
Footsteps in an Empty Valley

NC4000 Single Chip Forth Engine

Dr. Chen-Hanson Ting

Fourth Edition

Offete Enterprises, Inc.

2017

i

Preface to the Third Edition

Dr. Glenn Haydon, one of the developers of the WISC (Writable Instruction Set Computer) Forth

engine, often made the remark that it was unfortunate that Chuck Moore built the NC4000 chip and

cast Forth into silicon. He lost the freedom to change his mind, as he often did. Indeed, it was very

difficult to make any change in NC4000. Novix had not been able to fix the bugs in the NC4000

prototype chip, or to bring out the NC6000/5000 with enhanced features, even with the infusion of

large amount of venture capital after its incorporation. After two years since NC4000P was released, it

is still the only chip available from Novix.

Although Chuck Moore could not do much on NC4000, he is not standing still either. He talked about

the 32 bit 'Buffalo Chip' on several occasions, although it is not clear how much has been committed to

its design and construction. He also kept on revising the Forth kit and the cmForth system. The latest

version was released in December 1987. He sent me a copy of the new cmForth to be published in More

on NC4000 and allowed me to use it in the third edition of this book.

It is a pleasure to go through the new cmForth and compare it line by line with the old version. Chuck

made many changes, polishing the code in more than one way. Many definitions are refined. Many

names are changed. The style and code layout are also much improved for readability. Shadow

screens are included to provide functional description for every word defined. He managed to shave off

15 lines of code and save a whole screen. He also put shades at the right and bottom edges of the text

blocks, making them rise above the page. It is rather pleasing to the eyes.

His persistent obsession in pursuing the simplest expression to be shared by NC4000 and its users is

always fascinating to me. He must have felt the enormous responsibility of a system programmer and

a language designer, in that every instruction he deleted and every cycle he saved will be multiplied by

the billions in memory and times saved by the users. The old Chinese master ought to have made this

observation when he declared: "For knowledge, add a little everyday. For wisdom (Tao), erase a little

everyday". The Tao of Forth is not something vague and ethereal. It is embodied in cmForth for us to

see, to feel, to study, and to meditate on, if we cared.

In this edition I tried to include information and developments on NC4000 over the last two years. Many

new sections are added based on my papers appeared in More on NC4000. However, the major focus of

this book is still Chuck Moore's cmForth. Observing Chuck's programming style and how he

constructs large structures from the components is the best way to gain maturity in Forth

programming. Simplicity manifests itself in correctness, flexibility, capability, and productivity.

In last year (1987), we saw several Forth engines: the 32 bit Forth chip from the Applied Physics

Laboratory in John Hopkins University, both a 16 bit and a 32 bit WISC engine from WISC

Technology, and the ,16 bit FORCE chip set from Harris Semiconductor. We can expect

more entries into this field which will generate more interests and excitement in the coming

years. Finally, we start to see blossoms from the seeds Chuck Moore planted two

decades ago.

A NC4000 Users Group was formed in the San Francisco Bay Area in 1986. The Silicon Valley

ii

Chapter of the Forth Interest Group hosts the NC4000 Users Group Meeting once every three

months, on the forth Saturdays in January, April, July, and October. The discussions in

these meetings are always lively and somet imes provocat ive . For members

outside of the Bay Area, a newsletter More on NC4000 helps the circulation of technical

information about NC4000 and related products. Volume 7 of More on NC4000 was just released.

We hope that it will provide timely and useful exchange of ideas and techniques among the users.

Chen-Hanson Ting

San Ma teo, California

March 1988

iii

Forward to the First Edition

Footsteps in an empty valley is a Chinese ideographic phrase with very deep poetic connotation. It is

used to describe the emotional feeling when one is, about to meet a long missed friend as his footsteps

are nearing. The picturesque setting is an empty, desolated valley this person had chosen to retire. He

has as his companions the trees and the flowers, a small flowing brook perhaps, and wild lives off

the woods--the best mother nature has to offer--except for trusted friends whose friendships he had to

sever as the price of his retirement.

One day he was awakened amidst all, the familiar sounds of his environ--whispering of the trees,

splashing of water, and soft songs of the birds--by the footsteps of someone he dearly missed all these

years. Who would travel this far to this distant valley to visit, but the most intimate and the most trusted

of friends?

Living in this Silicon Valley full of people, money, energy, activity, and ideas; we've seen now things

invented and new products introduced with rapid pace. Some are successful. Most do not see the light

of day. Even the most successful fade in a couple of years. Amongst the high pitched, loud sounding

hype, there is always this silent loneliness deep down inside. Which voice shall we heed? What

direction are we heading? Where is the best and the truest to be found?

We have witnessed hosts of microprocessors and microcomputers marching from cradle to grave,

right before our eyes. Languages and operating systems come and go. Even in Forth, which I use to

code for a living and write about to entertain, we've seen good work done and disappear, come and go.

Have we the source code. It would be especially helpful to the user when the stack picture got fuzzy

and the logic seemed tied in knots. At the very least, the user will have another point of view to explore

Chuck's ideas besides reading the source code itself.

The NC4000 is truly a milestone in computer technology-- more so than the much touted RISC

computer. The Berkeley RISC machine was essentially a rediscovery of the original Von Neumann's

ENIAC design. The only addition was the overlapping registers used to facilitate parameter passing

between procedures. NC4000 is much more sophisticated than the RISC machine in its dual stack

architecture, single cycle subroutine call and return, and the externally microcoded instruction set. To

take advantage of the unique architecture of NC4000 and to make the best use of its powerful

instruction set, the user needs a firm grasp on the inner mechanism of this chip. A systematic

exposition of this chip is therefore necessary to bring all the information about this chip into sharp

focus. Some knowledge about the hardware structure in this chip is mandatory in order to understand

the software system embedded in cmForth; although lacking this knowledge would not prevent the

user from programming this chip in the normal Forth style. A long section in this book is devoted to the

chip itself to provide background information on the chip.

The NC4000 chip does not work by itself. You have to connect it to some RAM and ROM memory to

build a computer. Circuit schematics are provided for such a computer so that the user can build it

with minimal parts and labor, and be productive in a short time. Many programming tips and tutorial

examples are also included. Nevertheless, the richest source of coding examples are in the cmForth

source code itself, where the user can find practical solutions to a broad spectrum of problems an

iv

operating system has to solve. There is much we can learn from Chuck Moore both in terms of

programming techniques and programming style.

I didn't really have much time to explore all aspects this computer and the NC4000 chip. This manual

represents the scope of my understanding at this moment. As time passes, I
-
dill

make additions and

updates and hope that you will keep me informed of your opinions and suggestions. If the chip is to be

successful, it needs the entire Forth community to support it by providing viable applications and

services to users not fluent in the language. If it is successful, we will ride on its coattails for a long,

long while.

It is superfluous to acknowledge Chuck Moore, because the acknowledgement is implicit every time

I utter ‘Forth’. However, his personal help in bringing up our first NC4000 system and providing it

with cmForth greatly accelerated our pace in making this information available to Forth users. Dr.

George A. Nicol and Mr. Scott Reinhart of the Software Composers were very helpful in providing

information on their SC1000 computer which also uses NC4000 as its CPU. Mr. John Peters and Dr.

and Mrs. Albert Ting read the manuscript and made numerous corrections and suggestions.

My best wishes to you and to your NC4000.

Chen-Hanson Ting

San Mateo, California

March 1986

v

My Electronic Bookshelf

A couple of years ago, I closed my website www.offete.com and stopped distributing my

publications on-line. Nevertheless, these publications still exist on my electronic bookshelf. If

you need any of them, please send me a request at chenhting@yahoo.com.tw, I will sent it in a

return email, and also bill you by a PayPal invoice. I know, we are in the 21
st
 century now. You

cannot do anything without a website. But, at least I got rid of lots of paper, and the snail mail.

Juergen Pintaske twisted my arm to get Footsteps in an Empty Valley updated from a printed

copy, which was edited on an old word processor TMaker on a CP/M machine and printed with a

Diablo daisy wheel printer. Files got lost with the CP/M machine. I had to scan all the pages and

used OCR to recover the text. The hardest part was Chuck Moore’s source code of cmForth,

which he printed on an Epson dot matrix printer with a worn ribbon. Lots of the dots disappeared

through copying processes. I tried my best to bring back the code, but couldn’t be entirely sure. I

hope nobody will use the code for any purpose other than reading.

Well. Let me know if you have any question.

Chen-Hanson Ting,

San Mateo, California

February, 2017

PDF Books

After I learnt a Forth system, I always tried to document it so I could teach other people how to

use it. So I wrote about polyForth, figForth, F83, F-PC, and cmForth. When Win32Forth came

along, I gave up, because it was too large and too complicated. I then focused on developing

eForth for microcontrollers. After retirement, I cleaned out the books off my shelves. People still

asked for them, so I converted some to pdf files. Here is the list of available titles:

4001 Footsteps in an Empty Valley, 4th Ed., $15

Description of the first Forth chip NC4000 from Novix, and Chuck Moore’s cmForth for it.

cmForth was the simplest and most compact specification of a real Forth system for a real Forth

computer. It contains a complete Forth system with a target compiler, an optimizing assembler,

and a serial disk driver. Required reading for all Forth programmers.

1010 Systems Guide to figForth, 3rd Ed. $15

The most authoritative treatise on how's and why's of the figForth Model developed by Bill

Ragsdale. Internal structure of the figForth system. Very detailed discussions on the inner

interpreters and the outer (text) interpreter of Forth.

1003 Inside F83, $15

Everything you want to know about the Perry-Laxen F83 system but afraid to ask. 288 packed

pages divided into 4 parts: Tutorial on F83 system, Kernel, Utility, and Tools. It is based on 8086

http://www.offete.com/
mailto:chenhting@yahoo.com.tw

vi

F83 Version 2.1 for the IBM-PC, but useful as a reference manual for all other (8080 and 68000)

F83 systems.

1008 F-PC Technical Reference Manual, $15

Narration on all words in the kernel and tools of F-PC, a practically useful Forth system for

applications on PC. Functional description of the utilities and applications. Valuable guide to F-

PC internals and assembly coding on segmented 80386 architecture.

1013 .eForth and Zen, 3rd Ed. $15

Complete description and exposition of the eForth Model: kernel, high level words, interpreters,

compiler and utilities. Comparison of Forth and Zen, their similarities in simplicity and

understanding. It is update based on 32-Bit 586 eForth v5.2 for Visual Studio Community 2015.

It is in an assembly file as a C++ console project. It uses indirect thread model so that new colon

words can be added to the .data segment. It is optimized with 71 code words and 110 colon

words.

1015 Firmware Engineering Workshop, $15

A tutorial in 4 parts for building firmware for embedded systems, based on enhanced eForth.

Hands-on experiments using CT100 Lab Board with 8051. 8086 eForth 2.02 and 8051 eForth

2.03 are included with the original eForth 1.01 Models for 8086 and 8051.

eForth Implementations

I had always looked for low-cost microcontroller kits to teach people Forth. Over the years, these

kits were getting cheaper and more powerful, and I ported eForth to a lots of them. I had lots of

fun with them, and I enjoyed seeing others having fun (and making useful products) as well.

eForth captures the essence of Forth, as an universal programming language for small, embedded

systems. These eForth implementations are distributed with source code and substantial

documentation.

2152 ADuC ARM7 eForth, $25

eForth for ADuC7020 MicroConverters from Analog Devices. It is written in ARM7 assembler

on a Keil IDE. It uses the ARM7 link register for threading, and is fully optimized to make the

best use of ARM7 core and analog peripherals integrated in this true microcontroller.

2153 SAM7 ARM7 eForth, $25

eForth for AT91SAM7X256 microcontroller from Atmel. It is in ARM7 assembler on Keil

uVision3 RealView IDE. It uses the DBGU serial port to interact with user. Olimex's SAM7-

EX256 Board has a very interest color LCD module. This eForth has graphic primitives to drive

the LCD display.

2154 cEF Version 1.0, $25

cEF is a Forth implementation based on eForth Model, and compiled by gcc compiler in Cygwin

on a PC. The underlying Virtual Forth Machine has the standard 33 machine instructions defined

in the original eForth Model. It is target to microprocessor without floating point coprocessor,

and uses only integer arithmetic operations.

vii

2155 cEF Version 2.0, $25

cEF is a Forth implementation based on eForth Model, and compiled by gcc compiler in Cygwin.

The Virtual Forth Machine has 64 machine instructions. Multiplication and division are

implemented using double arithmetic floating operations. It is highly optimized to take

advantages of recent microprocessors with floating point coprocessors.

2157 eForth for STM8S,$25

STM8S is an 8 bit microcontroller from STMicroelectronics. ST is distributing a STM8S-

Discovery Board for less than $10. It is an excellent kit to learn microcontroller programming.

Now, a good Forth experimental kit is available for high school students.

2159 328eForth for Arduino Uno, $25

This is a very efficient implementation of eForth for ATmega328P microcontroller used on

Arduino Uno Kit. It is using Subroutine Thread Model. It uses tools in NRWW memory to

compile new words in main RWW flash memory. It allows you to build turnkey systems for

commercial applications. It requires a flash programming tool.

2162 ceForth_328 for Arduino Uno, $25

This is an Arduino sketch which can be compiled and uploaded by Arduino IDE. The Forth

Virtual Machine is coded in C, and the Forth dictionary is imported as a data array. The Forth

dictionary can be extended into the RAM memory, so you can add new commands to this system.

The dictionary is produced by a metacompiler running under F#. The source code of the

metacompiler is included for you to enhance this system.

2164 430eForth for TI LaunchPad, $25

This is a Forth system for the MSP430G2553 microcontroller used on the LaunchPad from TI. It

is a 16-bit Forth implementation to be assembler by the Code Composer Studio 5.2. It makes the

best used of the 16 KB of flash memory, leaving about 10 KB for your applications.

2165 STM32eForth720 for STM32 F4 Discovery, $25

This eForth is for STM32F407 chip on STM32 F4 Discovery Kit from STMicroelectronics. This

chip has 1 MB flash memory, 192 KB of RAM, and a ton of interesting IO devices. STM32 is no

longer an ARM7 chip, but a THUMB2 chip. STMeForth720 is optimized for the new

environment.

2166 430eForth v4.3 for TI LaunchPad, $25

This is a Forth system optimized for the MSP430G2553 microcontroller used on the LaunchPad

from TI. It is changed from a subroutine threaded model to a direct threaded model, faster and

more compact.

2167 8086 eForth Version 2.03, , $25

Enhanced 32-bit eForth for 80586 running under Visual Studio Community 2015. It is assembled

by MASM buried under C++ as a console project. Now you can evaluate the eForth model

conveniently in latest Windows environment.

file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html
file:///J:/Yahoo%20SiteBuilder/sites/offete/430eForth.html

viii

2171 32-Bit 586eForth v.5.2 for Visual Studio, $25

It is a assembly file in a C++ console project on Visual Studio Community 2015. It requires

library files supplied by Kip Irvine for Windows services. It uses indirect thread model so that

new colon words can be added to the data segment. It is optimized with 71 code words and 110

colon words. Now you can test drive eForth on newer Windows PC.

2172 espForth for ESP866 Chip, $25

ESP8266 is a 32-bit microcontroller with integrated WiFi antenna and software drivers. Arduino

IDE can compile and upload applications to it. espForth is an Arduino sketch which allows Forth

commands to be sent to ESP8266 remotely as UDP packets. IoT for fun!

VHDL Forth Chip Designs

I had used VHDL to design Forth processors and tested them on FPGA’s. They included a 16-bit

processor eP16 and a 32-bit processor eP32. I ported eForth to these chips for design verification.

In 2016, we ran a CPU Design Workshop in Silicon Valley Forth Interest Group, and I used

designs of Intel 8080 and DEC PDP1 as exercises. It was interesting that eForth was used here as

test benches, which were much more difficult to design than CPU themselves.

2163 eP16 in VHDL for LatticeXP2 Brevia Kit, $25

eP16 is a 16 bit microcontroller. It was implemented on LatticeXP2 Brevia Development Kit

with LatticeXP2-5E FPGA. It included a CPU module, a UART module and a GPIO module. An

eForth metacompiler producing eForth RAM image is included with all source code.

2158 eP32 in VHDL for LatticeXP2 Brevia Kit, $25

eP32 is a 32 bit microcontroller. It was implemented on LatticeXP2 Brevia Development Kit

with LatticeXP2-5E FPGA. It includes a CPU module, a UART module and a GPIO module. An

eForth metacompiler producing eForth RAM image. It is the best Forth engine design on the

cheapest FPGA kit. All VHDL files and eForth files are included.

2169 80eForth202 for eP8080 Chip, $25

eP8080 was a CPU model used in SVFIG FPGA Design Workshop. It recreated an i8080 chip in

FPGA. 80eForth202 was the Forth system embedded in VHDL for design verification and to

help debugging the chip. The eForth RAM image was derived from 86eForth v2.2 and

Z80eForth by Ken Chen, assembled with MASM.

2170 PDP1eForth for ePDP1 Chip, $25

ePDP1 was another CPU model used in SVFIG FPGA Design Workshop. It recreated a PDP1

chip in FPGA. PDP1eForth was the Forth system embedded in VHDL for design verification and

to help debugging the chip. It was derived from eP16, and used a metacompiler in F# to create

eForth dictionary to initialize RAM memory.

ix

Contents

Preface for the Third Edition i

Forward for the First Edition iii

My Electronic Bookshelf v

Contents ix

Figures xii

Tables xiv

Chapter 1 Introduction 1

1.1 Historical background 1

1.2 RISC Panacea 2

Chapter2. The NC4000 Chip 7

2.1 Features of NC4000 chip 7

2.2 External data paths 7

2.2.1 Main memory 11

2.2.2 Data stack and return stack 11

2.2.3 B-port and X-port 12

2.2.4 System timing and control 13

2.3 NC4000 architecture 14

2.3.1 The internal registers 14

2.3.2 Program sequencer 16

2.3.3 Data stack and return Stack 17

2.3.4 Arithmetic Logic Unit (ALU) 18

2.3.5 The I/0 ports 20

Chapter 3 The Instruction Set of NC4000 22

3.1 Classification of NC4000 instructions 23

3.2 ALU instructions 26

3.3 I/0 and memory instructions 31

3 .4 Graphic models of some NC4000 instructions 33

3.4.1 Model of NC4000 ALU 34

3.4.2 The SWAP group 35

3.4.3 The DUP group 37

3.4.4 The binary ALU group 38

3.4.5 The multiply/divide group 39

3.4.6 Miscellaneous instructions 42

Chapter 4 NC4000 Computers 45

4.1 Commercial products using NC4000 chip 45

4.1.1 The early alphabetic boards 45

4.1.2 The Forthkits from Computer Cowboys 46

4.1.3 Products from Novix, Inc. 46

4.1.4 Products from Silicon Composers 47

4.1.5 Other companies and products 47

x

4.1.6 List of manufacturers 48

4.2 Build your own NC4000 computer 48

4.2.1 The CPU section 49

4.2.2 I/0 ports 50

4.2.3 Main memory 51

4.2.4 Data stack and return stack 53

4.3 Circuit boards for NC4000 computer 54

4.4 Hardware enhancements 55

4.4.1 PAL memory decoder OF5138 55

4.4.2 Stack expansion counter OF5493 57

4.4.3 Another novel memory decoding technique 58

Chapter 5 The cmForth Operating System 61

5.1 The kernel 61

5.1.1 The primitive Forth words 61

5.1.2 Memory accessing words 63

5.1.3 Multiply and divide 65

5.2 System variables 67

5.3 Terminal input and output 68

5.3.1 Primitive input and output words 68

5.3.2 Line input and output words 69

5.4 Number conversion 70

5.4.1 Convert digits to binary number 70

5.4.2 Convert binary number to ASCII string 72

5.4.3 Memory dump 73

5.4.4 Message output 74

5.5 Serial disk 75

5.5.1 Disk buffer manager 75

5.5.2 Disk read and write 77

5.6 The text interpreter 79

5.6.1 Parsing of words 79

5.6.2 Dictionary search 80

5.6.3 The interpreter 83

5.6.4 Power up and reset 84

5.7 Compiler 87

5.7.1 Compiler loop 87

5.7.2 Defining words 91

5.7.3 Control structures 93

5.7.4 NC4000 assembler 95

5.7.5 Compiler vocabulary 99

5.8 Optimizing compiler 99

5.8.1 Smart ; compiler 100

5.8.2 Smart ALU function compiler 101

5.8.3 Shift compiler 103

5.8.4 Merging of DUP 104

5.9 The target compiler 104

xi

5.9.1 Utility compiler 105

5.9.2 Target dictionary 106

5.9.3 Variables in target dictionary 107

5.9.4 Separate target and host dictionary 108

5.9.5 Target compiler in action 109

Chapter 6. Programming Tips 112

6.1 Benchmarks 112

6.2 WORDS—listing the vocabulary 113

6.3 Memory dump 115

6.4 Line editor 116

6.5 Stack pictures 118

6.6 Display internal registers 119

6.7 Input and output 120

6.8 PICK and ROLL 122

6.9 Square-root 123

6.10 Terminal and disk server on IBM-PC 124

6.11 Arcsine by interpolation 127

6.12 High speed pattern generator 128

6.13 A/D conversion with NC4000 `168 132

6.14 Fast byte flip 135

6.15 More vocabularies 136

Appendix A cmForth Source Listing 138

Appendix B cmForth Glossary 164

Index 170

xii

Figures

2.1 NC4000 pin layout 8

2.2 External data paths of NC4000 9

2.3 NC4000 memory map 11

2.4 Timing diagrams of NC4000 14

2.5 Architecture of NC4000 15

2.6 Arithmetic Logic Unit 19

3.1 Encoding of NC4000 instructions 23

3.2 NC4000 instruction formats 25

3.3 Data paths and registers in ALU section 27

3.4 Another view of ALU 34

3.5 The SWAP group 36

3.6 The DUP group 37

3.7 The binary ALU group 38

3.8 The multiply/divide group 40

3.9 Miscellaneous instructions 44

4.1 CPU section of a NC4000 computer 49

4.2 Memory decoding of a small NC4000 computer 52

4.3 Memory decoding of a large NC4000 computer 53

4.4 Data and return stack of a NC4000 computer 54

4.5 Pinout of OF5138 decoder chip 56

4.6 Memory map of a 512K byte system 57

4.7 Pinout of OF54g3 counter chip 58

4.8 Expansion of data stack for NC4000 59

4.9 Decoding memory with a 74HC74 60

6.1 Sample benchmark programs 113

6.2 Vocabulary definitions and WORDS 114

6.3 Regular DUMP routine 115

6.4 Line editor 117

6.5 .S and .RS to show stack pictures 118

6.6 Internal registers 119

6.7 Input and output demonstration 121

6.8 PICK and ROLL 122

6.9 Square-root 123

6.10 Terminal and disk server 125

6.11 Source code of interpolation 127

6.12 Schematics of the pattern generator 129

6.13 Program to control the pattern generator 130

6.14 A/D conversion with Datel ADC815 132

6.15 A/D conversion with National ADCO82_0 133

6.16 NC4000 code for A/D conversion 134

xiii

6.17. Byte flipping 135

6.18. RAM memory allocation in cmForth 137

xiv

Tables

1.1 The von Neumann machine instruction set 4

1.2 RISC instruction set 5

1.3 NC4000 instruction set 6

2.1 NC4000 pin names and functions 9

2.2 Internal registers in NC4000 16

3.1 ALU code and function 27

3.2 Y-port selector 28

3.3 Data stack code and functions 28

3.4 Shift code and functions 29

3.5 Valid ALU instructions 30

3.6 Valid I/0 and memory instructions 32

3.7 NC4000 internal registers 33

3.8 Function of bits in the I/0 registers 33

4.1 Pins of OF5138 55

6.1 Machine cycles for 16 bit integer operations 113

1

Chapter1. Introduction

1.1. Historical Background

In the beginning, Chuck Moore invented Forth as a programming language to make himself a more

productive programmer. The late 1960's saw Forth evolved into an integrated, unified, and complete

software development tool. In 1972, Chuck and a few of his colleagues left National Radio

Astronomy Observatory (NARO) where they nurtured Forth into its present form, and formed Forth,

Inc. to explore its commercial potential. For a while, he was content to use Forth as a software tool to

solve real world problems, leaving hardware engineers to pick up the Forth architecture and

implement Forth engines.

Forth didn't become a household name in computer industry until Forth Interest Group was formed in

the San Francisco Bay area. figForth source code was distributed by tons at cost beginning in 1978.

Although Forth had established a sizable following in the microcomputer user community, the

computer industry was very reluctant to accept Forth as an alternative architecture for hardware

design and implementation. There were scattered efforts towards building Forth engines using bit

slice technology and random logic, but the consequence was almost nil. Meanwhile, Chuck became

restive and took it upon himself the task of casting Forth into silicon. In 1980, Chuck left Forth, Inc.

to pursuit his new dream.

In the reorganization, Forth, Inc. expanded its board of directors to include Bill Ragsdale, founding

father of the Forth Interest Group, and John Peers of Logical Machines. Both had intense interests in

seeing Forth burnt into silicon. The right milieu was thus gathered for the precise chemistry necessary

for brewing a Forth chip.

At the time, Chuck with Glenn Haydon and others were designing a prototype board to execute Forth

words as primitive instructions. The spark that initiates the Forth chip development was set by Don

Colburn of Creative Solutions, another Forth heavy weight on the east coast. With a $1000 birthday

gift from his wife, Don organized a one-day, project-oriented session with Chuck Moore, Bill

Ragsdale and a chip designer to discuss the feasibility of building a Forth engine on silicon. The

discussions affirmed for Chuck that his dream of Forth chip could be realized and that serious support

was available.

John Peers saw the beauty of approaching Forth from several levels. He founded Technology

Industries in March 1981, to be a parent organization to develop Forth in hardware, software, and

applications. With funding from Technology Industries, Chuck developed and demonstrated a Forth

engine simulator with color CRT display of the internal data paths and operations in March 1983. A

funding partner of Technology Industries, Sysorex International, became interested in the project and

formed the Novix partnership in March 1984 to carry forward the hardware implementation of this

Forth chip.

Mostek was chosen as the foundry to cast Forth in silicon. The chip was implemented with 3 micron

HCMOS process using 4000 gates. It was packaged in a 128 pin pin-grid array. The first working

chip was delivered in March 1985, running at 7 MHz. It was supposed to be a prototype chip. Since

2

95% of the functions worked as designed, Novix decided to offer it as a product and called it

NC4000P. An evaluation and development system named Beta Board was also offered by Novix.

When Mostek was sold to Thomson and Novix went through a process of reorganization and

incorporation, efforts in removing the bugs in the prototype mask was suspended. A second run using

the same prototype mask was completed, with the pin count on the pin-grid package reduced to 121 pins.

It seems that this prototype chip, complete with all its bugs and restrictions, will be the one we have to

live with for a while. Even with the bugs and restrictions, NC4000P is more powerful than the best of

the 16-bit microprocessors.

In March 1986, Novix was incorporated with Mr. John Peers as its chairman and chief executive

officer. It was producing NC4000 chips and selling them. Chuck Moore offered the Gamma Board, a

kit with a bare PC board, a NC4000 chip and a pair of PROM--to people who like to build computers.

Software Composers were selling board level products: SC1000C single board computer with

NC4000 and 8K of RAM, prototyping PC boards, memory expansion boards, etc. Meanwhile,

NC4000 spread to many laboratories, factories, and other countries around the world. It was used in

many different areas, including CAD/CAM, data acquisition, fast signal processing, factory

automation, artificial intelligence, etc. An NC4000 Users group was also formed to collect and

distribute information on NC4000 and its applications.

Novix licensed NC4000 design to Harris Semiconductors to become the 16 bit CPU core in its cell

library. Harris called it Forth Optimized RISC Computing Engine or FORCE. Harris' customers can

thus use this CPU core together with other supporting macro-cells to design complete single chip

microprocessors for dedicated applications. A five chip chip-set was produced by Harris for

evaluation purposes. It includes a FORCE CPU, two stack controllers, an interrupt controller, and a

multiplier chip. Software Composers, now renamed Silicon Composers, built a coprocessor board

with this chip set, to be used inside an IBM-AT microcomputer.

Glenn Haydon and Phil Koopman continued their efforts in building Forth engines using standard

TTL parts. In 1986 a 16 bit version was produced, first in kit form and later in printed circuit boards,

named CPU/16. This design is especially interesting because it uses writable control store memory to

hold the microcode. User can thus design or write his own instructions on this engine. They called it the

Writable Instruction Set Computer, or WISC. In 1987, the 32 bit version CPU/32 was released. Both

these versions worked as coprocessor board inside IBM-PC or AT computer. Glenn and Phil formed

WISC Technologies, and intended to produce microprocessors using these designs.

1.2. The RISC Panacea

The Reduced Instruction Set Computer (RISC) seems to be the fad of

-
computer industry for the 80's.

By using a small instruction set, restricting memory access to a few memory fetch and store

instructions, and using a large set of register windows, it promises faster execution at lower costs.

Will it solve all our computing problems? The RISC architecture was so attractive that many people try

to classify NC4000 as a RISC engine in order to give NC4000 an extra polish for selling to the

unsuspecting public.

The truth as I see it is that the Forth virtual engine by nature is a Complicated Instruction Set

3

Computer or CISC structure, because the Forth engine must support an interactive programming

environment. A minimum Forth system has at least 250 instructions just to be barely useful. Any real

Forth engine is thus bound to be a CISC machine. In fact, the champion CISC machine VAX has an

instruction set that matches very well with a Forth virtual engine. The virtue of NC4000 is not that it

has a reduced instruction set, but that it can execute its instructions with blazing speed due to

simplicity in design and dual stacks supporting very efficient subroutine nesting.

When the reports on RISC machine were published by Dave Paterson in Berkeley, I often compared

it to the design of the original von Neumann's Advanced Electronic Machine (AEM) developed around

1946. The similarity is very striking as shown in the two instruction sets in Tables 1.1 and 1.2. AEM had

only 21 instructions and RISC had 31. On the other side of the fence, NC4000 has more than 200 valid

instructions. Table 1.3 shows only a partial list of NC4000 instructions which can be conveniently

named. Comparing these tables, you can see that NC4000 is definitely a CISC machine. Here we shall

compare it with the von Neumann AEM and Berkeley RISC to see its true merits.

Von Neumann's AEM was a 40 bit machine designed primarily for numeric computation. It had

multiply and divide instructions, but no logic instructions. It addressed only 4096 words of memory.

It was a memory oriented machine, in that an internal accumulator provided one operand and was also

the destination of arithmetic operations. The other operand was generally fetched from memory. The

only other register MQ in the CPU was used together with the accumulator, serving as an extension to

the accumulator in the multiplication and division operations. From the contemporary point of view,

AEM may seem very primitive, but it was very efficient for scientific and engineering computation.

Let's examine the RISC machine and see how much we have advanced over the last 40 years. The

only significant advancements in the RISC machine over AEM are: subroutine call and return

instructions, the large number of windowing registers, and instructions operating on registers instead

of the accumulator and memory. RISC has a large set of registers because of the VLSI technology,

which was not available to von Neumann. Subroutine call and return were invented much later;

although von Neumann was keenly aware of the power of subroutines, which was actually coined by

him. Conveniently nesting subroutines and returning from them had to wait until the stack was

invented in the 50's. Because of the large set of registers RISC has on chip, it is advantageous to use

them as much as possible for normal ALU operations, while delegating the memory fetching and

storing to special memory instructions.

Besides the efficient subroutine nesting and the use of registers to reduce memory access, RISC is

very similar to AEM. It is very interesting to observe that after 40 years of intense research,

development, and engineering efforts, we came back to the point where we started. Are we much better

than our fathers?

The major advantage of the register windows is that they allow parameters to be passed conveniently

between subroutines and their callers. The size of the register window was determined by extensive

studies on large compilers and applications. However, no matter how the windows are sized, they tend

to be wasteful because most subroutines do not make full use of them, and insufficient on many other

occasions. In contrast to register windows, an independent data stack in NC4000 dedicated to

parameter passing is the most efficient way to use on-chip memory to support subroutines without

limitation on the number of parameters passed into or out of a subroutine.

4

The major objection to stacks for parameter passing is that stacks traditionally implemented in the

main memory cuts into the memory bandwidth. Using data on the stack is thus always slower than using

data in the on-chip registers. This objection is no longer valid because large amount of on-chip memory

can be dedicated to stacks. It is also possible to build CPU chips which can access external stacks in

parallel with the main memory so that stack accessing can be overlapped with memory accessing.

NC4000 sports two external stacks in addition to the main memory. One stack is for subroutine

nesting, and the other is for parameter passing among subroutines. As the CPU can access the main

memory, the data stack and the return stack simultaneously, NC4000 is capable of executing a

subroutine call in a single machine cycle and also returning in a single machine cycle.

Table 1.1. Von Neumann Machine Instruction Set

Symbol Function Comments
LOAD S(x)->Ac Load accumulator
LOADN S(x)->Ac Load negative to accumulator
LOADM S(x)->AcM Load absolute to accumulator
SUBM S(x)->Ac-M Subtract absolute from accumulator
ADD S(x)->Ah Add memory to accumulator
SUB S(x)->Ah Subtract memory from accumulator
ADDM S(x)->AhM Add absolute memory to accumulator
SUBM S(x)->Ah-M Subtract absolute memory
LOADR S(x)->R Copy memory to register
MOVR R->A Copy register to accumulator
MUL S(x)*R->A Multiply memory with register product in accumulator-

register pair DIV A/S(x)->R Divide accumulator by memory
JMPL Jump S(x) Left Jump to the left address at x
JMPR Jump S(x) Right Jump to the right address at x
BRAL Branch S(x) Left Jump to left address at x if A>=0
BRAR Branch S(x) Right Jump to right address at x if A>=0
STR A->S(x) Store accumulator to memory
STRL A->S(x) Left Store left half of accumulator
STRR A->S(x) Right Store right half of accumulator
SHR R Arithmetic right shift in accumulator
SHL L Double arithmetic shift of the
 accumulator-register pair

5

Table 1.2. RISC Instruction Set

Symbol Function Comments
ADD Rd<-Rs+S2 Integer add
ADDC Rd<-Rs+S2+carry Add with carry
SUB Rd<-Rs-S2 Integer subtract
SUBC Rd<-Rs-S2-carry Subtract with carry
SUM Rd<-S2-Rs Reverse subtract
SUBCR Rd<-S2-Rs-carry Reverse subtract with carry
AND Rd<-Rs&S2 Logical AND
OR Rd<-Rs;S2 Logical OR
XOR Rd<-Rs xor S2 Logical exclusive OR
SLL Rd<-Rs shifted by S2 Logical shift left
SRL Rd<-Rs shifted by S2 Logical shift right
SRA Rd<-Rs shifted by S2 Arithmetic shift right
LDL Rd<-[Rx+S2] Load long
LDSU Rd<-[Rx+S2] Load short unsigned
LDSS Rd<-[Rx+S2] Load short signed
LDBU Rd<-[Rx+S2] Load byte unsigned
LDBS Rd<-[Rx+S2] Load byte signed
STL [Rx+S2]<-Rm Store long
STS [Rx+S2]<-Rm Store short
STB [Rx+S2]<-Rm Store byte
JMP pc<-Rx+S2 Conditional jump
JMPR pc<-pc+Y Conditional relative jump
CALL Rd<-pc, next,pc<-Rx+S2, CWP<-CWP-

1

Call and change window
CALLR Rd<-pc, next, pc<-Rx+Y, CWP<-CWP-

1

Call relative and change window
RET pc<-Rm+S2, CWP<-CWP+1 Return and change window
CALLINT Rd<-last pc, next, CWP<-CWP+1 Call and disable interrupts
RETINT pc<-Rm+S2, CWP<-CWP+1 Return and enable interrupts
LDHI Rd<31:13><-Y,Rd, Rd<12:0><-0 Load immediate high
GTLPC Rd<-last pc Restart delayed jump
GETPSW Rd<-PSW Load status word
PUTPSW PSW<-Rm Set status word

This capability of single cycle subroutine call/return is very significant, in the light of the studies the

Berkeley RISC group made to justify the RISC architecture--that subroutine calls and returns often

consume 40% of the CPU time in high level languages and compiler implementations. Minimizing

subroutine call and return will thus have a very significant impact on the efficiency of large

applications programmed using high level languages.

Another interesting feature of NC4000 is that the address generation was given the highest priority in

the CPU design. Consequently the addresses of the next memory locations, be them in main memory

or in the external stacks, are always made available midway through a machine cycle. The program

can thus branch forward or backward, conditionally or unconditionally, in a single cycle. This design

solves the problems generally associated with RISC architectures which have to rely on an instruction

6

pipeline to achieve the goal of one instruction per cycle.

NC4000 has the following program flow control instructions at the machine level:

Subroutine Call

Subroutine Return Begin ... Until

Begin ... While ... Repeat

Do ... Loop

If ... Then ... Else

Jump

Conditional Branch

They can be used to support all high level languages which require these control structures.

NC4000 with its dual stack architecture to support fast subroutine calling and returning, single cycle

execution of instructions without pipelining, and the support of structured programming languages at

the machine code level is definitely a superior design than the Berkeley RISC machine. The RISC

panacea is not in the reduction of number of instructions, but in the reduction of the complexity of the

CPU and the logic structure inside the CPU.

Table 1.3. NC4000 Instruction set

Stack Instructions DUP DROP OVER SWAP NIP NIP-DUP DROP-DUP

OVER-SWAP >R R> R@

ALU Instructions + - +c -c AND OR XOR SWAP

Compound Instructions OVER-aluop OVER-SWAP-aluop SWAP-OVER-

aluop 2DUP-aluop

Shift Instructions 2/ 2* D2/ D2*

Special Arithmetic Instructions 0< *’ *- *F /' /" S'

Memory Instructions @ ! @+ !+ @- ! - I@ I! I@! LITERAL

SHORT-LITERAL Local-memory-fetch Local-

memory-store

Control Structure Instructions CALL RETURN IF ELSE #LOOP TIMES

7

Chapter 2. The NC4000 Chip

2.1. Features of NC4000 Chip

The Novix NC4000 is a super high-speed processing engine which is designed to directly execute

high level Forth instructions. The single chip microprocessor, NC4000, gains its remarkable

performance by eliminating both the ordinary assembly language and internal microcode which, in

most conventional processors, intervene between the high level application and the hardware. The

dual stack architecture greatly reduces the overhead of subroutine implementation and makes

NC4000 especially suited to support high level languages other than Forth. A number of

distinguishing features of this Forth engine on silicon can be summarized as follows:

 16 bit high speed, HCMOS single chip Forth engine.

 Direct execution of most Forth primitives in a single machine cycle without internal

microcode.

 One cycle subroutine calls with mostly zero cycle returns.

 Supports 64K word memory, or 4M bytes with address extension port (the X-port).

 Fully static operation permitting very low power consumption suitable for battery powered
applications.

 One cycle structured IF, ELSE, and LOOP instructions. Multiplication, division, and square-

root step instructions.

 TIMES instruction allowing any instruction, including auto-incrementing/decrementing
memory access, to be repeated once per cycle.

 Single instruction fetch and store from/to the local memory.

 One cycle generation of hex FFFF.

 257 element 16 bit hardware return stack with the top element in on-chip I register.

 258 element 16 bit hardware data stack with top two elements in on-chip T and N registers.

 Two versatile I/O ports, both of which are bidirectional, maskable, auto-comparable, and

programmable for either latched or tristate output.

 Simultaneous access of return stack, data stack, main memory, and I/O port; concurrent with
operation of ALU and shifter.

 Execution of multiple Forth words in a single cycle instruction, e.g. "OVER +;", yielding
over 180 available instruction combinations, not including permutations of register addressing.

2.2. External Data Paths

NC4000 chip is housed in a 121-pin, pin grid array package. The pin layout is shown in Figure 2.1.

The names and function of the pin groups are shown in Table 2.1.

The external data paths spawn by the large number of pins can be shown schematically in Figure 2.2.

The pins can be grouped into five different functional groups: Main memory data and address, data

stack data and address, return stack data and address, I/O ports, and timing/control. The detailed

properties of these pin groups are discussed in the following subsections.

8

(View from top of the pin grid array)

 13 12 11 10 9 8 7 6 5 4 3 2 1

N B00 A00 A01 A04 A06 X01 X02 X03 J01 J03 J06 S00 S01

M B01 R01 R00 A02 A05 X00 VDD X04 J02 J05 J07 D00 D02

L R03 B02 VSS WEB A03 A07 VSS J00 J04 WER VSS D01 S03

K B04 B03 R02 S02 D03 D04

J B05 R05 R04 S04 S05 D05

H R07 B06 R06 S06 D06 S07

G B07 VDD VSS ° VSS VDD D07

F R08 B08 R09 S09 D08 S08

E B09 R10 R11 S11 S10 D09

D B10 B11 R13 INDEX S13 D11 D10

C R12 B13 VSS B15 A10 A14 VSS K01 K05 D15 VSS D12 S12

B B12 B14 WED A09 A12 A15 VDD K00 K03 K06 S15 S14 D13

A R14 R15 AOS All A13 RST INT CLK K02 K04 K07 WES D1d

Figure 2 .1 . NC4000 Pin Lay out.

9

Table 2.1. NC4000 Pin Names and Functions.

Pins Function

AO-A15 Main Memory Address Bus

BO-B15 I/O Port Bus

CLK Processor Clock Input

INT External Interrupt

JO-J7 Return Stack Address Bus

KO-K7 Data Stack Address Bus

DO-D15 Main Memory Data Bus

RO-R15 Return Stack Data Bus

RST Processor Reset

SO-S15 Data Stack Data Bus

VDD Power Supply

VSS Ground

WEB I/O Port Write Enable

WED Main Memory Write Enable

WER Return Stack Write Enable

WES Data Stack Write Enable

X0-X4 Address Extension Port

Figure 2.2. External Data Paths of NC4000

10

2.2.1. Main Memory

NC4000 controls and communicates with the main memory through 16 address lines, 16 data

lines, and a write-enable line WED. The memory addressing space is thus 64K words or 128K

bytes. The timing of the memory is synchronized by a single phase clock signal CLK. At the rising

edge of the clock, data from the main memory is latched into the data memory port. At the failing edge

of the clock, memory address lines are stabilized and addresses are available. The main memory must

put the requested data on the data lines before the rising edge of the clock. The speed of the clock is thus

limited by the time NC4000 requires to calculate the next address during the high period of the clock,

and the time required by main memory to put valid data on the data lines during the low period of the

clock. The high period as required by NC4000 is 65 ns at the minimum, and the low period depends on

the memory used in the system. Using high speed CMOS RAM with 50 ns access time, the clock

speed can be pushed to about 8 MHz. Using low cost CMOS static RAM with 150-200 ns access

time, 4 MHz would be more appropriate.

There are a few restrictions on the use of memory. Although NC4000 can address 64K words of

memory, only the lower 32K can be used as program memory because the MSB bit of an instruction is

a flag to indicate a subroutine call. However, the top 32K words can be addressed as data memory.

Since the hardware reset causes the chip to start executing the instruction located at memory location

1000H, it is mandatory that the bootstrap routine be programmed into this and the subsequent

memory. Thus ROM memory must occupy a block of memory space starting at 1000H. Memory

location 0 to 31 are special, in that these memory locations can be accessed by NC4000 with single

word instructions, while other memory locations must be accessed by explicit memory instructions.

Hence the memory starting at 0 is preferably RAM memory if the software is to take advantage of this

hardware function. The memory map of NC4000 is shown in Figure 2.3.

11

Figure 2.3. NC4000 Memory Map

Whenever new data are to be written to the main memory, the WED (memory write enable) line will be

brought low to coincide with the low period of the system clock. This line should be tied with the write

enable lines of the RAM memory so that new data can be written into RAM memory.

This chip is intended to operate with static RAM memory chips that do not require a complicated

memory refresh process.

The memory space can be greatly enlarged if the 5 I/O lines of the X-port (Extension Port) are used

as extra address lines to control the main memory. In this manner the addressable memory can be

expanded to 2M words or 4M bytes.

2.2.2. Data Stack and Return Stack.

A Forth engine requires at least two stacks, one to store return addresses for unfinished subroutines

and the other to store parameters passed between subroutines. Since the gate array with 4000 gates

cannot support the necessary memory to host two stacks, the data and address lines of these two stacks

are brought off the chip. Each stack uses 16 data lines, 8 address lines, and a write enable line. Since

the address lines are only 3 bit wide, the depth of the stacks is limited to 256 words in the external stack

memory. If more than 256 words are pushed on to the external stack, the stack would wrap around like

a circular buffer, and the data stored 256 words before the current word would be overwritten.

12

The depth of the stack is generally much more than sufficient because most programs use a depth of

only 12 words each on the return and data stacks. The depth of the stacks will be a serious concern only

when a recursive procedure is used. Care must be taken to avoid exceeding the depth of the stacks.

The timing requirements for stacks are almost identical to those of main memory. Stack data are

latched into the chip when the system clock makes a low to high transition. The addresses to the stacks

are stabilized when the clock goes from high to low. The stack memory must put the data requested on

the stack data lines before the clock returns from low to high. Thus the same type of memory used in

main memory can be used for stacks. There is little advantage to use higher speed memory for stacks.

The write enable lines WES and WER to the stack memories are low for the low period of the system

clock when data are to be written to the stack memory.

Since most commercial static CMOS memory chips have capacities greater than 256 bytes, it seems

rather wasteful to use them for stacks in NC4000. One way to take advantage of the extra stack space is

to use the lines in the X-port for bank switching of the stacks. This is very useful in supporting a multi-

tasking system, in which each task has its own data and return stacks. Task switching in this

environment will be extremely fast since the operating conditions of each task are fully preserved in

their individual stack space.

2.2.3. B-Port and X-Port

Two input/output ports are supported by NC4000 chip: a 16 bit B-port (B for bus) and a 5 bit X-port

(X for extension). These two ports are fully programmable through 4 internal registers for each port: a

direction register to specify individual bits to be input or output, a mask register to protect individual bits

from being written to, a tristate register to tristate output bits, and a data register to read from pins and

write to pins. Both ports can do I/O operations in single machine cycles as data registers are read or

written. These 21 programmable, high speed I/O lines make NC4000 chip an extremely versatile

controller chip for all types of high throughput, real time control applications.

The B-port write enable (WEB) line is low for the duration of the low period of the system clock when

the output of the I/O ports is stabilized. Data on the input lines are latched into the data register at the

rising edge of the system clock as usual. Output data are available on the output pins about 100 ns

after the rising edge of the system clock.

An interesting behavior of the I/O port is that a set of output data latches in the data register can be

written to even when the bits are assigned as input. The data on the input pins are XOR with the bits in

the output latches when read by the CPU. If the data latch were loaded with ones, you can invert the

input data on the fly as they are read through the data register. This extra XOR logic operation is

programmable for each individual I/O pin.

Each I/O pin is capable of sourcing or sinking 60 mA, so that they can be used to drive a large number

of logic gates without additional buffering chips.

13

2.2.4. System Timing and Control

NC4000 is an asynchronous CPU chip which requires a
-
single phase master clock. All internal

registers are static and the information held in them remains indefinitely while the clock is held low.

The upper limit of clock rate is set by the time required by the internal logic to calculate the address of

the next instruction during the high period of the clock, which is about 65 ns in the prototype chip.

Using a symmetric crystal oscillator for the master clock, this limits the speed of NC4000P to about 8

MHz. The low period of the clock is used mainly to wait for the external memory to put their data on the

data lines. If one uses slower memory chips, the low period of the clock must be stretched accordingly.

The external clock signal is brought in via the CLK line. As long as the low and high periods satisfy the

above requirements, the rate and the duty cycle of the clock are not critical. Either crystal oscillator or

simple RC timing circuits can be used to generate the system clock signal.

The timing diagrams of NC4000 are shown in Figure 2.4. Most NC4000 instructions execute in one

machine cycle. When the clock line makes a low to high transition, the current machine instruction as

well as all input data are latched. The instruction is decoded and executed. When the clock line makes

a high to low transition, address of the next instruction is available on the main memory bus and stack

addresses are also stabilized on their respective buses. The external memory and stack must put their

data on the data lines so that when the clock line is again raised to high, the next instruction and other

data will be ready for NC4000 to use.

Memory accessing instructions need two machine cycles to complete. At the end of the first cycle, the

address of the memory to be read or written is put on the main memory address bus. The first half of the

second cycle is used to read or write the data to or from the main memory. The address of the next

instruction will be ready when the clock is lowered. Main memory must then supply the next

instruction before the clock is raised again.

The reset signal RST if brought low will stop all internal operations in the chip. When RST is brought

back to high, NC4000 will jump to the reset memory location at 1000H and start executing the

instruction fetched from that location. The software bootstrap routine must be placed in that location

for the system to work properly. The external reset circuitry must be capable of sinking 60 mA to

bring down the RST line for NC4000 to reset.

There is also an interrupt input pin named INT. When the INT pin is brought low, NC4000 will

execute a call instruction to location 20H, where a service subroutine must be placed. In the prototype

chip, the use of this interrupt facility is severely restricted, because the interrupt can be serviced only

when a single cycle, non-jump instruction is being executed. The interrupt will lose its return address

if it occurs during the first cycle of a two cycle instruction. If precaution is taken to enable the interrupt

only during a sequence of single cycle instructions, interrupt can be serviced correctly.

Being a CMOS gate array, the power supply voltage to the VDD pins can range from 0 to 7 volts.

Nominal operation voltage is 5.0 Volts and typical current during operation is 10 mA. The supply

voltage might have to be higher than 5 volts if it is to be used with a higher clock rate of 7 MHz or higher.

14

Figure 2.4. Timing Diagrams of NC4000

2.3. NC4000 Architecture

There are two unique features in NC4000 chip which differ from conventional microprocessor

design. The chip can simultaneously address four memory spaces--main memory, data stack, return

stack, and internal registers including I/O ports. It can directly decode the bit patterns in instructions

and execute them in single cycles. Due to the use of two stacks, which greatly simplified the language

and the architecture of the chip, a high level language was cast in silicon using only 4000 gates

while achieving a speed far in excess of those microprocessors with much more complicated

structures.

2.3.1. Internal Registers

The architecture of NC4000 is shown schematically in Figure 2.5. It can be divided into five

functional groups internally. On top are the main memory interface and the program control section

that fetch instructions and data from the main memory, decode the instructions and execute them.

Address Multiplexer A outputs addresses to the main memory, and the data to/from the data memory

is latched into Main Memory Port M. Instructions are then copied into the Instruction Latch L for

decoding and execution. Program Counter P keeps the address of the next instruction and feeds it to

the Address Multiplexer.

15

Figure 2.5. Architecture of NC4000

In the middle is the stack interface and control, which manages the data stack and the return stack.

The bulk of the two stacks are implemented using off-chip RAM memory. Only the top two elements

of the data stack and the top element of the return stack are kept on chip. The Top Register T of the

data stack is the focus of the entire chip because it can communicate with almost all the on-chip

registers. The Next Data Register N communicates with the external data stack and also receives

data from the Main Memory Port. The Return Index Register I is the top of the return stack, doubling

as the loop index register. The Stack Pointer Register J/K outputs stack addresses to both stacks. Its

upper byte contains the data stack address and its lower byte contains the return stack address.

At the lower center is the ALU section, which performs all the arithmetic and logic operations

required by the language. The sources of the ALU are the T and N registers on the top of the data

stack. A shifter below the ALU can shift the ALU output before storing it back to T register. The

ALU can alternately use the MD or SR registers as input instead of the N register to do

multiply/divide or square-root operations. When MD and SR registers are not used for these

operations, they are free to be used as scratch pad registers to store temporary data.

16

Table 2.2. Internal Registers in NC4000

Symbol Function

A Address Multiplexer for the Main Memory. It selects data from P, L, I, or T.

I Top of the return stack. It also serves as a decrementing counter for

NEXT(LOOP) and TIMES instructions.

J Return Stack Pointer Register.

K Data Stack Pointer Register.

L Instruction Decode Register. It generates appropriate control signals to execute

an instruction.

M Main Memory Data Bus Port providing data path to main memory.

N Next Register on the data stack. It can be shifted with T register under

instruction control.

P Program Counter pointing to the next instruction in the main memory.

R Return Stack Memory Bus.

S Data Stack Memory Bus.

T Top Register on the data stack. It performs all ALU functions and

communicates with all other registers.

On the lower left are the I/O ports and control registers. There are two fully programmable I/O ports--

a 16 bit B-Port and a 5 bit X-Port. Each port is controlled by 4 registers: a Data Register to hold input

or output data, a Direction Register to specify individual pins as input or output, a Mask Register to

deactivate output pins, and a Tristate Register to tristate output pins outside the output write cycles.

These registers give youtotal control over the 21 I/O pins.

Finally, a block of logic handles the external clock input, the reset RST signal, and the interrupt INT

signal. There is a flip-flop in the interrupt circuitry. A high-to-low edge on the INT pin sets the flip-

flop and an interrupt return resets it. The flip-flop is set even when the interrupt is disabled. Interrupt,

when enabled, generates a subroutine call to memory location 20H. RST causes NC4000 to execute

the instructions starting at 1000H.

2.3.2. Program Sequencer

Programs are sequences of instructions stored in the main memory. Normal program execution

sequence for NC4000 is to fetch an instruction from the main memory by placing the address of the

instruction in the Address Multiplexer or L register before the system clock's trailing edge. During

the low period of the clock cycle, the main memory puts the next instruction on the data bus and it is

latched into the Main Memory Port or the M register at the rising edge of the clock. The instruction is

sent into the Instruction Latch L to be decoded and executed. The first step in the decoding process is

to find the address of the next instruction. Normally the next instruction is in the next memory

location pointed to by the Program Counter P. In this case, the Program Counter will send its content

to the Address Multiplexer and the address of the next instruction will appear on the address bus when

the clock level makes a high to low transition. The next instruction will then be fetched and so on.

When a branch or a loop instruction is encountered, the address of the next instruction can be

constructed very easily by attaching the upper four bits in the Program Counter P to the lower 12 bits

17

in the branch or loop instruction. The resulting address is then sent to the Address Multiplexer to alter

the program sequence. This is the reason why NC4000 can branch or loop only within the current 4K

word page. No computation is necessary to generate the target address. It assures that the next

address is stabilized before the clock falls again.

When a subroutine call instruction, characterized by a zero in the most significant bit 15, is

executed, the address of the callee appears as the lower 15 bits of the call instruction. This whole

instruction is then copied into the Address Multiplexer to fetch the next instruction. In the mean time,

the address of the next instruction in P is pushed onto the return stack and copied into the Return

Index Register I. When the subroutine is completed, a return instruction will be executed. The return

instruction causes the return stack to pop its top item, which is in the I register, back into the Program

Counter P and the Address Multiplexer A. Consequently, the caller routine will continue on from the

point interrupted by the subroutine call.

When the program counter is push on to the return stack, the most significant bit of the address is of no

practical use. Chuck Moore chose to save the carry bit at this position with the 15 bit return address.

It is important to mask this carry bit when the return address is retrieved.

When a two cycle memory reference instruction is executed, the memory address, which is usually in

register T, is selected by the Address Multiplexer and put on the address bus. The next rising edge of

the clock will latch the data from the specified memory address into the N register through the Main

Memory Port. Meanwhile, the address of the next instruction is placed on the address bus through the

Address Multiplexer and the next instruction will be available at the next rising edge of the system

clock.

A unique feature of the Instruction Latch L register is that the instruction latched into this register can

be repeatedly executed as many as 65535 times by preceding the instruction with a TIMES

instruction. TIMES places a count in the I register which causes the next instruction latched in the L

register to be repeated that many times. The most obvious use of this feature is in the construction of

multiply, divide, and square-root functions by simply repeating the multiply, divide and square-root

step instructions. It is also useful in moving blocks of data. Since a single NC4000 instruction can

perform many Forth functions, this repeating capability can be very powerful in various situations.

2 . 3 . 3 . Data Stack and Return Stack

The top of data stack is the heart of a Forth engine because all data manipulations occur in these few

locations. In NC4000, the top two elements of the data stack are cached on chip in the form of the Top

Register T and the Next Data Register N. These two registers usually supply two arguments to the

ALU unit. T register can communicate with almost all internal registers through internal register

fetch and store instructions. The N register also serves as the interface to the external data stack and

to the main memory port M, in addition to supporting the ALU unit.

Only the top element of the return stack is cached on chip as the I register. The main purpose of the I

register is to interface with the program counter P and the address latch A during subroutine calls and

returns. For this purpose, a single cached element is quite sufficient. In addition to this role, the I

register has two explicit functions--to hold the loop index in the do-loop structure, and to hold the

18

count for TIMES instruction. In these cases, the content of the I register is automatically

decremented when the NEXT (or LOOP) instruction or the instruction latched in L register is

executed. The do-loop or the latched instruction will be repeated until the count in the I register is

decremented to zero. At this point, the return stack is popped back to I, and the next instruction in the

normal sequence is fetched and executed.

The loop structure thus implemented is quite different from the standard DO-LOOP structure, which

requires both the loop index and the index limit to be pushed on the return stack. However, the single

decrementing index is sufficient for all looping structures. Chuck Moore stated: "I apologize for

having mislead you for so long with DO-LOOP, but the decrementing FOR-NEXT loop is the right

way to do it after all". Many Forth programmers have already adopted this simpler loop structure in

their systems based on other microprocessors.

When a subroutine call instruction is executed, the address of the subroutine is extracted from the

instruction latch L and passed to the Address Multiplexer A, in preparation for jumping to the

subroutine. Meanwhile the content of the Program Counter P, pointing to the address of the

instruction right after the subroutine call instruction, is pushed on to the return stack. This pushing

action involves moving data from P register to I register, and pushing the I register onto the off-chip

return stack. When a subroutine return instruction is executed, the content of I register is moved into

the A and P registers, and the top of the external return stack is popped into the I register.

Two stack pointer registers J and K are on-chip to control access to the external data stack and the

external return stack. As both stack pointers are only 8 bit wide, they are combined into one register

J/K when accessed as an internal register. J, the return stack pointer, appears as the lower byte in the

J/K register. K, the data stack pointer, appears as the high byte. During a push operation, the stack

pointer is pre-decremented, and during a pop operation it is post-incremented.

The data stack, the return stack, and the three stack registers in NC4000 chip can be viewed as an

array of 515 words or a 515 element shift register. The entire array can slide right or left with a three

word window exposed to the ALU. Elements can be modified, added, or deleted only within this three

element window -- most frequently through the Top Register T.

The dual stack architecture contributes greatly to the simplicity of the Forth language and also of

NC4000 chip, because it allows the return addresses to be stored independently from the data to be

passes between caller routines and the callee subroutines. Thus a subroutine call instruction only has

to manage the address on the return stack and leaves the caller and callee routines to worry about the

data passing through the data stack. In NC4000, the overhead in supporting the subroutine call and

return is reduced to a minimum of one machine cycle, a truly monumental breakthrough in computer

design.

2.3.4. Arithmetic Logic Unit (ALU)

The ALU in NC4000 is a 16 bit, dual input Arithmetic/Logic Unit. It is shown in Figure 2.6 with the

registers directly connected to it. The Top Register T is always an input to the ALU. It also receives

output from the ALU. The other input Y can be taken from the N register, the Multiplier/Divisor

register MD, or the Square-Root register SR. The carry bit can be taken as input optionally with the

19

N register. There is a multiplexer used to supply data from the selected register to the Y input. The

multiplexer is controlled by a two bit Y field in the ALU instruction.

Figure 2.6. Arithmetic Logic Unit

The output of ALU passes through a shifter before falling into the T register. This shifter can shift

the 16 bit result from the ALU either left or right by one bit. It can also extend the sign bit of the result

to the lower 15 bits. Alternately, it can also shift the 32 bit combination of T and N register pair

either right or left by one bit. The shifting function is controlled by the last three bits in the ALU

instruction: D?, SL, and SR.

Output from the ALU always goes into the T register. Original content of T register may be copied

into the N register. The T Lo N data path is opened or closed according to the bit TN in the ALU

instruction. While all these activities are going on in the ALU section, the data stack can also

participate in some of these activities. Another bit SA in the ALU instruction allows youto specify

20

whether the data stack should be pushed or popped, thus passing data between the N register and the

external data stack. Permutation of these bits in the ALU instruction produces a rich set of primitives

executing multiple Forth instructions in a single machine cycle.

The detailed operation of the ALU, the interaction of the ALU operations, and data path selections will

be elaborated in the next chapter dealing with NC4000 instruction set.

2.3.5. The I/O Ports

There are two I/O ports on NC4000 chip: a 16 bit B-Port and a 5 bit X-Port. All 21 bits are connected

to pins on the pin-grid package. All the pins are fully programmable to be input, output, or tristate, thus

allowing NC4000 to communicate with a host of standard or custom peripheral devices.

The data paths in the I/O section are rather straightforward. There are four port registers for each

port; a Data Register which connects to the pins to send or receive data to the outside world, a Direction

Register to specify whether pins are input or output, a Mask Register to indicate which pins can be

written to, and a Tristate Register to indicate whether the data on output pins are latched or tristated

after being written to. All these registers are connected to the T register, which downloads data to any

register by register write instructions and reads data from any register by register read instructions. All

16 bits in the B-port registers are used in controlling the 16 B-port I/O pins. Only the lower 5 bits in

the X-port registers are used to control the 5 X-port pins.

In the Direction Registers, a bit set indicates the corresponding pin is an output pin, and a bit reset

indicates an input pin. In the Mask Registers, a bit set indicates that writing to the corresponding pin

is prohibited. In the Tristate Registers, a bit set indicates that the corresponding output pin will go

tristate after the write cycle. The Mask and Tristate register settings do not have any effect on input

pins.

The Data Registers are used to output data patterns to the output pins and to read input data from the

input pins. When a pin is assigned as input, the corresponding bit in the Data Register can still be

written to as a comparison latch. Actual bit read from the Data Register is the XOR'ed result of the data

at the input pin and the bit written to the comparison latch. If a 1 is written to an input bit in the Data

Register (setting its comparison latch) and a 1 appears on the input pin, the result read from the Data

Register will be 0 instead of 1. Thus a free XOR logic operation can be performed on the input data on

the fly at no cost to the user.

As each input and output pin can typically sink or source 60 mA of current at about 20 pf

capacitance, NC4000 has more driving power than most of the available CMOS interface driver

chips. It can comfortably drive any CMOS or TTL peripheral chip with plenty of margin. Actually,

the B-Port is designed to drive a heavily loaded bus structure, as B stands for Bus.

The designed purpose of the X-port is to support extended memory space addressing. Two special

instructions X@ and X! put a 5 bit literal out on the X-port when the master clock goes low. Thus this

5 bit pattern can be used by the main memory as a page select to address up to 32 pages of 64K word

memory. Alternately, this 5 bit pattern can be used to select a page in the data stack/return stack

space, thus allowing the stacks to be switched between different tasks to support multiuser and

21

multitasking operations. In the current NC4000P prototype chip, X@ and X! instructions do not

work as designed. Thus the X-port pin can only be used to select memory banks statically, not

dynamically in single machine cycles.

22

Chapter 3. Instruction Set of NC4000

Let's consider how a user interacts with a conventional computer--the different layers he has to go

through between issuing a command and actually performing the demanded function. The

command is first issued to the operating system, which calls a compiled set of instructions into

memory for execution. The program usually consists of a set of statements written in either a high

level language or in assembly language. This program is compiled or assembled into a set of

machine instructions. When the machine instructions are executed, microcode inside the CPU are

invoked to do the dirty work of operating the gates and shuffling the data bits. Thus there are at least

5 levels of interpretation between youand the real action. It is a miracle that the computer works at

all through this convoluted process. NC4000 architecture reduces the layers to only two levels--user

commands and machine instructions. This greatly reduced complexity is the most important reason

for the speed and the versatility of NC4000.

NC4000 is a 16 bit microprocessor. Its basic data elements and instructions are all in 16 bit words or

cells. The instructions are sometimes called 'external microcode' in the sense that NC4000 would

take individual bits in the instruction and perform individually assigned functions in parallel. It does

not need another layer of microcode to perform functions of an instruction. The side benefit is that

many Forth instructions can be encoded in one instruction and executed in a single machine cycle.

There had been many projects implementing Forth engines in hardware. All these designs had

attempted to encode individual Forth words into single machine instructions. They were shown to be

much faster than Forth engines implemented in software because of the reduced overhead in NEXT,

NEST, and UNNEST instructions and in the operation of the stacks. Chuck Moore went far beyond

in NC4000. He attempted was to find the simplest way to control stacks and perform operations while

using the minimum number of gates. He discovered that many of the computing and controlling

functions can be performed independent of one another. Pushing or popping the stacks,

arithmetic/logic operations, accessing main memory, and input/output are operations in different

domains of the computer. They do not have to be performed serially. These distinct, almost

independent domains can be controlled by the limited number of bits in a 16 bit instruction just as

well as multiple bits in a much wider microcode. Thus it is possible to perform several functions in a

single machine cycle rather than using multiple machine cycles to perform a single function, as

implemented in all conventional microcode based computers.

Under the cmForth operating system or other Forth for NC4000, NC4000 engine directly executes

normal Forth words or programs just as any other computer operating under a Forth operating

system. A user is not really required to know the detailed structure and the machine instruction set of

NC4000 in order to use it. However, speed and efficiency can be maximized if the programmer is

aware of the special properties of NC4000, its instruction set, and the best way to program it,

especially in time sensitive applications. In this chapter, we shall discuss this instruction set in

details. Learning the instruction set is the best way to appreciate the power and versatility of this

processor. It is also important to understand NC4000 instruction set in order to study the code in

cmForth, a piece of art in software by the master himself.

23

3.1. Classification of NC4000 Instructions

There are four major classes of instructions in NC4000: the subroutine calls, the I/O and memory

instructions, the branch and loop instructions and the ALU instructions. The class of an instruction is

encoded in the most significant four bits of the machine instruction, as shown in Figure 3.1.

Figure 3.1. Encoding of NC4000 Instructions

Bit 15 is truly the most significant bit in NC4000 machine instruction. If it is zero, the instruction is a

subroutine call and the rest of the instruction contains a 15 bit subroutine address. Zero in this bit

position triggers the subroutine threading mechanism in NC4000. The program counter is pushed

onto the return stack, i.e., copied into the I register. The 15 bit address in the instruction is moved into

the Address Multiplexer A. At the beginning of the next machine cycle, the instruction stored at that

address will be fetched for execution. The Program Counter P will be pointing at the next instruction

in that subroutine.

Using bit 15 to encode a subroutine call has only one drawback--it can only call subroutines in the

lower 32K word in the main memory. The upper 32K word addressable memory cannot be used to

store executable programs. This was a very serious trade-off in the design of NC4000. The most

important argument to justify this trade-off is that Forth programs written for NC4000 can be

extremely compact due to the single cycle subroutine calls and the condensation of many Forth

words into a single instruction. Many large programs are needed to fill up the 32K word program

space. By the time memory requirements exceed 32K words, you will probably have a 32 bit Novix

chip to accommodate these stupendous programs resulting from the lazy-minded or

uncommunicative programming teams.

24

When bit 15 is set, bit 14 is used to distinguish IO/Memory instructions from ALU/Branch instructions.

When bit 14 is zero, the next two bits are used to decide whether the rest of the instruction is to be decoded

as an ALU instruction or used as a 12 bit branch address. When bit 14 is one, then the rest of the instruction

will be decoded to determine the type of I/O or memory instruction and how the I/O or memory is to be

accessed.

Another way of classifying NC4000 instruction set is shown in Figure 3.2. In this figure, the non-subroutine

call instructions are classified according to the instruction type field, bits 12-14. In this figure, all the bits

which perform specific functions are named and placed in their respective bit positions. We shall discuss

each of these instruction types in great detail in later sections. Only a few general comments will be made

here as an overview.

In all I/O, memory, and ALU instructions, types 0 and type 4-7, bit 5 is called the return bit, or ';'. This bit,

when set, will cause a subroutine return, in addition to whatever the instruction may otherwise do.

Therefore, a subroutine return in NC4000 can be a zero cycle operation; it gets a free ride when the last

instruction in a subroutine is an IO/Memory or ALU instruction. It would be difficult to optimize a

subroutine return instruction much further.

In the prototype NC4000P chip, however, this return bit should not be tagged to a two cycle memory

instruction, types 4-7, because the return operation will interfere with the memory fetching. The memory

address will be replaced by the return address from the return stack. This is not a problem with single cycle

instructions as there is no conflict in the use of the address multiplexer.

In IO/Memory and ALU instructions, bits 9 to 11 in the ALU field determine the function of the ALU

section on the chip. Thus a free ALU operation can be tagged on to an IO/Memory operation.

An ALU operation requires two operands. One of the operands is always taken from the Top register T and

the other operand is usually selected among three internal registers, specified by a two bit field Y, bits 7 and

8. In most instances, the Y field is zero, which selects the Next register N as its operand.

External data stacks are controlled by two bits: TN bit at bit 6 and SA bit at bit 4 in an ALU instruction, or

bit 14 in a memory instruction. If TN bit is set, the content of T is copied into N at the beginning of an

instruction. The SA, stack active bit, signals the external stack to perform a push or a pop operation. If both

TN and SA bits are set, old T register is copied into N register and the content of the N register is pushed on

the external data stack. If TN is zero and SA is set, then the top element on the data stack is popped back

into the N register and the data in N register is lost. The combination of control bits in the ALU field, the Y

selector, and the TN and SA bits allow NC4000 to perform most Forth ALU operations and stack

operations, as well as their combinations.

In a memory instruction, the least significant 5 bits constitute a literal field which contains a small

integer from 0 to 31.

25

Figure 3.2. NC4000 Instruction Formats

This literal is used to represent different types of information needed by the memory instruction. In a

short literal instruction, the small literal is pushed on the data stack as an integer. In an internal register

26

accessing instruction, it selects one of the registers to be accessed. In a local memory instruction, it is

the address of a local memory (the first 32 words in the main memory). These local memory words

can thus be accessed by a single instruction. In the extended memory instructions, it supplies the bank

number to be placed in the X-port to select one of 32 memory banks for memory access. In other

instructions, this field is not needed and must be cleared to zero.

In a branch instruction, bits 12 and 13 determine the type of branch and the lower 12 bits supply the

target address. The 12 bit address field specifies an absolute address within the current 4K word

page which contains the branch instruction. It is thus impossible to branch across a 4K word

boundary. The programmer must be aware of this property in the branch instructions when he is close

to a 4K word page boundary.

A 1 in this two bit field (bits 12 to 13) indicates an IF instruction, which does a conditional branch

to the following 12 bit address. The branch condition is taken from the Top register T. If T register is

zero, the IF drops T and jumps to the target address. Otherwise, IF is simply a DROP instruction. A

3 in this field indicates an unconditional branch or an ELSE instruction. The 12 bit address in the

address field is always taken as the address of the next instruction. If a 2 is in this two bit field, the

instruction is a NEXT instruction, which will decrement the I register--containing the loop index--

and will branch to the 12 bit address if I is not 0. When I is decremented to zero, the conditional end

of loop, the NEXT instruction pops the index off the return stack and terminates the loop.

Another comment about this rather complicated instruction set is that not all combinations of

control bits can generate meaningful instructions. Certain combinations simply do not make sense

at all and other combinations cause conflicting use of the registers or data paths and the results are

not always predictable. In addition, defects in the prototype NC4000P preclude some instructions or

combinations of bits and these instructions should not be used. In Table 3 .7 -8 , we have collected

all the valid ALU instructions and instruction combinations that can be safely used in the NC4000P

chip. Many of these restrictions will be removed when the production chip becomes available.

3.2. ALU Instructions

ALU instruction is the most complicated class of instructions in NC4000 chip because all 12 lower

bits in the instructions are decoded to perform functions in parallel. A firm grasp on the use of the

individual bits and their interaction is essential. Understanding will lead to an appreciation for the

power of these instructions which can compress several Forth words into one machine instruction. A

number of examples will also be given to illustrate how the field and bits can combine to form multiple

function instructions. With this information you will probably be able to decode other valid

instructions and to visualize how they would work.

A more detailed data path diagram for the ALU section of NC4000 can be of great help in explaining

the inner mechanism of the ALU instructions, as shown in Figure. 3.3.

27

Figure 3.3. Data Paths and Registers in ALU Section

The ALU performs arithmetic and logic operations using operands supplied to it from the T register

and the Y port. The function of the ALU is specified in the ALU field, bits 9-11. 8 different actions

can be performed on the two operands as shown in Table 3.1:

Table 3.1. ALU Code and Function

ALU Code Function

0 Pass T

1 T AND Y

2 T - Y

3 T OR Y

4 T + Y

5 T XOR Y

6 Y - T

7 Pass Y

The two bit Y field, bits 7 and 8, controls the multiplexer which selects one of four registers as the

source for the Y port as in Table 3.2.

28

Table 3.2. Y-Port Selector

Y Code Source to Y Port

0 N register

1 N register with carry

2 MD Multiplier/divisor register

Normal operations use the N register as the Y-port operand. The N register with carry is selected

when doing extended precision arithmetic. MD register is used to store multiplier in multiplication

operations or divisor in division. Both the MD and SR registers are involved when a square-root

operation is performed.

TN, bit 6, operates a switch connecting the N register to the output of T register. The content of

the T register is copied into the N register at the beginning of an ALU machine cycle if TN bit is set.

If T is passed through the ALU unit unchanged, a DUP operation is performed if TN is set and a

NOP is performed if TN is 0. If N is selected as the input to the ALU unit and passed through it

unchanged, a DROP DUP operation will be performed when TN is 0 and a SWAP will be performed

when TN is 1.

The Stack Active bit SA, bit 4 in the instruction, activates the external data stack. Depending on the

state of TN bit, the content of N register is pushed on the external stack or the top element on the

external stack is popped into N register. The stack action can be summarized in Table 3.3.

Table 3.3. Data Stack Code and Functions

SA TN Stack Function

0 0 ALU result to T. N not changed. No stack action.

0 1 ALU result to T. Old T to N. No stack action.

1 0 ALU result to T. External stack popped into N register.

1 1 ALU result to T. Old T to N. Old N pushed on external stack.

It would be more pleasing if an independent bit were assigned to specify the direction of the stack

activity besides the TN bit. However, it was found that the limited combinations of these two bits are

sufficient to implement most of the stack operations required by the Forth language. Many other

stack operations can be synthesized in conjunction with other activities in the ALU. The fact that

these two bits are not in a contiguous field makes it difficult to associate the instructions with their

stack effects. These were the trade-offs the designer had to make and the users have to live with them.

Bit 5 is the almighty return bit. When this bit is set, a return from subroutine function will be

triggered even as the ALU and stack functions are performed concurrently. The return bit undoes the

subroutine call, as executed by the Call instruction. The return address on the top of the return stack

or the I register is popped into the Program Counter P and the Address Multiplexer A. The next

instruction executed will be the instruction following the Call instruction and the execution will

resume. The return bit can be tagged to any ALU instruction. Thereby a free return is generated

without an explicit return instruction. If this return bit is zero, execution will continue with the next

instruction.

http://arithmetics.md/

29

At the bottom of the ALU unit, there is a shifter which can shift the results from the ALU right or left

by one bit before storing the results into the T register. The shifter is controlled by the three LSB bits in

an ALU instruction: D?, SL, and SR bits, or bits 3, 1 and 0, respectively. The bit patterns and their

functions are shown in Table 3.4.

Table 3.4. Shift Code and Function

D? SL SR Function

0 0 0 No shift.

0 0 1 16 bit shift right.

0 1 0 16 bit shift left.

0 1 1 Sign extension of N into T.

1 0 0 Not valid.

1 0 1 32 bit shift right.

1 1 0 32 bit shift left.

1 1 1 Not valid.

The bit pattern 100 and 111 above, are not valid in the prototype chip. The designed function of the

100 pattern is to shift the N register left one bit. The designed function of the 111 pattern is to shift

the N register right by one bit and extend its sign into the T register. Chip defects in the prototype

cause these functions to behave erratically.

Bit 2, % or divide bit, is used only in the three divide instructions: the divide step /', the last divide

step /", and the square-root step S'. When it is set, a conditional subtraction is performed. If the

subtraction does not generate a carry, the difference is passed to the T register. If a carry is

generated, meaning that the divide step should not be performed, the result of subtraction is not

written to T register. Division and square root can be implemented by these conditional subtraction

steps.

These discussions complete the description of the fields and bits in the ALU instructions and their

functions. Because so many things can happen simultaneously, it is rather difficult to completely

understand this ALU section and the different instructions the chip can perform. The best you can

hope to do is to take some of the valid ALU instructions and analyze them to familiarize yourself with

the instruction set. On the other hand, many of the combinations of functions can be automatically

resolved by an optimizing compiler. It can be made to recognize permissible and restricted Forth

word sequences to compile the most compact machine instructions and to fully utilize the power of

NC4000 chip. A better understanding of the inner mechanism of this ALU would enable youto

anticipate the optimization process and thus assure production of the most efficient code.

30

Table 3.5. Valid ALU Instructions

Code a=7 (Pass Y) a=0 (Pass T) a=Arith/Logic

10a000 DROP DUP NOP OVER a-

10a001 2/ OVER a- 2/

10a002 2* OVER a- 2*

10a003 0<

10a010

10a011 D2/

10a012 D2*

10a013

10a020 DROP NIP a

10a021 2/ NIP a 2/

10a022 2* NIP a 2*

10a023 NIP 0<

10a030

10a031

10a032

10a033

10a100 SWAP NIP DUP SWAP OVER a

10a101 NIP DUP 2/ SWAP OVER a 2/

10a102 NIP DUP 2* SWAP OVER a 2*

10a103 NIP DUP 0<

10a110

10a111

10a112

10a113

10a120 OVER DUP 2DUP a

10a121 DUP 2/ 2DUP a 2/

10a122 DUP 2* 2DUP a 2*

10a123 DUP 0<

10a130

10a131

10a132

10a133

Special ALU Instructions

102411 *-

102412 *F

102414 /"

102416 /'

102616 S'

104411 *'

31

3.3. I/O and Memory Instructions

The I/O and memory instructions in NC4000 are characterized by one's in the two most significant

bits and a literal value in the least significant 5 bits. The other 9 bits in between are decoded to

perform ALU, data stack, and return operations. The general format of this class of instructions is as

follows:

However, there are many special cases causing the I/O and memory instructions to appear as if they

are governed by random logic. According to Bob Murphy, who did the logic design of NC4000 with

Chuck Moore, these instructions are controlled by random logic guided by logic equations. The best

one can do is to present the entire table of valid I/O and memory instructions as shown in Table 3.6.

Based on this table, we can make a few observations which might guide you in understanding this

rather complicated instruction group.

The store bit, bit 12, will always control read and write to/from the memory or registers. If this bit is

zero, the instruction is a fetch operation; otherwise, it must be a store instruction.

The ALU field is also always predictable, as it specifies what kind of ALU operation shall be

performed on the operands. In most cases, the ALU operation can be performed on the operand while

the I/O or memory operation is being processed. However, it is not always obvious as to which

operands are used in the ALU operation.

Bit 6 is very close in function to the SA bit in the ALU instructions. If it is zero, the data stack depth is

not changed and all operations are performed on the T and N registers. these two registers will

contain the results when the instruction is completed. The C bit, bit 7, is similar to the lower bit in

the Y field of the ALU instruction. It selects the N register as the input to the Y-port of the ALU unit.

If it is set, the carry bit is also used in the ALU operation; otherwise, the N register is used without

carry.

Bit 8 selects alternate ways of accessing different types of memory or I/O. In case of literal fetch

instructions, setting bit 8 would cause a fetch of the 16 bit literal value following the instruction. A

zero in bit 8 would fetch the short literal embedded in the instruction itself. Extended memory fetch

and store instructions (16xxxx and 17xxxx types) are invoked by setting bit 8.

When bits 6 to 9 are all set (lxx7xx type), the instruction refers to the internal register specified

by the 5 bit literal field. There are 17 addressable registers in the NC4000. Their register

numbers, assigned names and functions are listed in Table 3.7.

32

Table 3.6. Valid I/O and Memory Instructions

Code a=7 (Pass Y) a=0 (Pass T) a= Arith/Logic

14a0nn --- --- nn @ a-

14a1nn nn @ --- ---

14a2nn --- --- nn @ c-

14a3nn nn I@ --- ---

14a400 --- --- n a-

14a500 n --- ---

14a600 --- --- n c-

14a7nn --- --- nn I@ a-

15a0nn nn ! --- DUP nn ! a

15a1nn --- --- ---

15a2nn nn I! --- DUP nn I! c

15a3nn --- DUP nn I! ---

15a4nn --- --- nn a-

15a5nn nn --- ---

15a6nn --- --- nn c-

15a7nn nn I@! --- ---

16a000 --- --- @ a-

16a100 @ --- ---

16a200 --- --- @ c-

16a300 --- --- ---

16a4nn --- --- nn X@ a-

16a5nn nn X@ --- ---

16a6nn --- --- nn X@ c-

16a7nn --- --- nn @a-

17a000 ! --- ---

17a100 --- --- ---

17a200 --- --- ---

17a300 OVER SWAP ! --- ---

17a4nn nn X! --- ---

17a5nn DUP nn X! --- ---

17a6nn --- --- ---

17a7nn --- --- nn !a-

Special Return Stack Instructions

140721 R> DROP

157201 >R

147301 R@

157221 TIMES

147321 R>

157701 R> SWAP >R

Note: a-: SWAP , c-: SWAP -c

33

Table 3.7. NC4000 Internal Registers

Name Number Function

J/K 0 Data/Return Stack Pointers

I 1 Return Index Register

P 2 Program Counter

-1 3 True Register

MD 4/5 Multiplier/Divisor Register

SR 6/7 Square-root Register

B 8 B-Port Data Register

B Mask 9 B-Port Mask Register

B I/O 10 B-Port Direction register

B Tristate 11 B-Port Tristate Register

X 12 X-Port Data Register

X Mask 13 X-Port Mask Register

X I/O 14 X-Port Direction Register

X Tristate 15 X-Port Tristate Register

#Times 17 I as TIMES Counter

MD and SR registers are used for special purposes, i.e., to hold necessary parameters for doing

more complicated arithmetic operations such as multiply, divide, and square-root. However, if

they are not used by these specialized instructions, these registers are available for temporary

storage.

In performing I/O functions and communication with the outside world through the B-port and

X-port, one only has to read or write the B or X Data Registers to transfer data cross the I/O pins.

Before the actual I/O operations, the pins must be initialized and assigned appropriate functions.

The function of each I/O pin can be programmed via the I/O, Mask, and Tristate Registers in the

B- and X-ports. The exact functions of bits in these registers are shown in the following table:

Table 3.8. Function of Bits in the I/O Registers

Register Bit function if set

 Input Output

Data Set comparison-latch ---

Mask --- Inhibit writing

I/O Set for output Set for output

Tristate --- Set to tristate after write cycle.

3.4. Graphic Models of Some NC4000 Instructions

The instruction set of NC4000 is quite overwhelming initially. There are too many bits in an

instruction, and there are too many different combinations. The last two sections represent my

best efforts in explaining this vast instruction set through words. In Volume 6 of More on

NC4000, Timothy Huang contributed a paper on Anatomy of the Forth Engine, in which he

34

showed several drawings on how data flows in several NC4000 instructions. These drawings

gave me the inspiration to present NC4000 instruction set in graphical form. As Confusius said:

"A picture is worth more than a thousand words". Looking at the operations of NC4000

graphically might help many readers to understand this machine better. It was unfortunate that

Timothy wrote that paper in Chinese, and not many NC4000 users could be persuaded to learn

Chinese.

The drawings I developed so far deals only with the ALU instructions, which are the most

complicated class of NC4000 instructions. They were presented in the NC4000 Users Group

Meeting at Cupertino, California, January 23, 1988. Chuck Moore was also present at the

meeting. His comment was that these drawings represent a good model of NC4000. This model

only approximates the functioning of NC4000, because NC4000 was designed not based on this

kind of models, but by a large set of logic equations compiled into gate array patterns. Many

special functions in NC4000 are impossible to represent in simple graphical models.

3.4.1. Model of NC4000 ALU

Figure 3.4 shows a schematic drawing of NC4000 CPU which is slightly different from the

drawings in Figures 2.5 and 3.3. This figure emphasizes the data flow paths and control paths in

NC4000 around the ALU and immediately related registers. The data stack is also shown to

illustrate its interaction with the N register. The N register is placed next to the shifter at the

bottom of the ALU because the N register participates in shifting operations. The carry bit is also

shown very prominently because it contains vital information, especially in extended precision

arithmetic operations.

Figure 3.4. Another View of ALU

35

Bits and fields in the ALU instructions are shown to control some data paths and some logical

elements. The control function cannot be shown completely because the bits and fields

sometimes have more effects on NC4000 operations than simply opening or closing data paths.

For example, TN and SA bits control the data path between T and N, and between N and the

external stack.

Meanwhile, the TN bit also determines the direction of data flow between the N register and the

external data stack.

The Y field controls the multiplexer at the right input of the ALU. The ALU field obviously

controls the function of the ALU unit. The divide bit % is also sent to the ALU unit because it forces

ALU to perform a conditional subtraction in the divide step and square root step instructions. The

bits D?, SL, and SR controls the shifter and the N register to perform single or double integer shifts.

In most ALU instructions, the interaction between TN and SA bits produces the most interesting

results, because of their effects on the data stack. The best way to analyze these effects is to further

group the ALU instructions according to the bit patterns in the ALU field. For each group, TN and

SA can then be assigned all possible combinations. The data paths and the end results can then be

shown graphically.

In the following subsections, we shall discuss the following groups of ALU instructions: the SWAP

group, the DUP group, the binary ALU group, the multiply/divide group, and the miscellaneous

group.

3.4.2. The SWAP Group Instructions

The SWAP group contains the familiar SWAP, OVER, and DROP instructions. The fourth

instruction DROP DUP is not a standard Forth operation. However, it discards the topmost item on

the stack and duplicates the second item. The ALU selects the N register as its source through the Y

multiplexer and passes its content directly into the T register without any modification. These four

instructions are shown in Figure 3.5.

36

Figure 3.5. The SWAP Group

In the upper left is DROP DUP. In this instruction, both the TN bit and the SA bit are cleared. The

external data stack is thus isolated from the N register, and the path from T register to N register is

also broken. The content in N register is written into the T register and the original content in T is

overwritten. The end results are that the top item on the data stack is DROP'ed and the second item is

duplicated.

If the TN bit is set, the instruction becomes SWAP in the upper right corner of Figure 3.5. Here the

content in T is copied into the N register while the original content in N is copied into the T register

through the ALU. The top two items on the data stack is thus exchanged, which is what SWAP

should do.

If the SA bit is set but the TN bit is cleared, you get DROP, as shown in the lower left corner of

Figure 3.5. Since TN is off, the content in T is lost. The content in N is copied into the T register

through the ALU. Because SA is set and TN is cleared, the top item on the external data stack is

popped into the N register. The net effect is that the top of data stack, the original T, is dropped and

all items under T are moved up one place.

When both TN and SA are set, the instruction is OVER. The original content in T is copied into the

N register because TN bit is set. The original content in N is copied into T through ALU, and pushed

37

on to the external data stack, because SA and TN are both set. Hence two copies of the second item on

the data stack are saved. The original top item is sandwiched between these two copies of the second

item. OVER is thus synthesized in NC4000.

Every ALU function thus results in four NC4000 instructions with the permutations of TN and SA.

They are all useful functions, though some of them may not have a standard Forth name.

3.4.3. The DUP Group

The DUP group is configured such that the ALU passes the content in T and stores it back into the T

register. It is basically a NOP operation if both TN and SA are cleared, as shown in the upper left

corner of Figure 3.6. Although NOP is not a standard Forth word, it is extremely useful and most

real Forth system found it necessary to implement. The NOP instruction is especially important in

NC4000; because when the data is passed from T to T, the shifter can be used to shift the data right or

left by one bit before storing it back into the T register. These are the 2/ and 2* instructions which are

implemented in most Forth system with machine code because they are used so frequently.

Figure 3.6. The DUP Group

If the TN bit is set, the content in T is saved both back into T and also into the N register. The original

content of N is written over. Again, this instruction does not have a standard Forth name. It is

equivalent to SWAP DROP DUP or NIP DUP.

38

If the TN bit is cleared and SA bit set, the result is SWAP DROP or NIP. NIP is not a standard Forth

word but it is getting very popular lately. Most of the newer Forth systems have it. The T register is

preserved through ALU. The N register, however, is overwritten by the top item on the external data

stack because SA bit is set. As TN is cleared, the top element on the external data stack is popped into

N and overwrites its original content.

In DUP, both TN and SA are set. Thus the T register is copied both into T and N, while the original

content in N is pushed on to the external data stack. SA bit connects the N register with the external

data stack, and TN bit specifies that data move from N to the external data stack.

3.4.4. The Binary ALU Group

Most of the arithmetic and logic operations in Forth pop the top two items off the data stack, perform

some operations on them, and push the resulting item back on the data stack. This operation is

achieved in NC4000 by the setting shown in the lower left corner of Figure 3.7. The ALU takes both

T and N as its inputs and stores the results back into the T register. Since the TN bit is cleared, T will

not be copied into N. Instead, the external data stack is popped into the N register because the SA bit

is set and TN is cleared.

Figure 3.7. The Binary ALU Group

In this setting, the ALU can perform +, -, AND, OR, and XOR operations on the two input numbers

from T and N. The subtraction in ALU can produce either T-N or N-T, depending upon the bit

http://stack.sa/

39

pattern specified in the ALU field. Thus we have two subtractions: - and SWAP -. Both are single

cycle instructions in NC4000. In both addition and subtraction, it is possible to include the carry bit

generated in the prior arithmetic operation. The six possible arithmetic instructions are +,+ with

carry, - , - with carry, SWAP- , and SWAP- with carry. They are sufficient to carry out extended

precision mathematic operations.

One might add that the results of the arithmetic operation can be shifted right or left by one bit in the

shifter before falling into the T register in the same machine cycle. The extra shift is very useful in

many signal processing algorithms.

The normal binary ALU operation is only one among four possibilities. The other three possibilities

are also quite useful because they preserve one or both of the input numbers, which are destroyed in

the normal ALU operation. In the upper left corner of Figure 3.7, the content in N is preserved

because both the TN and SA bits are cleared and the N register is isolated from T and the external

data stack. This is equivalent to OVER SWAP alu-op, where the second item on the data stack is

preserved.

If the TN is set and SA is cleared, as shown in the upper right corner of Figure 3.7, the content of

the T register is saved by being copied into the N register. The results can be described as OVER

SWAP alu-op in standard Forth terminology.

If both TN and SA are set, as shown in the lower right corner of Figure 3.7, the content in T is saved

by copying into the N register. The original content of N is also saved by being pushed on the

external data stack. The result is 2DUP alu-op or OVER OVER alu-op.

These three variants of the normal ALU instruction are useful because in many instances we have to

duplicate arguments of an ALU operation so that they can be used later. These instructions

complement the binary ALU operations in that one or both of the arguments can be saved.

3.4.5. The Multiply/Divide Group

16 bit multiplier is very expensive to implement in gate array technology, because it requires a large

number of gates. In NC4000 design, Chuck Moore chose the most economical solution: only a small

set of logic is needed to perform conditional addition and subtraction, which could then be repeated to

accomplish 16 bit multiplication and division. By adding an extra register, he could even do the

square root by repeating the conditional subtraction. According to his design, multiplying two 16 bit

numbers to form a 32 bit product needs only 16 machine cycles. To divide a 32 bit number by a 16

bit divisor to form a 16 bit quotient and a 16 bit remainder needs only 18 machine cycles. To take

the square root of a 32 bit number also needs only 18 cycles. By modularization the logic, these

rather complicated operations can be realized in NC4000 with fewer gates and higher speed than the

designs in conventional microprocessors like 680x0 and 80x8x.

Figure 3.8 shows four of these complicated operations. The fundamental operation is the D2* and

D2/ operations shown in the upper left corner of Figure 3.8. The ALU is set up to pass T through

without modification. By setting the D? bit in the instruction, the shifter at the bottom of ALU is now

combined with the N register to form a 32 bit double integer shifter. If SL bit is also set, the 32 bit

40

integer in the T-N register pair is then multiplied by 2. If SR bit is set, the T-N register pair is then

divided by 2. Multiplication steps, division steps, and square root step all use this double integer

shifter to adjust the product.

The multiply step instruction *', octal 104411, can be decoded as follows: adding MD register to T,

then shifting the results right with the N register by one bit. The assumptions are that MD register

holds the multiplicand, the N register is initialized to the multiplier, and the T-N register pair holds

the partial product. Simple addition cannot generate the product. The trick is to use additional logic to

detect the least significant bit shifted out of the N register. If this bit is a one, the sum of T and MD is

shifted and stored into the T register. However, if the bit shifted out of the N register is a zero, the

addition is suppressed and T is passed unmodified into the shifter. This conditional addition

controlled by the least significant bit in N achieves one step of multiplication. By repeating *' 16

times, a 32 bit product is produced in the T -N register pair.

Figure 3.8. The Multiply/Divide Group

41

The infamous multiplication bug of NC4000P, that it cannot multiply odd numbers, is the result of

a mistake which ignores the least significant bit in the MD register during addition. Thus if the

multiplicand in MD is odd, the least significant bit is ignored.

Repeating *' 16 times produces a 32 bit unsigned product from an integer multiplicand and an

unsigned multiplier. If the multiplier is a signed, 2's complement number, the resulting product

would be erroneous. For a signed multiplier, the last step of the multiplication should use the signed

multiply step *instruction, octal 102411. This last step does a conditional subtraction instead of a

conditional addition (the ALU code is 2 instead of 4). This step correctly interprets the most

significant bit in the multiplier as a sign bit instead of as a regular bit 15. The result will be a 32 bit

2's complement product.

NC4000 provides another interesting multiply step, the fraction multiply step *F instructions, octal

102412. This step should also be applied as the last step in multiplication. It is similar to *- in that a

conditional subtraction is performed. However, instead of shifting the product to the right, it shifts

the product to the left by one bit. The reason is that the multiplier and the multiplicand are now

interpreted as fraction numbers; i.e., the most significant bit is still the sign bit, but the next bit is

the first bit after a binary point placed between bit 15 and bit 14. If a 32 bit product is produced the

normal way, the binary point should be placed between bit 29 and 28. In the last step, *F shifts the

product to the left, and thus restores the binary point between bit 31 and 30, forming the correct

fraction product.

The divide step /' instruction, octal 102416, is shown in the lower left corner of Figure 3.7. The bits

in this instruction can be interpreted as: subtract MD from T and shift the results with the N register

left by one bit. This does not sound like a division. The trick lies with the % bit, which is set in this

instruction. This % bit controls the ALU to effect a conditional subtraction. If the subtraction is

successful and no carry is generated from the subtraction or T>=MD, then the difference is sent into

the shifter and shifted with N. If a carry is generated in subtraction, meaning that MD is greater than

T, the subtraction is nullified and the unmodified T is sent to the shifter. At the same time, if

subtraction is successful, a one is shifted into the least significant bit of N; otherwise, a zero is

shifted into N.

To begin the division process, the 32 bit dividend is placed in the T-N register pair and the 16 bit

divisor is put in the MD register. The divide step /' is repeated 15 times. The last step of division

requires another divide step, the last divide step /", octal 102414. /" does the same thing as /', except

that the results of the conditional subtraction are not shifted, since the SL and SR bits are cleared in

this instruction. The reason is that the remainder of the last divide step must not be shifted, or the

remainder would be only half of the correct value. The division is restricted to positive dividend and

unsigned divisor. The quotient will be in N register and the remainder in T register.

The square root step S', octal 102616, is shown in the lower right corner of Figure 3.7. It literally

means that the SR register is conditionally subtracted from the T register, and the result is shifted left

with the N register. Square rooting is of course much more complicated than that. Logically, both the

MD and SR registers are involved in a subtle fashion to achieve the desired goal. At any step, the T-N

register contains the current remainder of the square root, the MD register holds the partial root, and

42

the SR register holds the least significant test bit. The whole thing is quite similar to the situation

when you do long hand square rooting. The partial root in MD is OR'ed with the test bit in SR and

subtracted from the T register. If T is less than this test number, the subtraction is nullified and T is

passed into the shifter. If T is greater or equal to the test number, the subtraction results is passed into

the shifter. The shifter and N is shifted left by one bit. If the subtraction is performed, a one is also

shifted into the N and MD registers. The test bit in the SR register is shifter right by one bit. As the T-N

pair is shifted to the left and the SR register is shifted to the left after a S' step, the remainder in T-N and

the root in MD-SR are displaced by 2 bits as required by square rooting.

To start this square root process, the 32 bit squared value is placed in the T-N register pair, MD must

be cleared to zero, and SR is initialized to 32768, which is the initial test bit pattern. S' can then be

repeated 1 6 times. The square root is generated in both MD and N, and T contains the remainder.

The restriction is that carry cannot be generated in any step during this process. This restricts the root

to be less than 16192 in the prototype NC4000P version.

These more complicated mathematic operations show that the model we are using to explain the

function of NC4000 is not quite adequate; multitude of additional logic exists in NC4000 to enable it

to perform such diverse tasks in a small package. Nevertheless, this model of NC4000 ALU is very

useful in capturing the major activities of NC4000 in these various instructions.

3.4.6. Miscellaneous Instructions

There are many other interesting instructions in NC4000 other than the ALU instructions. They are in

the general category of 10 and Memory instructions. It is interesting to relate function with the bit

patterns in these instructions, especially when you have to decipher octal dump of a code segment. As

mentioned in the last section, bits 6-8 in the IO/Memory instructions do not follow fixed patterns and

thus are very difficult to interpret. Thus no attempt will be made here to explain the bit pattern in this

field.

The return stack is not easily manipulated by the user. However, the top most element of the return

stack is cached on chip as the I register. This register can be accessed by many instructions using the

register 10 instructions. The I register is assigned two register numbers, 1 and 17. Normally when the

I register is used as the top of the return stack, it is addressed as register 1. If it is used as a count

register, it is addressed as register 17.

The instructions >R, octal 157201, and R>, octal 147321, are of special interests as shown in Figure

3.8. The data stack and the return stack in NC4000 can be viewed as a 515 cell register array, with

the I, T, and N registers at the center. The entire array can be shifted to the left by >R and to the right

by R>. The three registers at the center of this large array is a window by which ALU has access to the

array.

Three useful instructions related to the return stack through the I registers are: R@ or I, octal

147301, which copies the content in I and pushed them into the T register; R> DROP, octal 140721,

which discard the I register and pops the external return stack; and R> SWAP >R, octal 157701.

The last instruction looks very complicated. It is actually very simply because it is a register

exchange instruction I@!, by which the content in T is exchanged with the content of another on-

43

chip register, which happens in this case to be the I register.

The TIMES instruction, octal 157221, is very similar to >R. As the content in T is pushed into the I

registers, NC4000 simultaneously latches the next instruction in the Instruction Latch register L and

repeats this instruction until I register is decremented to zero. Extra logic in NC4000 decodes this

instruction to accomplish this single instruction repeating function.

All the memory fetch instructions, such as the regular @, local memory fetch, long and short literal

fetch, and internal register fetch, get data from memory and deposit the data into the T register. The

data is fetched through the Memory Port register M and passed into T through N and ALU.

Therefore, some arithmetic or logic operation can be performed on the data fetched before storing it

into the T register. As memory fetch usually takes two machine cycles, the second cycle can be used

to do one more ALU operation on the data and save a cycle.

In accessing large arrays of data stored in memory, the T register usually holds the address pointing

to the array. Normal fetch instruction destroys this address, making it very awkward to program

because addresses have to be saved and restored to the T register. NC4000 provides two powerful

instructions to help these array operations: @+ (1647nn), @- (1627nn), !+ (1747nn~, and !-

(1727nn). These instructions retain the array address in the T register. Moreover, they allow a small

number between 0 and 31 to be added to or subtracted from the address in T simultaneously with the

memory operation. Using these instructions with the TIMES repeating instruction, you can scan very

large arrays in NC4000 using only one machine cycle per access, because the memory address is

generated automatically and the memory access instruction is latched in L. Some of these array

operations are shown in Figure 3.9 also.

44

Figure 3.9. Return Stack and Array Operations

45

Chapter 4. NC4000 Computers

4.1. Commercial Products Using NC4000 Chip

One of the major design goals Chuck Moore wanted to achieve with NC4000 chip was ease in

constructing a high performance computer with minimal parts and resources. All the necessary

signals are brought out to the pins on the chip package, making it very easy to attach external

memory and control circuitry to form a complete computer system. There are several computers

already being built and are available commercially, based on NC4000 chip. Many others have been

custom built to solve specific problems.

4.1.1. Early Alphabetic Boards

When the first wafer of NC4000 was diced at Mostek in early 1985, about 80 good chips passed the

functional tests. Chuck Moore was the first person to take delivery from this batch. He built a PC

board to host these first chips and called the resulting computer Alpha Board for obvious reasons.

Chuck used the Alpha Board to demonstrate the performance of NC4000 and developed the first

package of software for it. Alpha Board was Chuck's personal computer and was not distributed

commercially. The board is about 6" by 4" in size, containing about 8K words of memory, 2K

words for two stacks, a few glue chips, and a clock. It ran at 7 MHz maximum. Chuck was able to

generate color CRT displays with this board in many of his demonstrations.

Novix took the rest of the batch from Mostek and built Beta Boards with them. The Beta Boards were

sold by Novix as development tools for NC4000 chips. The boards measured 10" by 14". It used

high speed RAM's and ROM's and was specified to run at 7-8 MHz. 56K words of memory are on

board, as well as two RS-232 serial ports and a SCSI disk interface. The software delivered with the

Beta Board was a version of poly-Forth developed for Novix by Forth, Inc. There are two versions of

the Beta Board system, one using an IBM PC as a host computer and the other a stand-alone system

with its own terminal and disk drives.

The second batch of NC4000 chips were made by Mostek and delivered to Novix in early 1986. This

batch used the same mask as the first batch, but the pins were reduced from 128 to 121. Novix

modified the Beta Boards to accommodate the new NC4000 chip. Novix also incorporated the new

Beta Boards into a package with hard disk drive and floppy disk drive for software and hardware

developers.

Chuck Moore updated the design of Alpha Board for the new NC4000 chips and distributed it as a

Gamma Board kit, which consists of a NC4000 chip, a 6" by 4" PC board, and a pair of 2732's with

cmForth firmware. This kit was sold through his company Computer Cowboys in Woodside,

California. The kit also contains 360 Augat Holtite press-fit sockets for mounting the chips. User

must supply four 6264 CMOS memory chips, a 74HC132 NAND gate chip, a 4 MHz clock, and a

few resisters and capacitors to populate the board. To use the board, one only has to supply 5 V to Vdd

and hook a terminal to the pseudo RS-232 port on board.

Software Composers, a company in Palo Alto, California, also built a single board computer based

46

on NC4000 chip. This single board computer was called Delta Board with a code name SC1000. It

was very similar to Gamma Board in design but with a different layout. The memory bus and the I/O

bus are brought to a 72-finger edge connector with pertinent timing signals. The bus structure makes

it easy to add memory and peripheral devices to the single board computer. It has 8K words of RAM,

4K of ROM, two stacks, and a serial port. It also uses cmForth as its operating system. The Delta

Board is available both in assembled form and in kits. Software Composers is also producing

supporting accessories such as power supply, back plane, expansion memory board, etc.

These alphabetic boards represented the early efforts to incorporate NC4000 chips into usable

computer designs. Since NC4000 is very easy to use and very forgiving in the power supply and

interfacing requirements, many people used it to build their own systems for very specific

applications. It is impossible to document all these computers.

4.1.2. ForthKits from Computer Cowboys

Computer Cowboys is Chuck Moore's company selling NC4000 products and services. The

Gamma Board was its first NC4000 product, which was officially named as ForthKit 1 or Fk1.

Since Chuck owns this company, he is freed from all the customary constrains in developing new

products. As demonstrated in the design of the ForthKit, he showed no respect to common

engineering practices. The chips are mounted on both sides of the PC board to minimize the board

area, which terrified many electronic engineers. Memory and I/O buses are also brought out on both

sides of the PC board.

Chuck built boards in batches, typically 30 to 50 boards in a batch. After these boards were sold out,

his would design a new board, incorporating all the new ideas developed with the old board. Hence

we have seen the ForthKit 2, ForthKit 3, and now he is at ForthKit 4, as of late 1987.

Improvements in the ForthKit 4 over the previous versions include the following:

• Power and I/O routed to 3x32 100 mil header (DIN 41612)

• Main memory, two stacks, and I/O spaces each having their own 2x20 headers for

expansion

• Provision for MAX232 to generate true RS-232 signals

• Floppy disk interface, and video display interface.

The ForthKit 4 is priced at $503.00, including NC4016 CPU, Fk4 board, 10 MHz clock, cmForth

in PROMs, RAMs, Augat Holtite sockets, and miscellaneous parts. Assembly and testing is

$100.00.

4.1.3. Products from Novix, Inc.

Novix is still the only source of NC4000 chips. The NC4000P prototype chip was renumbered as

NC4016. However, the chip is exactly the same as NC4000P, with all the known bugs. Novix had

announced the much improved version, NC6000/NC5000 series of chips. Samples of NC6000

were delivered to Novix by Mostek in late 1987. It will be available in early 1988.

47

Following is the Novix product list:

Beta Board: 64K words memory, 2 serial ports, SCSI interface, polyForth OS $3500.00

Micro Mainframe: Beta Board, polyForth, floppy drive, Winchester drive, optional tape backup,

$7500.00

NB4100 PC Coprocessor Board: 128K high speed RAM, PCDOS interface, 4K byte dual port

RAM bus interface, $1250.00

NB4300 STD Bus Card: 128K bytes high speed RAM, one RS-232 port, 20 bit address and 8 bit

bus connection, $1170.00

Tiny Turbo 4000 Board: 4K PROM, 8K CMOS RAM, 4.5x6.5" board, Novix 83-Forth, $595.00

NS4100 Small C Compiler $149.00

4.1.4. Products from Silicon Composers

Silicon Composers, originally the Software Composers, was formed by Dr. George Nicol to produce

NC4000 based computers. It started with the Delta Board and has developed a range of products

using NC4000 as the CPU. Recently, it is marketing the FORCE chip set from Harris

Semiconductors on an IBM AT coprocessor board, which is the first commercial product sporting

the Harris Forth engine. Its product list is as follows:

Delta Board SC-1000CPU: 4K ROM, 8K RAM, one RS-232 port, SC-1000 2x36 edge connector

bus, $795.00

Delta Evaluation System: Delta Board with power supply SC-1000DES and RS232 cable, $895.00

Delta Development System: Delta Board, 7 slot backplane, Model 1 56K words CMOS RAM,

power/battery card, $1495.00

PC4000 Plug-in PC Board: IBM PC coprocessor board, 512K byte RAM, PC bus interface,

SCForth development language, $1495.00

AT/FORCE Coprocessor Board: Harris FORCE core chip set, 7 MHz clock, 32K bytes RAM, AT

bus interface, optimizing compiler/ linker FCOMPILER, $4500.00

A range of software products supporting the above hardware.

4.1.5. Other Companies and Products

FB-4016 from Forth, Inc.: IBM PC coprocessor board, 128K bytes RAM, 16K bytes dual ported

RAM for DMA with PC, polyForth operating system, up to 6 boards in a PC, $3450.00

48

V4000 CPU Board from VME Inc.: standard VME bus, 128K bytes dual ported RAM, two RS-232

ports and a parallel port on P2, $4500.00

Novix Personal Computer by Novix Solutions: ForthKit 3 board, 32K words RAM, BOOK bytes

3.5" floppy drive, modified cmForth, $1000.00

BASEBOARD by SoCal Skunkworks: 16K to 128K of RAM, true RS-232 port, reverse power

protection, SC-1000 bus connector, $400.00 for board with 128K RAM.

4.1.6. List of Manufacturers

Computer Cowboys

410 Star Hill Road Woodside, CA 94062 (415) 851-4362

Forth, Inc.

111 N. Sepulveda Blvd., Manhattan Beach, CA 90266

(213) 372-8493 (inside California) (800) 55-Forth (outside California)

Novix Inc.

19925 Stevens Creek Blvd., Suite 280 Cupertino, CA 95014 (408) 255-2750

Novix Solutions

7067 Mayhews Landing Road Newark, CA 94560 (415) 796-1037

Silicon Composers

210 California Ave., Suite I Palo Alto, CA 94306 (415) 322-8763

SoCal Skunkworks

5358 East Falls View Drive San Diego, CA 92115 (619) 583-5730

VME Inc.

560 Valley Way Milpitas, CA 95035 (408) 946-3833

4.2. Build Your Own NC4000 Computer

What I want to do here is to describe a typical design of NC4000 based computer. By providing the

reader with enough essential information on this design, one should be able to build a small computer

using a NC4000 chip, or incorporate the design into a system to suit your special application.

This design is very similar to that of Gamma Board and that of Delta Board, because Chuck Moore

provided the basic information to help developing the Delta Boards. The schematics in the following

sections are thus useful for users of either board. The design is broken down into three major

sections: CPU, stacks, and memory. Each section will be discussed in detail.

49

4.2.1. The CPU Section

NC4000 chip, its control and I/O connections are shown in Figure 4.1. The memory interface to the

main memory and two stacks will be elaborated later. Here we shall only be concerned with the

immediate control signals passed to NC4000 chip.

Figure 4.1. CPU Section of a NC4000 Computer

The CLK input is driven by a single phase CMOS clock. The frequency of this clock depends on the

memory speed and the maximum speed of the chip. A general requirement of the clock is that the

50

high period of the clock must be longer than 65 ns to allow NC4000 enough time to generate correct

memory and stack addresses. The low period of the system clock must be long enough for the memory

to send data back on the data lines. If you wanted the chip to run at its full speed, all memory chips

should have an access speed less than 60 ns. Using slower but cheaper memory chips with access

time of about 100 ns, the maximum clock rate would be limited to less than 5 MHz. 4 MHz is a good

choice with 150 ns memory chips.

A CMOS crystal clock provides stable and accurate timing for most applications. A simple RC

oscillator can also be used as clock source. However, because the clock is used to control the baud

rate of the RS-232 serial port, a CMOS crystal clock might be more appropriate. The duty cycle of

the clock can vary from 40 to 60%.

The clock signal is distributed throughout the entire computer, synchronizing other components

with NC4000. The low period of this clock is used to enable memory read or write. At the rising edge

of the clock, all input signals to NC4000 are latched by NC4000. The memory and I/O write enable

signals, i.e., WED, WER, WES and WEB, have different timing characteristics.

However, when the clock is low, these enable signals are assured to be valid. The falling edge of the

clock can thus be used to latch these enable signals into the memory or I/O device.

RST (reset) input is connected through a NAND gate to an RC network. The RC network generates

a reset sequence during power-up by holding RST input pin low for about 100 ms after 5 V power is

applied to the chip. When RST is released to 5 Volts, NC4000 will execute the RESET word stored in

ROM memory at address 1000H. The reset sequence assures that NC4000 is initialized properly

and then enters into the text interpreter loop. To bring the RST pin low, the driving chip must be able

to sink 60 mA of current. 74HC132 or equivalent is required.

INT (interrupt) input is normally pulled to 5 V through a pull-up resistor. When this input is

grounded and then released to 5 V, an interrupt request flip-flop is set inside NC4000. If interrupt is

enabled, NC4000 will make a subroutine call to memory location 20H where an interrupt service

routine must reside. Return from this subroutine call will then reset the interrupt flip-flop for the next

interrupt. When the interrupt request flip-flop is set by an external interrupt signal and the interrupt

is disabled, the subroutine call to location 20H is suppressed but the flip-flop will remain set until

interrupt is enabled and serviced. Further interrupts before the flip-flop is reset will then be lost.

Bit S(100H) in the Tristate Register of X-port (register 15) is the interrupt enable bit.

In the NC4000P prototype chip, the use of interrupt is severely limited because interrupt must not

occur during a two cycle memory instruction or during a jump instruction. Interrupt will destroy the

memory address in the address multiplexer and the interrupt service routine will lose its proper return

address. Interrupt can only be enabled during a sequence of single cycle, non-jump instructions.

4.2.2. I/O Ports

All sixteen B-port I/O lines and three of the X-port I/O lines--X1, X2 and X3-- are configured by the

reset routine to be output lines and are pulled to ground. As a result it is safe to leave all these I/O lines

51

open. Input lines to NC4000 must not be left floating because NC4000 tends to overheat if it finds

un-terminated inputs.

Each of the output lines thus configured can draw 60 mA from the device connected to it. If you are

going to connect other devices to these ports, be sure that the devices can withstand this abuse. To use

any of these lines as input to NC4000, you will have to modify the RESET routine in cmForth so that

NC4000 will be configured correctly upon power-up or reset.

X0 and X4 in the X-port are used to implement a serial communication port in this design. This serial

port allows NC4000 chip to talk to a standard RS-232 terminal. It is not a true RS-232 port because

the voltage level is between 0 and 5 Volts. However, it does communicate correctly with all standard

RS-232 equipment.. X0 is the transmitter and X4 is the receiver. X0 can drive the receiver of a RS-232

device directly. X4 cannot be connected directly to a RS-232 transmitter because the transmitter

swings to -9 volts. The negative swing must be limited to protect the diode in NC4000. The simplest

solution is to put two 3K current limiting resistors between these two ports and the external RS-232

device. Two resistors are needed to prevent damages to NC4000 because the RS232 device may have

the transmitter and the receiver pins reversed.

4.2.3. Main Memory

In the design of a small computer with NC4000 as the central processing unit, there are two

important constrains in the arrangement of memory. One is that the reset routine must begin at

location 1000H and some ROM memory must be put in the neighborhood of 1000H for a self

booting system. The other is that memory location 0 to 1FH are local memory to NC4000, which can

be accessed by single cell local memory instructions. cmForth uses many of these local memory cells

to store system variables for easy access. Therefore, memory around location 0 must be RAM

memory.

If memory chips came in 4K byte sizes, the memory design would be straightforward. We would

decode memory in 4K pages and arrange ROM's and RAM's accordingly. However, low cost, static

CMOS RAM's are available either in 2K or 8K byte sizes. The choice is either using many small

chips or wasting space in large chips.

Chuck Moore suggested the following decoding scheme which would fully utilize a pair of 8K byte

RAM chips with a pair of 4K byte PROM chips by partially decoding the RAM memory space. This

decoding scheme is shown in Figure 4.2. A12 address line is inverted by a NAND gate. The negated

A12 signal is used to drive the positive chip select CE line of 6264 RAM chips and the negative

output select /OE of 2732 PROM chips. Address line A13 is connected to the A12 pins on 6264

chips. This allows the RAM's to respond to addresses from 0 to OFFFH and from 2000H to 2FFFH,

while the PROM's reside between 1000H and 1FFFH.

52

Figure 4.2. Memory Decoding for a Small NC4000 Computer

This partial decoding method fully utilizes the 8K byte 6264 RAM chips. The problem is that it

would not allow more than 8K words of RAM in the system. It is quite suitable for very small

systems, but will make memory expansion very difficult.

For a system which must use more than 8K words of RAM memory, a conventional decoding

scheme shown in Figure 4.3 is more appropriate.

A 74HC138 1 of 8 decoder chip is used to select memory pages of 8K word size. Address lines A13,

A14, and A15 generate address select signals to enable memory pages. In the lowest memory space

or page 0, RAM must occupy addresses from 0 to FFFH and ROM must occupy addresses from

1000H to 1FFFH. This is achieved by using negated A12 to enable ROM via /CE and using A12 to

select RAM via /OE. RAM chips above 2000H are selected by the 74138 decoder directly.

In this decoding method, half of the 8K RAM in page 0 is wasted. However, this system can

accommodate 64K words of memory for a full blown NC4000 computer.

It is important that the chip select (/CS) pins of the memory chips must always be enabled by tying

them to ground, because the time delay in memory chips from chip select to data available is too long

to be useful with NC4000. Using the chip enable (CE) and output enable (OE) to select

appropriate chips allows these slow and inexpensive ROM and RAM chips to run at a rate much

higher than that specified in the data sheets.

53

Figure 4.3. Memory Decoding of a Large NC4000 Computer

4.2.4. Data Stack and Return Stack

NC4000 supports two external stacks, one for subroutine return addresses and one for data to be

passed between subroutines or words. Since these stacks have data paths independent of the main

memory bus and I/O bus, NC4000 can access all these data buses simultaneously in a single clock

cycle. The most significant result is that a subroutine call can be performed in a single clock cycle.

The data path to either stack includes a 16 bit wide data bus and an 8 bit wide address bus, in addition

to the respective write enable line and the common clock signal. The 8 bit width of the address bus

limits the depth of the external stacks to 256 words. For most application, two stacks of 256 words

deep are more than adequate. However, it is difficult to find cheap static memory of this depth.

Currently, the most readily available static RAM memory chips are either 2K bytes (6116) or 8K

bytes (6264 or 6265). It seems to be a great waste to use only 256 bytes in them, but that's life.

In Figure 4.4 the wiring of both the data and return stacks are shown schematically. We use 6264

chips as an example, because they are also used for the main memory. The circuit for smaller 6116

is almost identical and can be inferred easily. Using either type of RAM chips, the timing and

control are similar. The chip select and output enable lines are always enabled by tying either to 5 V

or to ground. The chip enable lines (/CE) are enabled by the main clock during the low half of the

clock period. The write enable lines (WES and WER) are connected to the write enable lines (/WE)

of the respective chips.

54

Figure 4.4. Data and Return Stacks of a NC4000 Computer

Since NC4000 only supplies 8 address lines to either stack, the extra address lines on the RAM chips

must be either pulled to 5 V or grounded. If you absolutely must have more than 256 words for a

stack, you can use the I/O lines in B-port or X-port to control the most significant address lines and

swap the stacks in pages of 256 words.

4.3. Circuit Board for NC4000 Computer

From the above description, a single board computer using NC4000 as its central processing unit is

very simple, with a chip count of about 10. A 6" by 4" PC board is more than enough to host these

chips. For those who can handle wire wrap guns or tools comfortably, constructing such a computer

will be a one-day project. To avoid wiring errors, a printed circuit board is a much better way to go.

Since both Chuck Moore's Computer Cowboys and Silicon Composers are supplying PC boards

with NC4000 chip, it is worth the extra cost to buy their kits and do the assembly yourself.

A final note on the power supply. NC4000 computer as described consumes about 200 mA at 5 V,

with a 4 MHz clock. The voltage of the power supply is not very critical. It can vary from 4 to 6

Volts. A small regulated 5 V power supply of any kind is adequate. A wall mount 6 Volt power

supply for video games should work well, too. Chuck tried the ultimate power supply: 3 or 4 alkaline

D cells. He estimated that 3 D cells could last 30 hours and 4 cells, 50 hours. If you had a Radio

Shack 100 portable computer to substitute for a terminal, you would have a truly portable and

powerful computer in a briefcase.

55

4.4. Hardware Enhancements

In designing NC4000, Chuck Moore wanted it to run as fast as it possibly can, and the speed of

program execution is the primary consideration. To realize a complete CPU with only 4000 gates,

the design must be very efficient in gate count. To achieve the highest speed with limited number of

usable gates, many desirable features had to be sacrificed. The trade-off between functions and

speed is particularly apparent in that the top half of the memory space cannot be used to store

executable code, and that branching and looping are limited to absolute addresses within the current

4K word segment. The very heavy emphasis on the B port and X port is also indicative of Chuck

Moore's intention to use NC4000 as high speed controllers rather than general purpose computers.

Limiting the external stacks to a depth of 256 elements is acceptable for most applications, but not

adequate to support recursions in general.

Because of the large number of signals brought out to the pins, most of the limitations in NC4000

can be eliminated with appropriate external hardware. In this section, we shall explore some

possibilities to circumvent these limitations and enhance the functionality of NC4000.

4.4.1. PAL Memory Decoder OF5138

The architecture of NC4000 makes it very difficult to optimize the memory design, especially for

systems which requires large amount of memory. There are two constrains in configuring memory

for NC4000. The reset vector must be located at 1000H, requiring that ROM memory must be at

this location. The local memory from 0 to 1FH is optimized to store frequently accessed variables

because it can be addressed by single word instructions. Thus we need RAM memory from 0 up. In

the current designs of NC4000 computers, memory is generally decoded in 4K word pages so that

RAM can be assigned to addresses 0 to FFFH and ROM to 1000H to 1FFFH. As large size memory

chips become cheaper and readily available, decoding in 4K word pages becomes inefficient and

often awkward for deriving a sensible memory design.

Table 4.1. Pins of OF5138

Pins Function

Vcc 5 V power supply, +-10%.

Vdd Ground and power return.

A12-A15 Input. Connect to address lines from NC4000.

X1-X3 Input. Connect to extension port of NC4000 to select memory banks.

/CLK Input. Connect to the master clock driving NC4000 system. Frequency limit 4

MHz. Low period gates the bank select signals to output pins.

/EN Input. Low active chip enable.

EN Input. High active chip enable.

ROMO Output. Low active. Select ROM memory from 8000H to FFFFH. It is also

active for memory between 1000H and 1FFFH where Forth kernel must

reside.

RAMO Output. Low active. Select RAM memory from 0 to 7FFFH, except the

region between 1000H and 1FFFH.

RAM1-RAM6 Output. Low active. Select one of 6 banks of RAM or ROM memory to

56

respond to addresses from 8000H to FFFFH, in place of ROMO bank.

OF5138 is a PAL chip I designed specifically for large NC4000 computer systems. With this

single chip decoder, one can build a wide range of products using as little as 8K bytes each of ROM

and RAM memories, or as much as 512K bytes of ROM/RAM memories for memory intensive

applications.

The optimal size of ROM or RAM chips for NC4000 is 32K bytes because NC4000 can only

address 32K words as program memory. The 32K byte PROM chip, 27256, has been available in

quantity for more than two years now. The static RAM chip of the same size is now available from

Toshiba as 43256. The price of 43256 is expected to drop to $10 within 1987. OF5138 can decode

banks of these 32K byte memory chips directly. If one uses smaller memory chips, additional logic

is necessary to select chips inside 32K word banks.

OF5138 is housed in a 20 pin DIP plastic package. The pin-out is shown in Figure 4.5. The

function of each pin is summarized in Table 4.1.

Figure 4.5. Pinout of OF5138 Decoder Chip

Figure 4.6 shows a memory system which can be decoded by a single OF5138 decoder chip. It

includes a RAM memory bank in the memory range between 0 and 7FFFH, a ROM memory bank

between 8000H and FFFFH. The ROM memory bank shares its address space with the other 6

banks of RAM/ROM memory. The RAM memory banks can accommodate static RAM chips of

sizes from 4K bytes to 32K bytes. The largest RAM chip is 43256. The ROM chips can also range

from 4K bytes to 32K bytes (2732 to 27256).

A minimal system would use two 2732's to store the Forth kernel and two 6116's for the kernel to

operate. Note that RAM memory between 1000H and 1FFFH cannot be addresses because the

decoder would activate the ROM memory and use code stored in the physical memory between

9000H and 9FFFH. This range of ROM is always activated for code execution no matter which

bank of the upper memory is selected to ensure that the Forth kernel is always available to NC4000.

The maximum memory OF5138 can handle is 512K bytes divided into 8 banks of 64K bytes each.

The most convenient implementation would use 27256 for ROM's and 43256 for RAM's. If one

desires even larger memory space for memory intensive applications, it is possible to use additional

X-port or B-port pins in NC4000 to drive the /EN and EN chip enable inputs. This method allows

57

the designer to use several OF5138 decoders to select more than 8 banks of memory.

Figure 4.6. Memory Map of a 512K Byte System

4.4.2. Stack Expansion Counter OF5493

OF5493 is an 8 bit up-down counter chip specifically designed for NC4000 Forth microprocessor

to expand its data stack to 64K words, making the stack space a useful buffer area to store large

amount of data transferred between the memory space and the I/O space. The output bits from the

counter become the higher byte of the stack pointer register, extending the stack pointer (K register)

from 8 bits to 16 bits, as shown in Figure 4.7.

OF5493 contains an 8 bit up-down synchronous counter with a common clock to load the counts.

The counter is incremented whenever it detects a transition from all high to all low in the 8 input

pins AO-7. The counter is decremented when the input pins make a transition from all low to all

high. This behavior makes the 8 counter output pins act like an 8 bit extension of AO-7 used as a

stack pointer. Thus if we connect A0-7 to the data stack pointer output K0-7 from NC4000 chip, and

/CLK to the inverted master clock in NC4000 system, the combined A0-15 lines provide a 16 bit

stack pointer to address the static memory used as external data stack. The data stack is thus extended

from 256 words to 65536 words if all the address lines are utilized.

As NC4000 provides valid stack pointer K0-7 at the trailing edge (high to low) of the master clock

CLK, and the OF5493 counter is latched by the leading edge (low to high) of the clock, CLK must

be inverted before connected to the /CLK input. Internally, the setup time between when addresses

are valid and the latching of the counter should be 35 ns nominal, to allow the input signal to

propagate through the gates to the output latches. This condition is generally satisfied when the

clock frequency is 4 MHz or lower, because the stack pointer address is valid 60 ns ahead of the

trailing edge of the master clock.

58

Figure 4.7. Pinout of OF5493 Counter Chip

The counter can be preset to all high output by pulling the /RST line low, or it can be set to the input

AO-7 by pulling the /LD line low. These control signals are useful to set the counter to a known

state. However, if the counter is used only as an extension to the data stack pointer, it does not have

to be set to any specific value. Thus the /LD and /RST lines can be left open or tied to Vcc for

NC4000 application.

Figure 4.8 shows how OF5493 can be used to extend the data stack of NC4000 from 256 words to

65536 words by expanding the data stack pointer. Note that an extra inverter gate is needed to invert

the clock from NC4000 to latch the counter. The same circuit can be used for the return stack. The

return stack needs to be extended if NC4000 will be used in applications which require often

recursion.

4.4.3. Another Novel Memory Decoding Technique

This novel memory decoding method was first developed by Rick Van Norman. It was used in his

Novix Solutions Computers and was lately adopted by Chuck Moore in the ForthKit 4.

The basic premise of this method is that 256K bit static RAM chips are becoming cheaper and more

available. It is more economical to use them than to use the older 64K SRAM or smaller for

program memory in NC4000 systems. Two 256K SRAM fit comfortably in the lower 32K words of

NC4000 memory map. Since we need some boot-up PROMs at 1000H to host a Forth kernel, we

will put a pair of PROM's at this location for boot-up only. Once the system is up, the kernel will

copy itself into SRAM and let the PROM's go to sleep. After this copying process, the kernel

operates entirely in SRAM, with 32K words of program space in SRAM all to itself!

http://to.be/

59

Figure 4.8. Expansion of Data Stack for NC 4000

A schematic diagram of this decoding logic is shown in Figure 4 .9 . The sequence of events during

power-up or reset is as follows. Upon reset, the flip-flop 74HC74 is preset. /Q output is low which

activates the PROM's, and NC4000 starts executing the boot-up code starting at 1000H. Part of the

boot-up code copies the content of PROM's into SRAM at equivalent locations. OE or SRAM is

driven high by the Q output of the flip-flop, so that the PROM's are read while SRAM's are written.

After the kernel is copied, reading 8000H triggers the clock input of the flip-flop, lowering Q and

raising /Q. Thus the PROM's are deactivated and the kernel in SRAM takes over the system. Further

reading of 8000H does not affect the state of the flip-flop.

The code sequence performing this switch over is:

HEX 1000 7FF FOR 0@+ 1 !+ NEXT DROP 8000 @ DROP

This technique shows that a little bit of ingenuity can substitute for a lot of hardware.

60

Figure 4.9. Decoding Memory with a 74HC74.

61

Chapter 5. The cmForth Operating System

This version of Forth, cmForth, was developed by Chuck Moore, the chief architect of NC4000

Forth engine and the inventor of the Forth language. This version of Forth is installed in the

EPROM's on ForthKit and Delta Board single board computer as its operating system. Chuck

Moore and Novix kindly donated this remarkable software package to public domain to encourage

people to explore the capability of NC4000.

This chapter serves as a documentation for cmForth. I will try to go through the system in minuet

detail, in order to help people who are not familiar with the Forth language and those who are not

familiar with Chuck Moore's coding style. In any case, the source listing itself is the primary

documentation and the descriptions in this chapter are commentary to the source listings. The

complete source listing of cmForth is included in this book as Appendix A. In the first two editions

of this book, the source code was the version released in February, 1986. Recently, Chuck

released a revised version in December 1987. This newer version is reproduced in Appendix A with

shadow screen. The discussions in this chapter are also updated according to this new version of

cmForth.

Chuck Moore had gone through the source code and made many modifications to the system.

Although all the important features in the original cmForth are retained, there are enough changes

making the new version quite different from the old one. Do not expect that program written under

the old version will run under the new version. If you have used the old version for some time, it is

probably better to keep on using it. To upgrade to the newer version, you have to go through you

existing code carefully for words which were different between the two versions.

The source listings of cmForth are your best source for examples of code and programming style

when striving to use NC4000 most efficiently. You are encouraged to study these listings carefully

in order to get the most benefit from the chip.

5.1. The Kernel

The kernel in a Forth system is the collection of low level words or instructions which drive the

computer and are used to construct other high level instructions. In cmForth, the kernel contains

mostly NC4000 machine instructions. However, many of the commonly used Forth words do not

have corresponding single cycle NC4000 instructions and they will have to be synthesized from the

primitive NC4000 instructions.

5.1.1. The Primitive Forth Words

Primitive stack operators are machine instructions of NC4000 chip. However, it is necessary to

give them names so that they will be available to the text interpreter for execution and compilation.

In a conventional computer system they should be equivalent to assembler mnemonics which

compile NC4000 machine instructions into a definition. If they are used in the following form

during compilation as high level instructions, the performance will be degraded because of the

overhead in nesting and un-nesting.

62

: SWAP SWAP ;

: OVER OVER ;

: DUP DUP ;

: DROP DROP ;

: XOR XOR ;

: AND AND ;

: OR OR ;

. - - ;

: 0< 0< ;

: NEGATE NEGATE ;

: @ @ ;

: ! !.;

Many other commonly used Forth words cannot be constructed from single NC4000 instructions

and they have to be defined as high level Forth instructions.

: ROT (n1 n2 n3 -- n2 n3 n1)

 PUSH SWAP Exchange n1 and n2.

 POP SWAP Exchange n1 and n3.

 ;

: 0= (n -- f)

 IF 0 EXIT THEN Return false if not 0.

 EXIT is cheaper and faster.

 -1 -1 can be obtained from a register.

 ;

: NOT (n -- f)

 0= Logic NOT, not one's complement.

 ;

: < (n1 n2 -- f)

 - 0<

 ;

: > (n1 n2 -- f)

 SWAP- An NC4000 primitive instruction.

 0< Extend the sign.

 ;

: =. _ (n1 n2 -- f)

 XOR Compare all 16 bits.

 0= .

 ;

: U< (u1 u2 -- f)

 - 2/ Get the carry of subtraction.

 0< Return proper flag.

 ;

: ?DUP (n -- n n ; 0) DUP

 IF DUP EXIT THEN EXIT is faster.

63

 ;

: WITHIN (n low high -- f)

 OVER - PUSH high - low

 - n - low

 POP U< In range?

 ;

: ABS (n -- u)

 DUP 0<

 IF NEGATE EXIT THEN Invert negative number.

 ;

: MAX (n1 n2 -- n1 ; n2)

 OVER OVER - n1 - n2 0< IF

 BEGIN SWAP DROP n1 < n2, drop n1. Otherwise, jump to THEN in

MIN and drop n2.

 ;

: MIN (n1 n2 -- n1 ; n2)

 OVER OVER - n1 - n2

 0<

 UNTIL n1 > n2, jump to BEGIN in MAX and drop n1.

 THEN DROP Otherwise, drop n1.

 ;

The funny IF-BEGIN... UNTIL-THEN structure spanning over two definitions MAX and MIN lets

two definitions executing two alternate pieces of code, SWAP DROP or DROP. Chuck can do tricks

like this because cmForth does not have compiler security and protection. Not recommended for

general programming practice.

: 2DUP (d -- d d)

 OVER OVER

 ;

: 2DROP (d --)

 DROP DROP

 ;

5.1.2. Memory Accessing Words

: +! (n a --)

 0 @+ Fetch from a, while keeping a on the stack.

 PUSH Save a.

 + Add n to content of a.

 POP ! Store the sum back into a.

 ;

: 2/MOD (n -- rem quot) Equivalent to 2 /MOD but faster. Needed to convert

byte address to cell address.

 DUP 1 AND Get the remainder.

 SWAP Get n to the top.

64

 0 [\\] + Add 0 to n, thus clear the carry. \\ breaks 0 and + into two

instructions.

 2/ Unsigned divide by 2.

 ;

: C! (b a --) Store a byte to address a. a is a byte address, which has

to be converted to a cell address.

 2/MOD DUP PUSH Save cell address.

 @ Cell content.

 SWAP Byte offset.

 IF -256 AND Offset=1. Mask off lower byte.

 ELSE 255 AND Offset=O. Mask off higher byte.

 SWAP Get the byte b.

 6 TIMES 2* Shift left by 8 bits.

 THEN

 XOR Combine two bytes.

 POP ! Put the cell back.

 ;

: C@ (a -- b)

 2/MOD Get the cell address.

 @ Content of the cell.

 SWAP 1 - Offset=1 ?

 IF 6 TIMES 2/ THEN Yes. Shift right by 8 bits.

 255 AND Mask off the high byte.

 ;

NC4000 is a 16 bit machine and it addresses the memory by 16 bit cells. Two bytes are packed into

one cell, with the first byte in the higher half (MSB) of the cell. The byte address is twice that of

the cell address, with the least significant bit as the byte offset in a cell. To access one byte in the

memory, one has to convert the byte address to a cell address by 2/MOD and use the quotient as an

offset to find the requested byte. It takes lots of extra work to do byte addressing. Avoid it at all cost.

: -ZERO (al -- a1+1 a2) A compiler directive to reduce one loop cycle to compensate

for the extra loop in FOR...NEXT structure.

 1+ Add 1 to the address where the loop begins.

 \ BEGIN Copy current address a2 to stack.

 130000 , Compile an unconditional jump instruction here. The target

address will be the last address in the FOR...NEXT loop so

that activity in the loop can be skipped once.

 ;

: MOVE (a1 a2 n --) Copy n cells from al to a2. al is the starting address of the

source, and a2 is the starting address of destination.

 PUSH Push the loop index on return stack in place of FOR.

 4 I! Save a2' in MD register.

 BEGIN Complete the FOR instruction with PUSH. Leave current

address on the data stack.

 -ZERO Compile an unconditional jump or ELSE here, and move the

file://breaks
file://breaks

65

loop address after it.

 1 @+ Fetch a cell to the data stack.

 4 I@! Exchange al and a2.

 1 !+ Store a cell to the destination.

 4 I@! Exchange al and a2 again.

 THEN This is where -ZERO skipped to in the first loop.

 NEXT Loop back to -ZERO+1 or 1@+ if n is not decremented to

zero.

 DROP Clear al, the last address.

 ;

: FILL (a # n --) Fill a memory range with cell value n.

 4 I! Save the value n in MD register.

 FOR Begin the loop.

 -ZERO Skip the loop once.

 4 I@ Retrieve the stored value n.

 SWAP 1 !+ Store it to destination.

 THEN For skipping by -ZERO.

 NEXT Loop back to 4 I@.

 DROP Discard last address.

 ;

5.1.3. Multiply and Divide

NC4000 does not have single instruction multiply or divide, which takes a lot of gates to implement.

What is provided are multiply steps, divide steps, and a square-root step, which can be used

repetitively to achieve the desired result. Problems in processing the carry bit in the prototype chip

cause some restrictions in multiplication. The software fixes to arrive at the proper function are not

implemented. You have to work around these bugs.

OCTAL

: U*+ (u1 r u2 -- d) Unsigned integers u1 and u2 are multiplied and added to r.

The product is an unsigned double integer on the stack.

Warning: u2 must be even!

 4 I! Store u2 in MD register.

 14 TIMES *' Repeat multiply step instruction *' 16 times and the

product is left on the stack.

 ;

: M/MOD (ud u-- q r) Unsigned double integer ud is divided by unsigned integer

u. Both quotient and remainder are left on the stack. Note

the order of q and r is not standard.

 4 I! Store u in MD register.

 D2* Left shift d by 1 bit so that it is always even.

 13 TIMES /' Repeat divide step /' 15 times.

 /’’ Last divide step.

 ;

: M/ (d u -- q) Double integer d is divided by unsigned integer u.

66

 OVER 0< Is d negative?

 IF

 DUP PUSH Save u.

 + Add u to the higher half of d.

 POP Retrieve u.

 THEN

 M/MOD Do the divide now.

 ;

:

VNEGATE

(n1 n2 -- n3 n4) Negate top two integers on the stack.

 NEGATE Negate top integer.

 SWAP NEGATE

SWAP

Negate next integer.

 ;

: M* (n1 n2 -- d) Mixed mode multiplication of two signed integers.

 DUP 0< Is n2 negative?

 IF VNEGATE

THEN

If so, negate both integers.

 0 SWAP Insert 0 into the accumulator.

 4 I! Copy n2 to MD register.

 13 TIMES *' Repeat multiply step.

 *- Last signed multiply step.

 ;

: /MOD (u1 u2 -- r q) Divide unsigned integers and return both remainder and

quotient.

 0 SWAP Insert 0, making dividend a double integer.

 M/MOD Do the mixed mode divide.

 SWAP Correct the order of results.

 ;

: MOD (u1 u2 -- r) Find remainder of unsigned integer division.

 /MOD Do the generalized divide.

 DROP Discard quotient.

 ;

: */ (n1 n2 u -- r) Ratio of n1 xn2/u.

 PUSH Save u.

 M* Signed multiply of n1 and n2.

 POP M/ Divide by u.

 ;

: * (n1 n2 -- r) Signed multiply.

 0 SWAP U*+ Signed multiply.

 DROP Discard remainder.

 ;

: / (n u -- q) Divide by unsigned integer.

 PUSH Save divisor u.

 DUP 0< Sign extend integer n.

 POP M/ Divide.

67

 ;

5.2. System Variables

System variables contain vital information needed by the system, to function. Most of them are

pointers to various areas in the Forth system, such as the top of the dictionary, the disk buffers, the

terminal input buffer, the vocabulary threads, etc. System variables in this implementation are kept

at the bottom of RAM space, starting from location 16. Thus the first 16 system variables are in the

so called local memory, which can be accessed in single machine instructions. These are the most

frequently used system variables. Less frequently used variables are kept above location 35.

Chuck eliminated VARIABLE in the target compiler in the new version of cmForth. The system

variables are now defined as constants, returning the variable addresses. The behavior of the system

variables are still the same.

Following is the list of system variables defined in this implementation, their memory locations, their

initial values if initialized, and their function.

PREV Memory 16, not initialized. Pointer to the most recently referenced disk buffer.

OLDEST Memory 17, not initialized. Pointer to the oldest loaded disk buffer.

BUFFERS Memory 18 and 19, not initialized. Storing block numbers in each disk buffer.

NB A constant of value 1. Number of disk buffers less 1.

CYLINDER Memory 20, not initialized. Cylinder of disk drive.

TIB Memory 21, initialized to 36. Terminal Input Buffer.

SPAN Memory 22, not initialized. Count of characters received from the terminal

device.

>IN Memory 23, not initialized. Pointer to the input stream of characters. Used by

WORD to parse strings.

BLK Memory 24, initialized to 0. Contains the block number under interpretation.

dA Memory 25, initialized to 0. Memory address offset to be subtracted from the

current address so that word address compiled can be relocated to other part of

memory.

?CODE Memory 26, initialized to 0. Storing the address of the machine code most

recently compiled. Used by the optimizing compiler to construction multi-

function instructions.

CURSOR Memory 27, initialized to 0. Pointer to the memory location where input

characters are stored.

SO Memory 28, initialized to 1FFH Serial output polarity. It is either 1FFH or

200H.

BASE Memory 29, initialized to 10. Number base for numeric I/O conversion.

H Memory 30, initialized to 64 cells above terminal input buffer TIB. Pointer to

the top of the current dictionary.

C/B Memory 31, initialized to 417. Machine cycles equivalent to the width of a bit

riding the serial RS-232 terminal port.

Interrupt Vector Memory 32 and 33, initialized to POP DROP, a noop interrupt service routine.

Thread Table Memory 34 and 35, initialized to ends of 2 threads in the dictionary. The

68

dictionary and vocabularies are hashed into 2 threads. The name field addresses

at the end of each thread are stored in this table for dictionary searching.

CONTEXT Memory 36, initialized to 1. Storing the hash code of the context vocabulary.

5.3. Terminal Input and Output

5.3.1. Primitive Input and Output Words

The terminal input and output in the RS-232 format is implemented through software via two I/O

pins in the X-port, X0 as serial output and X4 as serial input. With the clock running at 4 MHz, the

time interval representing one bit at 9600 baud is about 417 cycles, as specified by the system

variable C/B. For 5 MHz clock, C/B is 521. The primitive to send an ASCII character to the terminal

is EMIT and that to receive a character from terminal is KEY. From these primitives, line based I/O

words TYPE and EXPECT are defined.

HEX

: EMIT (c --) Send a character to the terminal via X0.

 1E D I! Mask X-port to allow X0 to be output and other bits be input. 2*

SO @ XOR

 9 FOR Send out 8 data bits with one start bit and one stop bit.

 DUP C I! Send out one bit.

 2/ Shift out next bit.

 C/B @ A-

 CYCLES

Wait for one bit period.

 NEXT Continue for the entire bit pattern.

 DROP Discard the rest of the character.

 ;

: RX (-- n) Get one bit from X4 pin.

 C I@ Read the X-port.

 10 AND Save only the X4 pin input.

 ;

: KEY (-- c) Read one ASCII character from X4 pin.

 0 Starting character pattern.

 BEGIN Wait for the start bit.

 RX Read the input line.

 10 XOR Exit only when a start bit (low)

 UNTIL is detected.

 C/B @ 417 or 521 cycles per bit.

 DUP 2/ + Wait 1.5 bit to the center of the first data bit.

 7 FOR Read 8 bits.

 10 - CYCLES Delay till the center of bit period.

 2/ Ready the character pattern for the next bit.

 RX Read one bit.

 2* 2* 2* Justify the bit position.

 OR Put the bit into the character pattern.

 C/B @ Delay for next bit.

69

 NEXT Repeat until all eight bits are assembled in the character

pattern.

 BEGIN RX UNTIL Now wait until the stop bit is transmitted.

 DROP Discard the last C/B cycle number.

 ;

5.3.2. Line Input and Output Words

: TYPE (a1 -- a2) Output a stored string to the terminal. The first

character in the string must be a count byte. This is

different from the standard TYPE which takes an

address and a count as arguments. al is the starting cell

address and a2 is the address of the cell following the

string.

 2* Change al to a byte address.

 DUP C@ Get the count byte.

 1 - FOR Scan the string.

 1 + Next character address.

 DUP C@ Get the character.

 EMIT Send it out.

 NEXT

 2 + 2/ Cell address after the string.

 ;

: EXPECT (a n --) Accept n characters and put them in the memory

starting at a. Each character is put in a cell with high

byte padded with 40H.

 SWAP CURSOR ! Store address a in CURSOR.

 1- DUP FOR Repeat for n characters.

 KEY Get one character.

 DUP 8 XOR Is it a backspace?

 IF No. Not backspace.

 DUP D XOR Is it a carriage return (CR)?

 IF Not CR.

 DUP

 CURSOR @

1 !+

Store it in the assigned memory.

 CURSOR ! Refresh CURSOR for next character.

 EMIT Echo the character to terminal.

 ELSE If it is CR.

 SPACE Output a space instead.

 DROP Discard the CR character.

 POP Get the current index.

 - Number of character received so far.

 SPAN ! Store it in the character count variable SPAN.

 EXIT CR end of line exit.

 THEN .

http://arguments.al/
http://arguments.al/
http://arguments.al/
http://arguments.al/
http://arguments.al/
http://arguments.al/

70

 ELSE Yes. It is backspace.

 DROP Discard the backspace character.

 DUP I XOR

 [OVER] UNTIL

 CURSOR @ 1 - Get the cursor address again.

 CURSOR ! and decrement it.

 POP 2 + PUSH Add 2 two loop index, and back up the index pointer

by 2.

 8 EMIT Echo the backspace code.

 THEN

 NEXT

 1+ SPAN ! Increment character count.

 ;

 5.3.3. Other Terminal I/O Words

: CR (--)

 D EMIT Carriage return.

 A EMIT Line feed.

 ;

: SPACE (n --)

 20 EMIT

 ;

: SPACES (n --)

 0 MAX Protect security against negative count number.

 FOR Loop n+1 times.

 -ZERO Skip the first loop.

 SPACE Send them out.

 THEN -ZERO skips to here.

 NEXT Loop back to SPACE.

 ;

: HERE (-- n)

 H @ Top of dictionary or the WORD buffer.

 ;

5.4. Number Conversion

5.4.1. Convert Digits to Binary Number

Strings of digits or numbers are one of the two basic syntactic elements in the Forth language. The

numbers you typed in must be converted to 16 bit binary numbers and pushed onto the data stack.

The conversion process is controlled by the variable BASE which specifies the number base to be

used in the conversion process.

HEX Change to hexadecimal base because we will use ASCII

code values.

71

: -DIGIT (c -- n) Convert one ASCII character c to its binary value n.

Abort it the character is not within the range specified by

BASE.

 30 - Take off the offset of ASCII 0.

 DUP 9 > Is c greater than 9?

 IF Yes.

 7 - If so, subtract 7 to take care of the gap between 9 and A.

 DUP A < If the number is less than 10,

 OR make it a -1.

 THEN We have a number or a -1 at this point.

 DUP BASE @ U< Is the number less than the base?

 IF EXIT THEN If so, the conversion is successful.

 Return with the

value.

 2DROP Otherwise, conversion error. Clear the stack.

 ABORT" ?" Abort with a message ?.

 ; RECOVER ; is need to terminate the compiler. It will not be executed

because ABORT" exits to the interpreter. RECOVER

reclaims 1 cell of memory.

: C@+ (-- n) Increment the byte address in the SR register. Use the

address to fetch a byte from the main memory.

 6 I@ 1 + Get the address from SR and increment it.

 DUP 6 I! Return the new address to SR.

 C@ Fetch one byte from memory.

 ;

: 10*+ (u1 c -- u2) Convert character c to its value. Multiply it by the base

value hidden in MD and accumulate the product into u1.

 -DIGIT Convert c to its binary value.

 OE TIMES *' Repeat multiply step 16 times to obtain the product.

 DROP Discard the higher half of the double integer product.

 ;

: NUMBER (a -- n) Convert a number string at 'a' to a 16 bit signed integer.

 BASE @ 4 I! Store base value in MD register.

 0 Initial value of the number.

 SWAP 2* Convert 'a' to byte address.

 DUP 1 + C@ Get the first character of the string.

 20 = PUSH Test for '-' and save the flag.

 DUP 1 - 6 I! Save the address of the first valid digit in the SR register.

 C@ Get the length of this string.

 I + Correct it if the first character is a '-' sign.

 1 - FOR Scan the number string.

 C@+ Fetch the next character.

 10*+ Convert this character and accumulate the digit into the

running sum.

 NEXT Repeat until all digits are converted. The accumulated

72

sum is left on the stack.

 POP Retrieve the sign flag.

 IF NEGATE

THEN

Negate the number if it has a leading - sign.

 ;

5.4.2. Convert Binary Number to ASCII String

This conversion process is different from what we know well in other Forth systems. The converted

digits are piled up on the stack instead of stored in an output buffer. Using the stack to store the

converted string is more efficient than using a buffer. In Forth, numbers are converted to ASCII

strings only to be sent to the terminal or to a printer. The converted string is never needed internally.

There is no reason to save the string in a permanently allocated output buffer.

: HOLD (.. # n c -- .. # n) The output string is piled up on the data stack with a count

on top. Above count #, the number to be converted n and

the character c to be added to the string. c is tucked

beneath # and # is incremented.

 SWAP PUSH Save n.

 SWAP Tuck c under #.

 1 + Increment count #.

 POP Retrieve n.

 ;

: DIGIT (n -- c) Convert a number n to its equivalent ASCII code.

 DUP 9 > Is it greater than 9?

 7 AND + If so, add 7 to Jump to ASCII A.

 48 + Add offset of ASCII 0 to get the

 ; proper ASCII code of n.

: <# (n--#n) Prepare a number to start the conversion process.

 -1 Initial value of the string length.

 SWAP Tug the count # under n.

: # (.. # n -- .. #' n') Convert one digit from n and add the converted digit to the

output string.

 BASE 0 /MOD Divide n by the base.

 SWAP DIGIT Convert the remainder to an ASCII character.

 HOLD Add the converted character to the output string.

 ;

: #S (.. # n -- .. #' 0) Convert the number n until it is reduced to 0, or completely

converted.

 BEGIN

 # Convert one digit.

 DUP 0= End?

 UNTIL Repeat until n is reduced to 0.

 ;

: #> (. . # n --) Output the converted string to the terminal.

73

 DROP n is usually 0 and not needed any more.

 FOR EMIT NEXT Use the character count # to print that many characters to

the terminal.

 ;

: SIGN (.. # n -- .. #') If n is negative, append a - sign to the end of the output

string.

 0< NOP Is n negative?

 IF 45 HOLD THEN If so, append - sign.

 ;

: (.) (n -- .. #) Convert the number n to a ASCII string on stack.

 DUP PUSH Save a copy of n for sign.

 ABS .

 <# #S Convert the absolute value to string.

 POP SIGN Append the sign of n.

 ;

: . (n --) Free format display of the number on top of the stack.

 (.) Convert n to a string.

 #> Print the string.

 SPACE Append a space to separate consecutive numbers.

 ;

. U.R (u n --) Display an unsigned integer u in a field of n columns, right

justified. Formatted output.

 PUSH Save the column number n.

 <# #S Convert u to a string.

 OVER Copy character count to top.

 POP SWAP- Subtract it from the column width.

 1 - SPACES First pad the left side with enough spaces.

 #> Finally print the number string, right justified.

 ;

. U. (u --) Display an unsigned integer in free format.

 0 U.R Display the integer using 0 column field specification. The

result is that the string will be display from the current

character position.

 SPACE Followed by a space.

 ;

5.4.3. Memory Dump

This memory dump word was designed for Chuck Moore's peculiar CRT display, which has a

single line display window.

: DUMP (a -- a+8) Display 8 consecutive cells following that at a. a+8 is returned on

the stack so another DUMP can be issued.

 CR New line.

 DUP 5 U.R

SPACE

Display first the address a.

74

 7 FOR Run down 8 cells.

 1 @+ Fetch one cell and increment a.

 SWAP 7 U.R Display the content.

 NEXT .

 SPACE Add one space at the end of line.

 ;

5.4.4. Message Output

In an interactive programming environment, it is important that the system will send timely

messages to the terminal to indicate to youits status and any error condition. Messages to be send to the

terminal must be compiled into definitions using special string literal words like ." and ABORT" ,

etc. These string literal words have unique behavior during compilation and during execution.

Because these words involve compiler functions, words used to define them seem to be out of place as

they are defined much later than the text interpreter. I tried to collect as much information as possible

here, to explain the construction of these message output words. Some of the words used in these

definitions will be elaborated later.

: COMPILE (--) Compile the address following this word to the top of the

dictionary.

 POP Retrieve the address of the next word from the return stack.

 7FFF AND Mask off the most significant bit, which is the carry bit.

 1 @+ Fetch next word.

 PUSH Put the address of the second word after COMPILE back

on the return stack.

 ,A Compile the address of the next word into the dictionary.

 ;

: abort" (-- n 0) Run time routine for ABORT". Print the following

message and re-initialize the system.

 H @ TYPE

SPACE

Display the name of word currently been executed.

 POP 7FFF AND Address of the compiled text.

 TYPE Display the message text.

 2DROP Clear garbage left by TYPE.

 BLK @ ?DUP

DROP

Leave the block number on the stack for debugging aid.

 0 A dummy 0 is compiled here. After QUIT is defined, this

word will be patched with the address of QUIT, which

returns control to the text interpreter.

 ;

: ABORT" (--) Abort the word currently been executed and return to the

text interpreter after displaying the following message.

 COMPILE abort" Compile the runtime abort routine.

 22 STRING Compile the following message up to " as a string literal.

 ;

: dot" (--) Run time routine of ." , which displays the message

75

immediately following until " .

 POP 7FFF AND Address of the compiled message text.

 TYPE Display the message and leave the address after the

message.

 PUSH Push that address back on the return stack to continue the

execution process.

 ;

: .” (--) Display the following message at run time.

 COMPILE dot" Compile the address of dot" .

 22 STRING Compile the following text up to " as a string literal.

 ;

5.5. Serial Disk

This implementation assumes only a RS-232 interface to the outside world. As with any other

computer language for serious programming activity, one or more disk drives are necessary to store

source code and data. A serial disk is thus designed to make the maximum utilization of the available

serial communication line. It requires a host computer at the other end of the RS-232 line and acts

as the terminal and disk server to the cmForth system. Whenever a disk block is requested, the data

will be transferred into cmForth through the serial link. When an updated block is flushed back to the

disk, the data is also sent through the serial link to the host computer.

5.5.1. Disk Buffer Manager

Two disk buffers are maintained in cmForth. Each buffer is 1024 cells long. The first buffer starts

at memory address 800H and the second buffer is at COOH below the ROM memory. Two cells at

BUFFERS contain the block number associated with the data stored in the two buffers. The pointer

PREV, points to the disk buffer which is referenced most recently. OLDEST points the disk buffer

least used.

In this system, two disk buffers are assigned and numbered as 0 or 1. Two entries in the BUFFERS

array are used to store block numbers in corresponding to the contents of the two buffers. Two

variables PREV and OLDEST determined which of the two buffers is the most recently accessed.

The manager always looks at the PREV block when a block is requested. If the block is not in the

PREV buffer, it will exchange PREV with OLDEST and look at the PREV block again. If the

requested block is in one of the two buffers, that buffer will surely become the PREV buffer and no

disk access is necessary. If the requested block is not in the buffer, the manager now assigns the

PREV buffer for the new block and this buffer contains data that is least recently referenced and is

appropriate to be flushed to the disk or discarded.

This technique is often referred to as Ping-Pong buffers as the two buffers are used in the most

efficient fashion.

: ADDRESS (n -- a) Given the disk buffer number, return the starting

address of that buffer.

 30 + Two buffers are at memory locations

76

 8 TIMES 2* 30K and 31K.

 ;

: ABSENT (n -- n ; a) Search through the disk buffers to see if block n

is already in one of the buffers. If found, return

the address of the buffer and skip the next word.

Otherwise, return with n on the stack.

 NB FOR Scan through the disk buffers.

 DUP Copy n, the requested block number.

 I BUFFERS 0 Get one block number stored in BUFFERS.

 XOR 2* Are the 15-bit block numbers the same?

 WHILE NEXT If not the same, compare the next block number in

BUFFERS.

 EXIT THEN None of the buffers contains the requested block,

return as if nothing had happened.

 POP PREV N! At this point, the request block is found in one of

the buffers. Store the buffer number in PREV, and

make it the most recently accessed block.

 POP DROP Discard the return address on top of the return

stack, thus exit the word containing ABSENT.

 SWAP DROP Discard the block number.

 ADDRESS Return with the buffer address.

 ;

: UPDATED (-- a n) Exchange PREV and OLDEST buffers and return

the address and the block number in the least

recently accessed buffer. If the block is not

updated, skip the rest of words following

UPDATED.

 OLDEST @ Pointer to the buffer least recently used.

 BEGIN

 1 + NB AND Map to one of the two buffers allocated in this

system.

 DUP Save a copy.

 PREV @ XOR Is it the same as the one stored in PREV?

 UNTIL Exit if they are different.

 OLDEST N! PREV N! Exchange contents of OLDEST and PREV, thus

making OLDEST the most recently accessed disk

buffer.

 DUP ADDRESS Find the address of the buffer.

 SWAP BUFFERS Obtain the right pointer to the BUFFERS array.

 DUP @ Get the block number stored in

 BUFFERS.

 8192 ROT ! Store 2000H in this entry of BUFFERS.

 DUP 0< NOT If the buffers is not updated,

 IF POP DROP DROP

THEN

skip the rest of the words following UPDATED

by thrashing the return address of top of return

stack. It is a very fast and dangerous EXIT.

77

 ;

: UPDATE (--) Set the MSB of the block number in

BUFFERS pointed to by PREV.

 PREV @ BUFFERS Address of the PREV block number.

 0 @+ Fetch block number while still save the address of

PREV.

 SWAP 32768 OR Set bit 15, the update bit.

 SWAP ! Store it back to BUFFERS.

 ;

: ESTABLISH (n a -- a) Mark the oldest buffer the PREV buffer and

identifies it with block n. Return the buffer address

a.

 SWAP Get n to the top.

 OLDEST @ PREV N! Make oldest the newest.

 BUFFERS ! Store block number n into the BUFFERS array.

 ;

: IDENTIFY (n a -- a) Make block n the PREV block, as been most recently

referenced.

 SWAP Get n .

 PREV @ BUFFERS ! Store n into the PREV entry in the BUFFERS

array.

 ;

5.5.2. Disk Read and Write

The serial disk is implemented using a very simple protocol. A disk read/write request is initiated by

sending an ASCII NUL to the host at the other end of the RS-232 line, followed by two more bytes

identifying the disk block requested. High byte of the block number is send first. If the most

significant bit in the high byte is set to 1, it is a disk write command. 1024 bytes will then be

transmitted to the host. Then it will wait for a key from the keyboard to confirm the termination of

transmission. If the MSB in the high byte is reset, it is a read command and the host is expected to

send 1024 bytes of the requested block.

: ## (a n -- a a 1023) Transmit a disk read/write command to host and

prepare to receive 1024 bytes.

 0 EMIT Disk accessing command.

 256 /MOD EMIT EMIT Transmit the read block command.

 DUP 1023 Parameters needed to receive the requested block.

 ;

: buffer (n -- a) Return the buffer address of block n. If the buffer

had been updated, flush its contents to the host.

 UPDATED If block n is already in one of the disk buffers,

return the buffer address, and return to caller

immediately without executing the following

words.

 ## FOR Block n is not in the disk buffers. Get the least used

78

buffer and flush its contents to host if the buffer

was updated.

 1 @+ Fetch one cell.

 SWAP EMIT Transmit one byte.

 NEXT

 KEY Wait for user response as end of transmission.

 2DROP Clean up.

 ;

: BUFFER (n -- a) Obtain a disk buffer for block n and return the buffer

address a.

 buffer Do all the hard work to obtain a disk buffer,

including flushing

 if necessary.

 ESTABLISH Mark this disk buffer as the most recently accessed.

 ;

: block (n a -- n a) Read 1024 bytes from the host and put them in the

buffer starting

 at a.

 OVER ## Transmit the read command.

 FOR Repeat 1024 times.

 KEY Get one byte.

 SWAP 1 !+ Store the cell into disk buffer.

 NEXT DROP

 ;

: BLOCK (n -- a) Read block n from the host if it is not already in the

buffer. Return the buffer address.

 ABSENT If block n is not in one of the buffers, do the

following to read it from the host. Otherwise, return

the buffer address and exit here.

 buffer Make room in the least used buffer, and flush its

contents if updated.

 block Read from host.

 ESTABLISH Make the buffer most recently accessed.

 ;

: FLUSH (--) Write all updated buffer back to disk-host.

 NB FOR Go through all disk buffers.

 8192 BUFFER Request block 8192, the default empty block code.

 DROP Discard the buffer address.

 NEXT

 ;

: EMPTY-

BUFFERS

(--) Erase all the buffer pointers to make the disk

manager think the buffers are empty.

 PREV Address of the PREV variable.

 [NB 3+] LITERAL The array including PREV, OLDEST, and

BUFFERS.

 0 FILL Erase all these pointers to fool the disk manager.

79

 FLUSH Force the flushing of buffers.

 ;

5.6. Text Interpreter

The text interpreter is the operating system of Forth and it is the user interface which allows you to

operate the computer interactively. What the text interpreter does is very simple. It accepts a line of

commands from the terminal, parses out words in the command line and executes them in the order

given. It only has to deal with two types of words, Forth commands which had been compiled into the

dictionary and numbers as 16 bit integers. If the interpreter finds a word in the dictionary, it will

execute that word. If the word is not defined in the dictionary, text interpreter will try to convert it

into an integer and push the integer on the stack. If it failed to convert the word into a number, the

word is outside of the computer's vocabulary and it will stop executing the command line. It will then

come back and ask youto type another command line and the process continues on forever.

The major functions required by the text interpreter are receiving command lines, parsing words,

dictionary searching, command executing, and number conversion. We have already discussed

number conversion and user input functions. Here we shall discuss the rest of the functions and how

they are tied together to form the text interpreter, and hence an operating system.

5.6.1. Parsing of Words

: LETTER (al a2 n -- a3 a4) Copy n characters from a2 to al. Source strings are stored in

cells and destination strings are stored in bytes. Terminate the

copying when a delimiter is detected. The delimiter is stored in

register SR.

 FOR Scan n characters.

 DUP @ Get one character from a2.

 6 I@ XOR Is the character the same as the one stored in SR, the

delimiter?

 WHILE Not equal.

 1@+ PUSH Fetch character and increment a2. Save a2 on return stack.

OVER C!

 1 + Increment al.

 POP Get a2 back.

 NEXT

 EXIT THEN Exit if the string is completely copied.

 >IN @ Now, process the character pointer.

 POP - Get the loop index off the return stack.

 >IN ! Move the interpreter pointer >IN back that many characters.

 ;

. -LETTER (al a2 # -- a2 a4) Scan characters stored in buffer a2. Ignore leading

delimiters by comparing with SR. Then move the string

into buffer al. Again, al and a3 are byte addresses and a2

and a4 are cell addresses.

 ?DUP IF n has to be greater than 0.

80

 1- FOR Repeat n times.

 1 @+ Read one cell.

 SWAP 6 I@ XOR Is the character same as the one in SR?

 0= WHILE NEXT Yes. Skip it and continue on.

 EXIT THEN If the character string is exhausted without finding the

character in SR, exit here.

 1 - Backup a2 by one cell.

 POP Index of the do-loop when branched out at WHILE.

 LETTER Scan the rest of the string and copy it into al buffer.

 THEN

 ;

: WORD (n -- a) Parse out the next word from the input buffer, using n as

the delimiter. The parsed word is placed in the buffer at

address 'a' as a packed, count string.

 PUSH Save n, the delimiter.

 H @ DUP 2* DUP

1 +

Byte address of the destination string buffer. Leave one byte

for the length of string.

 DUP Need two copies of this byte address.

 >IN @ Character pointer of the parser.

 BLK @ IF If BLK is not zero, you are processing text in a disk buffer.

 BLK @ BLOCK Get the disk block and the buffer address.

 + Address of the character cell currently being processed.

 1024 Maximum characters in the disk buffer.

 ELSE BLK is 0. Input is from the terminal input buffer.

 TIB @ + Address of the character in buffer to be interpreted.

 SPAN @ Total number of characters received.

 THEN

 >IN @ Interpreter pointer.

 OVER >IN ! Save the total character count in >IN.

 - Remaining character count between interpreter pointer and

end of input buffer.

 POP 6 I! Store the delimiter in SR register.

 -LETTER Parse out the next word and copy it into the word buffer

above HERE.

 DROP Discard the input buffer address.

 32 OVER C! Append a space after the parsed word.

 SWAP- Character count of the parsed word.

 SWAP C! Store the count at the beginning of the parsed word as a

packed count string.

 ;

5.6.2. Dictionary Search

To understand the words involved in dictionary searching, you have to know the structure of

individual words in cmForth as well as how these words are arranged in memory to form a

dictionary. A Forth dictionary is a linked list of words. A dictionary may be partitioned into many

81

vocabularies in which related words are grouped together.

Most Forth systems use indirect threaded code technique to construct high level definitions. A high

level word is made to be equivalent to a list of addresses which point to memory locations containing

addresses of executable code. The code field in a definition thus points to a piece of executable

code, the inner interpreter, which executes this definition. Data or address list are stored in the

parameter field following immediately after the code field.

cmForth uses directly threaded code technique, which eliminates the code field. The parameter

field contains executable code and data if necessary. Subroutine calls are mixed with the machine

code. The inner interpreters NEXT, NEST (DOCOL), and UNNEST (;S) are all native NC4000

machine instructions. A word defined in cmForth thus consists of three fields: a link field, a name

field, and the code/parameter field. The bit arrangements in the name field can be shown as

follows:

r0sn nnnn tccc cccc r: remote bit

0ccc cccc 0ccc cccc s: smudge bit

... n: character count

... t: truncation bit

0ccc cccc tccc cccc c: ASCII character

The truncation bit in the last cell of the name field indicates to the text interpreter that long name is

truncated and name comparison must stop at that cell.

The dictionary in cmForth is divided into two vocabularies: Forth, containing regular, executable

Forth words; and COMPILER, containing compiler directives and assembler instructions which are

used to compile new Forth words. The link field of a word points to the link field of the previous

word in the same vocabulary. The first word in a vocabulary has a 0 in its link field, indicating the

end of the linked list. The link field address of the last word defined in a vocabulary is stored in a

vocabulary link table, immediately below the variable CONTEXT. The number stored in

CONTEXT is used to select an entry in the vocabulary link table as the context vocabulary, which

will be searched for words by the text interpreter. If CONTEXT contains 1, the Forth vocabulary will

be searched. If CONTEXT contains 2, the COMPILER vocabulary will be searched.

HEX

: SAME (al a2 -- al a2 f;

a3 t)

With a string address al and the link field address a2 of a word in

dictionary, compare the string with the word name. If the name

matches the string, return the parameter field address a3 of the word

found with a true flag. Otherwise, return the string address al, link

field address a2 and a false flag. The character count of the string is

stored in the SR register.

 OVER 4 I! Save a copy of al in MD register.

 DUP 1 + Copy a2 and increment it to get the name field address.

 6 I@ FOR Scan both strings.

 1 @+ Fetch one cell from the name field.

82

 SWAP Get its content to top of stack.

 4 I@ Address of a cell in the string.

 1 @+ Fetch one cell there.

 4 I! Replace the string address.

 - 2* Compare contents of the two cells, ignoring bit 15.

 IF Name does not match, prepare to exit.

 POP DROP Discard the loop index.

 0 AND Clear the address and make it a false flag.

 EXIT All done. Exit.

 THEN

 NEXT Repeat comparing the strings.

 SWAP 1 + @ Examine the first cell in the name field.

 0< IF @ THEN If bit 15 in the first cell of the name is set, this word used indirect

reference with separated head. Fetch the true parameter field

address. Otherwise, the parameter field address is on the data stack.

 SWAP Get al and use it as a true flag.

 ;

: HASH ' (n -- a)

 CONTEXT

SWAP-

Subtract n from CONTEXT.

 ;

 : COUNT (a -- n)

 7 TIMES 2/ Shift the upper byte down.

 15 AND Allow only 15 cells.

 ;

: -FIND (a1 n-- a1 t i a2

f)

With word address al, link address a2 and vocabulary code n,

search the vocabulary for the word. If found, return the parameter

field addresses a2 of the word and a false flag. If not found, return

the word address al and a true flag.

 HASH Find the head of the vocabulary.

 OVER @

COUNT 6 I!

Get the cell count of the string at al and save it in tne i'lu

register.

 BEGIN Start the dictionary search.

 @ DUP Get the next link field address.

 WHILE If link field address is not zero, continue the searching.

Otherwise, the end of link chain is reached.

 SAME Compare the name field with the word pattern.

 UNTIL Not same. Continue with the next word in the linked chain.

 0 EXIT If found a match, put on the false flag and exit here.

 THEN Reach the end of the vocabulary

 -1 XOR without finding a matching name. Return with a true flag.

 ;

5.6.3. The Text Interpreter

: -' (n-- a1 t, a2 f) Use vocabulary code n to search that vocabulary for the

83

next word. Parse out a string from the input buffer and

search the dictionary for a word with matching name.

Return the parameter field address a2 and a false flag if a

word is found. Return the word buffer address al and a

true flag if the word is not found.

 32 WORD Parse out the next string in the input buffer, using ASCII

BL as the delimiter.

 SWAP -FIND Search through the context vocabulary for the word

parsed out.

 ;

: ' (-- a) Search the dictionary for the next word in the input buffer.

Abort it not found. If it's found, return the parameter field

address of the found word.

 CONTEXT @ Get the vocabulary code of the context vocabulary.

 -' Searches that vocabulary.

 IF If the word is not in the dictionary,

 DROP Discard the address generated by -'.

 ABORT" ?" Abort with a message.

 THEN

 ;

: EXECUTE (a --) Make a subroutine call to the code address a.

 PUSH Push the address on the return stack.

 ; When ; bit is detected by NC4000, it makes a subroutine

jump to the address on top of the return stack, exactly what

we want in EXECUTE.

: CYCLES (n --) Run n empty TIMES cycles. Just waste some time to wait

for some other events.

 TIMES Waste n+4 cycles doing nothing.

 ;

: OCTAL (--)

 8 BASE ! Set base to 8 for octal input/output.

 ;

: DECIMAL (--)

 10 BASE ! Set base to 10 for decimal I/0.

 ;

: HEX (--)

 16 BASE ! Set base to 16 for hexadecimal 1/0 conversion.

 ;

: LOAD (n --) Execute text in block n.

 >IN 2@ Get current >IN pointer and the currently used block

number.

 PUSH PUSH Save then on return stack.

 0 INTERPRET Process command text in the buffer which contains block

n.

 10 BASE ! Restore to decimal base always.

84

 POP POP >IN 2! Restore >IN and BLK.

 ;

:

INTERPRET

(n1 n2 --) Use n2 as the interpreter pointer >IN and n1 as the BLK to

select input text buffer. Interpret the command text in the

buffer.

 >IN 2! Store n2 in >IN and n1 in BLK.

 BEGIN Start the interpreter loop.

 1 -' Search the Forth vocabulary for the next word parsed out

of the input buffer.

 IF NUMBER If it is not a defined word, convert it to an integer.

 ELSE

 EXECUTE Execute the found word definition.

 THEN

 AGAIN Continue till the end of the buffer.

 ; RECOVER The last word will never be executed. Recover the

memory space.

: QUIT (--) The text interpreter. It accepts one line of commands from

the terminal and executes the commands in sequence. If

all the commands are executed without error, the message

'ok' is displayed and it waits for next line of commands.

 BEGIN It is an infinite loop.

 CR New line.

 TIB 0 64 EXPECT Accept one line (64 characters) from terminal and store it

in the terminal input buffer at MSG.

 0 0 INTERPRET Execute the commands.

 ." ok" Print ok message.

 AGAIN Continue forever.

 ; RECOVER Save one cell.

5.6.4. Power Up-and Reset

There is a RESET pin on NC4000 chip. Whenever this pin is grounded and then released to 5 volts,

the chip enters a reset cycle which starts by executing the instruction at memory location 1000H. A

hidden word BOOT compiles the boot up routine staring here. Forthkit 4 uses a set of shadow

EPROM's co-resident with SRAM's from 0 to 1FFFH. After power-up, BOOT in EPROM's is

executed. It copies the cmForth object code from EPROM's to SRAM's and then turn the EPROM's

off. After that, everything is run in the SRAM's. BOOT calls 'reset', which initializes everything and

passes control over to the cmForth text interpreter QUIT.

We shall follow this train of events and explain the function of BOOT and 'reset' first. The low level

words involved in the initialization will be presented afterwards.

{ : BOOT } (--) This headless word must be placed starting at memory

location 1000H so that cmForth can be booted up. It copies

itself from ROM memory chips to the SRAM chips in the

Forthkit system, turns ROM off, and executes the reset

85

routine Hereafter, only SRAM's are active.

 16 Address of the first system variable which needs to be

initialized--SPAN.

 FFF FOR Copy 4K words from ROM to SRAM.

 0 @+ Fetch one cell.

 1 !+ Store one cell and increment the address.

 NEXT

 -1 @ Pulse the 74HC74 flip-flop to turn off ROM and turn on

SRAM.

 (reset) ; This cell will be patched with the address of the 'reset'

routine which

Following BOOT is a table containing initial values of system variables which need to be initialized.

Most of them default to zero.

0 , 0 , 0 , 0 , 0 , 0, Filler for the memory locations 1009H to 100FH.

0., PREV

0 , OLDEST

0 , 0 , BUFFERS

0 , CYLINDER

0 , TIB

77C0 , SPAN

0 , >IN

0 , BLK

0 , dA

0 , ?CODE

0 , CURSOR

1FF , SO

A , BASE

0 , H

DECIMAL 512 , C/B

{ : interrupt } Noop interrupt service

 POP DROP Discard interrupt return

 ; address.

 0 , 0, Vocabulary link table

 1 , CONTEXT

: reset (--) Send the Forth system into the QUIT loop to process input

commands from a terminal.

 RESET Trim the dictionary to the boot up state.

 0 DUP 9 I! Unmask B-port.

 DUP A I! B-port as 16-bit input port.

 DUP B I! B-port as latched output, no tristate.

 DUP 8 I! Clear B-port comparison latches.

86

 -1 A I! Set B-port as output port.

 DUP D I! Unmask X-port.

 DUP E I! X-port set to be input port.

 F I! X-port as latched output, no tristate.

 1A C I! Set X1, X3 and X4 high.

 TIB 20 XOR Compare 2 cells at TIB, if they are not equal, do a cold

boot. If they are equal, do a warm boot.

 IF Not equal. Cold boot.

 EMPTY-

BUFFERS

Clear the disk buffers.

 SPAN @

TIB !

Copy 77COH in SPAN to TIB, which defines the terminal

input buffer.

 THEN Skip above if doing a warm boot to preserve the disk

buffers.

 RS232 Observe the polarity of the serial input line and set the

serial output polarity SO accordingly.

 F E I! XO serial output and XO serial input.

 BPS Wait for an ASCII B from the serial input line to set the

baud rate.

 ." hi" Send the sign-on message to the terminal. Ready to operate.

QUIT

 ;

: RS232 (--) Determine the polarity of the serial input line and use it the

set the input and output polarity of the X4 and XO lines. It

allows Forthkit 4 to adapt automatically to a large number

of ASCII terminals.

 RX Read X4 line.

 IF EXIT

THEN

If X4 is high, everything's been set correctly already.

 200 SO ! Otherwise, reverse the output polarity.

 OB C I! Also reverse the input polarity.

 ;

: BPS (--) Wait on the serial input line X4 for a character 'B' to

determine the baud rate of the terminal. Adjust the variable

C/B so that cmForth can talk to terminals using any

reasonable baud rate.

 4 Starting value for C/B.

 BEGIN Wait until X4 is high.

 RX 10 XOR

 UNTIL

 BEGIN Now, count cycles till X4 goes low.

 5 + Increment count by 5 cycles per loop.

 RX UNTIL Stop counting if X4 drops low.

 2/ C/B ! Two high bits at the beginning of 'B'. A start bit and the

most significant bit are glued together.

 ;

87

: FORGET (--) Remove all definitions added above the dictionary in

cmForth to start over.

 POP 7FFFH

AND

Get the address on the return stack, which points to the

memory immediately after FORGET in a definition, see

RESET for example.

 DUP 2 + RESET is the last definition in cmForth. 2 cells after

FORGET in RESET is the free space for the dictionary to

grow.

 H ! Set the dictionary pointer so that new definitions can

be compiled above RESET.

 2@ The cells after FORGET in RESET store the initial

vocabulary link table. Fetch link field addresses of last

words in Forth and COMPILER.

 CONTEXT 2 -

2!

Initialize the vocabulary link table below variable

CONTEXT.

 1 CONTEXT ! Make Forth the context vocabulary.

 ; Return to the word after RESET in 'reset', because the return

address from FORGET was popped off the return stack and

the next return address points to the phrase 0 DUP 9 I! in

'reset'. Chuck Moore is the only person privileged to do this

kind of aerobatics. Not recommended for the rest of us.

: RESET (--) The last definition in cmForth. It contains the FORGET

mechanism to restore the dictionary to the boot up state.

 FORGET Chop the dictionary down to its original size by re-initialize

the vocabulary link table and CONTEXT.

 0 2 cells here contains the link field addresses of the last

words defined in Forth and COMPILER vocabularies.

 ;

5.7. Compiler

The compiler loop is very similar to the text interpreter loop, in that it scans the input buffer to parse

out words whose addresses are then added to the top of the dictionary, which is the parameter field of

a new word definition. When a word cannot be located in the dictionary, the compiler will try to

convert it to a number and compile the number into the dictionary as a literal. A special class of

words, the compiler directives, are not compiled but executed inside the compiler loop. These

compiler directives take care of many conditions which have to be dealt with immediately, like

construction of branching and looping structures, compiling various types of literals, etc. All

compiler directives are collected in a special vocabulary COMPILER and are not available outside

of the compiler loop.

5.7.1. Compiler Loop

We shall begin by showing the high level definitions of the compiler] and its companion [. The low

level words used by them and other words supporting compilation of new words are discussed later in

this section.

88

OCTAL Machine code is best shown in octal.

: [(--) The compiler loop.

 BEGIN Start an infinite loop.

 2 -' Parse next word out of the input buffer and search the

COMPILER vocabulary first. If the word is in the

COMPILER vocabulary, it is executed. Otherwise, do

the following.

 IF 1 -FIND If the word is not in the COMPILER vocabulary, then

search the Forth vocabulary.

 IF If the word is not in either vocabulary, then

 NUMBER convert it to an integer

 \ LITERAL and compile it as a literal.

 ELSE The word is found in the Forth vocabulary. Find the best

way to compile it.

 DUP @ Fetch the first cell in the parameter field of the found

word to determine if it can be compiled as a machine

instruction.

 DUP Make a copy because we have to do a few comparisons.

 140040 AND

140040 =

If it is an I/0 instruction with return bit set

 OVER

170377 AND

140342 XOR

AND

but not a variable,

 SWAP 170040

AND 100040 =

OR

or an ALU instruction with return bit set,

 IF then this instruction can be assembled directly in-line.

 @ 40 XOR Turn off the return bit because it cannot be assumed to be

the last instruction.

 ,C Compiled as a machine code.

 ELSE It cannot be compiled as a single machine instruction.

 ,A Compile it as a subroutine call.

 THEN

 THEN

 ELSE EXECUTE The word was found in the COMPILER vocabulary. It

must be executed immediately.

 THEN

 AGAIN Infinite loop.

 ; RECOVER There is no end it it.

: [(--) Exit the compiler loop and return to the interpreter loop.

 POP DROP The compiler loop is set up inside the definitions of].

Executing [inside the compiler loop discards the return

address on the return stack. When ; is executed, control is

given back to the word calling [, which is EXECUTE in

89

the text interpreter loop. The text interpreter will then

start executing the words after [until] starts the

compilation again.

 ; [must be executed, not compiled. It must be compiled

into the COMPILER vocabulary.

: , (n --) This word 'comma' is the compiler in the most primitive

form. It adds a 16 bit number to the top of the dictionary

and increments the dictionary pointer. All other compiler

words are derived from 'comma'.

 H @ Get the dictionary pointer.

 ! Store n to top of dictionary.

 1 ALLOT Move the dictionary pointer passing the compiled pattern.

: ,C (n --) Compile n as a machine code.

 H @ ?CODE ! Store the address of the code

 , in variable ?CODE for optimization.

 , Compile n.

 ;

: ,A (a --) Compile an address.

 dA @ - Subtract the offset address store in dA, to facilitate

building a target image in a virtual memory array.

 ,C Compile the virtual address as a subroutine call.

 ;

: LITERAL (n --) Compile a number as a literal. The number will be

pushed on the stack at run time.

 DUP -40 AND Is n greater than 31?

 IF Yes. Compile a 16 bit literal.

 147500 ,C Compile a literal fetch instruction first.

 , Then compile the 16 bit number.

 EXIT EXIT is faster than ELSE.

 THEN

 157500 XOR ,C Insert n into the short literal fetch instruction and

compile it.

 ;

: \\ (--) Break the process of compiler optimization. Complete the

last word compiled and start a new word.

 0 ?CODE ! Clear the variable ?CODE. The next word will be

compiled fresh.

 ;

 : ALLOT (n --)

 H +! Allocate n cells in the dictionary by moving the

dictionary pointer H.

 \\ Start compiling a new word.

 ;

: PREVIOUS (-- a n) Return the name field address and the count of the name

field of the most recently defined

 word.

90

 CONTEXT @

HASH

Pointer to the link field.

 @ Link field address of last word.

 1 + Name field address.

 0 @+ SWAP Fetch first cell while retain the name field address.

 ;

: COUNT (n1 -- n2) Extract the length of name from the first cell in the name

field.

 7 TIMES 2/ Right shift n by 8 bits.

 15 AND Half of the character count.

 ;

: USE (a --) Replace the first cell in the parameter field of the last

word by the address
-
i, which will call an inner

interpreter.

 PREVIOUS Get the name field address and the first name cell of the

last word.

 COUNT + 1 + parameter field address.

 ! Replace the code with a.

 ;

HEX Best for bit counting.

: DOES (--) Used to define an inner interpreter for a class of words.

The syntax is:

 : <name> CREATE <compiler>

 DOES <interpreter> ;

 POP Get the address of the next word, which starts the inner

interpreter.

 7FFF AND Strip the MSB bit, which is carry.

 USE Compile that address into the parameter field of the

newly defined word as its inner interpreter.

 ;

: SMUDGE (--) Set the smudge bit in the name

 of the last word.

 PREVIOUS Return the name field address

 and the first cell in

the name.

 2000 XOR Set the smudge bit.

 SWAP ! Put it back.

 ;

: EXIT (--)

 POP DROP Pop the return stack and return to the caller.

 ;

: COMPILE (--) At run time, compile the next word in a definition.

 POP 7FFF AND Get the address of the next word from the return stack.

 1 @+ Fetch the code in that cell. Increment the address also.

91

 PUSH Push the incremented address back on the return stack to

skip the next instruction.

 ,A Compile the next instruction on top of the dictionary.

 ;

COMPILER OCTAL

: EXIT (--) This is the EXIT to be compiled inside a definition, not to

be executed interactively.

 100040 ,C Compile the return instruction.

 ; Perform the compiling function immediately.

HEX

:

RECURSIVE

(--) Reset the smudge bit so that the word being compiled is

made available to do recursive programming.

 PREVIOUS Get the name field address and the first name cell.

 DFFF AND Reset the smudge bit.

 SWAP ! Put it back.

 ;

: ; (--) Terminate a colon definition.

 \ RECURSIVE Not to do recursion. Just clear the smudge bit in the

current word definition, making it available for searching.

 POP DROP Pop return stack. Return to the caller at next ; .

 \ EXIT Compile the 100040 return machine code.

 ; Must be executed, not compiled.

5.7.2. Defining Words

In this cmForth system using NC4000 chip, code field loses its significance due to the fact that

machine code can be mixed with high level subroutine calls. However, we can still place a

subroutine call as the first cell in the code/parameter field and use it to execute a specialized

interpreter for a class of words, very similar to the CREATE..DOES> structure in conventional

Forth system.

: CREATE (--) Use the next word in the input buffer to create a

new header in the dictionary. Initialize the word to

act like a variable, returning the address of second

cell in the code/parameter field.

 H @ 0 , Save the link field address and compile a dummy

link field.

 40 WORD Parse out the next word in the input buffer.

 CONTEXT @ HASH Find the address of the head of thread of the linked

chain to which the new word will be linked.

 2DUP @ Fetch the link field address of the last word in this

chain.

92

 SWAP ! Store it in the link field of the new word.

 SWAP 0 COUNT 1 +

ALLOT

Find the cell length of the name field and allocate

that many cells to the name field.

 ! Attach the truncate bit to the last cell of the name

field.

 147342 , Compile PC I@ ; , which pushes the integer in the

next cell on the data stack.

 ;

: : (--) The definition of : in the target system.

 CREATE Create a new header for this colon definition.

 -1 ALLOT Colon words are the natural, default word type in

cmForth No inner interpreter is necessary. Reclaim

the cell used by CREATE.

 SMUDGE Set the smudge bit to protect this definition.

] Call the compiler to compile the rest of the colon

definition.

 ;

: CONSTANT (n --) Create a new integer constant.

 CREATE Build a new header.

 -1 ALLOT Reclaim the code field.

 \ LITERAL Compile n as a literal, long or short.

 \ EXIT The ; bit must be compiled as a separated cell.

 ;

: VARIABLE (--) Create a new variable.

 CREATE That's all we have to do,

 0 , except that the value of the variable must be

initialized to zero.

 ;

: ARRAY (n --) Define a vector array, with n cells. This defining

word is defined as a part of the target compiler.

 CONSTANT Define the array as a constant, which also stores

the dimension n .

 154462 USE Compile the inner interpreter, which fetches the

array address and add an offset to the array base

address to return the correct

 ;

5.7.3. Control Structures

NC4000 has three branch instructions: unconditional branch, conditional branch and loop. A branch

instruction takes a 12-bit argument to specify the address to be jumped to, within a 4K word pages.

These instructions are used to implement various control structures in high level Forth definitions.

The conditional branching structures are of the following two types:

IF ... ELSE ... THEN IF ... THEN

93

There are several types of indefinite loops which can be constructed very easily with the conditional

and unconditional branch instructions. cmForth supports the following:

BEGIN ... UNTIL

BEGIN ... AGAIN

BEGIN ... WHILE ... REPEAT

BEGIN ... WHILE ... UNTIL ... THEN

BEGIN ... WHILE ... AGAIN ... THEN

WHILE can branch to REPEAT or to THEN. The latter construction allows additional freedom, in

that there are two distinct paths after AGAIN or UNTIL.

Definite loops are constructed with FOR and NEXT: FOR ... NEXT

which is very similar to the DO-LOOP structure in conventional Forth we all love. However, FOR

takes only one parameter which is decremented every time through NEXT. The loop will be

terminated when this index is decremented to zero.

When n FOR ..NEXT is executed, the loop will be repeated n+1 times as the loop index is

decremented from n to 0 before exiting the loop. If only n loops are desired and 0 FOR ... NEXT will

skip the loop completely, Chuck gave use a new fix:

FOR … -ZERO ... THEN ... NEXT

What is between -ZERO and THEN will be repeated n times and that between THEN and NEXT will

be repeated n+1 times.

The FOR-NEXT definite loop can also make use of the WHILE-THEN conditional:

FOR ... WHILE ... NEXT ... ELSE ... THEN

However, one will have to take care of the loop index on the return stack when the loop is terminated

through WHILE, which does not restore the return stack.

: \ (--) Compile the next COMPILER word, which normally will

be executed in a colon definition.

 2 -' Parse out the next word and search it in the COMPILER

vocabulary.

 IF DROP

ABORT" ?" THEN

If the word is not in the COMPILER vocabulary, abort

immediately.

 ,A The word is found in the COMPILER vocabulary,

compile it here. When the colon word containing it is

executed, this word will then be executed in its turn.

 ;

94

Forth

. OR, (a n --) OR the address a into the instruction n and compile the

branch instruction.

 \\ Start a new machine instruction.

 SWAP 7777 AND Keep only the lower 12 bits in address a.

 OR Include truncated address into the branch instruction n.

 , Compile the branch instruction.

 ;

 : BEGIN (-- a)

 H @~ Push the current dictionary pointer on the data stack.

 \\ Initialize the optimizer.

 ;

: UNTIL (a --) Compile a conditional branch to address a.

 110000 Conditional branch instruction.

 OR, Add address and compile it.

 ;

: AGAIN (a --) Compile an unconditional branch to address a.

 130000 Unconditional branch instruction.

 OR, Add address and compile.

 ;

: THEN (a --) Resolve the branch address in the branch instruction

compiled by IF or ELSE.

 \ BEGIN Get the address of the current instruction, as pointed to

by the dictionary pointer.

 7777 AND Keep only the 12 bit part.

 SWAP +! Add it into the 12 bit address field in the IF or ELSE

instruction.

 ;

: IF (-- a) Compile a conditional branch instruction now and leave

its address on the stack so that its address field can be

resolved by ELSE or THEN.

 \ BEGIN Leave the address of the conditional branch instruction

on the stack.

 110000 , Compile a conditional branch instruction with an

unresolved address field.

 ;

: ELSE (a1 -- a2) Resolve the conditional branch instruction at al. Compile

an unconditional branch instruction with a 0 address

field. Leave its address on the stack as a2, to be used by

THEN to resolve.

 \ BEGIN Address of the current unconditional branch instruction.

 130000 , Compile an unresolved unconditional branch instruction.

 SWAP Get al to top of the stack.

 \ THEN Invoke THEN to resolve the conditional branch

instruction left by IF.

95

 ;

: WHILE (a1 -- a2 a1) Compile an unresolved conditional branch instruction.

Leave its address on the stack as a2 while pass the

address left by BEGIN.

 \ IF Invoke IF to compile a conditional branch.

 SWAP Exchange al and a2 so that they can be used by

REPEAT/AGAIN and THEN to resolve the branch

addresses.

 ;

: REPEAT (a1 a2 --) Resolve the BEGIN-WHILE-REPEAT structure.

 \ AGAIN Compile an unconditional branch back to BEGIN, using

address a2.

 \ THEN Resolve the conditional branch instruction compiled by

WHILE.

 ;

: FOR (-- a) Start a definite loop.

 \ PUSH Compile a PUSH instruction which saves the loop count

in the I register.

 \ BEGIN Leave address of the next instruction for NEXT to branch

back.

 ;

: NEXT (a --) Compile a loop instruction and use the address a on the

stack for the branch address.

 120000 Code of the loop instruction.

 OR, Resolve the backward jump address.

 ;

5.7.4. NC4000 Assembler

Assembler? Good grief!

Supposedly, NC4000 speaks high level Forth language and we shall all be free from the tyranny of

assembler and live happily ever after. The truth is that you can program in Forth and NC4000 will run

the program much faster than anything you had previously. However, if you really want the best out of

this machine you still have to deal with it, by bits and pieces at the machine code level. If you know

how to construct machine code which performs the task in the most efficient way, you can squeeze

the most out of this machine.

NC4000 machine instruction assembly can be handled in two different ways: map NC4000

instruction set onto a regular Forth instruction set and solve the problem with the regular Forth

programming technique; or find ways to squeeze as many functions into NC4000 instructions as

possible in order to save both machine cycles and memory space. Here we shall be concerned with

single function NC4000 instructions and show you how they can be defined and how they are used to

allow us to program in regular Forth style. In the sections on the Optimizing Compiler, we will

discuss how a program can be optimized by combining many functions into one NC4000 instruction.

96

: uCODE (n --) Define a NC4000 machine instruction and give it a name. When

the machine instruction is invoked in a colon definition, code n

will be assembled.

 CREATE Give the instruction a name.

 , Compile n in the parameter field.

 DOES Above are compiler action and following are run time function.

 POP Get the pointer to the stored code.

 77777 AND Mask off the carry bit.

 @ Fetch the code n stored in the parameter field.

 C, Now, compile n into dictionary. That is the assembler function.

 ;

Most of NC4000 machine instructions can be defined using uCODE. Here are all these words

defined this way in cmForth:

100000 uCODE NOP One cycle Noop.

140000 uCODE TWO Two cycle Noop.

154600 uCODE O+c Adjust for carry.

102404 uCODE MOD' Conditional subtract MD.

177300 uCODE N! Store N to where T points but keep a copy of N on stack.

147303 uCODE -1 Push a true on stack.

104411 uCODE *' Multiply step.

102411 uCODE *- Signed multiply step.

100012 uCODE D2* Left shift the double integer.

100011 uCODE D2/ Right shift the double integer.

102412 uCODE *F Fractional multiply step.

102416 uCODE /' Divide step.

102414 uCODE /" Last divide step.

102412 uCODE *F Fraction multiply step.

102616 uCODE S' Square-root step.

Machine code can also be defined as regular Forth words which compile specified code into the

dictionary using C.

: R> 147321 C ;

: POP 47321 C ;

: PUSH 157201 C ;

: I 147301 C ;

: TIMES 157221 C ;

Instructions which use the least significant 5 bits for short literals, internal register numbers, and

memory increments must compile proper values into this 5 bit field. The technique in defining them

might be useful in other places.

OCTAL

97

. -SHORT (-- f) Return a true flag if the current instruction under

construction takes a 5 bit short literal or argument.

 ?CODE @ @ Obtain the current instruction whose address is stored

in ?CODE.

 177700 AND Mask off the lower 6 bits.

 157500 XOR Is it not equal to 157500, which is the code to access

internal registers?

 ;

: FIX (n --) Get the 5 bit literal from the instruction pointed to

by ?CODE and combine it with n to form a new

instruction. It is then stored back to where ?CODE is

pointing to.

 ?CODE @ @ Get the instruction pointed to by ?CODE.

 77 AND Preserve only the lower 6 bits.

 OR OR it into n.

 ?CODE @! Store the instruction back to dictionary.

 ;

: SHORT (n --) Construct an instruction with a short literal. If the

instruction cannot accept a short literal, abort with an

error message.

 -SHORT Can the instruction take a short literal?

 IF No.

 DROP Discard n.

 ABORT" n?" Print error message and quit.

 THEN

 FIX Yes. Include the literal into n and replace the old

instruction.

 ;

 COMPILER Assembler instructions have to be placed in COMPILER.

: @ (--) A smart @ compiler. If the address is in the local

memory(<32), compile a single cycle instruction.

Otherwise, compile a regular two cycle memory fetch

instruction.

 -SHORT Is the address in the local memory area?

 IF Not in local memory,

 167100 ,C Compile a two cycle memory fetch.

 ELSE It is in local memory,

 147100 FIX Compile a short memory fetch with address as a short

literal.

 THEN

 ; This is a compiler directive, not a regular Forth @ word.

: ! (--) A smart ! compiler similar to @.

 -SHORT Local memory?

 IF No.

98

 177000 C Compile long memory store.

 ELSE Yes.

 157000 FIX Compile a short memory store.

 THEN

Machine instructions which must take short literals as arguments are compiled directly using

SHORT. Since these instructions are compiler directives, their arguments or the short literal,

must be known at compile time. You cannot change the literal or register numbers dynamically

at run time. In fact, the compiler will abort if you forget to give the proper argument prior to

these instructions.

: I@ (n --) Compile a register fetch instruction to fetch register n at

run time.

 147300 SHORT

 ;

: I! (n --) Compile a register store instruction to store top of stack

into register n at run time.

 157200 SHORT

 ;

: @+ (n --) Compile a increment fetch instruction which increments

the address by n.

 164700 SHORT

 ;

: !+ (n --) Compile a increment store instruction.

 174700 SHORT

 ;

: !- (n --) Compile a decrement store instruction.

 172700 SHORT

 ;

: I@! (n --) Compile a register exchange instruction which swaps

contents between T and register n.

 157700 SHORT

 ;

5.7.5. Compiler Vocabulary

To program in cmForth, you have to be aware of the difference between the compiler directives

and regular Forth words, which can be compiled and interpreted. They appear to be the same, in

a colon definition but behave very differently. The compiler directives can only be used in colon

definitions and should not be executed outside of a definition. For this reason, all the compiler

directives are placed in a special vocabulary named COMPILER and all the regular Forth words

are placed in the Forth vocabulary. In the normal interpretive mode, only the Forth vocabulary is

searched and you cannot access any of the compiler directives. Only after the word : is executed

will the COMPILER vocabulary be made available to the compiler, which will take advantage of

NC4000 and compile efficient machine code whenever possible. At the end of a definition or

99

when an error occurred, the COMPILER vocabulary will be turned off so that you will be

protected from the abnormal behavior in many of the compiler directives.

: FORTH (--) Define the Forth vocabulary.

 1 CONTEXT ! Deposit hash code 1 in the system variable CONTEXT.

This hash code is used to select one of the two threads to

link a new definition and to search for an existing

definition.

 ;

: COMPILER (--) Define the COMPILER vocabulary.

 2 CONTEXT ! The hash code of COMPILER vocabulary is 2. The

compiler searches this vocabulary and execute words

found here. If then searches Forth vocabulary and

compile words found there.

 ;

5.8. Optimizing Compiler

The compiler in a regular Forth system is very simple. It only has to search the dictionary, find the

words and compile their execution addresses. Each word represents one function. The only

complication is to build control structures in a definition, which requires compiler directives during

compilation. The compiler for NC4000 is much more complicated due to following reasons:

 The compiler absorbs the function of an assembler to assemble machine instructions
besides compiling high level words or subroutine calls.

 More than one function may be performed by a single NC4000 instruction. The compiler
must be able to recognize the sequence of actions and combine them into a single machine

instruction.

 There are three memory spaces to be dealt with: the main memory, the local memory, and

the registers.

 Deficiency in the prototype chip precluding certain combinations of bit patterns.

In cmForth, Chuck Moore chose a very simple and quite effective approach to optimize the

assembly of machine instructions. He simply looks at the last instruction just compiled and the

current instruction. If there are unused bits in the last instruction which can accommodated the

current instruction, the current instruction is then combined into the last instruction. If it is

impossible to squeeze the current instruction into the last compiled one, a new instruction is

compiled, which can be used to optimize the next instruction. The system variable ?CODE points to

the last compiled instruction to facilitate this optimization process. A zero in ?CODE forces the

compilation of a new instruction.

Chuck picked several strategic places to exercise code optimization: at the end of a definition when ;

is executed, whenever a binary ALU code is assembled, and when a shift code is assembled. These

three cases cover most situations where optimization is effective. Other situations can be optimized

by explicitly hand coding special machine instructions.

100

The variable ?CODE is used to control the optimizing process. Whenever a multi-function machine

code is compiled, its address is stored in ?CODE so that the smart compilers can work on it. When

a high level word (subroutine call), a conditional or unconditional branch, or a loop instruction is

compiled, ?CODE is set to zero, in effect turning the smart compilers off for that instruction.

5.8.1. Smart ; Compiler

The subroutine call in NC4000 is a one cycle instruction and the subroutine return is a single bit

embedded in many NC4000 machine instructions. Obviously, if you can recognize the conditions

when the return bit can be inserted into the last instruction of a definition, you can always save a

machine cycle. Most of the colon definitions can be treated this way by the smart ; compiler.

OCTAL We want to see the bit patterns in machine instructions. Octal is the most natural

representation.

: PACK (a n --) Pack the return bit into the machine instruction in

address a if possible. Otherwise, compile an explicit

return instruction. Terminate the calling word by

discarding top of return address.

 160257 AND These bits are relevant bits which must be examined.

 140201 XOR If bits match this pattern, return bit should not be

packed into it. Exclude memory instructions and return

stack instructions.

 IF Bit pattern does not match 140201,

 40 SWAP +! pack the return bit into the instruction at address a.

 ELSE Pattern matches with 140201.

 DROP Discard the address a.

 100040 , Compile an explicit return instruction.

 THEN

 POP DROP Work is done. Exit the EXIT routine immediately.

 ;

: EXIT (--) Look through all the possible patterns where the return

bit can be packed and pack it.

 ?CODE @ DUP Last instruction a machine code?

 IF Yes. Go work on it.

 \\ First re-initialize ?CODE.

 DUP @ Fetch the machine code.

 DUP 0< Is the bit 15 set?

 IF Yes. It looks like a machine code.

 DUP 170000 AND

100000 =

Is it an ALU instruction?

 IF PACK THEN Yes. Pack the return bit.

 DUP 170300 AND

140300 =

Is it a register fetch instruction?

 IF PACK THEN Yes. Pack the return bit.

 DUP 170000 AND Is it a short literal store instruction?

101

150000 =

 IF

 DUP 170600 AND

150000 XOR

15x6xx cannot be a valid instruction.

 IF PACK THEN If not 15x6xx, pack the return bit.

 THEN DROP End of multi-function code processing.

 ELSE Last instruction is not a multi-function machine code.

However, if it is a call instruction, it can be substituted

by a jump instruction to save an explicitly return

instruction. This is what computer scientists call a tail

recursion.

 DUP HERE dA @ -

XOR

Compare the address in ?CODE with the current

dictionary pointer.

 170000 AND 0= Are they in the same 4K word page?

 IF Yes.

 7777 AND Isolate the 12 bit address field.

 130000 XOR Tag the unconditional jump field.

 SWAP ! Store it in the address pointed to by ?CODE.

 EXIT Terminate here immediately.

 THEN

 DROP Discard content of ?CODE.

 THEN

 THEN DROP Discard ?CODE.

 100040 , Compile explicit return instruction. Not possible to

optimize.

 ; Compiler directive.

: ; (--) The optimizing ; compiler.

 \ RECURSIVE Reset the smudge bit in the name field of the new

definition, making it available for searching.

 POP DROP Exit the compiler loop at the end of this word (;).

 \ EXIT EXIT was made immediate. Force its compilation.

 ;

5.8.2. Smart ALU Function Compiler

The ALU instructions are the most complicated type of instruction in NC4000, because all the fields

and bits interact and a large variety of instructions can be constructed, doing many things in a single

cycle. A smart compiler would have to be able to recognize all these conditions in order to combine

as many functions into a single machine instruction.

The elementary ALU functions like +,-, SWAP- , AND , OR , and XOR are defined by the smart

compiler BINARY. They will examine the instruction previously compiled to see if the ALU function

can be incorporated into that instruction and do so whenever possible.

: BINARY (n1 n2 --) n2 is the code of an ALU instruction. n1 is the pattern

which can be XOR'ed into the previous instruction to

102

install the ALU function. Define a smart ALU compiler.

 CREATE Make a new header.

 , , Compile n2 and n1 into the parameter field.

 DOES Now define what the new compiler directive will do

during compilation.

 POP 77777 AND Pointer to the stored patterns n2 and n1.

 2@ Retrieve them.

 ?CODE @ DUP Are we dealing with a machine code?

 IF Yes. Turn on the optimizer.

 @ The machine instruction.

 DUP 117100 AND

107100 =

Is it of the SWAP/OVER type?

 OVER 177700

AND 157500 = OR

Or a short literal?

 IF Yes. We can do something about it now.

 DUP 107020 - Not a DROP?

 IF Not DROP.

 SWAP DROP Discard n2.

 XOR Force the ALU code into the ALU field of the previous

instruction.

 DUP 700 AND

200 =

Test if carry must be included. IF 500 XOR

 ELSE

 DUP 70000

AND 0=

Make sure we have an ALU instruction at hand, then

 IF 20 XOR

THEN

flip the Stack Active SA bit.

 THEN

 ?CODE @ !

EXIT

The instruction can take ALU code in the ALU field.

Update the machine code.

 THEN

 THEN

 THEN

 DROP Drop the ?CODE, which is zero

 ,C Compile n2 as another ALU instruction without

optimization.

 DROP Discard the compare mask.

 ;

Now, all binary ALU code compiler can be defined by BINARY:

6100 101020 BINARY AND

1100 102020 BINARY SWAP

4100 103020 BINARY OR

3100 104020 BINARY +

2100 105020 BINARY XOR

103

5100 106020 BINARY –

7100 107020 BINARY DROP

5.8.3. Shift Compiler

Shift instruction can be appended to all the ALU instructions. However, restrictions in NC4000

prototype chip have to be imposed so that shifts produce the desired results.

: SHIFT (n1 n2 --) Define smart shift compilers. n1 is the shift code and n2

is a mask for comparison.

 CREATE Make new header.

 , Save n's, the shift code and a mask in the parameter field.

 DOES Actual compilation action.

 POP 77777 AND Pointer to the stored shift code.

 2@ Get the code and the mask.

 ?CODE @ ?DUP Is the previous word a machine instruction?

 IF Yes. Do optimization.

 @ AND Put on the mask.

 100000 =

 WHILE Is it an ALU instruction save with a shift operation?

 ?CODE @ +! Yes. Pack in the shift code.

 EXIT Done and out.

 THEN

 THEN

 DROP Cannot optimize. Discard the code address.

 100000 XOR ,C Compile a simple shift machine instruction.

 ;

The three shift functions which can be safely packed into ALU instructions are:

2 171003 SHIFT 2*

1 171003 SHIFT 2/

3 177003 SHIFT 0<

One has to be careful about 0< which has to be followed by a NOP before it can be used to do logic

branching, as evident in the source listing when 0< is invoked.

The double integer shift instructions cannot be packed into other ALU code due to the prototype

restrictions. They are defined as explicit single cycle instructions:

100012 uCODE D2*

100011 uCODE D2/

5.8.4. Merging of DUP

Sometimes a DUP operation can be merged into a machine code, whose stack active bit can be

turned on, to accommodate the DUP function. A single cycle DUP instruction must be compiled

104

before the machine instruction just compiled.

: DUP? (--) Pack two previous instructions into one if the first is a

single cycle DUP instruction.

 HERE 2 - @ Fetch the instruction just before the one recently

compiled.

 100120 = Is it a single cycle DUP instruction?

 IF Yes. Try to pack.

 HERE 1- @ Get the most recent instruction.

 7100 XOR Turn on Tn bit and change data source to T, thus

activating DUP.

 -2 ALLOT Delete the two compiled instructions.

 ,C Replace them with a single instruction.

 THEN

 ;

Not many instruction pairs can be packed this way. The ones used in cmForth are:

: I! (n --) Compile a register store instruction.

 157200 SHORT Compile a short literal instruction with n as the register

number.

 DUP? Often the data stored into a register are needed for other

purposes. If a DUP instruction is used this way, it can be

packed into the I! instruction.

 ;

: PUSH (--) Compile a PUSH or a DUP PUSH instruction.

 157201 C Compile the single PUSH instruction.

 DUP? Pack DUP if available.

 ;

5.9. The Target Compiler

The target compiler is a utility program in Forth which allows a Forth system to generate a new

Forth system, to be run either on the same computer or on a different computer. In cmForth, the target

compiler is the most important application written for a NC4000 computer, allowing cmForth to

regenerate itself. This unique feature permits a user to modify cmForth, add new features, delete

features not needed in his application, and produce an application or a system best suited for his

purpose. cmForth can thus grow with you and your application. A user is not constrained by the

prejudice and preference of its author, who does have his own ways in programming and shows no

respect for conventional wisdom.

5.9.1. Utility Compiler

: 0< (--) Compile 0< with a NOP before doing logic decision. This

is necessary for prototype NC4000, which does not allow

enough time for the sign bit to propagate through the

105

shifter.

 \ 0< Forcing 0< to be compiled.

 \ NOP Forcing NOP to be compiled. Allow sign bit to propagate

15 bits.

 ;

: END (-_) Very similar to ; at the end of a colon definition. Un-

smudge the current word under construction and return to

the caller of the current word in run time.

 \ RECURSIVE Un-smudge the name of current word.

 POP DROP Discard the top element on the return stack. Skip all

words following the current word and return to the caller.

 ;

: REMEMBER; (--) A compiler directive which saves the current vocabulary

link table so that the dictionary can be reduced to this

point.

 CONTEXT 2-

2@

Fetch the vocabulary links.

 , , Copy the current thread table into the parameter field.

 \ END Compile EXIT and un-smudge the new word which will

cut back the dictionary.

 ;

FORTH

: EMPTY (--) Create a new word named EMPTY. The overlay starts

here. You can load an application package and do some

useful work. After you are through with this application,

execute EMPTY to remove the package from the

dictionary and reclaim all the dictionary space for your

next application.

 FORGET

REMEMBER;

REMEMBER; stores the current vocabulary links in the

two cells right after FORGET. When EMPTY is

executed, FORGET will copy these two cells into the

vocabulary link table below CONTEXT. All words

defined after EMPTY will not be found by either the

interpreter or the compiler.

: THRU (n1 n2 --) Load blocks from n1 to n2 inclusive.

 OVER -

 FOR Repeat that many times.

 DUP LOAD Load one block.

 1+ Add one to n1 for the next block.

 NEXT Repeat.

 DROP Discard n1.

 ;

: -MOD (n1 n2 -- n3) Conditionally subtract n2 from n1. If the result is

positive, return it as n3. Otherwise, return n1 unmodified.

106

 4 I! Copy n2 into MD register.

 MOD' Do the conditional subtraction.

 ;

5.9.2. Target Dictionary

Since this purpose of this target compiler is to regenerate cmForth, it is quite simple because most

of the compiler functions are already implemented. What we need in addition are a set of words

which will let us compile code in some unused part of memory, which will later be dumped into

ROM's for the target computer. A special variable H' is defined to manage the target dictionary in the

virtual memory space. Another variable dA is used to store an address offset, which is the

displacement of the virtual memory address to the actual address in the target system.

VARIABLE H' The dictionary pointer for the target system dictionary. It behaves very

similarly to the system variable H, the dictionary pointer of the host

system.

HEX 2000 , This cell following H' is reserved to store the dA variable of the target

system.

2000 800 0 FILL The target dictionary is compiled from 2000H to 27FFH. This space is

first cleared to zero's. The code compiled here will be moved to ROM

which will occupy memory 0 to 7FFH in the target system.

2000 H' ! H' is initialized to 2000H. Code of the target system will be compiled

starting here.

Many words in cmForth are needed to construct the system and are of very little interest to the user. It

is a waste of memory to keep their headers in the target dictionary. The following words allow us to

compile only the body of a definition to the target dictionary. By keeping the header in the host

dictionary, these words are still available to build other words in the target dictionary.

: { (--) Compile the header of the next word only to the host

dictionary.

 dA @ Get dA of the host system.

 HERE and the dictionary pointer.

 H' 2@ Get dA and target dictionary pointer.

 H ! dA ! Store H' and dA'.

 H' 2! Store H and dA. Exchanging H and dA of the host with those

of the target system allows cmForth to compile words either to

the host dictionary or to the target dictionary.

 ;

: } (--) Alias of {. It is defined for syntactic clarity. It is always used

when H' is pointing to the host dictionary, thus allows the

compiler to resume compiling the target dictionary.

 { Alias of {,

 ;

 COMPILER We need two copies of }, one for the text interpreter as above,

107

and another for the compiler which can be executed inside a

colon definition.

: } (--) The compiler directive }.

 H' @ First get the target dictionary pointer,

 ,A and compile it into the host dictionary so that this address can

be compiled to the target when it is invoked in a target

definition.

 \\ Break the optimization process before switching dictionary.

 PREVIOUS Name field address of the word under construction and the first

cell in the name.

 8000 XOR

SWAP !

Set the MSB high and flag it as a hidden name of a target

definition.

 { Now, switch dictionary pointer so that subsequent words are

compiled into the target dictionary.

 ;

FORTH

: forget (--) Hide the target definition which collides with the same

definition in the host dictionary which must be used during

target compilation.

 SMUDGE Set the smudge bit in the name of the target definition.

 ;

: RECOVER (--) Move the dictionary pointer H back by one cell. Save one cell

in the target dictionary.

 -1 ALLOT Decrement H pointer.

 ;

5.9.3. Variables in Target System

In the earlier cmForth systems, Chuck Moore had to define many words to manage variables in the

target system during target compilation. In this version, he simply replaces the variables by constants.

The value returned by these constants are addresses pointing to memory where variables are stored.

The variable array RAM, the variable pointer R', and the target version of VARIABLE are all

eliminated. The newer cmForth is thus simpler and easier to understand.

108

5.9.4. Separate Target and Host Dictionary

Using { and }, we can compile the header of a target definition either in the target or the host

dictionary. The resulting vocabulary link runs like a bowl of spaghetti, up and down between the host

dictionary and the target dictionary. The link field in the target dictionary must be re-ordered so that

the target dictionary can be searched when it is moved into a target system. Smudge heads in the

target dictionary also must be un-smudged. The following words are used to re-link and clean up the

target dictionary.

: SCAN (a1 -- a2) Following the linked dictionary chain starting at al until a

link address outside of the host dictionary is found, which

is returned as a2.

 @ Link field address of the next definition in the chain.

 BEGIN Follow the link.

 DUP 1 2000

WITHIN

Is this address inside the host dictionary?

 WHILE @ Yes. Fetch the next link.

 REPEAT Exit if the link address is either above 2000H in the target

dictionary, or 0 which indicates the end of the vocabulary

link.

 ;

: TRIM (al a2 -- a2) Relocate a target definition from the host dictionary to

the target dictionary. Un-smudge the name of the target

definition also.

 DUP PUSH Save the link field address of the target definition a2.

 dA @ - Compute the correct target address of a2.

 SWAP ! Store the correct target address into the link field of the

target definition at al.

 POP DUP 1 + Get the link address a2 back. Increment it to the name

field of this target definition.

 DUP @ DFFF AND Mask off the smudge bit in the name.

 OVER ! Store the un-smudged name back.

 DUP @ 200 / F AND Get the cell count of the name field.

 + The last cell in the name field.

 DUP 0 FF7F AND

SWAP !

Erase the most significant bit in the last byte of the name.

This is the truncation bit.

 ;

: CLIP (a --) Scan a linked vocabulary for words in the target

dictionary. Re-link them into a separate target

vocabulary.

 DUP Save a copy of the starting address.

 BEGIN Go through the vocabulary.

 DUP SCAN Find the next target definition.

 DUP Keep a copy of this address.

 WHILE

 TRIM Re-link this target definition to target dictionary and

109

clean its header.

 REPEAT Repeat until the vocabulary is processed to the end. Link

Address of the last target word is left on the stack.

 2025 XOR dA @ -

SWAP !

Fix the link field of the last word in a vocabulary of the

target dictionary. If the link field is at 2025H, place a 0 in

it. Otherwise, put a 25H in it. This assures that the

FORTH and COMPILER vocabularies both end at the

first word #, the End-Of-Line definition.

 @ , Fetch the link field address of the last word defined in a

vocabulary and store it on the top of the target dictionary

in RESET after FORGET where the initial vocabulary

link table is located.

 ;

: PRUNE (--) Re-link the target vocabulary and clean up all the headers

in the target definitions.

 { Switch to the target dictionary.

 CONTEXT 2 - Head of the COMPILER vocabulary.

 DUP CLIP Re-link the target COMPILER vocabulary.

 1+ Head of the FORTH vocabulary.

 CLIP Re-link the target FORTH vocabulary.

 } Switch back to the host dictionary.

 20 0 2025 2! Patch the name field and link field in the first target word

'#'. Change its name to an ASCII BL with 0 character

count. Change its link field to 0 as the end of the

dictionary.

 EMPTY Cut the target dictionary completely off the host

dictionary.

 ;

5.9.5. Target Compiler in Action

Screen 3 in the source listing shows how the target compiler is used to recompile cmForth itself. Let's

go through it line by line to see how the target dictionary is built up to the point it can be tested in the

host system and booted up in a target system.

EMPTY Throw away any garbage previously collected on the host

dictionary.

2 LOAD Load the target compiler.

HEX 2000 800 0 FILL Clear the target dictionary for ROM code.

2000 H' ! Initialize the target dictionary pointer.

: BOOT (--) Define BOOT and put its header in the host dictionary.

 } Exchange the target dictionary pointer with the host dictionary

pointer. The following words will be compiled into the target

dictionary. It is the reset routine.

 16 FFF FOR 0 Copy 4K words from ROM to RAM.

110

@+ 1 !+ NEXT

 -1 @ Pulse the clock input of the 74HC74 flip-flop to turn on RAM

and turn off ROM.

 ; (reset) This cell is later replaced by the reset routine 'reset' which

initializes NC4000 in the ForthKit system.

0 , 0 , 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 ,

0 ,

Initial values for local memory and some system variable.

0 , TIB.

77C0 , This cell will be used for SPAN. However, 77C0 is the address of

the terminal input buffer, which will be copied into TIB.

0 , 0 , 0 , 0 , 0 , Initial values for other system variables: >IN, BLK, dA, ?CODE,

and CURSOR.

1FF , SO

A , BASE

0 , H

DECIMAL 521 , C/B for 5 MHz clock.

{; interrupt } (--) Compile a noop interrupt service routine at 20H. The

header is compiled in the host dictionary.

 POP DROP Discard the return address saved on the return stack by

the interrupt. Execute the next word as if nothing had

happened.

 ;

0 , 0, Vocabulary link table for FORTH and COMPILER.

1 , CONTEXT

In the target system, the code of BOOT routine from 2000H to 200FH will be copied to 1000H to

100FH in the target system, and the variable initialization table from 2010H up together with the

target dictionary will be relocated to 1OH-7FFH in the target system.

Following the above variable initialization table, we will build the target dictionary by compiling

cmForth source screens.

:# R>DROP ; This is the word EXIT. # is a temporary name. It will be changed

to 80A0H later to perform end-of-line function.

DECIMAL 7 11 THRU Load nucleus.

12 22 THRU Load the interpreter.

23 24 THRU System initialization.

' reset dA @-

HEX 2009 ! DECIMAL

Install the reset vector at the end of BOOT.

25 30 THRU Load compiler.

} At this point, the target system is complete. Restore host dictionary

111

for normal usage.

The newly compiled target dictionary image can be burned into EPROM's and inserted to the ROM

sockets. If the hardware is done right, the new computer with NC4000 can now be powered up and it

should say "hi" on your terminal.

However, before you burn the EPROM's, it would be nice if the new target system can be tested in the

host system. The code at the bottom of Screen 3 does exactly that. The newer cmForth assumes that

NC4000 boots up in a shadow ROM and operates in RAM, which can be overwritten with the core

image of the target system. In the older cmForth, the testing process was more complicated because

the target system must be run while in the area 2000H-27FFH. The code for testing was compiled

differently than the code for the target system.

PRUNE Re-link the target dictionary to produce a core image of a stand-alone cmForth

system.

: GO (--) Copy the target core image in the area 2000H-27FFH to the low

RAM memory area and pass control to the new system

 FLUSH Clean up the disk buffers.

 [HEX)

 2015 4 I! Store source address in MD.

 15 Destination address.

 6EA FOR Copying loop.

 4 I@! Exchange source and destination addresses.

 1 @+ Fetch from source.

 4 I@! Exchange addresses again.

 1 !+ Store to destination. NEXT

 2009 PUSH Push 2009 on the return stack.

 ; Jump to 2009H and execute the 'reset' routine to bring up the

new system.

112

Chapter 6. Programming Tips

The source code in cmForth is a large reservoir of programming tools and examples you can use to

solve many practical problems. However, programming examples can never be too many. In this

chapter, I will discuss a number of exercises that I have worked out on my NC4000 machine under

cmForth. I tried to explore areas outside of the operating system which was addressed extensively by

cmForth. I hope these exercises will be helpful for people who are more concerned with day-to-day

programming problems than with the problems encountered by the operating system.

Chuck Moore provided many excellent examples using NC4000 to control many different

peripheral devices as App Notes distributed with the ForthKits. These App Notes are also

reproduced in More on NC4000, Volumes 4 and 5. Many NC4000 users also contributed code,

applications, tips, and insights related to NC4000 in More on NC4000. Interested readers should

consult these and other volumes for further information.

6.1. Benchmarks

Benchmarks do not lie. Liars do benchmarks.

I have to admit that I have an ax to grind, and it is always nice to show off your newest toy to friends

and relatives. My favorite benchmarks are simple tests enclosed in big loops so that one can use a

regular clock to time them. Some of these tests are shown in Figure 6.1.

The interesting thing about these test programs is that the blazing speed of NC4000 makes them

difficult to time accurately if you only do 32768 loops. For example, it takes NC4000 about 8 ms to

complete 32768 empty FOR-NEXT loops, about 100 times faster than my PC. To facilitate testing,

I have to put the test program inside another loop.

The reason why NC4000 is faster than any conventional microprocessor is very simple. NC4000

executes one machine instruction per clock cycle while other microprocessors need more than one

clock cycle to do anything. The number of clock cycles required to perform an equivalent task is a

more useful measure of microprocessor's performance than benchmarks. Table 6.1 shows the

comparison among NC4000, 68000, and 8086.

Because NC4000 does most operations in one machine clock cycle, in many instances several

operations in one cycle, it is no wonder that it should be faster than 68000 and 8086 running at

much higher clock frequencies. The most interesting instructions are subroutine calls and returns,

which are optimized to the physical limit of computer design--one clock cycle for calling and zero

cycle for returning. In running conventional high level language programs, subroutine calls and

returns often consume as much as 40% of the execution time. By reducing the overhead of

subroutine calls and returns to the bare minimum, NC4000 can support other high level languages

and significantly improving their efficiency.

113

Table 6.1. Machine Cycles for 16 Bit Integer Operations

Operation NC4000 68000 8086

Register-Register Move 1 8 2

Register-Memory Move 2 16 8-11

Register-Register Add 1 8 3

Multiply 23 74 118-133

Divide 31 144-162 144-162

Call Subroutine 1 32 19-28

Subroutine Return <1 32 8-18

Push Register <1 16 10

Pop Register <1 16 8 Branch 1 18 4-16

(BENCH MARKS, 23MAR85CHT) HEX

: LOOPS 7FFF FOR NEXT ;

: LOOPTEST FOR LOOPS NEXT ;

: +TEST 7FFF FOR I DUP + DROP NEXT ;

: +TESTS FOR +TEST NEXT ;

: -TEST 7FFF FOR 7FFF I - DROP NEXT ;

: -TESTS FOR -TEST NEXT ;

: *TEST 7FFF FOR I DUP * DROP NEXT ;

: *TESTS FOR *TEST NEXT ;

: /TEST 7FFF FOR 7FFF I / DROP NEXT ;

: /TESTS FOR /TEST NEXT ; DECIMAL

Figure 6.1. Sample Benchmark Programs.

6.2. WORDS--Listing the Vocabulary

VLIST in figForth and WORDS in F83 are very useful utilities to examine the status of the

dictionary. These words are addictive. Once you get used to them, life seems impossible without

them. However, the tradition of polyForth, which could be attributed to Chuck Moore, was not to

bother with them. VLIST or WORDS were not useful in polyForth environment, because of the 8-

way threading and hashing of the dictionary-vocabulary structure and the three character names. In

cmForth, Chuck eliminated the 8-way hashing of the dictionary, retaining only two vocabularies.

The dictionary structure is now simple enough so that VLIST or WORDS can be meaningful again.

Since only the first three characters are retained in the name field of a word, you cannot completely

recover the full name of a word. However, the mechanism to retain names up to 31 characters is built

into the cmForth system. If you really want full names in your dictionary, you can do it by target

compiling the system with the variable WIDTH set to 16.

In Figure 6.2, I have shown a simple implementation of WORDS which lists the word names in a

vocabulary. In the listing, each name is preceded by its character count. You can improve it to make

the listing prettier, or display the address alone with the name, etc.

114

cmForth has only two vocabularies, FORTH and COMPILER. In the version we have here, FORTH

and COMPILER are not defined. Their definitions are trivial, and are shown in Figure 6.2.

FORTH stores a 1 into the variable CONTEXT and COMPILER stores a 2 in it. This number in

CONTEXT is to be subtracted from the address of CONTEXT to get the address of a pointer

pointing to the link field of the last definition in one of the two vocabularies. The phrase in the

definition of WORDS:

CONTEXT DUP @ - C

thus obtains the link field address of the last definition in the context vocabulary.

‘C.’ is similar to EMIT, except it will not emit non-printable characters. It is useful in doing

ASCII dumps. It was needed when I first coded the ID routine which displayed three characters in

the name field even though the name contains only one or two characters. The revised ID shown in

Figure 6.2 is smart enough to display one or two character names correctly, and C. is not necessary

anymore. ‘.ID’ takes a link field address, prints the content of the name field, and returns with the

link field address of the next word in the same vocabulary. With this rather powerful name printing

word, the definition of WORDS becomes very straightforward. WORDS follow the context

vocabulary and prints the names of all the words in this vocabulary. It stops when a link field

address is 0, which indicates the end of this vocabulary.

(WORDS, 23MAR86CHT)

: FORTH 1 CONTEXT ! ;

: COMPILER 2 CONTEXT ! ;

: C. >R 31 127 I WITHIN

 IF R> EMIT ELSE R> DROP THEN ;

: .ID (A - A')

 1 @+ 2C@+ 31 AND DUP >R . C.

 2C@+ I 1 > IF C. ELSE DROP THEN

 R> 2 > IF C. ELSE DROP THEN 3 SPACES DROP ;

: WORDS CONTEXT DUP @ -

 BEGIN .ID DUP 0= UNTIL DROP ;

Figure 6.2. Vocabulary Definitions and WORDS.

115

6.3. Memory Dump

A good memory dump utility is always handy when you have to do detective work in the object code.

The DUMP word in cmForth is unconventional. It takes an address from the stack, displays the

contents of 8 cells starting from this address, and returns with the address of the cell after the last

cell displayed-. The reason why Chuck coded it this way was that he was experimenting with a CRT

display circuit driven directly by NC4000 chip. "In this display, he used only the top line for

command entry and the second line for responses from NC4000. In this scheme, he could display

only one line at a time. That's why his DUMP dumps only one line of data. Because DUMP returns

the address of the next line, DUMP can be used repeatedly to scan a section of memory.

Since you are more likely to use a regular 24 line CRT display terminal or a computer as

terminal/disk server, a multiple line DUMP routine would seem to be more useful. Figure 6.3 shows

such an implementation.

CHAR displays only printable characters. It substitutes a blank for any non-printable character. The

most significant bit of the character is striped. TYPE takes a cell address and a byte count as

arguments, and displays a string of characters. It assumes that the byte count is always even.

(DUMP) is similar to the DUMP in cmForth. It dumps only one line or 8 cells of memory and

bumps the address by 8. The difference is that (DUMP) does not include carriage return and line

feed. DUMP calls TYPE and (DUMP) alternately, and displays a nicely formatted dump on the

terminal.

(MEMORY DUMP, 23MAR86CHT)

: CHAR (C) 127 AND 32 MAX EMIT ;

: TYPE (A #) 2/ 1 - FOR 2CQ+ CHAR CHAR NEXT DROP ;

: (DUMP) (A - A')

 DUP 5 U.R SPACE

 7 FOR 1@+ SWAP 5 U.R NEXT ;

: DUMP (A #)

 8 / 1 - FOR

 CR DUP 16 TYPE 3 SPACES (DUMP) NEXT DROP ;

Figure 6.3. Regular DUMP Routine.

116

6.4. Line Editor

In my system, the source code is entered and edited inside the IBM PC using F83 editor. It is a

convenient environment to write and change source code. However, it would be nice to do the

editing directly inside NC4000 without having to switch back and forth between F83 system and

NC4000. A small line editor is shown in Figure 6.4. Screen 16 in Figure 6.4 contains the basic

functions for listing a screen of source code in the buffer memory of NC4000.. Screen 17 has a few

of the elementary line editing commands.

Because NC4000 can process 16 bit numbers much faster than 8 bit bytes, screens of source code

are stored in 1024 cell disk buffers. The text string parser in cmForth also assumes that the input

character stream is cell based, not byte based. To display one line (64 characters) of code, it is very

convenient to use the incremental fetch instruction @+ in a simple loop to obtain the character string

and display it. That's what LINE does, given the screen number and a line number on the stack. T or

the type command is a simple derivative of LINE.

LIST is defined to repeat LINE 16 times with a little extra formatting to boost the screen image. L

uses the content of variable SCR to do the listing.

Only the commonly used line editing commands are defined in Screen 17. The cornerstone is the

command P, which accepts a character string from the terminal and copies it to the current line in

the current screen being edited. I encountered a few problems in debugging these editing

commands. One problem is that the input character string obtained by WORD is stored in the word

buffer as a byte string. This byte string had to be converted into a cell string before moving into the

disk buffer. Another problem is the MOVE command, which has a very strange behavior: it copies

the source cells in the forward direction and stores them to the target memory in the backward

direction. After much grief, I saw the light, and thereafter coding was rather straightforward.

Another feature in cmForth concerning the disk buffer is that the most significant byte in each cell

is assumed to have 40H in it. When you fill the buffer with blanks, you have to write 4020H into each

cell. When you search for the " character in the input stream, the pattern given to WORD must be

4094H instead of 94H, the ASCII code of ".

These line editing commands can accomplish quite a bit of editing. To do more precise and

efficient editing, one would probably need a good string editor, too. The string editor is left as an

exercise for the reader.

117

Scr # 16 B:NC4000.BLK

0 (LIST, 23MAR86CHT)

1 VARIABLE SCR VARIABLE L#

2 : LINE (SCR #)

3 64 * SWAP BLOCK +

4 63 FOR 1 @+ SWAP EMIT NEXT DROP ;

5 : LIST (SCR)

6 DUP SCR ! DUP CR ." SCR# ".

7 0 15 FOR 2DUP CR DUP 3 U.R 2 SPACES

8 .LINE 1 + NEXT 2DROP ;

9 : T (N) DUP L# ! CR SCR @ SWAP .LINE ;

10 : L SCR @ LIST ;

11

12

13

14

15

Scr # 17 B:NC4000.BLK

0 (LINE EDITING, 23MAR86CHT)

1 64 CONSTANT C/L HEX

2 : WHERE (N) C/L * SCR @ BLOCK + ;

3 : P L# ~ WHERE DUP C/L 4020 FILL 4094 WORD 2* DUP C@

4 BEGIN DUP WHILE 1 - >R

5 1 + DUP C@ 4000 + ROT 1 !+ SWAP R>

6 REPEAT DROP 2DROP UPDATE ;

7: M(N M) 1 + WHERE 1 - SWAP WHERE SWAP

8 C/L 1 - MOVE UPDATE ;

9: U L# @ 1 + OF OVER -

10 FOR DUP I + DUP 1- SWAP M NEXT DROP P ;

11 : X L# @ 1 + OF OVER -

12 FOR DUP DUP 1 - M 1 + NEXT DROP

13 OF WHERE C/L 4020 FILL ;

14 DECIMAL

15

Figure 6.4. Line Editor

118

6.5. Stack Pictures

It is always nice to know your stacks. In most instances, you have to be sure of the items you've

pushed on the data stack before embarking on to your next task. When you test and debug a word, it is

very helpful to have a utility word which displays the contents of the data stack non-destructively.

The word S in many Forth system is very popular for this reason. With NC4000 and cmForth, the

problem is that the stacks do not have bottoms or tops! The external stacks have 256 cell capacity

because NC4000 provides 8 bit stack pointers. The stack pointers are incremented or decremented

in modulo 256 and the stacks wrap around and fold into themselves. Without knowledge of where the

data stack begins or ends, it is impossible to define .S in the normal sense.

My proposition as shown in Figure 6.5 is to display only the top 5 elements non-destructively on the

data stack. To get to the fifth element, I move the first four elements to the return stack. Then these

five elements are duplicated, printed, and restored back onto the data stack.

The command .RS does the same thing to the return stack. Its usefulness is limited. When you

execute .RS from the keyboard, the picture of the return stack is always the same. It is intended to be

used inside nested definitions to show the nested return addresses.

(STACK PICTURE, 24MAR86CHT)

:.S (DISPLAY TOP 5 STACK ELEMENTS)

 >R >R >R >R

 DUP . R> DUP . R> DUP . R> DUP . R> DUP . ;

:.RS (DISPLAY TOP 5 RETURN STACK ELEMENTS)

 R> R> R> R> R>

 DUP . >R DUP . >R DUP . >R

 DUP . >R DUP . >R ;

Figure 6.5. .S and .RS to Show Stack Pictures.

119

6.6. Display Internal Registers

There are 17 addressable internal registers inside NC4000, which indicate the current status of the

machine. Generally, detailed knowledge about these internal registers is not required to use NC4000

machine. Occasionally, one might want to know their contents for debugging purposes.

The command I defined in Figure 6.6 displays all the accessible internal registers in a nicely

formatted fashion. The data stack pointer and the return stack pointer are isolated from the J/K

register and displayed separately. The most useful information you can get from this display is the

content of the data stack pointer and the registers controlling the B and X ports. The main purpose of

I is to satisfy your curiosity on the inner mechanism in NC4000.

(INTERNAL REGISTERS, 24MAR86CHT)

: (.I) (N1 N2 N3 N4)

 CR 3 FOR 8 U.R NEXT ;

: .I (DISPLAY NC4000 REGISTERS)

 CR ." J K I P"

 2 I@ 1 I@ 0 I@ 256 /MOD (.I)

 CR .”

MD SRI”

 7 I@ 6 I@ 5 I@ 4 I@ (.I)

 CR ." B-PORT MASK I/O TRISTATE"

 11 I@ 10 I@ 9 I@ 8 I@ (.I)

 CR ." X-PORT MASK I/O TRISTATE"

 15 I@ 14 I@ 13 I@ 12 I@ (.I) ;

Figure 6.6. Internal Registers.

120

6.7. Input and Output

Among the 17 internal registers, 8 are devoted to control the two I/O ports: the 16 bit B-port and the

5 bit X-port. The high percentage of resources in NC4000 allocated for I/O ports reveals Chuck

Moore's intent for NC4000. It is optimized to be a super-fast controller. In the prototype version of

NC4000 using the 3 micron CMOS technology, each I/O pin can source or sink 16 mA of current.

This large driving capability makes it very easy to use NC4000 to drive other electronic devices

without additional buffering or amplifying chips.

Here I wish to demonstrate how these ports may be used to do simple I/O tasks. It was often said in the

microprocessor business: "If you can turn a LED on and off, you can do anything."

When NC4000 is powered up after RESET, the B-port is initialized to be a 16 bit output port and the

output pins are all pulled to ground. The X0 pin is configured to be the transmitter of the terminal

interface, and X4 the receiver. If your NC4000 is using the serial terminal interface to talk to your

terminal or your PC, be careful and don't bother the X-port until you know exactly what you are

doing. Accessing X-port might sever the serial interface to the terminal and you might have to reset

NC4000 to bring it back. B-port is free for you to experiment.

Figure 6.7 shows the commands INPUT and OUTPUT. INPUT configures the B-port as a 16 bit

input device, reads the data from BO-B15 pins, and returns it on the stack. OUTPUT configures it to

be a 16 bit output port and sends the top of stack item to the pins BO-B15. You can connect an

oscilloscope probe to any B-port pin and execute the OUTPUT command to drive the scope trace up

or down. You can also connect a LED lamp between a B-port pin and ground to see if you can turn

the LED on and off. To test the INPUT command, you will have to connect a switch between a B-

port pin and ground. Remember also that you have to pull the B-port pin to 5 volt through a resister.

Then you can execute INPUT to read the status of the switch.

Any microprocessor can be programmed to turn LED's on and off. The advantage in using NC4000

is that it can do these things faster than any other microprocessor. In fact, what I would like to

demonstrate is programming NC4000 to do the on-off switching at 4 MHz, the speed of the clock

driving NC4000. The code is shown in Figure 6.7, Screen 21.

The only way to output data at the clock rate to the B-port is to pop data from the data stack and copy

it to the data register in the B-port. Obtaining data from main memory would take two cycles. Re-

calculating data and sending the results to B-port would also take at least two cycles. If the data is

stored on the data stack, it can be popped to the B-port in a single cycle. The command ZEROS

pushes n 0's on the data stack, and ONES pushes n-1's on it. FLIP-FLOPS pushes a number of 0 and

-1 pairs on the stack. If you fill the entire data stack with zeros and -1's, you can then pop these words

out to the B-port indefinitely at the rate of 4 million words per second. FAST dumps 256 words and

FAST-DEMO repeats FAST in a FOR-NEXT loop.

If the data stack is filled with alternate ones and -1's, FAST-DEMO creates a square wave at all 16

B-port output pins at a frequency of 2 MHz. Using ONES and ZEROS one can generate different

square wave patterns as output. In this manner, you have a set of 16 programmable flip-flops

running at 4 MHz. There might be cheaper ways to build flip-flops, but this is the only

121

microprocessor which can simulate flip-flops at this speed.

Scr # 20 B:NC4000.BLK

0 (I/O DEMO, 24MAR86CHT)

1 : INPUT (-- N, READ A 16 BIT NUMBER FROM B-PORT)

2 0 9 I! (MASK) 0 10 I! (DIRECTION)

3 0 11 I! (TRISTATE)

4 9 I@ (INPUT DATA) ;

5 : OUPUT (N --, SEND N TO B-PORT)

6 0 9 I! (MASK) -1 10 I! (DIRECTION)

7 0 11 I! (TRISTATE)

8 8 I! (OUTPUT DATA) ;

9

10

11

12

13

14

15

Scr # 21 B:NC4000.BLK

0 (4 MHZ PROGRAMMABLE FLIP-FLOP, 24MAR86CHT)

1 : ZEROS (N --, PUSH N ZEROS ON THE STACK)

2 FOR 0 NEXT ;

3 : ONES (N --, PUSH N -1'S ON THE STACK)

4 FOR -1 NEXT ;

5 : FLIP-FLOPS (

PUSH ALTERNATE ONES AND ZEROS ON STACK)

6 129 FOR 0 -1 NEXT ;

7 : FAST (PUMP 256 WORDS FROM STACK TO B-PORT)

8 256 TIMES 8 I! ;

9 : FAST-DEMO (N --, DO FAST N TIMES)

10 FOR FAST NEXT ;

11 (FLIP-FLOP -1 FAST-DEMO)

12 (SHOW 4 SECONDS OF A 2 MHZ SQUARE WAVE ON ALL B-PORT PINS.)

13

14

15

Figure 6.7. Input and Output Demonstrations

122

6.8. PICK and ROLL

Thou shalt not PICK; and Thou shalt never ROLL.

That was the advice attributed to Chuck Moore. If you modularize your words properly, you should

never need to access the stack below the third element. Thus DUP, SWAP, OVER, and ROT should

suffice, and these are words you get in cmForth. If you find yourself in a situation in which you have

to access items below the third item on the data stack, it's time to rethink your algorithm.

Nevertheless, Forth 83-Standard Team saw new light and insisted that PICK and ROLL be included

in the standard to make room for fuzzy thinking and lazy programming. Since PICK and ROLL are in

the standard, you might just as well do it as programming examples.

Figure 6.8 shows the definitions of PICK and ROLL. They are very similar. To gain access to the

nth element on the stack, I tuck the first n-1 elements under the top element on the return stack.

Because I am using a FOR-NEXT loop to move these elements, the top element on the return stack,

which is the loop counter, must be preserved. After moving the n-1 elements out of the way, I can

either duplicate the nth element into the MD register for PICKing, or move it to MD for ROLLing.

The stacks are then restored to the correct state and the content in MD is finally pushed back on the

data stack.

(PICK AND ROLL, 28MAR86CHT)

: PICK (N - N')

 DUP 6 I! (SAVE N IN SR)

 ?DUP IF 1- FOR R> SWAP >R >R NEXT THEN (MOVE TOP ELEMENTS)

 DUP 4 I! (PICK IT TO MD)

 6 I@ (RETRIEVE N)

 ?DUP IF 1 - FOR R> R> SWAP >R NEXT THEN (RESTORE)

 4 I@ (GET NTH ITEM BACK) ;

: ROLL (N -)

 DUP 6 I! (SAVE N IN SR)

 ?DUP IF 1- FOR R> SWAP >R >R NEXT THEN (MOVE TOP ELEMENTS)

 4 I! (ROLL IT TO MD)

 6 I@ (RETRIEVE N)

 ?DUP IF 1 - FOR R> R> SWAP >R NEXT THEN (RESTORE)

 4 I@ (GET NTH ITEM BACK) ;

Figure 6.8. PICK and ROLL.

This is one of many possible ways to implement PICK and ROLL. It is not very fast because of the

thrashing activity on the return stack. If you have a scratch pad of 256 cells somewhere in the main

memory, moving n-1 elements can be done much faster using ~+ and !- instructions. You might

want to try it for yourself.

Including PICK and ROLL here does not imply that I approve of their use.

123

6.9. Square-Root

A very unique instruction in NC4000 is the square-root step S’. By repeating this instruction 16

times, you can take the square root of a double integer very easily and very quickly. Chuck Moore

included this feature in NC4000 because he wanted to use NC4000 to do fast graphic processing,

and he needed the square-root function frequently. The square-root step is very similar to the divide

step /’. It does a conditional subtraction; and if overflow condition occurs, the result of subtraction

is not written back to the T register.

The square-root routine is shown in Figure 6.9. It takes a positive double integer on data stack as

input and returns a positive integer as square root.

Because of problems in handling the carry condition, the prototype NC4000 chip cannot take the

square-root of numbers greater than 16K.

(SQUARE ROOT, 29MAR86CHT)

: SQRT (D -- N)

 32768 6 I! (SR REGISTER) 0 4 I! (MD REGISTER)

 D2* 14 TIMES S' (SQRT STEPS)

 DROP ;

Figure 6.9. Square Root.

124

6.10. Terminal and Disk Server on IBM-PC

I am using an IBM-PC computer as the host of NC4000 machine. NC4000 talks to the PC through

the 9600 baud COM1 serial channel and uses the serial disk protocol in cmForth to access the floppy

disks in the PC. The host interface is programmed using F83 Forth system. Files are opened and

managed by F83. Source code in the files are entered and edited with the F83 editor. The serial disk

at 9600 baud is slow, but adequate for my purposes.

I did some experiments with PC-DOS and even the BIOS. Somehow, PC always manages to lose

characters if the COM1 port is read through DOS calls or BIOS service interrupt. The PC spends so

much time playing with the characters that it just cannot get the characters and put them into either

the disk buffer or display them on the screen reliably, even though it takes a whole millisecond for a

character to get through the COM1 serial port.

The code presented in Figure 6.10 tries to manage the COM1 port and to make the PC to serve

NC4000 faithfully. As a terminal server, the PC loops on the COM1 receiver. Whenever a character

is received, it is sent directly to the CRT display buffer. The display is not scrolled. When the last

line is displayed and a carriage return is detected, the next line will be displayed at the top of the

screen. When an ASCII NUL is received, the disk server will be invoked to handle the sending or

receiving of text block to or from NC4000.

This server works very reliably, with one exception. If NC4000 sends lots of characters without

carriage returns wisely dispersed in the character stream so that the characters overflow the CRT

screen buffer, the terminal server will get lost. You will have to use ESC to return to F83 and re-

establish communication using the NC command.

125

Scr # 1 B:NC4000.BLK

0 \ Com1 and Com2 12dec85cht

1 HEX

2 B800 CONSTANT SCREEN

3 3FD CONSTANT STAT 3F8 CONSTANT DATA 4 DECIMAL 2 5 THRU 5 EXIT

6 Characters obtained from NC4000 are put into the screen buffer

7 directly. 3F8 is the data register in COM1 8251 and 3FD is the

8 status register.

9 COM1 must be initialized by the DOS command:

10 >MODE COM1:9600,n,8,1

11 to set up the baud rate and character format.

12 In F83, OPEN NC4000.BLK OK load in this program.

13 Type NC to connect to NC4000 board.

14 While NC4000 is the master, pressing ESC key returns you back

15 to F83.

Scr # 3 B:NC4000.BLK

0 \ Chip

1 CREATE I/O HEX 400 ALLOT ASSEMBLER

2 LABEL EOL AO # BL MOV DI AX MOV BL DIV BL CL MOV

3 AH CL SUB CH CH SUB AL AH MOV AL AL SUB REP AL STOS

4 18 # AH CMP 0= IF DI DI SUB THEN RET

5 LABEL RCV STAT # DX MOV BEGIN 0 AL IN 1# AL AND 0<> UNTIL

6 DATA # DX MOV 0 AL IN RET

7 CODE XMT STAT # DX MOV BEGIN 0 AL IN 40 # AL AND 0<> UNTIL

8 AX POP DATA # DX MOV 0 AL OUT NEXT END-CODE

9 LABEL RECEIVE 400 # CX MOV I/O # BX MOV BEGIN

10 CX CX OR 0<> WHILE RCV #) CALL AL 0 [BX] MOV

11 BX INC CX DEC REPEAT RET

12 : BLOCK-XMT BLOCK 400 0 DO DUP C@ XMT 1+ LOOP DROP ;

13 : DISK DUP 0< IF (RECEIVE) I/O SWAP 7FFF AND BUFFER

14 400 CMOVE UPDATE (0 XMT) ELSE BLOCK-XMT THEN ;

15 DECIMAL

Scr # 5 B:f1C4000.BLK

0 \ Chip 12DEC85CH'I

1 CODE NC HEX ES PUSH SCREEN # AX MOV AX ES MOV

2 CLD CH CH SUB AO # BX MOV DI DI SUB BEGIN

3 STAT # DX MOV 0 AL IN 1 # AL AND

4 0<> IF DATA # DX MOV 0 AL IN

5 AL AL OR 0= IF RCV #) CALL AL AH MOV

6 RCV #) CALL ES PUSH DI PUSH AX PUSH
-
 AX AX OR

7 0< IF RECEIVE #) CALL THEN C: DISK ;C DI POP

8 ES POP ELSE OD # AL CMP 0= IF EOL #) CALL

9 ELSE 7 # AH MOV AX STOS THEN

1 0 OF5E # AX MOV AX STOS DI DEC DI DEC THEN

11 THEN 100 # AX MOV 16 INT

12 0<> IF AX AX SUB 16 INT AH AH SUB

13 1B # AL CMP 0= IF ES POP NEXT THEN

14 DATA # DX MOV 0 AL OUT THEN

15 AGAIN END-CODE DECIMAL

Figure 6.10. Terminal and Disk Server

126

Scr # 2 B:NC4000.BLK

0\ Call high level words 12dec85cht

1 ASSEMBLER

2 LABEL HILEVEL

3 RP DEC RP DEC IP 0 [RP] MOV IP POP NEXT

4 : C:

5 [ASSEMBLER] HILEVEL #) CALL FORTH] ;

6 CODE (;C)

7 IP PUSH 0 [RP] IP MOV RP INC RP INC

8 RET END-CODE

9 : ;C [ASSEMBLER] COMPILE (;C) ASSEMBLER

10 [COMPILE] [; IMMEDIATE

11 EXIT

12 Henry Laxen's trick to allow assembly routine to call high

13 level colon words.

14

15

Scr # 4 B:NC4000.BLK

0 \S Chip 12dec85cht

1 I/O 1K buffer to receive block data from NC4000

2 EOL Subroutine to process carriage returns from NC4000.

3

4

5 RCV Subroutine to grab one character from NC4000.

6

7 XMT Code word to transmit one character to NC4000.

8

9 RECEIVE Subroutine to receive one block of characters from

10 NC4000.

11

12 BLOCK-XMT Transmit one block of characters to NC4000.

13 DISK The disk service routine. The serial disk.

14

15

Scr # 6 B:NC4000.BLK

0 \S Chip 12dec85c!;t

1 NC The interface between NC4000 and PC through COM1.

2 Initialize screen buffer pointers.

3 Begin

4 If a character is received from NC4000,

5 If the character is a NUL, do disk service.

6 If the character is a CR, do End-of-Line service.

7 If it is a regular character, store it in screen

8 buffer and bump pointer.

9 Else

10 If a character is received from the keyboard,

11 If the character is a ESC, return to F83.

12 Else send it to NC4000.

13 Then

14 Then

15 Again

Figure 6.10. Terminal and Disk Server (cont’d)

127

6.11. Arcsine by Interpolation

There are many occasions in which you have to evaluate a rather complicated function which is not

very easy to compute, particularly with a 16 bit integer machine or Forth. If high accuracy is not

required, it is very easy to get an answer by interpolation among an array of known points. I

encountered a situation that I had to compute arcsine function, converting sine and cosine values to

angles in degrees. I was allowed to trade accuracy for speed, because the angles are used only for

refreshing a numeric display for an operator to make sure that the system is functioning.

Interpolation is extremely simple in Forth using the ratio operator */, as shown in the source code in

Figure 6.11. The accuracy depends upon how large a data table is allowed for interpolation. In our

case, we used a 20 point table to represent angles from 0 to 90 degrees. It is easy to extend this table

for more accurate interpolation.

In Figure 6.11, the arcsine table is defined as (ARCSIN). The entries in this table are in the units of

0.1 mili-radians, from 0 to PI/2 (15708 as the last entry.) The input to the interpolation function

ARCSIN is the sine of an angle, multiplied by a scaling factor of 10000, and the output is an angle in

degrees multiplied by a scale factor of 100. The absolute value of sine is divided by 500, 20th of the

range 10000, with both quotient and remainder retained. The quotient is used to retrieve a pair of

neighboring values in the (ARCSIN) table and the remainder is used to compute the exact position

between these two neighboring points. The resulting angle in radian is then converted to degrees with

the sign restored.

This method can be used to approximate any complicated function which does not render itself easily

to integer arithmetic. You only have to supply a table of function values. The size of the table can be

optimized according to the required accuracy of approximation. The computation involves only a

/MOD, a table look-up, and a */ . I used an extra */ to scale the output. It is very fast and does not

depend upon the complexity of the function.

 (interpolation 16aug86cht)

CREATE (ARCSIN) (a table of function values)

0 , 500 , 1002 , 1506 , 2014 , 2526 , 3046 , 3576 , 4116 ,

4668 , 5240 , 5824 , 6434 , 7076 , 7754 , 8480 ,

9272 , 10160 , 11198 , 12532 , 15708 ,

: ARCSIN (10000*SIN -- 100*ARCSIN)

 DUP >R ABS

 10000 MIN 500 /MOD (2*) (ARCSIN) + 2@ DUP >R -

 500 */ R> + 9000 15708 */

 R> 0< IF NEGATE THEN ;

: ANGLE (FRACTION BUCKET -- ANGLE*100)

 10 - 1000 * + 10000 RADIUS @ */ ARCSIN ;

Figure 6.11. Source code of interpolation.

128

6.12. High Speed Pattern Generator

NC4000 is a very fast machine, capable of executing one instruction every clock cycle. During one

cycle, it can output one word to the B port, while doing several other tasks simultaneously. As

discussed in Section 6 .7 on I/O, you can program NC4000 to generate patterns at its clock rate, 4

MHz or more. The problem is to provide data stream to the B port so that large amount of data can be

pumped out at this peak rate. To output data at the clock rate, data has to be pushed on the data stack,

because it takes one cycle to pop a 16 bit number off the data stack and send it to the B port. To

retrieve data from main memory and send out to the B port, at least three machine cycles are needed-

-two cycles of memory fetch and one cycle for output.

The data stack is only 258 words deep, which is not enough to make a usable pattern generator out

of NC4000. Extending the data stack using bank switching or by extending the width of the data

stack pointer to 16 bits, as I did in the design of the OF5493, does not solve the problem either

because it is still very difficult to access the data stack randomly to retrieve different patterns.

A pattern generator must have the following properties to render it practical:

 It must be fast. 4 MHz is marginally acceptable. 2 or 1 MHz is becoming less interesting.

 It must be able to hold long sequences of patterns. Number of words in a pattern could be in

the thousands or more.

 Patterns must be selected easily. Looping and sequencing through a number of patterns

should be allowed.

Clearly, the B port in NC4000 does not meeting these criteria. An interesting alternative is using the

main memory to store the patterns and to output the patterns directly.

This type of pattern generator is very useful in wave synthesis, digital signature source for device

characterization. One particular application I had in mind is a microcode sequencer, which can be

programmed to operate and test bit-slice microprocessor or microcontroller. In this application, a

conventional sequencer is expensive and also difficult to program. A sequencer built around

NC4000 would be easy to program because of the Forth underneath the system. Microcode can be

deposit into the main memory and clocked out to operate the bit-slice machine. NC4000 is much

more powerful than a sequencer because it can do loops and subroutines, nested almost indefinitely-

-every capability of high level language programming.

For bit-slice applications, the 16 bit word size in NC4000 is a serious limiting factor, because the

sequencer generally requires many more bits to control the bit-slice engine. The width of patterns

must be widened to 32 bits or more. In this pattern generator, I implemented 32 bit pattern width. It

is easy to extend the width beyond 32 bits.

Using NC4000 to realize this pattern generator, you have to make use of two important features of

NC4000: one is that you can use the upper 32K word data space to store the patterns or microcode

and this data space can accommodate many 32K by 16 bit memory banks to provide enough width

for desired microcode; and the other is that NC4000 can generate consecutive addresses at 4 Mhz

clock rate using the following instruction phrase:

129

n TIMES 1 @+

given an initial memory address in the T register. One problem with @+ instruction is that the data

in that memory location will be fetched into the N register and the original content of N register will

be pushed on to the external data stack. For all intentions and purposes, we should assume that the

data stack will be destroyed. Do not expect that anything you saved on the data stack can be retrieved

later. If you really wanted to use the stack to pass parameters while generating patterns, you have to

clean up the stack by SWAP DROP or NIP. Then, you have to put them in a FOR-NEXT loop with

1@+, costing many more cycles to output one pattern data.

Another interesting feature is that the memory address can be incremented or decremented by any

integer from 1 to 31. This is a convenient way to double or triple the frequency of the output pattern

or waveform. This is especially important in synthesizing musical notes, because once the

waveform is stored in the microcode memory, one will get all the overtones for free.

The circuit schematic is shown in Figure 6.12.

Figure 6.12. Schematic of the Pattern Generator.

The microcode memory consists of 4 uPD43256 32K by 8 bit SRAM memory chips, divided into

two 32K by 16 bit banks. Address lines AO-14 from NC4000 drives the respective address pins on

these memory chips, and A15 is used to enable them. The data pins on these chips are connected to

the data lines DO-15 through four 74HCT245 bus drivers. The two banks of memory chips are

enabled together with their respective bus drivers by X1 and X2 line from NC4000. The microcode

data are latched and sent to the external bit-slice engine through 4 74HCT374 latches which are

connected to the data buses from the memory chips. The latches are enabled by X3 from NC4000,

and clocked by the master clock which provides timing signal to NC4000.

130

To use the microcode memory, it has to be filled with known patterns from NC4000 host. This is

done by first raising X1 alone and writing the top 16 bits of patterns into the first data memory bank.

Then X1 is cleared and X2 is raised. Now the lower 16 bits of patterns can be written into the second

bank of data memory. After microcode patterns are loaded into the data memory banks, the patterns

can be clocked out through the '374 latches by raising all three X port lines X1, X2, and X3.

Whenever NC4000 reads a memory location in the upper 32K data space, a 32 bit pattern stored in

the RAM chips is put on the data bus and latched into the '374's. Using the program shown in Figure

6.13, you can generate a ramp function on the 32 output lines. You can use a scope to see that each

line is switching at a different frequency.

(PATTERN GENERATOR, 17JUL87CHT)

OCTAL

: SEL (n--) 17 13 I! (disable x0)

 12 I! (write n to x port) ;

: RAMP 100000 77777 FOR DUP DUP ! 1 + NEXT DROP ;

: 1TEST (addr # -- garbage) TIMES 1 @+ ;

: 2TEST (addr #--) FOR 1 C~+ SWAP DROP NEXT DROP ;

: 3TEST (addr # --) FOR 1 !+ [100020 ,] NEXT DROP ;

DECIMAL

Figure 6.13. Program to Control the Pattern Generator.

You might ask what happens on the data bus connecting to the NC4000, where the four '245's are

also sending the 32 bit pattern to the 16 bit data bus. Well, I was told that this is a big no-no,

because '245's are driving each other and eventually some weaker ones will be burnt out. So far, the

245's are working fine. It is probably better to use lines from the B port to enable the 32K RAM

chips and the '245's separately. This way when you are outputting patterns to the '374's, the '245's

can be disabled so that NC4000 data bus is isolated from the RAM data bus. You will then need 5 B

port lines for total control over this pattern generator: one for '374's, two for the RAM's, and two for

the '245's.

Some of the very elementary code to operate this pattern generator is shown in Figure 6.13. SEL

enables one or more of the data bus drives and data latches. For example, 2 SEL enables writing the

RAM's in Bank 1, 4 SEL does that for Bank 2, and 14 SEL enables the RAM's and the output

latches so that 32 bit patterns are generated and sent through the latches. RAMP writes a ramp

function into the enabled bank of RAM's for testing purposes. 1TEST is the program to send a

sequences of patterns out from a memory area, but the stack is trashed in the process. To maintain a

clean stack, 2TEST and 3TEST can be used. However, 2TEST and 3TEST takes longer to generate

patterns because of the necessary NIP stack operation.

131

A sample test sequence is:

OCTAL

2 SEL RAMP (initialize bank 1)

4 SEL RAMP (initialize bank 2)

16 SEL (enable RAM's and output latches) 100000

1000 1TEST

120000 7777 2TEST

160000 10000 3TEST

In conclusion, this pattern generator proves that NC4000 can be used to generate arbitrary digital

data patterns at its clock rate. It is very useful in generating digital signatures and analog wave

forms. Music synthesizer may be a good application. Programmable waveform generator is another.

Bit-slice sequencer based on NC4000 is much cheaper than the one based upon the conventional

sequencer design and much more versatile.

132

6.13. A/D Conversion with NC4000

I have always maintained that microprocessors are not computers. They are controllers. Among

controllers, NC4000 is the fastest. There are lots of tasks where information and control functions

are binary, like limit switches and power switches. However, real world information generally are

presented in analog form. To obtain these information and respond to them by a microprocessor,

analog-to-digital (A/D) converters are needed to digitize the analog signal so that the information

can be stored and processed by the microprocessor. It is much more fun to use the microprocessor

connecting to the real world then to do abstract computation and simulation on a real computer.

I had an opportunity to design a system which measures the phase difference between two audio

input channels such as in a stereo system. From the phase difference, one can infer the direction of

the sound source. This is interesting because, in a sense, it emulates the hearing system of a human

being. With two ears, we can quickly and accurately determine the direction of a sound source. I am

not sure how the ears do this trick, but something like a correlation analysis should suffice.

I tried two different A/D converters and used two different approaches to integrate the A/D

converters into an NC4000 system. The schematic diagrams of these two designs are shown in

Figures 6.14 and 6.15.

Figure 6.14. A/D Conversion with Datel ADC815.

133

Figure 6.14 shows two Datel ADC815 A/D converters hooked onto the memory bus of an NC4000

system. They are thus 'memory mapped' to two memory cells at 8000H and 8001H. The A/D is

only 8 bits wide, and the data is fed to the lower 8 bits of the memory data bus through a pair of

74HCT244's. The A/D chip needs a strobe pulse to start a conversion cycle. This strobe is

provided by writing a -1 to the memory location 9001H, also through a 74HCT244. A 74HCT138

decodes the address lines and enables the '244's.

The code to control the A/D pair and grab a block of data from these A/D converters is shown in the

first screen in Figure 4.16. 120 pairs of data are collected on the data stack first and then stored into

two arrays 1TEST and 2TEST. Data in the arrays are then analyzed to determine the phase

difference. A variable DELAY controls the rate of sampling.

This design was implemented at the beginning of the project. At that time, I didn't want to use the

B port in NC4000 for the A/D converters, because I thought that the B port might be required to

service other devices. As the project progressed, it was clear that B port would not be used. The

Datel A/D converters were borrowed from another project for evaluation. Later we got our own

National ADC0820 converters, and I decided to use the B port to control the converters directly.

The final design of the A/D system, with a quad Op-Amp LM324 conditioning the input signals, is

shown in Figure 6.15.

Figure 6.15. A/D Conversion with National ADC0820.

ADC0820 converter is an 8 bit converter also. One is connected to BO-B7 and the other to B8-

B15. The B port write-enable line WEB is used to strobe both converters. This configuration

134

eliminates all the '244's and we have a much simpler and faster system.

The code to operate this A/D converter system is shown in the second screen in Figure 6.16. The

data from both converters are grabbed and stored directly into memory. The advantage is that more

data can be acquired for analysis if necessary and it is not limited by the depth of the data stack. Since

the data from two converters are packed into 16 bit memory cells, they have to be separated and put

into two storage arrays.

The A/D converters used here are not the best devices to show off NC4000. Their conversion rate is

about 1 MHz, and NC4000 has to wait for the conversion to be completed before it can read the data.

Chuck Moore told me he used a video flash converter which is faster than NC4000 so that data is

available whenever NC4000 is ready. Nevertheless, both designs discussed here are adequate for

analyzing audio signals up to 20 kHz as required by the application.

 (DATA ACQUISITION, 04JUN86CHT) HEX

A/D Read 120 pairs of data fros two AID converters and put

 the date on the data stack.

DIGEST Retrieve AID data on stack and put the* back into the

 1TEST and 2TEST arrays.

ACQUISITION Acquire data and process them to obtain 20 bucket

 values in RESULTS array.

 (DATA ACQUISITION, 04JUN86CHT) HEX

: A/D 78 FOR -1 9041 ! DELAY 3 FOR NEXT

 8000 @ 8001 @ NEXT ;

: DIGEST 78 FOR FF AND 2TEST I + !

 FF AND 1TEST I + ! NEXT ; DECIMAL

: ACQUISITION A/D DIGEST 20-PASSES ;

 (DATA ACQUISITION, IOAUG86CHT

HEX

: A/D (6E7 SAMPLES INTO 1TEST ARRAY)

 0 1iEST 1 – (DATA ADDR) SAMPLES @

 FOR 0 8 I! 1 (DELAY) @ FOR NEXT 1 !+ 8 I@

 SWAP NEXT 2DROP ;

: DIGEST SAMPLES @ 1 - FOR

 1TEST I + DUP @ DUP >R FF AND SWAP !

 R> 6 TIMES [8001 , (21)] FF AND 2TEST I + ! NEXT ;

DECIMAL

: ACQUISITION A/D DIGEST 20-PASSES ;

Figure 6.16. NC4000 Code for A/D Conversion.

135

6.14. Fast Byte Flip

NC4000 is a word machine. It takes only two cycles to fetch a 16 bit word from memory, but it

takes 10 to 20 cycles to get a byte from memory, as shown in the code of C@. This is clearly a

problem if you wanted to use NC4000 to store and process large amount of data in bytes. How would

you like a way to swap the two bytes in a word real fast?

There is no free lunch. What you have to give up in this case is the B-port in NC4000 to implement

this fast byte swapping engine. B-port must be hardwired, connecting the upper byte with the lower

byte; i.e., BO-BS, B1-B9, ... , and B7-B15. When the upper byte in B-port is set for outputing and

the lower byte for inputing, the upper byte is flipped to the lower byte. If the I/O assignment is

reversed, the lower byte will be flipped to the upper byte.

The code to flip bytes is shown in Figure 6.17.

The words HI>LO and LO>HI configure the data register, mask register and the direction register in

the B-port so that data can be sent out through half of the B-port and read back by the other half. After

either is executed to set up the B-port, FLIP or FF can be executed to flip the bytes in the T register.

FLIP first write the content of T to the B-port and then read the B-port back into T. It takes two

cycles to flip T. The word FF does this flipping in one cycle. It uses the special register exchange

instruction in NC4000, I@!, which exchanges the T register with the data register in B-port. Because

the T to B-port action occurred before the B-port to T transfer, what you get back in the T register is

a byte flipped to the other side of the 16 bit word.

DECIMAL

: OUTPUT (n --, setup B-port to output n)

 0 9 I! -1 10 I! 0 11 I! 8 I! ;

: HI>LO (configure B-port to copy upper byte to lower)

 OUTPUT -256 10 I! 255 9 I! ;

: LO>HI (configure B-port to copy lower byte to upper)

 OUTPUT 255 10 I! -256 9 I! ;

: FLIP (n -- n', flip a byte)

 8 I! 8 I@ ;

OCTAL

: FF (n -- n' one cycle flip)

 [157710] ; (8 I@!)

DECIMAL

Figure 6.17. Byte Flipping.

136

6.15. More Vocabularies

In simplifying cmForth, Chuck Moore threw away the 8 way hashed vocabulary structure he

developed for po1yForth. He retained only two vocabularies: FORTH and COMPILER. In doing so,

he also discovered that it was not necessary to make the compiler directives, such as IF, ELSE,

THEN, BEGIN, UNTIL, etc., immediate words. The immediate words must be executed even

during compilation. Since the new compiler in cmForth first searches the COMPILER vocabulary

and executes any word it finds in this vocabulary, immediacy is implied and needs not to be declared

explicitly. Eliminating the entire class of immediate words and the concept of immediacy is one of

the unique features in cmForth.

However, you are left with only two vocabularies, and the COMPILER vocabulary behaves quite

differently from the FORTH vocabulary because the words in COMPILER vocabulary cannot be

compiled naturally. It would be very nice if youcan build many more vocabularies for large

applications.

Let us first take a look at the bottom of the RAM memory and see how these memory words are

allocated in Figure 6.18, which is Screen 12 in the source code of cmForth. Chuck kindly left

the first 16 words free for us users. The system variables start at location 10H from PREV,

OLDEST and so on. He exhausted the 32 local memory words at C/B. The next two words at

20H were reserved for the interrupt vector. The following two words are used by the COMPILER

and FORTH vocabularies to store the link pointers pointing to the last words defined in these

vocabularies. This is the vocabulary link table. The last system variable is CONTEXT, which

contains a 1 if you are searching FORTH vocabulary, or a 2 if you are searching the COMPILER

vocabulary. If you reserve more cells below CONTEXT, they can be used to build new

vocabularies.

One problem is that INTERPRET and the compiler] knows only two vocabularies, FORTH and

COMPILER, and it uses their hash code 1 and 2 explicitly in doing the dictionary search. We

have to replace the phrase 1 -FIND in] by the phrase CONTEXT @ -FIND and the phrase 1-' in

INTERPRET by the phrase CONTEXT @ -' so that the context vocabulary can be searched. You

have to recompile cmForth with these code modifications and the extension of the vocabulary link

table.

The space below CONTEXT can be used to construct many vocabular ie s by sto r ing

vocabulary l ink pointers. If we re serve 10 cells for this table, we will be able to declare 8

vocabularies in addition to FORTH and COMPILER. To build the fifth new

vocabulary, for example, we have to define the vocabulary similar to the definitions of FORTH and

COMPILER:

: APPLICATION 5 CONTEXT ! ;

and initialize the vocabulary pointer so that the new vocabulary will be appended to the current

FORTH vocabulary:

CONTEXT 1 - @ (pointer to top of FORTH vocabulary)

137

CONTEXT 5 - ! (make APPLICATION a branch on FORTH trunk)

After this, executing APPLICATION will cause this vocabulary to be searched before FORTH.

Rick Van Norman observed that the vocabulary link table does not have to be below CONTEXT. In

fact it can be defined as an array anywhere in the RAM memory. To switch context, you have to

store the offset of an entry in this table from CONTEXT into CONTEXT. Consequently, you do not

have to change the vocabulary structure in cmForth. Only INTERPRET and] must be modified as

discussed above. Vocabulary link table can be built whenever it is needed at run time.

 (RAM allocation) OCTAL

{ : ARRAY (n) CONSTANT 154462 USE ;

HEX 10 CONSTANT PREV (Last referenced buffer)

 11 CONSTANT OLDEST (Oldest loaded buffer)

 12 ARRAY BUFFERS (Block in each buffer) I

2 1 - CONSTANT NB (Number of buffers) T

{ 14 CONSTANT CYLINDER } 15 CONSTANT TIB

(Initialized)

16 CONSTANT SPAN 17 CONSTANT >IN { l8 CONSTANT BLK)

19 CONSTANT dA

1A CONSTANT ?CODE lB CONSTANT CURSOR

{ 1C CONSTANT S0 } 10 CONSTANT BASE IF CONSTANT H

1F CONSTANT C/B 24 CONSTANT CONTEXT

Figure 6.18. RAM Memory Allocation in cmForth

138

Appendix A. cmForth Sorce Listing

cmFoRTH is the version of Forth I (Chuck Moore) wrote and use. Novix

supported its development, and we have placed it in the public domain to

provide a good model for NC4016 Forths. It meets my goals, though I realize

it may not be preferred by everyone. However, since it can recompile itself,

I think it's a good starting point for anyone wishing to change it.

Each program block (1-30) has a shadow block of comments that explains what

the code does. It does not explain how it is done - read the code to

determine that.

cmFORTH does not conform to any standard. I will be noting the differences

against Brodie's Starting Forth. The most notable is the absense of DO. LOOP

and +LOOP. I presume FORTHkit builders will use FOR and NFXT .

All the multiply code (* , */ , M*) presumes the top argument (multiplicand)

is even. This is a hug in the 4016. Try it. There is a software fix you can

add, but it is rarely needed. Most multiplies are even. The code for U*+ and

M* (block 9) can be changed (at a cost of 6 cycles):

: U*+ (u r u - 1 h) DUP -2 AND 4 I!

 1 AND IF OVER + THEN 14 TIMES *' ; (25-26)

: M* (n n - 1 h) DUP o< IF VNFGATE THFN 0 SWAP

 DUP -2 AND 4 I! 1 AND IF OVER +

 THEN 13 TTMFS *’ *- : (31-37)

The procedure for recompi1ing cmFOhTH is :

1. Load compacting compi1er- from block 1.

2. Edit changes in blocks 1-30.

3. Load block 3 to compile.

4. Type GO to test or Burn PROM from 2000, mapping 2000-200F to 1000-100F

and 2010-27FF to 0010-07FF

I suggest you compile relocated code as delivered, and compare the code

compiled with that in PROM. That is, compare 600 cells from 2025 with 0025.

This verifies your source. Then compile changed code and test it. That is,

type GO . This is typical of testing changes before burning PROMs.

Looking through the 175 words at the,back of Starting Forth, I note the

fol1owing exceptions in cmFORTH:

 Hardware addressing is by cells. Byte addresses are restricted to the

first 32K ce11s; even bytes are high.

 Hardware stacks are circular; stark overflow or underflow are neither

harmful, detected nor reset. ?STACK ‘S SO are not defined.

 There are exactly two vocabularies, FORTH and COMPILFR. EDITOR . and

ASSEMBLER are not defined. COMPIlER words are accessible only in definitions,

and are all immediate.

 1 1+ 1- 2+ 2- are not defined. The compiler optimizes them.

 2* and 2/ are COMPILER words only.

 type replaces COUNT TYPE and leaves an incremented address.

 PAGE >TYPF -TRAILING 0> C, IMMEDIATE FORGET CMOVE <CMOVF

 CONVERT PAD R# CURRENT are rot defined.

 DOES> is replaced by the phrase DOES R> 7FFF AND

139

 DUMP takes only an address, displays 8 cells and 1eaaves an

incremented address.

 #> acts differently.

 DO LOOP +LOOP /LOOP are replaced by FOR NFXT . 1ndexing is best

done with an address on the stack and @+ or !+

 J and I are not defined (stack indexing is expensive).

 LEAVF is replaced by WHILE ... NFXT ... FISF R>… THEN

 [COMPILE] is spelled \ for brevity.

 ?DUP 2DROP 2@ and 2! are the only double or mixed-1ength words.

 LIST COPY WIPE TFXT -TFXT will be defined with an editor.

REFFRENCES

Starting FORTH remains my choice for a Forth text:

Leo Brodie

Startin FORTH

Prentice Hall-1981

C. H. Ting has published an annotated 1isting of cmFORTH:

Footsteps in an Empty Valley. Contact:

Offete Enterprises, 1nc.

156 14th Avenue

San Mateo, CA 94402

(650) 571-7639

He has also formed an NC4000 Users Group and publishes a substantial

newsletter: More on the NC4000 Volumes 1, 2, 3 , 4 and 5.

Here is summary of the words defined in cmForth. They are grouped in

categories with decreasing frequency of use. This sheet is still being edited

for completeness.

Application Words

+ - * / Binary operators

< > = U<

AND OR XOR

M* /MOD

MOD MIN MAX VNEGATE

NEGATE ABS 2/MUD Unary operators

0< 0= NOT

*/ WITHIN Trinary operatorS

U*+ M/MOD M/ */MOD

DUP DROP SWAP OVFR Stack operators

2DUP 2DROP

DECIMAL HFX OCTAL Number base

. .R Terminal output

EMIT CR SPACF SPACES

KEY EXPECT Terminal input

: ; CREATE Define

VARIABLE CONSTANT

ALLOT , Allot memory

HERE FILL ERASE

140

@ ! +! Memory access

C@ C! 2@ 2!

@+ @- !+ !-

IF ELSE THFN EXIT Structure

FOR I NEXT

BEGIN WHILE UNTIL

REPEAT AGAIN

TIMES >R R>

NOP TWO CYCIES Delay

Interpreter Words

(Comment

RESET REMEMBER EMPTY Dictionary control

LOAD THRU Interpret

INTERPRET QUIT

EXECUTE

DOES USE

LETTER WORD

-DIGIT NUMBER

-‘ PREVIOUS USE

PREV OLDEST BUFFERS Variables

BASE BLK ?CODE

CNT >TN dA C/R WIDTH

MSG CURSOR H CONTEXT

NC4000 Words

/’ /’’ *’ *- *F S’ Op codes

D2* D2/

I@ I! I@! Internal access

-M/MOD M*+ Arithmetic

FormattinG Words

TYPE Termina1 output

HOLD DIGIT (.)

<# SIGN # #S

U.R U. DUMP

ABORT" ."

RX Terminal input

Disk Words

BLOCK BUFFER UPDATE

FLUSH EMPTY-BUFFERS IDENTIFY

Compiler words

,C ,A \\

[] LITERAL

COMPILE \

SMUDGE RECURSIVE

-SHORT FIX -SHORT

Headless Words

abort" dot" Terminal output

ADDRESS ABSENT UPDATED Buffer management

ESTABLISH ## buffer block

141

-LETTER 10*+ interpreter

SAME HASH -FIND

ROM BAUD Reset

COUNT Compiler

OR,

Dubious Words (of doubtful value)

ROT Rotate top of stack

C@+ Unpack 2 characters

MOVE Move words

OFFSFT Block offset

? @ .

142

1 (FORTNkit: 1987 December)

2 (Separated Heads)

3 (cmFORTH) EMPTY

4 (Optimizing compiler) OCTAL

5 (Defining Words) OCTAL

6 (Binary operators) OCTAL

7 (Nucleus) OCTAL

8

9 (Multiply, divide)

10 (Memory reference operators)

11 (Words)

12 (Ram allocation) OCTAL

13 (ASCII terminal: 4X in. OX out) HEX

14 (Serial EXPECT) HEX

15 (Numbers)

16 (Strings) HEX

17 (15-bit buffer manager)

19 (Disk rond/wrlte)

19 (Interpreter)

20 (Dictionary search)

21 (Number ir?,ut) HEX

22 (Control)

23 (Initializo) HEX

24 (Word s)

25 (Compiler) OCTAL

26 (Compiler) OCTAL

27 (Defining words) OCTAL

23 (uCODF) OCTAL

29 (Structures) OCTAL

30 (Strings) HEX

143

1

cmFORTH shadow blocks (1987 December). Addresses are hex:

 word timing in parentheses after ; (cycles)

.

3 LOAD compiles the compacting compiler (blocks 4-6). Block 6

exits in COMPILFR vocabulary, anticipating additions.

0< is redefined to resolve timing conflict.

END terminates a definition.

REMEMBER; saves vocabulary heads (at compile time).

FORTH puts following words in interpretive vocabulary.

-MOD provides modular arithmetic. It does a subtract if the

 result is non-negative.

THRU loads a sequence of blocks.

EMPTY empties the dictionary except for compacting compiler.

2

H' holds the next available address in the target dictionary.

2000 relocates target addresses from RAM (2000) to PROM (0).

{ } switches between host and target dictionary by exchanging

pointers and relocation offsets.

COMPILER } compiles an indirect reference for a headless word.

FORGET smudges a word that cannot execute in target dictionary.

RECOVER recovers a return (after AGAIN)

SCAN finds the next word in target dictionary.

TRIM relocates the vocabulary link and erases the smudge bit.

CLIP constructs a target vocabulary and stores its head.

PRONE relinks the target dictionary to produce a stand-alone

application (fixing the end-of-vocabulary word)

and restores the host dictionary.

3

3 LOAD recompiles cmFORTH. EMPTY clears dictionary for a new

 application.

2 LOAD compiles the target compiler.

Target is compiled at 2000 which is initialized to 0.

BOOT copies PROM to RAM at power-up. The reference to -1

 disables PROM and enables RAM (setting A15 clocks 74).

Low RAM (16-24) is initialized (see block 12).

is the bottom of the target dictionary. PRUNE changes its

name to null and link to 0. This version of EXIT marks the

end of both vocabulary chains.

The address of RESET is relocated into the end of BOOT .

The end of target program is stored into TIB and HERE .

COMPILER head is selected for PRUNE

GO emulates BOOT for testing: 3 LOAD GO

144

1

 (FORTHkit 1987 December)

(Optimizing compiler) 4 LOAD 5 LOAD 6 LOAD

: 0< \ 0< \ NOP ;

: END \ RECURSIVE POP DROP ;

: REMEMBER; CONTEXT 2 - 2@ \ END ;

 FORTH

: -MOD (n n - n) 4 1! MOD' ; (3)

: THRU (n n 1 OVER - FOR DUP LOAD 1 + NEXT DROP ;

: EMPTY FORGET REMEMBER;

2

 (Separated heads)

 VARIABLE H' HEX 2000 ,(relocation)

 : { dA @ HERE H' 2@ H ! dA ! H' 2! ; : } { ;

COMPILER : } H' @.A \\ PREVIOUS 8000 XOR SWAP ! { ;

FORTH : forget SMUDGE ;

 : RECOVER -1 ALLOT ;

: SCAN (a - a) @ BEGIN DUP 1 2000 WITHIN WHILE @ REPEAT ;

: TRIM (a a - a) DUP PUSH dA @ - SWAP ! POP

 DUP 1+ DUP @ DFFF AND OVER !

 DUP @ 200 / F AND + DUP @ FF7F AND SWAP ! ;

: CLIP (a) DUP BEGIN DUP SCAN DUP WHILE TRIM REPEAT

 2025 XOR dA @ - SWAP ! @ , ;

: PRUNE { CONTEXT 2 - DUP CLIP 1 + CLIP }

 20 0 2025 2! EMPTY ;

3

 (cmFORTH) EMPTY

(Target compiler) 2 LOAD

HEX 2000 800 0 FILL 2000 H' !

: BOOT } 16 FFF FOR 0 @+ 1 !+ NEXT -l @ (reset) ;

 0. 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0(TIB) ,

 77C0 , 0 , 0 , 0 , 0 , 0 , 1FF (SO) , A (BASE) ,

 0 (H) , DECIMAL 521 (C/B 5MHz 9600b/s) ,

 { : interrupt } POP DROP ; 0 , 0 , 1(CONTEXT) ,

(Nucleus) : # POP DROP ; 7 11 THRU

(Interpreter) 12 22 THRU

(Initialize) 23 24 THRU ‘ reset dA @ - HEX 2009 ! DECIMAL

(Compiler) 25 30 THRU } PRUNE

: GO FLUSH [HEX] 2015 4 I! 15 6EA FOR

 4 I@! 1 @+ 4 I@! 1 !+ NEXT 2009 PUSH ;

file://PREVIOUS

145

4

FORTH sets interpretive vocabulary for both searches and

 definitions. Words are compiled in definitions.

COMPILER sets immediate vocabulary. Words are executed in :

uCODE names a NC4016 micro-coded instruction. Compiled on use.

\ compiles a following compiler directive (that would normally

 be executed). Named [COMPILE] in FORTH-83.

4016 instructions:

 !- stores and decrements. I@! exchanges stack®ister.

 NOP delays 1 cycle. TWO delays 2 cycles.

 O+c Adds 0 with carry. MOD' conditionally subtracts R4.

 N! stores and saves data. -1 fetches register 3

DUP? compacts preceding DUP with current instruction. Used

to redefine I! and PUSH (previously >R).

5

PACK sets the return bit, if an instruction does not reference

 the Return stack. Otherwise it compiles a return. It exits

 from EXIT with POP DROP .

EXIT optimizes return if permitted (?CODF nonzero):

 For instructions (bit-15 = 1) it calls PACK except for jump

 or 2-cycle instructions;

 for calls to the same 4K page, it substitutes a jump.

; is redefined to use the new EXIT .

CONSTANT is redefined to take advantage of the new EXIT for

 5-bit literals.

6

BINARY defines and compacts ALU instructions. If the previous

 instruction was a fetch (ALU code 7) and not a store or DROP

 the ALU code is merged; stack push is inhibited. Otherwise

 a new instruction is compiled. ?CODE holds address of

 candidate for compaction.

SHIFT defines and compacts shift instructions. Shift left

 (2*) and right (2/) may be merged with an arithmetic

 instruction; sign propagate (0< } only with DUP .

;

DROP OR XOR AND + - SWAP- are redefined.

2* 2/ 0< likewise.

146

4

(Optimizing compiler) OCTAL

: FORTH 1 CONTEXT ! ;

: COMPILER 2 CONTEXT ! :

: uCODE (n) CREATE , DOES R> 77777 AND @ ,C ;

COMPILER : \ 2 –‘ IF DROP ABORT" ?" THEN ,A ;

 : !- 172700 SHORT ;

 : I@! 157700 SHORT :

 100000 uCODE NOP 140000 uCODE TWO

 154600 uCODE O+c 102404 uCODE MOD'

 177300 uCODE N! 147303 uCODE -1

 FORTH : DUP? HERE 2 - @ 100120 = IF

 HERE 1 - @ 7100 XOR -2 ALLOT ,C THEN ;

COMPILER : I! 157200 SHORT DUP? ;

 : PUSH 157201 C DUP? ;

5

(Defining Words) OCTAL

FORTH : PACK (a n- a) 160257 AND 140201 XOR IF

 40 SWAP +! ELSE DROP 100040 , THEN POP DROP ;

COMPILER : EXIT ?CODE @ DUP IF \\ DUP @ DUP 0< IF

 DUP 170000 AND 100000 = IF PACK THEN

 DUP 170300 AND 140300 = IF PACK THEN

 DUP 170000 AND 150000 = IF

 DUP 170600 AND 150000 XOR IF PACK THEN THEN DROP

 ELSE DUP HERE dA @ - XOR 170000 AND 0= IF

 7777 AND 130000 XOR SWAP ! EXIT THEN DROP THEN

 THEN DROP 100040 , ;

 : ; \ RECURSIVE POP DROP \ EXIT ;

FORTH : CONSTANT (n) CREATE -1 ALLOT \ LITERAL \ EXIT ;

6

(Binary operators) OCTAL

: BINARY (n n) CREATE , , DOES POP 77777 AND 2@

 ?CODE @ DUP IF @ DUP 117100 AND 107100 =

 OVER 177700 AND 157500 = OR IF (y -!)

 DUP 107020 - IF SWAP DROP XOR DUP 700 AND 200 = IF

 500 XOR ELSE DUP 70000 AND 0= IF 20 XOR THEN THEN

 ?CODE @ ! EXIT THEN

 THEN THEN DROP ,C DROP ;

: SHIFT (n n) CREATE , , DOES POP 77777 AND 2@

 ?CODE @ ?DUP IF @ DUP 100000 AND = WHILE ?CODE @ +! EXIT THEN

 DROP THEN 100000 XOR ,C ;

COMPILER 7100 107020 BINARY DROP

 4100 103020 BINARY OR 2100 105020 BINARY XOR

 6100 101020 BINARY AND 3100 104020 BINARY +

 5100 106020 BINARY - 1100 102020 BINARY SWAP-

2 171003 SHIFT 2* 1 171003 SHIFT 2/ 3 177003 SHIFT 0<

file://DUP

147

7

ROT is a slow way to reference into the stack.

0= returns false (0) if stack non-zero; otherwise true (-1).

NOT same as 0=. FORTH-83 wants one's complement.

< > subtract and test sign bit. Range of difference limited

 to 15 bits (-20000 is not less-than 20000).

= equality tested by XOR.

U< unsigned compare with 16-bit range (0 is less-than 40000).

{... } surround words defined into host dictionary. Used

 during compilation, they will not be in target dictionary.

4016 instructions:

 *" multiply step *- signed multiply step

 D2* 32-bit left shift D2/ 32-bit right shift

 /’ divide step /’’ final divide step

 F* fraction multiply S' square-root step

8

9

M/MOD 30-bit dividend; 15-bit divisor, quotient, remainder.

M/ signed dividend; 15-bit divisor, quotient.

VNEGATE negates both multiplier and multiplicand.

M* 32-bit signed product; multiplier (on top) must be even.

/MOD 15-bit dividend, divisor, quotient, remainder.

MOD 15-bit dividend, divisor, remainder.

U*+ 15-bit multiplier, multiplicand, addend: 30-bit product.

*/ signed multiplier, multiplicand, result: 15-bit divisor;

 multiplier (in middle) must be even.

* signed product; multiplier (on top) must be even.

/ signed dividend, quotient: 15-bit divisor.

148

7

(Nucleus) OCTAL

: ROT (n n n - n n n) PUSH SWAP POP SWAP ; (5)

: 0= (n - t) IF 0 EXIT THEN -1 ; (3)

: NOT (n - t) 0= ; (4)

: < (n n – t) - 0< ; (3)

: > (n n - t) SWAP- 0< ; (3)

: = (n n – t) XOR 0= ; (5)

: U< (u u – t) - 2/ 0< ; (3)

{ COMPILER

104411 uCODE *’ 102411 uCODE *-

100012 uCODE D2* 100011 uCODE D2/

102416 uCODE /’ 102414 Ucode /’’

(102412 uCODE *F 102616 uCODE S') FORTH }

8

9

(Multiply, divide)

: M/MOD (1 h u - g r) 4 I! D2* 13 TIMES /’ /’’ ; (21)

: M/ (1 h u - q r) OVER 0< IF OUP PUSH + POP THEN

 M/MOD DROP ; (27-30)

: VNEGATE (v - v) NEGATE SWAP NEGATE SWAP ; (5)

: M* (n n - d) DUP 0< IF VNEGATE THEN 0 SWAP

 4 I! 13 TIMES *’ *- ; (26-31)

: /MOD 1 u u - r q) 0 SWAP M/MOD SWAP ;(25)

: MOD (u u – r) /MOD DROP ; (27)

: U*+ (u r u - l h) 4 I! 14 TIMES *’ ; (20)

: */ (n n u - n) PUSH M* POP M/ : (64)

: * (n n - n) 0 SWAP U*+ DROP ; (241

: / (n u - q) PUSH DUP 0< POP M/ ; (35)

149

10

2/MOD 16-bit unsigned dividend; 15-bit guotient, remainder.

 \\ (break compaction) used to combine + 2/ ;

+! adds to memory.

Byte address is 2* cell address; high byte is byte 0. Range

 restricted to low RAM (0-7FFF).

C! stores 8-bit data into byte address: other byte naffected.

C@ fetches 8-bits from byte address.

2@ fetches 2 16-bit numbers; lower address on top.

2! stores 2 16-bit numbers.

2DROP DROP DROP ; is faster and usually no longer.

MOVE the fastest move that does not stream to-from stack.

FILL fills RAM with constant.

11

EXECUTE executes code at an address by returning to it. CYCLES delays n+4

cycles - count 'em.

2DUP copies 32-bit (2 16-bit) stack item.

?DUP copies stack if non-zero.

WITHIN returns true if number within low (inclusive) and high

 (non-inclusive) limits; all numbers 16 bits or signed.

ABS returns positive number (15-bits).

‘

MAX returns larqer of pair; 15-bit range.

MIN returns smaller. Intertwining code saves 2 cells; left in

 as illustration of obscure but efficient code.

12

ARRAY defines an array that adds an index from stack in only

 2 cycles. Similar to VARIABLE

These low-RAM variables are used by cmFORTH (0-F are unused).

 Change them cautiously! In particular, make sure a variable

 is not used during compilation. For example, HEX is

 redefined to set BASE . It can be used if BASE has not

 moved; otherwise it must be FORGETted.

Non-standard variables:

 ?CODE address of last instruction compiled. Zero indicates

 no compaction permitted (ip, after THEN).

 dA offset to be added to compiled addresses. Normally 0.

 Relocated code cannot be executed!

 CURSOR tracks cursor (terminal dependent); used by EXPECT

 SO serial output polarity: 1FF or 200.

 C/B cycles/bit for serial I/0.

150

10

 (Memory reference operators)

: 2/MOD (n - r q) DUP 1 AND SWAP 0 [\\] + 2/ ; (6)

: +! (n a) 0 @+ PUSH + POP ! ; (9)

: C! (n b) 2/MOD DUP PUSH @ SWAP IF -256 AND

 ELSE 255 AND SWAP 6 TIMES 2* THEN XOR POP ! ; (20-29)

: C@ (b - n) 2/MOD @ SWAP l - IF 6 TIMES 2/ THEN 255 AND ;

 (10-20)

: 2@ (a – d) 1 @+ @ SWAP ; (6)

: 2! (d u) l !+ ! ; (6)

{ OCTAL COMPILER : -ZERO l + \ BEGIN 130000 , ; FORTH }

: MOVE (s d n) PUSH 4 I! BEGIN -ZFRO

 1 @+ 4 I@! 1 !+ 4 I@! THEN NEXT DROP ; (7* 5+)

: FILL (a n n) 4 I! FOR -ZERO 4 I@ SWAP l !+ THEN NEXT

 DROP ; (5* 8+)

11

 (Words)

: EXECUTE (a) PUSH ; (3)

: CYCLES (n) TIMES ; (4 n+)

: ?DUP (n - n n. 0) OUP IF DUP EXIT THFN ; (4)

: 2DUP (d - d d) OVER OVER ; (3)

: 2DROP (d) DROP DROP ; (3)

: WITHIN (n l h - t) OVER - PUSH - POP U< ;

: ABS (n - u) DUP 0< IF NEGATE EXIT THEN ; (4)

: MAX (n n - n) OVER OVER - O< IF BEGIN SWAP DROP ;

: MIN (n n - n) OVER OVER - O< UNTIL THEN DROP ; (6)

12

 (RAM allocation) OCTAL

{ : ARRAY (n) CONSTANT 154462 USE ;

HEX 10 CONSTANT PREV (Last referenced buffer)

 11 CONSTANT OLDEST (Oldest loaded buffer)

 12 ARRAY BUFFERS (Block in each buffer) I

N2 1 - CONSTANT NB (Number of buffers) T

{ 14 CONSTANT CYLINDER } 15 CONSTANT TTB

(Initialized)

16 CONSTANT SPAN 17 CONSTANT >IN { l8 CONSTANT BLK }

19 CONSTANT dA

1A CONSTANT ?CODE 1B CONSTANT CURSOR

{ 1C CONSTANT S0 } 1D CONSTANT BASE 1E CONSTANT H

1F CONSTANT C/B 24 CONSTANT CONTEXT

151

13

EMIT sets Xmask to lE so that only XO can be changed. Start/

 stop bits are added and polarity set. I! emits bits at C/B

 rate thru X0.

CR emits carriage-return and line-feed.

TYPF types a string with prefixed count byte. It returns an

 incremented cell address. This is not FORTH-83 standard.

RX reads a bit from pin X4.

KEY reads 8-bits from X4. It waits for a start bit, then

 delays until the middle of the first data bit. Each bit is

 sampled then ored into bit 7 of the accumulated byte. It

 does not exit until the stop bit (low) is detected.

14

SPACE emits a space.

SPACES emits n>0 spaces.

HOLD holds characters on the stack, maintaining a count.

 It reverses the digits resulting from number conversion.

EXPECT accepts keystrokes and buffers them (at TIB). An 8

 will discard a character and emit a backspace: a D will

 emit a space and exit; all other keys are stored and echoed

 until the count is exhausted. Actual count is in SPAN .

15

DIGIT converts a digit (0-F) into an ASCII character.

<# starts conversion by tucking a count under the number.

#> ends conversion by emitting the string of digits.

SIGN stacks a minus sign, if needed.

converts the low-order digit of a 16-bit number.

#S converts non-zero digits, at least one.

(.) formats a signed number.

. displays a 16-bit signed integer, followed by a space.

U.R displays a right-justified 16-bit unsigned number.

U. displays an unsigned number.

DUMP displays an address and 3 numbers from memory. It

 returns an incremented address for a subsequent DUMP .

152

13

(ASCII terminal: 4X in, OX out) HEX

: EMIT (n) lE D I! 2* SO @ XOR

 9 FOR DUP C I! 2/ C/B @ A - CYCLES NEXT DROP ;

: CR D EMIT A EMIT ;

: TYPE (a - a) 2* DUP C@ 1 - FOR 1 + DUP C@ EMIT NEXT

 2 + 2/ ;

{ : RX (- n) } C I@ 10 AND ; (3)

: KEY (- n) 0 BEGIN RX 10 XOR UNTIL C/B @ DUP 2/ +

 7 FOR 10 – CYCLES 2/ RX 2* 2* 2* OR C/B @ NEXT

 BEGIN RX UNTIL DROP ;

14

 (Serial EXPECT) HEX

: SPACE 20 EMIT ;

: SPACES (n) 0 MAX FOR -ZER0 SPACE THEN NEXT ;

: HOLD (..# x n - ..# x) SWAP PUSH SWAP 1 + POP ;

: EXPECT (a #) SWAP CURSOR !

 1 - DUP FOR KEY DUP 8 XOR IF

 DUP D XOR IF DUP CURSOR @ 1 !+ CURSOR ! EMIT

 ELSE SPACE DROP POP - SPAN ! EXIT THFN

 ELSE (8) DROP DUP I XOR [OVER] UNTIL

 CURSOR @ 1 - CURSOR ! POP 2 + PUSH 8 EMIT

 THEN NEXT 1 + SPAN ! ;

15

 (Numbers)

: DIGIT (n- n) DUP 9 > 7 AND + 48 + ;

: <# (n - ..# n) -1 SWAP ;

: #> (..# n) DROP FOR EMIT NFXT ;

: SIGN (..# n n -..# n) 0< IF 45 HOLD THEN ;

: # (..# n -..# n) BASE @ /MOD SWAP DIGIT HOLD ;

: #S (..# n - ..# 0) BEGIN # DUP O= UNTIL ;

: (.) (n - ..# n) DUP PUSH ABS <# #S POP SIGN ;

: . (n) (.) #> SPACE ;

: U.R (u n) POSH <# #S OVER POP SWAP- 1 – SPACES #> ;

: U. (u) 0 U.R SPACE ;

: DUMP (a - a) CR DUP 5 U.R SPACE 7 FOR

 1 @+ SWAP 7 U.R NEXT SPACE ;

153

16

i v HERE returns next address in dictionary.

abort" types the current word (at HERE) and an error message

 (at I) It also returns the current BLK to locate an

 error during LOAD . It will end with QUIT , when defined.

 It is a headless definition. referenced only bv ABORT"

dot" types a message whose address is pulled off the return

 stack, incremented and replaced

ABORT" compiles abort" and the following string. This is a

 host COMPILER definition. The target definition is in

 block 30.

." compiles dot" and the following string.

17

PUFFERS returns indexed address of buffer ID. PRFV current buffer number

(0-NB).

OLDEST last buffer read. Next buffer i s OLDEST @ 1 + .

ADDRESS calculates a buffer address from buffer number. NB is

 1. If increased. ADDRFSS and BUFFERS must be also.

ABSENT returns the block number when the requested block isn' t

 already in RAM. Otherwise it returns the buffer address and

 exits from BLOCK .

UPDATED returns the buffer address and current block number if

 the pending buffer has been UPDATEd . Otherwise it returns

 the buffer address and exits from the calling routine

 (BLOCK or BUFFER). Pending means oldest but not Just used.

UPDATE marks the current buffer (PRFV) to be rewritten. ESTABLISH stores

the block number of the current buffer. _

IDENTIFY stores a block number into the current buffer.

 Used to copy blocks.

18

emits 3 bytes to host to start a block transfer: 0 followed

 by block number.

Buffer transmits an updated block and awaits acknowledgement.

BUFFER returns address of an empty (but assigned) buffer.

:

block reads a block.

BLOCK returns the buffer address of a specified block, writing and

 reading as necessary.

FLUSH forces buffers to be written.

EMPTY-BUFFERS clears buffer ID’s, without writing.

154

16

 (Strings) HEX

: HERE (-a) H @ ;

{ : abort" } H @ TYPE SPACE POP 7FFF AND TYPE 2DROP

 BLK @ ?DUP DROP 0 (QUIT) ;

{ : dot" } POP 7FFF AND TYPE PUSH ;

{ COMPILER : ABORT" COMPILE abort" 22 STRING ;

 : ." COMPILE dot" 22 STRING ;

 FORTH }

17

 (15-bit buffer manager)

{ : ADDRESS (n – a) } 30 + 8 TIMES 2* ;

{ : ABSENT (n – n) } NB FOR DUP I BUFFERS @ X0R 2* WHILE

 NEXT EXIT THEN POP PREV N! POP DROP SWAP DROP ADDRESS ;

..

{ : UPDATED (- a n) } OLDEST @ BEGIN l + NB AND

 DUP PKEV @ XOR UNTIL OLDEST N! PRFV N!

 DUP ADDRESS SWAP BUFFERS DUP @

 8192 ROT ! DUP 0< NOT IF POP DROP DROP THEN ;

: UPDATE PREV @ BUFFERS 0 @+ SWAP 32768 OR SWAP ! ;

{ : ESTABLISH (n a – a) } SWAP OLDEST @ PREV N!

 BUFFERS ! :

: IDENTIFY (n a - a) SWAP PREV @ BUFFERS

18

 (Disk read/write) ^~

{ : ## (a n - a a #1 } 0 EMIT 256 /MOD EMIT EMIT DUP 1023 ;

{ : buffer (n - a) } UPDATED

 ## FOR 1 @+ SWAP EMIT NEXT KEY 2DROP ;

: BUFFER (n - a) buffer ESTABLISH ;

{ : block (n a - n a) } OVER ## FOR KEY SWAP 1 !+

 NEXT DROP ;

: BLOCK (n – a) ABSENT buffer block ESTABLISH ;

: FLUSH NB FOR 8192 BUFFER DROP NEXT ;

: EMPTY-BUFFERS PREV [NB 3 +] LITERAL 0 FILL FLUSH ;

155

19

LETTER moves a string of characters from cell address a to

 byte address b . Terminated by count (#) or delimiter '

 (register 6). Input pointer >IN is advanced.

-LFTTER scans the source string for a non-delimiter. If found,

 calls LETTER .

WORD locates text in either block buffer or TIB (BLK is 0)

 Reads word into HERE prefixing count and suffixing a space

 (in case count even).

20

SAME compares the string at HERE with a name field. Cell

 count is in register 6. High bit of each cell is ignored.

 Returns address of parameter field: requires indirect

 reference if high bit of count set (separated head).

COUNT extracts the cell count from the first word of a string.

HASH returns the address of the head of a vocabulary.

-FIND searches a vocabulary for match with HERE . Fails with

 zero link field.

21

-DIGIT converts an ASCII character to a digit (0-Z).

 Failure generates an error message.

C@+ increments address in register 6 and fetches character.

10*+ multiplies number by BASE and adds digit.

NUMBER converts given string to binary: stores BASE in R4:

 saves minus sign: terminates on count; applies sign

156

19

(Interpreter 1

{ : LETTER (b a # - b a) } FOR DUP @ 6 I@ XOR WHILE

 1 @+ PUSH OVFR C! 1 + POP NEXT EXIT THEN

 >IN @ POP - >IN ! ;

{ : -LETTER (b a # - b a) } ?DUP IF

 1 - FOR 1 @+ SWAP 6 I@ XOR 0= WHILE NEXT EXIT THFN

 1 - POP LFTTFR THEN ;

: WORD (n - a) PUSH H @ DUP 2* DUP 1 + DUP >IN @

 BLK @ IF BLK @ BLOCK + 1024 ELSE TIB @ + SPAN @ THEN

 >IN @ OVER >IN ! - POP 6 I!

 -LETTER DROP 32 OVER C! SWAP- SWAP C! ;

20

 (Dictionary search)

{ : SAME (h a - h a f. a t) } OVER 4 I! DUP 1 +

 6 I@ FOR l @+ SWAP 4 I@ 1 @+ 4 I! - 2* IF

 POP DROP 0 AND EXIT THEN

 NEXT SWAP 1 + @ 0< IF @ THEN SWAP ;

{ : COUNT (n - n) } 7 TIMES 2/ 15 AND ;

{ : HASH (n - a) } CONTEXT SWAP- ;

{ : -FIND (h n - h t. a f) } HASH OVER @ COUNT 6 I!

 BEGIN @ DUP WHILE SAME UNTIL 0 EXIT THEN -1 XOR ;

21

 (Number input) HEX

: -DIGIT (n - n) 30 - DUP 9 > IF 7 - DUP A < OR THEN

 DUP BASE @ U< IF EXIT THEN

 2DROP ABORT" ?” ; RECOVER

{ : C@+ (- n) } 6 I@ 1 + DUP 6 I! C@ ;

{: 10*+ (u n - u) } –DIGIT OE TIMES *’ DROP ;

: NUMBER (a – n) BASE @ 4 I! 0 SWAP 2* DUP 1 + C@ 20 =

 PUSH DUP 1 - 6 I! C@ I + 1 - FOR C@+ 10*+ NEXT

 POP IF NEGATE THEN ;

157

22

-‘ searches vocabulary for following word.

 returns address of following word in current vocabulary

 Error message on failure. FORGET to use host version.

INTERPRET accepts block number and offset. Searches FORTH

 and executes words found; otherwise converts to binary.

QUIT accepts a character string into the text input buffer,

 interprets and replies ok to signify success; repeats.

 The address of QUIT is relocated into the end of abort" .

23

FORGET restores HERE and vocabulary heads to values saved at

 compile time (by REMEMBFR; 1.

BPS awaits a start bit, assumes only the first data bit is

 zero and computes C/B . Type a B or other even letter.

RS232 examines the serial input line and inverts serial I/0 if

 an inverting buffer is used (line rests low).

Reset is executed at power-up or reset.

 Carefully initializes I/0 registers to avoid glitches.

 Empties buffers at power-up only (TIB contains garbage).

 Calibrates serial i10.

 Cheerful hi and awaits command.

24

This is the beginning of the compiler. A turn-key application

 might need only the code above.

Common words are defined for both interpreter and compiler.

Number base words defined together: DECIMAL required.

LOAD saves current input pointers. Calls INTERPRET . restores

 Input pointers and returns to DECIMAL . >IN and BLK are

 Treated as a 32-bit pointer. FORGET so that host LOAD

 Will be used.

158

22

 (Control)

: -‘ (n - h t. a f) 32 WORD SWAP -FIND ;

: ‘ (- a) CONTEXT @ -‘ IF DROP ABORT" ?" THEN ; forget

: INTERPRET (n n) >IN 2! BEGIN 1 –‘ IF NUMBER

 ELSE EXECUTE THEN AGAIN ; RECOVER

: QUIT BEGIN CR TIB @ 64 EXPECT

 0 0 INTERPRET ." ok" AGAIN ; RECOVER

‘ QUIT dA @ - ' abort" 1l + !

23

 (Initialize) HEX

: FORGET (a) POP 7FFF AND DUP 2 + H ! 2@ CONTEXT 2 - 2!

 1 CONTEXT ! ;

{ : BPS } 4 BEGIN RX 10 XOR UNTIL BEGIN 5 + RX UNTIL

 2/ C/B ! :

{ : RS232 } RX IF EXIT THEN 200 SO ! 0B C I! ;

{ : reset } 0 (RESET)

 0 DUP 9 I! DUP A I! DUP 0B I! DUP 8 I! -1 A I!

 DUP D I! DUP E I! F I! 1A C I!

 TIB 2@ XOR IF EMPTY-BUFFFRS SPAN @ TIB ! THEN

 RS232 F E I! BPS ." hi" QUIT ;

24

 (Words)

: SWAP SWAP ; : OVER OVER ;

: DUP DUP ; : DROP DROP ;

: XOR XOR ; : AND AND ;

: OR OR ;

: + + ; : - - ;

: 0< 0< ; : NEGATE NEGATE ;

: @ @ ; : ! ! ;

: OCTAL 8 BASE ! ; forget

: DECIMAL 10 BASE ! ; forget

: HEX 16 BASE ! ; forget

: LOAD (n) >N 2@ PUSH PUSH 0 INTERPRET 10 BASE !

 POP POP >N 2! ; forget

159

25

\\ breaks code compaction.

ALLOT increments the dictionary pointer to allot memory.

, compiles a number into the dictionary.

,C compiles an instruction available for compaction.

,A compiles a address relocated by dA .

LITERAL compiles a number as a short literal, if possible.

[stops compilation by popping the return stack, thus returning

 out of the infinite] loop.

] unlike INTERPRET , searches both vocabularies before falling

 into NUMBER . When a word is found in COMPILER it is

 executed; if found in FORTH it is compiled. If it is a

 single instruction, it is placed in-line; otherwise its

 address is compiled for a call.

26

PREVIOUS returns the address and count of the name field of

 the word just defined.

USE assigns to the previous word a specified code field.

DOES provides a behavior for a newly defined word. It is

 executed when that word is defined.

SMUDGE smudges the name field to avoid recursion.

EXIT returns from a definition early (FORTH version).

COMPILE pops the address of the following word and compiles it.

 7FFF AND masks the carry bit from the return stack.

EXIT compiles a return instruction (COMPILEP version).

RECURSIVE unsmudges the name field so a new word can be found.

: terminates a definition. FORGET permits more definitions.

27

CREATE creates an entry in the dictionarv. It saves space for

 the link field, then fetches a word terminated by space. It

 links the word into the proper vocabulary, allots space for

 the name field and compiles the return-next-address

 instruction appropriate for a variable.

: creates a definition: -1 ALLOT recovers the instruction

 compiled by CREATE :] compiles the definition in its place.

 FORGET permits more definitions.

CONSTANT names a number by compiling a literal.

VARIABLE initializes its variable to zero.

file://breaks

160

25

 (Compiler) OCTAL

: \\ 0 ?CODE ! ;

: ALLOT (n) H +! \\ ;

: , (n) H @ ! 1 H +! ;

: ,C (n) H @ ?CODE ! , ;

: ,A (a) dA @ - ,C ;

COMPILER : LITERAL (n) DUP -40 AND IF 147500 ,C , EXIT

 THEN 157500 XOR ,C ;

: [POP DROP ;

FORTH :] BEGIN 2 -' IF 1 -FIND IF NUMBER \ LITERAL

 ELSE DUP @

 DUP 140040 AND 140040 = OVER 170377 AND 140342 XOR AND

 SWAP 170040 AND 100040 = OR IF @ 40 XOR ,C

 ELSE ,A THEN THEN

 ELSE EXECUTE THEN AGAIN ; RECOVER

26

 (Compiler) HEX

: PREVIOUS (- a n) CONTEXT @ HASH @ 1 + 0 @+ SWAP ;

: USE (a) PREVIOUS COUNT + 1 + ! ;

: DOES POP 7FFF AND USE ;

: SMUDGE PREVIOUS 2000 XOR SWAP ! ;

: EXIT POP DROP ;

: COMPILE POP 7FFF AND 1 @+ PUSH ,A ;

OCTAL

COMPILER : EXIT 100040 ,C ; HEX

 : RECURSIVE PREVIOUS DFFF AND SWAP ! ;

 : : \ RECURSIVE POP DROP \ EXIT ; forget

27

 (Defining words) OCTAL

FORTH : CREATE H @ 0 , 40 WORD CONTEXT @ HASH

 2DUP @ SWAP 1 - ! SWAP @ COUNT 1 + ALLOT ! 147342 , ;

: : CREATE -1 ALLOT SMUDGE] ; forget

: CONSTANT (n) CREATE -1 ALLOT \ LITERAL \ EXIT ;

: VARIABLE CREATE 0 , ;

161

28

-SHORT checks if last instruction was a 5-bit literal.

FIX merges 5-bit literal with new instruction.

SHORT requires 5-bit literal (register, address or increment)

 for current instruction. Error message.

@ and ! compile 5-bit or stack address instructions.

I@ and I! compile 5-bit register instructions.

@+ and !+ compile 5-bit increment instructions.

PUSH and POP push and pop the return stack.

 They are usually designated >R and R> .

I copies the return stack onto the parameter stack.

TIMES pushes the return stack to repeat the next instruction for

 n + 2 cycles.

29

OR, compiles a 12-bit address with a backward jump instruction.

BFGIN saves HERE for backward jumps.

UNTIL compiles a conditional backward jump.

AGAIN compiles an unconditional backward jump.

THEN adds 12-bit current address into forward jump.

IF compiles a conditional forward jump.

WHILE compiles a conditional forward Jump - out of structure. ;

REPEAT resolves a BEGIN ... WHILE ... loop.

ELSE inserts false clause in an IF ... THEN conditional.

FOR compiles return stack push for a down-countinv loop.

NEXT compiles a backward decrement-and-jump.

30

STRING compiles a character string with a specified delimiter.

ABORT" DOT" are target versions of previously-defined host

 words.

(skips over a comment. It must be defined in both FORTH and

 COMPILER .

RESET restores dictionary to power-up status. It must be the

 last word in the dictionary. It is called by reset .

Insert application code before this block, to avoid using these

 Common target words. Alteratively, FORGET them.

162

28

 (uCODE) OCTAL

: -SHORT (- t) ?CODE @ @ 177700 AND 157500 XOR ;

: FIX (n) ?CODE @ @ 77 AND OR ?CODE @ ! ;

: SHORT (n) -SHORT IF DROP ABORT" n?" THEN FIX ;

COMPILER

: @ -SHORT IF 167100 ,C ELSE 147100 FIX THEN ; forget

: ! -SHORT IF 177000 ,C ELSE 157000 FIX THEN ; forget

: I@ 147300 SHORT ;

: I! 157200 SHORT ;

: @+ 164700 SHORT ;

: !+ 174700 SHORT ;

: R> 147321 ,C ;

: POP 147321 ,C ; : PUSH 157201 ,C ;

: I 147301 ,C ; : TIMES 157221 ,C ; forget

29

 (Structures) OCTAL

FORTH { : OR, (n n) } \\ SWAP 7777 AND OR ,.;

COMPILER : BEGIN (- a) H @ \\ ;

: UNTIL (a) 110000 OR, ;

: AGAIN (a) 130000 OR, ;

: THEN (a) \ BEGIN 7777 AND SWAP +! ;

: IF (- a) \ BEGIN 110000 , ;

: WHILE (a- a a) \ IF SWAP ;

: REPEAT (a a) \ AGAIN \ THEN ;

: ELSE (a - a) \ BEGIN 130000 , SWAP \ THEN ;

: FOR (- a) \ PUSH \ BEGIN ;

: NEXT (a) 120000 OR, ;

30

 (Strings) HEX

 FORTH : STRING (n) WORD @ 7 TIMES 2/ 1 + ALLOT ;

COMPILER : ABORT" COMPILE abort" 22 STRING ;

 : ." COMPILE dot" 22 STRING ;

 : (29 WORD DROP ;

 FORTH : (\ (;

: RESET FORGET 0 ; RECOVER ‘ RESET dA @ - ' reset !

163

Appendix B. Glossary of cmFORTH

a: address b: byte d: double integer f: flag n: integer t: true flag u: unsigned integer #: count

Identifier nnX (nn screen number, X type code) C: target compiler F: FORTH I: COMPILER

H: hidden V: variable

! n a - 24F Store n to memory at address a.

! - 28I Compile optimized store code.

!+ n - 28I Compile increment store code.

!- n - 28I Compile decrement store code.

- 3C Alias for end-of-line EXIT.

.. # n - .. #' n' 15F Convert one digit from n and add it to output string.

a n - a a # 18H Send serial disk read command to host computer.

#> .. # n - 15F Output number string to terminal.

#S .. # n - .. #' 0 15F Convert n and add digits to the output string.

' - a 22F Search dictionary for next word. Return code

address.

(.) n - .. # 15F Convert n to an ASCII output string on stack.

* n1 n2 - r 9F Signed multiply of n1 and n2.

*' - 7I Compile multiply step code.

*- - 7I Compile signed multiply step code.

*/ n1 n2 u - r 9F Ratio of n1xn2/u.

*/MOD u1 u2 u3 - r q 9F u1*u2/u3. Return remainder and quotient.

*F - 7I Compile fraction multiply step.

+ - 6C Optimizing + code compiler.

+ n1 n2 - n3 24F Add top two stack items.

+! n a - 10F Add n to memory at address a.

, n - 25F Compile n to top of dictionary.

,A a - 25F Compile address a to dictionary.

,C n - 25F Compile n as a machine code.

- - 6C Optimizing - code compiler.

- n1 n2 - n3 24F Subtract top from second stack item.

-' - a t, p a f 22F Search dictionary for next word. Return false if

found.

-1 - 4C Compile -1 code.

-DIGIT b - n 21F Convert character b to a digit.

-FIND a1 a2 n - a1

t,a2 f

20H Search dictionary for word at a1 with hash code n.

-LETTER a1 a2 # - a2 a4 19H Copy cell string at a1 to byte string at a2.

-M/MOD d u - q r 9F Divide d by u, and return remainder and quotient.

-SHORT - f 28F Return true if last compiled code has literal field.

. n - 15F Free format display of top stack item.

." - 16F Print the following text.

/ n u - q 9F Divide by unsigned integer.

/' - 7I Compile divide step code.

/'' - 7I Compile last divide step code.

file://SWAP

164

/MOD u1 u2 - r q 9F Unsigned divide. Return remainder and quotient.

0+c - 4C Compile carry adjust code.

0< - 1C Fixed up 0< for prototype NC4000.

0< - 6C Optimizing 0< code compiler.

0< n - f 24F Return true if top stack item is negative.

0= n - f 7F Return true if top stack item is zero.

10*+ u1 b - u2 21H Accumulate a digit b to product u1.

2! d a - 10F Store double integer to a.

2* - 6C Optimizing left shift code comiler.

2/ - 6C Optimizing right shift code compiler.

2/MOD n - rem quot 8F Divide n by 2 and return remainder and quotient.

2@ a - d 10F Fetch double integer at a.

2C@+ a - a+1 l h 10F Increment a and return its contents in two bytes.

2DROP d - 10F Discard top two stack items.

2DUP d - d d 11F Duplicate top two stack items.

: - 27F Start a new colon definition.

; - 5C Optimizing ; compiler.

; - 26I Terminate a colon definition.

< n1 n2 - f 7F Return true if second item is less than top.

<# n - ..# n 15F Start a number output string.

= n1 n2 - f 7F Return true if top two items are equal.

> n1 n2 - f 7F Return true if second item is greater than top.

>IN - a 12V Pointer to input stream for text interpreter.

>R - 28I Compile >R code to retrieve from return stack.

? a - 15F Display contents of memory a.

?CODE - a 12V Pointer to address of code just compiled.

?DUP n - n n, 0 11F Duplicate n if it is not zero.

@ a - n 24F Fetch contents of memory at address a.

@ - 28I Compile smart fetch code.

@+ n - 28I Compile increment fetch code.

@DROP - 4C Compile ÄROP code.

ABORT" - 16F Abort to text interpreter with an output message.

ABS n - u 11F Return absolute value of top stack item.

ABSENT n - a 17H Return buffer address a if block n is in a buffer.

ADDRESS n - a 17H Return buffer address of the nth disk block.

AGAIN a - 29I Compile an unconditional branch to address a.

ALLOT n - 25F Allocate n cells in the dictionary.

AND - 6C Optimizing AND code compiler.

AND n1 n2 - n3 24F AND top two stack items.

ARRAY - 12H Create a new array.

BASE - a 12V Number base for numeric I/O conversion.

BAUD - 23H Wait a B from terminal and determine the baud rate.

BEGIN - a 29I Starting point of a indefinite loop.

BINARY n1 n2 - 6C Defining word for optimizing ALU code compilers.

BLK - a 12V Contains the block number under interpretation.

BLOCK n - a 18F Read a block from host. Return buffer address a.

165

BUFFER n - a 18F Get a disk buffer for block n. Return buffer address.

BUFFERS - a 12H Array of block numbers of blocks in the disk buffers.

C! b a - 10F Store byte b to byte address a.

C/B - a 12V Machine cycles per bit for serial terminal.

C@ a - b 10F Fetch a byte from byte address a.

CLIP a - 2C Relink the target vocabulary starting from a.

CNT - a 12V Count of characters received from terminal.

COMPILE - 26F Compile next address to dictionary.

COMPILER - 4C Switch context to COMPILER vocabulary.

CONSTANT - 27F Create a new constant.

CONTEXT - a 12V Context vocabulary hash code.

COUNT n1 - n2 26H Extract length from first cell in the name field.

CR - 13F Output a carriage return and a line feed.

CREATE - 27F Create a new definitions.

CURSOR - a 12V Pointer to the input character just received.

CYCLES n - 11F Run n empty for-next cycles.

D2* - 7I Compile double integer left shift code.

D2/ - 7I Compile double integer right shift code.

DECIMAL - 23F Set base to 10 for decimal I/O.

DIGIT n - b 15F Convert n to a digit b.

DOES - 26F Define an inner interpreter.

DROP n - 24F Discard top item on stack.

DUMP a - a+8 15F Display 8 consecutive cells from address a.

DUP n - n n 24F Duplicate top stack item.

DUP? - 4C Pack previous DUP into current code if possible.

ELSE a1 - a2 29I Start a false clause in a branch structure.

EMIT b - 13F Send one byte to terminal.

EMPTY - 1C Starting point of a dictionary overlay.

EMPTY-

BUFFERS

- 18F Erase all the buffer pointers to empty buffers.

ERASE a n - 10F Zero n cells starting from a.

ESTABLISH n a - a 17H Identify oldest buffer with block n.

EXECUTE a - 11F Call subroutine at address a.

EXIT - 5C Optimizing EXIT compiler.

EXIT - 26F Return to the calling routine.

EXIT - 26I Compiler of EXIT machine code.

EXPECT a n - 14F Input a text string of n cells to address a.

FILL a # n - 10F Fill # cells of memory at a with n.

FIX n - 28F Insert 5 bit literal n into last compiled code.

FLUSH - 18F Write all updated buffer back to the host.

FOR - a 29I Start a definite loop.

FORTH - 4C Switch context to FORTH vocabulary.

H - a 12V Pointer to top of dictionary.

H' - a 2C Pointer to top of target dictionary.

HASH n - a 20H From hash code n return vocabulary link address a.

HERE - a 14F Return first free address on top of dictionary.

166

HEX - 24F Change number base to 16.

HOLD .. # n b - .. # n 14F Add byte b to the number output string on stack.

I - 28I Compile I code to copy from return stack.

I! - 4C Compile an optimized register store code.

I! n - 28I Compile internal register store code.

I@ n - 28I Compile internal register fetch code.

I@! n - 8C Compile optimized register exchange code.

I@! n - 28I Compile registe exchange code.

IDENTIFY n a - a 17F Identify PREV buffer with block n.

IF - a 29I Start a conditional branch structure.

INTERPRET n1 n2 - 22F With BLK and >IN on stack, interpret text in input

buffer.

KEY - n 13F Get one byte from terminal.

LETTER a1 a2 n - a3 a4 19H Copy cell string a1 to byte string at a2.

LITERAL n - 25I Compile n as a literal to dictionary.

LOAD n - 24F Interpret text in block n.

M* n1 n2 - d 9F Multiply n1 by n2 and return double integer product.

M*+ u1 0 u2 - d 9F Unsigned multiply of u1 by u2.

M/ d u - q 9F Divide d by u, and return quotient only.

M/MOD ud u - q r 8F Unsigned divide of ud by u. Return remainder and

quotient.

MAX n1 n2 - max 11F Return the greater of n1 and n2.

MD - 8C Compile multiplier/divisor register code.

MIN n1 n2 - min 11F Return the smaller of n1 and n2.

MOD u1 u2 - r 9F Unsigned divide. Return remainder only.

MOVE a1 a2 n - 10F Move n+1 cells from a1 to a2-n.

MSG - a 12V Pointer to the terminal input buffer.

N! - 4C Compile local memory store code.

NB - n 12F Number of disk buffers less 1.

NEGATE n1 - n2 24F Negate top stack item.

NEXT a - 29I Terminate a definite loop.

NOP - 4C Compile NOP code.

NOT n - f 7F Return true if top stack item is false.

NUMBER a - n 21F Convert string at a to a number.

OCTAL - 24F Change number base to 8.

OFFSET - a 12V Offset for disk block 0.

OLDEST - a 12V Pointer to oldest disk buffer.

OR - 6C Optimizing OR code compiler.

OR n1 n2 - n3 24F OR top two stack items.

OR, a n - 29H OR address a to branch code n and compile it.

OVER n1 n2 - n1 n2

n1

24F Copy second item on stack.

PACK a n - a 5C Compile return code or pack return bit to last code.

PREV - a 12V Pointer to last referenced disk buffer.

PREVIOUS - a n 26F Return name field address and first cell in name field.

PRUNE - 2C Relink the target vocabulary.

167

QUIT - 22F The text interpreter.

R> - 28I Compile R> code to move to return stack.

R>DROP - 4C Compile R>DROP code.

RAM - a 2C Pointer to the top of RAM area for new variables.

RECOVER - 2C Recover one cell from compiled definition.

RECURSIVE - 26I Unsmudge the last definition.

REMEMBER - 1C Create a wall for dictionary overlay.

REPEAT a1 a2 - 29I Resolve the BEGIN-WHILE-REPEAT structure.

RESET - 23F Initialize the Forth system.

ROM - a 23H Array containing initial values of variables.

ROT n1 n2 n3 - n2

n3 n1

7F Rotate third stack item to top.

RX - n 13F Get one bit from terminal.

S' - 7C Compile square-root step code.

SAME a1 a2 - a3 a4 f 20H Search string at a1 through dictionary starting a2.

SCAN a1 - a2 2C Find the next host definition in linked chain.

SHIFT n - 6C Defining word for optimizing shift code compilers.

SHORT n - 28F Insert literal n into the last literal code.

SIGN .. # n - .. #' 15F Add - sign to output string if n is negative.

SMUDGE - 26F Set smudge bit in the last definition.

SPACE - 14F Output a space.

SPACES n - 14F Output n spaces.

SR - 8C Compile square-root register code.

SWAP n1 n2 - n2 n1 24F Exchange top two stack items.

SWAP- - 6C Optimizing SWAP- code compiler.

SWAP-

DROP

- 4C Compile NIP code.

THEN a - 29I Resovle conditional branching address.

THRU n1 n2 - 1C Load blocks from n1 to n2 inclusive.

TIMES - 28I Compile TIMES code for one instruction loop.

TRIM a1 a2 - a3 2C Relink the target and host vocabulary.

TWO - 4C Compile two cycle Nop.

TYPE a1 - a2 13F Output a stored string at a1. Return a2 after the

string.

U*+ u1 r u2 - d 8F Multiply u1 by u2 and add the product to r.

U. u - 15F Display unsigned integer u in free format.

U.R u n - 15F Display unsigned integer u right justified in n

columns.

U< u1 u2 - f 7F Return true if second is less than top in unsigned

comparison.

UNTIL a - 29I Compile a conditional branch to address a.

UPDATE - 17F Update the buffer pointed to by PREV.

UPDATED - a n 17H Return block number and address of oldest buffer.

USE a - 26F Install inner interpreter a to last definition.

VARIABLE - 2C Defining word for variables in target system.

VARIABLE - 27F Create a new variable.

168

VNEGATE n1 n2 - n3 n4 9F Negate top two stack items.

WHILE a1 - a2 a1 29I Compile branch code in an indefinite loop.

WIDTH - a 12V Cell size of name field.

WITHIN n l h - f 11F Return true if n is between l and h.

WORD n - a 19F Parse next word and move it to word buffer at a.

XOR - 6C Optimizing XOR code compiler.

XOR n1 n2 - n3 24F Exclusive OR of top two stack items.

[- 25I Stop compiling and start interpreting.

] - 25F Begin the compiler loop.

abort" - n 0 16H Runtime routine of ABORT".

begin - a 29H Mark current address for branching.

block n a - n a 18H Read a block from host and store it at address a.

buffer n - a 18H Return the buffer address of block n.

dA - a 12V Memory address offset for target compiler.

dot" - 16H Runtime routine of .".

uCODE n - 4C Defining word to create machine code compilers.

{ - 2C Exchange pointers to Forth and target dictionaries.

} - 2C Exchange pointers to Forth and target dictionaries.

} - 2C Compile target dictionary address to host definition.

169

Index

- 62, 103

!- 43

! 62,98

!- 98

!+ 43

72

77

#> 73

#S 72

% 29

(.) 73

(.I) 119

(ARCSIN) 127

*' 40,96

* 66

*- 96

*/ 66

*F 96

*TESTS 113

, 89

,A 89

,C 89

. 73

.” 75

.I 119

.ID 114

.RS 118

.S 118

/ 66

/" 96

/’ 40,96

/MOD 66

/TESTS 113

; 101

?CODE 67

?DUP 62

@- 43

@ 62,97

@+ 43,98

[88

\ 93

\\ 89

{ 106

} 107

-‘ 83

+ 103

+1 63

+TESTS 113

<# 72

= 62

> 62

>IN 67

>R 42

0< 44,62,1035

0= 62

-1 96

10^+ 71

2* 103

2/ 103

2/MOD 63

2DROP 63

2DUP 63

2DUP-alu-op 38

A/D conversion 132

A/D 134

Abort” 74

ABORT” 74

ABS 63

ABSENT 76

ACQUISITION 134

ADC0820 133

ADC815 132

ADDRESS 75

AEM 3

AGAIN 94

Alpha Board 45

Alphabetic boards 45

ALU code 27

ALU instructions 26,30

ALU model 34

Alu-op 38

AND 62,103

APPLICATION 136

ARCSIN 127

Arcsine 127

Arithmetic Logic Unit 18

ARRAY 92

170

BASE 67

Benchmarks 112

Beta Board 45,47

Binary ALU group 38

BINARY 102

BLK 67

block 78

BLOCK 78

BLOCK-XMT 125

BOOT 84,109

B-port 12,20,33

BPS 86

buffer 77

BUFFER 78

BUFFERS 67

Byte flip 135

C! 64

C. 114

C/B 67

C@ 64

C@+ 71

CE 52

CISC 3,4

CLIP 108

cmForth 61

COM1 124

COMPILE 74,91

Compiler loop 87

Compiler vocabulary 99

COMPILER 87,99,136

CONSTANT 92

CONTEXT 68,136

Control structures 93

Convert digits to number 70

Convert number to ASCII 72

COUNT 90

CPU section 49

CR 70

CREATE 91

CS 52

CURSOR 67

CYCLES 83

CYLINDER 67

D? 19,29,35

D2* 44,96,104

D2/ 44,96,104

dA 67

Data and return stack 11,17,53

Data paths and registers 27

Data stack code 28

DECIMAL 83

Decoding memory 60

Defining words 91

Delta Board 46,47

Dictionary search 80

DIGEST 134

-DIGIT 71

DIGIT 72

Disk buffer manager 75

Disk read and write 77

Disk server 124

DISK 125

Display internal registers 119

DOES 90

DO-LOOP 18

dot” 75

DROP 35,62,103

DROP-DUP 35

DUMP 73,115

DUP group 37

DUP 37,62

DUP? 104

ELSE 95

EMIT 68

EMPTY 105

EMPTY-BUFFERS 78

Encoding 23

END 105

EOL 125

ESTABLISH 77

EXECUTE 83

EXIT 90,91,100

EXPECT 69

External data paths 7

F83 Forth 124

FAST 121

FAST-DEMO 121

FF 135

FILL 65

-FIND 82

FIX 97

FLIP 135

171

FLUSH 78

FOR 95

Forget 107

FORGET 87

FOR-NEXT 18

FORTH 99,136

ForthKit 46

Gamma Board 45

GO 111

H 67,106

HASH 82

HERE 70

HEX 83

HI>LO 135

HOLD 72

Host dictionary 108

I 97

I! 98,104

I/0 and memory instructions 31

I/0 instructions 31

I/0 ports 20,50

I/0 registers 33

I@ 98

I@! 98

IDENTIFY 77

IF 94

Input and output 120

INPUT 120

Instruction formats 25

Instruction Set of NC4000 22

INT 50

Internal registers 16,33,119

Interpolation 127

INTERPRET 84

Interpreter 83

Interrupt Vector 68

interrupt 85,109

Kernel 61

KEY 68

LETTER 79

-LETTER 79

Line editor 116

LINE 116

LIST 116

LITERAL 89

LO>HI 135

LOAD 83

LOOPTEST 113

M* 66

M/ 66

M/MOD 65

Machine cycles 113

Main memory 11,51

Mask 33

MAX 63

MD register 28,41

Memory accessing words 63

Memory decoding 52

Memory dump 75,115

Memory instructions 31

Memory map 11

Merging of DUP 104

Message output 74

MIN 63

-MOD 106

MOD 66,96

Model of NC4000 ALU 34

MOVE 64

Multiply and divide 65

Multiply/divide group 39

N register 28

N! 96

NB 67

NC 125

NC4000 architecture 14

NC4000 assembler 95

NC4000 Chip 7

NC4000 instruction set 6

NC4000 memory map 11

NEGATE 62

NEXT 95

NIP 37

NOP 37

NOP 62,96

Novix, Inc. 46

Number conversion 70

NUMBER 71

O+c 96

OCTAL 83

OE 52

OF5138 56

OF5493 58

172

OLDEST 67

Optimizing compiler 99

OR 62,103

OR, 94

OUTPUT 120,135

OVER 35,62

OVER-SWAP- alu-op 38

PACK 100

Parsing of words 79

Pattern generator 128

PICK 122

Pin layout 8

POP 96

Power up and reset 84

PREV 67

PREVIOUS 90

Primitive Forth words 61,68

Program sequencer 16

Programming Tips 112

PROM 51

PRUNE 109

PUSH 96,104

QUIT 84

R@ 42

R> 42,96

RAM memory allocation 137

RAM 51

RAMP 130

RCV 125

RECEIVE 125

RECOVER 107

RECURSIVE 91

REMEMBER 105

REPEAT 95

reset 85

RESET 87

RISC instruction set 5

RISC Panacea 2

RISC 2,5

ROLL 122

ROM 51

ROT 62

RS232 86

RST 50

RX 68

S' 40,96

SA 24,31,35

SAME 81

SCAN 108

SEL 130

Serial disk 75

Shift code 29

Shift compiler 103

SHIFT 103

SHORT 97

-SHORT 97

SIGN 73

Silicon Composers 47

SL 19,29,35

Smart ; compiler 100

Smart ALU function compiler 101

SMUDGE 90

SO 67

SPACE 70

SPACES 70

SPAN 67

SQRT 123

Square-root 123

SR register 33,41

SR 19,29,35

Stack pictures 118

SWAP group 35

SWAP 103

SWAP 35,62

SWAP-OVER-alu-op 38

System timing 13

System variables 67

T register 28

Target compile 109

Target compiler 104

Target dictionary 106

Terminal input and output 68

Terminal server 124

-TESTS 113

Text interpreter 79

THEN 94

Thread Table 68

THRU 105

TIB 67

TIMES 17,43,97

Timing diagrams 14

TN 24,28,35

173

TRIM 108

Tristate 33

TWO 96

TYPE 69

U*+ 65

U. 73

U.R 73

U< 62

uCODE 96

UNTIL 94

UPDATE 77

UPDATED 76

USE 90

Utility compiler 105

VARIABLE 92

Variables in target dictionary 107

VNEGATE 66

Vocabularies 136

von Neumann machine 4

WEB 9,12,50

WED 9

WER 9,12,50

WES 9,12,50

WHILE 95

WITHIN 63

WORD 80

WORDS 113

WORDS 114

X! 20

X@ 20

X0 51

X1 129

X2 129

X4 51

XMT 12

XOR 62,103

X-port 12,20,33

Y 25,27,31

Y-port 28

-ZERO 64

174

TRIM 108

Tristate 33

TWO 96

TYPE 69

U*+ 65

U. 73

U.R 73

U< 62

uCODE 96

UNTIL 94

UPDATE 77

UPDATED 76

USE 90

Utility compiler 105

VARIABLE 92

Variables in target dictionary 107

VNEGATE 66

Vocabularies 136

von Neumann machine 4

WEB 9,12,50

WED 9

WER 9,12,50

WES 9,12,50

WHILE 95

WITHIN 63

WORD 80

WORDS 113

WORDS 114

X! 20

X@ 20

X0 51

X1 129

X2 129

X4 51

XMT 12

XOR 62,103

X-port 12,20,33

Y 25,27,31

Y-port 28

-ZERO 64

	Preface to the Third Edition
	Forward to the First Edition
	My Electronic Bookshelf
	PDF Books
	eForth Implementations
	VHDL Forth Chip Designs

	Contents
	Figures
	Tables
	Chapter1. Introduction
	1.1. Historical Background
	1.2. The RISC Panacea

	Chapter 2. The NC4000 Chip
	2.1. Features of NC4000 Chip
	2.2. External Data Paths
	2.2.1. Main Memory
	2.2.2. Data Stack and Return Stack.
	2.2.3. B-Port and X-Port
	2.2.4. System Timing and Control

	2.3. NC4000 Architecture
	2.3.1. Internal Registers
	2.3.2. Program Sequencer
	2.3.3. Data Stack and Return Stack
	2.3.4. Arithmetic Logic Unit (ALU)
	2.3.5. The I/O Ports

	Chapter 3. Instruction Set of NC4000
	3.1. Classification of NC4000 Instructions
	3.2. ALU Instructions
	3.3. I/O and Memory Instructions
	3.4. Graphic Models of Some NC4000 Instructions
	3.4.1. Model of NC4000 ALU
	3.4.2. The SWAP Group Instructions
	3.4.3. The DUP Group
	3.4.4. The Binary ALU Group
	3.4.5. The Multiply/Divide Group
	3.4.6. Miscellaneous Instructions

	Chapter 4. NC4000 Computers
	4.1. Commercial Products Using NC4000 Chip
	4.1.1. Early Alphabetic Boards
	4.1.2. ForthKits from Computer Cowboys
	4.1.3. Products from Novix, Inc.
	4.1.4. Products from Silicon Composers
	4.1.5. Other Companies and Products
	4.1.6. List of Manufacturers

	4.2. Build Your Own NC4000 Computer
	4.2.1. The CPU Section
	4.2.2. I/O Ports
	4.2.3. Main Memory
	4.2.4. Data Stack and Return Stack

	4.3. Circuit Board for NC4000 Computer
	4.4. Hardware Enhancements
	4.4.1. PAL Memory Decoder OF5138
	4.4.2. Stack Expansion Counter OF5493
	4.4.3. Another Novel Memory Decoding Technique

	Chapter 5. The cmForth Operating System
	5.1. The Kernel
	5.1.1. The Primitive Forth Words
	5.1.2. Memory Accessing Words
	5.1.3. Multiply and Divide

	5.2. System Variables
	5.3. Terminal Input and Output
	5.3.1. Primitive Input and Output Words
	5.3.2. Line Input and Output Words

	5.4. Number Conversion
	5.4.1. Convert Digits to Binary Number
	5.4.2. Convert Binary Number to ASCII String
	5.4.3. Memory Dump
	5.4.4. Message Output

	5.5. Serial Disk
	5.5.1. Disk Buffer Manager
	5.5.2. Disk Read and Write

	5.6. Text Interpreter
	5.6.1. Parsing of Words
	5.6.2. Dictionary Search
	5.6.3. The Text Interpreter
	5.6.4. Power Up-and Reset

	5.7. Compiler
	5.7.1. Compiler Loop
	5.7.2. Defining Words
	5.7.3. Control Structures
	5.7.4. NC4000 Assembler
	5.7.5. Compiler Vocabulary

	5.8. Optimizing Compiler
	5.8.1. Smart ; Compiler
	5.8.2. Smart ALU Function Compiler
	5.8.3. Shift Compiler
	5.8.4. Merging of DUP

	5.9. The Target Compiler
	5.9.1. Utility Compiler
	5.9.2. Target Dictionary
	5.9.3. Variables in Target System
	5.9.4. Separate Target and Host Dictionary
	5.9.5. Target Compiler in Action

	Chapter 6. Programming Tips
	6.1. Benchmarks
	6.2. WORDS--Listing the Vocabulary
	6.3. Memory Dump
	6.4. Line Editor
	6.5. Stack Pictures
	6.6. Display Internal Registers
	6.7. Input and Output
	6.8. PICK and ROLL
	6.9. Square-Root
	6.10. Terminal and Disk Server on IBM-PC
	6.11. Arcsine by Interpolation
	6.12. High Speed Pattern Generator
	6.13. A/D Conversion with NC4000
	6.14. Fast Byte Flip
	6.15. More Vocabularies

	Appendix A. cmForth Sorce Listing
	Appendix B. Glossary of cmFORTH
	Index

