
FORTHfor the

(‘omplete Idiot

by C H.T!rtg .PI.D

CFFETE ENTZPPPJSES, INC.

1984

(c) Copyright, 1983 by C. H. Ting

?ist Edition, Septenibsr 1983 (First Printing)

FEBRUARY 1984 (Second Printing)

* .k * * * * * *

All rights raserved. This book, or any part thereof, may not
he reproduced for commercial usages without written permission
from the Azthor.

: * 1: *

UNITED STATES COPYRiGHT OFFICE

RGTRATICNNIJM6ER

/
i_256

(Tx, TXU

FFCTIVE REGISF(AflCN

21 DEC 1983
Uon Cay — rear

Printed in the United States of America

by

Cj/eee S eft’d4e4. Tg.
1306 SOUTH STREET

SAN MATEO, CALIFORNIA 94402

TEL. (415) 7445

FORTH for the Complete Idiot 1

CONTENTS

The FORTH Myth

Install the FORTH ROM CARD 3

Trouble Shooting the Apple II 4

Checkout FORTH Like an Expert 5

Enter Commands and Data 7

Math Functions 10

Constants and Variables 12

Define New Commands 13

Editor
14

Logic Commands 17

Stack Commands 18

Input and Output Commands 20

Structured Programming 22

Assembler
25

Error Messages 26

Save Programs on Tape 27

APPDENDIX

FORTH—79 Handy Reference 29

79—FORTH ROM -f or Apple II 31

A FORTH Assembler for 6502 33

FORTH for the Complete Idiot 2

THE FORTH MYTH

FORTH is a language of mystic quality.. The learning proceess

-for many FORTH programmers can be describe only in religious

terms.. However, what I consider to be the greatest myth about

FORTH is that EI_ This myth is

perpetuated because most people think that FORTH is difficult to

learn, FORTH programs are difficult to read and to comprehend,

and that a FORTH computer is expensive, at least comparing to

most other personal computers running BASIC.

My opinion is that which is best

suited -for common people who are being shuffled into this age of

computer literacy, kicking and screaming. Why? Because FORTH is

actually a very simple language to learn. It has the simplest

grammar and the -fewest syntax rules than any other computer

languages. Above all, FORTH can be extended and modified so that

you can use your own language or terms to converse with it. I

was asked what is the qualification of a person to learn FORTH.

My answer was that he must have at least one finger, to hit keys

on a keyboard. Well, what else does he need to learn FORTH?

What he needs are a good book on FORTH and a cheap and

reliable computer which has a FORTH in it. FORTH is small and

eminently ROMmable. A FORTH computer can be built simply and

cheaply just as those BASIC personal computers. Lately, we have

seen a number of implementations like Jupiter ACE, and VIC 20

FORTH ROM Cartridge. I am offering here my implementation for

Apple II in the -form of a RON card. It works inside an Apple of

minimal resources, namely lb Kbytes of RAM memory. Now we have

also a number of good books on FORTH, notably ‘Starting FORTH’ by

Leo Brodie. With a good book and a good FORTH computer, I think

all we common people, or idiots, should be able to learn FORTH

and use it to enjoy the company of a computer without much help

from high priests of the FORTH religion.

This booklet is my attempts to describe this FORTH ROM CARD to

people who owned a very minimal Apple II computer without a disk

drive. If you can afford a disk drive, you will be much better

of-f by purchasing a regular FORTH system on a disk, which allows

you much more freedom to explore the capability of this language.

The best place where this FORTH RON CARD can be o-f substantial

contribution is in primary and secondary schools where the use of

disks increases administrative burdens and reliability is of

primary concerns. Like BASIC systems residing in ROM, this. FORTH

RON CARD system is reliable and doesn’t mind to be abused.

My hope is that this FORTH system will provide you a simple

tool to get acquainted with this exciting language and give you

many hours of fun. In time you will outgrow this system and move

on to other more expesive and more sophisticated FORTH

implementations to be productive in your own profession. By

then, you will be able to choose the best system for your

specific requirements and specifications.

FORTH for the Complete Idiot

INSTALL THE FORTH ROM CARD

For a person not having the detailed knowledge of computers,

this is probably the most difficult task that I will ask you to

do. Install the FORTH ROM CARD all by yourself! It is not as

difficult as you might thinks but you do have to read very

carefully the instructions and followed them precisely so that

you will not hurt yourself or damage the computer or the ROM

CARD. The instructions, however, are very simple and easy to

fol low
1. Turn of-F the power to the computer and remove the plug from

the wall socket. You will get inside the computer enclosure.

The chances that you will be electrocuted is nil. The chances

that you will get an electric shock by touching parts inside the

computer is also nil. It is good practice to turn off power to

an equipment before your open the enclosure.. You might drop a

screwdriver or a nail into the computer and short out some

circuitry.
2. Open the top cover c-f your Apple II.

3.. Observe that there are B long printed circuit card slots at

the back of the Apple II main circuit board. This FORTH ROM CARD

does not need any c-F the circuit cards and I assume that you have

none in your Apple.. I-F you are using one or more c-F the circuit

cards, like disk interface, printer interface, 16 K RAM card,

etc., I advice you to remove them all. Gently pull these cards

straight up out of the slots and store them away.

4. Take the FORTH ROM CARD and align the connector with one of

the circuit card slot. Push the card firmly into the slot and

make sure that the card is seated securely into slot. The FORTH

ROM CARD will work in any o-f the eight slots. However, I prefer

that you will install it in the leftmost slot or Slot 0.

5. Replace the top cover o-F Apple II. This completes the

installation o-F FORTH ROM CARD.

6. Insert the power plug into a wall socket so that Apple II

will received electricity when we need it.

7. Turn on your monitor or the TV set. Make sure that the

output cable from the Apple II is connected to the input c-F the

monitor or TV, and that the connection is correct.

B.. Turn on your Apple II now. You will hear a beep from the

speaker in Apple, and see a sign on message appearing on the

monitor or TV screen:

FORTH—79 2.2
OK

The installation procedure is simple and I am sure you will

have no problem in doing it if you follow the instructions above.

You should at least read the relevant sections in the Apple II

manual to familiar yousel-f with the parts inside the Apple

enclosure and identify the circuit card slots.. That’s about all

you really have to know about the Apple in order to install and

use the FORTH ROM CARD.

FORTH for the Complete Idiot 4

TROUBLE SHOOTING THE APPLE II

What could you do i-f the FORTH 79 sign on message didn’t

appear on the monitor or TV screen? Well, you are in trouble.

However, don’t panic yet. There are quite a few thing you can do

to identify where the trouble is. Here is a list of thing that

you must check and make sure that all parts are working before

blaming FORTH or Apple:

1. Make sure that power is supplied to the monitor or TV, and

that the monitor or TV is turned on.

2. If you are using a TV set, the video output from Apple must

be modulated by a RF modulator. The RF modulator convert the

video signal so that it can be received by a TV set through one

c-f its channels. Try channal 3, 4, or 13 because these are

channels used most often by modulators you bought from local

hobby shop.
3. Turn the TV channel select switch around, searching the

correct channel used by the modulator.

4. Check that the Apple receives power and that the on—off

switch at the back of Apple is in the ON position.

5. If the sign on message does not appear when Apple is turn

on, turn off power to Apple, re—seat the FORTH ROM CARD, and make

sure that the card is inserted all the way into the Slot. The

conducting fingers on the ROM CARD must be aligned with the

mating connectors in the slot.. Turn Apple on to see if the sign

on message appear on the screen.

6.. I-F the FORTH 79 sign on message still does not appear, turn

off power to Apple and remove the FORTH ROM CARD. Be absolute

certain that the power is of-f when you pull out the ROM CARD. If

the ROM CARD is removed while power is still on, components on

the ROM CARD or on the Apple main board might be damaged. After

the ROM CARD is removed, turn on power to the Apple and see if

the Apple BASIC sign on message will appear on the screen.

7. If the Apple works in the BASIC mode without the ROM CARD,

Apple is healthy. Insert the FORTH ROM CARD into another slot

and try again. If you don’t get the FORTH 79 sign on message,

the ROM CARD is defective. Call the dealer or the manufacturer

for service or replacement.

B. If the Apple BASIC sign on message didn’t appear either, the

problem is in the Apple. Apple sometimes does not work because

many IC’s develop bad contacts within the sockets, or are getting

loose. Turn off power to the Apple. Push and re—seat all the

sacketed IC’s on the Apple main board, particularly the CPU, the

ROM chips storing the Applesoft BASIC, and the 16 K RAM chips..

9. Turn on power to Apple. I-f the Apple BASIC sign on message

is not displayed on the monitor or TV screen, the Apple itself is

having problems. Call your Apple dealer f or service.

10. Now is the time to panic..

FORTH -for the Complete Idiot 5

CHECK OUT FORTH LIKE AN EXPERT

You don’t have to know much about FORTH in order to act like

an FORTH expert in checking out or testing a FORTH computer. A

-Few commands can exercise the FORTH computer very rigorously to

demonstrate that the FORTH computer is in proper working

conditions. If you just try these command on other people’s

FORTH computers, they will have a hard time to figure out whether

you are an expert or an idiot

1. The Carriage Return -

Push the Carriage Return key, the Return key, or the down

arrow key at the righthand side c-F the keyboard. The computer

will echo ‘OK’ on the screen and move the cursor down by one

line. Keep on tapping the Return key and a column o-f ‘OK’s will

roll up on the lefthanci side of the screen. The computer went

through thousands o-F instruction cycles in receiving one tap on

the Retrun key and sending back the ‘OK’ message. When the FORTH

computer says ‘OK’, it is truely OK.

2. The VLIST command

Type VLIST on the keyboard and follow it by a Return. The

computer will print a very long list of words on the screen.

Many o-F these words appear to be regular English word. Many

others have strange punctuation characters embedded in them.

VLIST asks the FORTH computer to spell out all the commands or

instructions that it understands. This command is very useful in

finding out what words were defined in this system and the

sequence by which the words are stored in the computer memory.

3. The DUMP Command

You can cause the computer to pour its guts out using this

DUMP command. However, you must tell the computer which part of

its memory you want to examine.. You have to type the starting

address and the number c-f bytes you wanted to examine. Thus the

following commands:

o 100 DUMP
will display on your screen the contents of memory from address 0

to address 99. The numbers display on the screen may not have

much meaning to you at this moment.. Nevertheless, this is the

method to examine the contents c-f computer memory.

When an expert examines the memory, most likely he wants the

memory contents to be displayed in the hexadecimal number system

in which each digit represents one of 16 values. The values are

represented by the numerals 0 to 9, and the upper case letters A

to F. You can switch the FORTH computer from the regular decimal

mode to hexadecimal mode by the command:

HEX
Once the computer is in the hexadecimal mode, all the input

numbers and the output numbers are converted according to the

base o-F 16. Since the dictionary or the main body o-F FORTH

program is located between memory D000 and EFFF, in hexadecimal,

you can dump this range of memory to the CRT screen by these

commands:
D000 2000 DUMP

FORTH -for the Complete Idiot 6

You will see a huge amount o-F numbers scrolling across the CRT

screen. Don’t worry about what them mean. On the lefthand side

of the screen, the memory contents are presented in Ascii

characters. You might be able to -find many command names in this

column, showing how the dictionary is constructed. After the

dumping exercises, it is a good practice to switch the computer

back to the more familiar decimal number system by:

DECIMAL
4. Examine Disk Block:s

Most regular FORTH computers require at least one disk drive

so that programs and data can be stored on the floppy disks. In

this FORTH—79 system, instead o-f a physical disk, we use a large

chunk of the RAM memory to simulate a disk as it is used in a

regular FORTH system. I call it a pseudo disk. However, the

methods to access data or program in this pseudo disk are

identical to those used in regular FORTH systems. To display the

contents of any disk block, you can type the command:

4 LIST
The number before LIST specifies the serial number of a block o-f

disk memory to be displayed. You will see a screen full of

letters or numbers displayed on the CRT screen arranged in 16

lines, each line consists of 32 characters. Since we haven’t put

in any meaninful data into this block, the data display are those

happened to be in the memory when you turn on the computer. You

can look at the contents of other disk blocks by giving different

numbers before the command LIST.

Regular FORTH systems display disk data in 16 lines, each of

64 characters. Because the Apple screen can show only 40 columns

of characters, this FORTH system was designed to show 32

characters per line. Shorter lines tend to force the user to

write shorter codes, which is probably a desirable constraint.

Another interesting command is to list the index of a range of

disk blocks. As an example, suppose we want to see the index of

blocks 0 to 12. We can give the following commands:

o 12 INDEX
13 lines of index will appear on the CRT screen. In FORTH

terminology, the index line is the first line c-F text data in a

disk block A comment is usually put there to serve as an index

indicating the contents of this disk block. INDEX thus serves

the -function of DIRECTORY or CATALOG in the conventional

operating systems..

The commands we mentioned above, VLIST, DUMP, LIST, and INDEX

are only a few commnads among the entire set of commands

available in this FORTH—79 system. They are used here as tools

to check out the FORTH system because they produce visible

results on the CRT screen. They are very useful commands during

programming and testing and are used very often. You should get

yourself thoroughly familiar with them and their functions, as

the first step into this versatile and powerful computer

language.

FORTH -f or the Complete Idiot 7

ENTER COMMANDS AND DATA

You control and use the computer by entering in-formation into

it through a typewiter—like keyboard. The FORTH computer will

accept two and only two types a-F in-formation, commands and data.

Commands are English—like words and data are usually in the form

of numbers. As shown in the last section, VLIST displays all the

commands the computer can recognize and fallow. To learn to use

a computer is to learn its command set and use it to solve

problems. We will discuss the command set in this FORTH computer

at a slow and ordered pace to lead you to the level where you

will be able to use it to solve simple programming problems.

Information is put into the computer by typing on the

keyboard. Type in the ward HELLO. The CRT screen will display

whatever you typed in. I-F HELLO is misspelled, the spelling may

be erased by pressing the backspace (<——) key. The backspace

key will move one space to the left everytime it is pressed.

This erases, letter by letter, anything that has been typed in.

The spelling may then be corrected. This is the basic procedure

to talk to the computer..

The computer will not respond to the information you typed in

until the RETURN key is pressed. With HELLO typed in, now press

the Return key The computer prints “?“ and drops down one line.

The prompting cursor appears at the beginning of the next line.

Computer responds only to exact commands, not to idle chit—chat.

This FORTH computer has not been told how to respond to HELLO, so

it prints what is called an error message. The error message “?“

occurs when the information entered is not understood by the

computer.
To distinguish the information you type into the computer and

the responses the computer prints on the CRT screen, we will

underline all the letters the computer prints. But remember, the

computer responds to your commands only after you press the

Return key. This Return is implied between your input and the

computer’s output and will not be shown in prints here.

RULE 1. COMPUTER RESPONDS TO INFORMATION TYPED IN ONLY WHEN THE

RETURN KEY IS PRESSED.

RULE 2. COMPUTER RESPONDS TO TWO TYPES OF INFORMATION: COMMANDS

AND DATA.

Let us do some exercises. Type in HELLO with a Return:

HELLO HELLO ?
The computer does not understand HELLO as a command. There-fore,

it responds with an error message “HELLO ?“. Now type in:

..“ HELLO”
After you enter the command and press Return key, the computer

will respond:
HELLO OK

The computer was told to print the ward HELLO, so it did. The

command .‘ tells the computer to print the following letters upto

but not including the sign “ . This quotation mark indicates to

the computer the end a-F the letter sequence to be printed. The

FORTH -For the Complete Idiot 8

“OK” after HELLO is printed by the computer to indicate that it

had successfully carried out the command. The prompting cursor

drops down to the beginning of the next line, ready for the next

line c-f commands.
The computer can do wonderful things with numbers. Afterall,

manipulating numbers was the primary reason -For computers to be

invented. Here we will use this FORTH computer like a pocket

calculator or an adding machine. Type in the commands 4 5 + and

then press Return:
4 5 + OK

The computer accepts the two numbers 4 and 5. + is a command

telling the computer to add these two numbers.. The computer did

all these. However, it displayed only the OK message because it

was not told what to do with the result of addition. Type in a

period and follow by the Return:

90K
is a command telling the computer to print the last result

it held in its memory, which is the sum of 4 and 5, on the top c-f

a stack. When the computer accepts a number you typed in, it put

the number on the stack in a last—in—first—out -fashion, similar

to a card stack in which the topmost card is the first one to be

used. In the last example, the + command takes the topmost two

numbers, removes them from the stack, and put the sum back on the

top of the stack. The . command removes the sum and prints it on

the screen.

RULE 3. NUMBERS ARE ENTERED ON A STACK IN THE LAST—IN—FIRST—OUT

FASHION.

RULE 4. COMMANDS REMOVE THEIR NUMERIC DATA FROM THE TOP OF THE

STACK AND LEAVE THEIR RESULTS ON THE STACK.

When in-formation is entered into the computer in one line,

commands and numbers must be separated by at least one space.

Spaces are used by the FORTH computer to isolate commands or

numbers so that appropriate action can be taken. Letter

sequences separated by spaces are generally called “words”.

Words must be either commands or numbers.

RULE 5. WORDS MUST BE SEPARATED BY ONE OR MORE SPACES.

Words not separated by spaces will be considered as a single

word by the FORTH computer. For example, if you type:

4+5 -

The computer will reply:

4+5 7

because the computer took in the sequence 4+5 as one word. It

couldn’t execute it because it was not a command nor a number.

All the computer could do was to give you an error message.

Numbers and commands can be entered in a long line. However,

you have to remember that they have to be separated by spaces and

terminated with a Return key. Type in the following line:

1 2 3 4 5678

The computer will reply:

FORTH -for the Complete Idiot 9

578 4 3 2 1 OK

Notice that the last number entered was printed out first because

numbers are pushed on to the stack and removed -from the top.

Try the following line:

10 11 12 . -

We pushed three numbers on the stack and ask the computer to

print out -four numbers. What will the computer do? Most likely

it will reply:

12 11 10 0 - ? STACK EMPTY

The computer printed out -four numbers as you requested. A-f ter it

printed out the last number, it checked the stack and found that

you used more numbers than you put on the stack. It then printed

the error message ‘STACK EMPTY’ to warn you that you did

something wrong. Using more numbers than you put on the stack or

leaving unwanted numbers on the stack are the most common

mistakes made even by the most experienced FORTH programmers.

Keeping track of the numbers on the stack requires attention and

practise. This is a very important part in learning FORTH

language.

FORTH for the Complete Idiot 10

MATH FUNCTIONS

The computer can perform many math functions when you give it

the appropriate commands. The most commonly encountered math

commands are: + for addition, — for subtraction.1 * -for

multiplication, and I for division. Each of these commands

consumes the topmost two numbers on the stack, performs the math

function, and leaves the result back on the stack so that the

next command will make use of it. I will give you a number of

examples to show you how the computer works out math problems.

Type in:
35 * 6 + 42 * + -

The computer will respond with:

29 OK
What the computer did was multiplying 3 and 5 to get 15, add 6 to

15 to get 21, multiplying 4 and 2 to get 8, add 8 to 21 to get

29, and finally print out 29 on the CRT screen. A few variations

in the sequence will yield different results:

3 5 * 6 4 + 2 * + - 350K

3 5 * 6 4 2 * + +
.

3 5 6 4 + 2 * + *
.

It is quite simple to follow the computer actions as the

computer carries out the commands from left to right in the

sequence as we gave to it. Using this scheme to do math

calculations, no parenthesis is necessary and the calculation

sequence is specified unambiguously. This is one of the many

benefits in using a stack to hold numbers to be processed. There

must be enough numbers on the stack for all the math commands.

If the commands use more numbers than what had been put on the

stack, the computer will issue an error message after it

completes the calculations. For example:

35 * 64 + * +

The computer will print

STACK EMPTY
The user must know how many numbers are on the stack so that

he will be able to do the correct calculations. The computer

only checks whether the stack is empty or not at the end of a

line. The user is responsible in making sure the right numbers

are available at every stage of calculation.

FORTH computer operates on integers, normally ranging from

—32768 to 32767. Numbers outside of this range are truncated and

only the least significant 16 bits are preserved. For a very

large number of applications with microcomputers, this range is

sufficient, but one should always be careful in handling large

numbers. Special commands and methods are available to handle

large numbers and fractions. However, we must reserve these

topics to more advanced texts.

FORTH -for the Complete Idiot H

Let me summarize the most useful math commands in a list:

Add ni and n2. Return sum.

Subtract n2 from ni.

Multiply ni and n2..

Divide ni by n2. Return

quotient.
Divide iii by n2. Return

remainder
Divide nZ by n2. Return both

remainder and quotient.

Multiply ni and n2, divide the

product by n3.

Multiply ni and n2, divide the

product by n2.. Return both the

remainder and quotient.

Return greater of two items.

Return lesser of two items.

Return absolute value.

Return negative value.

*1 and */MOD are two special commands useful in doing

scaling calculations. The intermediate product is a 32 bit

double precision integer so that the range of product is not

truncated as would be in using * and / separately. you will

see a few examples using these compound commands later.

+ (ni n2 ——— sum)

—
(ni n2 dif)

* (nl ri2 ——— prod)

I (ni n2 ——— quot)

MOD (ni n2 ——— rem)

/MOD (ni n2 rem quot)

*1 (ni n2 n3 ——— quot)

*/MOD (ni n2 n3 ——— rem quot)

MAX (ni n2 max)

MIN C ni n2 ——— mm)

ABS C n ——— abs)

NEGATE C n ——— —n)

FORTH for the Complete Idiot 12

CONSTANTS AND VARIABLES

Constants and variables are storage locations in the computer

memory which allow data to be stored and to be acted upon later..

A constant will put its numeric value on the stack, and a

variable will leave its address on the stack, so that subsequent

commands can use the address to retrieve stored data or change

the data value.

Constants are defined by a special command CONSTANT , which

assigns a name and a value to a constant. The name thus defined

becomes a new command. When this name is invoked, the value

assigned to this name is pushed on the stack. The value assigned

to a constant cannot be changed. A variable is defined by a

command VARIABLE and is also assigned a name and an address.

Invoking the name of a variable will put its assigned address on

the stack. Other commands can then store data into this address,

or fetch the data currently stored in this address. After an new

value is stored in a variable, the old value of this variable is

destroyed forever.

Examples:
5 CONSTANT A OK

VARIABLE B OK

To use a constant:

A.
The computer will print:

5 OK
To use a variable:

10 B
The command ‘ , pronounced as ‘store’, stores the value 10 into

the address assigned to variable B

B @ . 10 OK

20 B ! B @ . 200K

The command @ , pronounced as ‘fetch’, fetches the value

stored in B. This value can be changed as of ter as desired. @

and ! are two extremely useful commands in FORTH.. They allow

us to examine the contents of any memory location and change

their contents at will.

Mathematical calculations can be performed with the constants

or variables supplying numeric data.. Results of calculations can

also be stored away in variables + or later uses. Some examples

are given below:

6 4 + CONSTANT C OK

3 5 * C 2 * + . 350K

6 4 2 * + CONSTANT D OK

C D + . 24 OK

C D + B ! OK

B @ . 24 OK

FORTH for the Complete Idiot 13

DEFINING NEW COMMANDS

Up to this point we use the computer on a one shot basis.

One o-F the main advantages o-f computer is that it can execute a

series o-f commands repeatedly. The process of writing such sets

o-f commands is called programming. Programs or sets of commands

can be very simple or incredibly complicated.

The FORTH computer is programmed by adding new commands to the

existing command set provided in the ROM CARD. New commands are

created or defined by a powerful command : , commonly called

‘colon command’. : tells the computer to construct a new

command and store it in its memory. : command is followed by a

name given to the new command and a sequence of commands and

numbers. The sequence is terminated by another command . The

definition of a new command can span over several lines. During

the defining process, pressing the Return key merely causes the

prompting cursor to drop down a line. The regular ‘OK’ message

will not appear until after ; command is encountered.

Type in the following lines and define several new commands:

: HELLO “ HELLO” ; OK

ADD .“ 4+5=” 4 5 + ; OK

: CALCULATE •“ 2*(+5)=” 2 4 5 + * . ; OK

The new commands are now stored in the memory o-F the computer.

You can use YLIST command to see that their names are included

in the list of command names in this FORTH computer. To execute

a newly defined command, simply type the name and press Return

key.
HELLO HELLO OK

ADD 4+5= 9 OK

CALCULATE 2*(4+5)= 18 OK

Suppose we want a program which will convert temperatures from

Celsius scale to Fahrenheit scale and vice versa. Here are the

new commands which will do it:

C—>F 9 5 *1 32 + ; OK

F—>C 32 — 5 9 *1 ; OK

Now we can use them to do temperature conversions:

100 C—>F 212 OK

o C—>F 32 OK

0 F—>C —17 OK

98 F—>C 36 OK
The special command *1 takes three numbers off the stack,

multiplies the lower two numbers, and divides the product by the

topmost number. This is an interesting command to allow us doing

precise ratios with only integer numbers. Another good example

is to calculate the circumference of a circle, given its

diameter:
CIRCLE 31416 10000 *1 ; OK

It takes the diameter value off the stack, multiplies it with the

ratio of 31416 and 10000, which is 3.1416. Some tests are:

10 CIRCLE .

2000 CIRCLE . 6283 OK

FORTH -far the Complete Idiot 14

ED I TOR

Everybody makes mistakes. When you type a line of information

into the computer and found something in the line you want to

change, there are two ways to do it:

1. Before you press the Return key, the line may be changed by

backspacing to the place you wanted to change and retyping the

line -from there.

2. After the Return key is pressed, the line is stored in the

computer’s memory and you cannot change it conveniently.

However, you can retype the correct line and enter it by pressing

the Return key. A new version of a command will be entered on

top of the old one. Only the last entered command will be

e-f-fecti ye.
The following sequence of commands and responses will

demonstrate this second method:

SO .“ SO WHATT” ; OK

SO SO WHATT OK
so .“ SO WHAT” ; OK

SO SO WHAT OK
DON’T ..“ DON’T SAY THAT” ; Q

DON’T DON’T SAY THAT OK

SO DON’T SO WHATDON’T SAY THAT OK

SO CR DON’T SO WHAT OK

DON’T SAY THAT OK

SO SPACE DON’T SO WHAT DON’T SAY THAT OK

Commands in the same line are executed from left to right

after the Retrun key is pressed. Executing SO and DON’T together

prints two messages without a break. The command CR separates

the two messages with a carriage return and the command SPACE

puts a space between the messages. CR and SPACE are useful in

formatting the output display.

To remove commands from the computer’s memory, use the command

FORGET followed by the name of the command to be deleted. The

computer will delete this command together with all the commands

defined after it.. FORGET is useful in reclaiming the computer

-memory after you have completed the desired task.

SO SO WHAT OK
DON’T DON’T SAY THAT OK

FORGET SO OK
DON’T ?
SO DO WHATT OK
HELLO HELLO OK

There were two versions of SO in the computer’s memory.

FORGET SO deleted the second version of SO with DON’T. Executing

SO now thus recalls the first version c-f SO which is still in

memory. Commands defined before SO are still in the memory and

are accessible, like HELLO.

To write short commands and test them out, one can type in the

definitions directly via the keyboard. For long definitions and

projects which requires many many definitions, it is better to

have the computer remember all the texts which can be changed and

updated conveniently. Texts in computer’s memory can be

processed or compiled into executable commands similar to the

FORTH -For the Complete Idiot 15

command texts you type in on the keyboard. These functions were

programmed into the FORTH—79 RON CARD in the form of an Editor.

The Editor is called into service by the command EDITOR. After

you type:
EDITOR OK
all the editing commands are available to you to create and

modi-fiy texts in a special area of memory I call a ‘pseudo disk’.

This ‘pseudo disk’ contains 24 Kbytes of memory, and is

divided into 48 blocks., each having 512 bytes. To select any

block in this pseudo disk to be used to store texts, you can give

the following command:

1 LIST
Any number between 0 and 47 can be used before LIST,

specifying the particular block you want to used. After you

press the Return key, the computer will display on the CRT screen

the current contents of this block. The display format is 16

lines of 32 columns of texts. Since the disk was not used

before, a block o-f random characters will appear in the display.

Let us first clear it so that we can do some useful work:

1 CLEAR OK
1 LIST
After clearing the whole block, 1 LIST will show us a clean

screen for us to work on.

The following is a list c-f commands which are useful in

inputing lines o-F texts into the disk block and modifying them.

The lower case letters in front c-f some commands show the numbers

required by the commands. The string xxxxx shows that a string

o-f characters up to 32 characters will be used in the string

processing command.

n T Ix the nth line of texts on screen.

Make this line the current line.

P xxxxx Pt the string in the current line.

U xxxxx Put the string under the current line.

Subsequent lines will be pushed down.

The 15th line will be lost.

X Extract the current line from block.

Subsequent lines move up by one line.

The 15th line will be blank filled.

F xxxxx E12 the string starting at the

current cursor. The cursor will be put

after the found string.

D xxxxx Find the string and it.

I xxxxx Insert the string at the current cursor.

TILL xxxxx Delete the text from the cursor till the

end of the string in current line.

L List the current block.

n LIST List the nth block and make it current.

TOP Move the cursor to to of block.

n CLEAR Clear the nth block.

nl n2 COPY Cop block ni to block n2.

These commands are sufficient to perform most o-f the editing

tasks. The commands are nearly identical to those described in

FORTH -For the Complete Idiot 16

Brodie’s ‘Starting FORTH’. However, there are several peculiar

behavior in this implementation you have to know in order to use

this editor successfully:

1. Each line is only 32 characters long. Longer strings will

be truncated to 32 characters.

2. Do not leave blank lines between texts. The computer will

not process texts below a blank line.

3. String commands must have strings following them. Blank

string, a string command followed immediately by Return will not

be processed according to the description in ‘Starting FORTH’.

The -Following exercise shows you how to use these commands to

write a program in a disk block.

1 LIST
1 CLEAR OK
0 T
P (LARGE LETTER F)

U : STAR 42 EMIT ;
U : STARS 0 DO START LOOP ; g
U : MARGIN CR 30 SPACES ; .

U : BLIP MARGIN STAR ; OK

U : BAR MARGIN 5 STARS ; OK

U : F BAR BLIP BAR BLIP BLIP CR ; OK

U EXIT OK
1 LIST

The program will be show on the CRT screen. I-F you -find any

error in it, use the T command to position the cursor at the

beginning of that line, use the D command to delete the erroneous

string, and use the I command to insert the correct string. In

the old days, each FORTH system had its own editing command set

and it was rather frustrating in getting the editor to work

according to your wish. This editor command set here in the

FORTH—79 ROM CARD should be familiar to most FORTH users due to

the popularity of ‘Starting FORTH’.

After the texts are typed in and checked, you can use the

following commands to compile the commands into the memory:

1 LOAD OK
You can use the YLIST command to verify that all the commands you

defined in block 1 had been compiled into memory. To see what

you have accomplished, you should type in:

F
and a big F character will be show on your screen.

RULE 6. A STRING COMMAND MUST BE FOLLOWED BY THE STRING IT USES.

FORTH -for the Complete Idiot 17

LOGIC COMMANDS

Logic is the basis of digital computer. In FORTH logic is

represented by numbers. Although numbers may have many different

values, in logic we distinguish only two types: zero and

non—zero. When numbers are used in logic operations, they are

called flags. If it is non—zero, it is called a true flag. If it

is zero, it is called a false flag. Logic commands often produce

flags according to some math operations which produce results

having only two different states, like equal, greater than, and

less than. The result c-f an logic operation is represented by

zero if false and by one if it is true.

The logic commands defined in this FORTH—79 ROM CARD are

summerized in the following list:

C ni n2 ——— f) True if ni is less than n2.

(ni. n2 ——— f) True i-f ni is greater than n2.

= C ni n2 ——— -F) True i-F ni is equal to n2=

0< C n ——— f) True if n is lesss than 0

C)> C n ——— f) True if n is greater than 0.

0= C n ——— f) True i-f n is equal to 0.

AND C ni n2 ——— n3) Bitwise logical AND.

OR C ni n2 ——— n3) Bitwise logical OR.

XOR C ni n2 ——— n3) Bitwise logical exclusive OR.

The logic commands are simple but very important for computers

because they allow a computer to make logic decisions. The best

example is in the IF—ELSE—THEN structures and the BEGIN—UNTIL

structures, where the computer must decides which execution path

it must follow between two choices. IF uses the top number on

the stack as a flag. If the number is non—zero, a true flag, the

commputer will execute the true clause between IF and ELSE.

Otherwise, the computer will execute the false clause between

ELSE and THEN. UNTIL does very much the same thing. If the top

number on the stack is non—zero or true, UNTIL will terminate the

loop. Otherwise, it will loop back and repeat the repeat clause.

Examples in using these logic commands are:

1 3 > - 00K

—1 10 < . 10K

-101 101 =

99 = 10K

0 0= 10K

—1 0= 00K

—2 0< 10K

2 0> 10K
7 4 AND 40K

1 2 OR 30K

1 3 XOR OK

Note that the commands AND, OR, and XOR operate on whole 16

bit numbers. The logic operations are performed to every bit

pairs on the top two numbers on the stack. FORTH was originally

designed for instrumental control applications. In these

applications, performing logic operations on single bits and

FORTH for the Complete Idiot 18

representing true/false conditions with whole 16 bit numbers are

quite wasteful. These commands operate on 16 bit numbers are

very convenient and more efficient.

STACK COMMANDS

Most modern computers use stacks as temprorary storage of

numbers which will be used and -Forgotten after their functions

are served. Using stacks save memory space and allow many neat

tricks to use the computer efficiently. High level languages,

however, hide this facility from the user because mismanagement

of the data on stack is the easiest way to make the computer

produce garbage, or worse, to crash the computer. FORTH, on the

other hand, let the user have full control over the stack in an

effort to simplify the language structure and speed up the

execution. Open up the stack facility to the user place a great

burden on the user to manage it correctly. The reward is that

the user is given a very powerful tool to interact with and to

control his computer.
The purpose o-f the stack is to store numbers temporarily -F or

the appropriate commands to use. Since most math commands use

the topmost numbers on the stack in some specific orders, you

will have to make sure that the right numbers are available for

the right command. When you work on real problems, you will find

that half of the time, even i-F you can get the required numbers

on the top of the stack, they are in a wrong order as required by

the command. The stack commands allow you to rearrange the

ordering of the topmost items on the stack so that math

operations can be performed correctly. Here is the list of the

most useful stack command:

DUP (n ——— n n) Duplicate top of stack.

DROP C n ———) Discard top o-f stack.

SWAP C ni n2 ——— n2 ni) Exchange top two stack items.

OVER C ni n2 ——— ni n2 ni) Copy second item to top.

ROT C ni n2 n3 ——— n2 n3 ni) Rotate third item to top.

Using these commands, you can rearange the top three items on

the stack to any order you want. I-F we have 1 2 3 on the stack,

ROT will rearrange them to 2 3 1 - Can you order them in to

321?
The command sequence to do that is

<ROT ROT TOT SWAP ; OK

1 2 3 <ROT OK

- - 1230K

FORTH for the Complete Idiot 19

That’s fine.. How about the fourth item on the stack, or the

fifth item? There are commands that allows you to dig very deep

into the stack:

PICK (n ——— nl) Copy the nth item to top.

ROLL C n ———) Rotate nth item to top.

>R C n ———) Move top item to ‘return stack’.

R> C ——— n) Retrieve item from ‘return stack’.

R C ——— n) Copy top of return stack onto stack.

DUP is thus equivalent to 1 PICK . and OVER is equivalent

to 2 PICK. SWAP is equivalent to 2 ROLL , and ROT is

equivalent to 3 ROLL.

Now, let me tell you a secret: FORTH actually has two stacks.

What we have been talking about is only one of them, the data

stack where numeric data are stored. The other stack is called

‘return stack’ because it stores return addresses which allows a

FORTH command to call other FORTH commands, and keeps track of

the execution sequence. I like to tell you more about this

return stack but it will take too much space and time. It is

sufficient at this moment to tell you its existence and what we

can do with it.
The only way you can access the return stack is by the three

commands, >R R> , and R . >R copies the top item on the

data stack and pushes it onto the return stack, and R> does the

reverse.. R copies the top of return stack and pushes it onto

the data stack, without removing this item from the return stack.

Thus we can move data from the data stack and store them

temporarily on the return stack, getting them out of the way as

we uses the data items below the third item on the data stack..

However, you have to be reminded that the FORTH system uses the

return stack to keep track of the execution addresses, and you

should never mess up the information on the return stack. If you

mess up the data stack, the computer doesn’t mind it at all. It

just happily gives you the wrong results, or at the worst, an

error message. If you mess up the return stack by leaving

garbage on it, you will most surely crash the FORTH system! Try

it a couple of times and you will appreciate this warning.

RULE 7. RESTORE THE RETURN STACK WITHIN A COLON DEFINITION AND

WITHIN EVERY LEVEL OF DO—LOOP..

Don’t warry too much about crashing the system.. In this FORTH

79 ROM CARD system, all the system resides in ROM memory.. When

you crash the system, all you have to do is push the Reset key or

cycle the power off and on. You can get back to FORTH

immediately.. It is idiot—proof..

DO—LOOP also uses the return stack to store the index and

limit values.. Therefore, it is important that you restore the

return stack before the LOOP command.

FORTH for the Complete Idiot 20

INPUT AND OUTPUT COMMANDS

FORTH is an interactive computer system. meaning that you can

bpèrate the computer in a conversational manner. You type in

some commands and data, the computer will process them

immediately and ask you for more commands. FORTH supplies you

the entire set a-f commands which it uses to converse with you so

that you can use them to handle any input and output tasks.

Some of the often used commands handling keyboard input are:

KEY C ——— c) Read key and leave Ascii on stack.

EXPECT C addr n ———) Accept n characters from keyboard

an store them at addr.

?TERMINAL C ——— -f) Return true if a key is presses.

KEY command will stop the computer and wait for you to type a

key on your keyboard. After you type a key, the corresponding

Ascii character code is pushed on the data stack. This is the

most elementary command to ask user to respond in the

conversation with the FORTH computer. If you want to input a

line o-f information, the best command to use is EXPECT - You

specify how many characters you want and also the address in

memory which this line of in-formation will be stored.

An example here demonstrates the use c-f KEY which loops around

to monitor the key board. Whenever you press a key, the computer

will print the Ascii code on CRT screen. This is useful if you

are not familiar with the Ascii codes. When you press the Return

key, the loop will be terminated.

: ASCII BEGIN KEY DUP - 13 = UNTIL ; OK

ASCII
Now you can press any key and the computer will tell you its

Ascii code. When you get tired o-f it, just press Return and you

will be back in FORTH again.

?TERMINAL examines the keyboard interface and returns a -flag

without waiting for your response. If you had pressed any key on

the keyboard, the flag returned would be true. If the computer

couldn’t detect any activity on the keyboard, a false -Flag would

be returned. This command is often used in an indefinite loop so

that the user can terminate the loop by pressing a key on the

keyboard.
The output commands are summarized in the -following list:

EMIT C c ———) Output Ascii -from stack.

CR C ——) Output a carriage return.

SPACE C ———) Type one space.

SPACES C n ———) Type n spaces.

TYPE C addr n) Type n characters -from addr.

C n ———) Print n with one trailing space.

U. (n ———) Print n as an unsigned number.

.R C nl n2 ———) Print ni right justified in a

field c-f n2 columns.

FORTH for- the Complete Idiot 21

EMIT is the fundamental output commanth Other commands are

-for your convenience. I-f you have a long line s-f characters

stored in memory, you can used TYPE to print them out. TYPE

is the reverse s-f EXPECT I am showing here an example you can

use to get a message -From keyboard and later print it out on

demand -

VARIABLE NAME 20 ALLOT OK

: NAME? NAME 20 EXPECT ; OK

..NAME NAME 20 TYPE ; OK

NAME? LUKE SKYWALKER OK

• NAME LUKE SKYWALKER OK

From now on, everytime you type .NAME , the computer will

answer LUKE SKYWALKER . You can change the name by executing

NAME? . The computer will halt and wait -for you to type a string

up to 20 characters, and then store this string into the memory

starting at NAME
is the command we have been using all the time to display

the topmost number on the stack.. U. prints this number as an

unsigned number with a range from 0 to 65535.. It is useful to

display address in the computer. The addresses in the top half

s-f the computer memory will be displayed as negative numbers i-F

you display them using the - command. U. will print them as

addresses.
.R allows you to -format the numeric output.. You specify the

width c-f the -field you want the number to be displayech The

number will appear in this field, right justified. An example of

its use was shown in the printing of the multiplication table in

the next section.

FORTH for the Complete Idiot

STRUCTURED PROGRAMMING

The : command is the most powerful command in FORTH, because

it allows us to construct many many new commands using the

commands supplied in the FORTH system and the commands we defined

previously by ourselves. Very large and complicated problems can

be solved by designing and building a command set which best

describes the problem and arrives at its solution. So far, you

have been told only to write very simple : definitions in which

commands are executed in a linear sequence. FORTH does have many

special commands which are used to build structures inside an :

definition, so that execution sequence can be controlled at your

will. Let me first summerize these special commands in a list

and then explain how to use them with a few examples.

C -F ———) IF true—clause ELSE false—clause THEN

C urn md ——--) DO repeat—clause LOOP

lim md ——--) DO repeat—clause C n ———) +LOOP

BEGIN repeat—clause C ‘F —--—) UNTIL

BEGIN repeat—clause—i C ‘F ———) WHILE repeat—clause—2 REPEAT

When IF is executed inside a : definition, the top item on the

stack is testes as a flag. I-f this flag is true or non—zero, the

true—clause, or the commands between IF and ELSE are then

executed. I-f the flag is false or zero, the -False—clause, or the

commands between ELSE and THEN will be executed. In either case,

the execution continues on after THEN. An example to use this

structure is
AGE 21 > IF .“ ADULT ELSE “ CHILD “ THEN ; g

30 AGE ADULT OK

10 AGE CHILD OK

20 AGE CHILD OK

21 > performs a comparison between the top item on the stack

with 21 and leaves a true flag on the stack if that number is

greater than 21.. It leaves a false flag on the stack i-f that

number is equal to or less than 21.. IF picks up the flag and

decides which of the two alternate paths will be executed.

This structure can be very complicated. Let’s show another

example:
POUNDS
DUP 100 > IF

“00 > IF “ TOO FAT” ELSE “ NORMAL” THEN

ELSE .“ TOO THIN” DROP

THEN ; OK

It can now be tested:

80 POUNDS TOO THIN OK

120 POUNDS NORMAL OK

300 POUNDS TOO FAT OK

In this definition, i-f the weight given on the stack is

greater than 100, a second test will be performed to select a

correct response. The structures can thus be nested and many

levels o-f tests can be carried out before some action is taken.

Computers are at their bests when you give them a set o-F

commands to be executed repeatedly. They just love to loop

FORTH for the Complete Idiot

around and around. Generally, loops are classified into two

classes: the definite loops and the indefinite loops.. In

definite loops, the number of times a sequence of commands will

be executed is known beforehand and we can give the computer an

upper bound and a lower bound, and commad it to loop a fixed

number of times. The indefinite loop means that the number of

repetition is not known beforehand, and it is decided depending

upon some conditions tested when the program is actually running..

The DO—LOOP structure is designed to perform the definite

loops. When the execution sequence gets to DO , DO will take

the top two items off the stack and uses them as the upper and

lower bounds of repetition. The topmost number on the stack is

the lower bound, and the second number is the upper bound.. The

repeat clause will then be executed to LOOP - LOOP will then

increment the lower bound value by one and compare it with the

upper bound.. I-f the lower bound value or the index is equal or

greater than the upper bound, the loop will be terminated and

execution proceed to the commands after LOOP . If the index is

smaller than the upper bound, the repeat clause will be executed

and the looping will continue.

÷LOOP is very similar to LOOP The difference is that +LOOP

will use the top number on the stack as the increment, so that

the loop can be stepped through at a faster pace. Let’s use an

example which prints the multiplication table to explain how the

loops are constructed.

PRODUCTS 10 1 DO DUP I * 4 R LOOP DROP ; OK

1 PRODUCTS 1 2 3 4 5 6 7 8 9 OK

2 PRODUCTS 2 4 6 8 10 12 14 16 18 OK

: TABLE 10 1 DO CR I PRODUCTS LOOP ; OK

TABLE
1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 182736 45546372 810K

The command I recalls the current index value and put it on

the stack to be used in a loop.. I can only be used in this way

inside a loop structure.. The above example can be written in a

single definition:

TABLE 10 1 DO CR 10 1 DO I 3 * 4 .R LOOP LOOP ; OK

where I recalls the index of the inner loop while 3 recalls

the index of the next outer loop. This definition will print

exactly the same table as the previous one.

To print an algebraic series of numbers, we will have to use

the +LOOP command:

: ALGEBRAIC DO I - DUP i-LOOP DROP ; OK

2 20 0 ALGEBRAIC 0 2 4 6 8 10 12 14 16 18 OK

3 20 0 ALGEBRAIC 0 3 6 9 12 15 18 OK

5 20 0 ALGEBRAIC 0 5 10 15 OK

FORTH for the Complete Idiot 24

The -first number used is taken as the incremental value by +LOQP

in the ioops. 20 and 0 are taken by DO as limit and index.

In the BEGIN—UNTIL loop structure, the repeat clause will be

repeatedly executed until a test condition is true. This test is

done by UNTIL at the end o-f the ioop. UNTIL tests the topmost

item on the stack. I-f the number is false or zero, the loop body

will be repeated. If the number is true or non—zero the loop

will be terminated and the commands following UNTIL will the

executed. In the BEGIN—WHILE—REPEAT structure, the test is done

by WHILE . It takes the top item c-f-f the stack. I-f the number

is true, the second clause will be executed and the loop will be

repeated. If the number is false, execution will continue after

REPEAT, thus terminates the loop.

To print a geometric series c-f numbers:

: GEOMETRIC BEGIN DUP . OVER * DUP 100 > UNTIL

DROP DROP ; OK

3 1 GEOMETRIC 1 3 9 27 81 OK

2 1 GEOMETRIC 1 2 4 8 16 32 64 OK

In the DO—LOOP and BEGIN—UNTIL structures the repeat clause

will be executed at least once because the test -for termination

is at the end of the loop. BEGIN—WHILE—REPEAT allows us to exit

the loop in the middle.

FORTH for the Complete Idiot
25

ASSEMBLER

FORTH is fast, compact, and totally structured. Therefore, it

is quite unlikely that you will use assembly or machine codes to

solve your programming problems. Only in the most time critical

applications one will resort to assembly coding to squeeze the

uttermost out c-f a computer. Nonetheless, because an assembler

is very easy to write in FORTH, and I did have extra space in the

ROM memory c-f this FORTH 79 ROM CARD, I implemented a 6502

assembler in this system, just in case you might want to

experiment with it..

You should first try to solve you problem entirely in high

level FORTH, using mainly the definitions.. A-f ter you solve

the problem and you want to speed up the execution, you should

analyze your program and try to identify where the computer

spends most c-f its time. These are called critical routines,

which are ideal targets for assembly coding.. if you just code

these routines in assembly, you will realize a quantum jump in

the performance o-f the program. I-f this is still not -Fast enough

-for your application, I would claim that you had chosen a wrong

computer. Instead c-f optimizing you codes on a slow computer,

you are much better c-f-f starting look for a faster computer for

your application.

This assembler was implemented according to the one published

by William F. Ragsdale, in FORTH Dimensions, Vol.. III, p.

143—150. Instead c-f repeating what he had done and said, I am

reproducing his paper in the appendix for your reference. Happy

coding!

FORTH •f or the Complete Idiot 26

ERROR MESSAGES

If you make a mistake in typing or in writing a definition,

the computer usually will abort the operations and return the

system to accept another command with an error message like

MSG# 1 or something like it. The number tells you what type of

error the computer encountered. The meaning o-F the error numbers

are in the following list:

MSG# 0 7 (Command not recognized)

MSG# 1 Stack empty

MSG# 2 Dictionary full

MSG* 4 Command redefined

MGG# 17 Compilation only

MSG# 18 Execution only

MSG# 19 Structures not paired

MSG# 20 Definition not finished

MSG# 21 Protected dictionary

MSG# 22 Use only when loading

MSG# 24 Declare vocabulary

Refer to this table if you receive an error message. Error

numbers are usually rather -Frightening if you do not know what

they mean. it is a good practice to let the computer print out

the actually error message instead of an error number. This can

be done by storing these error messages in disk blocks 4 and 5.

If you clear these two blocks and used the editor commands to put

the messages in proper place, i. e., MSG# 0 should be stored in

the 0th line in block 4, MSG* 1 in the line 1, and so forth.

MSG# 17 should go to line 1 in block 5, MSG# 18 to line 2 , etc.

After all the error messages are put in right places, you can

type in the following commands:

1 WARNING ! OK

These commands store a one into a system variable named WARNING.

From now on, when an error is detected by the computer, the

computer will go to block 4 or 5 to find the message and print it

on the CRT screen instead o-F the message number. It makes the

computer look much more friendly and human—like. You have the

freedom to turn off this message output mechanism by the

following commands:

0 WARNING ‘ OK

which reverts the computer to the condition at the cold start.

Since our disk is a pseudo disk residing in the computer’s

memory, you will lose these messages you put in blocks 4 and 5

when you turn the computer off.

FORTH -for the Complete Idiot 27

SAVE PROGRAMS ON TAPE

One a-f the reasons in producing this FORTH system in ROM

memory is to avoid the costly disk drive, which is taking for

granted by mast FORTH implementation. The problem in not having

a disk drive is that you cannot save your programs very

conveniently on a tangible medium. However, we can still make

use of the cassette interface built in the Apple computer to save

the programs you spent so much time in developing. It is not

very convenient. If you have ever used the cassette tapes on

Apple, you would also know it is not the most reliable medium -F or

recording large programs. Well, we just have to make use of it

and stay with it if that all we’ve got.

What we will have to do is to get into the Monitor program in

the Apple computer and use the commands there to save programs

and reload them back into the Apple. The command to enter into

the Apple Monitor is:

MON
and the computer will respond with an asterisk character,

indicating that it is in the Monitor mode:

*

You can now type in monitor commands to do all sorts a-f

wonderful things if you know how It is helpful if you have an

Apple Reference Manual which has all the information on the

monitor commands. Here we only need a few to accomplish what we

wanted, that is to save our FORTH programs on tape. At this

point, I have to assume that you know a little bit about the

hexadecimal number notations, which you will have to use to talk

to the Apple in its monitor mode.

The FORTH pseudo disk starts at location $6000 in the memory

of Apple and extends to the limit of the RAM memory, which is at

the location SBFFF. Assuming that we want to save the entire

contents a-f this pseudo disk, the commands to be given is as

follows:
*6000. BFFFW
Before you press the Return key, prepare the tape recorder and

the connection cables, rewind the tape to the starting position,

and press down both the PLAY and RECORD buttons. After the

header of the tape clears the recording head, press the Return

key on Apple and the recording will proceed until the entire

pseudo disk is dumped on to the tape.

To read program stored on tape back into the pseudo disk in

the Apple memory, the commands are:

6000.. BFFFR
You have to prepare the tape recorder carefully. Adjust the

volume and tone, make the correct connections, and rewind the

tape to the beginning. Press the PLAY button on the recorder and

then press the Return key on Apple to start the reading process.

I-f everything works, after about 3 minutes you will hear the

Apple beeping and the * appearing on the CRT screen. Many times

the Apple will show a read error message. You will have to start

all over again.

FORTH for the Complete Idiot 28

After the program is loaded back into the Apple, you can

return to FORTH by pressing the Reset key on the Apple keyboard

or type the following command in the monitor mode:

*D000G
FORTH 79 2.2
OK
Bingo! You are back in FORTH again. Now you can list out the

blocks and see if the programs you recorded on the tape are in

place.
If the tape recorder works reliably with the Apple, this is a

great way to do personal computing. The pseudo disk in FORTH has

a capacity of 24 Kbytes, which is really very large for FORTH

programs. You can store very large program with lots of data in

this pseudo disk and back it up with cassette tape. For normal

usage, you can load a large application into the pseudo disk and

operate only on the pseudo disk. At the end of the task, the

contents of the pseudo disk can be put back on tape for storage.

If you are not quite satisfied with the 24 Kbytes capacity in

the pseudo disk, you can make use of the 16 Kbytes memory

normally reserved for the high resolution graphic display in

Apple. This of cause assumes that you will not use the high

resolution graphic memory for graphic operation. The command to

move the starting point of the pseudo disk from $6000 to $2000 is

—32 OFFSET ! OK
After this command is executed, the first 32 blocks o-F pseudo

disk are mapped into the high resolution graphics memory for you

to use. To get back to the normal pseudo disk area, you must

execute the following command:

0 OFFSET ! OK

