glossary entries for each
word

E. Examples of the use of this
statement

F. A discussion on the statement,
including advantages and dis-
advantages, limitations, appli-
cations, etc.

Contest Purpose......

The selection of one of several
procedures based on some criteria is a
useful and common control structure.
Standard FORTH provides two mechanisms
for this structure: nested IF struc—
tures and execution vectors. It is
desirable to have a standard structure
to handle a variety of situations.

However these do not appropriately
satisfy all situations in terms of
source convenience and execution-time
efficiency. A simple situation where
the selection criteria is a single
integer index with a limited, con-
tinuous range is adequately met by
FORTRAN's computer GOTQO or FORTH's
execution vectors

At the other end of the complexity
scale, if the selection criteria was an
index with a non-—contiguous range or a
series of expressions, the simple
statements would require manipulations
at the source level and would appear
less clear. Because of FORTH's
hierarchial modularity, the range
of complex situations can be met with a
range of structures. The execution-time
overhead need not be greater than what
the situation requires. The purpose of
this oontest is to produce a "kit" of
compiler words which will allow the
optimum specification of case control
by combining minimum execution-time
overhead with a uniform source language.

'S

FORTH DIMENSIONS I/5

Page 47

“TO” SOLUTION CONTINUED......

“EASTER”

SCR #11

0 (Dates of Easter DAB-790CT29)
1 : (EASTER) (year — day day)
As promised in the last issue, here 2 (calculate date relative to March 1)
is the example for the calculation of 3 DUP DUP TO YEAR 19 MOD l+ to G
the dates of Easter from Paul Bart- 4 100 / 1+ DUP DUP TO C
holdi, Observatoire De Geneve, Switzer- 5 3 * 4 / 12 - T0 X
land. 6 8 * 5 + 25 / 5 - TO 12
7 YEMAR 5 * 4 / X - 10 - TO D
SCR #9 8 G 11 * 20 + 2 + X - 30 MOD
0 (Dates of Easter, Clavius Algorithm) 9 DUP 0 IF 30 + THEN
1 (This algorithm and variable names are) 10 DUP DUP TO E
2 (from "Fundamental Algorithms" by) 11 25 = G 1 > AND SWAP 24 = OR
3 (D. Knuth. The method was originated) 12 IF E 1+ TO E THEN
4 (by the sixteenth century astronomer) 13 44 E - DUP TO N
5 (Clavius.) 14 21 ¢ IF N 30 + TO N THEN
6 15 N DUP 7 + SWAP D +
7 16 7 MOD - DUP DUP TO N ; -
8 0 VARIABLE 3%VAR (if one, store)
9: T0 18%AR ! ; (set to store) SCR #12
10 : FROM O %VAR ! ; (set to fetch)
13 ¢ (((preserve VAR flag) 0 (Dates of Easter DAB-790CT29)
14 R> VAR @ >R >R FROM ; 1l : EASTER (year -—print one Easter)
15 : 1)) { restore VAR flag) 2 (EASTER) 31 >
14 R) 19 RVAR | OR ; 3 IF 31 - S5 R ." APRIL "
15 4 ELISE 5 .R ." MARCH " THEN
16 — 5 YEAR S5 .R ;
6
SCR #10 7 : EASTERS (Begin year, end year ——)
8 (print Easter for a range of years.)
0 (simplified TO DAB-790CT29) 9 PAGE 32 SPACES ." DATES OF EASTER" CR
1 10 1+ 0 SWAP ROT
2 : VARIABLE (defined to observe TO) 11 DO 1 EASTER 1+
3 <BUILDS O , DOES> S%VAR @ 12 DUP 4 MOD O= IF CR THEN
4 IF (set, so store) ! FROM 13 DUP 240 MOD 0= IF PAGE THEN
5 ELSE (clear, so fetch) @ THEN ; 14 100P CR PAGE DROP ;
6 15
7 16
8 VARIABLE C VARIABLE D VARIABLE E
9 VARIABLE G VARIABLE N VARIABLE K
10 VARIABLE X VARIABLE Z VARIABLE YEAR
11
12
13 —>
14 Note that this demonstration does not
15 include the newer +I0 , AT etc.
16
EXAMPLE
10 April 1955 1 April 1956 21 April 1957 6 April 1958
29 March 1959 17 April 1960 2 April 1961 22 April 1962
14 April 1963 29 March 1964 18 April 1965 10 April 1966
26 March 1967 14 April 1968 6 April 1969 29 March 1970

Page 48

FORTH DIMENSIONS 1/5

- a . . @ s 4 B e n am e

M 1A ia. v e T A A e A et e A -

[
Ovvw

8o

A MODEST PROPOSAL FOR
DICTIONARY HEADERS

Robert L. Smith
Palo Alto, CA

The new f£ig-FORTH model has improved
the utility of FORTH by allowing
dictionary names to be of any length,
up to the current maximum of 31 charac-
ters. Most previous implementations
stored only the first three characters
of the name, along with a count field.
Confusion could easily arise, say
between the words "LOOK" and "LOOP".
The maximum word length stored in
the fig-FORTH model can be changed
dynamically by changing the value of
WIDTH. If one wishes to return to the
former restriction of 3 character
names, the new model will still be an
improvement because 1 and 2 character
names will require less dictionary
space.

One advantage of the old dictionary
format has been lost, namely a fixed
relationship between the link field and
the CFA (Control Field Address) or
the parameter field. The following
proposal will restore the fixed
relationship, while at the same time
keep the new fig~FORTH advantages.
In addition, the maximum allowable word
size is increased to 63.

A model of the proposed dictionary
entry is shown in Figure 1. The name
of the word is stored in reverse order
to simplify the dictionary searching.
From the link field one can step
backwards to obtain the name, or
forwards to obtain the definition
of the word. The leading bit of
the machine representation of each
character of the name is set to zero,
except for the terminal character which
has the leading bit set to one. Thus
the effective end of the name can
readily be determined. The name field
is reversed to simplify the dictionary
search procedure, but it is an imple-
mentation decision. Obviously one

oould put the characters in the forward
direction, but the dictionary search
would take longer. The suggested
structure increases the maximum
allowable word length to 63 (or
possibly 64).

It would be possible to use the
leading bit of the first character for
the smudge bit, but it would somewhat
complicate the dictionary search
procedure. One character names would
have to be a special case with no
terminal bit specified, since that
location would be designated for
smudging purposes.

This proposal eliminates the need
for a number of special words in the
fig-FORTH model (TRAVERSE, PFA, NFAa,
CFA). The only obvious disadvantage is
that the routine for printing the
dictionary names would need to take
characters in the opposite direction
from other text. The advantages
appear to outweigh the disadvantage.

Terminal bit + last

NTTTTTTT <Character of name

OITTTTTT] Next to 1ast character
[TTTTTTT] Of nare

Increasing Addresses

OTTTTTTT] Pirst character of name
lP'%‘CIC[(_:lclcl Precedence + Smudge +

m-rm—n count field. Link

field. Points to count
||||[I||| field of previous
dictionary word.
{TTTTETTT | cPa. Pointer to
l T lﬂ' T executable oode.

[TTTTTTT]Beginning of Parameter
RERRRRRR)

Figure 1. A proposed Dictionary Structure.
]

FORTH DIMENSIONS 1/5

Page 49

FORTH-85 “CASE” STATEMENT

Richard B. Main
Zendex Corp.
Dublin, CA

NEPTUNE UES has recently extended
its FORTH-85 with a "CASE" statement.
The CASE statement allows an n-way
branch based on a condition. Its use
is very similar to the PASCAL CASE
statement. the IF..(this)...ELSE...
(that)... THEN structure is a two—-way
branch while the FORTH-85 DO-CASE
END-CASES allows 65,000 different cases
randomly arranged. (n+l CASE may
precede n CASE.,) Each case can
test on a 16-bit quantity. The CASE
structure must begin with "DO-CASE"
then "CASE...END-CASE" and finish with
"END~CASES" .

The test "CASE" structure screen
gives an example of using CASE within
FORTH-85. An unknown variable is
passed to "MONITOR" for an n-way branch
based on a match between the variable
and one of the cases. "DO-CASE" places
the variable passed on the stack into a
location in memory. "41 CASE" will
fetch the variable and compare it to
41. If it is 41, code between "4l
CASE" and "END~-CASE" will be exe-
cuted (in this instance "ASSIGN" will
be printed) and then a direct jump to
"END-CASES". If the variable is not
41, then "41 CASE" will cause a jump to
the next case, and so on.

The "n" for "CASE" need not be
in-line ocode, nor absolute, nor known
at compile time. During run-time "n"
may be computed, fetched or otherwise
placed on the stack just prior to
executing case. The possibilities that
exist for this, oombined with 16-bit
CASE testing and 65,000 possible
cases AND (!) no restrictions on the
amount or type of code between CASE...
END-CASE, are immense. Some uses that
occur to me immediately are monitor
program executives, machine code
disassemblers, text interpreters, and
disk 1/0 drivers.

BOA IT WORKS (during compile)

The screen showing DO-CASE through
END-CASES must be loaded into your
system before they can be used. This
screen will actually extend your FORTH
compiler beyong having IF...ELSE...
THEN, BEGIN...IF...ELSE...WHILE,
DO... LOOP, AND BEGIN...END.

Line 1 extends the assembler to
include JINC for use by the following
code statements.

Line 2 contains code to set up the
run-time variable "VCASE" for use by
"DO-CASE" and "CASE".

Lines 3-9 code statements define the
run-time behavior of "DO-CASE, CASE and
END-CASE". While lines 11-15 define
the compile~time behavior of the
compiling words: "DO-CASE, CASE,
END-CASE, and END-CASE",

During compile time "Do-CASE"
assembles the code "DO-CASE", places
"HERE” and @ on the compile-time
stack, and assembles (temporarily) a
l6-bit 4. "CASE" then compiles
code "CASE" swaps the compile-time
stack places "HERE" on the stack to
locate "CASE" for "END-CASE"” and
temporarily assembles an 8-bit 2zero.
"END-CASE" now has passed to it
the location of "CASE"™ and "DO-CASE".
"END-CASE" will pass "DO-CASE" loca-
tion on to "END-~CASES". “END-CASE"
assembles code "END-CASE", places
"HERE" on the compile-time stack for
“"END-CASES", ocomputes "END-CASE" minus
"CASE" and loads the result (assembles
difference) at "CASE" +2. "END-CASE"
further assembles a 1l6-bit zero
temporarily for "END-CASES". “END-
CASES" has passed to it, on the
compile~time stack, all the locations
of "END-CASE" and the beginning "DO-
CASE". Since the number of cases is
variable "DO-CASE"™ had put -a zero on
the compile-time stack to mark the
bottom location the "BEGIN HERE SWAP! -
DUP @ = END" takes every "END-CASES"
location and assembles "END-CASES"
location there for direct forward jumps
from "END-CASE" to "END-CASES".

Page 50

FORTH DIMENSIONS 1/5

v v oYy v

Wy v

"« %3 W0 UV oy wv

0

Ul

The effect of all the compiling
machination was to place 1l6-bit and
8-bit code for use by the address
interpreter during execution. Review-
ing the intrepreter during execution.
Reviewing the interpreter: compiled
colon definitions are simply strings of
addresses of routines to execute.
Therefore, the address string compiled
for: "DO-CASE...CASE...END-CASE...
END-CASES" is:

Fig 1

AB....CDQ.OQEF..Q.(G)....
where:

16~bit address of code "DO~CASE"
l6-bit address (G)

16-bit address of code "CASE"
8-bit value of distance F+l
l6-bit address of code "END-CASE"
l6-bit address of (G) and

(G) is the location to continue execu-
tion after case.

interpreter pointer

A
B
C
D
E
F
G

I

HOW IT WORKS (during execution)

The following will refer to A
through (G) in Figure 1.

Before executing (address inter-
preting): A (DO-CASE) the case number
to execute 1is placed on the run-time
stack, Code DO-CASE is executed when A
is encountered and it will pop the
stack and store it at the memory
location "VCASE". At this point there
is no jump to make based on condition
so I is incremented past B. B exists
to provide a backward stub location for
the compiling of the structure. Code
between B and C is executed, and by
the time C is encountered the case
condition to test for is on the stack.
C is the code "CASE" which will pop the
stack and do a 16-bit compare to
"VCASE". If there is no match code,
"CASE" increments I (interp. pointer)
by D (8-bit). Control would then pass
to F+l. If there is a match, I is
incremented by one and points to D+l.
Code till E is executed. E will cause
code "END-CASE" to execute and it will
load I with F. Now I points to (G).

The code described here may be used
for your personal use and experimenta-
tion only. - Commercial users should
write to the author.

EXAMPLE

DO-CASE CASE END-CASE FND-CASES)
MBLER DEFINITIONS HEX : UNC D2 END FORTH DEFIN1ITIONS
VARIABLE VCASE .
O0-CASE N POP ' VCASE SHLD I INX 3 INX NEXT omp
CODE CASE W POP * VCASE LHLD L A MOV W 1+ CMF
0= NOT IF X LDAX I 1+ ADD A I 1+ MOV NCXT UNC
1 INR NEXT JMP THEN H A MOV W CMF
0= NOT IF X tDAX Y 1+ ADD A I 1+ MOV NEXT JINC
T INK NEXT UM THEN T INX NCXT UM
v CODE END-CASE I LDAX A L MOV I INX T {DAX A H MOV
19 HPUSH I POP NEXT JNF

BNOCUNIIN-T
a‘aA

11 8 DO-CASE NDO-CASE MHERE 0 0 » ; JMMEDIATE
12 CASE \ CASE SwaFr HEKE 0 Ce 3 IMMEDIATE

13 l m—cn: \ END-CASE HERE 0 » SHAF HERE

14 - SWAP C' § 1MMEDIATE

1% ¢ E'O-C*’ BECIN MERE SHAP ¢ -DUP 0 = END ; IMMEDIATF

8 ¢ TEST * CABE * STRUCTURE) BASE C@ HEX
3 MONITOR DO-~CASE

3
2
3 41 CASE [ASGICN) END-CASE
4 44 CASE [DISFLAY 2 END—CASE
S 446 CASE U FILL 2 END-CASE
é 47 CASE € GO) END~-CASE
7 49 CASE [INSERY) END-CASE
-] 53 CASE L SUBSTITUTE) END-CASE
L4 END~CASES i
10
11 ! KEYBOARD REGIN KEY 7F AND DUP MONITOR 20 = END ;
12
13 PASE C!
14
15

\
Editors Note:

This article has been presented as a
good example of the ease of addition of
control structures to match application
needs.

FORTH-85 is a UES software product
derived from microforth (TM, FORTH,
Inc.). Both these versions contain
definition names at variance with
fig-FORTH and FORTH-78. We present a
reference table:

FORTH-85
microFORTH £ig-FORTH FORTH-78
]

][] : n *
COMPILE Ncne

1 IP None
END UNTIL or END END
THEN ENDIF or THEN THEN

FORTH DIMENSIONS I/5

ANOTHER GENERATION
OF MISTAKES?

Roger L. Gulbranson
University of Illinois

Much has been said about how each
generation of computers the large
mainframes, the minis, and now the
micros - has repeated the mistakes
of the past generation. There have
even been comments on upward-com-
patibility mistakes in going from one
generation of microprocessor to its
succeeding generation(s).[1) I would
like to take this further by comment-
ing on the latest generation of
microprocessors, the 16-bit CPUs.

I was talking to an EE who tried to
convince me that the yet-to-be released
microprocessors are "so much better”
than the existing ones because they
have included all of the addressing
modes in each instruction. Among other
things, I am told, this reduces program
size and makes the micro run faster,
since its speed is directly related to
the number of fetches it must do per
instruction and the number of instruc-
tions used. As a concept, in toto, I
can only reply, BUNK!

If one were to design a micro-
processor stack computer, [2] it
would be possible to incorporate an
instruction set that has only one
multi-addressing mode instruction, a
"load effective address” instruction.
Since this is perhaps a bit austere, it
may be realistic to add appropriate
load to stack, store from stack,
conditional and unconditional branch,
and subroutine call instructions to the
group of "“addressed" instructions. The
remaining instruction set need not
contain more than 128 (if even that
many) zero-address instructions. This
instruction set can be arranged
so that all zero-address instructions
are 8 bits long. This means that most
of the time an instruction word will
ocontain two instructions, decreasing
the number of memory cycles per
instruction. If, in addition, the

stack is "cached" on chip, the n
of memory cycles per instruction wil
drop considerably. And if this latte
idea is properly extended to th
instruction stream to create a
"instruction stack,” much like that
the CDC Cyber computer line or th
Cray~1l, the number of memory cycle
can be reduced even further. Thi
reduction of memory cycles shoul
noticeably increase the speed of
hypothetical microprocessor.

Considering the impetus given t
virtual stack machines by the Pasc
P-code groups(3] and the Concurren
Pascal originators, [4] one wonders w
these ideas have not been efficientl
implemented in silicon. Must we wai
for another generation?

(1] L. Armstrong, "l6-bit Wav
Gathering Speed," Electroni
Vol. 51, No. 4, Feb. 16, 1978
pp. 84-8S.

(2] A good overview of stac
machines can be found in t
May 1977 issue of Computer

(3] References to these groups c
be found in Pascal News,
publication of the Pascal User'

Group.

[4) Per Brinch Hansen, The Archi
tecture of Concurrent Progr
Prentice-Hall Inc., Englew
Cliffs, N.J., 1977.

Reprinted from Computer, April, 1979
Copyright 1979, IEEE

Page 52

- AN O N0

an am swd A

INSTALLATION REPORTS

The distribution of £fig~FORTH began
on May 11, 1979 at the Fourth West
Coast Computer Faire. The first
installation to be brought up by a user
occurred while the Faire was still
running! Bob Steinhaus of Lawrence
Livermore Lab got the 8080 listing on
Saturday at the Faire. His wife
read the hex code to him and he typed
it in. By Sunday morning, he was
running!

The next to run was Dwight Elvey
of Santa Cruz. He organized five
programmers on five Intel developmental
systems. Each edited in 1/5 of the
source code. They then merged the
files, assembled at the listing origin
and caught final editing errors by a
byte~-by-byte comparison. They then
updated the I-O and re-origined. They
were running in four evenings work (of
five people).

The next to run was Dave Carlton of
Ceres, CA. Dave brought up £ig~FORTH
on his TRS-80. He did fill his edit
buffer and then crash, which cost
re-typing 25 pages! Dave demonstrated
his system to FIG on June 25. He had
just interfaced to his floppy-disc and
had the sample editor running.

John Forsberg of Maracaibo, Vene-
zuela should be up and running with his
Prolog 8080 with 32K RAM and casette,
floppy and disk capability that he put
together himself.

Frank D. Dougherty of Belvidere, IL
has a IMDO5 Ver 2.05 with 15 languages
running. He says his AXion EX-801
printer works like a charm.

Many installations of the PDP-11
are operating. There is a short cut
in this case. John James (the imple-
mentor) is also acting as a dis-
tributor. He provides a source
diskette that will assemble and run
under RT-11 and RSX~11M. Between 10 and

20 installations should be up by now.
John has gone to great care to create a
"portable” version for the various CPU
variations. fig-FORTH is known to be
running on Heathkit and DEC ISI-1l's up
through the DPD-11/60. Installations
are known in California, Arizona, New
York, and the Netherlands.

H=3

MEETING NOTICES

LONDON, ENGLAND

FORMAL, a meeting to gather input
for the future implementation of
FORTH, will be held January 8, 9,
and 10, 1980 at Imperial College,
London, England. Attending from
FIG will be: Kim Harris, Bill
Ragsdale, Jon Spencer, Larry
Forsley and probably 2 or 3 more.
Look for a report in the next
issue of FORTH DIMENSIONS.

NORTHERN CALIFORNIA

FIG monthly meetings will continue
to be held the fourth Saturday of
each month at the Special Events
Room of the Liberty Hoyse depart-
ment store in Hayward. Informal
lunch at 12 noon at the store
restaurant, followed by the 1 pm
meeting. Directions: Southland
Shopping Center, Highway 17 at
Winton Avenue, Hayward, CA, Third
floor, rear of the Liberty House.
Dates: 1/26/80, 2/23/80, 3/22/80,
etc. All welcome.

Send us notices of any meetings that
you know about.

;S

FORTH DIMENSIONS 1/5

Page 53

LETTERS

Despite your warnings regarding
Programma International's imple-
mentation of FORTH for the PET, I
bought it just to have something
to work with and get a feel for FORTH
(or at least a FORTH-like system), and
I have been having a ball with it
(despite the limitations of this
version), after adding 16K of RMM - I
thought the thing would run in 8K
but found out differently. The first
VOCABULARY written for the PET was a
DEFORTH routine to disassemble the
dictionary. After DEFORTHing the
latter dictionary entries and saving
them on tape, I was able to truncate
the dictionary to wipe out 10 unneeded
words. This saved about 3 pages of
memory.,

Edward B. Beach
Arlington, VA

Editor...
People keep trying!

You will find enclosed a set of
source listings for the 8080 nucleus of
MSL. (Editor's note: Incorporated in
fig-FORTH 8080 Assembly Listing,
Version 1.1 see New Products.)

All my code routines are re-entrant.
Not only that, but without exception,
they use no more bytes or time than
Cassady's routines. In fact, in many
cases, you will note that my routines
use fewer bytes and run faster. In
some cases, such as multiply and

d@vide, the improvement is enormous!
viz

U* UNSIGNED MULTIPLY

4950 cycles
994 cycles

81 bytes
47 bytes

CASSADY
VILILWOCK

U/ UNSIGNED DIVIDE

30,600 cycles
2,495 cycles

203 bytes
76 bytes

CASSADY
VILLWOCK

I was well into the design and
coding of MSL when I stumbled upon
FIG and its efforts. Your documents
(particularly the installation manual
and James' work on the 11) have been
most useful and have saved me consider-
able time in putting the finishing
touches on MSL. 1I'd like to return the
favor, so I hope that my 8080
routines will be useful to you.

Many thanks again to FIG for your
excellent efforts.

R. D. Villwock
Pasadena' CA

MORE FROM GEORGE

Following are some observations on
PASCAL and FORTH implementation details
made upon reading the recent article
in Dr. Dobb's Journal.

With the emergence of a low cost ye‘t
elaborate compiler for PASCAL at USCD
consideration might be given to PASCAL
as an alternative to FORTH. PASCAL is
implemented with a self-compiling,
virtual-machine language system
offering transportability similar to
PORTH, and is supplied by USCD with
full source ocode. From the standpoint
of sophisticated extensions to a system
such as high-speed arithmetic proces-
sing hardware, converting from floppy-
disks to hard disks, adding memory
beyond directly addressable space,
however, PASCAL may be much more
difficult to work with. The system
involved very large programs including
a compiler, an interpreter, a run time

Page 54

DIMENSI I/5

executive, and a debugger--all of
which must be consistently modified in
making extensions. The USCD authors
may well turn out to be the only users
able to efficiently make expansions
themselves.

An important advantage seems present
in PASCAL, however, which is dynamic
storage allocation—the nested globals
and locals environment, and FORTH does
not seem to offer this. Several
methods for accomplishing this in FORTH
might therefore be noted. First,
existing FORTH system words can
be used to create a class of variables
and constants whose code-address points
to a new defining-word which returns,
not the address or data in the vari-
able or constant itself, but in a
dynamically reserved area on the
stack. The parameter field of the
variable holds an address offset
generated at compile time, relative to
an environment pointer implemented as
another variable whose parameter
field is filled with the stack pointer
value upon entry to a procedure, before
shifting the SP to reserve the data
area. The code addressed by the
variable combines the offset with
the environment pointer and returns
either this address, or the data at
that address on the stack.

The process of retrieving dynam-
ically stored data would be slowest
when implemented with regular FORTH
language, so a second method is to
provide machine language for the basic
mechanisms involved just as FORTH does
for its standard data handling.
Assumed in both cases is a provision
for compiling words (e.g. SVARIABLE—
define a "stack" variable) which
creates the related dictionary entries
with the same ease as the regular
VARIABLE and CONSTANT words do.

An interesting variant would be
pointing the code-address of a vari-
able at a modifiable jump-vector.

Initially the vector points to code
which reserves space for the variable
on the stack, and is then switched
to point the code retrieving the
data. Thus storage is automatically
allocated, not upon entry to a pro-
cedure, but precisely when a variable
becomes used.

The principle of the above, creating
new defining-words, oould have other
uses as well; for example, data for
a variable could reside on disk and
the code~address of its dictionary
entry oould point to a routine which
retrieves it from disk. What is needed
is an easy way to compile these
structures. For instance, if we want
to create a variable X, to reside on
disk, we need another variable, Y,
to hold the data, and an operator
RETRIEVE; X is then compiled as
the definition; Y RETRIEVE so every
reference to X returns the value from
disk. Having defined the "Y Retrieve"
word we need an easy way to tell the
compiler that X should be compiled as
that kind of definition, without having
to write it all out.

PASCAL implementation may be very
well optimized, but FORTH code accom-
plishes even more in the way of code
compaction because of its unique
representation of operands as though
they were operators in object code.
This means that no separate operator
for "load stack" to push an operand
is needed in object code, saving
space. This is a kind of software
implementation of "tagged memory" on
large scale machines. FORTH still
requires 16 bits for each object code
entry, but further compaction implies
what must be a time consuming unpacking
operation every time a virtual-machine
instruction is executed. The same
compaction in FORTH applies to pro-
cedure calls as well as to data; no
separate "call" op code is needed as
the procedure referencing operand is
the call itself. Since each procedure

FORTH DIMENSIONS 1/5

Page 55

has within itself whatever housekeeping
functions are involved with entry and
exit, elaborate housekeeping need
be performed only when necessary;
e.g. locals can have fixed absolute
addresses or be dynamically allocated
as the case warrants. Have the hard-
wired stack-machine designers missed
something here?

PASCAL is also capable of making
available at run time the power of the
compiler for sophisticated interfacing
of users to applications packages, by
running an interpreter for PASCAL and
calling precompiled object code pro-
cedures. The interpreter seems large,
however, and the whole procedure
cumbersome. A high quality APL inter-
preter will -soon be available from
MICROSOFT for this kind of appilcation,
but APL has many problems running from
its special keyboard to the difficulty
of modifying it. FORTH thus offers
unique advantages in this area.

George B. Lyons
Jersey City, NJ

"The 'TO' Solution"™ in issue #4
improves the handling of variables
by increasing the amount of interpre-
tation done at run-time in FORTH (a
conditional branch on the value of
the store/retrieve state variable).
Perhaps this could also be accomplished
instead at compile time. Let each
variable contain two code addresses,
one for retrieval, one for storing, and
let the compiler select which to put
into the object code generated on the
basis of the state variable. "TO" as
such would then not appear in the
object code at all, saving space, but
variables would become longer. But
again, no assignment operators at all

again, no assignment operators at all
would appear in object code, either.
In order for the compiler to work this
way it would have to be expanded beyond
the standard FORTH by adding the
capability of distinguishing different
types of words and using different
procedures to compile variables
and non-variables. This might be
accomplished by adding to the code for
each type of word, e.g. variables, a
pointer to a compiler routine to be
used when compiling words of each
type. When encountering a word in the
input stream, it would be looked up in
the dictionary, the code address
extracted, and then the pointer to the
compiler code located within the code;
compilation would then continue where
pointed. The compile code for vari-
ables would check the state variable
and enter the appropriate address
from the word being compiled. Code
for variables would have to make
allowance for the varying distance of
the parameter field from the code
address. -

This method might be a technique for
implementing compilers of all sorts
derived from the FORTH compiler.

In the case of ARRAYS, one might
consider having several code addresses
in each array in the dictionary, with
associated operators in the source code
which do not get put into the object
code, but merely select which of the
code addresses will be compiled for
each array reference in source.

Of course, if you expand the
compiler, it might get too big to fit
in memory with all the application code
the way FORTH normally does.

George G. Lyons
Jersey City, NJ

Page 56

"FORTH DIMENSIONS 1/5

OHwuwcaToNn =

o

o N

200N

290 ePNQPROER

NEW PRODUCTS

REVISED fig-FORTH LISTING

fig-FORTH 8080 Assembly Listing has
been revised to Version 1l.1. If you
have an old version (1.0), send in the
original cover and $4.00 for the new
version (1.1). Otherwise available for
$10.00 (overseas $13.00. Forth
Interest Group, P.O. Box 1105, San
Carlos, CA 94070.

PDP-11 fig-FORTH DISKETTE

In addition to the f£ig-FORTH system,
the diskette includes an editor, Forth
assembler, string package and an
80-page User's Guide with discussion
and examples of Forth programming
techniques.

Like all the fig~FORTH systems,
this one has full length names to 31
characters, the "security package"
of compile-time error checks, and
alignment with the 1978 Forth Inter-
national Standard.

This system runs under the RT-11 or
RSX-11M operating systems, and can be
modified for other environments or for
stand-alone It can interface to
database packages or other software,
allowing interactive access and program
development with systems not otherwise
available interactively. The fig-FORTH
model is distributed in Macro-11
source, for easy modifiability by
programmers without a Forth back-
ground; the editor, assembler, and
string package are in Forth source.

The ocomplete system price is $130,
including diskette and all documenta-
tion; the User's Guide separately is
$20. (Ca. residents add 6% tax.) dJohn
S. James, P.O. Box 348, Berkeley, CA
94701.

FORTH FOR THE TRS-80

MMSFORTH offers TRS-80 users
stack-oriented logic and structured
programming, machine-code speed and
compactness, virtual memory, major
advantages of interpreter, compiler
and assembler (all are oo-resident),
and your own commands in its exten-
sible dictionary. MMSFORTH includes
assembler/ editor, all necessary
routines for disk and/or tape, and
additional routines for BASIC-like
handling of strings, arrays, etc. MMS
supplies information and examples to
learn this language or to start your
own FORTH program for your specialized
application.

SPECIAL ~ At no extra cost, THE GAME
OF LIFE in MMSFORTH just 2 seconds per
generation, an excellent demonstration
of the techniques and speed of FORTH.
MMSFORTH, without manual:

L.2 16K tape $35.00
Disk, w/Disk 1/0 $45.00
"The microFORTH PRIMER",

manual for MMSFORTH $15.00

Miller, Microcomputer Services, 61 Lake
Shore Road. Natick, MA 01760

SBC-FORTH

SBC-FORTH is a complete firmware
operating system designed to plug
directly into the ROM sockets of the
SBC-80 series of single board computers
offered by Intel & National. Operating
entirely within the resources of one
SBC Card SBC-FORTH features resident
compiling and assembling of user
entered tasks. The addition of SBC
Disk and RAM Cards to the system allows
SBC-FORTH's resident disk I/O and Text
Editor to edit, load, and run source
programs from disk. SBC-FORTH is
interactive with the user's CRT and
produces tight object code capable of

FORTH DIMENSIONS I/5

Page 57

execution speeds approaching assenbler
code. SBC-FORTH is presently available
on four 2716 EPROMS for the SBC-80/20
and two 2732 EPROMS for the SBC-80/30
CPUs. Options include Single or Double
Density SBC Disk I/O Drivers anad CRT
Console Baud Rates. Priced from $750
depending on media. Zendex Corpora-
tion, 6398 Dougherty Road, Dublin, CA
94566,

STOIC-II

STOIC-II is an enhanced version of
STOIC, a FORTH dialect which originated
at MIT's Biomedical Engineering Center.
STOIC offers significant advantages
over other microprocessor FORTH imple-
mentations, notably a comprehensive
disk file system and text editor in
place of the "screen" ap proach used
elsewhere., This encourages good
program docu mentation by allowing
arbitrarily long lines and pages,
thus making it easier to include
adequate comments and indenta tion.
Other features include syntax checking
and a separate stack for loop control,
which together yield a system that
recovers from most errors instead of
crashing. STOIC also provides for
character-string literals and offers
a very extensive set of standard words,
including 16 and 32 bit arithmetic.

The standard STOIC-~1I package
includes the kernel and basic words,
assembler, file system, editor, double—
precision and floating-point arith-
metic, target compiler and associated
library of primities, and utility
programs for paginated file listing and
alpabetized 1listing of vocabulary
branches. The version currently
distributed runs on 8080, 8085, and
2-80 based computers with soft-sectored
floppy disks, and is priced at $4000
with complete source code or $2000 for
object code only. Avocet Systems, 804
South State Street, Dover, Delaware
19901.

FORTH, Inc. NEWS

A new on-line monitoring and
record-keeping system developed by
FORTH, Inc., using a PDP 11/60 mini-
computer, is being used by the Depart-
ment of Pulmonary Medicine of Cedars-
Sinai Medical Center, Los Angeles. The
FORTH system oollects data from five
on-line sources, maintains a data
base including this information and
performs calculations for and formats a
wide variety of reports. Data 1is
collected from patient admittance
questionnaires and intensive care
patient records through terminals; fram
the automated blood gas laboratory; the
pulmonary function test equipment;
and the exercise laboratory, all
through direct 1links with the PDP
11/60. The speed of FORTH allows the
Cedars-Sinai pulmonary specialists to
examine all data on a particular
patient, while the patient is still in
the laboratory and connected to the
equipment.

Current Openings

Project Manager - applications and
special systems

Product Manager - processors and
drivers

Programmer/Engineer - hardware and
software projects

Technical Writer - software docu-
mentation

FORTH, Inc.
815D Manhattan Avenue
Manhattan Beach, CA 90266

Page 58

FORTH DIMENSIONS I/5

