Footsteps in an Empty Valley
NC4000 Single Chip Forth Engine

Dr. Chen-Hanson Ting

Fourth Edition

Offete Enterprises, Inc.

2017

Preface to the Third Edition

Dr. Glenn Haydon, one of the developers of the WISC (Writable Instruction Set Computer) Forth
engine, often made the remark that it was unfortunate that Chuck Moore built the NC4000 chip and
cast Forth into silicon. He lost the freedom to change his mind, as he often did. Indeed, it was very
difficult tomake any change inNC4000. Novix had not been able tofix the bugs in the NC4000
prototype chip, ortobring out the NC6000/5000 with enhanced features, even with the infusion of
large amount of venture capital after its incorporation. After two years since NC4000P was released, it
is still the only chip available from Novix.

Although Chuck Moore could not do much onNC4000, heis not standing still either. He talked about
the 32 bit '‘Buffalo Chip' on several occasions, although it isnot clear how much has been committed t
its design and construction. He also kept on revising the Forth kit and the cmForth system. The latest
version was released inDecember 1987. He sent mea copy of the new cmForth to be published in More
on NC4000and allowed metouse it inthe third edition of this book.

It isa pleasure togo through the new cmForth and compare it line by line with the old version. Chuck
made many changes, polishing the code in more than one way. Many definitions are refined. Many
names are changed. The style and code layout are also much improved for readability. Shadow
screens are included toprovide functional description for every word defined. He managed toshave off
15 lines of code and save a whole screen. He also put shades at the right and bottom edges of the text
blocks, making them rise above the page. It is rather pleasing tothe eyes.

His persistent obsession inpursuing the simplest expression to be shared by NC4000 and its users is
always fascinating to me. He must have felt the enormous responsibility of a system programmer and
a language designer, inthat every instruction he deleted and every cycle he saved will be multiplied by
the billions in memory and times saved by the users. The old Chinese master ought tohave made this
observation when he declared: "For knowledge, add a little everyday. For wisdom (Tao), erase a little
everyday". The Tao of Forth isnot something vague and ethereal. It isembodied incmForth for usto
see, tofeel, to study, and tomeditate on, ifwecared.

Inthis edition | tried to include information and developments on NC4000 over the last two years. Many
new sections are added based on my papers appeared in More on NC4000. However, the major focus of
this book is still Chuck Moore's cmForth. Observing Chuck's programming style and how he
constructs large structures from the components is the best way to gain maturity in Forth
programming. Simplicity manifests itself in correctness, flexibility, capability, and productivity.

In last year (1987), we saw several Forth engines: the 32 bit Forth chip from the Applied Physics
Laboratory in John Hopkins University, both a 16 bit and a 32 bit WISC engine from WISC
Technology, and the ,16 bit FORCE chip set from Harris Semiconductor. We can expect
more entries into this field which will generate more interests and excitement in the coming
years. Finally, we start to see blossoms from the seeds Chuck Moore planted two
decades ago.

A NC4000 Users Group was formed in the San Francisco Bay Areain 1986. The Silicon Valley

Chapter of the Forth Interest Group hosts the NC4000 Users Group Meeting once every three
months, on the forth Saturdays in January, April, July, and October. The discussions in
these meetings are always lively and sometimes provocative. For members
outside of the Bay Area, a newsletter More on NC4000 helps the circulation of technical
information about NC4000 and related products. Volume 7 of More on NC4000 was just released.
We hope that it will provide timely and useful exchange of ideas and techniques among the users.

Chen-Hanson Ting
San Ma teo, California
March 1988

Forward to the First Edition

Footsteps in an empty valley is a Chinese ideographic phrase with very deep poetic connotation. It is
used todescribe the emotional feeling when one is, about to meet a long missed friend as his footsteps
are nearing. The picturesque setting is an empty, desolated valley this person had chosen toretire. He
has as his companions the trees and the flowers, a small flowing brook perhaps, and wild lives off
the woods--the best mother nature has tooffer--except for trusted friends whose friendships he had to
sever as the price of his retirement.

One day he was awakened amidst all, the familiar sounds of his environ--whispering of the trees,
splashing of water, and soft songs of the birds--by the footsteps of someone he dearly missed all these
years. Who would travel this far tothis distant valley tovisit, but the most intimate and the most trusted
of friends?

Living inthis Silicon Valley full of people, money, energy, activity, and ideas; we've seen now things
invented and new products introduced with rapid pace. Some are successful. Most do not see the light
of day. Even the most successful fade ina couple of years. Amongst the high pitched, loud sounding
hype, there isalways this silent loneliness deep down inside. Which voice shall we heed? What
direction are we heading? Where is the best and the truest to be found?

We have witnessed hosts of microprocessors and microcomputers marching from cradle to grave,
right before our eyes. Languages and operating systems come and go. Even in Forth, which I use to
code for a living and write about toentertain, we've seen good work done and disappear, come and go.
Have wethe source code. It would beespecially helpful to the user when the stack picture got fuzzy
and the logic seemed tied in knots. At the very least, the user will have another point of view to explore
Chuck's ideas besides reading the source code itself.

The NC4000 is truly a milestone in computer technology-- more so than the much touted RISC
computer. The Berkeley RISC machine was essentially a rediscovery of the original Von Neumann's
ENIAC design. The only addition was the overlapping registers used to facilitate parameter passing
between procedures. NC4000 is much more sophisticated than the RISC machine in its dual stack
architecture, single cycle subroutine call and return, and the externally microcoded instruction set. To
take advantage of the unique architecture of NC4000 and to make the best use of its powerful
instruction set, the user needs a firm grasp on the inner mechanism of this chip. A systematic
exposition of this chip is therefore necessary tobring all the information about this chip into sharp
focus. Some knowledge about the hardware structure inthis chip ismandatory in order tounderstand
the software system embedded in cmForth; although lacking this knowledge would not prevent the
user from programming this chip inthe normal Forth style. A long section inthis book is devoted tothe
chip itself to provide background information onthe chip.

The NC4000 chip does not work by itself. You have toconnect it tosome RAM and ROM memory to
build a computer. Circuit schematics are provided for such a computer so that the user can build it
with minimal parts and labor, and be productive in a short time. Many programming tips and tutorial
examples are also included. Nevertheless, the richest source of coding examples are in the cmForth
source code itself, where the user can find practical solutions toa broad spectrum of problems an

operating system has tosolve. There is much we can learn from Chuck Moore both interms of
programming technigques and programming style.

| didn't really have much time toexplore all aspects this computer and the NC4000 chip. This manual
represents the scope of myunderstanding at this moment. Astime passes, | “dill make additions and
updates and hope that you will keep me informed of your opinions and suggestions. If the chip istobe
successful, it needs the entire Forth community tosupport it by providing viable applications and
services tousers not fluent inthe language. If it is successful, wewill ride onits coattails for a long,
long while.

It is superfluous toacknowledge Chuck Moore, because the acknowledgement is implicit every time
| utter ‘Forth’. However, his personal help inbringing up our first NC4000 system and providing it
with cmForth greatly accelerated our pace inmaking this information available to Forth users. Dr.
George A. Nicol and Mr. Scott Reinhart of the Software Composers were very helpful in providing
information on their SC1000 computer which also uses NC4000 as its CPU. Mr. John Peters and Dr.
and Mrs. Albert Ting read the manuscript and made numerous corrections and suggestions.

Mybest wishes toyou and to your NC4000.
Chen-Hanson Ting

San Mateo, California
March 1986

My Electronic Bookshelf

A couple of years ago, | closed my website www.offete.com and stopped distributing my
publications on-line. Nevertheless, these publications still exist on my electronic bookshelf. If
you need any of them, please send me a request at chenhting@yahoo.com.tw, | will sentitin a
return email, and also bill you by a PayPal invoice. | know, we are in the 21* century now. You
cannot do anything without a website. But, at least | got rid of lots of paper, and the snail mail.

Juergen Pintaske twisted my arm to get Footsteps in an Empty Valley updated from a printed
copy, which was edited on an old word processor TMaker on a CP/M machine and printed with a
Diablo daisy wheel printer. Files got lost with the CP/M machine. | had to scan all the pages and
used OCR to recover the text. The hardest part was Chuck Moore’s source code of cmForth,
which he printed on an Epson dot matrix printer with a worn ribbon. Lots of the dots disappeared
through copying processes. | tried my best to bring back the code, but couldn’t be entirely sure. I
hope nobody will use the code for any purpose other than reading.

Well. Let me know if you have any question.

Chen-Hanson Ting,
San Mateo, California
February, 2017

PDF Books

After | learnt a Forth system, | always tried to document it so | could teach other people how to
use it. So | wrote about polyForth, figForth, F83, F-PC, and cmForth. When Win32Forth came
along, | gave up, because it was too large and too complicated. | then focused on developing
eForth for microcontrollers. After retirement, | cleaned out the books off my shelves. People still
asked for them, so | converted some to pdf files. Here is the list of available titles:

4001 Footsteps in an Empty Valley, 4th Ed., $15

Description of the first Forth chip NC4000 from Novix, and Chuck Moore’s cmForth for it.
cmForth was the simplest and most compact specification of a real Forth system for a real Forth
computer. It contains a complete Forth system with a target compiler, an optimizing assembler,
and a serial disk driver. Required reading for all Forth programmers.

1010 Systems Guide to figForth, 3rd Ed. $15

The most authoritative treatise on how's and why's of the figForth Model developed by Bill
Ragsdale. Internal structure of the figForth system. Very detailed discussions on the inner
interpreters and the outer (text) interpreter of Forth.

1003 Inside F83, $15
Everything you want to know about the Perry-Laxen F83 system but afraid to ask. 288 packed
pages divided into 4 parts: Tutorial on F83 system, Kernel, Utility, and Tools. It is based on 8086

http://www.offete.com/
mailto:chenhting@yahoo.com.tw

F83 Version 2.1 for the IBM-PC, but useful as a reference manual for all other (8080 and 68000)
F83 systems.

1008 F-PC Technical Reference Manual, $15

Narration on all words in the kernel and tools of F-PC, a practically useful Forth system for
applications on PC. Functional description of the utilities and applications. Valuable guide to F-
PC internals and assembly coding on segmented 80386 architecture.

1013 .eForth and Zen, 3rd Ed. $15

Complete description and exposition of the eForth Model: kernel, high level words, interpreters,
compiler and utilities. Comparison of Forth and Zen, their similarities in simplicity and
understanding. It is update based on 32-Bit 586 eForth v5.2 for Visual Studio Community 2015.
It is in an assembly file as a C++ console project. It uses indirect thread model so that new colon
words can be added to the .data segment. It is optimized with 71 code words and 110 colon
words.

1015 Firmware Engineering Workshop, $15

A tutorial in 4 parts for building firmware for embedded systems, based on enhanced eForth.
Hands-on experiments using CT100 Lab Board with 8051. 8086 eForth 2.02 and 8051 eForth
2.03 are included with the original eForth 1.01 Models for 8086 and 8051.

eForth Implementations

| had always looked for low-cost microcontroller kits to teach people Forth. Over the years, these
kits were getting cheaper and more powerful, and | ported eForth to a lots of them. I had lots of
fun with them, and | enjoyed seeing others having fun (and making useful products) as well.
eForth captures the essence of Forth, as an universal programming language for small, embedded
systems. These eForth implementations are distributed with source code and substantial
documentation.

2152 ADuC ARMTY eForth, $25

eForth for ADuC7020 MicroConverters from Analog Devices. It is written in ARM7 assembler
on a Keil IDE. It uses the ARM7 link register for threading, and is fully optimized to make the
best use of ARM7 core and analog peripherals integrated in this true microcontroller.

2153 SAM7 ARMY eForth, $25

eForth for AT91SAM7X256 microcontroller from Atmel. It is in ARM7 assembler on Keil
uVision3 RealView IDE. It uses the DBGU serial port to interact with user. Olimex's SAM7-
EX256 Board has a very interest color LCD module. This eForth has graphic primitives to drive
the LCD display.

2154 cEF Version 1.0, $25

CEF is a Forth implementation based on eForth Model, and compiled by gcc compiler in Cygwin
on a PC. The underlying Virtual Forth Machine has the standard 33 machine instructions defined
in the original eForth Model. It is target to microprocessor without floating point coprocessor,
and uses only integer arithmetic operations.

Vi

2155 cEF Version 2.0, $25

CEF is a Forth implementation based on eForth Model, and compiled by gcc compiler in Cygwin.
The Virtual Forth Machine has 64 machine instructions. Multiplication and division are
implemented using double arithmetic floating operations. It is highly optimized to take
advantages of recent microprocessors with floating point coprocessors.

2157 eForth for STM8S,$25

STMS8S is an 8 bit microcontroller from STMicroelectronics. ST is distributing a STM8S-
Discovery Board for less than $10. It is an excellent kit to learn microcontroller programming.
Now, a good Forth experimental kit is available for high school students.

2159 328eForth for Arduino Uno, $25

This is a very efficient implementation of eForth for ATmega328P microcontroller used on
Arduino Uno Kit. It is using Subroutine Thread Model. It uses tools in NRWW memory to
compile new words in main RWW flash memory. It allows you to build turnkey systems for
commercial applications. It requires a flash programming tool.

2162 ceForth 328 for Arduino Uno, $25

This is an Arduino sketch which can be compiled and uploaded by Arduino IDE. The Forth
Virtual Machine is coded in C, and the Forth dictionary is imported as a data array. The Forth
dictionary can be extended into the RAM memory, so you can add new commands to this system.
The dictionary is produced by a metacompiler running under F#. The source code of the
metacompiler is included for you to enhance this system.

2164 430eForth for T LaunchPad, $25

This is a Forth system for the MSP430G2553 microcontroller used on the LaunchPad from TI. It
is a 16-bit Forth implementation to be assembler by the Code Composer Studio 5.2. It makes the
best used of the 16 KB of flash memory, leaving about 10 KB for your applications.

2165 STM32eForth720 for STM32 F4 Discovery, $25

This eForth is for STM32F407 chip on STM32 F4 Discovery Kit from STMicroelectronics. This
chip has 1 MB flash memory, 192 KB of RAM, and a ton of interesting 10 devices. STM32 is no
longer an ARM7 chip, but a THUMB2 chip. STMeForth720 is optimized for the new
environment.

2166 430eForth v4.3 for T1 LaunchPad, $25

This is a Forth system optimized for the MSP430G2553 microcontroller used on the LaunchPad
from TI. It is changed from a subroutine threaded model to a direct threaded model, faster and
more compact.

2167 8086 eForth Version 2.03, , $25

Enhanced 32-bit eForth for 80586 running under Visual Studio Community 2015. It is assembled
by MASM buried under C++ as a console project. Now you can evaluate the eForth model
conveniently in latest Windows environment.

Vii

file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html

2171 32-Bit 586eForth v.5.2 for Visual Studio, $25

It is a assembly file in a C++ console project on Visual Studio Community 2015. It requires
library files supplied by Kip Irvine for Windows services. It uses indirect thread model so that
new colon words can be added to the data segment. It is optimized with 71 code words and 110
colon words. Now you can test drive eForth on newer Windows PC.

2172 espForth for ESP866 Chip, $25

ESP8266 is a 32-bit microcontroller with integrated WiFi antenna and software drivers. Arduino
IDE can compile and upload applications to it. espForth is an Arduino sketch which allows Forth
commands to be sent to ESP8266 remotely as UDP packets. 10T for fun!

VHDL Forth Chip Designs

I had used VHDL to design Forth processors and tested them on FPGA’s. They included a 16-bit
processor eP16 and a 32-bit processor eP32. | ported eForth to these chips for design verification.
In 2016, we ran a CPU Design Workshop in Silicon Valley Forth Interest Group, and I used
designs of Intel 8080 and DEC PDP1 as exercises. It was interesting that eForth was used here as
test benches, which were much more difficult to design than CPU themselves.

2163 eP16 in VHDL for LatticeXP2 Brevia Kit, $25

eP16 is a 16 bit microcontroller. It was implemented on LatticeXP2 Brevia Development Kit
with LatticeXP2-5E FPGA. It included a CPU module, a UART module and a GPIO module. An
eForth metacompiler producing eForth RAM image is included with all source code.

2158 eP32 in VHDL for LatticeXP2 Brevia Kit, $25

eP32 is a 32 bit microcontroller. It was implemented on LatticeXP2 Brevia Development Kit
with LatticeXP2-5E FPGA. It includes a CPU module, a UART module and a GP1O module. An
eForth metacompiler producing eForth RAM image. It is the best Forth engine design on the
cheapest FPGA kit. All VHDL files and eForth files are included.

2169 80eForth202 for eP8080 Chip, $25

eP8080 was a CPU model used in SVFIG FPGA Design Workshop. It recreated an i8080 chip in
FPGA. 80eForth202 was the Forth system embedded in VHDL for design verification and to
help debugging the chip. The eForth RAM image was derived from 86eForth v2.2 and
Z80eForth by Ken Chen, assembled with MASM.

2170 PDP1eForth for ePDP1 Chip, $25

ePDP1 was another CPU model used in SVFIG FPGA Design Workshop. It recreated a PDP1
chip in FPGA. PDP1leForth was the Forth system embedded in VHDL for design verification and
to help debugging the chip. It was derived from eP16, and used a metacompiler in F# to create
eForth dictionary to initialize RAM memory.

viii

Contents

Preface for the Third Edition i
Forward for the First Edition iii

My Electronic Bookshelf Y

Contents iX

Figures Xii
Tables Xiv
Chapter 1 Introduction 1

11 Historical background 1

1.2 RISC Panacea 2

Chapter2. The NC4000 Chip 7

21 Features of NC4000 chip 7

2.2 External data paths 7

2.2.1 Main memory 11
2.2.2 Data stack and return stack 11
2.2.3 B-port and X-port 12
2.2.4 System timing and control 13
2.3 NC4000 architecture 14
231 The internal registers 14
2.3.2 Program sequencer 16
2.3.3 Data stack and return Stack 17
2.3.4 Arithmetic Logic Unit (ALU) 18
2.35 The 1/0 ports 20
Chapter 3 The Instruction Set of NC4000 22
3.1 Classification of NC4000 instructions 23
3.2 ALUinstructions 26
33 1/0 and memory instructions 31
3.4 Graphic models of some NC4000 instructions 33
34.1 Model of NC4000 ALU A
3.4.2 The SWAP group 35
3.4.3 The DUP group 37
344 The binary ALUgroup 38
3.45 The multiply/divide group 39
3.4.6 Miscellaneous instructions 42
Chapter 4 NC4000 Computers 45
41 Commercial products using NC4000 chip 45
411 The early alphabetic boards 45
4.1.2 The Forthkits from Computer Cowboys 46
4.1.3 Products from Novix, Inc. 46
4.1.4 Products from Silicon Composers 47

4.1.5 Other companies and products 47

416
4.2

421
4.2.2
423
4.2.4
4.3

4.4

44.1
4.4.2
443

Chapter 5
51
511
512
513
5.2
53
531
5.3.2
5.4
54.1
542
5.4.3
544
55
55.1
55.2
5.6
56.1
5.6.2
5.6.3
5.6.4
5.7
5.7.1
5.7.2
5.7.3
574
5.7.5
5.8
581
5.8.2
5.8.3
5.8.4
5.9

List of manufacturers

Build your own NC4000 computer
The CPU section

1/0 ports

Main memory

Data stack and return stack

Circuit boards for NC4000 computer
Hardware enhancements

PAL memory decoder OF5138
Stack expansion counter OF5493
Another novel memory decoding technique

The cmForth Operating System
The kernel

The primitive Forth words
Memory accessing words
Multiply and divide

System variables

Terminal input and output
Primitive input and output words
Line input and output words
Number conversion

Convert digits to binary number
Convert binary number to ASCII string
Memory dump

Message output

Serial disk

Disk buffer manager

Disk read and write

The text interpreter

Parsing of words

Dictionary search

The interpreter

Power up and reset

Compiler

Compiler loop

Defining words

Control structures

NC4000 assembler

Compiler vocabulary
Optimizing compiler

Smart ; compiler

Smart ALU function compiler
Shift compiler

Merging of DUP

The target compiler

48
48
49
50
51
53
54
55
55
57
58

61
61
61
63
65
67
68
68
69
70
70
72
73
74
75
75
77
79
79
80

84
87
87
91
93
95
99
99
100
101
103
104
104

501
5.9.2
5.9.3
5.9.4
5.9.5

Chapter 6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Appendix A
Appendix B
Index

Utility compiler

Target dictionary

Variables in target dictionary
Separate target and host dictionary
Target compiler in action

Programming Tips

Benchmarks

WORDS—isting the vocabulary
Memory dump

Line editor

Stack pictures

Display internal registers

Input and output

PICK and ROLL

Square-root

Terminal and disk server on IBM-PC
Arcsine by interpolation

High speed pattern generator

A/D conversion with NC4000 168
Fast byte flip

More vocabularies

cmForth Source Listing
cmForth Glossary

Xi

105
106
107
108
109

112
112
113
115
116
118
119
120
122
123
124
127
128
132
135
136

138
164
170

Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

NC4000 pin layout

External data paths of NC4000
NC4000 memory map

Timing diagrams of NC4000
Avrchitecture of NC4000
Arithmetic Logic Unit

Encoding of NC4000 instructions
NC4000 instruction formats

Data paths and registers in ALU section
Another view of ALU

The SWAP group

The DUP group

The binary ALU group

The multiply/divide group
Miscellaneous instructions

CPU section of a NC4000 computer

Memory decoding of a small NC4000 computer
Memory decoding of a large NC4000 computer
Data and return stack of a NC4000 computer
Pinout of OF5138 decoder chip

Memory map of a 512K byte system

Pinout of OF54g3 counter chip

Expansion of data stack for NC4000

Decoding memory with a 74HC74

Sample benchmark programs
Vocabulary definitions and WORDS
Regular DUMP routine

Line editor

.S and .RS to show stack pictures
Internal registers

Input and output demonstration

PICK and ROLL

Square-root

Terminal and disk server

Source code of interpolation
Schematics of the pattern generator
Program to control the pattern generator
A/D conversion with Datel ADC815
AJD conversion with National ADC0O82 0
NC4000 code for A/D conversion

Xii

11
14
15
19

23
25
27

36
37
38
40
44

49
52
53
54
56
57
58
59
60

113
114
115
117
118
119
121
122
123
125
127
129
130
132
133
134

6.17. Byte flipping 135
6.18. RAM memory allocation in cmForth 137

Xiii

Tables

11
12
13

2.1
2.2

31
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

6.1

The von Neumann machine instruction set
RISC instruction set
NC4000 instruction set

NC4000 pinnames and functions
Internal registers in NC4000

ALUcode and function

Y-port selector

Data stack code and functions
Shift code and functions

Valid ALU instructions

Valid 1/0 and memory instructions
NC4000 internal registers
Function of bits inthe 1/0 registers

Pins of OF5138

Machine cycles for 16 bit integer operations

Xiv

o O b

16

27
28
28
29
30
32
33
33

55

113

Chapterl. Introduction

1.1. Historical Background

Inthe beginning, Chuck Moore invented Forth as a programming language to make himself a more
productive programmer. The late 1960's saw Forth evolved into an integrated, unified, and complete
software development tool. In1972, Chuck and a few of his colleagues left National Radio
Astronomy Observatory (NARO) where they nurtured Forth into its present form, and formed Forth,
Inc. to explore its commercial potential. For a while, he was content to use Forth as a software tool to
solve real world problems, leaving hardware engineers topick up the Forth architecture and
implement Forth engines.

Forth didn't become a household name in computer industry until Forth Interest Group was formed in
the San Francisco Bay area. figForth source code was distributed bytonsat cost beginning in 1978.
Although Forth hadestablished a sizable following in the microcomputer user community, the
computer industry was very reluctant toaccept Forth as an alternative architecture for hardware
design and implementation. There were scattered efforts towards building Forth engines using bit
slice technology and random logic, but the consequence was almost nil. Meanwhile, Chuck became
restive and took it upon himself the task of casting Forth into silicon. In 1980, Chuck left Forth, Inc.
to pursuit his new dream.

Inthe reorganization, Forth, Inc. expanded its board of directors toinclude Bill Ragsdale, founding
father of the Forth Interest Group, and John Peers of Logical Machines. Both had intense interests in
seeing Forth burnt into silicon. The right milieu was thus gathered for the precise chemistry necessary
for brewing a Forth chip.

Atthe time, Chuck with Glenn Haydon and others were designing a prototype board toexecute Forth
words as primitive instructions. The spark that initiates the Forth chip development was set by Don
Colburn of Creative Solutions, another Forth heavy weight on the east coast. With a $1000 birthday
gift from his wife, Don organized a one-day, project-oriented session with Chuck Moore, Bill
Ragsdale and a chip designer todiscuss the feasibility of building a Forth engine onsilicon. The
discussions affirmed for Chuck that his dream of Forth chip could berealized and that serious support
was available.

John Peers saw the beauty of approaching Forth from several levels. He founded Technology
Industries in March 1981, tobea parentorganization todevelop Forth in hardware, software, and
applications. With funding from Technology Industries, Chuck developed and demonstrated a Forth
engine simulator with color CRT display of the internal data paths and operations in March 1983. A
funding partner of Technology Industries, Sysorex International, became interested inthe project and
formed the Novix partnership inMarch 1984 to carry forward the hardware implementation of this
Forth chip.

Mostek was chosen as the foundry tocast Forth insilicon. The chip was implemented with 3 micron
HCMOS process using 4000 gates. It was packaged in a 128 pin pin-grid array. The first working
chip was delivered inMarch 1985, running at 7 MHz. It was supposed tobea prototype chip. Since

95% of the functions worked as designed, Novix decided tooffer it as a product and called it
NC4000P. An evaluation and development system named Beta Board was also offered byNovix.

When Mostek was sold to Thomson and Novix went through a process of reorganization and
incorporation, efforts inremoving the bugs inthe prototype mask was suspended. A second run using
the same prototype mask was completed, with the pin count on the pin-grid package reduced t0 121 pins.
It seems that this prototype chip, complete with all its bugs and restrictions, will bethe one wehave t
live with for a while. Even with the bugs and restrictions, NC4000P is more powerful than the best of
the 16-bit microprocessors.

In March 1986, Novix was incorporated with Mr. John Peers as its chairman and chief executive
officer. It was producing NC4000 chips and selling them. Chuck Moore offered the Gamma Board, a
kit with a bare PC board, a NC4000 chip and a pair of PROM--to people who like to build computers.
Software Composers were selling board level products: SC1000C single board computer with
NC4000 and 8K of RAM, prototyping PC boards, memory expansion boards, etc. Meanwhile,
NC4000 spread tomany laboratories, factories, and other countries around the world. It was used in
many different areas, including CAD/CAM, data acquisition, fast signal processing, factory
automation, artificial intelligence, etc. An NC4000 Users group was also formed tocollect and
distribute information onNC4000 and its applications.

Novix licensed NC4000 design to Harris Semiconductors tobecome the 16 bit CPU core inits cell
library. Harris called it Forth Optimized RISC Computing Engine or FORCE. Harris' customers can
thus use this CPU core together with other supporting macro-cells to design complete single chip
microprocessors for dedicated applications. A five chip chip-set was produced by Harris for
evaluation purposes. It includes a FORCE CPU, two stack controllers, an interrupt controller, and a
multiplier chip. Software Composers, now renamed Silicon Composers, built a coprocessor board
with this chip set, tobe used inside an IBM-AT microcomputer.

Glenn Haydon and Phil Koopman continued their efforts inbuilding Forth engines using standard
TTL parts. In1986 a 16 bit version was produced, first inkit form and later inprinted circuit boards,
named CPU/16. This design is especially interesting because it uses writable control store memory to
hold the microcode. User can thus design or write his own instructions onthis engine. They called it the
Writable Instruction Set Computer, or WISC. In 1987, the 32 bit version CPU/32 was released. Both
these versions worked as coprocessor board inside IBM-PC or AT computer. Glenn and Phil formed
WISC Technologies, and intended to produce microprocessors using these designs.

1.2. The RISC Panacea

The Reduced Instruction Set Computer (RISC) seems to bethe fad of ‘computer industry for the 80's.
Byusing a small instruction set, restricting memory access toa few memory fetch and store
instructions, and using a large set of register windows, it promises faster execution at lower costs.
Will it solve all our computing problems? The RISC architecture was so attractive that many people try
toclassify NC4000 as a RISC engine inorder to give NC4000 an extra polish for selling to the
unsuspecting public.

The truth as | see it is that the Forth virtual engine by nature isa Complicated Instruction Set

Computer or CISC structure, because the Forth engine must support an interactive programming
environment. A minimum Forth system has at least 250 instructions just to be barely useful. Anyreal
Forth engine is thus bound tobe a CISC machine. Infact, the champion CISC machine VAX has an
instruction set that matches very well with a Forth virtual engine. The virtue of NC4000 is not that it
has a reduced instruction set, but that it can execute its instructions with blazing speed due to
simplicity indesign and dual stacks supporting very efficient subroutine nesting.

When the reports on RISC machine were published by Dave Paterson in Berkeley, | often compared
it tothe design of the original vonNeumann's Advanced Electronic Machine (AEM) developed around
1946. The similarity is very striking as shown inthe two instruction sets in Tables 1.1and 1.2. AEM had
only 21 instructions and RISC had 31. On the other side of the fence, NC4000 has more than 200 valid
instructions. Table 1.3 shows only a partial list of NC4000 instructions which can be conveniently
named. Comparing these tables, youcan see that NC4000 is definitely a CISC machine. Here weshall
compare it with the von Neumann AEM and Berkeley RISC to see its true merits.

Von Neumann's AEMwas a 40 bit machine designed primarily for numeric computation. It had
multiply and divide instructions, but no logic instructions. It addressed only 4096 words of memory.
It wasa memory oriented machine, inthat an internal accumulator provided one operand and was also
the destination of arithmetic operations. The other operand was generally fetched from memory. The
only other register MQ inthe CPU was used together with the accumulator, serving as an extension to
the accumulator in the multiplication and division operations. From the contemporary point of view,
AEM may seem very primitive, but it was very efficient for scientific and engineering computation.

Let's examine the RISC machine and see how much we have advanced over the last 40 years. The
only significant advancements inthe RISC machine over AEM are: subroutine call and return
instructions, the large number of windowing registers, and instructions operating onregisters instead
of the accumulator and memory. RISC has a large set of registers because of the VLSI technology,
which was not available to von Neumann. Subroutine call and return were invented much later;
although von Neumann was keenly aware of the power of subroutines, which was actually coined by
him. Conveniently nesting subroutines and returning from them had towait until the stack was
invented in the 50's. Because of the large set of registers RISC has onchip, it is advantageous touse
them as much as possible for normal ALUoperations, while delegating the memory fetching and
storing tospecial memory instructions.

Besides the efficient subroutine nesting and the use of registers to reduce memory access, RISC is
very similar to AEM. It is very interesting to observe that after 40 years of intense research,
development, and engineering efforts, we came back tothe point where we started. Are wemuch better
than our fathers?

The major advantage of the register windows is that they allow parameters tobepassed conveniently
between subroutines and their callers. The size of the register window was determined by extensive
studies onlarge compilers and applications. However, no matter how the windows are sized, they tend
to bewasteful because most subroutines donot make full use of them, and insufficient on many other
occasions. Incontrast toregister windows, an independent data stack in NC4000 dedicated to
parameter passing is the most efficient way touse on-chip memory tosupport subroutines without
limitation on the number of parameters passed into orout of a subroutine.

The major objection tostacks for parameter passing is that stacks traditionally implemented inthe
main memory cuts into the memory bandwidth. Using data on the stack is thus always slower than using
data inthe on-chip registers. This objection is no longer valid because large amount of on-chip memory
can bededicated tostacks. It is also possible to build CPU chips which can access external stacks in

parallel with the main memory so that stack accessing can be overlapped with memory accessing.
NC4000 sports two external stacks in addition tothe main memory. One stack is for subroutine
nesting, and the other is for parameter passing among subroutines. Asthe CPU can access the main
memory, the data stack and the return stack simultaneously, NC4000 is capable of executing a
subroutine call ina single machine cycle and also returning ina single machine cycle.

Table 1.1. VVon Neumann Machine Instruction Set

Symbol Function Comments

LOAD S(x)->Ac Load accumulator

LOADN S(x)->Ac Load neaative toaccumulator
LOADM S(x)->AcM Load absolute toaccumulator

SUBM S(x)->Ac-M Subtract absolute from accumulator
ADD S(x)->Ah Add memory toaccumulator

SUB S(x)->Ah Subtract memorv from accumulator
ADDM S(x)->AhM Addabsolute memory to accumulator
SUBM S(x)->Ah-M Subtract absolute memory

LOADR S(X)->R Copv memory toreaister

MOVR R->A Copy register toaccumulator

MUL S(X)*R->A Multiply memory with reaister product inaccumulator-
DIV A/S(X)->R Divide accumulator by memory
JMPL Jump S(x) Left Jump tothe left address at x

JMPR Jump S(x) Riaht Jump tothe riaht address at x

BRAL Branch S(x) Left Jump toleft address at x if A>=0
BRAR Branch S(x) Right Jump toright address at x if A>=0
STR A->S(X) Store accumulator tomemory

STRL A->S(x) Left Store left half of accumulator

STRR A->S(x) Right Store right half of accumulator

SHR R Arithmetic riaht shift inaccumulator
SHL L Double arithmetic shift of the

accumulator-register pair

Table 1.2. RISC Instruction Set

Symbol Function Comments

ADD Rd<-Rs+S2 Integer add

ADDC Rd<-Rs+S2+carry Add with carry

SUB Rd<-Rs-S2 Integer subtract

SUBC Rd<-Rs-S2-carry Subtract with carry

SUM Rd<-S2-Rs Reverse subtract

SUBCR Rd<-S2-Rs-carry Reverse subtract with carry
AND Rd<-Rs&S2 Logical AND

OR Rd<-Rs;S2 Logical OR

XOR Rd<-Rs xor S2 Logical exclusive OR

SLL Rd<-Rs shifted by S2 Logical shift left

SRL Rd<-Rs shifted by S2 Logical shift right

SRA Rd<-Rs shifted by S2 Arithmetic shift right

LDL Rd<-[Rx+S2] Load long

LDSU Rd<-[Rx+S2] Load short unsigned

LDSS Rd<-[Rx+S2] Load short signed

LDBU Rd<-[Rx+S2] Load byte unsigned

LDBS Rd<-[Rx+S2] Load byte signed

STL [Rx+S2]<-Rm Store long

STS [Rx+S2]<-Rm Store short

STB [Rx+S2]<-Rm Store byte

JMP pc<-Rx+S2 Conditional jump

JMPR pc<-pc+Y Conditional relative jump
CALL Rd<-pc, next,pc<-Rx+S2, CWP<-CWP- Call and change window
CALLR Rd<-pc, next, pc<-Rx+Y, CWP<-CWP- Call relative and change window
RET pc<-Rm+S2, CWP<-CWP+1 Return and change window
CALLINT Rd<-last pc, next, CWP<-CWP+1 Call and disable interrupts
RETINT pc<-Rm+S2, CWP<-CWP+1 Return and enable interrupts
LDHI Rd<31:13><-Y,Rd, Rd<12:0><-0 Load immediate high
GTLPC Rd<-last pc Restart delayed jump
GETPSW Rd<-PSW Load status word

PUTPSW PSW<-Rm Set status word

This capability of single cycle subroutine call/return is very significant, in the light of the studies the
Berkeley RISC group made to justify the RISC architecture--that subroutine calls and returns often
consume 40% of the CPU time in high level languages and compiler implementations. Minimizing
subroutine call and return will thus have a very significant impact on the efficiency of large

applications programmed using high level languages.

Another interesting feature of NC4000 is that the address generation was given the highest priority in
the CPU design. Consequently the addresses of the next memory locations, bethem in main memory
or in the external stacks, are always made available midway through a machine cycle. The program
can thus branch forward or backward, conditionally or unconditionally, in a single cycle. This design
solves the problems generally associated with RISC architectures which have to rely onan instruction

pipeline to achieve the goal of one instruction per cycle.
NC4000 has the following program flow control instructions at the machine level:

Subroutine Call

Subroutine Return Begin ... Until
Begin ... While ... Repeat

Do ... Loop

If ... Then ... Else

Jump

Conditional Branch

They can be used tosupport all high level languages which require these control structures.

NC4000 with its dual stack architecture tosupport fast subroutine calling and returning, single cycle
execution of instructions without pipelining, and the support of structured programming languages at
the machine code level is definitely a superior design than the Berkeley RISC machine. The RISC
panacea isnot inthe reduction of number of instructions, but in the reduction of the complexity of the
CPU and the logic structure inside the CPU.

Table 1.3. NC4000 Instruction set

Stack Instructions DUP DROP OVER SWAP NIP NIP-DUP DROP-DUP
OVER-SWAP >R R> R@

ALU Instructions + - +c -c AND OR XOR SWAP

Compound Instructions OVER-aluop OVER-SWAP-aluop SWAP-OVER-
aluop 2DUP-aluop

Shift Instructions 2/ 2* D2/ D2%*

Special Arithmetic Instructions O< *7 *— *p /' /" g

Memory Instructions @ ! @+ !+ @-!- IQ@ I! IQR! LITERAL

SHORT-LITERAL Local-memory-fetch Local-
memory-store
Control Structure Instructions CALL RETURN IF ELSE #LOOP TIMES

Chapter 2. The NC4000 Chip

2.1. Features of NC4000 Chip

The Novix NC4000 is a super high-speed processing engine which is designed todirectly execute
high level Forth instructions. The single chip microprocessor, NC4000, gains its remarkable
performance byeliminating both the ordinary assembly language and internal microcode which, in
most conventional processors, intervene between the high level application and the hardware. The
dual stack architecture greatly reduces the overhead of subroutine implementation and makes
NC4000 especially suited to support high level languages other than Forth. A number of
distinguishing features of this Forth engine on silicon can be summarized as follows:

o 16 bit high speed, HCMOS single chip Forth engine.

o Direct execution of most Forth primitives ina single machine cycle without internal
microcode.

o One cycle subroutine calls with mostly zero cycle returns.

o Supports 64K word memory, or 4M bytes with address extension port (the X-port).

. Fully static operation permitting very low power consumption suitable for battery powered
applications.

o One cycle structured IF, ELSE, and LOOP instructions. Multiplication, division, and square-
root step instructions.

o TIMES instruction allowing any instruction, including auto-incrementing/decrementing
memory access, tobe repeated once per cycle.

o Single instruction fetch and store from/to the local memory.

o One cycle generation of hex FFFF.

o 257 element 16 bit hardware return stack with the top element in on-chip | register.

o 258 element 16 bit hardware data stack with top two elements inon-chip T and N registers.

o Two versatile 1/0O ports, both of which are bidirectional, maskable, auto-comparable, and
programmable for either latched ortristate output.

o Simultaneous access of return stack, data stack, main memory, and I/O port; concurrent with
operation of ALU and shifter.

o Execution of multiple Forth words ina single cycle instruction, e.g. "OVER +;", yielding

over 180 available instruction combinations, not including permutations of register addressing.
2.2. External Data Paths

NC4000 chip ishoused ina 121-pin, pin grid array package. The pin layout is shown in Figure 2.1.
The names and function of the pin groups are shown in Table 2.1.

The external data paths spawn bythe large number of pins can be shown schematically in Figure 2.2.
The pins can be grouped into five different functional groups: Main memory data and address, data
stack data and address, return stack data and address, 1/O ports, and timing/control. The detailed
properties of these pin groups are discussed in the following subsections.

(View from top of the pin grid array)

13 12
N B00 AO00
M B0l RO1
L RO3 BO02
K B04 BO3
J BO5 RO5
H RO7 BO06
G B07 VDD
F RO8 BO8
E B09 RI10
D B10 Bi1
C R12 B13
B Bl2 Bl4
A R14 RI15
Figure 2.1.

11 10 9 8 7 6 5

A0l A04 AO06 XO01 X02 XO03 1Jo1

RO0O A02 A05 XO00 VDD X04 J02

VSS WEB A03 A07 VSS J00O J04

R0O2

RO4

RO6

VSS

RO9

R11

R13

VSS B15 Al10 Al4 VSS K01 KO5

WED A09 Al2 Al15 VDD KO0 KO3

AOS All Al13 RST INT CLK K02

NC4000 Pin Layout.

4 3 2
J03 J06 SO0
JO5 J07 DO0O
WER VSS D01
S02 D03
S04 S05
S06 DO06
° VSS VDD
S09 D08
S11 S10

INDEX S13D11

D15 VSS D12

K06 S15 S14

K04 KO07 WES

S01

D02

S03

D04

D05

S07

D07

S08

D09

D10

S12

D13

D1d

Table 2.1. NC4000 Pin Names and Functions.

Pins

AO-A15
BO-B15
CLK
INT
JO-J7
KO-K7
DO-D15
RO-R15
RST
SO-S15
VDD
VSS
WEB
WED
WER
WES
X0-X4

Function

Main Memory Address Bus

I/O Port Bus
Processor Clock Input
External Interrupt

Return Stack Address Bus
Data Stack Address Bus
Main Memory Data Bus

Return Stack Data Bus
Processor Reset

Data Stack Data Bus
Power Supply

Ground

I/0 Port Write Enable

Main Memory Write Enable
Return Stack Write Enable

Data Stack Write Enab

le

Address Extension Port

Iain Memory

iDU-IS TAU-IS TWED

Return | J0-7
mtack

NC4000

Rirl L

Figure 2.2. External Data Paths of NC4000

Data
Stack

L

2.2.1. Main Memory

NC4000 controls and communicates with the main memory through 16 address lines, 16 data
lines, and a write-enable line WED. The memory addressing space is thus 64K words or 128K
bytes. The timing of the memory is synchronized bya single phase clock signal CLK. At the rising
edge of the clock, data from the main memory is latched into the data memory port. At the failing edge
ofthe clock, memory address lines are stabilized and addresses are available. The main memory must
put the requested data onthe data lines before the rising edge of the clock. The speed of the clock is thus
limited bythe time NC4000 requires to calculate the next address during the high period of the clock,
and the time required by main memory to put valid data on the data lines during the low period of the
clock. The high period as required byNC4000 is 65 ns at the minimum, and the low period depends on
the memory used inthe system. Using high speed CMOS RAM with 50 ns access time, the clock
speed can be pushed toabout 8 MHz. Using low cost CMOS static RAM with 150-200 ns access
time, 4 MHz would be more appropriate.

There are a few restrictions onthe use of memory. Although NC4000can address 64K words of
memory, only the lower 32K can beused as program memory because the MSB bit of an instruction is
a flag to indicate a subroutine call. However, the top 32K words can be addressed as data memory.
Since the hardware reset causes the chip tostart executing the instruction located at memory location
1000H, it is mandatory that the bootstrap routine be programmed into this and the subsequent
memory. Thus ROM memory must occupy a block of memory space starting at 1000H. Memory
location O to31are special, inthat these memory locations can be accessed byNC4000 with single
word instructions, while other memory locations must beaccessed by explicit memory instructions.
Hence the memory starting at 0 is preferably RAM memory if the software is totake advantage of this
hardware function. The memory map of NC4000 is shown in Figure 2.3.

10

FFFFH OFFFH

Reset Vector
Data
Metnory
Page 0
8000H Ramn Memory
Program
and
Data
Mernory
2000H
|000H Page | ROM Interrupt Vector | gnaoH
0000H Page 0 RAM Local Memory | onog

Figure 2.3. NC4000 Memory Map

Whenever new data are to be written tothe main memory, the WED (memory write enable) line will be
brought lowtocoincide with the low period of the system clock. This line should betied with the write
enable lines of the RAM memory so that new data can be written into RAM memory.

This chip is intended to operate with static RAM memory chips that do not require a complicated
memory refresh process.

The memory space can begreatly enlarged if the 5 I/O lines of the X-port (Extension Port) are used
as extra address lines to control the main memory. Inthis manner the addressable memory can be
expanded to 2M words or 4M bytes.

2.2.2. Data Stack and Return Stack.

A Forth engine requires at least two stacks, one tostore return addresses for unfinished subroutines
and the other tostore parameters passed between subroutines. Since the gate array with 4000 gates
cannot support the necessary memory to host two stacks, the data and address lines of these two stacks
are brought off the chip. Each stack uses 16 data lines, 8 address lines, and a write enable line. Since
the address lines are only 3 bit wide, the depth of the stacks is limited t0256 words inthe external stack
memory. If more than 256 words are pushed onto the external stack, the stack would wrap around like
a circular buffer, and the data stored 256 words before the current word would be overwritten.

11

The depth of the stack is generally much more than sufficient because most programs use a depth of
only 12 words each onthe return and data stacks. The depth of the stacks will bea serious concern only
when a recursive procedure isused. Care must betaken to avoid exceeding the depth of the stacks.

The timing requirements for stacks are almost identical tothose of main memory. Stack data are
latched into the chip when the system clock makes a low tohigh transition. The addresses to the stacks
are stabilized when the clock goes from high tolow. The stack memory must put the data requested on
the stack data lines before the clock returns from lowtohigh. Thus the same type of memory used in
main memory can be used for stacks. There is little advantage touse higher speed memory for stacks.

The write enable lines WES and WER tothe stack memories are low for the low period of the system
clock when data are to bewritten to the stack memory.

Since most commercial static CMOS memory chips have capacities greater than 256 bytes, it seems
rather wasteful touse them for stacks in NC4000. One way totake advantage of the extra stack space is
to use the lines inthe X-port for bank switching of the stacks. This is very useful in supporting a multi-
tasking system, in which each task has its own data and return stacks. Task switching inthis
environment will be extremely fast since the operating conditions of each task are fully preserved in
their individual stack space.

2.2.3. B-Port and X-Port

Two input/output ports are supported by NC4000 chip: a 16 bit B-port (B for bus) and a 5 bit X-port
(X for extension). These two ports are fully programmable through 4 internal registers for each port: a
direction register to specify individual bits tobe input oroutput, a mask register toprotect individual bits
from being written to, a tristate register totristate output bits, and a data register toread from pins and
write topins. Both ports can do I/O operations insingle machine cycles as data registers are read or
written. These 21 programmable, high speed 1/0 lines make NC4000 chip anextremely versatile
controller chip for all types of high throughput, real time control applications.

The B-port write enable (WEB) line is low for the duration of the low period of the system clock when
the output of the 1/0 ports is stabilized. Data onthe input lines are latched into the data register at the
rising edge of the system clock as usual. Output data are available onthe output pins about 100 ns
after the rising edge of the system clock.

Aninteresting behavior of the I/O port is that a set of output data latches inthe data register can be
written to even when the bits are assigned as input. The data on the input pins are XOR with the bits in
the output latches when read by the CPU. If the data latch were loaded with ones, you can invert the
input data onthe fly as they are read through the data register. This extra XOR logic operation is
programmable for each individual 1/O pin.

Each 1/O pinis capable of sourcing orsinking 60 mA, so that they can be used todrive a large number
of logic gates without additional buffering chips.

12

2.2.4. System Timing and Control

NC4000 is anasynchronous CPU chip which requires a'single phase master clock. All internal
registers are static and the information held in them remains indefinitely while the clock is held low.
The upper limit of clock rate is set by the time required by the internal logic tocalculate the address of
the next instruction during the high period of the clock, which is about 65 ns inthe prototype chip.
Using a symmetric crystal oscillator for the master clock, this limits the speed of NC4000P toabout 8
MHz. The low period of the clock is used mainly towait for the external memory to put their data on the
data lines. If one uses slower memory chips, the low period of the clock must be stretched accordingly.

The external clock signal is brought in viathe CLK line. Aslong as the lowand high periods satisfy the
above requirements, the rate and the duty cycle of the clock are not critical. Either crystal oscillator or
simple RC timing circuits can beused to generate the system clock signal.

The timing diagrams of NC4000 are shown in Figure 2.4. Most NC4000 instructions execute inone
machine cycle. When the clock line makes a lowtohigh transition, the current machine instruction as
well as all input data are latched. The instruction is decoded and executed. When the clock line makes
a high tolow transition, address of the next instruction is available onthe main memory bus and stack
addresses are also stabilized ontheir respective buses. The external memory and stack must put their
data on the data lines so that when the clock line isagain raised tohigh, the next instruction and other
data will beready for NC4000 touse.

Memory accessing instructions need two machine cycles tocomplete. At the end of the first cycle, the
address of the memory to be read or written is put on the main memory address bus. The first half of the
second cycle is used toread or write the data toorfrom the main memory. The address of the next
instruction will beready when the clock is lowered. Main memory must then supply the next
instruction before the clock is raised again.

The reset signal RST if brought low will stop all internal operations inthe chip. When RST is brought
back to high, NC4000 will jump tothe reset memory location at 1000H and start executing the
instruction fetched from that location. The software bootstrap routine must be placed in that location
for the system to work properly. The external reset circuitry must be capable of sinking 60 mA to
bring down the RST line for NC4000 toreset.

There isalso an interrupt input pin named INT. When the INT pin is brought low, NC4000 will
execute a call instruction tolocation 20H, where a service subroutine must be placed. In the prototype
chip, the use of this interrupt facility is severely restricted, because the interrupt can beserviced only
when a single cycle, non-jump instruction is being executed. The interrupt will lose its return address
if it occurs during the first cycle of a two cycle instruction. If precaution is taken toenable the interrupt
only during a sequence of single cycle instructions, interrupt can be serviced correctly.

Being a CMOS gate array, the power supply voltage to the VDD pins can range from 0 to7 volts.

Nominal operation voltage is 5.0 Volts and typical current during operation is 10 mA. The supply
voltage might have tobe higher than 5 volts if it is tobe used with a higher clock rate of 7 MHz or higher.

13

Titning of Single Cycle Instructions

Latch Valid Address Latch Valid Address Latch Valid Address
Instruction for next next for next next for next
Instruction instruction Instruction instruction Instruction

Titning of Two Cycle Instructions

Latch Valid Data Latch Valid Address Latch
Instruction Address Data for next next
Instruction instruction

Figure 2.4. Timing Diagrams of NC4000
2.3. NC4000 Architecture

There are two unique features in NC4000 chip which differ from conventional microprocessor
design. The chip can simultaneously address four memory spaces--main memory, data stack, return
stack, and internal registers including 1/0 ports. It can directly decode the bit patterns in instructions
and execute them in single cycles. Due tothe use of two stacks, which greatly simplified the language
and the architecture of the chip, a high level language was cast in silicon using only 4000 gates
while achieving a speed far in excess of those microprocessors with much more complicated
structures.

2.3.1. Internal Registers

The architecture of NC4000 is shown schematically in Figure 2.5. It can be divided into five
functional groups internally. On top are the main memory interface and the program control section
that fetch instructions and data from the main memory, decode the instructions and execute them.
Address Multiplexer A outputs addresses tothe main memory, and the data to/from the data memory
is latched into Main Memory Port M. Instructions are then copied into the Instruction Latch L for
decoding and execution. Program Counter P keeps the address of the next instruction and feeds it to
the Address Multiplexer.

14

TAD-IS :DU-IS

2 - - - M
Address Instruction Latch IMemory
i ¢
Program Ctr % % T N 80-15
oo~ a—
RO-15 I Top of 5Tack Next Stack
Index-Return Stk K K0-7
J0-7] ALU Data Stack Ptr »
J Return Stack Ptr Shifter
WD
Iultiply Divide
XPORT B PORT SR
Data Reg Data Reg Seuare Root
Mask Reg Mask Reg
Direction Direction
Tristate Tristate
Control
X0-4 BO-15 INT CLK RST

Figure 2.5. Architecture of NC4000

Inthe middle is the stack interface and control, which manages the data stack and the return stack.
The bulk of the two stacks are implemented using off-chip RAM memory. Only the top two elements
of the data stack and the top element of the return stack are kept on chip. The Top Register T of the
data stack is the focus of the entire chip because it can communicate with almost all the on-chip
registers. The Next Data Register N communicates with the external data stack and also receives
data from the Main Memory Port. The Return Index Register | is the top of the return stack, doubling
as the loop index register. The Stack Pointer Register J/K outputs stack addresses to both stacks. Its
upper byte contains the data stack address and its lower byte contains the return stack address.

At the lower center is the ALU section, which performs all the arithmetic and logic operations
required by the language. The sources of the ALU are the T and N registers on the top of the data
stack. A shifter below the ALU can shift the ALU output before storing it back to T register. The
ALU can alternately use the MD or SR registers as input instead of the N register todo
multiply/divide orsquare-root operations. When MD and SR registers are not used for these
operations, they are free tobe used as scratch pad registers to store temporary data.

15

Table 2.2. Internal Registers in NC4000

Symbol Function

A Address Multiplexer for the Main Memory. It selects datafrom P, L, I, orT.

I Top of the return stack. It also serves as a decrementing counter for
NEXT(LOOP) and TIMES instructions.

J Return Stack Pointer Register.

K Data Stack Pointer Register.

L Instruction Decode Register. It generates appropriate control signals to execute
an instruction.

M Main Memory Data Bus Port providing data path to main memory.

N Next Register on the data stack. It can be shifted with T register under
instruction control.

P Program Counter pointing to the next instruction in the main memory.

R Return Stack Memory Bus.

S Data Stack Memory Bus.

T Top Register on the data stack. It performs all ALU functions and

communicates with all other registers.

On the lower left are the I/O ports and control registers. There are two fully programmable 1/O ports--
a 16 bit B-Port and a 5 bit X-Port. Each port is controlled by4 registers: a Data Register tohold input
oroutput data, a Direction Register tospecify individual pins as input or output, a Mask Register to
deactivate output pins, and a Tristate Register totristate output pins outside the output write cycles.
These registers give youtotal control over the 211/O pins.

Finally, a block of logic handles the external clock input, the reset RST signal, and the interrupt INT
signal. There is a flip-flop inthe interrupt circuitry. A high-to-low edge onthe INT pin sets the flip-
flop and an interrupt return resets it. The flip-flop is set even when the interrupt is disabled. Interrupt,
when enabled, generates a subroutine call to memory location 20H. RST causes NC4000 to execute
the instructions starting at 1000H.

2.3.2. Program Sequencer

Programs are sequences of instructions stored inthe main memory. Normal program execution
sequence for NC4000 is to fetch an instruction from the main memory by placing the address of the
instruction inthe Address Multiplexer or L register before the system clock'’s trailing edge. During
the low period of the clock cycle, the main memory puts the next instruction on the data bus and it is
latched into the Main Memory Port orthe M register at the rising edge of the clock. The instruction is
sent into the Instruction Latch L tobedecoded and executed. The first step inthe decoding process is
tofind the address of the next instruction. Normally the next instruction is inthe next memory
location pointed tobythe Program Counter P. Inthis case, the Program Counter will send its content
tothe Address Multiplexer and the address of the next instruction will appear on the address bus when
the clock level makes a high to low transition. The next instruction will then be fetched and so on.

When a branch ora loop instruction is encountered, the address of the next instruction can be
constructed very easily byattaching the upper four bits inthe Program Counter P to the lower 12 bits

16

inthe branch orloop instruction. The resulting address is then sent to the Address Multiplexer toalter
the program sequence. This is the reason why NC4000 can branch or loop only within the current 4K
word page. Nocomputation is necessary togenerate the target address. It assures that the next
address is stabilized before the clock falls again.

When a subroutine call instruction, characterized by a zero in the most significant bit 15, is
executed, the address of the callee appears as the lower 15 bits of the call instruction. This whole
instruction is then copied into the Address Multiplexer to fetch the next instruction. Inthe mean time,
the address of the next instruction in P is pushed onto the return stack and copied into the Return
Index Register I. When the subroutine is completed, a return instruction will be executed. The return
instruction causes the return stack to pop its top item, which is inthe | register, back into the Program
Counter P and the Address Multiplexer A. Consequently, the caller routine will continue on from the
point interrupted bythe subroutine call.

When the program counter is push on tothe return stack, the most significant bit of the address is of no
practical use. Chuck Moore chose tosave the carry bit at this position with the 15 bit return address.
It is important to mask this carry bit when the return address is retrieved.

When a two cycle memory reference instruction is executed, the memory address, which is usually in
register T, is selected by the Address Multiplexer and put on the address bus. The next rising edge of
the clock will latch the data from the specified memory address into the N register through the Main
Memory Port. Meanwhile, the address of the next instruction is placed on the address bus through the
Address Multiplexer and the next instruction will beavailable at the next rising edge of the system
clock.

A unique feature of the Instruction Latch L register is that the instruction latched into this register can
be repeatedly executed as many as 65535 times bypreceding the instruction with a TIMES
instruction. TIMES places a count inthe I register which causes the next instruction latched inthe L
register tobe repeated that many times. The most obvious use of this feature is in the construction of
multiply, divide, and square-root functions by simply repeating the multiply, divide and square-root
step instructions. It is also useful inmoving blocks of data. Since a single NC4000 instruction can
perform many Forth functions, this repeating capability can be very powerful in various situations.

2.3.3. Data Stack and Return Stack

The top of data stack is the heart of a Forth engine because all data manipulations occur in these few
locations. INNC4000, the top two elements of the data stack are cached on chip inthe form of the Top
Register T and the Next Data Register N. These two registers usually supply two arguments to the
ALU unit. T register can communicate with almost all internal registers through internal register
fetch and store instructions. The N register also serves as the interface to the external data stack and
to the main memory port M, in addition tosupporting the ALU unit.

Only the top element of the return stack is cached on chip as the I register. The main purpose of the |
register is to interface with the program counter P and the address latch A during subroutine calls and
returns. For this purpose, a single cached element is quite sufficient. Inaddition to this role, the |
register has two explicit functions--to hold the loop index in the do-loop structure, and to hold the

17

count for TIMES instruction. Inthese cases, the content of the I register is automatically
decremented when the NEXT (or LOOP) instruction orthe instruction latched in L register is
executed. The do-loop orthe latched instruction will berepeated until the count inthe I register is
decremented tozero. At this point, the return stack is popped back tol, and the next instruction inthe
normal sequence is fetched and executed.

The loop structure thus implemented is quite different from the standard DO-LOOP structure, which
requires both the loop index and the index limit tobe pushed on the return stack. However, the single
decrementing index is sufficient for all looping structures. Chuck Moore stated: "l apologize for
having mislead you for so long with DO-LOOP, but the decrementing FOR-NEXT loop is the right
waytodoit after all". Many Forth programmers have already adopted this simpler loop structure in
their systems based on other microprocessors.

When a subroutine call instruction is executed, the address of the subroutine is extracted from the
instruction latch L and passed to the Address Multiplexer A, in preparation for jumping tothe
subroutine. Meanwhile the content of the Program Counter P, pointing to the address of the
instruction right after the subroutine call instruction, is pushed ontothe return stack. This pushing
action involves moving data from P register tol register, and pushing the | register onto the off-chip
return stack. When a subroutine return instruction is executed, the content of | register is moved into
the A and P registers, and the top of the external return stack is popped into the | register.

Two stack pointer registers J and K are on-chip tocontrol access tothe external data stack and the
external return stack. As both stack pointers are only 8 bit wide, they are combined into one register
J/IK when accessed as an internal register. J, the return stack pointer, appears as the lower byte in the
JIK register. K, the data stack pointer, appears as the high byte. During a push operation, the stack
pointer is pre-decremented, and during a pop operation it is post-incremented.

The data stack, the return stack, and the three stack registers in NC4000 chip can be viewed as an
array of 515 words ora 515 element shift register. The entire array can slide right or left with a three
word window exposed to the ALU. Elements can be modified, added, or deleted only within this three
element window -- most frequently through the Top Register T.

The dual stack architecture contributes greatly to the simplicity of the Forth language and also of
NC4000 chip, because it allows the return addresses tobe stored independently from the data tobe
passes between caller routines and the callee subroutines. Thus a subroutine call instruction only has
to manage the address on the return stack and leaves the caller and callee routines toworry about the
data passing through the data stack. In NC4000, the overhead insupporting the subroutine call and
return is reduced toa minimum of one machine cycle, a truly monumental breakthrough in computer
design.

2.3.4. Arithmetic Logic Unit (ALU)
The ALU in NC4000 is a 16 bit, dual input Arithmetic/Logic Unit. It is shown in Figure 2.6 with the
registers directly connected toit. The Top Register T is always an input tothe ALU. It also receives

output from the ALU. The other input Y can be taken from the N register, the Multiplier/Divisor
register MD, or the Square-Root register SR. The carry bit can betaken as input optionally with the

18

N register. There is a multiplexer used to supply data from the selected register tothe Y input. The
multiplexer is controlled by a two bit Y field inthe ALU instruction.

Data Stack

IVain >
Memory &
ol — I
Tristate Data —
+ Return
X PORT wtack

Nask Direction

Tristate Ivask Direction Data

Figure 2.6. Arithmetic Logic Unit

The output of ALU passes through a shifter before falling into the T register. This shifter can shift
the 16 bit result from the ALU either left orright byone bit. It can also extend the sign bit of the result
tothe lower 15 bits. Alternately, it can also shift the 32 bit combination of T and N register pair
either right or left by one bit. The shifting function is controlled by the last three bits inthe ALU
instruction: D?, SL, and SR.

Output from the ALU always goes into the T register. Original content of T register may be copied
into the N register. The T Lo N data path is opened or closed according tothe bit TN in the ALU
instruction. While all these activities are going on inthe ALU section, the data stack can also
participate insome of these activities. Another bit SA inthe ALU instruction allows youto specify

19

whether the data stack should be pushed or popped, thus passing data between the N register and the
external datastack. Permutation of these bits in the ALU instruction produces a rich set of primitives
executing multiple Forth instructions in a single machine cycle.

The detailed operation of the ALU, the interaction of the ALU operations, and data path selections will
beelaborated in the next chapter dealing with NC4000 instruction set.

2.3.5. The I/O Ports

There are two 1/0 ports on NC4000 chip: a 16 bit B-Port anda5 bit X-Port. All 21 bits are connected
topins onthe pin-grid package. All the pins are fully programmable tobe input, output, or tristate, thus
allowing NC4000 tocommunicate with a host of standard or custom peripheral devices.

The data paths inthe 1/O section are rather straightforward. There are four port registers for each
port; a Data Register which connects to the pins tosend or receive data tothe outside world, a Direction
Register tospecify whether pins are input oroutput, a Mask Register toindicate which pins can be
written to, and a Tristate Register toindicate whether the data on output pins are latched ortristated
after being written to. All these registers are connected tothe T register, which downloads data toany
register byregister write instructions and reads data from any register byregister read instructions. All
16 bits inthe B-port registers are used in controlling the 16 B-port 1/O pins. Only the lower 5 bits in
the X-port registers are used to control the 5 X-port pins.

Inthe Direction Registers, a bit set indicates the corresponding pin is an output pin, and a bit reset
indicates an input pin. Inthe Mask Registers, a bit set indicates that writing tothe corresponding pin
is prohibited. Inthe Tristate Registers, a bit set indicates that the corresponding output pin will go
tristate after the write cycle. The Mask and Tristate register settings do not have any effect oninput
pins.

The Data Registers are used tooutput data patterns tothe output pins and toread input data from the
input pins. When a pin is assigned as input, the corresponding bit in the Data Register can still be
written toas a comparison latch. Actual bit read from the Data Register is the XOR'ed result of the data
at the input pin and the bit written tothe comparison latch. If a 1 is written toan input bit inthe Data
Register (setting its comparison latch) and a 1 appears on the input pin, the result read from the Data
Register will be 0 instead of 1. Thus a free XOR logic operation can be performed on the input data on
the fly at no cost tothe user.

Aseach input and output pin can typically sink orsource 60 mA of current at about 20 pf
capacitance, NC4000 has more driving power than most of the available CMOS interface driver
chips. It can comfortably drive any CMOS or TTL peripheral chip with plenty of margin. Actually,
the B-Port is designed to drive a heavily loaded bus structure, as B stands for Bus.

The designed purpose of the X-port is tosupport extended memory space addressing. Two special
instructions X@ and X! put a 5 bit literal out onthe X-port when the master clock goes low. Thus this
5 bit pattern can be used bythe main memory as a page select to address upto32 pages of 64K word
memory. Alternately, this 5 bit pattern can be used to select a page in the data stack/return stack
space, thus allowing the stacks to be switched between different tasks to support multiuser and

20

multitasking operations. Inthe current NC4000P prototype chip, X@ and X! instructions do not
work as designed. Thus the X-port pin can only be used to select memory banks statically, not
dynamically insingle machine cycles.

21

Chapter 3. Instruction Set of NC4000

Let's consider how a user interacts with a conventional computer--the different layers he has to go
through between issuing a command and actually performing the demanded function. The
command is first issued tothe operating system, which calls a compiled set of instructions into
memory for execution. The program usually consists of a set of statements written ineither a high
level language or in assembly language. This program is compiled or assembled into a set of
machine instructions. When the machine instructions are executed, microcode inside the CPU are
invoked todo the dirty work of operating the gates and shuffling the data bits. Thus there are at least
5 levels of interpretation between youand the real action. It is a miracle that the computer works at
all through this convoluted process. NC4000 architecture reduces the layers toonly two levels--user
commands and machine instructions. This greatly reduced complexity is the most important reason
for the speed and the versatility of NC4000.

NC4000 is a 16 bit microprocessor. Its basic data elements and instructions are all in 16 bit words or
cells. The instructions are sometimes called ‘external microcode' in the sense that NC4000 would
take individual bits in the instruction and perform individually assigned functions in parallel. It does
not need another layer of microcode to perform functions of an instruction. The side benefit is that
many Forth instructions can be encoded in one instruction and executed in a single machine cycle.

There had been many projects implementing Forth engines inhardware. All these designs had
attempted toencode individual Forth words into single machine instructions. They were shown tobe
much faster than Forth engines implemented in software because of the reduced overhead in NEXT,
NEST, and UNNEST instructions and in the operation of the stacks. Chuck Moore went far beyond
in NC4000. He attempted was tofind the simplest way to control stacks and perform operations while
using the minimum number of gates. He discovered that many of the computing and controlling
functions can be performed independent of one another. Pushing or popping the stacks,
arithmetic/logic operations, accessing main memory, and input/output are operations indifferent
domains of the computer. They do not have to be performed serially. These distinct, almost
independent domains can be controlled by the limited number ofbits ina 16 bit instruction just as
well as multiple bits in a much wider microcode. Thus it is possible to perform several functions ina
single machine cycle rather than using multiple machine cycles to perform a single function, as
implemented in all conventional microcode based computers.

Under the cmForth operating system orother Forth for NC4000, NC4000 engine directly executes
normal Forth words orprograms just as any other computer operating under a Forth operating
system. A user is not really required to know the detailed structure and the machine instruction set of
NC4000 inorder touse it. However, speed and efficiency can bemaximized if the programmer is
aware of the special properties of NC4000, its instruction set, and the best way to program it,
especially intime sensitive applications. Inthis chapter, weshall discuss this instruction set in
details. Learning the instruction set is the best way toappreciate the power and versatility of this
processor. It isalso important tounderstand NC4000 instruction set in order tostudy the code in
cmForth, a piece of art in software bythe master himself.

22

3.1. Classification of NC4000 Instructions

There are four major classes of instructions in NC4000: the subroutine calls, the 1/0 and memory
instructions, the branch and loop instructions and the ALU instructions. The class of an instruction is
encoded inthe most significant four bits of the machine instruction, as shown in Figure 3.1.

Call Instructions

a: Address b: Branch I Literal % Control
Figure 3.1. Encoding of NC4000 Instructions

Bit 15 is truly the most significant bit in NC4000 machine instruction. If it is zero, the instruction isa
subroutine call and the rest of the instruction contains a 15 bit subroutine address. Zero inthis bit
position triggers the subroutine threading mechanism in NC4000. The program counter is pushed
onto the return stack, i.e., copied into the I register. The 15 bit address inthe instruction is moved into
the Address Multiplexer A. At the beginning of the next machine cycle, the instruction stored at that
address will be fetched for execution. The Program Counter P will be pointing at the next instruction
inthat subroutine.

Using bit 15 toencode a subroutine call has only one drawback--it can only call subroutines in the
lower 32K word in the main memory. The upper 32K word addressable memory cannot be used to
store executable programs. This was a very serious trade-off in the design of NC4000. The most
important argument to justify this trade-off is that Forth programs written for NC4000 can be
extremely compact due tothe single cycle subroutine calls and the condensation of many Forth
words into a single instruction. Many large programs are needed tofill up the 32K word program
space. Bythe time memory requirements exceed 32K words, you will probably have a 32 bit Novix
chip toaccommodate these stupendous programs resulting from the lazy-minded or
uncommunicative programming teams.

23

When bit 15 is set, bit 14 is used to distinguish I0/Memory instructions from ALU/Branch instructions.
When bit 14 is zero, the next two bits are used to decide whether the rest of the instruction is to be decoded
as an ALU instruction or used as a 12 bit branch address. When bit 14 is one, then the rest of the instruction
will be decoded to determine the type of 1/O or memory instruction and how the 1/0 or memory is to be
accessed.

Another way of classifying NC4000 instruction set is shown in Figure 3.2. In this figure, the non-subroutine
call instructions are classified according to the instruction type field, bits 12-14. In this figure, all the bits
which perform specific functions are named and placed in their respective bit positions. We shall discuss
each of these instruction types in great detail in later sections. Only a few general comments will be made
here as an overview.

Inall I/0, memory, and ALU instructions, types 0 and type 4-7, bit 5 is called the return bit, or';'. This bit,
when set, will cause a subroutine return, in addition to whatever the instruction may otherwise do.
Therefore, a subroutine return in NC4000 can be a zero cycle operation; it gets a free ride when the last
instruction in a subroutine is an 10/Memory or ALU instruction. It would be difficult to optimize a
subroutine return instruction much further.

In the prototype NC4000P chip, however, this return bit should not be tagged to a two cycle memory
instruction, types 4-7, because the return operation will interfere with the memory fetching. The memory
address will be replaced by the return address from the return stack. This is not a problem with single cycle
instructions as there is no conflict in the use of the address multiplexer.

In I0/Memory and ALU instructions, bits 9to 11 in the ALU field determine the function of the ALU
section on the chip. Thus a free ALU operation can be tagged on to an 10/Memory operation.

An ALU operation requires two operands. One of the operands is always taken from the Top register T and
the other operand is usually selected among three internal registers, specified by a two bit field Y, bits 7 and
8. In most instances, the Y field is zero, which selects the Next register N as its operand.

External data stacks are controlled by two bits: TN bit at bit 6 and SA bit at bit 4 in an ALU instruction, or
bit 14 ina memory instruction. If TN bit is set, the content of T is copied into N at the beginning of an
instruction. The SA, stack active bit, signals the external stack to perform a push or a pop operation. If both
TN and SA bits are set, old T register is copied into N register and the content of the N register is pushed on
the external data stack. If TN is zero and SA is set, then the top element on the data stack is popped back
into the N register and the data in N register is lost. The combination of control bits in the ALU field, the Y
selector, and the TN and SA bits allow NC4000 to perform most Forth ALU operations and stack
operations, as well as their combinations.

Ina memory instruction, the least significant 5 bits constitute a literal field which contains a small
integer from 0 to 31.

24

Call Instruction

0 Address

ALU Instraction

1{ojojao ALU ¥ |TN| ; |SA|D?|% |SL|SR
IF (Conditional Branch)

1jojoj1 Address
LOOP

1jo1]o Address
ELSE (Unconditional Branch)

1joJ1|1 Adress

Literal Fetch Instruction

111]o0fa0 ALU Y o84l ; fiteral
Literal Store Instruction
1j1]0]1 ALU Y |5A fiteral
Memory Fetch Instruction
11140 ALU Y o|SA| fiteral
Memory Store Instruction
1111]1 ALU ¥ o||sAl fiteral

Figure 3.2. NC4000 Instruction Formats

This literal isused torepresent different types of information needed bythe memory instruction. Ina
short literal instruction, the small literal is pushed on the data stack as an integer. Inan internal register

25

accessing instruction, it selects one of the registers to be accessed. Ina local memory instruction, it is
the address of a local memory (the first 32 words inthe main memory). These local memory words
can thus be accessed bya single instruction. Inthe extended memory instructions, it supplies the bank
number to be placed in the X-port toselect one of 32 memory banks for memory access. Inother
instructions, this field is not needed and must be cleared tozero.

Ina branch instruction, bits 12 and 13 determine the type of branch and the lower 12 bits supply the
target address. The 12 bit address field specifies an absolute address within the current 4K word
page which contains the branch instruction. It is thus impossible tobranch across a 4K word
boundary. The programmer must be aware of this property inthe branch instructions when he is close
toa 4K word page boundary.

A 1inthis two bit field (bits 12 t013) indicates an IF instruction, which does a conditional branch
to the following 12 bit address. The branch condition is taken from the Top register T. If T register is
zero, the IF drops T and jumps to the target address. Otherwise, IF is simply a DROP instruction. A
3 inthis field indicates an unconditional branch oran ELSE instruction. The 12 bit address in the
address field is always taken as the address of the next instruction. If a 2 is in this two bit field, the
instruction isa NEXT instruction, which will decrement the I register--containing the loop index--
and will branch tothe 12 bit address if I is not 0. When | is decremented to zero, the conditional end
of loop, the NEXT instruction pops the index off the return stack and terminates the loop.

Another comment about this rather complicated instruction set is that not all combinations of
control bits can generate meaningful instructions. Certain combinations simply do not make sense
at all and other combinations cause conflicting use of the registers or data paths and the results are
not always predictable. Inaddition, defects inthe prototype NC4000P preclude some instructions or
combinations of bits and these instructions should not be used. InTable 3.7-8, wehave collected
all the valid ALU instructions and instruction combinations that can be safely used inthe NC4000P
chip. Many of these restrictions will be removed when the production chip becomes available.

3.2. ALUInstructions

ALU nstruction is the most complicated class of instructions in NC4000 chip because all 12 lower
bits inthe instructions are decoded to perform functions in parallel. A firm grasp on the use of the
individual bits and their interaction is essential. Understanding will lead toan appreciation for the
power of these instructions which can compress several Forth words into one machine instruction. A
number of examples will also be given toillustrate how the field and bits can combine toform multiple
function instructions. With this information you will probably beable to decode other valid
instructions and to visualize how they would work.

A more detailed data path diagram for the ALU section of NC4000 can be of great help inexplaining
the inner mechanism of the ALU instructions, as shown inFigure. 3.3.

26

N

ALU
ALU, %

C Shifter }4— sL, SR, D?
Sy

JI"LU A 1jofjoja ALU ¥ |TN| ; |84|D?|% |SL|SR
nstruction

)
- EqUENCer | I I I Stack >

Figure 3.3. Data Paths and Registers in ALU Section

The ALU performs arithmetic and logic operations using operands supplied toit fromthe T register
and the Y port. The function of the ALU is specified inthe ALU field, bits 9-11. 8 different actions
can be performed on the two operands as shown in Table 3.1:

Table 3.1. ALU Code and Function

ALU Code Function
Pass T
TANDY
T-Y
TORY
T+Y

T XORY
Y-T
Pass Y

~No ok~ WwWwhNhEFE O

The two bit Y field, bits7 and 8, controls the multiplexer which selects one of four registers as the
source for the Y port as in Table 3.2.

27

Table 3.2. Y-Port Selector

Y Code Source toY Port

0 N register

1 N register with carry

2 MD Multiplier/divisor register

Normal operations use the N register as the Y-port operand. The N register with carry is selected
when doing extended precision arithmetic. MD register is used to store multiplier in multiplication
operations or divisor indivision. Both the MD and SR registers are involved when a square-root
operation is performed.

TN, bit6, operates a switch connecting the N register to the output of T register. The content of
the T register is copied into the N register at the beginning of an ALU machine cycle if TN bit is set.
If T is passed through the ALU unit unchanged, a DUP operation is performed if TN is set and a
NORP is performed if TNis 0. If N is selected as the input tothe ALU unit and passed through it
unchanged, a DROP DUP operation will be performed when TN is 0 and a SWAP will be performed
when TNis 1.

The Stack Active bit SA, bit 4 inthe instruction, activates the external data stack. Depending on the
state of TN bit, the content of N register is pushed onthe external stack or the top element onthe
external stack is popped into N register. The stack action can be summarized in Table 3.3.

Table 3.3. Data Stack Code and Functions

SA TN Stack Function

0 0 ALU resultto T. N not changed. No stack action.

0 1 ALU resultto T. Old T to N. No stack action.

1 0 ALU result to T. External stack popped into N register.

1 1 ALU resultto T. Old T to N. Old N pushed on external stack.

It would be more pleasing if an independent bit were assigned to specify the direction of the stack
activity besides the TN bit. However, it was found that the limited combinations of these two bits are
sufficient toimplement most of the stack operations required by the Forth language. Many other
stack operations can be synthesized in conjunction with other activities in the ALU. The fact that
these two bits are not ina contiguous field makes it difficult toassociate the instructions with their
stack effects. These were the trade-offs the designer had to make and the users have to live with them.

Bit 5 is the almighty return bit. When this bit is set, a return from subroutine function will be
triggered even as the ALU and stack functions are performed concurrently. The return bit undoes the
subroutine call, as executed by the Call instruction. The return address on the top of the return stack
orthe | register is popped into the Program Counter P and the Address Multiplexer A. The next
instruction executed will be the instruction following the Call instruction and the execution will
resume. The return bit can betagged toany ALU instruction. Thereby a free return is generated
without an explicit return instruction. If this return bit is zero, execution will continue with the next
instruction.

28

http://arithmetics.md/

At the bottom of the ALU unit, there isa shifter which can shift the results from the ALU right or left
byone bit before storing the results into the T register. The shifter is controlled bythe three LSB bits in
an ALU instruction: D?, SL, and SR bits, or bits 3, 1 and 0, respectively. The bit patterns and their
functions are shown in Table 3.4.

Table 3.4. Shift Code and Function

D)
—
)

Function

No shift.

16 bit shift right.

16 bit shift left.

Sign extension of N into T.
Not valid.

32 bit shift right.

32 bit shift left.

Not valid.

PRPrPRrPRPOOOCOQU
PRrOORRFROOWM
PORrRrOROROW

The bit pattern 100 and 111 above, are not valid inthe prototype chip. The designed function of the
100 pattern is toshift the N register left one bit. The designed function of the 111 pattern is to shift
the N register right by one bit and extend its sign into the T register. Chip defects in the prototype
cause these functions to behave erratically.

Bit 2, % or divide bit, isused only inthe three divide instructions: the divide step /', the last divide
step /", and the square-root step S'. When it is set, a conditional subtraction is performed. If the
subtraction does not generate a carry, the difference is passed to the T register. If a carry is
generated, meaning that the divide step should not be performed, the result of subtraction is not
written to T register. Division and square root can be implemented bythese conditional subtraction
steps.

These discussions complete the description of the fields and bits in the ALU instructions and their
functions. Because so many things can happen simultaneously, it is rather difficult to completely
understand this ALU section and the different instructions the chip can perform. The best you can
hope todo is totake some of the valid ALU instructions and analyze them to familiarize yourself with
the instruction set. On the other hand, many of the combinations of functions can be automatically
resolved by an optimizing compiler. It can be made to recognize permissible and restricted Forth
word sequences tocompile the most compact machine instructions and tofully utilize the power of
NC4000 chip. A better understanding of the inner mechanism of this ALUwould enable youto
anticipate the optimization process and thus assure production of the most efficient code.

29

Table 3.5. Valid ALU Instructions

Code a=7 (Pass Y) a=0 (Pass T) a=Arith/Logic
10a000 DROP DUP NOP OVER a-
10a001 2/ OVER a- 2/
10a002 2* OVER a- 2*
10a003 0<

10a010

10a011 D2/

10a012 D2*

10a013

10a020 DROP NIP a

10a021 2/ NIP a2/

10a022 2*NIP az2*

10a023 NIP 0<

10a030

10a031

10a032

10a033

10a100 SWAP NIP DUP SWAP OVER a
10a101 NIP DUP 2/ SWAP OVER a 2/
10a102 NIP DUP 2* SWAP OVER a 2*
10a103 NIP DUP 0<

10a110

10a111

10al112

10a113

10a120 OVER DUP 2DUP a
10a121 DUP 2/ 2DUP a 2/
10a122 DUP 2* 2DUP a 2*
10a123 DUP 0<

10a130

10a131

10a132

10a133

Special ALU Instructions

102411 *-
102412 *F
102414 I"
102416 I
102616 S'

104411 *

30

3.3. 1/0 and Memory Instructions

The 1/0 and memory instructions inNC4000 are characterized by one's in the two most significant
bits and a literal value inthe least significant 5 bits. The other 9 bits inbetween are decoded to
perform ALU, data stack, and return operations. The general format of this class of instructions isas
follows:

IMemory and [/O Instructions

111 XX ALU ¥ o|8A fiteral

However, there are many special cases causing the I/0 and memory instructions to appear as if they
are governed by random logic. According to Bob Murphy, who did the logic design of NC4000 with
Chuck Moore, these instructions are controlled by random logic guided by logic equations. The best
one can dois topresent the entire table of valid I/0O and memory instructions as shown in Table 3.6.
Based on this table, we can make a few observations which might guide you in understanding this
rather complicated instruction group.

The store bit, bit 12, will always control read and write to/from the memory or registers. If this bit is
zero, the instruction is a fetch operation; otherwise, it must be a store instruction.

The ALU field isalso always predictable, as it specifies what kind of ALU operation shall be
performed on the operands. In most cases, the ALU operation can be performed on the operand while
the 1/0 ormemory operation is being processed. However, it is not always obvious as towhich
operands are used in the ALU operation.

Bit 6 is very close in function to the SA bit inthe ALU instructions. If it is zero, the data stack depth is
not changed and all operations are performed onthe T and N registers. these two registers will
contain the results when the instruction is completed. The C bit, bit 7, is similar tothe lower bit in
the Y field of the ALU instruction. It selects the N register as the input tothe Y-port of the ALU unit.
If it is set, the carry bit is also used in the ALU operation; otherwise, the N register is used without
carry.

Bit 8 selects alternate ways of accessing different types of memory or 1/O. Incase of literal fetch
instructions, setting bit 8 would cause a fetch of the 16 bit literal value following the instruction. A
zero in bit 8 would fetch the short literal embedded in the instruction itself. Extended memory fetch
and store instructions (16xxxx and 17xxxx types) are invoked by setting bit 8.

When bits 6 to 9 are all set (Ixx7xx type), the instruction refers to the internal register specified

by the 5 bit literal field. There are 17 addressable registers in the NC4000. Their register
numbers, assigned names and functions are listed in Table 3.7.

31

Table 3.6. Valid I/O and Memory Instructions

Code

14a0nn
14alnn
14a2nn
14a3nn
14a400
14a500
14a600
14a7nn
15a0nn
15alnn
15a2nn
15a3nn
15a4nn
15a5nn
15a6nn
15a7nn
16a000
16a100
16a200
16a300
16a4nn
16a5nn
16a6nn
16a7nn
17a000
17a100
17a200
17a300
17a4nn
17abnn
17a6nn
17a7nn

a=7 (Pass Y)

me
m i@

OVER SWAP !
nn X!
DUP nn X!

Special Return Stack Instructions

140721
157201
147301
157221
147321
157701

R> DROP

>R

R@

TIMES

R>
R>SWAP >R

Note: a-: SWAP , c-: SWAP -c

a=0 (Pass T)

32

a= Arith/Logic
nn @ a-

nn @ c-

na-

nc-
nn @ a-
DUPNnn'!a

DUPNnnllc

nn a-

an c-
@a
@ c-

nn X@ a-

Table 3.7. NC4000 Internal Registers

Name Number Function

JIK 0 Data/Return Stack Pointers
I 1 Return Index Register

P 2 Program Counter

-1 3 True Register

MD 4/5 Multiplier/Divisor Register
SR 6/7 Square-root Register

B 8 B-Port Data Register

B Mask 9 B-Port Mask Register

B 1/0 10 B-Port Direction register
B Tristate 11 B-Port Tristate Register

X 12 X-Port Data Register

X Mask 13 X-Port Mask Register
X1/0 14 X-Port Direction Register
X Tristate 15 X-Port Tristate Register
#Times 17 I as TIMES Counter

MD and SR registers are used for special purposes, i.e., to hold necessary parameters for doing
more complicated arithmetic operations such as multiply, divide, and square-root. However, if
they are not used by these specialized instructions, these registers are available for temporary
storage.

In performing 1/0O functions and communication with the outside world through the B-port and
X-port, one only has to read or write the B or X Data Registers to transfer data cross the 1/0 pins.
Before the actual 1/0 operations, the pins must be initialized and assigned appropriate functions.
The function of each 1/0 pin can be programmed via the 1/O, Mask, and Tristate Registers in the
B- and X-ports. The exact functions of bits in these registers are shown in the following table:

Table 3.8. Function of Bits in the 1/O Registers

Register Bit function if set
Input Output
Data Set comparison-latch ~ ---
Mask Inhibit writing
1/0 Set for output Set for output
Tristate Set to tristate after write cycle.

3.4. Graphic Models of Some NC4000 Instructions

The instruction set of NC4000 is quite overwhelming initially. There are too many bits in an
instruction, and there are too many different combinations. The last two sections represent my
best efforts in explaining this vast instruction set through words. In Volume 6 of More on
NC4000, Timothy Huang contributed a paper on Anatomy of the Forth Engine, in which he

33

showed several drawings on how data flows in several NC4000 instructions. These drawings
gave me the inspiration to present NC4000 instruction set in graphical form. As Confusius said:
"A picture is worth more than a thousand words". Looking at the operations of NC4000
graphically might help many readers to understand this machine better. It was unfortunate that
Timothy wrote that paper in Chinese, and not many NC4000 users could be persuaded to learn
Chinese.

The drawings | developed so far deals only with the ALU instructions, which are the most
complicated class of NC4000 instructions. They were presented in the NC4000 Users Group
Meeting at Cupertino, California, January 23, 1988. Chuck Moore was also present at the
meeting. His comment was that these drawings represent a good model of NC4000. This model
only approximates the functioning of NC4000, because NC4000 was designed not based on this
kind of models, but by a large set of logic equations compiled into gate array patterns. Many
special functions in NC4000 are impossible to represent in simple graphical models.

3.4.1. Model of NC4000 ALU

Figure 3.4 shows a schematic drawing of NC4000 CPU which is slightly different from the
drawings in Figures 2.5 and 3.3. This figure emphasizes the data flow paths and control paths in
NC4000 around the ALU and immediately related registers. The data stack is also shown to
illustrate its interaction with the N register. The N register is placed next to the shifter at the
bottom of the ALU because the N register participates in shifting operations. The carry bit is also
shown very prominently because it contains vital information, especially in extended precision
arithmetic operations.

MD SR
l Iz a5 Y
ALU
AL, Y= c
¢ | A
SL, SR, D? —f Shifter N -« p| D2

+ T stack

Figure 3.4. Another View of ALU

34

Bits and fields in the ALU instructions are shown to control some data paths and some logical
elements. The control function cannot be shown completely because the bits and fields
sometimes have more effects on NC4000 operations than simply opening or closing data paths.
For example, TN and SA bits control the data path between T and N, and between N and the
external stack.

Meanwhile, the TN bit also determines the direction of data flow between the N register and the
external data stack.

The Y field controls the multiplexer at the right input of the ALU. The ALU field obviously
controls the function of the ALU unit. The divide bit % is also sent tothe ALU unit because it forces
ALU to perform a conditional subtraction in the divide step and square root step instructions. The
bits D?, SL, and SR controls the shifter and the N register to perform single or double integer shifts.

In most ALU instructions, the interaction between TN and SA bits produces the most interesting

results, because of their effects on the data stack. The best way to analyze these effects is tofurther
group the ALU instructions according tothe bit patterns in the ALU field. For each group, TN and
SA can then be assigned all possible combinations. The data paths and the end results can then be
shown graphically.

In the following subsections, we shall discuss the following groups of ALU instructions: the SWAP
group, the DUP group, the binary ALU group, the multiply/divide group, and the miscellaneous

group.
3.4.2. The SWAP Group Instructions

The SWAP group contains the familiar SWAP, OVER, and DROP instructions. The fourth
instruction DROP DUP is not a standard Forth operation. However, it discards the topmost item on
the stack and duplicates the second item. The ALU selects the N register as its source through the Y
multiplexer and passes its content directly into the T register without any modification. These four
instructions are shown in Figure 3.5.

35

e) e3]
N7 E 74

‘ Data

: Data
| Shifter ‘ N ‘ Stack Shifter Stack
A
R
DROP DUP

ez} .
: 4/

: Data
| Shifter ‘ N *‘—— Stack

Data
Stack

T

Shifter

o
-
-

I

DROP OVER

Figure 3.5. The SWAP Group

In the upper left is DROP DUP. Inthis instruction, both the TN bit and the SA bit are cleared. The
external data stack is thus isolated from the N register, and the path from T register toN register is
also broken. The content inN register is written into the T register and the original content in T is
overwritten. The end results are that the top item on the data stack is DROP'ed and the second item is
duplicated.

If the TN bit is set, the instruction becomes SWAP in the upper right corner of Figure 3.5. Here the
content in T iscopied into the N register while the original content in N is copied into the T register
through the ALU. The top two items on the data stack is thus exchanged, which is what SWAP
should do.

If the SA bit is set but the TN bit is cleared, you get DROP, as shown in the lower left corner of
Figure 3.5. Since TN is off, the content in T is lost. The content inN is copied into the T register
through the ALU. Because SAis set and TN is cleared, the top item on the external data stack is
popped into the N register. The net effect is that the top of data stack, the original T, is dropped and
all items under T are moved up one place.

When both TN and SA are set, the instruction is OVER. The original content in T is copied into the
N register because TN bit is set. The original content inN is copied into T through ALU, and pushed

36

on tothe external data stack, because SA and TN are both set. Hence two copies of the second item on
the data stack are saved. The original top item is sandwiched between these two copies of the second
item. OVER is thus synthesized in NC4000.

Every ALU function thus results in four NC4000 instructions with the permutations of TN and SA.
They are all useful functions, though some of them may not have a standard Forth name.

3.4.3. The DUP Group

The DUP group is configured such that the ALU passes the content in T and stores it back into the T
register. It is basically a NOP operation if both TN and SA are cleared, as shown inthe upper left
corner of Figure 3.6. Although NOP is not a standard Forth word, it is extremely useful and most
real Forth system found it necessary to implement. The NOP instruction is especially important in
NC4000; because when the data is passed from T to T, the shifter can be used to shift the data right or
left byone bit before storing it back into the T register. These are the 2/ and 2* instructions which are
implemented in most Forth system with machine code because they are used so frequently.

\:LU i
) Data *
Shifter | N | ‘ g | | Data
I Stack Shifter N Stack
A
NOP, 2/, 2* NIP DUP

Data
Stack

v v
| | | |

Shifter N |4— Stack Shifter N |—P

0 |

NIP DUP

Figure 3.6. The DUP Group
If the TN bit is set, the content in T is saved both back into T and also into the N register. The original

content of N is written over. Again, this instruction does not have a standard Forth name. It is
equivalent to SWAP DROP DUP or NIP DUP.

37

Ifthe TN bit is cleared and SA bit set, the resultis SWAP DROP or NIP. NIP is not a standard Forth
word but it is getting very popular lately. Most of the newer Forth systems have it. The T register is
preserved through ALU. The N register, however, is overwritten bythe top item onthe external data
stack because SADbit is set. AsTN is cleared, the top element on the external data stack is popped into
N and overwrites its original content.

InDUP, both TN and SA are set. Thus the T register is copied both into T and N, while the original
content in N is pushed on to the external data stack. SA bit connects the N register with the external
data stack, and TN bit specifies that data move from N to the external data stack.

3.4.4. The Binary ALUGroup

Most of the arithmetic and logic operations inForth pop the top two items off the data stack, perform
some operations on them, and push the resulting item back on the data stack. This operation is
achieved in NC4000 bythe setting shown in the lower left corner of Figure 3.7. The ALU takes both
T and N as its inputs and stores the results back into the T register. Since the TN bit is cleared, T will
not be copied into N. Instead, the external data stack is popped into the N register because the SA bit
isset and TN is cleared.

\ ALU N\ ALU /
. Data
Shifter I N ‘ : Data
| Stack | Shifter ‘ N l Sk
A
OVER. SWAP alu-op SWAP OVER alu-op
\ ALU X ALU Ve
; Data ; Data
| Shifter l N “"_ Stack I it l a l_" Stack
Y

Normal alu-op 2DUP alu-op

Figure 3.7. The Binary ALU Group

In this setting, the ALU can perform +, -, AND, OR, and XOR operations on the two input numbers
from T and N. The subtraction in ALU can produce either T-N or N-T, depending upon the bit

38

http://stack.sa/

pattern specified inthe ALU field. Thus we have two subtractions: - and SWAP -. Both are single
cycle instructions in NC4000. In both addition and subtraction, it is possible toinclude the carry bit
generated in the prior arithmetic operation. The six possible arithmetic instructions are +,+ with
carry, -, - with carry, SWAP- , and SWAP- with carry. They are sufficient to carry out extended
precision mathematic operations.

One might add that the results of the arithmetic operation can be shifted right or left byone bit in the
shifter before falling into the T register in the same machine cycle. The extra shift is very useful in
many signal processing algorithms.

The normal binary ALU operation is only one among four possibilities. The other three possibilities
are also quite useful because they preserve one orboth of the input numbers, which are destroyed in
the normal ALU operation. Inthe upper left corner of Figure 3.7, the content inN is preserved
because both the TN and SA bits are cleared and the N register is isolated from T and the external
data stack. This is equivalent to OVER SWAP alu-op, where the second item onthe data stack is
preserved.

If the TN is set and SA is cleared, as shown inthe upper right corner of Figure 3.7, the content of
the T register is saved by being copied into the N register. The results can be described as OVER
SWAP alu-op in standard Forth terminology.

If both TN and SA are set, as shown in the lower right corner of Figure 3.7, the content in T is saved
by copying into the N register. The original content of N is also saved by being pushed on the
external data stack. The result is 2DUP alu-op or OVER OVER alu-op.

These three variants of the normal ALU instruction are useful because in many instances we have to
duplicate arguments of an ALU operation so that they can be used later. These instructions
complement the binary ALU operations in that one orboth of the arguments can be saved.

3.4.5. The Multiply/Divide Group

16 bit multiplier is very expensive toimplement in gate array technology, because it requires a large
number of gates. In NC4000 design, Chuck Moore chose the most economical solution: only a small
set of logic is needed to perform conditional addition and subtraction, which could then be repeated to
accomplish 16 bit multiplication and division. Byadding an extra register, he could even do the
square root byrepeating the conditional subtraction. According to his design, multiplying two 16 bit
numbers toform a 32 bit product needs only 16 machine cycles. To divide a 32 bit number by a 16
bit divisor to form a 16 bit quotient and a 16 bit remainder needs only 18 machine cycles. To take
the square root of a 32 bit number also needs only 18 cycles. By modularization the logic, these
rather complicated operations can be realized nNC4000 with fewer gates and higher speed than the
designs in conventional microprocessors like 680x0 and 80x8x.

Figure 3.8 shows four of these complicated operations. The fundamental operation is the D2* and
D2/ operations shown inthe upper left corner of Figure 3.8. The ALUis set uptopass T through
without modification. By setting the D? bit inthe instruction, the shifter at the bottom of ALU is now
combined with the N register to form a 32 bit double integer shifter. If SL bit is also set, the 32 bit

39

integer inthe T-N register pair isthen multiplied by2. If SR bit is set, the T-N register pair is then
divided by2. Multiplication steps, division steps, and square root step all use this double integer
shifter toadjust the product.

The multiply step instruction *', octal 104411, can be decoded as follows: adding MD register toT,
then shifting the results right with the N register byone bit. The assumptions are that MD register
holds the multiplicand, the N register is initialized to the multiplier, and the T-N register pair holds
the partial product. Simple addition cannot generate the product. The trick is touse additional logic to
detect the least significant bit shifted out of the N register. If this bit is a one, the sum of T and MDis
shifted and stored into the T register. However, if the bit shifted out ofthe N register isa zero, the
addition is suppressed and T is passed unmodified into the shifter. This conditional addition
controlled by the least significant bit in N achieves one step of multiplication. By repeating *' 16
times, a 32 bit product is produced inthe T-N register pair.

ND ND

v v v

~ N

i T
Mutiply Step *' Divide Step /

Square Root Step S

Figure 3.8. The Multiply/Divide Group

40

The infamous multiplication bug of NC4000P, that it cannot multiply odd numbers, is the result of
a mistake which ignores the least significant bit in the MD register during addition. Thus if the
multiplicand in MD is odd, the least significant bit is ignored.

Repeating *' 16 times produces a 32 bit unsigned product from an integer multiplicand and an
unsigned multiplier. If the multiplier is a signed, 2's complement number, the resulting product
would be erroneous. For a signed multiplier, the last step of the multiplication should use the signed
multiply step *instruction, octal 102411. This last step does a conditional subtraction instead of a
conditional addition (the ALU code is2 instead of 4). This step correctly interprets the most
significant bit in the multiplier as a sign bit instead of as a regular bit 15. The result will bea 32 bit
2's complement product.

NC4000 provides another interesting multiply step, the fraction multiply step *F instructions, octal
102412. This step should also be applied as the last step in multiplication. It is similar to *- inthat a
conditional subtraction is performed. However, instead of shifting the product tothe right, it shifts
the product tothe left byone bit. The reason is that the multiplier and the multiplicand are now
interpreted as fraction numbers; i.e., the most significant bit is still the sign bit, but the next bit is
the first bit after a binary point placed between bit 15 and bit 14. Ifa 32 bit product is produced the
normal way, the binary point should be placed between bit 29 and 28. Inthe last step, *F shifts the
product tothe left, and thus restores the binary point between bit 3Land 30, forming the correct
fraction product.

The divide step / instruction, octal 102416, is shown in the lower left corner of Figure 3.7. The bits
inthis instruction can be interpreted as: subtract MD from T and shift the results with the N register
left by one bit. This does not sound like a division. The trick lies with the % bit, which is set inthis
instruction. This % bit controls the ALU to effect a conditional subtraction. If the subtraction is
successful and no carry is generated from the subtraction or T>=MD, then the difference issent into
the shifter and shifted with N. If a carry is generated in subtraction, meaning that MD is greater than
T, the subtraction is nullified and the unmodified T is sent tothe shifter. At the same time, if
subtraction is successful, a one is shifted into the least significant bit of N; otherwise, a zero is
shifted into N.

To begin the division process, the 32 bit dividend is placed inthe T-N register pair and the 16 bit
divisor is put inthe MD register. The divide step /'is repeated 15 times. The last step of division
requires another divide step, the last divide step /", octal 102414. /" does the same thing as /', except
that the results of the conditional subtraction are not shifted, since the SL and SR bits are cleared in
this instruction. The reason is that the remainder of the last divide step must not be shifted, orthe
remainder would be only half of the correct value. The division is restricted to positive dividend and
unsigned divisor. The quotient will bein N register and the remainder in T register.

The square root step S', octal 102616, is shown in the lower right corner of Figure 3.7. It literally
means that the SR register is conditionally subtracted from the T register, and the result is shifted left
with the N register. Square rooting is of course much more complicated than that. Logically, both the
MDand SR registers are involved in a subtle fashion toachieve the desired goal. At any step, the T-N
register contains the current remainder of the square root, the MD register holds the partial root, and

41

the SR register holds the least significant test bit. The whole thing is quite similar to the situation
when you do long hand square rooting. The partial root in MD is OR'ed with the test bit in SR and
subtracted from the T register. If T is less than this test number, the subtraction is nullified and T is
passed into the shifter. If T is greater orequal to the test number, the subtraction results is passed into
the shifter. The shifter and N is shifted left byone bit. If the subtraction is performed, a one is also
shifted into the N and MD registers. The test bit inthe SR register is shifter right byone bit. Asthe T-N
pair is shifted tothe left and the SR register is shifted to the left after a S' step, the remainder in T-N and
the root in MD-SR are displaced by2 bits as required bysquare rooting.

To start this square root process, the 32 bit squared value is placed in the T-N register pair, MD must
be cleared to zero, and SR is initialized t032768, which is the initial test bit pattern. S' can then be
repeated 16 times. The square root is generated inboth MDand N, and T contains the remainder.
The restriction is that carry cannot be generated in any step during this process. This restricts the root
tobeless than 16192 inthe prototype NC4000P version.

These more complicated mathematic operations show that the model we are using toexplain the
function of NC4000 is not quite adequate; multitude of additional logic exists in NC4000 toenable it
to perform such diverse tasks ina small package. Nevertheless, this model of NC4000 ALU is very
useful in capturing the major activities of NC4000 in these various instructions.

3.4.6. Miscellaneous Instructions

There are many other interesting instructions in NC4000 other than the ALU instructions. They are in
the general category of 10 and Memory instructions. It is interesting to relate function with the bit
patterns inthese instructions, especially when you have to decipher octal dump of a code segment. As
mentioned in the last section, bits 6-8 in the I0O/Memory instructions do not follow fixed patterns and
thus are very difficult tointerpret. Thus no attempt will be made here toexplain the bit pattern in this
field.

The return stack isnot easily manipulated bythe user. However, the top most element of the return
stack is cached on chip as the I register. This register can be accessed bymany instructions using the
register 10 instructions. The I register is assigned two register numbers, 1 and 17. Normally when the
| register is used as the top of the return stack, it is addressed as register 1. Ifit is used as a count
register, it is addressed as register 17.

The instructions >R, octal 157201, and R>, octal 147321, are of special interests as shown in Figure
3.8. The data stack and the return stack in NC4000 can be viewed as a 515 cell register array, with
the I, T, and N registers at the center. The entire array can be shifted to the left by>R and tothe right
byR>. The three registers at the center of this large array is a window bywhich ALU has access tothe
array.

Three useful instructions related to the return stack through the | registers are: R@ or 1, octal
147301, which copies the content in | and pushed them into the T register; R> DROP, octal 140721,
which discard the | register and pops the external return stack; and R> SWAP >R, octal 157701.
The last instruction looks very complicated. It is actually very simply because it is a register
exchange instruction 1@!, by which the content inT is exchanged with the content of another on-

42

chip register, which happens in this case tobethe | register.

The TIMES instruction, octal 157221, is very similar to >R. Asthe content in T is pushed into the |
registers, NC4000 simultaneously latches the next instruction inthe Instruction Latch register L and
repeats this instruction until | register is decremented to zero. Extra logic in NC4000 decodes this
instruction toaccomplish this single instruction repeating function.

All the memory fetch instructions, such as the regular @, local memory fetch, long and short literal
fetch, and internal register fetch, get data from memory and deposit the data into the T register. The
data is fetched through the Memory Port register M and passed into T through N and ALU.
Therefore, some arithmetic or logic operation can be performed on the data fetched before storing it
into the T register. As memory fetch usually takes two machine cycles, the second cycle can be used
to do one more ALU operation on the data and save a cycle.

In accessing large arrays of data stored in memory, the T register usually holds the address pointing
tothe array. Normal fetch instruction destroys this address, making it very awkward to program
because addresses have to be saved and restored tothe T register. NC4000 provides two powerful
instructions tohelp these array operations: @+ (1647nn), @- (1627nn), 4+ (1747nn~, and !-
(1727nn). These instructions retain the array address inthe T register. Moreover, they allow a small
number between 0 and 31to be added toor subtracted from the address in T simultaneously with the
memory operation. Using these instructions with the TIMES repeating instruction, you can scan very
large arrays in NC4000 using only one machine cycle per access, because the memory address is
generated automatically and the memory access instruction is latched in L. Some of these array
operations are shown in Figure 3.9 also.

43

Y

e o[s |
ALU
=R

Shifter N |

4¢,

D2*, D2/, 0<

Instruction Instraction
Latch I Latch L
MMain —+ MMain
Y Y Memory

Memory

Y Y
Shifter | N l—’ Data | Shifter | N l—' Data
Stack Stack

Incremental Fetch n @+' Decremental Store n |-

Figure 3.9. Return Stack and Array Operations

Chapter 4. NC4000 Computers

4.1. Commercial Products Using NC4000 Chip

One of the major design goals Chuck Moore wanted to achieve with NC4000 chip was ease in
constructing a high performance computer with minimal parts and resources. All the necessary
signals are brought out tothe pins on the chip package, making it very easy to attach external
memory and control circuitry toform a complete computer system. There are several computers
already being built and are available commercially, based on NC4000 chip. Many others have been
custom built to solve specific problems.

4.1.1. Early Alphabetic Boards

When the first wafer of NC4000 was diced at Mostek inearly 1985, about 80 good chips passed the
functional tests. Chuck Moore was the first person to take delivery from this batch. He built a PC
board to host these first chips and called the resulting computer Alpha Board for obvious reasons.
Chuck used the Alpha Board to demonstrate the performance of NC4000 and developed the first
package of software for it. Alpha Board was Chuck’s personal computer and was not distributed
commercially. The board is about 6" by4" in size, containing about 8K words of memory, 2K
words for two stacks, a few glue chips, anda clock. It ranat 7 MHz maximum. Chuck was able to
generate color CRT displays with this board in many of his demonstrations.

Novix took the rest of the batch from Mostek and built Beta Boards with them. The Beta Boards were
sold by Novix as development tools for NC4000 chips. The boards measured 10" by14". It used
high speed RAM's and ROM's and was specified torunat 7-8 MHz. 56K words of memory are on
board, as well as two RS-232 serial ports and a SCSI disk interface. The software delivered with the
Beta Board was a version of poly-Forth developed for Novix by Forth, Inc. There are two versions of
the Beta Board system, one using an IBM PC as a host computer and the other a stand-alone system
with its own terminal and disk drives.

The second batch of NC4000 chips were made by Mostek and delivered to Novix inearly 1986. This
batch used the same mask as the first batch, but the pins were reduced from 128 to 121. Novix
modified the Beta Boards to accommodate the new NC4000 chip. Novix also incorporated the new
Beta Boards into a package with hard disk drive and floppy disk drive for software and hardware
developers.

Chuck Moore updated the design of Alpha Board for the new NC4000 chips and distributed it as a
Gamma Board kit, which consists of a NC4000 chip, a 6" by 4" PC board, and a pair of 2732's with
cmForth firmware. This Kit was sold through his company Computer Cowboys in Woodside,
California. The kit also contains 360 Augat Holtite press-fit sockets for mounting the chips. User
must supply four 6264 CMOS memory chips, a 74HC132 NAND gate chip, a4 MHz clock, anda
few resisters and capacitors to populate the board. To use the board, one only has tosupply 5 V to \VVdd
and hook a terminal tothe pseudo RS-232 port onboard.

Software Composers, a company in Palo Alto, California, also built a single board computer based

45

onNC4000 chip. This single board computer was called Delta Board with a code name SC1000. It
was very similar to Gamma Board in design but with a different layout. The memory bus and the I/O
bus are brought toa 72-finger edge connector with pertinent timing signals. The bus structure makes
it easy to add memory and peripheral devices tothe single board computer. It has 8K words of RAM,
4K of ROM, two stacks, and a serial port. It also uses cmForth as its operating system. The Delta
Board is available both inassembled form and inkits. Software Composers is also producing
supporting accessories such as power supply, back plane, expansion memory board, etc.

These alphabetic boards represented the early efforts toincorporate NC4000 chips into usable
computer designs. Since NC4000 is very easy touse and very forgiving inthe power supply and
interfacing requirements, many people used it tobuild their own systems for very specific
applications. It is impossible todocument all these computers.

4.1.2. ForthKits from Computer Cowboys

Computer Cowboys is Chuck Moore's company selling NC4000 products and services. The
Gamma Board was its first NC4000 product, which was officially named as ForthKit 1 or FK1.
Since Chuck owns this company, he is freed from all the customary constrains in developing new
products. Asdemonstrated in the design of the ForthKit, he showed no respect to common
engineering practices. The chips are mounted on both sides of the PC board to minimize the board
area, which terrified many electronic engineers. Memory and 1/0O buses are also brought out on both
sides of the PC board.

Chuck built boards in batches, typically 30 to50 boards ina batch. After these boards were sold out,
his would design a new board, incorporating all the new ideas developed with the old board. Hence
we have seen the ForthKit 2, ForthKit 3, and now he is at ForthKit 4, as of late 1987.

Improvements in the ForthKit 4 over the previous versions include the following:

. Power and 1/0 routed to 3x32 100 mil header (DIN 41612)

. Main memory, two stacks, and 1/O spaces each having their own 2x20 headers for
expansion

. Provision for MAX232 to generate true RS-232 signals

. Floppy disk interface, and video display interface.

The ForthKit 4 is priced at $503.00, including NC4016 CPU, Fk4 board, 10 MHz clock, cmForth
in PROMs, RAMs, Augat Holtite sockets, and miscellaneous parts. Assembly and testing is
$100.00.

4.1.3. Products from Novix, Inc.
Novix is still the only source of NC4000 chips. The NC4000P prototype chip was renumbered as
NC4016. However, the chip is exactly the same as NC4000P, with all the known bugs. Novix had

announced the much improved version, NC6000/NC5000 series of chips. Samples of NC6000
were delivered to Novix by Mostek in late 1987. It will be available in early 1988.

46

Following is the Novix product list:
Beta Board: 64K words memory, 2 serial ports, SCSI interface, polyForth OS $3500.00

Micro Mainframe: Beta Board, polyForth, floppy drive, Winchester drive, optional tape backup,
$7500.00

NB4100 PC Coprocessor Board: 128K high speed RAM, PCDOS interface, 4K byte dual port
RAM bus interface, $1250.00

NB4300 STD Bus Card: 128K bytes high speed RAM, one RS-232 port, 20 bit address and 8 bit
bus connection, $1170.00

Tiny Turbo 4000 Board: 4K PROM, 8K CMOS RAM, 4.5x6.5" board, Novix 83-Forth, $595.00
NS4100 Small C Compiler $149.00

4.1.4. Products from Silicon Composers

Silicon Composers, originally the Software Composers, was formed byDr. George Nicol toproduce
NC4000 based computers. It started with the Delta Board and has developed a range of products
using NC4000 as the CPU. Recently, it is marketing the FORCE chip set from Harris
Semiconductors onan IBM AT coprocessor board, which is the first commercial product sporting

the Harris Forth engine. Its product list is as follows:

Delta Board SC-1000CPU: 4K ROM, 8K RAM, one RS-232 port, SC-1000 2x36 edge connector
bus, $795.00

Delta Evaluation System: Delta Board with power supply SC-1000DES and RS232 cable, $895.00

Delta Development System: Delta Board, 7 slot backplane, Model 1 56K words CMOS RAM,
power/battery card, $1495.00

PC4000 Plug-in PC Board: IBM PC coprocessor board, 512K byte RAM, PC bus interface,
SCForth development language, $1495.00

AT/FORCE Coprocessor Board: Harris FORCE core chip set, 7 MHz clock, 32K bytes RAM, AT
bus interface, optimizing compiler/ linker FCOMPILER, $4500.00

A range of software products supporting the above hardware.
4.1.5. Other Companies and Products

FB-4016 from Forth, Inc.: IBM PC coprocessor board, 128K bytes RAM, 16K bytes dual ported
RAM for DMA with PC, polyForth operating system, up to6 boards ina PC, $3450.00

47

V4000 CPU Board from VME Inc.: standard VME bus, 128K bytes dual ported RAM, two RS-232
ports and a parallel port on P2, $4500.00

Novix Personal Computer byNovix Solutions: ForthKit 3 board, 32K words RAM, BOOK bytes
3.5" floppy drive, modified cmForth, $1000.00

BASEBOARD by SoCal Skunkworks: 16K to 128K of RAM, true RS-232 port, reverse power
protection, SC-1000 bus connector, $400.00 for board with 128K RAM.

4.1.6. List of Manufacturers

Computer Cowboys
410 Star Hill Road Woodside, CA94062 (415) 851-4362

Forth, Inc.
111 N. Sepulveda Blvd., Manhattan Beach, CA90266
(213) 372-8493 (inside California) (800) 55-Forth (outside California)

Novix Inc.
19925 Stevens Creek Blvd., Suite 280 Cupertino, CA95014 (408) 255-2750

Novix Solutions
7067 Mayhews Landing Road Newark, CA94560 (415) 796-1037

Silicon Composers
210 California Ave., Suite | Palo Alto, CA 94306 (415) 322-8763

SoCal Skunkworks
5358 East Falls View Drive San Diego, CA92115 (619) 583-5730

VME Inc.
560 Valley Way Milpitas, CA95035 (408) 946-3833

4.2. Build Your Own NC4000 Computer

What | want todo here is todescribe a typical design of NC4000 based computer. By providing the
reader with enough essential information on this design, one should be able tobuild a small computer
using a NC4000 chip, or incorporate the design into a system tosuit your special application.

This design is very similar tothat of Gamma Board and that of Delta Board, because Chuck Moore
provided the basic information to help developing the Delta Boards. The schematics in the following
sections are thus useful for users of either board. The design is broken down into three major
sections: CPU, stacks, and memory. Each section will be discussed in detail.

48

4.2.1. The CPU Section

NC4000 chip, its control and I/0 connections are shown inFigure 4.1. The memory interface tothe
main memory and two stacks will be elaborated later. Here we shall only be concerned with the
immediate control signals passed to NC4000 chip.

A0 | 12N 2G VDD
Al —| 1IN 7B
A2 | 10M TM
A3 9L 12G
A4 — 10N TA INT
A5 —1 9M 64— RST RESET
Af — 9N 84— CLK——————4MHZ
A7 —] 8L 8M — XU—/\/éé/\,—XMT
A8 — 114 BN — X1
A9 — 10B T™M|— %2
Alo — 9C 6N — X3 o
All — 104 6 — X4—/\/éﬁ/‘_
A12 —| 9B 10L |— wEB
Al3 — 9A 13N} BO
Al4 — 8C 13M | B1
Al5 —1 8B 12L— B2
WED — 24 12K B3
D0 — | 2M 13K |— B4
DI 2L 131— BS
D2 —| IM 12H|— Bé
D3 —| 2K 136}— B7
D4 —| 1K 12F|— B8
D5 — 1J 13E— B9
D6 — 2H 13D — BI10
D7 — 1G 12D — Bl
D8 — 2F 13B— BI2
D9 — IE 12C|— BI13
D0 — 1D 12B|— Bl4
D1l — 2D 10C— BI15
D12 — 2C 4L — WER
D13 — 1B 1ML RO
D14 — 14 12Ml— RI
D15 — IC HK— R2
WES —| 24 13L|— R3
S0 | 2N 11J|— R4
St __|IN 12— RS
s2 3K 11H|— R6
S3 —JIL 13H— R7
54 3] 13F— RS
S5 o 11F— RY
S6 — 3H 12E— RI10
57 — 1H 11E[— RI1
S8 — IF 13¢— RI12
59 — 3F 11D— RI13
S10 — 2E 134— RI14
S11 — 3E 13B— RIS
s12 — IC 6L— J0
$13 — 3D SN F— J1
S14 — 2B SM[— J2
S15 — 3B 4N — I3
K0 — 6B sLI— J4
Kl — 6C aM— J5
K2 — 54 INF— J6
K3 — 5B M J7
K4 — 44 G GND
K5 — 5C 4D
K6 — 4E 7C
K7 — 34 1G
GND 3C 7L
11C 3L
1L

Figure 4.1. CPU Section of a NC4000 Computer

The CLK input is driven by a single phase CMOS clock. The frequency of this clock depends onthe
memory speed and the maximum speed of the chip. A general requirement of the clock is that the

49

high period of the clock must be longer than 65 ns toallow NC4000 enough time togenerate correct
memory and stack addresses. The low period of the system clock must be long enough for the memory
to send data back on the data lines. If you wanted the chip torunat its full speed, all memory chips
should have an access speed less than 60 ns. Using slower but cheaper memory chips with access
time of about 100 ns, the maximum clock rate would be limited to less than 5 MHz. 4 MHz is a good
choice with 150 ns memory chips.

A CMOS crystal clock provides stable and accurate timing for most applications. A simple RC
oscillator can also be used as clock source. However, because the clock is used to control the baud
rate of the RS-232 serial port, a CMOS crystal clock might be more appropriate. The duty cycle of
the clock can vary from 40 t060%.

The clock signal is distributed throughout the entire computer, synchronizing other components
with NC4000. The low period of this clock is used to enable memory read or write. At the rising edge
of the clock, all input signals to NC4000 are latched by NC4000. The memory and 1/0O write enable
signals, i.e., WED, WER, WES and WEB, have different timing characteristics.

However, when the clock is low, these enable signals are assured tobe valid. The falling edge of the
clock can thus be used latch these enable signals into the memory or I/O device.

RST (reset) input is connected through a NAND gate toan RC network. The RC network generates
a reset sequence during power-up by holding RST input pin low for about 100 msafter 5 V power is
applied tothe chip. When RST is released to5 Volts, NC4000 will execute the RESET word stored in
ROM memory at address 1000H. The reset sequence assures that NC4000 is initialized properly
and then enters into the text interpreter loop. To bring the RST pin low, the driving chip must beable
tosink 60 mA of current. 74HC132 orequivalent is required.

INT (interrupt) input is normally pulled to 5 V through a pull-up resistor. When this input is
grounded and then released to 5 V, aninterrupt request flip-flop is set inside NC4000. If interrupt is
enabled, NC4000 will make a subroutine call to memory location 20H where an interrupt service
routine must reside. Return from this subroutine call will then reset the interrupt flip-flop for the next
interrupt. When the interrupt request flip-flop is set byan external interrupt signal and the interrupt
is disabled, the subroutine call to location 20H is suppressed but the flip-flop will remain set until
interrupt is enabled and serviced. Further interrupts before the flip-flop is reset will then be lost.

Bit S(100H) inthe Tristate Register of X-port (register 15) is the interrupt enable bit.

In the NC4000P prototype chip, the use of interrupt is severely limited because interrupt must not
occur during a two cycle memory instruction or during a jump instruction. Interrupt will destroy the
memory address inthe address multiplexer and the interrupt service routine will lose its proper return
address. Interrupt can only be enabled during a sequence of single cycle, non-jump instructions.

4.2.2. 1/0 Ports

Al sixteen B-port 1/O lines and three of the X-port I/O lines--X1, X2 and X3-- are configured by the
reset routine tobe output lines and are pulled toground. Asa result it is safe toleave all these 1/O lines

50

open. Input lines toNC4000 must not be left floating because NC4000 tends tooverheat if it finds
un-terminated inputs.

Each of the output lines thus configured can draw 60 mA from the device connected toit. If you are
going to connect other devices to these ports, be sure that the devices can withstand this abuse. To use
any of these lines as input to NC4000, you will have to modify the RESET routine in cmForth so that
NC4000 will be configured correctly upon power-up orreset.

X0and X4 in the X-port are used toimplement a serial communication port inthis design. This serial
port allows NC4000 chip totalk toa standard RS-232 terminal. It is not a true RS-232 port because
the voltage level is between 0 and 5 Volts. However, it does communicate correctly with all standard
RS-232 equipment.. X0 is the transmitter and X4 is the receiver. X0 can drive the receiver of a RS-232
device directly. X4 cannot be connected directly toa RS-232 transmitter because the transmitter
swings to-9 volts. The negative swing must be limited to protect the diode in NC4000. The simplest
solution is to put two 3K current limiting resistors between these two ports and the external RS-232
device. Two resistors are needed to prevent damages to NC4000 because the RS232 device may have
the transmitter and the receiver pins reversed.

4.2.3. Main Memory

In the design of a small computer with NC4000 as the central processing unit, there are two
important constrains inthe arrangement of memory. One is that the reset routine must begin at
location 1000H and some ROM memory must be put inthe neighborhood of 1000H for a self
booting system. The other is that memory location 0 to 1FH are local memory to NC4000, which can
be accessed bysingle cell local memory instructions. cmForth uses many of these local memory cells
tostore system variables for easy access. Therefore, memory around location 0 must be RAM
memory.

If memory chips came in 4K byte sizes, the memory design would be straightforward. We would
decode memory in 4K pages and arrange ROM's and RAM's accordingly. However, low cost, static
CMOS RAM's are available either in 2K or 8K byte sizes. The choice is either using many small
chips or wasting space in large chips.

Chuck Moore suggested the following decoding scheme which would fully utilize a pair of 8K byte
RAM chips with a pair of 4K byte PROM chips by partially decoding the RAM memory space. This
decoding scheme is shown in Figure 4.2. A12 address line is inverted bya NAND gate. The negated
A12 signal is used todrive the positive chip select CE line of 6264 RAM chips and the negative
output select /OE of 2732 PROM chips. Address line A13 is connected tothe A12 pins on 6264
chips. This allows the RAM's torespond to addresses from 0 to OFFFH and from 2000H to2FFFH,
while the PROM's reside between 1000H and 1FFFH.

51

E VDD E VDD L VDD L VDD
cs cs
GND GND GND GND
+—|: /OE r: /OE +_|: /OE +_|: /OE
WED——| R/W WED——| R/W WED——| R/W WED——| R/W
Do ——| DO D8 ——| DO Do —— DO pg ——| DO
D1 —| Dt Dy ——| DI D1 — DI Dy ——| DI
D2 —| D2 D10 —| D2 D2 —| D2 D10 —| D2
D3 —| D3 DIl —| D3 D3 —| D3 D1l —| D3
D4 ——| D4 D12 D4 D4 ——| D4 D12 —| D4
D5 —| D5 D13 —| D5 D5 —| D5 D13 —| D5
D6 —| D6 D14 —| Dé D6 —| Dé D14 —| Db
D7 —| D7 D15 —| D7 p7 —| D7 D15 —| D7
m|>c CE CE CE CE
6264 6264 2732 2732
CLK —| /CE CLK —| /CE
a0 ——| AD A0 ——| AD a0 ——| AD A0 ——| AD
Al —| Al Al ——| Al a1 ——| Al Al —| Al
A2 ——| A2 A2 ——| A2 A2 —| A2 A2 ——| A2
43 —— A3 A3 —— A3 A3 —| A3 A3 —— A3
A4 ——| Ad A4 ——| Ad A4 ——| Ad A4 ——| Ad
AS —| A5 A5 —— AS AS ——| AS AS ———| AS
A6 ——] A6 A6 ——| Af Af ——| A6 Al ——| Af
A7 ———| AT A7 ——| A7 AT ——| AT A7 ——| A7
A8 —| A8 A8 —| A8 A8 ——| A8 AR ——| A8
A9 ——| A9 A9 ——| A9 A9 —— A9 A) —— AP
Al0 ——] Al0 A10 —— AlD Al0 ——| AlD A10 ——| AlD
a1l —| all All —— All All —| All All — All
A13 —| Al2 Al3 —| Al2

Figure 4.2. Memory Decoding for a Small NC4000 Computer

This partial decoding method fully utilizes the 8K byte 6264 RAM chips. The problem is that it
would not allow more than 8K words of RAM in the system. It is quite suitable for very small
systems, but will make memory expansion very difficult.

For a system which must use more than 8K words of RAM memory, a conventional decoding
scheme shown in Figure 4.3 is more appropriate.

A 74HC138 1 of 8 decoder chip is used toselect memory pages of 8K word size. Address lines A13,
Al4, and A15 generate address select signals to enable memory pages. Inthe lowest memory space
or page 0, RAM must occupy addresses from 0 to FFFH and ROM must occupy addresses from
1000H to 1FFFH. This isachieved byusing negated A12 toenable ROM via/CE and using A12 to
select RAM via/OE. RAM chips above 2000H are selected by the 74138 decoder directly.

In this decoding method, half of the 8K RAM in page 0 is wasted. However, this system can
accommodate 64K words of memory for a full blown NC4000 computer.

It isimportant that the chip select (/CS) pins of the memory chips must always be enabled bytying
them to ground, because the time delay in memory chips from chip select to data available is too long
to be useful with NC4000. Using the chip enable (CE) and output enable (OE) to select
appropriate chips allows these slow and inexpensive ROM and RAM chips torunat a rate much
higher than that specified in the data sheets.

52

T: VDD E VDD L VDD L VDD
cs cs

GND GND GND GND

Al3—]a 850 J:, /CE —: /CE I' /CE I, {CE
al4—B 81 WED—{ R/W WED—| R/W WED—| R/W WED—| R/W
45— C 821 DO ——| DO Dg —| DO Do — DO Dg —— DO
cLk— G24 83 DI —| DI Dy ——| DI DI —| DI Dy —— DI
54 D2 —| D2 D10 —| D2 D2 —| D2 Dip —| D2

S5 D3 —| D3 D11 —| D3 D3 —| D3 DIt —| D3

Gl 86 D4 ——| D4 D12 —| D4 D4 ——| D4 D12 —| D4

G2B 87 D5 —| D5 D13 —| D5 Ds —| D5 D13 —| D5

D6 ——| Dé D14 —| Dé D6 —| Dé D14 —| Dé

74138 p7 —| D7 D15 —| D7 p7 —| D7 D15 —| D7

Al12 /OE /OE /OE {OE

6264 6264 2732 27132

A0 ——| AD A0 ——| AD A0 ——| AD A0 ——| A0

Al — Al Al ——| Al Al — Al Al ——| Al

A —| A2 A2 —| A2 A2 ——| A2 A3 —— A2

A3 ——| A3 A3 —| A3 A3 ——| A3 A3 ——| A3

a4 ——| A4 a4 ——| A4 a4 ——| A4 A4 ——| A4

A5 ——| A5 A5 ——| A5 A5 ——| AS A5 ——| A5

Af ——| A6 A6 ——| A6 A6 ——| A6 A6 ——| A6

A7 ——| A7 A7 ——| A7 A7 ——| AT A7 ——| AT

A ——| A8 A8 —| A8 A8 —| A8 AR —| A8

A ——| AD A9 ——| A9 A0 ——| AD A0 ——| A9

Al ——| AlD AlD ——| AlD Al0 ——| AlD Al ——| AlD

A1l —| All A1l ——| All All —| All All —| All

413 ——| Al2 Al3 ——| Al2

Figure 4.3. Memory Decoding of a Large NC4000 Computer
4.2.4. Data Stack and Return Stack

NC4000 supports two external stacks, one for subroutine return addresses and one for data tobe
passed between subroutines orwords. Since these stacks have data paths independent of the main
memory bus and 1/0 bus, NC4000 can access all these data buses simultaneously ina single clock
cycle. The most significant result is that a subroutine call can be performed ina single clock cycle.

The data path to either stack includes a 16 bit wide data bus and an 8 bit wide address bus, inaddition
to the respective write enable line and the common clock signal. The 8 bit width of the address bus
limits the depth of the external stacks 10256 words. For most application, two stacks of 256 words
deep are more than adequate. However, it is difficult tofind cheap static memory of this depth.
Currently, the most readily available static RAM memory chips are either 2K bytes (6116) or 8K
bytes (6264 or 6265). It seems to be a great waste to use only 256 bytes inthem, but that's life.

In Figure 4.4 the wiring of both the data and return stacks are shown schematically. We use 6264
chips as an example, because they are also used for the main memory. The circuit for smaller 6116
is almost identical and can be inferred easily. Using either type of RAM chips, the timing and
control are similar. The chip select and output enable lines are always enabled bytying either to5 V
ortoground. The chip enable lines (/CE) are enabled bythe main clock during the low half of the
clock period. The write enable lines (WES and WER) are connected to the write enable lines (/WE)
of the respective chips.

53

VDD VDD VDD VDD
cs cs cs cs
CE CE CE CE
WES ——| RW WES ——| RW WER——| RAW WER——| RW
sp ——| D0 5§ ——| DO R0 ——| DO rRg ——| DO
51 ——| DI 59 ——| DI R1 ——| DI Ry —— DI
§2 ——| D2 s10 ——| D2 Rz ——| D2 R10 —| D2
53 —| D3 11 —| D3 R3 —| D3 R1l —| D3
54 ——| D4 812 ——| D4 R4 —— D4 R12 —| D4
55 —| D5 813 —| D5 R5 —| D5 R13 —| D5
g6 —| D6 514 —| Db R6 —| D R14 —| Dé
g7 —| D7 815 —| D7 R7 —| D7 R15 —| D7
GND CE GND CE
/OE /OE /OE /OE
CLK —| /CE /ICE CLK — /CE /CE
6264 6264 6264 6264
Ko ——| A0 Al o ——| A0 Al
K1 —| Al Al 1 —| Al Al
K2 — A2 A2 J2 ——| A2 A2
K3 —| A3 A3 3 ——| A3 Al
K4 —| &4 A4 J4 ——| 44 44
K5 —— A5 AS J5 ——| A5 AS
K6 — Ab A6 J6 ——| A6 A
K7 ——| A7 A7 17— A7 AT
A8 A8 A8 A8
AD A9 AD AD
AlD Al0 AlD AlD
All All All All
412 A12 A12 Al2
Y Y
Data Stack Return Stack

Figure 4.4. Data and Return Stacks of a NC4000 Computer

Since NC4000 only supplies 8 address lines toeither stack, the extra address lines on the RAM chips
must be either pulled to 5 V or grounded. If you absolutely must have more than 256 words for a
stack, you can use the I/0 lines in B-port or X-port to control the most significant address lines and
swap the stacks in pages of 256 words.

4.3. Circuit Board for NC4000 Computer

From the above description, a single board computer using NC4000 as its central processing unit is
very simple, with a chip count of about 10. A 6™ by4" PC board is more than enough tohost these
chips. For those who can handle wire wrap guns or tools comfortably, constructing such a computer
will be a one-day project. To avoid wiring errors, a printed circuit board is a much better way to go.
Since both Chuck Moore's Computer Cowboys and Silicon Composers are supplying PC boards
with NC4000 chip, it is worth the extra cost to buy their kits and do the assembly yourself.

A final note onthe power supply. NC4000 computer as described consumes about 200 mA at 5V,
with a 4 MHz clock. The voltage of the power supply isnot very critical. It can vary from 4 to6
Volts. A small regulated 5 V power supply of any kind is adequate. A wall mount 6 Volt power
supply for video games should work well, too. Chuck tried the ultimate power supply: 3 or 4 alkaline
D cells. He estimated that 3 D cells could last 30 hours and 4 cells, 50 hours. If you had a Radio
Shack 100 portable computer to substitute for a terminal, you would have a truly portable and
powerful computer ina briefcase.

54

4.4. Hardware Enhancements

In designing NC4000, Chuck Moore wanted it to run as fast as it possibly can, and the speed of
program execution is the primary consideration. To realize a complete CPU with only 4000 gates,
the design must be very efficient in gate count. To achieve the highest speed with limited number of
usable gates, many desirable features had to be sacrificed. The trade-off between functions and
speed is particularly apparent in that the top half of the memory space cannot be used tostore
executable code, and that branching and looping are limited to absolute addresses within the current
4K word segment. The very heavy emphasis onthe B port and X port is also indicative of Chuck
Moore's intention to use NC4000 as high speed controllers rather than general purpose computers.
Limiting the external stacks toa depth of 256 elements is acceptable for most applications, but not
adequate to support recursions in general.

Because of the large number of signals brought out to the pins, most of the limitations in NC4000
can be eliminated with appropriate external hardware. Inthis section, we shall explore some
possibilities to circumvent these limitations and enhance the functionality of NC4000.

4.4.1. PAL Memory Decoder OF5138

The architecture of NC4000 makes it very difficult to optimize the memory design, especially for
systems which requires large amount of memory. There are two constrains in configuring memory
for NC4000. The reset vector must be located at 1000H, requiring that ROM memory must be at
this location. The local memory from 0 to1FH is optimized tostore frequently accessed variables
because it can beaddressed bysingle word instructions. Thus we need RAM memory from 0 up. In
the current designs of NC4000 computers, memory is generally decoded in 4K word pages so that
RAM can be assigned to addresses 0 to FFFH and ROM to 1000H to 1FFFH. As large size memory
chips become cheaper and readily available, decoding in 4K word pages becomes inefficient and
often awkward for deriving a sensible memory design.

Table 4.1. Pins of OF5138

Pins

Vce

Vdd
Al12-Al15
X1-X3
/ICLK

[EN
EN
ROMO
RAMO

RAM1-RAMG6

Function

5V power supply, +-10%.

Ground and power return.

Input. Connect toaddress lines from NC4000.

Input. Connect to extension port of NC4000 to select memory banks.

Input. Connect tothe master clock driving NC4000 system. Frequency limit 4
MHz. Low period gates the bank select signals to output pins.

Input. Low active chip enable.

Input. High active chip enable.

Output. Low active. Select ROM memory from 8000H to FFFFH. It is also
active for memory between 1000H and 1FFFH where Forth kernel must
reside.

Output. Low active. Select RAM memory from 0 to 7FFFH, except the
region between 1000H and 1FFFH.

Output. Low active. Select one of 6 banks of RAM or ROM memory to

55

respond to addresses from 8000H to FFFFH, in place of ROMO bank.

OF5138 is a PAL chip I designed specifically for large NC4000 computer systems. With this
single chip decoder, one can build a wide range of products using as little as 8K bytes each of ROM
and RAM memories, oras much as 512K bytes of ROM/RAM memories for memory intensive
applications.

The optimal size of ROM or RAM chips for NC4000 is 32K bytes because NC4000 can only
address 32K words as program memory. The 32K byte PROM chip, 27256, has been available in
quantity for more than two years now. The static RAM chip of the same size is now available from
Toshiba as 43256. The price of 43256 is expected todrop to $10 within 1987. OF5138 can decode
banks of these 32K byte memory chips directly. If one uses smaller memory chips, additional logic
IS necessary to select chips inside 32K word banks.

OF5138 is housed ina 20 pin DIP plastic package. The pin-out is shown in Figure 4.5. The
function of each pin is summarized in Table 4.1.

A12 |1 20 | Vco
Al3 |2 19 | ROM
Al4 |3 18 | RANDO
AlS |4 17 | RANI
Xl |5 16 | RAN2
X2 |6 15 | RAN3
X3 |7 14 | RANY
JCLK | 8 13 | RANS
/EN | 9 12 | RANG
Vdd | 10 11 | EN

Figure 4.5. Pinout of OF5138 Decoder Chip

Figure 4.6 shows a memory system which can be decoded bya single OF5138 decoder chip. It
includes a RAM memory bank inthe memory range between 0 and 7FFFH, a ROM memory bank
between 8000H and FFFFH. The ROM memory bank shares its address space with the other 6
banks of RAM/ROM memory. The RAM memory banks can accommaodate static RAM chips of
sizes from 4K bytes t032K bytes. The largest RAM chip is 43256. The ROM chips can also range
from 4K bytes to 32K bytes (2732 t027256).

A minimal system would use two 2732's to store the Forth kernel and two 6116's for the kernel to
operate. Note that RAM memory between 1000H and 1FFFH cannot be addresses because the
decoder would activate the ROM memory and use code stored in the physical memory between
9000H and 9FFFH. This range of ROM is always activated for code execution no matter which
bank of the upper memory is selected to ensure that the Forth kernel is always available to NC4000.

The maximum memory OF5138 can handle is 512K bytes divided into 8 banks of 64K bytes each.
The most convenient implementation would use 27256 for ROM's and 43256 for RAM's. If one
desires even larger memory space for memory intensive applications, it is possible to use additional
X-port or B-port pins in NC4000 todrive the /EN and EN chip enable inputs. This method allows

56

the designer to use several OF5138 decoders toselect more than 8 banks of memory.

FFFFH

ROM
RAMI RAM2 RAN3 RANY4 RAMS RAME

AD00OH

9000H
3000H Local Memory

cmFORTH

RANO

2000H
1000y | CmFORTH

o |Local Memory

Figure 4.6. Memory Map of a 512K Byte System

4.4.2. Stack Expansion Counter OF5493

OF5493 is an 8 bit up-down counter chip specifically designed for NC4000 Forth microprocessor
to expand its data stack to 64K words, making the stack space a useful buffer area to store large
amount of data transferred between the memory space and the 1/0 space. The output bits from the
counter become the higher byte of the stack pointer register, extending the stack pointer (K register)
from 8 bits to 16 bits, as shown in Figure 4.7.

OF5493 contains an 8 bit up-down synchronous counter with a common clock to load the counts.
The counter is incremented whenever it detects a transition from all high toall low in the 8 input
pins AO-7. The counter is decremented when the input pins make a transition from all low toall
high. This behavior makes the 8 counter output pins act like an 8 bit extension of AO-7 used as a
stack pointer. Thus if weconnect A0-7 tothe data stack pointer output KO-7 from NC4000 chip, and
/CLK to the inverted master clock in NC4000 system, the combined AO-15 lines provide a 16 bit
stack pointer toaddress the static memory used as extemal data stack. The data stack is thus extended
from 256 words t065536 words if all the address lines are utilized.

As NC4000 provides valid stack pointer KO-7 at the trailing edge (high to low) of the master clock
CLK, and the OF5493 counter is latched bythe leading edge (low to high) of the clock, CLK must
be inverted before connected to the /CLK input. Internally, the setup time between when addresses
are valid and the latching of the counter should be 35 ns nominal, toallow the input signal to
propagate through the gates tothe output latches. This condition is generally satisfied when the
clock frequency is 4 MHz or lower, because the stack pointer address is valid 60 ns ahead of the
trailing edge of the master clock.

57

JCLK | 1 24 | Vee
Al |2 23 | /48
Al |3 22 | Fa9
A2 |4 21 | /a10
A3 |5 20 | /a1l
A4 |6 19 | /a12
A5 |7 18 | fAl13
A6 |8 17 | /a14
AT |9 16 | fal15

/LD |10 15 | ™I

/RST | 11 14 | /LO

Vdd |12 13 | /OE

Vee 5V power supply
Vdd Ground
AO-7 Counter input bits.
/A8-15 Inverted counter output bits.
/CLK Inwerted clock input. Output bits are latched
at the leading edge (low to high) of this clock input
/LD Input data AO-7 are loaded into the counter and
the inverted data appearon output pins /A8-15.
MRST Output /A8-15 are set to high.
/OE. Output enabled when this pin is low.
MI Output low when AO-7 are all high.
/LO Output low when AO-7 are all low.

Figure 4.7. Pinout of OF5493 Counter Chip

The counter can be preset toall high output bypulling the /RST line low, orit can beset tothe input
AO-7 bypulling the /LD line low. These control signals are useful toset the counter to a known
state. However, if the counter is used only as an extension to the data stack pointer, it does not have
to be set toany specific value. Thus the /LD and /RST lines can be left open or tied to \Vcc for
NC4000 application.

Figure 4.8 shows how OF5493 can be used to extend the data stack of NC4000 from 256 words to
65536 words by expanding the data stack pointer. Note that an extra inverter gate is needed to invert
the clock from NC4000 to latch the counter. The same circuit can be used for the return stack. The
return stack needs to be extended if NC4000 will be used in applications which require often
recursion.

4.4.3. Another Novel Memory Decoding Technique

This novel memory decoding method was first developed byRick VVan Norman. It was used in his
Novix Solutions Computers and was lately adopted by Chuck Moore in the ForthKit 4.

The basic premise of this method is that 256K bit static RAM chips are becoming cheaper and more
available. It is more economical to use them than to use the older 64K SRAM or smaller for
program memory in NC4000 systems. Two 256K SRAM fit comfortably in the lower 32K words of
NC4000 memory map. Since we need some boot-up PROMs at 1000H to host a Forth kernel, we
will put a pair of PROM's at this location for boot-up only. Once the system is up, the kernel will
copy itself into SRAM and let the PROM's go tosleep. After this copying process, the kernel
operates entirely in SRAM, with 32K words of program space in SRAM all toitself!

58

http://to.be/

L VDD L VDD
WES ——| R/W WES ——| RAW
sp ——| DO 58 ——| DO
g1 —— DI 59 —— DI
52 —— D2 s10 ——| D2
g3 —| D3 511 —| D3
g4 ——| D4 512 ——| D4
55 —| D5 513 —| D5
56 —| D6 514 ——| Db
g7 ——| D7 s15 ——| D7
GND GND
/OE /OE
Y /CE /CE
VCC 015 43256 43256
Ko—— I0 AD A0
Ki— Il Al Al
K2 — 12 A2 A2
K3 — I3 A3 A3
K4 — 14 OF5493 A4 A4
Ks — 15 A5 AS
K — 16 Ab A6
K7 — 17 A7 AT
08 A8 A8
00 A0 A9
—{>0— /CLK 010 AlD 410
CLK /OFE Ol1 All All
/LD 012 Al2 Al2
RST 013 Al3 Al3
GND 014 Al4 514
Y
Data Stack

Figure 4.8. Expansion of Data Stack for NC 4000

A schematic diagram of this decoding logic is shown in Figure 4.9. The sequence of events during
power-up or reset is as follows. Upon reset, the flip-flop 74HC74 is preset. /Q output is low which
activates the PROM's, and NC4000 starts executing the boot-up code starting at 1000H. Part of the
boot-up code copies the content of PROM's into SRAM at equivalent locations. OE or SRAM is
driven high bythe Q output of the flip-flop, so that the PROM's are read while SRAM's are written.
After the kernel is copied, reading 8000H triggers the clock input of the flip-flop, lowering Q and
raising /Q. Thus the PROM's are deactivated and the kernel in SRAM takes over the system. Further
reading of 8000H does not affect the state of the flip-flop.

The code sequence performing this switch over is:
HEX 1000 7FF FOR 0@+ 1 !+ NEXT DROP 8000 @ DROP

This technique shows that a little bit of ingenuity can substitute for a lot of hardware.

59

AlS 'S
+CLK

RAM
RESET
() OE
GND D Q
CLK
AlS CLK /Q or GND
or /Q Q[cs
(f or /412
ROM
GND
1/2 74HC74
L (OoE

Figure 4.9. Decoding Memory with a 74HC74.

60

Chapter 5. The cmForth Operating System

This version of Forth, cmForth, was developed byChuck Moore, the chief architect of NC4000
Forth engine and the inventor of the Forth language. This version of Forth is installed in the
EPROM's on ForthKit and Delta Board single board computer as its operating system. Chuck
Moore and Novix kindly donated this remarkable software package to public domain toencourage
people toexplore the capability of NC4000.

This chapter serves as a documentation for cmForth. 1 will try to go through the system in minuet
detail, inorder to help people who are not familiar with the Forth language and those who are not
familiar with Chuck Moore's coding style. Inany case, the source listing itself is the primary
documentation and the descriptions in this chapter are commentary tothe source listings. The
complete source listing of cmForth is included in this book as Appendix A. Inthe first two editions
of this book, the source code was the version released in February, 1986. Recently, Chuck
released a revised version in December 1987. This newer version is reproduced in Appendix A with
shadow screen. The discussions inthis chapter are also updated according to this new version of
cmForth.

Chuck Moore had gone through the source code and made many modifications to the system.
Although all the important features inthe original cmForth are retained, there are enough changes
making the new version quite different from the old one. Do not expect that program written under
the old version will run under the new version. If you have used the old version for some time, it is
probably better to keep on using it. To upgrade to the newer version, you have togothrough you
existing code carefully for words which were different between the two versions.

The source listings of cmForth are your best source for examples of code and programming style
when striving touse NC4000 most efficiently. You are encouraged tostudy these listings carefully
inorder to get the most benefit from the chip.

5.1. The Kernel

The kernel ina Forth system is the collection of low level words or instructions which drive the
computer and are used to construct other high level instructions. IncmForth, the kernel contains
mostly NC4000 machine instructions. However, many of the commonly used Forth words do not
have corresponding single cycle NC4000 instructions and they will have to be synthesized from the
primitive NC4000 instructions.

5.1.1. The Primitive Forth Words

Primitive stack operators are machine instructions of NC4000 chip. However, it is necessary to
give them names so that they will be available tothe text interpreter for execution and compilation.
Ina conventional computer system they should be equivalent to assembler mnemonics which
compile NC4000 machine instructions into a definition. If they are used in the following form
during compilation as high level instructions, the performance will be degraded because of the
overhead in nesting and un-nesting.

61

: SWAP

: OVER

: DUP

: DROP

: XOR

: AND
:OR

:0<

: NEGATE
L@

Many other commonly used Forth words cannot be constructed from single NC4000 instructions

SWAP ;
OVER;
DUP;
DROP;
XOR;
AND ;
OR;

0<;
NEGATE ;
Q@;

and they have tobe defined as high level Forth instructions.

: ROT

:NOT

s U<

: 7DUP

(n1n2n3--n2n3nl)

PUSH SWAP
POP SWAP

(n--T)
IF 0 EXIT THEN

-1

(n--f)
0=

’(n1n2--f)
-0<

’(nin2--f)
SWAP-
0<

’(nin2--f)
XOR
0=

’(u1u2--f)
-2/
0<

IF DUP EXIT THEN

Exchange nl and n2.
Exchange nl and n3.

Return false if not 0.
EXIT is cheaper and faster.
-1 can be obtained from a register.

Logic NOT, not one's complement.

An NC4000 primitive instruction.
Extend the sign.

Compare all 16 bits.

Get the carry of subtraction.
Return proper flag.

(n--nn;0)DUP
EXIT is faster.

62

WITHIN (n low high - f)

OVER - PUSH high - low
- n - low
POP U< In range?
: ABS (n--u)
DUP 0<
IF NEGATE EXIT THEN Invert negative number.
: MAX (n1n2--nl;n2)
OVER OVER - nl-n20<IF
BEGIN SWAP DROP nl<n2, drop nl. Otherwise, jump to THEN in
MIN and drop n2.
: MIN (n1n2--nl1;n2)
OVER OVER - nl-n2
0<
UNTIL nl>n2, jump to BEGIN in MAX and drop nl.
THEN DROP Otherwise, drop n1.

The funny IF-BEGIN... UNTIL-THEN structure spanning over two definitions MAX and MIN lets
two definitions executing two alternate pieces of code, SWAP DROP or DROP. Chuck can dotricks
like this because cmForth does not have compiler security and protection. Not recommended for
general programming practice.

: 2DUP (d--dd)
OVER OVER

.2DROP (d-)
DROP DROP

5.1.2. Memory Accessing Words

D+ (na--)
0 @+ Fetch from a, while keeping a on the stack.
PUSH Save a.
+ Add n to content of a.
POP ! Store the sum back into a.
: 2IMOD (n--remquot) Equivalent to 2 /MOD but faster. Needed to convert
byte address to cell address.
DUP 1 AND Get the remainder.
SWAP Get n to the top.

63

O[\]+

Add 0ton, thus clear the carry. \\ breaks 0 and + into two
instructions.

2/ Unsigned divide by 2.
: Cl! (ba--) Store a byte to address a. a is a byte address, which has
to be converted to a cell address.
2/MOD DUP PUSH Save cell address.
@ Cell content.
SWAP Byte offset.
IF -256 AND Offset=1. Mask off lower byte.
ELSE 255 AND Offset=0. Mask off higher byte.
SWAP Get the byte b.
6 TIMES 2* Shift left by 8 bits.
THEN
XOR Combine two bytes.
POP ! Put the cell back.
C@ (a--b)
2IMOD Get the cell address.
@ Content of the cell.
SWAP 1 - Offset=1?

IF6 TIMES 2/ THEN
255 AND

Yes. Shift right by 8 bits.
Mask off the high byte.

NC4000 isa 16 bit machine and it addresses the memory by 16 bit cells. Two bytes are packed into
one cell, with the first byte inthe higher half (MSB) of the cell. The byte address is twice that of
the cell address, with the least significant bit as the byte offset in a cell. To access one byte inthe
memory, one has toconvert the byte address toa cell address by2/MOD and use the quotient as an
offset tofind the requested byte. It takes lots of extra work to do byte addressing. Avoid it at all cost.

: -ZERO (al --al+la2) A compiler directive to reduce one loop cycle to compensate
for the extra loop in FOR...NEXT structure.

1+ Add 1 to the address where the loop begins.

\ BEGIN Copy current address a2 to stack.

130000 , Compile an unconditional jJump instruction here. The target
address will be the last address in the FOR...NEXT loop so
that activity in the loop can be skipped once.

: MOVE (ala2n--) Copy n cells from al to a2. al is the starting address of the
source, and a2 is the starting address of destination.

PUSH Push the loop index on return stack in place of FOR.

41 Save a2' in MD register.

BEGIN Complete the FOR instruction with PUSH. Leave current
address on the data stack.
-ZERO Compile an unconditional jump or ELSE here, and move the

64

file://breaks
file://breaks

loop address after it.

1@+ Fetch a cell to the data stack.
41@! Exchange al and a2.
1+ Store a cell to the destination.
41@! Exchange al and a2 again.
THEN This is where -ZERO skipped to in the first loop.
NEXT Loop back to -ZERO+1 or 1@+ if n is not decremented to
zero.
DROP Clear al, the last address.
- FILL (a#n--) Fill a memory range with cell value n.
41 Save the value n in MD register.
FOR Begin the loop.
-ZERO Skip the loop once.
41@ Retrieve the stored value n.
SWAP 1 I+ Store it to destination.
THEN For skipping by -ZERO.
NEXT Loop back to 4 |1@.

DROP Discard last address.

5.1.3. Multiply and Divide

NC4000 does not have single instruction multiply or divide, which takes a lot of gates toimplement.
What is provided are multiply steps, divide steps, and a square-root step, which can beused
repetitively to achieve the desired result. Problems in processing the carry bit in the prototype chip
cause some restrictions in multiplication. The software fixes toarrive at the proper function are not
implemented. You have towork around these bugs.

OCTAL

s U*+ (ulru2--d Unsigned integers ul and u2 are multiplied and added to r.
The product is an unsigned double integer on the stack.
Warning: u2 must be even!

41! Store u2 in MD register.
14 TIMES *' Repeat multiply step instruction *' 16 times and the
product is left on the stack.

:M/MOD (udu--qr) Unsigned double integer ud is divided by unsigned integer
u. Both quotient and remainder are left on the stack. Note
the order of g and r is not standard.

41 Store u in MD register.
D2* Left shift d by 1 bit so that it is always even.
13 TIMES /' Repeat divide step /' 15 times.
I’ Last divide step.
- M/ (du--q) Double integer d is divided by unsigned integer u.

65

VNEGATE

: M*

:/IMOD

:MOD

D/

OVER 0<
IF

DUP PUSH
+

POP
THEN
M/MOD

’(n1n2--n3n4)

NEGATE

SWAP NEGATE

SWAP

(n1ln2--d)
DUP 0<

IF VNEGATE
THEN

0 SWAP

41!

13 TIMES *'

*

’(u1u2--rq)

0 SWAP
M/MOD
SWAP

(ulu2--r)
/MOD
DROP

(nln2u--r)
PUSH

M*

POP M/

(n1n2--r)
0 SWAP U*+
DROP

(nu--q)
PUSH

DUP 0<
POP M/

Is d negative?

Save u.
Add u to the higher half of d.
Retrieve u.

Do the divide now.
Negate top two integers on the stack.

Negate top integer.
Negate next integer.

Mixed mode multiplication of two signed integers.
Is n2 negative?
If so, negate both integers.

Insert O into the accumulator.
Copy n2 to MD register.
Repeat multiply step.

Last signed multiply step.

Divide unsigned integers and return both remainder and
quotient.

Insert 0, making dividend a double integer.

Do the mixed mode divide.

Correct the order of results.

Find remainder of unsigned integer division.
Do the generalized divide.
Discard quotient.

Ratio of n1 xn2/u.

Save u.

Signed multiply of n1 and n2.
Divide by u.

Signed multiply.
Signed multiply.
Discard remainder.

Divide by unsigned integer.
Save divisor u.

Sign extend integer n.
Divide.

66

5.2. System Variables

System variables contain vital information needed by the system, to function. Most of them are
pointers tovarious areas in the Forth system, such as the top of the dictionary, the disk buffers, the
terminal input buffer, the vocabulary threads, etc. System variables in this implementation are kept
at the bottom of RAM space, starting from location 16. Thus the first 16 system variables are in the
so called local memory, which can be accessed in single machine instructions. These are the most
frequently used system variables. Less frequently used variables are kept above location 35.

Chuck eliminated VARIABLE in the target compiler in the new version of cmForth. The system
variables are now defined as constants, returning the variable addresses. The behavior of the system
variables are still the same.

Following is the list of system variables defined in this implementation, their memory locations, their
initial values if initialized, and their function.

PREV
OLDEST
BUFFERS
NB
CYLINDER
TIB

SPAN

>IN
BLK
dA

?CODE

CURSOR
SO

BASE
H

Cc/B

Interrupt Vector
Thread Table

Memory 16, not initialized. Pointer to the most recently referenced disk buffer.
Memory 17, not initialized. Pointer tothe oldest loaded disk buffer.

Memory 18 and 19, not initialized. Storing block numbers ineach disk buffer.
A constant of value 1. Number of disk buffers less 1.

Memory 20, not initialized. Cylinder of disk drive.

Memory 21, initialized t036. Terminal Input Buffer.

Memory 22, not initialized. Count of characters received from the terminal
device.

Memory 23, not initialized. Pointer tothe input stream of characters. Used by
WORD to parse strings.

Memory 24, initialized t00. Contains the block number under interpretation.
Memory 25, initialized t00. Memory address offset to be subtracted from the
current address so that word address compiled can be relocated to other part of
memory.

Memory 26, initialized to0. Storing the address of the machine code most
recently compiled. Used by the optimizing compiler to construction multi-
function instructions.

Memory 27, initialized t00. Pointer tothe memory location where input
characters are stored.

Memory 28, initialized to1FFH Serial output polarity. It is either 1FFH or
200H.

Memory 29, initialized t010. Number base for numeric I/O conversion.
Memory 30, initialized to64 cells above terminal input buffer TIB. Pointer to
the top of the current dictionary.

Memory 31, initialized to417. Machine cycles equivalent to the width of a bit
riding the serial RS-232 terminal port.

Memory 32 and 33, initialized to POP DROP, a noop interrupt service routine.
Memory 34 and 35, initialized toends of 2 threads in the dictionary. The

67

CONTEXT

dictionary and vocabularies are hashed into 2 threads. The name field addresses
at the end of each thread are stored in this table for dictionary searching.
Memory 36, initialized to1. Storing the hash code of the context vocabulary.

5.3. Terminal Input and Output

5.3.1. Primitive Input and Output Words

The terminal input and output in the RS-232 format is implemented through software viatwo 1/0
pins inthe X-port, X0 as serial output and X4 as serial input. With the clock running at 4 MHz, the
time interval representing one bit at 9600 baud is about 417 cycles, as specified by the system
variable C/B. For 5 MHzclock, C/B is 521. The primitive tosend an ASCII character tothe terminal
is EMIT and that to receive a character from terminal is KEY. From these primitives, line based /0
words TYPE and EXPECT are defined.

HEX
: EMIT

RX

: KEY

(c--)
1IEDI!

9 FOR
DUPC I!
2/

C/B@ A-
CYCLES

NEXT
DROP

(--n)

cl@

C/B @
DUP 2/ +
7 FOR
10 - CYCLES
2/
RX
2% 2* 2*
OR
C/B @

Send a character to the terminal via XO0.

Mask X-port to allow X0 to be output and other bits be input. 2*
SO @ XOR

Send out 8 data bits with one start bit and one stop bit.

Send out one bit.

Shift out next bit.

Wait for one bit period.

Continue for the entire bit pattern.
Discard the rest of the character.

Get one bit from X4 pin.
Read the X-port.
Save only the X4 pin input.

Read one ASCII character from X4 pin.
Starting character pattern.

Wait for the start bit.

Read the input line.

Exit only when a start bit (low)

is detected.

417 or 521 cycles per bit.

Wait 1.5 bit to the center of the first data bit.
Read 8 bits.

Delay till the center of bit period.

Ready the character pattern for the next bit.
Read one bit.

Justify the bit position.

Put the bit into the character pattern.
Delay for next bit.

68

NEXT

Repeat until all eight bits are assembled in the character

pattern.

BEGIN RX UNTIL
DROP

5.3.2. Line Input and Output Words

: TYPE (al--a2)

2*

DUP C@

1-FOR
1+
DUPC@
EMIT

NEXT

2+2/

- EXPECT (an--)

SWAP CURSOR'!
1- DUP FOR
KEY
DUP 8 XOR
IF
DUP D XOR
IF
DUP
CURSOR @
1+
CURSOR'!
EMIT
ELSE
SPACE
DROP
POP

SPAN'!
EXIT
THEN

Now wait until the stop bit is transmitted.
Discard the last C/B cycle number.

Output a stored string to the terminal. The first
character in the string must be a count byte. This is
different from the standard TYPE which takes an
address and a count as arguments. al is the starting cell
address and a2 is the address of the cell following the
string.

Change al to a byte address.

Get the count byte.

Scan the string.

Next character address.

Get the character.

Send it out.

Cell address after the string.

Accept n characters and put them in the memory
starting at a. Each character is put in a cell with high
byte padded with 40H.

Store address a in CURSOR.

Repeat for n characters.

Get one character.

Is it a backspace?

No. Not backspace.

Is it a carriage return (CR)?

Not CR.

Store it in the assigned memory.

Refresh CURSOR for next character.

Echo the character to terminal.

Ifitis CR.

Output a space instead.

Discard the CR character.

Get the current index.

Number of character received so far.

Store it in the character count variable SPAN.
CR end of line exit.

69

http://arguments.al/
http://arguments.al/
http://arguments.al/
http://arguments.al/
http://arguments.al/
http://arguments.al/

ELSE Yes. It is backspace.
DROP Discard the backspace character.
DUP | XOR
[OVER JUNTIL
CURSOR @ 1 - Get the cursor address again.

CURSOR'! and decrement it.
POP 2 + PUSH Add 2 two loop index, and back up the index pointer
by 2.
8 EMIT Echo the backspace code.
THEN
NEXT
1+ SPAN! Increment character count.
5.3.3. Other Terminal 1/0 Words
:CR (--)
D EMIT Carriage return.
AEMIT Line feed.
: SPACE (n--)
20 EMIT
: SPACES (n--)
0 MAX Protect security against negative count number.
FOR Loop n+1 times.
-ZERO Skip the first loop.
SPACE Send them out.
THEN -ZERO skips to here.
NEXT Loop back to SPACE.
: HERE (--n)
H@ Top of dictionary or the WORD buffer.

5.4. Number Conversion

5.4.1. Convert Digits toBinary Number

Strings of digits or numbers are one of the two basic syntactic elements in the Forth language. The
numbers you typed in must be converted to 16 bit binary numbers and pushed onto the data stack.
The conversion process is controlled by the variable BASE which specifies the number base tobe
used in the conversion process.

HEX Change to hexadecimal base because we will use ASCII
code values.

70

: -DIGIT

:CO@+

:10*+

: NUMBER

(c--n)

30 -
DUP 9 >
IF

7-

DUP A<
OR
THEN

DUP BASE @ U<
IFEXIT THEN
Return with the

value.
2DROP
ABORT" ?"
: RECOVER

(—-n)
61@ 1+
DUP 6 I!
Co
(ulc-u2)

-DIGIT

OE TIMES *'

DROP

(a--n)
BASE @ 4 I!
0
SWAP 2*
DUP1+C@
20 =PUSH
DUP1-61!
C@
| +
1-FOR
C@+
10*+

NEXT

Convert one ASCII character c to its binary value n.
Abort it the character is not within the range specified by
BASE.

Take off the offset of ASCII 0.

Is ¢ greater than 9?

Yes.

If so, subtract 7 to take care of the gap between 9 and A.
If the number is less than 10,

make it a -1.

We have a number or a -1 at this point.

Is the number less than the base?

If so, the conversion is successful.

Otherwise, conversion error. Clear the stack.

Abort with a message ?.

; 1S need to terminate the compiler. It will not be executed
because ABORT" exits to the interpreter. RECOVER
reclaims 1 cell of memory.

Increment the byte address in the SR register. Use the
address to fetch a byte from the main memory.

Get the address from SR and increment it.

Return the new address to SR.

Fetch one byte from memory.

Convert character c to its value. Multiply it by the base
value hidden in MD and accumulate the product into ul.
Convert c to its binary value.

Repeat multiply step 16 times to obtain the product.
Discard the higher half of the double integer product.

Convert a number string at 'a’ to a 16 bit signed integer.
Store base value in MD register.

Initial value of the number.

Convert 'a' to byte address.

Get the first character of the string.

Test for '-" and save the flag.

Save the address of the first valid digit in the SR register.
Get the length of this string.

Correct it if the first character is a '-* sign.

Scan the number string.

Fetch the next character.

Convert this character and accumulate the digit into the
running sum.

Repeat until all digits are converted. The accumulated

71

POP

IF NEGATE

THEN

sum is left on the stack.
Retrieve the sign flag.
Negate the number if it has a leading - sign.

5.4.2. Convert Binary Number to ASCII String

This conversion process is different from what we know well in other Forth systems. The converted
digits are piled up onthe stack instead of stored in an output buffer. Using the stack tostore the
converted string is more efficient than using a buffer. In Forth, numbers are converted to ASCII
strings only tobe sent to the terminal or toa printer. The converted string is never needed internally.
There is no reason to save the string in a permanently allocated output buffer.

: HOLD

: DIGIT

D <#

TH#S

D>

(..#nc--..#n)

SWAP PUSH
SWAP

1+

POP
(n--c)
DUP 9 >

7 AND +
48 +

(n--#n)
-1
SWAP

(.#n--.#n")

BASE 0 /MOD
SWAP DIGIT
HOLD

(.#n-—-.#0)

BEGIN
#
DUP 0=
UNTIL

(..#n--)

The output string is piled up on the data stack with a count
on top. Above count #, the number to be converted n and
the character c to be added to the string. c is tucked
beneath # and # is incremented.

Save n.

Tuck c under #.

Increment count #.

Retrieve n.

Convert a number n to its equivalent ASCII code.
Is it greater than 9?

If so, add 7 to Jump to ASCII A.

Add offset of ASCII 0 to get the

proper ASCII code of n.

Prepare a number to start the conversion process.
Initial value of the string length.

Tug the count # under n.

Convert one digit from n and add the converted digit to the
output string.

Divide n by the base.

Convert the remainder to an ASCII character.

Add the converted character to the output string.

Convert the number n until it is reduced to 0, or completely
converted.

Convert one digit.
End?
Repeat until n is reduced to 0.

Output the converted string to the terminal.

72

: SIGN

()

.UR

DROP
FOR EMIT NEXT

(. #n—.#)

0< NOP
IF 45 HOLD THEN

(n--..#)

DUP PUSH
ABS

<##S

POP SIGN

(n--)
0

#>
SPACE

(un--)

PUSH

<##S
OVER

POP SWAP-
1-SPACES
#>

’(U--)

SPACE

5.4.3. Memory Dump

n is usually 0 and not needed any more.
Use the character count # to print that many characters to
the terminal.

If n is negative, append a - sign to the end of the output
string.

Is n negative?

If so, append - sign.

Convert the number n to a ASCII string on stack.
Save a copy of n for sign.

Convert the absolute value to string.
Append the sign of n.

Free format display of the number on top of the stack.
Convert n to a string.

Print the string.

Append a space to separate consecutive numbers.

Display an unsigned integer u in a field of n columns, right
justified. Formatted output.

Save the column number n.

Convert u to a string.

Copy character count to top.

Subtract it from the column width.

First pad the left side with enough spaces.

Finally print the number string, right justified.

Display an unsigned integer in free format.

Display the integer using 0 column field specification. The
result is that the string will be display from the current
character position.

Followed by a space.

This memory dump word was designed for Chuck Moore's peculiar CRT display, which has a
single line display window.

: DUMP

(a--at+8) Display 8 consecutive cells following that at a. a+8 is returned on
the stack so another DUMP can be issued.

CR New line.

DUP5U.R Display first the address a.

SPACE

73

7 FOR

1@+
SWAP7U.R

NEXT

SPACE

Run down 8 cells.
Fetch one cell and increment a.
Display the content.

5.4.4. Message Output

Add one space at the end of line.

Inan interactive programming environment, it is important that the system will send timely
messages to the terminal to indicate to youits status and any error condition. Messages to be send to the
terminal must be compiled into definitions using special string literal words like ." and ABORT",
etc. These string literal words have unique behavior during compilation and during execution.
Because these words involve compiler functions, words used to define them seem to be out of place as
they are defined much later than the text interpreter. | tried to collect as much information as possible
here, toexplain the construction of these message output words. Some of the words used in these
definitions will beelaborated later.

: COMPILE

: abort"

: ABORT"

: dot"

()

POP

7FFF AND
1@+
PUSH

A

(--n0)

H@ TYPE
SPACE

POP 7FFF AND
TYPE

2DROP

BLK @ ?DUP
DROP

0

()

COMPILE abort™"
22 STRING

()

Compile the address following this word to the top of the
dictionary.

Retrieve the address of the next word from the return stack.
Mask off the most significant bit, which is the carry bit.
Fetch next word.

Put the address of the second word after COMPILE back
on the return stack.

Compile the address of the next word into the dictionary.

Run time routine for ABORT". Print the following
message and re-initialize the system.
Display the name of word currently been executed.

Address of the compiled text.

Display the message text.

Clear garbage left by TYPE.

Leave the block number on the stack for debugging aid.

A dummy 0 is compiled here. After QUIT is defined, this
word will be patched with the address of QUIT, which
returns control to the text interpreter.

Abort the word currently been executed and return to the
text interpreter after displaying the following message.
Compile the runtime abort routine.

Compile the following message up to " as a string literal.

Run time routine of ." , which displays the message

74

immediately following until ™.
POP 7FFF AND Address of the compiled message text.

TYPE Display the message and leave the address after the
message.
PUSH Push that address back on the return stack to continue the

execution process.

2 (--) Display the following message at run time.

COMPILE dot" Compile the address of dot™ .
22 STRING Compile the following text up to " as a string literal.
5.5. Serial Disk

This implementation assumes only a RS-232 interface to the outside world. As with any other
computer language for serious programming activity, one ormore disk drives are necessary to store
source code and data. A serial disk is thus designed to make the maximum utilization of the available
serial communication line. It requires a host computer at the other end of the RS-232 line and acts
as the terminal and disk server to the cmForth system. Whenever a disk block is requested, the data
will be transferred into cmForth through the serial link. When an updated block is flushed back to the
disk, the data is also sent through the serial link to the host computer.

5.5.1. Disk Buffer Manager

Two disk buffers are maintained in cmForth. Each buffer is 1024 cells long. The first buffer starts
at memory address 800H and the second buffer is at COOH below the ROM memory. Two cells at
BUFFERS contain the block number associated with the data stored inthe two buffers. The pointer
PREV, points to the disk buffer which is referenced most recently. OLDEST points the disk buffer
least used.

In this system, two disk buffers are assigned and numbered as 0 or 1. Two entries in the BUFFERS
array are used to store block numbers in corresponding to the contents of the two buffers. Two
variables PREV and OLDEST determined which of the two buffers is the most recently accessed.
The manager always looks at the PREV block when a block is requested. If the block is not inthe
PREV buffer, it will exchange PREV with OLDEST and look at the PREV block again. If the
requested block is in one of the two buffers, that buffer will surely become the PREV buffer and no
disk access is necessary. If the requested block isnot in the buffer, the manager now assigns the
PREYV buffer for the new block and this buffer contains data that is least recently referenced and is
appropriate to be flushed to the disk or discarded.

This technique is often referred toas Ping-Pong buffers as the two buffers are used in the most
efficient fashion.

: ADDRESS (n--a) Given the disk buffer number, return the starting
address of that buffer.
30 + Two buffers are at memory locations

75

- ABSENT

: UPDATED

8 TIMES 2*

(n-nia)

NB FOR
DUP
| BUFFERS 0
XOR 2*
WHILE NEXT

EXIT THEN

POP PREV N!

POP DROP

SWAP DROP
ADDRESS

(--an)

OLDEST @
BEGIN
1+ NB AND

DUP
PREV @ XOR
UNTIL

OLDEST N!PREV N!

DUP ADDRESS

SWAP BUFFERS

DUP @
BUFFERS.
8192 ROT !
DUP 0< NOT

IF POP DROP DROP

THEN

30K and 31K.

Search through the disk buffers to see if block n
is already in one of the buffers. If found, return
the address of the buffer and skip the next word.
Otherwise, return with n on the stack.

Scan through the disk buffers.

Copy n, the requested block number.

Get one block number stored in BUFFERS.
Are the 15-bit block numbers the same?

If not the same, compare the next block number in
BUFFERS.

None of the buffers contains the requested block,
return as if nothing had happened.

At this point, the request block is found in one of
the buffers. Store the buffer number in PREV, and
make it the most recently accessed block.

Discard the return address on top of the return
stack, thus exit the word containing ABSENT.
Discard the block number.

Return with the buffer address.

Exchange PREV and OLDEST buffers and return
the address and the block number in the least
recently accessed buffer. If the block is not
updated, skip the rest of words following
UPDATED.

Pointer to the buffer least recently used.

Map to one of the two buffers allocated in this
system.

Save a copy.

Is it the same as the one stored in PREV?

Exit if they are different.

Exchange contents of OLDEST and PREV, thus
making OLDEST the most recently accessed disk
buffer.

Find the address of the buffer.

Obtain the right pointer to the BUFFERS array.
Get the block number stored in

Store 2000H in this entry of BUFFERS.

If the buffers is not updated,

skip the rest of the words following UPDATED
by thrashing the return address of top of return
stack. It is a very fast and dangerous EXIT.

76

: UPDATE

: ESTABLISH

- IDENTIFY

()

PREV @ BUFFERS
0@+

SWAP 32768 OR
SWAP !

(na--a)

SWAP

OLDEST @ PREV N!
BUFFERS!
(na--a)

SWAP
PREV @ BUFFERS !

5.5.2. Disk Read and Write

Set the MSB of the block number in
BUFFERS pointed to by PREV.

Address of the PREV block number.

Fetch block number while still save the address of
PREV.

Set bit 15, the update bit.

Store it back to BUFFERS.

Mark the oldest buffer the PREV buffer and
identifies it with block n. Return the buffer address
a.

Get n to the top.

Make oldest the newest.

Store block number n into the BUFFERS array.

Make block n the PREV block, as been most recently
referenced.

Getn.

Store n into the PREV entry in the BUFFERS
array.

The serial disk is implemented using a very simple protocol. A disk read/write request is initiated by
sending an ASCII NUL tothe host at the other end of the RS-232 line, followed bytwo more bytes
identifying the disk block requested. High byte of the block number is send first. If the most
significant bit inthe high byte is set to 1, it is a disk write command. 1024 bytes will then be
transmitted to the host. Then it will wait for a key from the keyboard to confirm the termination of
transmission. If the MSB in the high byte is reset, it is a read command and the host is expected to
send 1024 bytes of the requested block.

D

: buffer

(an--aal023)

0 EMIT

256 /MOD EMIT EMIT
DUP 1023

(n-a)

UPDATED

FOR

Transmit a disk read/write command to host and
prepare to receive 1024 bytes.

Disk accessing command.

Transmit the read block command.

Parameters needed to receive the requested block.

Return the buffer address of block n. If the buffer
had been updated, flush its contents to the host.

If block n is already in one of the disk buffers,
return the buffer address, and return to caller
immediately without executing the following
words.

Block n is not in the disk buffers. Get the least used

77

: BUFFER

: block

: BLOCK

: FLUSH

: EMPTY-
BUFFERS

1@+

SWAP EMIT
NEXT
KEY
2DROP

(n-a)
buffer

if necessary.
ESTABLISH

’(na--na)

at a.
OVER ##
FOR
KEY
SWAP 1 I+
NEXT DROP

(n--a)

ABSENT

buffer

block
ESTABLISH

8192 BUFFER
DROP
NEXT

()

PREV
[NB 3+] LITERAL

0 FILL

buffer and flush its contents to host if the buffer
was updated.

Fetch one cell.

Transmit one byte.

Wait for user response as end of transmission.
Clean up.

Obtain a disk buffer for block n and return the buffer
address a.

Do all the hard work to obtain a disk buffer,
including flushing

Mark this disk buffer as the most recently accessed.

Read 1024 bytes from the host and put them in the
buffer starting

Transmit the read command.
Repeat 1024 times.

Get one byte.

Store the cell into disk buffer.

Read block n from the host if it is not already in the
buffer. Return the buffer address.

If block n is not in one of the buffers, do the
following to read it from the host. Otherwise, return
the buffer address and exit here.

Make room in the least used buffer, and flush its
contents if updated.

Read from host.

Make the buffer most recently accessed.

Write all updated buffer back to disk-host.

Go through all disk buffers.

Request block 8192, the default empty block code.
Discard the buffer address.

Erase all the buffer pointers to make the disk
manager think the buffers are empty.

Address of the PREV variable.

The array including PREV, OLDEST, and
BUFFERS.

Erase all these pointers to fool the disk manager.

78

FLUSH

5.6. Text Interpreter

Force the flushing of buffers.

The text interpreter is the operating system of Forth and it is the user interface which allows you to
operate the computer interactively. What the text interpreter does is very simple. It accepts a line of
commands from the terminal, parses out words in the command line and executes them in the order
given. It only has todeal with two types of words, Forth commands which had been compiled into the
dictionary and numbers as 16 bit integers. If the interpreter finds a word inthe dictionary, it will
execute that word. If the word is not defined in the dictionary, text interpreter will try toconvert it
into an integer and push the integer onthe stack. If it failed toconvert the word into a number, the
word is outside of the computer's vocabulary and it will stop executing the command line. It will then
come back and ask youtotype another command line and the process continues on forever.

The major functions required bythe text interpreter are receiving command lines, parsing words,
dictionary searching, command executing, and number conversion. We have already discussed
number conversion and user input functions. Here we shall discuss the rest of the functions and how
they are tied together to form the text interpreter, and hence an operating system.

5.6.1. Parsing of Words

:LETTER

.-LETTER

(ala2n--a3a4)

FOR
DUP @
6 1@ XOR

WHILE
1@+ PUSH

1+

POP
NEXT
EXIT THEN
>IN @
POP -
>IN !

(ala2#--a2a4)

?DUP IF

Copy n characters from a2 to al. Source strings are stored in
cells and destination strings are stored in bytes. Terminate the
copying when a delimiter is detected. The delimiter is stored in
register SR.

Scan n characters.

Get one character from a2.

Is the character the same as the one stored in SR, the
delimiter?

Not equal.

Fetch character and increment a2. Save a2 on return stack.
OVER C!

Increment al.

Get a2 back.

Exit if the string is completely copied.

Now, process the character pointer.

Get the loop index off the return stack.

Move the interpreter pointer >IN back that many characters.

Scan characters stored in buffer a2. Ignore leading
delimiters by comparing with SR. Then move the string
into buffer al. Again, al and a3 are byte addresses and a2
and a4 are cell addresses.

n has to be greater than 0.

79

: WORD

1- FOR
1@+
SWAP 6 1@ XOR
0= WHILE NEXT
EXIT THEN

1-

POP

LETTER
THEN

(n--a)

PUSH
H @ DUP 2* DUP
1+
DUP
>IN @
BLK @ IF
BLK @ BLOCK
+
1024
ELSE
TIB@ +
SPAN @
THEN
>IN @
OVER >IN !

POPG I!
-LETTER

DROP

32 OVER C!
SWAP-
SWAP C!

5.6.2. Dictionary Search

Repeat n times.

Read one cell.

Is the character same as the one in SR?

Yes. Skip it and continue on.

If the character string is exhausted without finding the
character in SR, exit here.

Backup a2 by one cell.

Index of the do-loop when branched out at WHILE.
Scan the rest of the string and copy it into al buffer.

Parse out the next word from the input buffer, using n as
the delimiter. The parsed word is placed in the buffer at
address 'a’ as a packed, count string.

Save n, the delimiter.

Byte address of the destination string buffer. Leave one byte
for the length of string.

Need two copies of this byte address.

Character pointer of the parser.

If BLK is not zero, you are processing text in a disk buffer.
Get the disk block and the buffer address.

Address of the character cell currently being processed.
Maximum characters in the disk buffer.

BLK is 0. Input is from the terminal input buffer.
Address of the character in buffer to be interpreted.

Total number of characters received.

Interpreter pointer.

Save the total character count in >IN.

Remaining character count between interpreter pointer and
end of input buffer.

Store the delimiter in SR register.

Parse out the next word and copy it into the word buffer
above HERE.

Discard the input buffer address.

Append a space after the parsed word.

Character count of the parsed word.

Store the count at the beginning of the parsed word as a
packed count string.

To understand the words involved indictionary searching, you have to know the structure of
individual words incmForth as well as how these words are arranged in memory to form a
dictionary. A Forth dictionary is a linked list of words. A dictionary may be partitioned into many

80

vocabularies in which related words are grouped together.

Most Forth systems use indirect threaded code technique to construct high level definitions. A high
level word is made to be equivalent toa list of addresses which point to memory locations containing
addresses of executable code. The code field in a definition thus points toa piece of executable
code, the inner interpreter, which executes this definition. Data oraddress list are stored inthe
parameter field following immediately after the code field.

cmForth uses directly threaded code technique, which eliminates the code field. The parameter
field contains executable code and data if necessary. Subroutine calls are mixed with the machine
code. The inner interpreters NEXT, NEST (DOCOL), and UNNEST (;S) are all native NC4000
machine instructions. A word defined in cmForth thus consists of three fields: a link field, a name
field, and the code/parameter field. The bit arrangements in the name field can be shown as
follows:

rOsn nnnn tccc ccece r: remote bit
Occc cccc Occc ceee s: smudge bit

n: character count
t: truncation bit
Occc cccc teece cece c: ASCII character

The truncation bit in the last cell of the name field indicates to the text interpreter that long name is
truncated and name comparison must stop at that cell.

The dictionary in cmForth is divided into two vocabularies: Forth, containing regular, executable
Forth words; and COMPILER, containing compiler directives and assembler instructions which are
used to compile new Forth words. The link field of a word points to the link field of the previous
word inthe same vocabulary. The first word in a vocabulary has a 0 in its link field, indicating the
end of the linked list. The link field address of the last word defined ina vocabulary is stored ina
vocabulary link table, immediately below the variable CONTEXT. The number stored in
CONTEXT is used toselect an entry in the vocabulary link table as the context vocabulary, which
will besearched for words bythe text interpreter. If CONTEXT contains 1, the Forth vocabulary will
be searched. If CONTEXT contains 2, the COMPILER vocabulary will be searched.

HEX

:SAME (ala2--ala2f; Witha stringaddress al and the link field address a2 of a word in
a3t) dictionary, compare the string with the word name. If the name
matches the string, return the parameter field address a3 of the word
found with a true flag. Otherwise, return the string address al, link
field address a2 and a false flag. The character count of the string is
stored in the SR register.

OVER 4 1! Save a copy of al in MD register.
DUP1 + Copy a2 and increment it to get the name field address.
6 1@ FOR Scan both strings.

1@+ Fetch one cell from the name field.

81

41@ Address of a cell in the string.
1@+ Fetch one cell there.
41 Replace the string address.
-2* Compare contents of the two cells, ignoring bit 15.
IF Name does not match, prepare to exit.
POP DROP Discard the loop index.
0 AND Clear the address and make it a false flag.
EXIT All done. Exit.
THEN

NEXT Repeat comparing the strings.

SWAP1+@ Examine the first cell in the name field.

O<IF @ THEN If bit 15 in the first cell of the name is set, this word used indirect
reference with separated head. Fetch the true parameter field
address. Otherwise, the parameter field address is on the data stack.

SWAP Get al and use it as a true flag.

:HASH ' (n--a)

CONTEXT Subtract n from CONTEXT.

SWAP-

: COUNT (a--n)

7 TIMES 2/ Shift the upper byte down.

15 AND Allow only 15 cells.

. -FIND (aln--altia2 Withword address al, link address a2 and vocabulary code n,

f) search the vocabulary for the word. If found, return the parameter
field addresses a2 of the word and a false flag. If not found, return
the word address al and a true flag.

HASH Find the head of the vocabulary.

OVER @ Get the cell count of the string at al and save it in tne i'lu

COUNT 6 1! register.

BEGIN Start the dictionary search.

@ DUP Get the next link field address.
WHILE If link field address is not zero, continue the searching.
Otherwise, the end of link chain is reached.
SAME Compare the name field with the word pattern.
UNTIL Not same. Continue with the next word in the linked chain.
0 EXIT If found a match, put on the false flag and exit here.
THEN Reach the end of the vocabulary
-1 XOR without finding a matching name. Return with a true flag.

SWAP

Get its content to top of stack.

5.6.3. The Text Interpreter

D= (n--alt,a2f) Use vocabulary code n to search that vocabulary for the

82

: EXECUTE

: CYCLES

:OCTAL

: DECIMAL

s HEX

: LOAD

32 WORD

SWAP -FIND

(—-a)

CONTEXT @
IF
DROP

ABORT" ?"
THEN

(a-)
PUSH

(n-)

TIMES

(-)
8 BASE !

()
10 BASE !

()
16 BASE !

(n-)
>IN 2@

PUSH PUSH
0 INTERPRET

10 BASE !

next word. Parse out a string from the input buffer and
search the dictionary for a word with matching name.
Return the parameter field address a2 and a false flag if a
word is found. Return the word buffer address al and a
true flag if the word is not found.

Parse out the next string in the input buffer, using ASCII
BL as the delimiter.

Search through the context vocabulary for the word
parsed out.

Search the dictionary for the next word in the input buffer.
Abort it not found. If it's found, return the parameter field
address of the found word.

Get the vocabulary code of the context vocabulary.
Searches that vocabulary.

If the word is not in the dictionary,

Discard the address generated by -'.

Abort with a message.

Make a subroutine call to the code address a.

Push the address on the return stack.

When ; bit is detected by NC4000, it makes a subroutine
jump to the address on top of the return stack, exactly what
we want in EXECUTE.

Run n empty TIMES cycles. Just waste some time to wait
for some other events.
Waste n+4 cycles doing nothing.

Set base to 8 for octal input/output.
Set base to 10 for decimal 1/0.

Set base to 16 for hexadecimal 1/0 conversion.

Execute text in block n.

Get current >IN pointer and the currently used block
number.

Save then on return stack.

Process command text in the buffer which contains block
n.

Restore to decimal base always.

83

POP POP >IN 2! Restore >IN and BLK.

: (n1n2--) Use n2 as the interpreter pointer >IN and nl as the BLK to

INTERPRET select input text buffer. Interpret the command text in the
buffer.

>IN 2! Store n2 in >IN and nl in BLK.
BEGIN Start the interpreter loop.
1- Search the Forth vocabulary for the next word parsed out
of the input buffer.
IF NUMBER If it is not a defined word, convert it to an integer.
ELSE
EXECUTE Execute the found word definition.
THEN
AGAIN Continue till the end of the buffer.
: RECOVER The last word will never be executed. Recover the
memory space.

s QUIT (--) The text interpreter. It accepts one line of commands from
the terminal and executes the commands in sequence. If
all the commands are executed without error, the message
'ok" is displayed and it waits for next line of commands.

BEGIN It is an infinite loop.
CR New line.

TIB 0 64 EXPECT

0 0 INTERPRET

Accept one line (64 characters) from terminal and store it
in the terminal input buffer at MSG.
Execute the commands.

Sok™ Print ok message.
AGAIN Continue forever.
: RECOVER Save one cell.

5.6.4. Power Up-and Reset

There is a RESET pin on NC4000 chip. Whenever this pin is grounded and then released to 5 volts,
the chip enters a reset cycle which starts byexecuting the instruction at memory location 1000H. A
hidden word BOOT compiles the boot up routine staring here. Forthkit 4 uses a set of shadow
EPROM's co-resident with SRAM's from 0 to 1FFFH. After power-up, BOOT in EPROM's is
executed. It copies the cmForth object code from EPROM's to SRAM's and then turn the EPROM's
off. After that, everything is run in the SRAM's. BOOT calls 'reset’, which initializes everything and
passes control over to the cmForth text interpreter QUIT.

We shall follow this train of events and explain the function of BOOT and 'reset' first. The low level
words involved in the initialization will be presented afterwards.

{:BOOT } (--) This headless word must be placed starting at memory
location 1000H so that cmForth can be booted up. It copies
itself from ROM memory chips to the SRAM chips in the

Forthkit system, turns ROM off, and executes the reset

84

routine Hereafter, only SRAM's are active.

16 Address of the first system variable which needs to be
initialized--SPAN.
FFF FOR Copy 4K words from ROM to SRAM.
0@+ Fetch one cell.
11+ Store one cell and increment the address.
NEXT
1@ Pulse the 74HC74 flip-flop to turn off ROM and turn on
SRAM.
(‘reset) ; This cell will be patched with the address of the 'reset’

routine which

Following BOOT is a table containing initial values of system variables which need to be initialized.
Most of them default tozero.

0,0,0,0,0,0, Filler for the memory locations 1009H to 100FH.
0., PREV
0, OLDEST
0,0, BUFFERS
0, CYLINDER
0, TIB
77CO0, SPAN
0, >IN
0, BLK
0, dA
0, ?CODE
0, CURSOR
1FF SO
A, BASE
0, H
DECIMAL 512, C/B
{ :interrupt } Noop interrupt service
POP DROP Discard interrupt return
; address.
0,0, Vocabulary link table
1, CONTEXT
- reset (--) Send the Forth system into the QUIT loop to process input
commands from a terminal.
RESET Trim the dictionary to the boot up state.
ODUPI9I! Unmask B-port.
DUP A Il B-port as 16-bit input port.
DUPB I! B-port as latched output, no tristate.
DUP8 I Clear B-port comparison latches.

85

: RS232

: BPS

1A
DUP D I!
DUPE I
FIl

1ACI!
TIB 20 XOR

IF
EMPTY-
BUFFERS
SPAN @
TIB!
THEN

RS232

FEI
BPS

M hit

()

RX
IFEXIT
THEN
200 SO'!
oBCI!

()

4
BEGIN
RX 10 XOR
UNTIL
BEGIN
5+
RX UNTIL
2/ C/B !

Set B-port as output port.

Unmask X-port.

X-port set to be input port.

X-port as latched output, no tristate.

Set X1, X3 and X4 high.

Compare 2 cells at TIB, if they are not equal, do a cold
boot. If they are equal, do a warm boot.

Not equal. Cold boot.

Clear the disk buffers.

Copy 77COH in SPAN to TIB, which defines the terminal
input buffer.

Skip above if doing a warm boot to preserve the disk
buffers.

Observe the polarity of the serial input line and set the
serial output polarity SO accordingly.

XO serial output and XO serial input.

Wait for an ASCII B from the serial input line to set the
baud rate.

Send the sign-on message to the terminal. Ready to operate.
QUIT

Determine the polarity of the serial input line and use it the
set the input and output polarity of the X4 and XO lines. It
allows Forthkit 4 to adapt automatically to a large number

of ASCII terminals.

Read X4 line.

If X4 is high, everything's been set correctly already.

Otherwise, reverse the output polarity.
Also reverse the input polarity.

Wait on the serial input line X4 for a character 'B' to
determine the baud rate of the terminal. Adjust the variable
C/B so that cmForth can talk to terminals using any
reasonable baud rate.

Starting value for C/B.

Wait until X4 is high.

Now, count cycles till X4 goes low.

Increment count by 5 cycles per loop.

Stop counting if X4 drops low.

Two high bits at the beginning of 'B'. A start bit and the
most significant bit are glued together.

86

: FORGET

- RESET

5.7. Compiler

(-)

POP 7FFFH
AND

DUP 2 +

H1
2@
CONTEXT 2 -

2!
1 CONTEXT !

()
FORGET

0

Remove all definitions added above the dictionary in
cmForth to start over.

Get the address on the return stack, which points to the
memory immediately after FORGET in a definition, see
RESET for example.

RESET is the last definition in cmForth. 2 cells after
FORGET in RESET is the free space for the dictionary to
grow.

Set the dictionary pointer so that new definitions can
be compiled above RESET.

The cells after FORGET in RESET store the initial
vocabulary link table. Fetch link field addresses of last
words in Forth and COMPILER.

Initialize the vocabulary link table below variable
CONTEXT.

Make Forth the context vocabulary.

Return to the word after RESET in 'reset’, because the return
address from FORGET was popped off the return stack and
the next return address points to the phrase 0 DUP 9 1! in
'reset’. Chuck Moore is the only person privileged to do this
kind of aerobatics. Not recommended for the rest of us.
The last definition in cmForth. It contains the FORGET
mechanism to restore the dictionary to the boot up state.
Chop the dictionary down to its original size by re-initialize
the vocabulary link table and CONTEXT.

2 cells here contains the link field addresses of the last
words defined in Forth and COMPILER vocabularies.

The compiler loop is very similar tothe text interpreter loop, inthat it scans the input buffer toparse
out words whose addresses are then added to the top of the dictionary, which isthe parameter field of
a new word definition. When a word cannot be located in the dictionary, the compiler will try to
convert it toa number and compile the number into the dictionary as a literal. A special class of
words, the compiler directives, are not compiled but executed inside the compiler loop. These
compiler directives take care of many conditions which have to be dealt with immediately, like
construction of branching and looping structures, compiling various types of literals, etc. All

compiler directives are collected in a special vocabulary COMPILER and are not available outside
of the compiler loop.

5.7.1. Compiler Loop
We shall begin by showing the high level definitions of the compiler] and its companion [. The low

level words used bythem and other words supporting compilation of new words are discussed later in
this section.

87

OCTAL
|

()
BEGIN

IF1-FIND

IF
NUMBER
\ LITERAL
ELSE

DUP @

DUP

140040 AND
140040 =

OVER
170377 AND
140342 XOR
AND

SWAP 170040
AND 100040 =
OR

IF

@ 40 XOR

,C
ELSE
A
THEN
THEN
ELSE EXECUTE

THEN
AGAIN

; RECOVER
()

POP DROP

Machine code is best shown in octal.

The compiler loop.

Start an infinite loop.

Parse next word out of the input buffer and search the
COMPILER vocabulary first. If the word is in the
COMPILER vocabulary, it is executed. Otherwise, do
the following.

If the word is not in the COMPILER vocabulary, then
search the Forth vocabulary.

If the word is not in either vocabulary, then

convert it to an integer

and compile it as a literal.

The word is found in the Forth vocabulary. Find the best
way to compile it.

Fetch the first cell in the parameter field of the found
word to determine if it can be compiled as a machine
instruction.

Make a copy because we have to do a few comparisons.
If it is an 1/0 instruction with return bit set

but not a variable,

or an ALU instruction with return bit set,

then this instruction can be assembled directly in-line.
Turn off the return bit because it cannot be assumed to be
the last instruction.

Compiled as a machine code.

It cannot be compiled as a single machine instruction.
Compile it as a subroutine call.

The word was found in the COMPILER vocabulary. It
must be executed immediately.

Infinite loop.

There isno end it it.

Exit the compiler loop and return to the interpreter loop.
The compiler loop is set up inside the definitions of].
Executing [inside the compiler loop discards the return
address on the return stack. When ; is executed, control is
given back to the word calling [, which is EXECUTE in

88

: LITERAL

\\

: PREVIOUS

(n--)

H@
!
1ALLOT

(n--)
H @ ?CODE !

(a-)
dA @ -

.C

(n--)

DUP -40 AND
IF

147500 ,C

EXIT
THEN

157500 XOR ,C

()

0 2CODE !
. ALLOT
H +1

\

(~an)

word.

the text interpreter loop. The text interpreter will then
start executing the words after [until] starts the
compilation again.

[must be executed, not compiled. It must be compiled
into the COMPILER vocabulary.

This word ‘comma'’ is the compiler in the most primitive
form. It adds a 16 bit number to the top of the dictionary
and increments the dictionary pointer. All other compiler
words are derived from ‘comma’.

Get the dictionary pointer.

Store n to top of dictionary.

Move the dictionary pointer passing the compiled pattern.
Compile n as a machine code.

Store the address of the code

in variable ?CODE for optimization.

Compile n.

Compile an address.

Subtract the offset address store in dA, to facilitate
building a target image in a virtual memory array.
Compile the virtual address as a subroutine call.

Compile a number as a literal. The number will be
pushed on the stack at run time.

Is n greater than 31?

Yes. Compile a 16 bit literal.

Compile a literal fetch instruction first.

Then compile the 16 bit number.

EXIT is faster than ELSE.

Insert n into the short literal fetch instruction and
compile it.

Break the process of compiler optimization. Complete the
last word compiled and start a new word.

Clear the variable ?CODE. The next word will be
compiled fresh.

(n--)

Allocate n cells in the dictionary by moving the
dictionary pointer H.

Start compiling a new word.

Return the name field address and the count of the name
field of the most recently defined

89

: COUNT

- USE

HEX

: DOES

: SMUDGE

D EXIT

: COMPILE

CONTEXT @
HASH

@

1+

0 @+ SWAP
,(nl --n2)

7 TIMES 2/
15 AND

(a--)

PREVIOUS

COUNT + 1+
!

()

POP

TFFF AND
USE

()

of the last word.

PREVIOUS

and the first cell in

the name.
2000 XOR
SWAP |

()
POP DROP

(-)

POP 7FFF AND

1@+

Pointer to the link field.

Link field address of last word.
Name field address.
Fetch first cell while retain the name field address.

Extract the length of name from the first cell in the name
field.

Right shift n by 8 bits.

Half of the character count.

Replace the first cell in the parameter field of the last
word by the address i, which will call an inner
interpreter.

Get the name field address and the first name cell of the
last word.

parameter field address.

Replace the code with a.

Best for bit counting.

Used to define an inner interpreter for a class of words.
The syntax is:

: <name> CREATE <compiler>

DOES <interpreter> ;

Get the address of the next word, which starts the inner
interpreter.

Strip the MSB bit, which is carry.

Compile that address into the parameter field of the
newly defined word as its inner interpreter.

Set the smudge bit in the name

Return the name field address

Set the smudge bit.

Put it back.

Pop the return stack and return to the caller.

At run time, compile the next word in a definition.

Get the address of the next word from the return stack.
Fetch the code in that cell. Increment the address also.

90

PUSH Push the incremented address back on the return stack to
skip the next instruction.
A Compile the next instruction on top of the dictionary.
COMPILER OCTAL
cEXIT (--) This is the EXIT to be compiled inside a definition, not to
be executed interactively.
100040 ,C Compile the return instruction.
; Perform the compiling function immediately.
HEX
: (--) Reset the smudge bit so that the word being compiled is
RECURSIVE made available to do recursive programming.
PREVIOUS Get the name field address and the first name cell.
DFFF AND Reset the smudge bit.
SWAP | Put it back.
; (--) Terminate a colon definition.
\ RECURSIVE Not to do recursion. Just clear the smudge bit in the
current word definition, making it available for searching.
POP DROP Pop return stack. Return to the caller at next ; .
\EXIT Compile the 100040 return machine code.

Must be executed, not compiled.

5.7.2. Defining Words

Inthis cmForth system using NC4000 chip, code field loses its significance due tothe fact that
machine code can be mixed with high level subroutine calls. However, we can still place a
subroutine call as the first cell in the code/parameter field and use ittoexecute a specialized
interpreter for a class of words, very similar tothe CREATE..DOES> structure in conventional
Forth system.

: CREATE (--) Use the next word in the input buffer to create a
new header in the dictionary. Initialize the word to
act like a variable, returning the address of second
cell in the code/parameter field.

Save the link field address and compile a dummy
link field.

Parse out the next word in the input buffer.

Find the address of the head of thread of the linked
chain to which the new word will be linked.

Fetch the link field address of the last word in this
chain.

H@O0,

40 WORD
CONTEXT @ HASH

2DUP @

91

: CONSTANT

: VARIABLE

: ARRAY

SWAP !

SWAP O COUNT 1 +

ALLOT
!

147342,

()
CREATE
-1 ALLOT

SMUDGE
]

(n--)
CREATE
-1 ALLOT
\ LITERAL
\EXIT

()
CREATE
0 ’

(n--)

CONSTANT

154462 USE

5.7.3. Control Structures

Store it in the link field of the new word.

Find the cell length of the name field and allocate
that many cells to the name field.

Attach the truncate bit to the last cell of the name

field.

Compile PC 1@ ; , which pushes the integer in the
next cell on the data stack.

The definition of : in the target system.

Create a new header for this colon definition.
Colon words are the natural, default word type in
cmForth No inner interpreter is necessary. Reclaim
the cell used by CREATE.

Set the smudge bit to protect this definition.

Call the compiler to compile the rest of the colon
definition.

Create a new integer constant.

Build a new header.

Reclaim the code field.

Compile n as a literal, long or short.

The ; bit must be compiled as a separated cell.

Create a new variable.

That's all we have to do,

except that the value of the variable must be
initialized to zero.

Define a vector array, with n cells. This defining
word is defined as a part of the target compiler.
Define the array as a constant, which also stores
the dimension n .

Compile the inner interpreter, which fetches the
array address and add an offset to the array base
address to return the correct

NC4000 has three branch instructions: unconditional branch, conditional branch and loop. A branch
instruction takes a 12-bit argument to specify the address tobe jumped to, within a 4K word pages.
These instructions are used to implement various control structures in high level Forth definitions.

The conditional branching structures are of the following two types:

IF...ELSE ... THEN IF... THEN

92

There are several types of indefinite loops which can be constructed very easily with the conditional
and unconditional branch instructions. cmForth supports the following:

BEGIN ... UNTIL

BEGIN ... AGAIN

BEGIN ... WHILE ... REPEAT
BEGIN ... WHILE ... UNTIL ... THEN
BEGIN ... WHILE ... AGAIN ... THEN

WHILE can branch toREPEAT orto THEN. The latter construction allows additional freedom, in
that there are two distinct paths after AGAIN orUNTIL.

Definite loops are constructed with FOR and NEXT: FOR ... NEXT

which is very similar tothe DO-LOOP structure in conventional Forth we all love. However, FOR
takes only one parameter which is decremented every time through NEXT. The loop will be
terminated when this index is decremented to zero.

When n FOR ..NEXT is executed, the loop will be repeated n+1times as the loop index is
decremented from n to0 before exiting the loop. If only n loops are desired and 0 FOR ... NEXT will
skip the loop completely, Chuck gave use a new fix:

FOR...-ZERO ... THEN ... NEXT

What is between -ZERO and THEN will be repeated n times and that between THEN and NEXT will
be repeated n+1times.

The FOR-NEXT definite loop can also make use of the WHILE-THEN conditional:
FOR ... WHILE ... NEXT ... ELSE ... THEN

However, one will have to take care of the loop index onthe return stack when the loop is terminated
through WHILE, which does not restore the return stack.

o\ (--) Compile the next COMPILER word, which normally will
be executed in a colon definition.
2- Parse out the next word and search it in the COMPILER
vocabulary.
IF DROP If the word is not in the COMPILER vocabulary, abort
ABORT" ?" THEN immediately.
A The word is found in the COMPILER vocabulary,

compile it here. When the colon word containing it is
executed, this word will then be executed in its turn.

93

Forth

.OR,

- UNTIL

: AGAIN

: THEN

: ELSE

(an--)

\\

SWAP 7777 AND

OR

110000
OR,

(a--)
130000
OR,
(a--)

\ BEGIN

7777 AND
SWAP +!

(—-2)
\ BEGIN

110000,

(al--a2)

\ BEGIN
130000,
SWAP

\ THEN

OR the address a into the instruction n and compile the
branch instruction.

Start a new machine instruction.

Keep only the lower 12 bits in address a.

Include truncated address into the branch instruction n.
Compile the branch instruction.

(--a)
Push the current dictionary pointer on the data stack.
Initialize the optimizer.

Compile a conditional branch to address a.
Conditional branch instruction.
Add address and compile it.

Compile an unconditional branch to address a.
Unconditional branch instruction.
Add address and compile.

Resolve the branch address in the branch instruction
compiled by IF or ELSE.

Get the address of the current instruction, as pointed to
by the dictionary pointer.

Keep only the 12 bit part.

Add it into the 12 bit address field in the IF or ELSE
instruction.

Compile a conditional branch instruction now and leave
its address on the stack so that its address field can be
resolved by ELSE or THEN.

Leave the address of the conditional branch instruction
on the stack.

Compile a conditional branch instruction with an
unresolved address field.

Resolve the conditional branch instruction at al. Compile
an unconditional branch instruction with a 0 address
field. Leave its address on the stack as a2, to be used by
THEN to resolve.

Address of the current unconditional branch instruction.
Compile an unresolved unconditional branch instruction.
Get al to top of the stack.

Invoke THEN to resolve the conditional branch
instruction left by IF.

94

: WHILE (al--a2al) Compile an unresolved conditional branch instruction.
Leave its address on the stack as a2 while pass the
address left by BEGIN.

\IF Invoke IF to compile a conditional branch.

SWAP Exchange al and a2 so that they can be used by
REPEAT/AGAIN and THEN to resolve the branch
addresses.

: REPEAT (ala2--) Resolve the BEGIN-WHILE-REPEAT structure.

\ AGAIN Compile an unconditional branch back to BEGIN, using
address a2.

\THEN Resolve the conditional branch instruction compiled by
WHILE.

: FOR (-a) Start a definite loop.

\ PUSH Compile a PUSH instruction which saves the loop count
in the | register.

\ BEGIN Leave address of the next instruction for NEXT to branch
back.

- NEXT (a--) Compile a loop instruction and use the address a on the
stack for the branch address.

120000 Code of the loop instruction.

OR, Resolve the backward jump address.

5.7.4. NC4000 Assembler
Assembler? Good grief!

Supposedly, NC4000 speaks high level Forth language and we shall all be free from the tyranny of
assembler and live happily ever after. The truth is that you can program in Forth and NC4000 will run
the program much faster than anything youhad previously. However, if you really want the best out of
this machine you still have to deal with it, bybits and pieces at the machine code level. If you know
how to construct machine code which performs the task in the most efficient way, youcan squeeze
the most out of this machine.

NC4000 machine instruction assembly can be handled intwo different ways: map NC4000
instruction set onto a regular Forth instruction set and solve the problem with the regular Forth
programming technique; or find ways to squeeze as many functions into NC4000 instructions as
possible inorder tosave both machine cycles and memory space. Here we shall be concerned with
single function NC4000 instructions and show you how they can be defined and how they are used to
allow us toprogram inregular Forth style. In the sections on the Optimizing Compiler, we will
discuss how a program can be optimized bycombining many functions into one NC4000 instruction.

95

:uCODE (n--)

CREATE

DOES
POP
77777 AND

@
C,

Define a NC4000 machine instruction and give it a name. When
the machine instruction is invoked in a colon definition, code n

will be assembled.

Give the instruction a name.

Compile n in the parameter field.

Above are compiler action and following are run time function.

Get the pointer to the stored code.

Mask off the carry bit.

Fetch the code n stored in the parameter field.

Now, compile n into dictionary. That is the assembler function.

Most of NC4000 machine instructions can be defined using uCODE. Here are all these words
defined this way in cmForth:

100000 uCODE NOP
140000 uCODE TWO
154600 uCODE O+c
102404 uCODE MOD!
177300 uCODE N!
147303 uCODE -1
104411 uCODE *
102411 uCODE *-
100012 uCODE D2*
100011 uCODE D2/
102412 uCODE *F
102416 uCODE /
102414 uCODE /"
102412 uCODE *F
102616 uCODE S'

One cycle Noop.

Two cycle Noop.

Adjust for carry.

Conditional subtract MD.
Store N towhere T points but keep a copy of N onstack.
Push a true on stack.

Multiply step.

Signed multiply step.

Left shift the double integer.
Right shift the double integer.
Fractional multiply step.
Divide step.

Last divide step.

Fraction multiply step.
Square-root step.

Machine code can also bedefined as regular Forth words which compile specified code into the
dictionary using C.

‘R>

: POP

: PUSH
o

: TIMES

147321 C;
47321 C;

157201 C;
147301 C;
157221 C;

Instructions which use the least significant 5 bits for short literals, internal register numbers, and
memory increments must compile proper values into this 5 bit field. The technique in defining them

might be useful inother places.

OCTAL

96

.-SHORT

s FIX

: SHORT

(1)
?CODE @ @

177700 AND
157500 XOR

(n--)

?CODE @ @
77 AND

OR

?CODE @!

(n--)

-SHORT
IF
DROP
ABORT" n?"
THEN
FIX

COMPILER

(-)

-SHORT
IF
167100 ,C
ELSE
147100 FIX

THEN
(-)

-SHORT
IF

Return a true flag if the current instruction under
construction takes a 5 bit short literal or argument.
Obtain the current instruction whose address is stored
in ?CODE.

Mask off the lower 6 bits.

Is it not equal to 157500, which is the code to access
internal registers?

Get the 5 bit literal from the instruction pointed to
by ?CODE and combine it with n to form a new
instruction. It is then stored back to where ?CODE is
pointing to.

Get the instruction pointed to by ?CODE.

Preserve only the lower 6 bits.

OR itinto n.

Store the instruction back to dictionary.

Construct an instruction with a short literal. If the
instruction cannot accept a short literal, abort with an
error message.

Can the instruction take a short literal?

No.

Discard n.

Print error message and quit.

Yes. Include the literal into n and replace the old
instruction.

Assembler instructions have to be placed in COMPILER.

A smart @ compiler. If the address is in the local
memory(<32), compile a single cycle instruction.
Otherwise, compile a regular two cycle memory fetch
instruction.

Is the address in the local memory area?

Not in local memory,

Compile a two cycle memory fetch.

It is in local memory,

Compile a short memory fetch with address as a short
literal.

This is a compiler directive, not a regular Forth @ word.
A smart ! compiler similar to @.

Local memory?

No.

97

177000 C
ELSE

157000 FIX
THEN

Compile long memory store.
Yes.
Compile a short memory store.

Machine instructions which must take short literals as arguments are compiled directly using
SHORT. Since these instructions are compiler directives, their arguments or the short literal,
must be known at compile time. You cannot change the literal or register numbers dynamically
at run time. In fact, the compiler will abort if you forget to give the proper argument prior to

these instructions.

1@

Cl@!

(n-)
147300 SHORT
(n-)
157200 SHORT
(n-)

164700 SHORT
(n--)
174700 SHORT
(n--)
172700 SHORT

(n--)

157700 SHORT

5.7.5. Compiler Vocabulary

Compile a register fetch instruction to fetch register n at
run time.

Compile a register store instruction to store top of stack
into register n at run time.

Compile a increment fetch instruction which increments
the address by n.

Compile a increment store instruction.

Compile a decrement store instruction.

Compile a register exchange instruction which swaps
contents between T and register n.

To program in cmForth, you have to be aware of the difference between the compiler directives
and regular Forth words, which can be compiled and interpreted. They appear to be the same, in
a colon definition but behave very differently. The compiler directives can only be used in colon
definitions and should not be executed outside of a definition. For this reason, all the compiler
directives are placed in a special vocabulary named COMPILER and all the regular Forth words
are placed in the Forth vocabulary. In the normal interpretive mode, only the Forth vocabulary is
searched and you cannot access any of the compiler directives. Only after the word : is executed
will the COMPILER vocabulary be made available to the compiler, which will take advantage of
NC4000 and compile efficient machine code whenever possible. At the end of a definition or

98

when an error occurred, the COMPILER vocabulary will be turned off so that you will be
protected from the abnormal behavior in many of the compiler directives.

: FORTH (--) Define the Forth vocabulary.
1 CONTEXT ! Deposit hash code 1 in the system variable CONTEXT.
This hash code is used to select one of the two threads to
link a new definition and to search for an existing

definition.
: COMPILER (--) Define the COMPILER vocabulary.
2 CONTEXT! The hash code of COMPILER vocabulary is 2. The

compiler searches this vocabulary and execute words
found here. If then searches Forth vocabulary and
compile words found there.

5.8. Optimizing Compiler

The compiler ina regular Forth system is very simple. It only has tosearch the dictionary, find the
words and compile their execution addresses. Each word represents one function. The only
complication is to build control structures in a definition, which requires compiler directives during
compilation. The compiler for NC4000 is much more complicated due to following reasons:

o The compiler absorbs the function of an assembler toassemble machine instructions
besides compiling high level words or subroutine calls.
o More than one function may be performed by a single NC4000 instruction. The compiler

must be able torecognize the sequence of actions and combine them into a single machine
instruction.

o There are three memory spaces tobe dealt with: the main memory, the local memory, and
the registers.
o Deficiency inthe prototype chip precluding certain combinations of bit patterns.

IncmForth, Chuck Moore chose a very simple and quite effective approach to optimize the
assembly of machine instructions. He simply looks at the last instruction just compiled and the
current instruction. If there are unused bits inthe last instruction which can accommodated the
current instruction, the current instruction is then combined into the last instruction. Ifit is
impossible to squeeze the current instruction into the last compiled one, a new instruction is
compiled, which can be used to optimize the next instruction. The system variable ?CODE points to
the last compiled instruction tofacilitate this optimization process. A zero in ?CODE forces the
compilation of a new instruction.

Chuck picked several strategic places toexercise code optimization: at the end of a definition when ;
is executed, whenever a binary ALU code is assembled, and when a shift code is assembled. These
three cases cover most situations where optimization is effective. Other situations can beoptimized
byexplicitly hand coding special machine instructions.

99

The variable ?CODE is used to control the optimizing process. Whenever a multi-function machine
code is compiled, its address is stored in ?CODE so that the smart compilers can work onit. When
a high level word (subroutine call), a conditional or unconditional branch, ora loop instruction is
compiled, ?CODE is set tozero, ineffect turning the smart compilers off for that instruction.

5.8.1. Smart ; Compiler

The subroutine call in NC4000 is a one cycle instruction and the subroutine return is a single bit
embedded in many NC4000 machine instructions. Obviously, if youcan recognize the conditions
when the return bit can be inserted into the last instruction of a definition, you can always save a
machine cycle. Most of the colon definitions can be treated this way by the smart ; compiler.

OCTAL

: PACK

CEXIT

We want to see the bit patterns in machine instructions. Octal is the most natural

representation.

(an--)

160257 AND
140201 XOR

IF
40 SWAP +!
ELSE
DROP
100040 ,
THEN
POP DROP

()

?CODE @ DUP
IF
\\
DUP @
DUP 0<
IF
DUP 170000 AND
100000 =
IF PACK THEN
DUP 170300 AND
140300 =
IF PACK THEN
DUP 170000 AND

Pack the return bit into the machine instruction in
address a if possible. Otherwise, compile an explicit
return instruction. Terminate the calling word by
discarding top of return address.

These bits are relevant bits which must be examined.
If bits match this pattern, return bit should not be
packed into it. Exclude memory instructions and return
stack instructions.

Bit pattern does not match 140201,

pack the return bit into the instruction at address a.
Pattern matches with 140201.

Discard the address a.

Compile an explicit return instruction.

Work is done. Exit the EXIT routine immediately.

Look through all the possible patterns where the return
bit can be packed and pack it.

Last instruction a machine code?

Yes. Go work on it.

First re-initialize 72CODE.

Fetch the machine code.

Is the bit 15 set?

Yes. It looks like a machine code.

Is it an ALU instruction?

Yes. Pack the return bit.
Is it a register fetch instruction?

Yes. Pack the return bit.
Is it a short literal store instruction?

100

150000 =

IF
DUP 170600 AND 15x6xx cannot be a valid instruction.
150000 XOR
IF PACK THEN If not 15x6xx, pack the return bit.
THEN DROP End of multi-function code processing.
ELSE Last instruction is not a multi-function machine code.

DUP HERE dA @ -
XOR

However, if it is a call instruction, it can be substituted
by a jump instruction to save an explicitly return
instruction. This is what computer scientists call a tail
recursion.

Compare the address in ?CODE with the current
dictionary pointer.

170000 AND 0= Are they in the same 4K word page?
IF Yes.
7777 AND Isolate the 12 bit address field.
130000 XOR Tag the unconditional jump field.
SWAP ! Store it in the address pointed to by ?CODE.
EXIT Terminate here immediately.
THEN
DROP Discard content of ?CODE.
THEN
THEN DROP Discard ?CODE.
100040 , Compile explicit return instruction. Not possible to
optimize.
; Compiler directive.
; (--) The optimizing ; compiler.
\ RECURSIVE Reset the smudge bit in the name field of the new
definition, making it available for searching.
POP DROP Exit the compiler loop at the end of this word (;).
\EXIT EXIT was made immediate. Force its compilation.

5.8.2. Smart ALUFunction Compiler

The ALU instructions are the most complicated type of instruction in NC4000, because all the fields
and bits interact and a large variety of instructions can be constructed, doing many things ina single
cycle. A smart compiler would have to be able torecognize all these conditions inorder tocombine
as many functions into a single machine instruction.

The elementary ALU functions like +,-, SWAP-, AND, OR, and XOR are defined bythe smart
compiler BINARY. They will examine the instruction previously compiled tosee if the ALU function
can be incorporated into that instruction and doso whenever possible.

: BINARY

(n1n2--) n2 is the code of an ALU instruction. n1 is the pattern

which can be XOR'ed into the previous instruction to

101

CREATE
DOES
POP 77777 AND
2@
?CODE @ DUP
IF
@
DUP 117100 AND
107100 =
OVER 177700
AND 157500 = OR
IF
DUP 107020 -
IF

SWAP DROP
XOR

DUP 700 AND
200 =
ELSE
DUP 70000
AND 0=
IF 20 XOR
THEN
THEN
?CODE @ !
EXIT
THEN
THEN
THEN
DROP
,C

DROP

6100 101020 BINARY AND
1100 102020 BINARY SWAP
4100 103020 BINARY OR
3100 104020 BINARY +
2100 105020 BINARY XOR

install the ALU function. Define a smart ALU compiler.
Make a new header.

Compile n2 and n1 into the parameter field.

Now define what the new compiler directive will do
during compilation.

Pointer to the stored patterns n2 and n1.

Retrieve them.

Are we dealing with a machine code?

Yes. Turn on the optimizer.

The machine instruction.

Is it of the SWAP/OVER type?

Or a short literal?

Yes. We can do something about it now.

Not a DROP?

Not DROP.

Discard n2.

Force the ALU code into the ALU field of the previous
instruction.

Test if carry must be included. IF 500 XOR

Make sure we have an ALU instruction at hand, then

flip the Stack Active SA bit.

The instruction can take ALU code in the ALU field.
Update the machine code.

Drop the ?CODE, which is zero

Compile n2 as another ALU instruction without
optimization.

Discard the compare mask.

Now, all binary ALU code compiler can be defined by BINARY':

102

5100 106020 BINARY —
7100 107020 BINARY DROP

5.8.3. Shift Compiler

Shift instruction can be appended toall the ALU instructions. However, restrictions in NC4000
prototype chip have tobe imposed so that shifts produce the desired results.

: SHIFT (n1n2--) Define smart shift compilers. n1 is the shift code and n2
is a mask for comparison.
CREATE Make new header.
, Save n's, the shift code and a mask in the parameter field.
DOES Actual compilation action.
POP 77777 AND Pointer to the stored shift code.
2@ Get the code and the mask.
?CODE @ ?DUP Is the previous word a machine instruction?
IF Yes. Do optimization.
@ AND Put on the mask.
100000 =
WHILE Is it an ALU instruction save with a shift operation?
?CODE @ +! Yes. Pack in the shift code.
EXIT Done and out.
THEN
THEN
DROP Cannot optimize. Discard the code address.
100000 XOR ,C Compile a simple shift machine instruction.

The three shift functions which can be safely packed into ALU instructions are:

2171003 SHIFT 2*
1171003 SHIFT 2/
3177003 SHIFT 0<

One has tobe careful about 0< which has to be followed bya NOP before it can be used todo logic
branching, as evident in the source listing when 0<is invoked.

The double integer shift instructions cannot be packed into other ALU code due tothe prototype
restrictions. They are defined as explicit single cycle instructions:

100012 uCODE D2*

100011 uCODE D2/

5.8.4. Merging of DUP

Sometimes a DUP operation can be merged into a machine code, whose stack active bit can be
turned on, toaccommaodate the DUP function. A single cycle DUP instruction must be compiled

103

before the machine instruction just compiled.

: DUP? (--) Pack two previous instructions into one if the first is a
single cycle DUP instruction.
HERE2 - @ Fetch the instruction just before the one recently
compiled.
100120 = Is it a single cycle DUP instruction?
IF Yes. Try to pack.
HERE 1- @ Get the most recent instruction.
7100 XOR Turn on Tn bit and change data source to T, thus
activating DUP.
-2 ALLOT Delete the two compiled instructions.
,C Replace them with a single instruction.
THEN

Not many instruction pairs can be packed this way. The ones used in cmForth are:

al (n--) Compile a register store instruction.
157200 SHORT Compile a short literal instruction with n as the register
number.
DUP? Often the data stored into a register are needed for other

purposes. If a DUP instruction is used this way, it can be
packed into the I! instruction.

: PUSH (--) Compile a PUSH or a DUP PUSH instruction.

157201 C Compile the single PUSH instruction.

DUP? Pack DUP if available.

5.9. The Target Compiler

The target compiler is a utility program in Forth which allows a Forth system to generate a new
Forth system, tobe run either onthe same computer orona different computer. In cmForth, the target
compiler is the most important application written for a NC4000 computer, allowing cmForth to
regenerate itself. This unique feature permits a user tomodify cmForth, add new features, delete
features not needed in his application, and produce an application ora system best suited for his
purpose. cmForth can thus grow with you and your application. A user is not constrained bythe
prejudice and preference of its author, who does have his own ways in programming and shows no
respect for conventional wisdom.

5.9.1. Utility Compiler
:0< (--) Compile 0< with a NOP before doing logic decision. This

is necessary for prototype NC4000, which does not allow
enough time for the sign bit to propagate through the

104

:END

: REMEMBER;

FORTH

: EMPTY

: THRU

:-MOD

\0<
\NOP

()

\ RECURSIVE
POP DROP

()

CONTEXT 2-
2@

\END

()

FORGET
REMEMBER;

(n1n2--)
OVER -
FOR
DUP LOAD
1+
NEXT
DROP

(n1n2--n3)

shifter.

Forcing 0< to be compiled.

Forcing NOP to be compiled. Allow sign bit to propagate
15 bits.

Very similar to ; at the end of a colon definition. Un-
smudge the current word under construction and return to
the caller of the current word in run time.

Un-smudge the name of current word.

Discard the top element on the return stack. Skip all
words following the current word and return to the caller.

A compiler directive which saves the current vocabulary
link table so that the dictionary can be reduced to this
point.

Fetch the vocabulary links.

Copy the current thread table into the parameter field.
Compile EXIT and un-smudge the new word which will
cut back the dictionary.

Create a new word named EMPTY. The overlay starts
here. You can load an application package and do some
useful work. After you are through with this application,
execute EMPTY to remove the package from the
dictionary and reclaim all the dictionary space for your
next application.

REMEMBER; stores the current vocabulary links in the
two cells right after FORGET. When EMPTY is
executed, FORGET will copy these two cells into the
vocabulary link table below CONTEXT. All words
defined after EMPTY will not be found by either the
interpreter or the compiler.

Load blocks from n1 to n2 inclusive.

Repeat that many times.

Load one block.

Add one to nl for the next block.
Repeat.

Discard n1.

Conditionally subtract n2 from nl. If the result is
positive, return it as n3. Otherwise, return n1 unmodified.

105

41!
MOD'

5.9.2. Target Dictionary

Copy n2 into MD register.
Do the conditional subtraction.

Since this purpose of this target compiler is to regenerate cmForth, it is quite simple because most
of the compiler functions are already implemented. What we need in addition are a set of words
which will let us compile code in some unused part of memory, which will later be dumped into
ROM's for the target computer. A special variable H' is defined to manage the target dictionary in the
virtual memory space. Another variable dAis used tostore an address offset, which is the
displacement of the virtual memory address to the actual address inthe target system.

VARIABLE H'

HEX 2000,

2000 800 0 FILL

2000 H'!

The dictionary pointer for the target system dictionary. It behaves very
similarly to the system variable H, the dictionary pointer of the host
system.

This cell following H' is reserved tostore the dAvariable of the target
system.

The target dictionary is compiled from 2000H to 27FFH. This space is

first cleared tozero's. The code compiled here will be moved toROM
which will occupy memory 0 to7FFH in the target system.

H'is initialized to 2000H. Code of the target system will be compiled
starting here.

Many words incmForth are needed to construct the system and are of very little interest tothe user. It
is a waste of memory tokeep their headers inthe target dictionary. The following words allow us to
compile only the body of a definition tothe target dictionary. By keeping the header inthe host
dictionary, these words are still available to build other words in the target dictionary.

A{

()

dA @
HERE
H 2@
H!dA!
H'2!

COMPILER

Compile the header of the next word only to the host
dictionary.

Get dA of the host system.

and the dictionary pointer.

Get dA and target dictionary pointer.

Store H' and dA".

Store H and dA. Exchanging H and dA of the host with those
of the target system allows cmForth to compile words either to
the host dictionary or to the target dictionary.

Alias of {. It is defined for syntactic clarity. It is always used
when H' is pointing to the host dictionary, thus allows the

compiler to resume compiling the target dictionary.
Alias of {,

We need two copies of }, one for the text interpreter as above,

106

FORTH

: forget

: RECOVER

>
@ —

\\
PREVIOUS

8000 XOR
SWAP !

{

()

SMUDGE
()

-1 ALLOT

and another for the compiler which can be executed inside a
colon definition.

The compiler directive }.

First get the target dictionary pointer,

and compile it into the host dictionary so that this address can
be compiled to the target when it is invoked in a target
definition.

Break the optimization process before switching dictionary.
Name field address of the word under construction and the first
cell in the name.

Set the MSB high and flag it as a hidden name of a target
definition.

Now, switch dictionary pointer so that subsequent words are
compiled into the target dictionary.

Hide the target definition which collides with the same
definition in the host dictionary which must be used during
target compilation.

Set the smudge bit in the name of the target definition.

Move the dictionary pointer H back by one cell. Save one cell
in the target dictionary.
Decrement H pointer.

5.9.3. Variables in Target System

In the earlier cmForth systems, Chuck Moore had to define many words to manage variables inthe
target system during target compilation. Inthis version, he simply replaces the variables byconstants.
The value returned bythese constants are addresses pointing to memory where variables are stored.
The variable array RAM, the variable pointer R', and the target version of VARIABLE are all
eliminated. The newer cmForth is thus simpler and easier tounderstand.

107

5.9.4. Separate Target and Host Dictionary

Using { and }, we can compile the header of a target definition either in the target orthe host
dictionary. The resulting vocabulary link runs like a bowl of spaghetti, upand down between the host
dictionary and the target dictionary. The link field in the target dictionary must be re-ordered so that
the target dictionary can be searched when it is moved into a target system. Smudge heads in the
target dictionary also must be un-smudged. The following words are used tore-link and clean up the
target dictionary.

: SCAN

: TRIM

: CLIP

(al--a2)

@
BEGIN

DUP 1 2000
WITHIN
WHILE @
REPEAT

’(ala2--a2)

DUP PUSH
dA @ -
SWAP |

POP DUP 1 +

DUP @ DFFF AND
OVER !

DUP @ 200/ F AND
+

DUP 0 FF7F AND
SWAP |

(a-)

DUP

BEGIN
DUP SCAN
DUP

WHILE
TRIM

Following the linked dictionary chain starting at al until a
link address outside of the host dictionary is found, which
is returned as a2.

Link field address of the next definition in the chain.
Follow the link.

Is this address inside the host dictionary?

Yes. Fetch the next link.

Exit if the link address is either above 2000H in the target
dictionary, or 0 which indicates the end of the vocabulary
link.

Relocate a target definition from the host dictionary to
the target dictionary. Un-smudge the name of the target
definition also.

Save the link field address of the target definition a2.
Compute the correct target address of a2.

Store the correct target address into the link field of the
target definition at al.

Get the link address a2 back. Increment it to the name
field of this target definition.

Mask off the smudge bit in the name.

Store the un-smudged name back.

Get the cell count of the name field.

The last cell in the name field.

Erase the most significant bit in the last byte of the name.
This is the truncation bit.

Scan a linked vocabulary for words in the target
dictionary. Re-link them into a separate target
vocabulary.

Save a copy of the starting address.

Go through the vocabulary.

Find the next target definition.

Keep a copy of this address.

Re-link this target definition to target dictionary and

108

clean its header.

REPEAT Repeat until the vocabulary is processed to the end. Link
Address of the last target word is left on the stack.

2025 XOR dA @ - Fix the link field of the last word in a vocabulary of the

SWAP | target dictionary. If the link field is at 2025H, place a 0 in
it. Otherwise, put a 25H in it. This assures that the
FORTH and COMPILER vocabularies both end at the
first word #, the End-Of-Line definition.

@, Fetch the link field address of the last word defined in a
vocabulary and store it on the top of the target dictionary
in RESET after FORGET where the initial vocabulary
link table is located.

:PRUNE (--) Re-link the target vocabulary and clean up all the headers
in the target definitions.

{ Switch to the target dictionary.

CONTEXT 2 - Head of the COMPILER vocabulary.

DUP CLIP Re-link the target COMPILER vocabulary.

1+ Head of the FORTH vocabulary.

CLIP Re-link the target FORTH vocabulary.

} Switch back to the host dictionary.

20 0 2025 2! Patch the name field and link field in the first target word
#'. Change its name to an ASCII BL with O character
count. Change its link field to 0 as the end of the
dictionary.

EMPTY Cut the target dictionary completely off the host
dictionary.

5.9.5. Target Compiler in Action

Screen 3 in the source listing shows how the target compiler isused torecompile cmForth itself. Let's
go through it line by line to see how the target dictionary is built up tothe point it can be tested inthe
host system and booted up ina target system.

EMPTY

2 LOAD
HEX 2000 800 0 FILL
2000 H'!

: BOOT --)

(
¥

16 FFF FOR 0

Throw away any garbage previously collected onthe host
dictionary.

Load the target compiler.

Clear the target dictionary for ROM code.

Initialize the target dictionary pointer.

Define BOOT and put its header in the host dictionary.
Exchange the target dictionary pointer with the host dictionary
pointer. The following words will be compiled into the target
dictionary. It is the reset routine.

Copy 4K words from ROM to RAM.

109

@+ 11+ NEXT

1@ Pulse the clock input of the 74HC74 flip-flop to turn on RAM
and turn off ROM.
; (reset) This cell is later replaced by the reset routine 'reset' which

initializes NC4000 in the ForthKit system.

0,0,0,0,0,0,0,0,0,0, Initial values for local memory and some system variable.

0,

0, TIB.

77CO, This cell will be used for SPAN. However, 77CO0 isthe address of
the terminal input buffer, which will be copied into TIB.

0,0,0,0,0, Initial values for other system variables: >IN, BLK, dA, ?CODE,
and CURSOR.

1R, SO

A, BASE

0, H

DECIMAL 521 , C/B for 5 MHz clock.

{; interrupt } (--) Compile a noop interrupt service routine at 20H. The

header is compiled in the host dictionary.

POP DROP Discard the return address saved on the return stack by
the interrupt. Execute the next word as if nothing had
happened.

0,0, Vocabulary link table for FORTH and COMPILER.
1, CONTEXT

In the target system, the code of BOOT routine from 2000H to 200FH will be copied to 1000H to
100FH in the target system, and the variable initialization table from 2010H up together with the
target dictionary will be relocated to 10H-7FFH in the target system.

Following the above variable initialization table, we will build the target dictionary by compiling
cmForth source screens.

H# R>DROP ; This is the word EXIT. # is a temporary name. It will be changed
to 80AOH later to perform end-of-line function.

DECIMAL 7 11 THRU Load nucleus.

12 22 THRU Load the interpreter.

23 24 THRU System initialization.

'reset dA @- Install the reset vector at the end of BOOT.

HEX 2009 ! DECIMAL

2530 THRU Load compiler.

} At this point, the target system is complete. Restore host dictionary

110

for normal usage.

The newly compiled target dictionary image can be burned into EPROM's and inserted to the ROM
sockets. If the hardware is done right, the new computer with NC4000 can now be powered upand it
should say "hi* on your terminal.

However, before you burn the EPROM's, it would be nice if the new target system can betested in the
host system. The code at the bottom of Screen 3 does exactly that. The newer cmForth assumes that
NC4000 boots up ina shadow ROM and operates in RAM, which can be overwritten with the core
image of the target system. Inthe older cmForth, the testing process was more complicated because
the target system must be run while inthe area 2000H-27FFH. The code for testing was compiled
differently than the code for the target system.

PRUNE Re-link the target dictionary to produce a core image of a stand-alone cmForth
system.
: GO (--) Copy the target core image in the area 2000H-27FFH to the low

RAM memory area and pass control to the new system

FLUSH Clean up the disk buffers.

[HEX)

20154 11 Store source address in MD.

15 Destination address.

6EA FOR Copying loop.

41@! Exchange source and destination addresses.

1@+ Fetch from source.

41@! Exchange addresses again.

1+ Store to destination. NEXT

2009 PUSH Push 2009 on the return stack.

; Jump to 2009H and execute the ‘reset’ routine to bring up the
new system.

111

Chapter 6. Programming Tips

The source code incmForth is a large reservoir of programming tools and examples you can use to
solve many practical problems. However, programming examples can never be too many. In this
chapter, I will discuss a number of exercises that | have worked out on myNC4000 machine under
cmForth. I tried toexplore areas outside of the operating system which was addressed extensively by
cmForth. I hope these exercises will be helpful for people who are more concerned with day-to-day
programming problems than with the problems encountered bythe operating system.

Chuck Moore provided many excellent examples using NC4000 to control many different
peripheral devices as App Notes distributed with the ForthKits. These App Notes are also
reproduced in More on NC4000, Volumes 4 and 5. Many NC4000 users also contributed code,
applications, tips, and insights related to NC4000 in More on NC4000. Interested readers should
consult these and other volumes for further information.

6.1. Benchmarks
Benchmarks donot lie. Liars do benchmarks.

| have to admit that | have an ax togrind, and it is always nice to show off your newest toy tofriends
and relatives. Myfavorite benchmarks are simple tests enclosed in big loops so that one can use a
regular clock totime them. Some of these tests are shown in Figure 6.1.

The interesting thing about these test programs is that the blazing speed of NC4000 makes them
difficult totime accurately if you only do 32768 loops. For example, it takes NC4000 about 8 msto
complete 32768 empty FOR-NEXT loops, about 100 times faster than myPC. To facilitate testing,
| have to put the test program inside another loop.

The reason why NC4000 is faster than any conventional microprocessor is very simple. NC4000
executes one machine instruction per clock cycle while other microprocessors need more than one
clock cycle todoanything. The number of clock cycles required to perform an equivalent task is a
more useful measure of microprocessor's performance than benchmarks. Table 6.1 shows the
comparison among NC4000, 68000, and 8086.

Because NC4000 does most operations inone machine clock cycle, in many instances several
operations inone cycle, it is nowonder that it should be faster than 68000 and 8086 running at
much higher clock frequencies. The most interesting instructions are subroutine calls and returns,
which are optimized tothe physical limit of computer design--one clock cycle for calling and zero
cycle for returning. Inrunning conventional high level language programs, subroutine calls and
returns often consume as much as 40% of the execution time. By reducing the overhead of
subroutine calls and returns to the bare minimum, NC4000 can support other high level languages
and significantly improving their efficiency.

112

Table 6.1. Machine Cycles for 16 Bit Integer Operations

Operation NC4000 68000
Register-Register Move 1 8
Register-Memory Move 2 16
Register-Register Add 1 8
Multiply 23 74
Divide 31 144-162
Call Subroutine 1 32
Subroutine Return <1 32

Push Register <1 16

Pop Register <1 16 8 Branch 1 18

(

BENCH MARKS,

23MAR85CHT) HEX

TFFF FOR NEXT ;

: LOOPS

: LOOPTEST

: +TEST TFFF
: +TESTS FOR
: -TEST 7FFF
: -TESTS FOR
: *TEST 7FFF
: *TESTS FOR
: /TEST 7FFF
: /TESTS FOR

FOR LOOPS NEXT ;

FOR I DUP + DROP NEXT ;
+TEST NEXT ;

FOR 7FFF I - DROP NEXT ;
-TEST NEXT ;

FOR I DUP * DROP NEXT ;
*TEST NEXT ;

FOR 7FFF I / DROP NEXT ;
/TEST NEXT ; DECIMAL

Figure 6.1. Sample Benchmark Programs.

6.2. WORDS--L.isting the Vocabulary

113

8086

2

8-11

3
118-133
144-162
19-28
8-18

10

4-16

VLIST in figForth and WORDS in F83 are very useful utilities toexamine the status of the
dictionary. These words are addictive. Once you get used tothem, life seems impossible without
them. However, the tradition of polyForth, which could be attributed to Chuck Moore, was not to
bother with them. VLIST or WORDS were not useful in polyForth environment, because of the 8-
way threading and hashing of the dictionary-vocabulary structure and the three character names. In
cmForth, Chuck eliminated the 8-way hashing of the dictionary, retaining only two vocabularies.
The dictionary structure is now simple enough so that VLIST or WORDS can be meaningful again.
Since only the first three characters are retained in the name field of a word, you cannot completely
recover the full name of a word. However, the mechanism to retain names up to 3Lcharacters is built
into the cmForth system. If you really want full names inyour dictionary, you can doit bytarget
compiling the system with the variable WIDTH set to 16.

In Figure 6.2, | have shown a simple implementation of WORDS which lists the word names in a
vocabulary. In the listing, each name is preceded byits character count. You can improve it to make
the listing prettier, or display the address alone with the name, etc.

cmForth has only two vocabularies, FORTH and COMPILER. In the version we have here, FORTH
and COMPILER are not defined. Their definitions are trivial, and are shown in Figure 6.2.
FORTH stores a 1 into the variable CONTEXT and COMPILER stores a 2 init. This number in
CONTEXT is tobe subtracted from the address of CONTEXT to get the address of a pointer
pointing tothe link field of the last definition in one of the two vocabularies. The phrase in the
definition of WORDS:

CONTEXTDUP @ - C
thus obtains the link field address of the last definition inthe context vocabulary.

‘C.” is similar to EMIT, except it will not emit non-printable characters. It is useful indoing
ASCII dumps. It was needed when 1 first coded the ID routine which displayed three characters in
the name field even though the name contains only one ortwo characters. The revised ID shown in
Figure 6.2 issmart enough to display one ortwo character names correctly, and C. is not necessary
anymore. ‘.ID’ takes a link field address, prints the content of the name field, and returns with the
link field address of the next word in the same vocabulary. With this rather powerful name printing
word, the definition of WORDS becomes very straightforward. WORDS follow the context
vocabulary and prints the names of all the words in this vocabulary. It stops when a link field
address is 0, which indicates the end of this vocabulary.

(WORDS, 23MAR8G6CHT)
: FORTH 1 CONTEXT ! ;
: COMPILER 2 CONTEXT ! ;
: C. >R 31 127 I WITHIN
IF R> EMIT ELSE R> DROP THEN ;
.ID (A - A")
1 @+ 2CR+ 31 AND DUP >R . C.
2C@+ I 1 > IF C. ELSE DROP THEN
R>2 > IF C. ELSE DROP THEN 3 SPACES DROP ;
: WORDS CONTEXT DUP @ -
BEGIN .ID DUP 0= UNTIL DROP ;

Figure 6.2. Vocabulary Definitions and WORDS.

114

6.3. Memory Dump

A good memory dump utility is always handy when you have to do detective work in the object code.
The DUMP word in cmForth is unconventional. It takes an address from the stack, displays the
contents of 8 cells starting from this address, and returns with the address of the cell after the last
cell displayed-. The reason why Chuck coded it this way was that he was experimenting with a CRT
display circuit driven directly byNC4000 chip. "Inthis display, he used only the top line for
command entry and the second line for responses from NC4000. Inthis scheme, he could display
only one line at a time. That's why his DUMP dumps only one line of data. Because DUMP returns
the address of the next line, DUMP can be used repeatedly toscan a section of memory.

Since you are more likely touse a regular 24 line CRT display terminal ora computer as
terminal/disk server, a multiple line DUMP routine would seem to be more useful. Figure 6.3 shows
such an implementation.

CHAR displays only printable characters. It substitutes a blank for any non-printable character. The
most significant bit of the character is striped. TYPE takes a cell address and a byte count as
arguments, and displays a string of characters. It assumes that the byte count isalways even.

(DUMP) is similar to the DUMP in cmForth. It dumps only one line or 8 cells of memory and
bumps the address by8. The difference isthat (DUMP) does not include carriage return and line
feed. DUMP calls TYPE and (DUMP) alternately, and displays a nicely formatted dump on the
terminal.

(MEMORY DUMP, 23MAR86CHT)
: CHAR (C) 127 AND 32 MAX EMIT ;
: TYPE (A #) 2/ 1 - FOR 2CQ+ CHAR CHAR NEXT DROP ;
(DUMP) (A - A")
DUP 5 U.R SPACE
7 FOR 1@+ SWAP 5 U.R NEXT ;

: DUMP (A #)
8 /1 - FOR
CR DUP 16 TYPE 3 SPACES (DUMP) NEXT DROP ;

Figure 6.3. Regular DUMP Routine.

115

6.4. Line Editor

In mysystem, the source code is entered and edited inside the IBM PC using F83 editor. It isa
convenient environment towrite and change source code. However, it would be nice todo the
editing directly inside NC4000 without having to switch back and forth between F83 system and
NC4000. A small line editor is shown in Figure 6.4. Screen 16 in Figure 6.4 contains the basic
functions for listing a screen of source code in the buffer memory of NC4000.. Screen 17 has a few
of the elementary line editing commands.

Because NC4000 can process 16 bit numbers much faster than 8 bit bytes, screens of source code
are stored in 1024 cell disk buffers. The text string parser incmForth also assumes that the input
character stream is cell based, not byte based. To display one line (64 characters) of code, it is very
convenient to use the incremental fetch instruction @+ in a simple loop toobtain the character string
and display it. That's what LINE does, given the screen number and a line number on the stack. T or
the type command is a simple derivative of LINE.

LIST is defined to repeat LINE 16 times with a little extra formatting to boost the screen image. L
uses the content of variable SCR to dothe listing.

Only the commonly used line editing commands are defined in Screen 17. The cornerstone is the
command P, which accepts a character string from the terminal and copies it tothe current line in
the current screen being edited. | encountered a few problems in debugging these editing
commands. One problem is that the input character string obtained by WORD is stored in the word
buffer as a byte string. This byte string had to be converted into a cell string before moving into the
disk buffer. Another problem is the MOVE command, which has a very strange behavior: it copies
the source cells inthe forward direction and stores them to the target memory in the backward
direction. After much grief, I saw the light, and thereafter coding was rather straightforward.

Another feature in cmForth concerning the disk buffer is that the most significant byte in each cell
is assumed tohave 40H in it. When you fill the buffer with blanks, you have towrite 4020H into each
cell. When you search for the " character inthe input stream, the pattern given to WORD must be
4094H instead of 94H, the ASCII code of "'.

These line editing commands can accomplish quite a bit of editing. To do more precise and

efficient editing, one would probably need a good string editor, too. The string editor is left asan
exercise for the reader.

116

Scr # 16 B:NC4000.BLK

0 (LIST, 23MARS86CHT)

1 VARIABLE SCR VARIABLE L#

2 : LINE (SCR #)

3 64 * SWAP BLOCK +

4 63 FOR 1 @+ SWAP EMIT NEXT DROP ;

5 LIST (SCR)

6 DUP SCR ! DUP CR ." SCR# ".

7 0 15 FOR 2DUP CR DUP 3 U.R 2 SPACES

8 .LINE 1 + NEXT 2DROP ;

9 : T (N) DUP L# ! CR SCR @ SWAP .LINE ;
10 L SCR @ LIST ;

11

12

13

14

15

Scr # 17 B:NC4000.BLK

0 (LINE EDITING, 23MAR86CHT)

1 64 CONSTANT C/L HEX

2 WHERE (N) Cc/L * SCR @ BLOCK + ;

3 P 1L# ~ WHERE DUP C/L 4020 FILL 4094 WORD
4 BEGIN DUP WHILE 1 - >R

5 1 + DUP C@ 4000 + ROT 1 '+ SWAP R>
6 REPEAT DROP 2DROP UPDATE ;

7: M(N M) 1 + WHERE 1 - SWAP WHERE SWAP

8 C/L 1 - MOVE UPDATE ;

9: U L# @ 1 + OF OVER -

10 FOR DUP I + DUP 1- SWAP M NEXT DROP P ;
11 : X L# @ 1 + OF OVER -

12 FOR DUP DUP 1 - M 1+ NEXT DROP

13 OF WHERE C/L 4020 FILL ;
14 DECIMAL
15

Figure 6.4. Line Editor

117

2* DUP C@

6.5. Stack Pictures

It is always nice to know your stacks. Inmost instances, you have to be sure of the items you've
pushed on the data stack before embarking on toyour next task. When you test and debug a word, it is
very helpful to have a utility word which displays the contents of the data stack non-destructively.
The word S inmany Forth system is very popular for this reason. With NC4000 and cmForth, the
problem is that the stacks do not have bottoms or tops! The external stacks have 256 cell capacity
because NC4000 provides 8 bit stack pointers. The stack pointers are incremented or decremented
inmodulo 256 and the stacks wrap around and fold into themselves. Without knowledge of where the
data stack begins orends, it is impossible to define .S in the normal sense.

My proposition as shown in Figure 6.5 is to display only the top5 elements non-destructively on the
data stack. To get tothe fifth element, | move the first four elements tothe return stack. Then these
five elements are duplicated, printed, and restored back onto the data stack.

The command .RS does the same thing tothe return stack. Its usefulness is limited. When you
execute .RS from the keyboard, the picture of the return stack is always the same. It is intended to be
used inside nested definitions to show the nested return addresses.

(STACK PICTURE, Z24MAR86CHT)

:.S (DISPLAY TOP 5 STACK ELEMENTS)
>R >R >R >R
DUP . R> DUP . R> DUP . R> DUP . R> DUP . ;

:.RS (DISPLAY TOP 5 RETURN STACK ELEMENTS)
R> R> R> R> R>

DUP . >R DUP . >R DUP . >R
DUP . >R DUP . >R ;

Figure 6.5. .S and .RS to Show Stack Pictures.

118

6.6. Display Internal Registers

There are 17 addressable internal registers inside NC4000, which indicate the current status of the
machine. Generally, detailed knowledge about these internal registers is not required to use NC4000
machine. Occasionally, one might want toknow their contents for debugging purposes.

The command | defined inFigure 6.6 displays all the accessible internal registers ina nicely
formatted fashion. The data stack pointer and the return stack pointer are isolated from the J/JK
register and displayed separately. The most useful information you can get from this display is the
content of the data stack pointer and the registers controlling the B and X ports. The main purpose of
| is tosatisfy your curiosity on the inner mechanism inNC4000.

(INTERNAL REGISTERS, 24MAR86CHT)
(.I) (N1 N2 N3 N4)
CR 3 FOR 8 U.R NEXT ;
.I (DISPLAY NC4000 REGISTERS)

CR ." J K I p"
2 1Ia 1 1@ 0 I@ 256 /MOD (.1)

CR .” MD SRI”

7 I 6 I0@ 5 I@ 4 1@ (.I)

CR ." B-PORT MASK I/0 TRISTATE"

11 1@ 10 1@ 9 1@ 8 I (.1)

CR ." X-PORT MASK I/0 TRISTATE"

15 1Id@ 14 1@ 13 1@ 12 1@ (.I) ;

Figure 6.6. Internal Registers.

119

6.7. Input and Output

Among the 17 internal registers, 8 are devoted tocontrol the two I/O ports: the 16 bit B-port and the
5 bit X-port. The high percentage of resources in NC4000 allocated for 1/O ports reveals Chuck
Moore's intent for NC4000. It is optimized tobe a super-fast controller. Inthe prototype version of
NC4000 using the 3 micron CMOS technology, each I/O pin can source orsink 16 mA of current.
This large driving capability makes it very easy to use NC4000 to drive other electronic devices
without additional buffering oramplifying chips.

Here | wish to demonstrate how these ports may be used to do simple 1/O tasks. It was often said in the
microprocessor business: "If you can turna LED onand off, you can do anything."”

When NC4000 is powered up after RESET, the B-port is initialized tobe a 16 bit output port and the
output pins are all pulled to ground. The X0 pin is configured to be the transmitter of the terminal
interface, and X4 the receiver. If your NC4000 is using the serial terminal interface totalk to your
terminal or your PC, be careful and don't bother the X-port until you know exactly what you are
doing. Accessing X-port might sever the serial interface to the terminal and you might have to reset
NC4000 tobring it back. B-port is free for you toexperiment.

Figure 6.7 shows the commands INPUT and OUTPUT. INPUT configures the B-port as a 16 bit
input device, reads the data from BO-B15 pins, and returns it on the stack. OUTPUT configures it to
bea 16 bit output port and sends the top of stack item tothe pins BO-B15. You can connect an
oscilloscope probe toany B-port pin and execute the OUTPUT command todrive the scope trace up
ordown. You can also connect a LED lamp between a B-port pinand ground tosee if you can turn
the LED onand off. Totest the INPUT command, you will have to connect a switch between a B-
port pin and ground. Remember also that you have to pull the B-port pin to5 volt through a resister.
Then you can execute INPUT to read the status of the switch.

Any microprocessor can be programmed toturn LED's on and off. The advantage in using NC4000
isthat it can dothese things faster than any other microprocessor. In fact, what I would like to
demonstrate is programming NC4000 todo the on-off switching at 4 MHz, the speed of the clock
driving NC4000. The code is shown in Figure 6.7, Screen 21.

The only way tooutput data at the clock rate tothe B-port is to pop data from the data stack and copy
it tothe data register in the B-port. Obtaining data from main memory would take two cycles. Re-
calculating data and sending the results to B-port would also take at least two cycles. If the data is
stored on the data stack, it can be popped to the B-port ina single cycle. The command ZEROS
pushes n O's on the data stack, and ONES pushes n-1's on it. FLIP-FLOPS pushes a number of 0 and
-Lpairs on the stack. If you fill the entire data stack with zeros and -1's, you can then pop these words
out tothe B-port indefinitely at the rate of 4 million words persecond. FAST dumps 256 words and
FAST-DEMO repeats FAST ina FOR-NEXT loop.

If the data stack is filled with alternate ones and -1's, FAST-DEMO creates a square wave at all 16
B-port output pins at a frequency of 2 MHz. Using ONES and ZEROS one can generate different
square wave patterns as output. Inthis manner, you have a set of 16 programmable flip-flops
running at 4 MHz. There might be cheaper ways to build flip-flops, but this isthe only

120

microprocessor which can simulate flip-flops at this speed.

Scr # 20 B:NC4000.BLK

0 (I/O0 DEMO, 24MAR86CHT)

1 : INPUT (-- N, READ A 16 BIT NUMBER FROM B-PORT)
2 0 9 I! (MASK) 0 10 I! (DIRECTION)

3 0 11 I! (TRISTATE)

4 9 IQ@ (INPUT DATA) ;

5 OUPUT (N --, SEND N TO B-PORT)

o 0 9 I! (MASK) -1 10 I! (DIRECTION)

7 0 11 I! (TRISTATE)

8 8 I! (OUTPUT DATA) ;

9

10

11

12

13

14

15

Scr # 21 B:NC4000.BLK

0 (4 MHZ PROGRAMMABLE FLIP-FLOP, 24MAR86GCHT)
1l : ZEROS (N --, PUSH N ZEROS ON THE STACK)

2 FOR 0 NEXT H

3 ONES (N -—-, PUSH N -1'S ON THE STACK)

4 FOR -1 NEXT ;

5 FLIP-FLOPS (PUSH ALTERNATE ONES AND ZEROS ON STACK)
9 129 FOR 0 -1 NEXT ;

7 FAST (PUMP 256 WORDS FROM STACK TO B-PORT)
8 256 TIMES 8 I! ;

9 : FAST-DEMO (N --, DO FAST N TIMES)

10 FOR FAST NEXT ;

11 (FLIP-FLOP -1 FAST-DEMO)

12 (SHOW 4 SECONDS OF A 2 MHZ SQUARE WAVE ON ALL B-PORT PINS.)
13

14

15

Figure 6.7. Input and Output Demonstrations

121

6.8. PICKand ROLL
Thou shalt not PICK; and Thou shalt never ROLL.

That was the advice attributed to Chuck Moore. If you modularize your words properly, you should
never need toaccess the stack below the third element. Thus DUP, SWAP, OVER, and ROT should
suffice, and these are words you get incmForth. If you find yourself in a situation in which you have
toaccess items below the third item on the data stack, it's time to rethink your algorithm.

Nevertheless, Forth 83-Standard Team saw new light and insisted that PICK and ROLL be included
in the standard to make room for fuzzy thinking and lazy programming. Since PICK and ROLL are in
the standard, you might just as well doit as programming examples.

Figure 6.8 shows the definitions of PICK and ROLL. They are verysimilar. To gain access tothe
nth element on the stack, | tuck the first n-1 elements under the top element on the return stack.
Because | am using a FOR-NEXT loop tomove these elements, the top element on the return stack,
which is the loop counter, must be preserved. After moving the n-1 elements out of the way, | can
either duplicate the nth element into the MD register for PICKing, or move it to MD for ROLL.ing.
The stacks are then restored to the correct state and the content in MD is finally pushed back onthe
data stack.

(PICK AND ROLL, 28MAR86CHT)
: PICK (N - N')

DUP 6 I! (SAVE N IN SR)
?DUP IF 1- FOR R> SWAP >R >R NEXT THEN (MOVE TOP ELEMENTS)
DUP 4 I! (PICK IT TO MD)

6 I@ (RETRIEVE N)
?DUP IF 1 - FOR R> R> SWAP >R NEXT THEN (RESTORE)

4 IQ (GET NTH ITEM BACK) ;
: ROLL (N -)
DUP 6 I! (SAVE N IN SR)
?DUP IF 1- FOR R> SWAP >R >R NEXT THEN (MOVE TOP ELEMENTS)
4 I! (ROLL IT TO MD)

6 I@ (RETRIEVE N)
?DUP IF 1 - FOR R> R> SWAP >R NEXT THEN (RESTORE)
4 I@ (GET NTH ITEM BACK) ;

Figure 6.8. PICK and ROLL.

This is one of many possible ways to implement PICK and ROLL. It is not very fast because of the
thrashing activity on the return stack. If you have a scratch pad of 256 cells somewhere in the main
memory, moving n-1elements can be done much faster using ~+ and !- instructions. You might
want totry it for yourself.

Including PICK and ROLL here does not imply that | approve of their use.

122

6.9. Square-Root

A very unique instruction in NC4000 is the square-root step S’. By repeating this instruction 16
times, you can take the square root of a double integer very easily and very quickly. Chuck Moore
included this feature in NC4000 because he wanted to use NC4000 to do fast graphic processing,
and he needed the square-root function frequently. The square-root step is very similar tothe divide
step /°. It does a conditional subtraction; and if overflow condition occurs, the result of subtraction
is not written back tothe T register.

The square-root routine is shown in Figure 6.9. It takes a positive double integer on data stack as
input and returns a positive integer as square root.

Because of problems in handling the carry condition, the prototype NC4000 chip cannot take the
square-root of numbers greater than 16K.

(SQUARE ROOT, 29MAR86CHT)

: SQRT (D -- N)
32768 6 I! (SR REGISTER) 0 4 TI! (MD REGISTER)
D2* 14 TIMES S' (SQRT STEPS)
DROP ;

Figure 6.9. Square Root.

123

6.10. Terminal and Disk Server on IBM-PC

| am using an IBM-PC computer as the host of NC4000 machine. NC4000 talks tothe PC through
the 9600 baud COML1 serial channel and uses the serial disk protocol in cmForth to access the floppy
disks inthe PC. The host interface is programmed using F83 Forth system. Files are opened and
managed byF83. Source code inthe files are entered and edited with the F83 editor. The serial disk
at 9600 baud is slow, but adequate for my purposes.

| did some experiments with PC-DOS and even the BIOS. Somehow, PC always manages to lose
characters if the COML port is read through DOS calls or BIOS service interrupt. The PC spends so
much time playing with the characters that it just cannot get the characters and put them into either
the disk buffer or display them on the screen reliably, even though it takes a whole millisecond for a
character toget through the COML serial port.

The code presented in Figure 6.10 tries to manage the COML1 port and tomake the PC toserve
NC4000 faithfully. Asa terminal server, the PC loops onthe COM1 receiver. Whenever a character
isreceived, it is sent directly to the CRT display buffer. The display is not scrolled. When the last
line is displayed and a carriage return is detected, the next line will be displayed at the top of the
screen. When an ASCII NUL is received, the disk server will be invoked tohandle the sending or
receiving of text block to or from NC4000.

This server works very reliably, with one exception. If NC4000 sends lots of characters without
carriage returns wisely dispersed in the character stream so that the characters overflow the CRT
screen buffer, the terminal server will get lost. You will have touse ESC to return to F83 and re-
establish communication using the NC command.

124

Scr # 1 B:NC4000.BLK

0 \ Coml and Com2 12dec85cht

1 HEX

2 B800 CONSTANT SCREEN

3 3FD CONSTANT STAT 3F8 CONSTANT DATA 4 DECIMAL 2 5 THRU 5 EXIT
6 Characters obtained from NC4000 are put into the screen buffer
7 directly. 3F8 1is the data register in COMl 8251 and 3FD is the
8 status register.

9 COM1 must be initialized by the DOS command:

10 >MODE COM1:9600,n,8,1

11 to set up the baud rate and character format.

12 In F83, OPEN NC4000.BLK OK load in this program.

13 Type NC to connect to NC4000 board.

14 While NC4000 is the master, pressing ESC key returns you back
15 to F83.

Scr # 3 B:NC4000.BLK

0 \ Chip

1 CREATE I/O HEX 400 ALLOT ASSEMBLER

2 LABEL EOL AO # BL MOV DI AX MOV BL DIV BL CL MOV

3 AH CL SUB CH CH SUB AL AH MOV AL AL SUB REP AL STOS

4 18 # AH CMP 0= IF DI DI SUB THEN RET

5 LABEL RCV STAT # DX MOV BEGIN O AL IN 1# AL AND 0<> UNTIL
o DATA # DX MOV O AL IN RET

7 CODE XMT STAT # DX MOV BEGIN O AL IN 40 # AL AND 0<> UNTIL
8 AX POP DATA # DX MOV O AL OUT NEXT END-CODE

9 LABEL RECEIVE 400 # CX MoV I/0 # BX MOV BEGIN

10 CX CX OR 0<> WHILE RCV #) CALL AL 0 [BX] MOV
11 BX INC CX DEC REPEAT RET
12 : BLOCK-XMT BLOCK 400 0 DO DUP C@ XMT 1+ LOOP DROP ;

13 : DISK DUP O< IF (RECEIVE) I/0 SWAP 7FFF AND BUFFER
14 400 CMOVE UPDATE (0 XMT) ELSE BLOCK-XMT THEN ;
15 DECIMAL

Scr # 5 B:£f1C4000.BLK
0 \ Chip 12DEC85CH'T
1 CODE NC HEX ES PUSH SCREEN # AX MOV AX ES MOV

2 CLD CH CH SUB AO # BX MOV DI DI SUB BEGIN

3 STAT # DX MOV 0 AL IN 1 # AL AND

4 0<> IF DATA # DX MOV 0 AL IN

5 AL AL OR 0= IF RCV #) CALL AL AH MOV

6 RCV #) CALL ES PUSH DI PUSH AX PUSH™ AX AX OR
7 0< IF RECEIVE #) CALL THEN C: DISK ;C DI POP
8 ES POP ELSE OD # AL CMP 0= IF EOL #) CALL

9 ELSE 7 # AH MOV AX STOS THEN

1 0 OF5E # AX MOV AX STOS DI DEC DI DEC THEN

11 THEN 100 # AX MOV 16 INT

12 0<> IF AX AX SUB 16 INT AH AH SUB

13 1B # AL CMP 0= IF ES POP NEXT THEN

14 DATA # DX MOV 0 AL OUT THEN

15 AGAIN END-CODE DECIMAL

Figure 6.10. Terminal and Disk Server

125

Scr # 2 B:NC4000.BLK

0\ Call high level words 12dec85cht

1 ASSEMBLER

2 LABEL HILEVEL

3 RP DEC RP DEC IP 0 [RP] MOV IP POP NEXT

4 C:

5 [ASSEMBLER] HILEVEL #) CALL FORTH] ;
6 CODE (;C)

7 IP PUSH 0 [RP] IP MOV RP INC RP INC

8 RET END-CODE

9 : ;C [ASSEMBLER] COMPILE (;C) ASSEMBLER

10 [COMPILE] [; IMMEDIATE

11 EXIT

12 Henry Laxen's trick to allow assembly routine to call high
13 level colon words.

14

15

Scr # 4 B:NC4000.BLK

\'S Chip 12dec85cht

I/0 1K buffer to receive block data from NC4000

EOL Subroutine to process carriage returns from NC4000.

0
1
2
3
4
5 RCV Subroutine to grab one character from NC4000.
6

7 XMT Code word to transmit one character to NC4000.
8

9 RECEIVE Subroutine to receive one block of characters from
10 NC4000.

11

12 BLOCK-XMT Transmit one block of characters to NC4000.
13 DISK The disk service routine. The serial disk.

14

15

Scr # 6 B:NC4000.BLK
0 \S Chip 12dec85c!;t
1 NC The interface between NC4000 and PC through COMI1.

2 Initialize screen buffer pointers.

3 Begin

4 If a character is received from NC4000,

5 If the character is a NUL, do disk service.

o If the character is a CR, do End-of-Line service.
7 If it is a regular character, store it in screen
8 buffer and bump pointer.

9 Else

10 If a character is received from the keyboard,
11 If the character is a ESC, return to F83.

12 Else send it to NC4000.

13 Then

14 Then

15 Again

Figure 6.10. Terminal and Disk Server (cont’d)

126

6.11. Arcsine byInterpolation

There are many occasions in which you have toevaluate a rather complicated function which is not
very easy tocompute, particularly with a 16 bit integer machine or Forth. If high accuracy is not
required, it is very easy toget an answer byinterpolation among an array of known points. |
encountered a situation that | had tocompute arcsine function, converting sine and cosine values to
angles indegrees. | was allowed totrade accuracy for speed, because the angles are used only for
refreshing a numeric display for an operator to make sure that the system is functioning.

Interpolation is extremely simple in Forth using the ratio operator */, as shown in the source code in
Figure 6.11. The accuracy depends upon how large a data table is allowed for interpolation. In our
case, we used a 20 point table torepresent angles from 0 t090 degrees. It iseasy toextend this table
for more accurate interpolation.

In Figure 6.11, the arcsine table is defined as (ARCSIN). The entries in this table are inthe units of
0.1 mili-radians, from 0 toP1/2 (15708 as the last entry.) The input to the interpolation function
ARCSIN is the sine of an angle, multiplied bya scaling factor of 10000, and the output is anangle in
degrees multiplied bya scale factor of 100. The absolute value of sine isdivided by 500, 20th of the
range 10000, with both quotient and remainder retained. The quotient is used to retrieve a pair of
neighboring values inthe (ARCSIN) table and the remainder is used to compute the exact position
between these two neighboring points. The resulting angle inradian is then converted to degrees with
the sign restored.

This method can be used to approximate any complicated function which does not render itself easily
tointeger arithmetic. You only have to supply a table of function values. The size of the table can be
optimized according to the required accuracy of approximation. The computation involves only a
/MOD, a table look-up, and a */ . | used an extra */ to scale the output. It is very fast and does not
depend upon the complexity of the function.

(interpolation 1l6aug86cht)

CREATE (ARCSIN) (a table of function values)

o, 500 , 1002 , 1506 , 2014 , 2526 , 3046 , 3576 , 4116 ,
4668 , 5240 , 5824 , 6434 , 7076 , 7754 , 8480 ,

9272 , 10160 , 11198 , 12532 , 15708 ,

: ARCSIN (10000*SIN -- 100*ARCSIN)
DUP >R ABS
10000 MIN 500 /MOD (2*) (ARCSIN) + 2@ DUP >R -

500 */ R> + 9000 15708 */
R> 0< IF NEGATE THEN ;
: ANGLE (FRACTION BUCKET -- ANGLE*100)
10 - 1000 * + 10000 RADIUS @ */ ARCSIN ;

Figure 6.11. Source code of interpolation.

127

6.12. High Speed Pattern Generator

NC4000 is a very fast machine, capable of executing one instruction every clock cycle. During one
cycle, it can output one word to the B port, while doing several other tasks simultaneously. As
discussed in Section 6.7 on 1/0, you can program NC4000 to generate patterns at its clock rate, 4
MHz ormore. The problem is to provide data stream to the B port so that large amount of data can be
pumped out at this peak rate. To output data at the clock rate, data has to be pushed on the data stack,
because it takes one cycle topop a 16 bit number off the data stack and send it tothe B port. To
retrieve data from main memory and send out tothe B port, at least three machine cycles are needed-
-two cycles of memory fetch and one cycle for output.

The data stack is only 258 words deep, which is not enough tomake a usable pattern generator out
of NC4000. Extending the data stack using bank switching orby extending the width of the data
stack pointer to 16 bits, as | did in the design of the OF5493, does not solve the problem either
because it is still very difficult to access the data stack randomly to retrieve different patterns.

A pattern generator must have the following properties torender it practical:

. It must be fast. 4 MHz ismarginally acceptable. 2 or1 MHz is becoming less interesting.

. It must be able tohold long sequences of patterns. Number of words in a pattern could be in
the thousands ormore.

. Patterns must be selected easily. Looping and sequencing through a number of patterns

should be allowed.

Clearly, the B port in NC4000 does not meeting these criteria. Aninteresting alternative is using the
main memory to store the patterns and tooutput the patterns directly.

This type of pattern generator is very useful in wave synthesis, digital signature source for device
characterization. One particular application I had in mind is a microcode sequencer, which can be
programmed tooperate and test bit-slice microprocessor or microcontroller. In this application, a
conventional sequencer is expensive and also difficult toprogram. A sequencer built around
NC4000 would be easy to program because of the Forth underneath the system. Microcode can be
deposit into the main memory and clocked out tooperate the bit-slice machine. NC4000 is much
more powerful than a sequencer because it can do loops and subroutines, nested almost indefinitely-
-every capability of high level language programming.

For bit-slice applications, the 16 bit word size in NC4000 is a serious limiting factor, because the
sequencer generally requires many more bits tocontrol the bit-slice engine. The width of patterns
must be widened t032 bits or more. In this pattern generator, I implemented 32 bit pattern width. It
is easy to extend the width beyond 32 bits.

Using NC4000 torealize this pattern generator, you have to make use of two important features of
NC4000: one is that you can use the upper 32K word data space to store the patterns or microcode
and this data space can accommodate many 32K by16 bit memory banks to provide enough width
for desired microcode; and the other is that NC4000 can generate consecutive addresses at 4 Mhz
clock rate using the following instruction phrase:

128

nTIMES 1 @+

given an initial memory address inthe T register. One problem with @+ instruction is that the data
in that memory location will be fetched into the N register and the original content of N register will
be pushed on tothe external data stack. For all intentions and purposes, we should assume that the
data stack will be destroyed. Do not expect that anything you saved on the data stack can be retrieved
later. If you really wanted to use the stack topass parameters while generating patterns, you have to
clean up the stack by SWAP DROP or NIP. Then, you have to put them in a FOR-NEXT loop with
1@+, costing many more cycles to output one pattern data.

Another interesting feature is that the memory address can be incremented or decremented by any
integer from 1 to31. This is a convenient way todouble ortriple the frequency of the output pattern
or waveform. This is especially important in synthesizing musical notes, because once the
waveform is stored in the microcode memory, one will get all the overtones for free.

The circuit schematic is shown in Figure 6.12.

WED X2 AlS X1 WED AD-A14 CLE @xg
| ﬁdj @ I |

DIR G T |/CE RMW A0-Al4 CLK OC
. | /DE .
245 - 374
D0-D7 BI-BS Al-A3 D0-D7 ID-8D 1Q-8Q 00-07
[
DIR G | /CE R/W AD-Al4 CLK 0OC
' —|/DE '
245 55 374
D8-DI15 BI-BE Al-AZ D0-D7 ID-8D 1Q-8Q 08-015
—
DIR G /CE R/W AD-Al4 CLK 0OC
' /DE '
245 - 374
D0-D7 BI-BE Al-AZ D0-D7 ID-8D 1Q-8Q 016-023
—
DIR G /CE R/AW AD-Al4 CLK OC
' /DE '
245 SR 374
D8-D15 B1-BE Al-A8 D0-D7 frm— |D-5D 1Q-5Q m— 024-031

Figure 6.12. Schematic of the Pattern Generator.

The microcode memory consists of 4 uPD43256 32K by8 bit SRAM memory chips, divided into
two 32K by 16 bit banks. Address lines AO-14 from NC4000 drives the respective address pins on
these memory chips, and A15 is used toenable them. The data pins on these chips are connected to
the data lines DO-15 through four 74HCT245 bus drivers. The two banks of memory chips are
enabled together with their respective bus drivers byX1 and X2 line from NC4000. The microcode
data are latched and sent tothe external bit-slice engine through 4 74HCT374 latches which are
connected to the data buses from the memory chips. The latches are enabled by X3 from NC4000,
and clocked bythe master clock which provides timing signal to NC4000.

129

To use the microcode memory, it has to befilled with known patterns from NC4000 host. This is
done byfirst raising X1 alone and writing the top 16 bits of patterns into the first data memory bank.
Then X1 is cleared and X2 is raised. Now the lower 16 bits of patterns can be written into the second
bank of data memory. After microcode patterns are loaded into the data memory banks, the patterns
can be clocked out through the '374 latches byraising all three X port lines X1, X2, and X3.
Whenever NC4000 reads a memory location in the upper 32K data space, a 32 bit pattern stored in
the RAM chips is put on the data bus and latched into the '374's. Using the program shown in Figure
6.13, you can generate a ramp function on the 32 output lines. Youcan use a scope tosee that each
line is switching at a different frequency.

(PATTERN GENERATOR, 17JUL87CHT)

OCTAL
: SEL (n—-) 17 13 I! (disable x0)
12 I! (write n to x port) ;
: RAMP 100000 77777 FOR DUP DUP ! 1 + NEXT DROP ;
: 1TEST (addr # -- garbage) TIMES 1 @+ ;
: 2TEST (addr #--) FOR 1 C~+ SWAP DROP NEXT DROP ;
: 3TEST (addr # --) FOR 1 '+ [100020 ,] NEXT DROP ;
DECIMAL

Figure 6.13. Program to Control the Pattern Generator.

You might ask what happens on the data bus connecting tothe NC4000, where the four '245's are
also sending the 32 bit pattern tothe 16 bit data bus. Well, 1 was told that this is a big no-no,
because '245's are driving each other and eventually some weaker ones will be burnt out. So far, the
245's are working fine. It is probably better touse lines from the B port to enable the 32K RAM
chips and the '245's separately. This way when you are outputting patterns to the '374's, the '245's
can be disabled so that NC4000 data bus is isolated from the RAM data bus. You will then need 5 B
port lines for total control over this pattern generator: one for '374's, two for the RAM's, and two for
the '245's.

Some of the very elementary code to operate this pattern generator is shown in Figure 6.13. SEL
enables one ormore of the data bus drives and data latches. For example, 2 SEL enables writing the
RAM's in Bank 1, 4 SEL does that for Bank 2, and 14 SEL enables the RAM's and the output
latches sothat 32 bit patterns are generated and sent through the latches. RAMP writes a ramp
function into the enabled bank of RAM's for testing purposes. 1TEST is the program to send a
sequences of patterns out from a memory area, but the stack is trashed in the process. To maintain a
clean stack, 2TEST and 3TEST can beused. However, 2TEST and 3TEST takes longer to generate
patterns because of the necessary NIP stack operation.

130

A sample test sequence is:

OCTAL

2 SEL RAMP (initialize bank 1)

4 SEL RAMP (initialize bank 2)

16 SEL (enable RAM's and output latches) 100000
1000 1TEST

120000 7777 2TEST
160000 10000 3TEST

In conclusion, this pattern generator proves that NC4000 can be used to generate arbitrary digital
data patterns at its clock rate. It is very useful in generating digital signatures and analog wave
forms. Music synthesizer may be a good application. Programmable waveform generator is another.
Bit-slice sequencer based on NC4000 is much cheaper than the one based upon the conventional
sequencer design and much more versatile.

131

6.13. A/D Conversion with NC4000

| have always maintained that microprocessors are not computers. They are controllers. Among
controllers, NC4000 is the fastest. There are lots of tasks where information and control functions
are binary, like limit switches and power switches. However, real world information generally are
presented inanalog form. To obtain these information and respond to them bya microprocessor,
analog-to-digital (A/D) converters are needed to digitize the analog signal so that the information
can be stored and processed bythe microprocessor. It is much more fun to use the microprocessor
connecting to the real world then to do abstract computation and simulation on a real computer.

| had an opportunity to design a system which measures the phase difference between two audio
input channels such as ina stereo system. From the phase difference, one can infer the direction of
the sound source. This is interesting because, ina sense, it emulates the hearing system of a human
being. With two ears, we can quickly and accurately determine the direction of a sound source. | am
not sure how the ears do this trick, but something like a correlation analysis should suffice.

| tried two different A/D converters and used two different approaches to integrate the A/D
converters into an NC4000 system. The schematic diagrams of these two designs are shown in
Figures 6.14 and 6.15.

-15V
15V 5V

P4
T S0 AlAD
9 1 20 20 g1 BlAlZ
IN1 2 1 1 92 clALS
crig 12 13 s T a3
24 2 18 18 2 G1lALS
23 4 16 16 4
Datel ADC815 [73 [14 14] o4y |6 o gg{
5 21 5] M [z 12 3 =
6 20 11 9 9 11 Kot
7 19 13 7 7 13
10 18 15 5 5 15
11 17 17 3 3 17

14¢ 12 1n¢ 1n¢
15V
15V

TAA

9 1 ?zn ?20
Nz | 2 11| 1
13 19 19
CERl% 2 13 2 13
Datel ADC315 = 1 19 4]
22 6] 5 [18 6] g4q |14
5 21 8 12 8 12
3 20 11 9 1 9
7 19 13 7 13 7
10 13 15 5 15 5
11 17 17 3 17 3

g 'y Y
D0_ D2 D4 D6

DI D3 D5 D7

Figure 6.14. A/D Conversion with Datel ADC815.

132

Figure 6.14 shows two Datel ADC815 A/D converters hooked onto the memory bus of an NC4000
system. They are thus ‘'memory mapped' to two memory cells at 8000H and 8001H. The A/D is
only 8 bits wide, and the data is fed tothe lower 8 bits of the memory data bus through a pair of
7T4HCT?244's. The A/D chip needs a strobe pulse tostart a conversion cycle. This strobe is
provided bywriting a -1to the memory location 9001H, also through a 74HCT244. A 74HCT138
decodes the address lines and enables the '244's.

The code to control the A/D pair and grab a block of data from these A/D converters is shown in the
first screen inFigure 4.16. 120 pairs of data are collected on the data stack first and then stored into
twoarrays 1TEST and 2TEST. Data in the arrays are then analyzed todetermine the phase
difference. A variable DELAY controls the rate of sampling.

This design was implemented at the beginning of the project. At that time, I didn't want to use the
B port in NC4000 for the A/D converters, because | thought that the B port might be required to
service other devices. Asthe project progressed, it was clear that B port would not be used. The
Datel A/D converters were borrowed from another project for evaluation. Later we got our own
National ADC0820 converters, and | decided touse the B port to control the converters directly.
The final design of the A/D system, with a quad Op-Amp LM324 conditioning the input signals, is
shown in Figure 6.15.

A
Nt llyy VREF+ ;3
VCCH=
MODE
WEB 6| yis 2
5 s
—]/INT ADC DBlF—— Bl
—{/OVF 080 DBIfT——— B2
i e —
75 VREF- DB4f
= /cs DBS[s B5
7| /RD DB6[7 B6
GND pB7Ft—— B7
Y
A
1z L e VREF+ ég
vCCHs
MODE
Y Slwr)
5 i —
—{/INT 4DC pBiZ—— B9
—— JOVF 0820 DB2—— B10
. o —"
T3] VREF- DB4F
= /cs DBSHE—— B13
/RD DB§——— Bl4
10 7 Bis
GND DB7
Y

Figure 6.15. A/D Conversion with National ADC0820.

ADCO0820 converter is an 8 bit converter also. One is connected to BO-B7 and the other to B8-
B15. The B port write-enable line WEB is used to strobe both converters. This configuration

133

eliminates all the '244's and we have a much simpler and faster system.

The code to operate this A/D converter system is shown in the second screen in Figure 6.16. The
data from both converters are grabbed and stored directly into memory. The advantage is that more
data can be acquired for analysis if necessary and it is not limited bythe depth of the data stack. Since
the data from two converters are packed into 16 bit memory cells, they have to be separated and put
into two storage arrays.

The A/D converters used here are not the best devices to show off NC4000. Their conversion rate is
about 1 MHz, and NC4000 has to wait for the conversion to be completed before it can read the data.
Chuck Moore told me he used a video flash converter which is faster than NC4000 so that data is
available whenever NC4000 is ready. Nevertheless, both designs discussed here are adequate for
analyzing audio signals upto20 kHz as required bythe application.

(DATA ACQUISITION, 04JUN86CHT) HEX
A/D Read 120 pairs of data fros two AID converters and put
the date on the data stack.
DIGEST Retrieve AID data on stack and put the* back into the
1TEST and 2TEST arrays.

ACQUISITION Acquire data and process them to obtain 20 bucket
values in RESULTS array.

(DATA ACQUISITION, 04JUN86CHT) HEX
A/D 78 FOR -1 9041 ! DELAY 3 FOR NEXT
8000 @ 8001 @ NEXT ;
DIGEST 78 FOR FF AND 2TEST I + !
FF AND 1TEST I + ! NEXT ; DECIMAL
ACQUISITION A/D DIGEST 20-PASSES ;

(DATA ACQUISITION, IOAUGS86CHT

HEX
A/D (6E7 SAMPLES INTO 1TEST ARRAY)
0 1iEST 1 - (DATA ADDR) SAMPLES @
FOR 0 8 I! 1 (DELAY) @ FOR NEXT 1 '+ 8 Id

SWAP NEXT 2DROP ;
DIGEST SAMPLES @ 1 - FOR
1TEST I + DUP @ DUP >R FF AND SWAP !
R> 6 TIMES [8001 , (21) 1 FF AND 2TEST I + ! NEXT ;
DECIMAL
ACQUISITION A/D DIGEST 20-PASSES ;

Figure 6.16. NC4000 Code for A/D Conversion.

134

6.14. Fast Byte Flip

NC4000 is a word machine. It takes only two cycles tofetch a 16 bit word from memory, but it
takes 10 to 20 cycles toget a byte from memory, as shown inthe code of C@. This isclearly a
problem if you wanted touse NC4000 tostore and process large amount of data in bytes. How would
you like a way toswap the two bytes ina word real fast?

There is no free lunch. What you have to give up in this case is the B-port in NC4000 to implement
this fast byte swapping engine. B-port must be hardwired, connecting the upper byte with the lower
byte; i.e., BO-BS, B1-B9, ..., and B7-B15. When the upper byte in B-port is set for outputing and
the lower byte for inputing, the upper byte is flipped to the lower byte. If the I/0 assignment is
reversed, the lower byte will be flipped to the upper byte.

The code toflip bytes is shown in Figure 6.17.

The words HI>LO and LO>HI configure the data register, mask register and the direction register in
the B-port so that data can be sent out through half of the B-port and read back bythe other half. After
either is executed to set up the B-port, FLIP or FF can be executed to flip the bytes inthe T register.
FLIP first write the content of T to the B-port and then read the B-port back into T. It takes two
cycles toflip T. The word FF does this flipping inone cycle. It uses the special register exchange
instruction in NC4000, 1@!, which exchanges the T register with the data register in B-port. Because
the T to B-port action occurred before the B-port to T transfer, what you get back in the T register is
a byte flipped to the other side of the 16 bit word.

DECIMAL
: OUTPUT (n --, setup B-port to output n)
091!/ -110 1! 0 11 1! 8 1! ;

: HI>LO (configure B-port to copy upper byte to lower)
OUTPUT -256 10 I! 255 9 I! ;

: LO>HI (configure B-port to copy lower byte to upper)
OUTPUT 255 10 I! -256 9 I! ;

: FLIP (n -- n', flip a byte)
8 I! 8 I@ ;

OCTAL

: FF ((n -—- n' one cycle flip)
[157710 1 ; (8 1I@!)

DECIMAL

Figure 6.17. Byte Flipping.

135

6.15. More Vocabularies

In simplifying cmForth, Chuck Moore threw away the 8 way hashed vocabulary structure he
developed for polyForth. He retained only two vocabularies: FORTH and COMPILER. In doing so,
healso discovered that it was not necessary to make the compiler directives, such as IF, ELSE,
THEN, BEGIN, UNTIL, etc., immediate words. The immediate words must be executed even
during compilation. Since the new compiler incmForth first searches the COMPILER vocabulary
and executes any word it finds in this vocabulary, immediacy is implied and needs not tobe declared
explicitly. Eliminating the entire class of immediate words and the concept of immediacy is one of
the unique features in cmForth.

However, you are left with only two vocabularies, and the COMPILER vocabulary behaves quite
differently from the FORTH vocabulary because the words in COMPILER vocabulary cannot be
compiled naturally. It would be very nice if youcan build many more vocabularies for large
applications.

Let us first take a look at the bottom of the RAM memory and see how these memory words are
allocated in Figure 6.18, which is Screen 12 in the source code of cmForth. Chuck kindly left
the first 16 words free for us users. The system variables start at location 10H from PREV,
OLDEST and so on. He exhausted the 32 local memory words at C/B. The next two words at
20H were reserved for the interrupt vector. The following two words are used by the COMPILER
and FORTH vocabularies to store the link pointers pointing to the last words defined in these
vocabularies. This is the vocabulary link table. The last system variable is CONTEXT, which
contains a 1 if you are searching FORTH vocabulary, or a 2 if you are searching the COMPILER
vocabulary. If you reserve more cells below CONTEXT, they can be used to build new
vocabularies.

One problem is that INTERPRET and the compiler] knows only two vocabularies, FORTH and
COMPILER, and it uses their hash code 1 and 2 explicitly in doing the dictionary search. We
have to replace the phrase 1 -FIND in] by the phrase CONTEXT @ -FIND and the phrase 1-' in
INTERPRET by the phrase CONTEXT @ -' so that the context vocabulary can be searched. You
have to recompile cmForth with these code modifications and the extension of the vocabulary link
table.

The space below CONTEXT can be used to construct many vocabularies by storing
vocabulary link pointers. If we reserve 10 cells for this table, we will be able to declare 8
vocabularies in addition to FORTH and COMPILER. To build the fifth new
vocabulary, for example, we have to define the vocabulary similar to the definitions of FORTH and
COMPILER:

: APPLICATION 5 CONTEXT!;

and initialize the vocabulary pointer so that the new vocabulary will be appended to the current
FORTH vocabulary:

CONTEXT 1 - @ (pointer totop of FORTH vocabulary)

136

CONTEXT 5 - ! (make APPLICATION a branch on FORTH trunk)
After this, executing APPLICATION will cause this vocabulary to be searched before FORTH.

Rick Van Norman observed that the vocabulary link table does not have to be below CONTEXT. In
fact it can be defined as an array anywhere in the RAM memory. To switch context, you have to
store the offset of an entry in this table from CONTEXT into CONTEXT. Consequently, you do not
have to change the vocabulary structure incmForth. Only INTERPRET and] must be modified as
discussed above. VVocabulary link table can be built whenever it is needed at run time.

(RAM allocation) OCTAL
{ : ARRAY (n) CONSTANT 154462 USE ;

HEX 10 CONSTANT PREV (Last referenced buffer)
11 CONSTANT OLDEST (Oldest loaded buffer)
12 ARRAY BUFFERS (Block in each buffer) I
2 1 - CONSTANT NB (Number of buffers) T

{ 14 CONSTANT CYLINDER } 15 CONSTANT TIB

(Initialized)

16 CONSTANT SPAN 17 CONSTANT >IN { 18 CONSTANT BLK)
19 CONSTANT dA

1A CONSTANT ?CODE 1B CONSTANT CURSOR

{ 1C CONSTANT SO } 10 CONSTANT BASE IF CONSTANT H

1F CONSTANT C/B 24 CONSTANT CONTEXT

Figure 6.18. RAM Memory Allocation in cmForth

137

Appendix A. cmForth Sorce Listing

cmFoRTH is the version of Forth I (Chuck Moore) wrote and use. Novix
supported its development, and we have placed it in the public domain to
provide a good model for NC4016 Forths. It meets my goals, though I realize
it may not be preferred by everyone. However, since it can recompile itself,
I think it's a good starting point for anyone wishing to change it.

Each program block (1-30) has a shadow block of comments that explains what
the code does. It does not explain how it is done - read the code to
determine that.

cmFORTH does not conform to any standard. I will be noting the differences
against Brodie's Starting Forth. The most notable is the absense of DO. LOOP
and +LOOP. I presume FORTHkit builders will use FOR and NFXT

All the multiply code (* , */ , M*) presumes the top argument (multiplicand)
is even. This is a hug in the 4016. Try it. There is a software fix you can
add, but it is rarely needed. Most multiplies are even. The code for U*+ and
M* (block 9) can be changed (at a cost of 6 cycles):
U*+ (uru-1h) DUP -2 AND 4 T!
1 AND IF OVER + THEN 14 TIMES *' ; (25-26)
M* (nn - 1 h) DUP o< IF VNFGATE THFN 0 SWAP
DUP -2 AND 4 I! 1 AND IF OVER +
THEN 13 TTMFS *’ *- : (31-37)

The procedure for recompiling cmFOhTH is

1. Load compacting compiler- from block 1.

2. Edit changes in blocks 1-30.

3. Load block 3 to compile.

4. Type GO to test or Burn PROM from 2000, mapping 2000-200F to 1000-100F

and 2010-27FF to 0010-07FF

I suggest you compile relocated code as delivered, and compare the code
compiled with that in PROM. That is, compare 600 cells from 2025 with 0025.
This verifies your source. Then compile changed code and test it. That is,
type GO . This is typical of testing changes before burning PROMs.

Looking through the 175 words at the,back of Starting Forth, I note the
following exceptions in cmFORTH:

o Hardware addressing is by cells. Byte addresses are restricted to the
first 32K cells; even bytes are high.

o Hardware stacks are circular; stark overflow or underflow are neither
harmful, detected nor reset. ?STACK ‘'S SO are not defined.

. There are exactly two vocabularies, FORTH and COMPILFR. EDITOR . and
ASSEMBLER are not defined. COMPI1ER words are accessible only in definitions,
and are all immediate.

° 1 1+ 1- 2+ 2- are not defined. The compiler optimizes them.
° 2* and 2/ are COMPILER words only.

o type replaces COUNT TYPE and leaves an incremented address.

. PAGE >TYPF -TRAILING 0> C, IMMEDIATE FORGET CMOVE <CMOVF
o CONVERT PAD R# CURRENT are rot defined.

o DOES> 1is replaced by the phrase DOES R> 7FFF AND

138

o DUMP takes only an address, displays 8 cells and leaaves an
incremented address.

. #> acts differently.

o DO LOOP +LOOP /LOOP are replaced by FOR NFXT . Indexing is best
done with an address on the stack and @+ or '+

° J and I are not defined (stack indexing is expensive).

(] LEAVF 1is replaced by WHILE ... NFXT ... FISF R>.. THEN

. [COMPILE] is spelled \ for brevity.

° ?DUP 2DROP 2@ and 2! are the only double or mixed-length words.
o LIST COPY WIPE TFXT -TFXT will be defined with an editor.
REFFRENCES

Starting FORTH remains my choice for a Forth text:
Leo Brodie

Startin FORTH

Prentice Hall-1981

C. H. Ting has published an annotated listing of cmFORTH:

Footsteps in an Empty Valley. Contact:

Offete Enterprises, 1lnc.

156 14" Avenue

San Mateo, CA 94402

(650) 571-7639

He has also formed an NC4000 Users Group and publishes a substantial
newsletter: More on the NC4000 Volumes 1, 2, 3 , 4 and 5.

Here is summary of the words defined in cmForth. They are grouped in
categories with decreasing frequency of use. This sheet is still being edited

for completeness.

Application Words

+ - *x / Binary operators
< > = U<

AND OR XOR

M* /MOD

MOD MIN MAX VNEGATE

NEGATE ABS 2/MUD Unary operators
0< 0= NOT

*/ WITHIN Trinary operatorS

U*+ M/MOD M/ */MOD

DUP DROP SWAP OVFR Stack operators

2DUP 2DROP

DECIMAL HFX OCTAL Number base

. .R Terminal output

EMIT CR SPACEF SPACES

KEY EXPECT Terminal input
; CREATE Define

VARIABLE CONSTANT

ALLOT , Allot memory

HERE FILL ERASE

139

@ ! +!

ce c! 2@ 2!

@+ @- '+ I-

IF ELSE THFN EXIT
FOR I NEXT
BEGIN WHILE
REPEAT AGAIN
TIMES >R R>

UNTIL

NOP TWO CYCIES

Interpreter Words

(Comment

RESET REMEMBER EMPTY
LOAD THRU

INTERPRET QUIT
EXECUTE

DOES USE

LETTER WORD

-DIGIT NUMBER

- PREVIOUS USE

PREV OLDEST BUFFERS
BASE BLK ?CODE

CNT >TN dA C/R WIDTH

MSG CURSOR H CONTEXT

NC4000 Words

/r /rr * 7 * _ *F S’
D2* D2/

I@ 1! 1I@!

-M/MOD M*+

FormattinG Words

TYPE

HOLD DIGIT (.)
<# SIGN # #S
U.R U. DUMP
ABORT" ."

RX

Disk Words

BLOCK BUFFER UPDATE
FLUSH EMPTY-BUFFERS IDENTIFY
Compiler words

,C A \\

[] LITERAL

COMPILE \

SMUDGE RECURSIVE

-SHORT FIX -SHORT

Headless Words
abort" dot"
ADDRESS ABSENT UPDATED

ESTABLISH ## Dbuffer block

Memory access

Structure

Delay

Dictionary control
Interpret

Variables

Op codes
Internal access

Arithmetic

Terminal output

Terminal input

Terminal output
Buffer management

140

-LETTER 10*+

SAME HASH -FIND
ROM BAUD Reset
COUNT

OR,

Dubious Words
ROT

c@+

MOVE

OFFSFEFT

? @

interpreter

Compiler

(of doubtful value)
Rotate top of stack
Unpack 2 characters
Move words

Block offset

141

O ~J oUW

= O
(@)

11
12
13
14
15
16
17
19
19
20
21
22
23
24
25
26
27
23
29
30

FORTNkit:

(

1987 December)

Separated Heads)

cmFORTH) EMPTY
Optimizing compiler) OCTAL
(Defining Words) OCTAL
(Binary operators) OCTAL
Nucleus) OCTAL
Multiply, divide)
(Memory reference operators)
(Words)
(Ram allocation) OCTAL

(ASCII terminal: 4
Serial EXPECT)

(
(
(
(
(

(
(
(
(
(

(Compiler)

(

(
(
(
(

Numbers)
Strings)

HEX

X in. OX out)
HEX

15-bit buffer manager)
Disk rond/wrlte)

(Interpreter)
Dictionary search)

Number ir?,
Control)
Initializo)
Word s)

Compiler)

ut)

HE

OCTAL

ocC

HEX

X

TAL

Defining words) OCTAL
uCODF) OCTAL

Structures)
Strings)

HEX

OCTAL

HEX

142

1

cmFORTH shadow blocks (1987 December). Addresses are hex:
word timing in parentheses after ; (cycles)

3 LOAD compiles the compacting compiler (blocks 4-6). Block 6

exits in COMPILFR vocabulary, anticipating additions.

0< 1is redefined to resolve timing conflict.

END terminates a definition.

REMEMBER; saves vocabulary heads (at compile time).

FORTH puts following words in interpretive vocabulary.

-MOD provides modular arithmetic. It does a subtract if the
result is non-negative.

THRU loads a sequence of blocks.
EMPTY empties the dictionary except for compacting compiler.

2

H' holds the next available address in the target dictionary.
2000 relocates target addresses from RAM (2000) to PROM (0).

{ } switches between host and target dictionary by exchanging
pointers and relocation offsets.

COMPILER } compiles an indirect reference for a headless word.
FORGET smudges a word that cannot execute in target dictionary.
RECOVER recovers a return (after AGAIN)

SCAN finds the next word in target dictionary.
TRIM relocates the vocabulary link and erases the smudge bit.
CLIP constructs a target vocabulary and stores its head.

PRONE relinks the target dictionary to produce a stand-alone
application (fixing the end-of-vocabulary word)
and restores the host dictionary.

3

3 LOAD recompiles cmFORTH. EMPTY clears dictionary for a new
application.

2 LOAD compiles the target compiler.

Target 1s compiled at 2000 which is initialized to O.

BOOT copies PROM to RAM at power-up. The reference to -1
disables PROM and enables RAM (setting Al5 clocks 74).

Low RAM (16-24) is initialized (see block 12).

1s the bottom of the target dictionary. PRUNE changes its
name to null and link to 0. This version of EXIT marks the
end of both vocabulary chains.

The address of RESET is relocated into the end of BOOT

The end of target program is stored into TIB and HERE
COMPILER head is selected for PRUNE

GO emulates BOOT for testing: 3 LOAD GO

143

1

(FORTHkit 1987 December)

(Optimizing compiler) 4 LOAD 5 LOAD 6 LOAD

0< \ 0< \ NOP ;
END \ RECURSIVE POP DROP ;
REMEMBER; CONTEXT 2 - 2@ \ END ;

FORTH
-MOD (n n - n) 4 1! MOD' ; (3)
THRU (nn 1 OVER - FOR DUP LOAD 1 + NEXT DROP ;

EMPTY FORGET REMEMBER;

2
(Separated heads)
VARIABLE H' HEX 2000 , (relocation)
{ dA @ HERE H' 2 H ! da ! H' 2! ; =} {;
COMPILER : } H' @.A \\ PREVIOUS 8000 XOR SWAP ! { >

FORTH : forget SMUDGE ;
RECOVER -1 ALLOT ;

SCAN (a - a) @ BEGIN DUP 1 2000 WITHIN WHILE @ REPEAT ;
TRIM (a a - a) DUP PUSH dA @ - SWAP ! POP

DUP 1+ DUP @ DFFF AND OVER !

DUP @ 200 / F AND + DUP @ FF7F AND SWAP ! ;

CLIP (a) DUP BEGIN DUP SCAN DUP WHILE TRIM REPEAT
2025 XOR dA @ - SWAP ! @ , ;

PRUNE { CONTEXT 2 - DUP CLIP 1 + CLIP }

20 0 2025 2! EMPTY ;

3

(cmFORTH) EMPTY
(Target compiler) 2 LOAD
HEX 2000 800 O FILL 2000 H' !

BOOT } 16 FFF FOR 0 @+ 1 '+ NEXT -1 @ (reset) ;
.0, 0,0, 0,0,0,0,0, 0, 0, O(TIB ,
77¢co0 , 0, 0, O, O, O, 1FF (SO) , A (BASE) ,

0 (H) , DECIMAL 521 (C/B 5MHz 9600b/s) ,
{ : interrupt } POP DROP ; 0O, O, 1(CONTEXT) ,

(Nucleus) : # POP DROP ; 7 11 THRU

(Interpreter) 12 22 THRU

(Initialize) 23 24 THRU ‘' 'reset dA @ - HEX 2009 ! DECIMAL
(Compiler) 25 30 THRU } PRUNE

: GO FLUSH [HEX] 2015 4 1! 15 6EA FOR

4 I@! 1 @+ 4 1I@! 1 '+ NEXT 2009 PUSH ;

144

file://PREVIOUS

4

FORTH sets interpretive vocabulary for both searches and
definitions. Words are compiled in definitions.

COMPILER sets immediate vocabulary. Words are executed in

uCODE names a NC4016 micro-coded instruction. Compiled on use.

\ compiles a following compiler directive (that would normally

be executed). Named [COMPILE] in FORTH-83.

4016 instructions:
!- stores and decrements. I@! exchanges stack®ister.
NOP delays 1 cycle. TWO delays 2 cycles.
O+c Adds 0 with carry. MOD' conditionally subtracts R4.
N! stores and saves data. -1 fetches register 3

DUP? compacts preceding DUP with current instruction. Used
to redefine I! and PUSH (previously >R).

5

PACK sets the return bit, if an instruction does not reference
the Return stack. Otherwise it compiles a return. It exits
from EXIT with POP DROP

EXIT optimizes return if permitted (?CODF nonzero) :

For instructions (bit-15 = 1) it calls PACK except for jump
or 2-cycle instructions;
for calls to the same 4K page, it substitutes a jump.

; 1s redefined to use the new EXIT

CONSTANT 1is redefined to take advantage of the new EXIT for
5-bit literals.

6

BINARY defines and compacts ALU instructions. If the previous
instruction was a fetch (ALU code 7) and not a store or DROP
the ALU code is merged; stack push is inhibited. Otherwise
a new instruction is compiled. ?CODE holds address of
candidate for compaction.

SHIFT defines and compacts shift instructions. Shift left
(2*) and right (2/) may be merged with an arithmetic
instruction; sign propagate (0< } only with DUP

DROP OR XOR AND + - SWAP- are redefined.

2% 2/ 0< likewise.

145

(Optimizing compiler) OCTAL
: FORTH 1 CONTEXT ! ;
COMPILER 2 CONTEXT !
: uCODE (n) CREATE , DOES R> 77777 AND @ ,C ;
COMPILER : \ 2 —-' IF DROP ABORT" ?" THEN ,A ;
- 172700 SHORT ;
I@! 157700 SHORT

100000 uCODE NOP 140000 uCODE TWO
154600 uCODE O+c 102404 uCODE MOD'
177300 uCODE N! 147303 uCODE -1

FORTH : DUP? HERE 2 - @ 100120 = IF
HERE 1 - @ 7100 XOR -2 ALLOT ,C THEN ;
COMPILER : I! 157200 SHORT DUP? ;
PUSH 157201 C DUP? ;

5

(Defining Words) OCTAL
FORTH : PACK (a n- a) 160257 AND 140201 XOR IF

40 SWAP +! ELSE DROP 100040 , THEN POP DROP ;
COMPILER : EXIT ©2CODE @ DUP IF \\ DUP @ DUP 0< IF

DUP 170000 AND 100000 = IF PACK THEN
DUP 170300 AND 140300 = TIF PACK THEN
DUP 170000 AND 150000 = IF

DUP 170600 AND 150000 XOR IF PACK THEN THEN DROP
ELSE DUP HERE dA @ - XOR 170000 AND 0= IF
7777 AND 130000 XOR SWAP ! EXIT THEN DROP THEN
THEN DROP 100040 , ;
; \ RECURSIVE POP DROP \ EXIT ;
FORTH : CONSTANT (n) CREATE -1 ALLOT \ LITERAL \ EXIT ;

6

(Binary operators) OCTAL
: BINARY (n n) CREATE , , DOES POP 77777 AND 2@
?CODE @ DUP IF @ DUP 117100 AND 107100 =
OVER 177700 AND 157500 = OR IF (y -1!)
DUP 107020 - IF SWAP DROP XOR DUP 700 AND 200 = IF
500 XOR ELSE DUP 70000 AND 0= IF 20 XOR THEN THEN
?CODE @ ! EXIT THEN
THEN THEN DROP ,C DROP ;
SHIFT (n n) CREATE , , DOES POP 77777 AND 2@
?CODE @ ?DUP IF @ DUP 100000 AND = WHILE ?CODE @ +! EXIT THEN
DROP THEN 100000 XOR ,C ;
COMPILER 7100 107020 BINARY DROP

4100 103020 BINARY OR 2100 105020 BINARY XOR
6100 101020 BINARY AND 3100 104020 BINARY +
5100 106020 BINARY - 1100 102020 BINARY SWAP-

2 171003 SHIFT 2* 1 171003 SHIFT 2/ 3 177003 SHIFT 0<

146

file://DUP

7

ROT 1is a slow way to reference into the stack.

0= returns false (0) if stack non-zero; otherwise true (-1).

NOT same as 0=. FORTH-83 wants one's complement.

< > subtract and test sign bit. Range of difference limited
to 15 bits (-20000 is not less-than 20000).

= equality tested by XOR.

U< unsigned compare with 16-bit range (0 is less-than 40000).

{... } surround words defined into host dictionary. Used
during compilation, they will not be in target dictionary.
4016 instructions:

*" multiply step *- signed multiply step
D2* 32-bit left shift D2/ 32-bit right shift

/'’ divide step /'’ final divide step
F* fraction multiply S' square-root step

9

M/MOD 30-bit dividend; 15-bit divisor, quotient, remainder.
M/ signed dividend; 15-bit divisor, quotient.

VNEGATE negates both multiplier and multiplicand.

M* 32-bit signed product; multiplier (on top) must be even.

/MOD 15-bit dividend, divisor, quotient, remainder.
MOD 15-bit dividend, divisor, remainder.

U*+ 15-bit multiplier, multiplicand, addend: 30-bit product.
*/ signed multiplier, multiplicand, result: 15-bit divisor;
multiplier (in middle) must be even.
signed product; multiplier (on top) must be even.
/ signed dividend, quotient: 15-bit divisor.

147

Nucleus) OCTAL
ROT (nnn - nn n) PUSH SWAP POP SWAP ; (5)

0= (n - t) IF O EXIT THEN -1 ; (3)
NOT (n - t) 0= ; (4)
< (nn-1t) =-20<; (3)
> (nn - t) SWAP- 0< ; (3)
= (nn - t) XOR 0= ; (5)
U< (uu-t)y -2/ 0<; (3)
{ COMPILER
104411 uCODE *’ 102411 uCODE *-
100012 uCODE D2* 100011 uCODE D2/
102416 uCODE /' 102414 Ucode /'’
(102412 uCODE *F 102616 uCODE S'") FORTH }
8
9

(

Multiply, divide)
M/MOD (1 hu-gvr) 4 1I! D2* 13 TIMES /' /'’ ;
M/ (1 hu-qgr) OVER O< IF OUP PUSH + POP THEN
M/MOD DROP ; (27-30)
VNEGATE (v - v) NEGATE SWAP NEGATE SWAP ; (5)
M* ((nn - d) DUP 0< IF VNEGATE THEN O SWAP
4 I! 13 TIMES *’ *-= ; (26-31)

/MOD 1 uu - r q) 0 SWAP M/MOD SWAP ; (25)
MOD (u u - r) /MOD DROP ; (27)

U*+ (uru-1h) 4 1! 14 TIMES *' ; (20)
/ (nnu - n) PUSH M POP M/ : (64)

* (nn - n) 0 SWAP U*+ DROP ; (241

/ (nu - qd) PUSH DUP 0< ©POP M/ ; (35)

148

(

21)

10

2/MOD 16-bit unsigned dividend; 15-bit guotient, remainder.
\\ (break compaction) used to combine + 2/ ;

+! adds to memory.

Byte address is 2* cell address; high byte is byte 0. Range
restricted to low RAM (0-7FFF).

C! stores 8-bit data into byte address: other byte naffected.

CQ@ fetches 8-bits from byte address.

2@ fetches 2 16-bit numbers; lower address on top.
2! stores 2 16-bit numbers.

2DROP DROP DROP ; 1is faster and usually no longer.
MOVE the fastest move that does not stream to-from stack.
FILL fills RAM with constant.

11

EXECUTE executes code at an address by returning to it. CYCLES delays n+4
cycles - count 'em.

2DUP copies 32-bit (2 1lé6-bit) stack item.
?DUP copies stack if non-zero.

WITHIN returns true if number within low (inclusive) and high
(non-inclusive) limits; all numbers 16 bits or signed.

ABS returns positive number (15-bits).

\

MAX returns larger of pair; 15-bit range.

MIN returns smaller. Intertwining code saves 2 cells; left in
as illustration of obscure but efficient code.

12

ARRAY defines an array that adds an index from stack in only
2 cycles. Similar to VARIABLE

These low-RAM variables are used by cmFORTH (0-F are unused) .
Change them cautiously! In particular, make sure a variable
is not used during compilation. For example, HEX is
redefined to set BASE . It can be used if BASE has not
moved; otherwise it must be FORGETted.

Non-standard variables:

?CODE address of last instruction compiled. Zero indicates
no compaction permitted (ip, after THEN).

dA offset to be added to compiled addresses. Normally O.
Relocated code cannot be executed!

CURSOR tracks cursor (terminal dependent); used by EXPECT

SO serial output polarity: 1FF or 200.

C/B cycles/bit for serial I/0.

149

10

(Memory reference operators)

2/MOD (n - r g) DUP 1 AND SWAP O [\\] + 2/ ; (6)
+! (n a) 0 @+ PUSH + POP ! ; (9)
C! (n b) 2/MOD DUP PUSH @ SWAP IF -256 AND
ELSE 255 AND SWAP 6 TIMES 2* THEN XOR POP ! ; (20-29)
Ce (b - n) 2/MOD @ SWAP 1 - IF 6 TIMES 2/ THEN 255 AND ;
(10-20)
2 (a - d) 1 @+ @ SWAP ; (6)
: 20 (d u) 1 '+ ! ; (06)
{ OCTAL COMPILER : -ZERO 1 + \ BEGIN 130000 , ; FORTH 1}
: MOVE (s d n) PUSH 4 1! BEGIN -ZFRO
1 @+ 4 1@! 1 '+ 4 1a@! THEN NEXT DROP ; (7* 5+)
FILL (a n n) 4 1! FOR -ZERO 4 IQ@ SWAP 1 !+ THEN NEXT
DROP ; (5* 8+)
11
(Words)
EXECUTE (a) PUSH ; (3)
CYCLES (n) TIMES ; (4 n+)
?2DUP (n - n n. 0) OUP IF DUP EXIT THFN ; (4)
2DUP (d - d d) OVER OVER ; (3)
2DROP (d) DROP DROP ; (3)
WITHIN (n 1 h - t) OVER - PUSH - POP U< ;
ABS (n - u) DUP 0< IF NEGATE EXIT THEN ; (4)

MAX (nn - n) OVER OVER - O< IF BEGIN SWAP DROP ;
MIN (nn - n) OVER OVER - O< UNTIL THEN DROP ; (6)

12

(RAM allocation) OCTAL

{ : ARRAY (n) CONSTANT 154462 USE ;
HEX 10 CONSTANT PREV (Last referenced buffer)
11 CONSTANT OLDEST (Oldest loaded buffer)
12 ARRAY BUFFERS (Block in each buffer) I
N2 1 - CONSTANT NB (Number of buffers) T

{ 14 CONSTANT CYLINDER } 15 CONSTANT TTB

(Initialized)

16 CONSTANT SPAN 17 CONSTANT >IN { 18 CONSTANT BLK }
19 CONSTANT dA

1A CONSTANT ?CODE 1B CONSTANT CURSOR

{ 1C CONSTANT SO } 1D CONSTANT BASE 1E CONSTANT H

1F CONSTANT C/B 24 CONSTANT CONTEXT

150

13

EMIT sets Xmask to 1E so that only XO can be changed. Start/
stop bits are added and polarity set. I! emits bits at C/B
rate thru XO.

CR emits carriage-return and line-feed.

TYPF types a string with prefixed count byte. It returns an
incremented cell address. This is not FORTH-83 standard.

RX reads a bit from pin X4.

KEY reads 8-bits from X4. It waits for a start bit, then
delays until the middle of the first data bit. Each bit is
sampled then ored into bit 7 of the accumulated byte. It
does not exit until the stop bit (low) is detected.

14

SPACE emits a space.

SPACES emits n>0 spaces.

HOLD holds characters on the stack, maintaining a count.
It reverses the digits resulting from number conversion.

EXPECT accepts keystrokes and buffers them (at TIB). An 8
will discard a character and emit a backspace: a D will
emit a space and exit; all other keys are stored and echoed
until the count is exhausted. Actual count is in SPAN

15

DIGIT converts a digit (0-F) into an ASCII character.
<# starts conversion by tucking a count under the number.
#> ends conversion by emitting the string of digits.
SIGN stacks a minus sign, if needed.
converts the low-order digit of a 16-bit number.
#S converts non-zero digits, at least one.
(.) formats a signed number.
displays a 16-bit signed integer, followed by a space.
U.R displays a right-justified 16-bit unsigned number.
U. displays an unsigned number.
DUMP displays an address and 3 numbers from memory. It
returns an incremented address for a subsequent DUMP

151

13

(ASCII terminal: 4X in, OX out) HEX
: EMIT (n) 1E D I! 2% SO @ XOR
9 FOR DUP C I! 2/ C/B @ A - CYCLES NEXT DROP ;
CR D EMIT A EMIT ;
TYPE (a - a) 2* DUP C@ 1 - FOR 1 + DUP CQ@ EMIT NEXT
2 + 2/ ;

{ : RX (- n) } C IQ 10 AND ; (3)

: KEY (- n) O BEGIN RX 10 XOR UNTIL C/B @ DUP 2/ +
7 FOR 10 - CYCLES 2/ RX 2* 2* 2*x OR C/B @ NEXT
BEGIN RX UNTIL DROP ;

14

(Serial EXPECT) HEX
SPACE 20 EMIT ;
SPACES (n) 0 MAX FOR -ZERO SPACE THEN NEXT ;

HOLD (..# x n - ..# x) SWAP PUSH SWAP 1 + POP ;
EXPECT (a #) SWAP CURSOR !
1 - DUP FOR KEY DUP 8 XOR IF
DUP D XOR IF DUP CURSOR @ 1 '+ CURSOR ! EMIT
ELSE SPACE DROP POP - SPAN ! EXIT THFN
ELSE (8) DROP DUP I XOR [OVER] UNTIL
CURSOR @ 1 - CURSOR ! POP 2 + PUSH 8 EMIT

THEN NEXT 1 + SPAN ! ;

15
(Numbers)
DIGIT (n- n) DUP 9 > 7 AND + 48 + ;
<# (n - ..# n) -1 SWAP ;
#> (..# n) DROP FOR EMIT NFXT ;
SIGN (..# nn -..# n) 0< IF 45 HOLD THEN ;
(.. n -..# n) BASE @ /MOD SWAP DIGIT HOLD ;
#S (..# n - ..# 0) BEGIN # DUP O= UNTIL ;
(.) (n - ..# n) DUP PUSH ABS <# #S POP SIGN ;
(n) (.) #> SPACE ;

U.R (u n) POSH <# #S OVER POP SWAP- 1 - SPACES #> ;
U. (u) 0 U.R SPACE ;
DUMP (a - a) CR DUP 5 U.R SPACE 7 FOR

1 @+ SWAP 7 U.R NEXT SPACE ;

152

16

i v HERE returns next address in dictionary.

abort" types the current word (at HERE) and an error message
(at I) It also returns the current BLK to locate an
error during LOAD . It will end with QUIT , when defined.
It is a headless definition. referenced only bv ABORT"

dot" types a message whose address is pulled off the return
stack, incremented and replaced

ABORT" compiles abort" and the following string. This is a
host COMPILER definition. The target definition is in
block 30.

." compiles dot" and the following string.

17

PUFFERS returns indexed address of buffer ID. PRFV current buffer number

(0-NB) .

OLDEST last buffer read. Next buffer i s OLDEST @ 1 +

ADDRESS calculates a buffer address from buffer number. NB is
1. 1If increased. ADDRFSS and BUFFERS must be also.

ABSENT returns the block number when the requested block isn' t
already in RAM. Otherwise it returns the buffer address and
exits from BLOCK

UPDATED returns the buffer address and current block number if
the pending buffer has been UPDATEd . Otherwise it returns
the buffer address and exits from the calling routine
(BLOCK or BUFFER). Pending means oldest but not Just used.

UPDATE marks the current buffer (PRFV) to be rewritten. ESTABLISH stores
the block number of the current buffer.
IDENTIFY stores a block number into the current buffer.

Used to copy blocks.

18

emits 3 bytes to host to start a block transfer: 0 followed
by block number.

Buffer transmits an updated block and awaits acknowledgement.
BUFFER returns address of an empty (but assigned) buffer.

block reads a block.
BLOCK returns the buffer address of a specified block, writing and

reading as necessary.

FLUSH forces buffers to be written.
EMPTY-BUFFERS clears buffer ID’s, without writing.

153

16

(Strings) HEX
HERE (-a) H@;

{ : abort"™ } H @ TYPE SPACE POP 7FFF AND TYPE 2DROP

BLK @ ?DUP DROP O (QUIT) ;
{ : dot" } POP 7FFF AND TYPE PUSH ;

{ COMPILER : ABORT" COMPILE abort" 22 STRING ;
." COMPILE dot" 22 STRING ;
FORTH }

17

(15-bit buffer manager)
{ : ADDRESS (n - a) } 30 + 8 TIMES 2* ;
{ : ABSENT (n — n) } NB FOR DUP I BUFFERS @ XOR

2* WHILE
NEXT EXIT THEN POP PREV N! POP DROP SWAP DROP ADDRESS

{ : UPDATED (- a n) } OLDEST @ BEGIN 1 + NB AND

DUP PKEV @ XOR UNTIL OLDEST N! PRFV N!
DUP ADDRESS SWAP BUFFERS DUP d

8192 ROT ! DUP 0< NOT IF POP DROP DROP THEN ;

UPDATE PREV @ BUFFERS 0 @+ SWAP 32768 OR SWAP
{ : ESTABLISH (n a - a) } SWAP OLDEST @ PREV N!

BUFFERS !

IDENTIFY (n a - a) SWAP PREV @ BUFFERS

18

A

(Disk read/write) ~
{ + #% (an - a a #1 } 0 EMIT 256 /MOD EMIT EMIT

{ : buffer (n - a) } UPDATED
FOR 1 @+ SWAP EMIT NEXT KEY 2DROP ;
BUFFER (n - a) buffer ESTABLISH ;

{ : block (na - na) } OVER ## FOR KEY SWAP 1
NEXT DROP ;
BLOCK (n - a) ABSENT buffer block ESTABLISH ;

FLUSH NB FOR 8192 BUFFER DROP NEXT ;

EMPTY-BUFFERS PREV [NB 3 +] LITERAL O FILL FLUSH

154

!

DUP 1023

L+

’

Iz

’

’

19

LETTER moves a string of characters from cell address a to

byte address b . Terminated by count (#) or delimiter '
(register 6). Input pointer >IN is advanced.
-LFTTER scans the source string for a non-delimiter. If found,

calls LETTER

WORD locates text in either block buffer or TIB (BLK 1is 0)
Reads word into HERE prefixing count and suffixing a space
(in case count even).

20

SAME compares the string at HERE with a name field. Cell
count is in register 6. High bit of each cell is ignored.
Returns address of parameter field: requires indirect
reference if high bit of count set (separated head).

COUNT extracts the cell count from the first word of a string.

HASH returns the address of the head of a vocabulary.

-FIND searches a vocabulary for match with HERE . Fails with
zero link field.

21

-DIGIT converts an ASCII character to a digit (0-2Z).
Failure generates an error message.

C@+ increments address in register 6 and fetches character.

10*+ multiplies number by BASE and adds digit.

NUMBER converts given string to binary: stores BASE in R4:
saves minus sign: terminates on count; applies sign

155

19

(Interpreter 1

{ : LETTER (b a # - b a) } FOR DUP @ 6 I@ XOR WHILE
1 @+ PUSH OVFR C! 1 + POP NEXT EXIT THEN
>IN @ POP - >IN ! ;

{ : -LETTER (b a # - b a) } ?DUP IF
1 - FOR 1 @+ SWAP 6 IQ@ XOR 0= WHILE NEXT EXIT THEN
1 - POP LFTTFR THEN ;

WORD (n - a) PUSH H @ DUP 2* DUP 1 + DUP >IN (@

BLK @ TIF BLK @ BLOCK + 1024 ELSE TIB @ + SPAN @ THEN
>IN @ OVER >IN ! - POP 6 I!
-LETTER DROP 32 OVER C! SWAP- SWAP C! ;

20

(Dictionary search)
{ +: SAME (ha - ha f. a t) } OVER 4 TI! DUP 1 +
6 I@ FOR 1 @+ SWAP 4 I@ 1 @+ 4 T! - 2% IF
POP DROP 0 AND EXIT THEN
NEXT SWAP 1 + @ 0< IF @ THEN SWAP ;

{ : COUNT (n -n) } 7 TIMES 2/ 15 AND ;

{ «: HASH (n - a) } CONTEXT SWAP- ;

{ : -FIND (hn-h t. a f) } HASH OVER @ COUNT 6 I!
BEGIN @ DUP WHILE SAME UNTIL O EXIT THEN -1 XOR ;

21
(Number input) HEX
-DIGIT (n - n) 30 - DUP 9 > IF 7 - DUP A < OR THEN
DUP BASE @ U< IF EXIT THEN
2DROP ABORT" ?” ; RECOVER
{ +: Ce+ (- n) } 6 I@1 + DUP 6 I! cC@ ;

{: 10+ (un - u) } -DIGIT OE TIMES *’ DROP ;
NUMBER (a - n) BASE @ 4 I! 0 SWAP 2* DUP 1 + CQ 20 =
PUSH DUP 1 - 6 I! C@ I + 1 - FOR C@+ 10*+ NEXT
POP IF NEGATE THEN ;

156

22

-' searches vocabulary for following word.
returns address of following word in current vocabulary
Error message on failure. FORGET to use host version.

INTERPRET accepts block number and offset. Searches FORTH
and executes words found; otherwise converts to binary.

QUIT accepts a character string into the text input buffer,
interprets and replies ok to signify success; repeats.
The address of QUIT is relocated into the end of abort"

23

FORGET restores HERE and vocabulary heads to values saved at
compile time (by REMEMBFR; 1.

BPS awaits a start bit, assumes only the first data bit is
zero and computes C/B . Type a B or other even letter.

RS232 examines the serial input line and inverts serial I/0 if
an inverting buffer is used (line rests low).

Reset 1is executed at power-up or reset.
Carefully initializes I/0 registers to avoid glitches.
Empties buffers at power-up only (TIB contains garbage).
Calibrates serial i10.
Cheerful hi and awaits command.

24

This is the beginning of the compiler. A turn-key application
might need only the code above.

Common words are defined for both interpreter and compiler.

Number base words defined together: DECIMAL required.

LOAD saves current input pointers. Calls INTERPRET . restores
Input pointers and returns to DECIMAL . >IN and BLK are

Treated as a 32-bit pointer. FORGET so that host LOAD
Will be used.

157

22

(Control)
-V (n-h t. a f) 32 WORD SWAP -FIND ;
V(- a) CONTEXT @ -' IF DROP ABORT" ?" THEN ; forget

INTERPRET (n n) >IN 2! BEGIN 1 -' IF NUMBER
ELSE EXECUTE THEN AGAIN ; RECOVER
QUIT BEGIN CR TIB @ 64 EXPECT

0 0 INTERPRET ." ok" AGAIN ; RECOVER

‘'QUIT dA @ - ' abort™ 11 + !

23
(Initialize) HEX
FORGET (a) POP 7FFF AND DUP 2 + H ! 2@ CONTEXT 2 - 2!
1 CONTEXT ! ;

{ : BPS } 4 BEGIN RX 10 XOR UNTIL BEGIN 5 + RX UNTIL
2/ C/B !
{ : RS232 } RX IF EXIT THEN 200 so ! OB C I! ;

{ : reset } 0 (RESET)

0O DUP 9 TI! DUP A TI! DUP 0B I! DUP 8 1! -1 A TI!
DUP D TI! DUP E TI! F I! 1A C TI!

TIB 2@ XOR IF EMPTY-BUFFFRS SPAN @ TIB ! THEN
RS232 F E TI! BPS " hi"™ QUIT ;

24

(Words)

SWAP SWAP ; : OVER OVER ;

DUP DUP ; : DROP DROP ;

XOR XOR ; : AND AND ;

OR OR ;

+ 4+ ; HE

0< 0< ; : NEGATE NEGATE ;

@ @ ; ol

OCTAL 8 BASE ! ; forget

DECIMAL 10 BASE ! ; forget

HEX 16 BASE ! ; forget

LOAD (n) >N 2@ PUSH PUSH 0 INTERPRET 10 BASE !
POP POP >N 2! ; forget

158

25

\\ breaks code compaction.

ALLOT increments the dictionary pointer to allot memory.

, compiles a number into the dictionary.

,C compiles an instruction available for compaction.

;A compiles a address relocated by dA

LITERAL compiles a number as a short literal, if possible.

[stops compilation by popping the return stack, thus returning
out of the infinite] loop.

] unlike INTERPRET , searches both vocabularies before falling
into NUMBER . When a word is found in COMPILER it is
executed; 1f found in FORTH it is compiled. If it is a
single instruction, it is placed in-line; otherwise its
address is compiled for a call.

26

PREVIOUS returns the address and count of the name field of
the word just defined.

USE assigns to the previous word a specified code field.

DOES provides a behavior for a newly defined word. It is
executed when that word is defined.

SMUDGE smudges the name field to avoid recursion.

EXIT returns from a definition early (FORTH version).

COMPILE pops the address of the following word and compiles it.
7FFF AND masks the carry bit from the return stack.

EXIT compiles a return instruction (COMPILEP version).

RECURSIVE unsmudges the name field so a new word can be found.
terminates a definition. FORGET permits more definitions.

27

CREATE creates an entry in the dictionarv. It saves space for
the link field, then fetches a word terminated by space. It
links the word into the proper vocabulary, allots space for
the name field and compiles the return-next-address
instruction appropriate for a variable.

creates a definition: -1 ALLOT recovers the instruction
compiled by CREATE :] compiles the definition in its place.
FORGET permits more definitions.

CONSTANT names a number by compiling a literal.

VARIABLE 1initializes its variable to zero.

159

file://breaks

25

(Compiler) OCTAL
: \\ 0 ?CODE ! ;
ALLOT (n) H +! \\ ;

, (n)y H@Q@! 1H+!;
,C (n) HE@?CODE ! , ;
: A (a) da @ - ,C ;
COMPILER : LITERAL (n) DUP -40 AND IF 147500 ,C , EXTIT
THEN 157500 XOR ,C ;
[POP DROP ;
FORTH :] BEGIN 2 -' IF 1 -FIND IF ©NUMBER \ LITERAL
ELSE DUP @
DUP 140040 AND 140040 = OVER 170377 AND 140342 XOR AND
SWAP 170040 AND 100040 = OR 1IF @ 40 XOR ,C
ELSE ,A THEN THEN
ELSE EXECUTE THEN AGAIN ; RECOVER
26
(Compiler) HEX
PREVIOUS (- a n) CONTEXT @ HASH @ 1 + 0O @+ SWAP ;
USE (a) PREVIOUS COUNT + 1 + [I
DOES POP 7FFF AND USE ;
SMUDGE PREVIOUS 2000 XOR SWAP ! ;
EXIT POP DROP ;
: COMPILE POP 7FFF AND 1 @+ PUSH ,A ;
OCTAL
COMPILER : EXIT 100040 ,C ; HEX
RECURSIVE PREVIOUS DFFF AND SWAP ! ;
\ RECURSIVE POP DROP \ EXIT ; forget
27
(Defining words) OCTAL
FORTH : CREATE H @ 0 , 40 WORD CONTEXT @ HASH
2DUP @ SWAP 1 - ! SWAP @ COUNT 1 + ALLOT ! 147342

CREATE -1 ALLOT SMUDGE] ; forget

CONSTANT (n) CREATE -1 ALLOT \ LITERAL \ EXIT ;
VARIABLE CREATE 0 , ;

160

28

—-SHORT checks if last instruction was a 5-bit literal.

FIX merges 5-bit literal with new instruction.

SHORT requires 5-bit literal (register, address or increment)
for current instruction. Error message.

@ and ! compile 5-bit or stack address instructions.
I@ and I! compile 5-bit register instructions.
@+ and '+ compile 5-bit increment instructions.

PUSH and POP push and pop the return stack.
They are usually designated >R and R>

I copies the return stack onto the parameter stack.

TIMES pushes the return stack to repeat the next instruction for
n + 2 cycles.

29

OR, <compiles a 12-bit address with a backward jump instruction.
BFGIN saves HERE for backward jumps.

UNTIL compiles a conditional backward jump.

AGAIN compiles an unconditional backward jump.

THEN adds 12-bit current address into forward jump.

IF compiles a conditional forward jump.

WHILE compiles a conditional forward Jump - out of structure. ;
REPEAT resolves a BEGIN ... WHILE ... loop.

ELSE inserts false clause in an IF ... THEN conditional.

FOR compiles return stack push for a down-countinv loop.
NEXT compiles a backward decrement-and-jump.

30

STRING compiles a character string with a specified delimiter.

ABORT" DOT" are target versions of previously-defined host
words.

(skips over a comment. It must be defined in both FORTH and
COMPILER

RESET restores dictionary to power-up status. It must be the
last word in the dictionary. It is called by reset

Insert application code before this block, to avoid using these
Common target words. Alteratively, FORGET them.

161

28

(uCODE) OCTAL

-SHORT (- t) ?CODE @ @ 177700 AND 157500 XOR ;

FIX (n) ?CODE @ @ 77 AND OR ?CODE @ ! ;

SHORT (n) -SHORT IF DROP ABORT" n?" THEN FIX ;
COMPILER

@ -SHORT IF 167100 ,C ELSE 147100 FIX THEN ; forget
! -SHORT IF 177000 ,C ELSE 157000 FIX THEN ; forget
I@ 147300 SHORT ;
I! 157200 SHORT ;
@+ 164700 SHORT ;
'+ 174700 SHORT ;

R> 147321 ,C ;

POP 147321 ,C ; : PUSH 157201 ,C ;
I 147301 ,C ; : TIMES 157221 ,C ; forget
29

(Structures) OCTAL
FORTH { : OR, (nn) } \\ SWAP 7777 AND OR ,.;

COMPILER : BEGIN (- a) H @ \\ ;
UNTIL (a) 110000 OR, ;
AGAIN (a) 130000 OR, ;
THEN (a) \ BEGIN 7777 AND SWAP +! ;
IF (- a) \ BEGIN 110000 , ;

WHILE (a- a a) \ IF SWAP ;
REPEAT (a a) \ AGAIN \ THEN ;
ELSE (a - a) \ BEGIN 130000 , SWAP \ THEN ;

FOR (- a) \ PUSH \ BEGIN ;
NEXT (a) 120000 OR, ;

30

(Strings) HEX
FORTH : STRING (n) WORD @ 7 TIMES 2/ 1 + ALLOT ;

COMPILER : ABORT" COMPILE abort" 22 STRING ;
" COMPILE dot" 22 STRING ;
(29 WORD DROP ;
FORTH : (\ (;

RESET FORGET O ; RECOVER ' RESET dA @ - ' reset !

162

Appendix B. Glossary of cmFORTH

a: address b: byte d: double integer f:flag n: integer t: true flag u: unsigned integer #: count
Identifier nnX (nn screen number, X type code) C: target compiler F: FORTH I: COMPILER
H: hidden V: variable

! na- 24F Store n to memory at address a.

! - 28l Compile optimized store code.

I+ n- 28I Compile increment store code.

- n- 28I Compile decrement store code.

- 3C Alias for end-of-line EXIT.

LHEN- L # N 15F Convert one digit from n and add it to output string.

an-aa# 18H Send serial disk read command to host computer.

#> L H#n- 15F Output number string to terminal.

#S LH#N-L#0 15F Convert n and add digits to the output string.

' -a 22F Search dictionary for next word. Return code
address.

@) n-..# 15F Convert n to an ASCII output string on stack.

* nin2-r 9F Signed multiply of n1 and n2.

*! - 71 Compile multiply step code.

*- - 71 Compile signed multiply step code.

*/ nin2u-r 9F Ratio of n1xn2/u.

*/MOD ulu2ud3-rq 9F ul*u2/u3. Return remainder and quotient.

*F - 71 Compile fraction multiply step.

+ - 6C Optimizing + code compiler.

+ nln2-n3 24F Add top two stack items.

+1 na- 10F Add n to memory at address a.

, n- 25F Compile n to top of dictionary.

A a- 25F Compile address a to dictionary.

,C n- 25F Compile n as a machine code.

- - 6C Optimizing - code compiler.

- nln2-n3 24F Subtract top from second stack item.

- -at,paf 22F Search dictionary for next word. Return false if
found.

-1 - 4C Compile -1 code.

-DIGIT b-n 21F Convert character b to a digit.

-FIND ala2n-al 20H Search dictionary for word at al with hash code n.

t,a2 f

-LETTER ala2#-a2a4 19H Copy cell string at al to byte string at a2.

-M/MOD du-qr 9F Divide d by u, and return remainder and quotient.

-SHORT -f 28F Return true if last compiled code has literal field.

. n- 15F Free format display of top stack item.

- 16F Print the following text.

/ nu-q 9F Divide by unsigned integer.

I - 71 Compile divide step code.

I - 71 Compile last divide step code.

163

file://SWAP

/MOD
0+c

10*+

>IN

>R

?
?CODE
?DUP
@

@

@+
@DROP
ABORT"
ABS
ABSENT
ADDRESS
AGAIN
ALLOT
AND
AND
ARRAY
BASE
BAUD
BEGIN
BINARY
BLK
BLOCK

ulu2-rq

-u2

o c S5 S5
o P
1 O =h =h

n - rem quot
a-d
a-a+llh
d-

d-dd

9F
4C
1C
6C
24F
7F
21H
10F
6C
6C
8F
10F
10F
10F
11F
27F
5C
26l
7F
15F
7F
7F
12V
28l
15F
12V
11F
24F
28l
28l
4C
16F
11F
17H
17H
29
25F
6C
24F
12H
12V
23H
29
6C
12V
18F

Unsigned divide. Return remainder and quotient.
Compile carry adjust code.

Fixed up 0< for prototype NC4000.
Optimizing 0< code compiler.

Return true if top stack item is negative.
Return true if top stack item is zero.
Accumulate a digit b to product ul.

Store double integer to a.

Optimizing left shift code comiler.

Optimizing right shift code compiler.

Divide n by 2 and return remainder and quotient.
Fetch double integer at a.

Increment a and return its contents in two bytes.
Discard top two stack items.

Duplicate top two stack items.

Start a new colon definition.

Optimizing ; compiler.

Terminate a colon definition.

Return true if second item is less than top.
Start a number output string.

Return true if top two items are equal.

Return true if second item is greater than top.
Pointer to input stream for text interpreter.
Compile >R code to retrieve from return stack.
Display contents of memory a.

Pointer to address of code just compiled.
Duplicate n if it is not zero.

Fetch contents of memory at address a.
Compile smart fetch code.

Compile increment fetch code.

Compile AROP code.

Abort to text interpreter with an output message.
Return absolute value of top stack item.

Return buffer address a if block n is in a buffer.
Return buffer address of the nth disk block.
Compile an unconditional branch to address a.
Allocate n cells in the dictionary.

Optimizing AND code compiler.

AND top two stack items.

Create a new array.

Number base for numeric 1/0 conversion.

Wait a B from terminal and determine the baud rate.

Starting point of a indefinite loop.

Defining word for optimizing ALU code compilers.

Contains the block number under interpretation.
Read a block from host. Return buffer address a.

164

BUFFER n-a 18F Get a disk buffer for block n. Return buffer address.

BUFFERS -a 12H Array of block numbers of blocks in the disk buffers.
Cl! ba- 10F Store byte b to byte address a.

C/B -a 12v Machine cycles per bit for serial terminal.
Ca a-b 10F Fetch a byte from byte address a.

CLIP a- 2C Relink the target vocabulary starting from a.
CNT -a 12V Count of characters received from terminal.
COMPILE - 26F Compile next address to dictionary.
COMPILER - 4C Switch context to COMPILER vocabulary.
CONSTANT - 27F Create a new constant.

CONTEXT -a 12V Context vocabulary hash code.

COUNT nl-n2 26H Extract length from first cell in the name field.
CR - 13F Output a carriage return and a line feed.
CREATE - 27F Create a new definitions.

CURSOR -a 12V Pointer to the input character just received.
CYCLES n- 11F Run n empty for-next cycles.

D2* - 71 Compile double integer left shift code.

D2/ - 71 Compile double integer right shift code.
DECIMAL - 23F Set base to 10 for decimal 1/O.

DIGIT n-b 15F Convert n to a digit b.

DOES - 26F Define an inner interpreter.

DROP n- 24F Discard top item on stack.

DUMP a-at8 15F Display 8 consecutive cells from address a.
DUP n-nn 24F Duplicate top stack item.

DUP? - 4C Pack previous DUP into current code if possible.
ELSE al - a2 291 Start a false clause in a branch structure.
EMIT b - 13F Send one byte to terminal.

EMPTY - 1C Starting point of a dictionary overlay.
EMPTY- - 18F Erase all the buffer pointers to empty buffers.
BUFFERS

ERASE an- 10F Zero n cells starting from a.

ESTABLISH na-a 17H Identify oldest buffer with block n.
EXECUTE a- 11F Call subroutine at address a.

EXIT - 5C Optimizing EXIT compiler.

EXIT - 26F Return to the calling routine.

EXIT - 261 Compiler of EXIT machine code.

EXPECT an- 14F Input a text string of n cells to address a.
FILL a#n- 10F Fill # cells of memory at a with n.

FIX n- 28F Insert 5 bit literal n into last compiled code.
FLUSH - 18F Write all updated buffer back to the host.
FOR -a 291 Start a definite loop.

FORTH - 4C Switch context to FORTH vocabulary.

H -a 12V Pointer to top of dictionary.

H' -a 2C Pointer to top of target dictionary.

HASH n-a 20H From hash code n return vocabulary link address a.
HERE -a 14F Return first free address on top of dictionary.

165

HEX
HOLD

I

I

I

@

l@!

|@!
IDENTIFY
IF
INTERPRET

KEY
LETTER
LITERAL
LOAD
M*

M*+

M/
M/MOD

MAX
MD
MIN
MOD
MOVE
MSG

N!

NB
NEGATE
NEXT
NOP
NOT
NUMBER
OCTAL
OFFSET
OLDEST
OR

OR

OR,
OVER

PACK
PREV
PREVIOUS
PRUNE

alazn-a3ad
n_

n-

nin2-d
ulOu2-d
du-q
udu-qr

nln2 - max
nln2 - min
ulu2-r
ala2n-

nln2-n3
an-
nln2-nln2
nl

an-a

-a

-an

24F
14F
281
4C
281
28I
8C
28I
17F
291
22F

13F
19H
251
24F
9F
9F
9F
8F

11F
8C
11F
9F
10F
12V
4C
12F
24F
29
4C
7F
21F
24F
12V
12v
6C
24F
29H
24F

5C
12v
26F
2C

Change number base to 16.

Add byte b to the number output string on stack.
Compile I code to copy from return stack.
Compile an optimized register store code.
Compile internal register store code.

Compile internal register fetch code.

Compile optimized register exchange code.
Compile registe exchange code.

Identify PREV buffer with block n.

Start a conditional branch structure.

With BLK and >IN on stack, interpret text in input
buffer.

Get one byte from terminal.

Copy cell string al to byte string at a2.
Compile n as a literal to dictionary.

Interpret text in block n.

Multiply n1 by n2 and return double integer product.
Unsigned multiply of ul by u2.

Divide d by u, and return quotient only.
Unsigned divide of ud by u. Return remainder and
quotient.

Return the greater of n1 and n2.

Compile multiplier/divisor register code.
Return the smaller of n1 and n2.

Unsigned divide. Return remainder only.
Move n+1 cells from al to a2-n.

Pointer to the terminal input buffer.

Compile local memory store code.

Number of disk buffers less 1.

Negate top stack item.

Terminate a definite loop.

Compile NOP code.

Return true if top stack item is false.

Convert string at a to a number.

Change number base to 8.

Offset for disk block 0.

Pointer to oldest disk buffer.

Optimizing OR code compiler.

OR top two stack items.

OR address a to branch code n and compile it.
Copy second item on stack.

Compile return code or pack return bit to last code.
Pointer to last referenced disk buffer.

Return name field address and first cell in name field.
Relink the target vocabulary.

166

QUIT

R>
R>DROP
RAM
RECOVER
RECURSIVE
REMEMBER
REPEAT
RESET
ROM

ROT

RX

g
SAME
SCAN
SHIFT
SHORT
SIGN
SMUDGE
SPACE
SPACES
SR
SWAP
SWAP-
SWAP-
DROP
THEN
THRU
TIMES
TRIM
TWO
TYPE

U*+
U.
U.R
U<

UNTIL
UPDATE
UPDATED
USE
VARIABLE
VARIABLE

al a2 -

-a
nln2n3-n2
n3 nl

-n

ala2-a3a4f
al-a2

n_

n_
LHNn-L#

n-

nln2-n2nl

a_
nln2 -

ala2-a3
al-a2
ulru2-d
u_

un -

ulu2-f

a_

20F
28l
4C
2C
2C
261
1C
291
23F
23H
7F

13F
7C
20H
2C
6C
28F
15F
26F
14F
14F
8C
24F
6C
4C

291
1C
28l
2C
4C
13F

8F
15F
15F

291
17F
17H
26F
2C
27F

The text interpreter.

Compile R> code to move to return stack.
Compile R>DROP code.

Pointer to the top of RAM area for new variables.
Recover one cell from compiled definition.
Unsmudge the last definition.

Create a wall for dictionary overlay.

Resolve the BEGIN-WHILE-REPEAT structure.
Initialize the Forth system.

Array containing initial values of variables.
Rotate third stack item to top.

Get one bit from terminal.

Compile square-root step code.

Search string at al through dictionary starting a2.
Find the next host definition in linked chain.
Defining word for optimizing shift code compilers.
Insert literal n into the last literal code.

Add - sign to output string if n is negative.

Set smudge bit in the last definition.

Output a space.

Output n spaces.

Compile square-root register code.

Exchange top two stack items.

Optimizing SWAP- code compiler.

Compile NIP code.

Resovle conditional branching address.

Load blocks from n1 to n2 inclusive.

Compile TIMES code for one instruction loop.
Relink the target and host vocabulary.

Compile two cycle Nop.

Output a stored string at al. Return a2 after the
string.

Multiply ul by u2 and add the product to r.
Display unsigned integer u in free format.
Display unsigned integer u right justified in n
columns.

Return true if second is less than top in unsigned
comparison.

Compile a conditional branch to address a.
Update the buffer pointed to by PREV.

Return block number and address of oldest buffer.
Install inner interpreter a to last definition.
Defining word for variables in target system.
Create a new variable.

167

VNEGATE nin2-n3n4 9F Negate top two stack items.

WHILE al-a2al 291 Compile branch code in an indefinite loop.
WIDTH -a 12v Cell size of name field.

WITHIN nih-f 11F Return true if n is between | and h.

WORD n-a 19F Parse next word and move it to word buffer at a.
XOR - 6C Optimizing XOR code compiler.

XOR nln2-n3 24F Exclusive OR of top two stack items.

[- 25l Stop compiling and start interpreting.

] - 25F Begin the compiler loop.

abort" -n0 16H Runtime routine of ABORT".

begin -a 29H Mark current address for branching.

block na-na 18H Read a block from host and store it at address a.
buffer n-a 18H Return the buffer address of block n.

dA -a 12v Memory address offset for target compiler.

dot” - 16H Runtime routine of .".

uCODE n- 4C Defining word to create machine code compilers.
{ - 2C Exchange pointers to Forth and target dictionaries.
} - 2C Exchange pointers to Forth and target dictionaries.
} - 2C Compile target dictionary address to host definition.

168

H#
#>

#S

%

()

(D
(ARCSIN)

*

*

)
*F
*TESTS

A
,C

2

A

AD

RS

S

/

m

P
/MOD
ITESTS

2CODE
2DUP
@-

@

@+

[

\

\

62, 103
43
62,98
98

43

72

77

73

72

29

73
119
127
40,96
66

96

66

96
113
89

89

89

73

75
119
114
118
118
66

96
40,96
66
113
101
67

62

43
62,97
43,98
88

93

89

169

+ N .

+1
+TESTS
<#

2DUP
2DUP-alu-op
A/D conversion
A/D

Abort”
ABORT”

ABS

ABSENT
ACQUISITION
ADC0820
ADC815
ADDRESS
AEM

AGAIN

Alpha Board
Alphabetic boards
AlLUcode
ALUinstructions
ALU model
Alu-op

AND
APPLICATION
ARCSIN
Arcsine
Arithmetic Logic Unit
ARRAY

106
107
83
103
63
113
72
62
62
67
42
44,62,1035
62
96
71
103
103
63
63
63
38
132
134
74
74
63
76
134
133
132
75

94

45

45

27
26,30
34

38
62,103
136
127
127
18

92

BASE
Benchmarks

Beta Board
Binary ALUgroup
BINARY

BLK

block

BLOCK
BLOCK-XMT
BOOT

B-port

BPS

buffer

BUFFER
BUFFERS

Byte flip

Cl!

C.

C/B

c@

Ca+

CE

CIsC

CLIP

cmForth

coM1
COMPILE
Compiler loop
Compiler vocabulary
COMPILER
CONSTANT
CONTEXT
Control structures
Convert digits to number
Convert number to ASCII
COUNT

CPU section

CR

CREATE

CS

CURSOR
CYCLES
CYLINDER

D?

D2*

D2/

67

112
45,47

38

102

67

78

78

125
84,109
12,20,33
86

77

78

67

135

64

114

67

64

71

52

3,4

108

61

124
74,91
87

99
87,99,136
92
68,136
93

70

72

90

49

70

91

52

67

83

67
19,29,35
44,96,104
44,96,104

170

dA

Data and return stack
Data paths and registers
Data stack code
DECIMAL
Decoding memory
Defining words
Delta Board
Dictionary search
DIGEST

-DIGIT

DIGIT

Disk buffer manager
Disk read and write
Disk server

DISK

Display internal registers
DOES

DO-LOOP

dot”

DROP

DROP-DUP

DUMP

DUP group

DUP

DUP?

ELSE

EMIT

EMPTY
EMPTY-BUFFERS
Encoding

END

EOL

ESTABLISH
EXECUTE

EXIT

EXPECT

External data paths
F83 Forth

FAST
FAST-DEMO

FF

FILL

-FIND

FIX

FLIP

67
11,17,53
27

28

83

60

a
46,47
80
134
71

72

75

77
124
125
119
90

18

75
35,62,103
35
73,115
37
37,62
104
95

68
105
78

23
105
125
77

83
90,91,100
69

7

124
121
121
135
65

82

97
135

FLUSH

FOR

Forget
FORGET
FOR-NEXT
FORTH
ForthKit
Gamma Board
GO

H

HASH

HERE

HEX

HI>LO

HOLD

Host dictionary
I

I!

I/0 and memory instructions
1/0 instructions
1/0 ports

1/0 registers

@

|@!

IDENTIFY

IF

Input and output
INPUT
Instruction formats
Instruction Set of NC4000
INT

Internal registers
Interpolation
INTERPRET
Interpreter
Interrupt Vector
interrupt

Kernel

KEY

LETTER
-LETTER

Line editor
LINE

LIST
LITERAL
LO>HI

78

95

107

87

18
99,136
46

45

111
67,106
82

70

83

135

72

108

97
98,104
31

31
20,50
33

98

98

77

94

120
120

25

22

50
1633119
127

84

83

68
85,109
61

68

79

79

116
116
116

89

135

171

LOAD

LOOPTEST

M*

M/

M/MOD

Machine cycles

Main memory

Mask

MAX

MD register

Memory accessing words
Memory decoding
Memory dump
Memory instructions
Memory map
Merging of DUP
Message output

MIN

-MOD

MOD

Model of NC4000 ALU
MOVE

Multiply and divide
Multiply/divide group
N register

N!

NB

NC

NC4000 architecture
NC4000 assembler
NC4000 Chip
NC4000 instruction set
NC4000 memory map
NEGATE

NEXT

NIP

NOP

NOP

Novix, Inc.

Number conversion
NUMBER

O+c

OCTAL

OE

OF5138

OF5493

83
113
66

66

65
113
11,51
33

63
28,41
63

52
75,115
31

11
104
74

63
106
66,96

64
65
39
28
96
67
125
14
95

11
62
95
37
37
62,96
46
70
71
96
83
52
56
58

OLDEST
Optimizing compiler
OR

OR,

OUTPUT

OVER
OVER-SWAP- alu-op
PACK

Parsing of words
Pattern generator
PICK

Pin layout

POP

Power up and reset
PREV

PREVIOUS
Primitive Forth words
Program sequencer
Programming Tips
PROM

PRUNE

PUSH

QUIT

R@

R>

RAM memory allocation
RAM

RAMP

RCV

RECEIVE
RECOVER
RECURSIVE
REMEMBER
REPEAT

reset

RESET

RISC instruction set
RISC Panacea
RISC

ROLL

ROM

ROT

RS232

RST

RX

g

67

99
62,103
94
120,135
35,62
38
100
79
128
122

8

96

84

67

90
61,68
16
112
51
109
96,104
84

42
42,96
137
51
130
125
125
107
91
105
95

85

87

5

2

2,5
122
o1

62

86

50

68
40,96

172

SA

SAME

SCAN

SEL

Serial disk

Shift code

Shift compiler
SHIFT

SHORT
-SHORT

SIGN

Silicon Composers
SL

Smart ; compiler

Smart ALU function compiler

SMUDGE

SO

SPACE
SPACES

SPAN

SQRT
Square-root

SR register

SR

Stack pictures
SWAP group
SWAP

SWAP
SWAP-OVER-alu-op
System timing
System variables
T register

Target compile
Target compiler
Target dictionary
Terminal input and output
Terminal server
-TESTS

Text interpreter
THEN

Thread Table
THRU

TIB

TIMES

Timing diagrams
TN

24,31,35
81

108

130

75

29

103

103

97

97

73

47
19,29,35
100

101

90

67

70

70

67

123

123
33,41
19,29,35
118

35

103
35,62

38

13

67

28

109

104

106

68

124

113

79

94

68

105

67
17,43,97
14
24,28,35

TRIM
Tristate
TWO

TYPE

U*+

U.

UR

U<

uCODE
UNTIL
UPDATE
UPDATED
USE

Utility compiler
VARIABLE
Variables in target dictionary
VNEGATE
Vocabularies
von Neumann machine
WEB

WED

WER

WES
WHILE
WITHIN
WORD
WORDS
WORDS

X!

X@

X0

X1

X2

X4

XMT

XOR

X-port

Y

Y-port
-ZERO

108

33

96

69

65

73

73

62

96

94

77

76

90

105

92

107

66

136

4
9,12,50
9
9,12,50
9,12,50
95

63

80

113
114

20

20

51

129
129

51

12
62,103
12,20,33
25,27,31
28

64

173

TRIM
Tristate
TWO

TYPE

U*+

U.

UR

U<

uCODE
UNTIL
UPDATE
UPDATED
USE

Utility compiler
VARIABLE
Variables in target dictionary
VNEGATE
Vocabularies
von Neumann machine
WEB

WED

WER

WES
WHILE
WITHIN
WORD
WORDS
WORDS

X!

X@

X0

X1

X2

X4

XMT

XOR

X-port

Y

Y-port
-ZERO

108

33

96

69

65

73

73

62

96

94

77

76

90

105

92

107

66

136

4
9,12,50
9
9,12,50
9,12,50
95

63

80

113
114

20

20

51

129
129

51

12
62,103
12,20,33
25,27,31
28

64

174

	Preface to the Third Edition
	Forward to the First Edition
	My Electronic Bookshelf
	PDF Books
	eForth Implementations
	VHDL Forth Chip Designs

	Contents
	Figures
	Tables
	Chapter1. Introduction
	1.1. Historical Background
	1.2. The RISC Panacea

	Chapter 2. The NC4000 Chip
	2.1. Features of NC4000 Chip
	2.2. External Data Paths
	2.2.1. Main Memory
	2.2.2. Data Stack and Return Stack.
	2.2.3. B-Port and X-Port
	2.2.4. System Timing and Control

	2.3. NC4000 Architecture
	2.3.1. Internal Registers
	2.3.2. Program Sequencer
	2.3.3. Data Stack and Return Stack
	2.3.4. Arithmetic Logic Unit (ALU)
	2.3.5. The I/O Ports

	Chapter 3. Instruction Set of NC4000
	3.1. Classification of NC4000 Instructions
	3.2. ALU Instructions
	3.3. I/O and Memory Instructions
	3.4. Graphic Models of Some NC4000 Instructions
	3.4.1. Model of NC4000 ALU
	3.4.2. The SWAP Group Instructions
	3.4.3. The DUP Group
	3.4.4. The Binary ALU Group
	3.4.5. The Multiply/Divide Group
	3.4.6. Miscellaneous Instructions

	Chapter 4. NC4000 Computers
	4.1. Commercial Products Using NC4000 Chip
	4.1.1. Early Alphabetic Boards
	4.1.2. ForthKits from Computer Cowboys
	4.1.3. Products from Novix, Inc.
	4.1.4. Products from Silicon Composers
	4.1.5. Other Companies and Products
	4.1.6. List of Manufacturers

	4.2. Build Your Own NC4000 Computer
	4.2.1. The CPU Section
	4.2.2. I/O Ports
	4.2.3. Main Memory
	4.2.4. Data Stack and Return Stack

	4.3. Circuit Board for NC4000 Computer
	4.4. Hardware Enhancements
	4.4.1. PAL Memory Decoder OF5138
	4.4.2. Stack Expansion Counter OF5493
	4.4.3. Another Novel Memory Decoding Technique

	Chapter 5. The cmForth Operating System
	5.1. The Kernel
	5.1.1. The Primitive Forth Words
	5.1.2. Memory Accessing Words
	5.1.3. Multiply and Divide

	5.2. System Variables
	5.3. Terminal Input and Output
	5.3.1. Primitive Input and Output Words
	5.3.2. Line Input and Output Words

	5.4. Number Conversion
	5.4.1. Convert Digits to Binary Number
	5.4.2. Convert Binary Number to ASCII String
	5.4.3. Memory Dump
	5.4.4. Message Output

	5.5. Serial Disk
	5.5.1. Disk Buffer Manager
	5.5.2. Disk Read and Write

	5.6. Text Interpreter
	5.6.1. Parsing of Words
	5.6.2. Dictionary Search
	5.6.3. The Text Interpreter
	5.6.4. Power Up-and Reset

	5.7. Compiler
	5.7.1. Compiler Loop
	5.7.2. Defining Words
	5.7.3. Control Structures
	5.7.4. NC4000 Assembler
	5.7.5. Compiler Vocabulary

	5.8. Optimizing Compiler
	5.8.1. Smart ; Compiler
	5.8.2. Smart ALU Function Compiler
	5.8.3. Shift Compiler
	5.8.4. Merging of DUP

	5.9. The Target Compiler
	5.9.1. Utility Compiler
	5.9.2. Target Dictionary
	5.9.3. Variables in Target System
	5.9.4. Separate Target and Host Dictionary
	5.9.5. Target Compiler in Action

	Chapter 6. Programming Tips
	6.1. Benchmarks
	6.2. WORDS--Listing the Vocabulary
	6.3. Memory Dump
	6.4. Line Editor
	6.5. Stack Pictures
	6.6. Display Internal Registers
	6.7. Input and Output
	6.8. PICK and ROLL
	6.9. Square-Root
	6.10. Terminal and Disk Server on IBM-PC
	6.11. Arcsine by Interpolation
	6.12. High Speed Pattern Generator
	6.13. A/D Conversion with NC4000
	6.14. Fast Byte Flip
	6.15. More Vocabularies

	Appendix A. cmForth Sorce Listing
	Appendix B. Glossary of cmFORTH
	Index

