FORTH AND PARALLEL PROCESSING.

CONTROL FLOW, REDUCTION AND DATA FLOW COMPUTERS.

A computing machine is normally conceived as a CONTROL
FLOW machine. Such a computer is driven by the program;
the program determines the timing, the movement of data,
scheduling of output, etc. There are other possible
styles of computer and two concepts are commonly used:
REDUCTION machines and DATA FLOW machines (Treleaven et

al, 1982).

Reduction machines are often also called 'demand drivent®,
because the operation of the computer is determined by
requests for output, rather than by the structure of the
program. When a reduction machine is operating, all
programs are in an idle state until an tanswer'! is
requested. Then, the software operation which controls
output loocks to see what input it requires, and that
input is demanded from the previous operation. Each
operation demands input data until, eventually, all
requisite data are tracked to their sources, and the
program begins to execute. The data flow through the
machine, all the while being modified by the operations
along the way. Eventually the 'answer’ is supplied. The
demand driven concept sounds as if it would be
inefficient, but it can be made efficient, and it is wvery
similar to the operation of a modern Just-In-Time
factory.

Combining elements of control flow and demand driven, the
third concept = data flow computing - is the most
interesting of the three. With data flow computing the
program comprises a number of independent processes which
are able to pass parameters to each other. Each process
is idle until all its input requirements are satisfied,
whereupon it executes and produces output. As each
process executes the data ripple through the program
until an ‘answer' is generated.

Data flow computing concepts have been very important in
the development of parallel computing machines and
software, although no really successful pure data flow
computer has ever been built. (Gottlieb et al, 1983,
p.34) The Manchester University data flow computer is
probable the most successful experimental machine in
existence. (Watson and Gurd, 1982) (Gurd et al, 1985)

To examine data flow more closely, consider the example
shown in Figure 1., a program to calculate

z=(x+y) (x-Y)

(Dennis, 1980) . There is both parallelism and
sequentialism in this calculation. (x+y) may be
calculated before (x-y) or after it; the order of

First Australian Forth Symposium

73

74

svecution of these proCesses does not matter. They may
even be calculated on different computers. However both
the (x+y) and the (x-Yy) calculations must be complete
before 2z can be calculated. Although this is a trivial
example, it demonstrates that it would be possible to
make the computation on 1, 2 or 3 independent computers,
provided the parameters were passed from one to the other
in an orderly fashion.

It should be explained that each 'process’ in data flow
can be as simple as one instruction, or even a NO~-
OPERATION, or can be as complex as a complete software
package. True parallel computing consists of one job or
problem, being partitioned into a number of processes
which are executed 1in some predetermined parallel/
sequential order. If the job is partitioned into a large
number of small processes the parallelism is called FINE~
GRAINED, and if it is partitioned into a small number of
complex processes it is described as COURSE-GRAINED. It
used to be thought that it was desirable to have as fine
a grain as possible (Dennis, 1980, p.48), but experience
with simulations has shown that the software overhead
expands alarmingly with the fineness of grain, and this
has been just one of the reasons for the lack of success
of data flow computers. It is now accepted that course
grained parallelism works well (Kruatrachue & Lewis,
1988) .

If processes in a program are formed intoc groups which
are data independent, then there are several jobs running
concurrently, and the computer is then multitasking.
Multitasking, or multiuser computing is merely a subset
of the wider picture of parallel computing. A parallel
program may be executing on several PROCESSORS, and the
number of processes may be greater {(not less) than the
number of processors. So parallel computing implies
concurrency = several processes running or idling
simultaneously on each processor.

True data flow computing has strict semantics which have
been developed by a number of researchers (Ackerman,
1982) (Arvind & Gostelow, 1982). The semantics determine
the firing rules (when a process executes it is said to
FIRE). The firing rules are necessary for an ordered
progression of the program. The semantics of data flow
are unimportant here. In simplified terms, the useful
firing rules are:

1. A process may only fire if all input parameters are
available.

2. A process may not fire if any of its output parameters
have not been absorbed by succeeding processes.

PARALLELISM WITH FORTH

In order to make a concurrent/parallel computer in the
data flow style, work for FORTH, some other components
are necessary. To prevent the program HANGING Up it is

First Australian Forth Symposium

desirable to have no endless loops in any process, and to
time slice the execution of the processes finely. Task
switching in the interpreter is therefore inadequate,
becausé the processor may spend too long with one task or
one user. In addition, parameter passing through the
stack does not work, because of its sequential nature, so
some other data structure needs to be used. For a simple
multitasking FORTH all that is required is a
straightforward task switching progran which has
executive power over any of the Forth programs operating
Cﬁﬁéur§&§tl§ This task switcher would store parameters
in a reserved area of memory, accessed only by itself.

A task switcher for a concurrent Forth for the Motorola
68000 was written in assembly language. For each Forth
process only two parameters are passed: the return stack
pointer and the user stack pointer. Naturally, each
individual Forth process has its own pair of stacks. All
other user variables have been specified as global and
can not be changed by any one Forth process. For exampie,
it is not possible to have one process speratlng in
decimal, and another in hexadecimal, because BASE is a
global variabie in this implementation*

The stack pointers are kept in a queue and the executive
operates as follows:

1. Stop execution of FORTH.

2. store return stack pointer and user stack pointer
on end of the queue, using queue tail pointer

3. Check if at the end of gqueue memory space.

4. If so, index queue tail pointer to top of memory
space

5. Use queue head pointer to obtain new return staek
pointer and user stack pointer.

6. Check if gqueue head pointer at end of gueue
memory space.

7. If so, index to top of gueue memory space.

8. Continue with FORTH.

The task switcher is inserted into the NEXT routine which
is part of SEMIS (:S), so that the task is switched
whenever a high level Forth word terminates, but not on
termination of a primitive. It is necessary to rewrite,
in high level Forth, any primitives which may contain
endless loops. Such werds might be EMIT and KEY. This is

to prevent hang-up.

A concurrent Forth 1like this 1is now successfully
executing process control programs at a number of
installations in Queensland. These programs are
dedicated, and only permit connection of one terminal, so
they are multltasklng, single user. The programs are also
programmed into Read Only Memory and do not use disk
drives.

For complex parameter passing and concurrency between one
or more Forths and other processes written in other

First Australian Forth Symposium

75

76

languages a more formal method is reguired. The process
itself may be represented by & data structure in Random
Access Memory. This structure contains data, pointers,
flag bits, and data counters. One such structure (called
an I-structure by Arvind) (Gajski & Pier, 1985, p.21) (it
is also similar to the ‘'activity templates' of Dennis)
(Dennis, 1980) for the MC 68000 is as follows:

32 bits SWITCH FIELD - pointer to executing code
16 bits ¥ FIELD - number of input variables
16 bits ¥ FIELD - count of input variable arrivals
first datun
16 bits datum empty/full bit and pointer to switch
field of this structure.
32 bits DATUM itself.
second datum
16 bits } as above
32 bits } as above
any other data
output destinations
32 bits FIRST destination
32 bits SECOND destination
other destinations

For this arrangement to work, each datum is fitted with a
destination address to form a 64 bit PACKET. The packets
are injected intec a gqueue in the same way as was
described previously. When a packet is popped from the
queue the executive reads its destination address and
looks at the empty/full bit. If the slot is empty the
datum is inserted and the Y field is incremented. The
executive then checks to see if the Y field matches the X
field, and, if it does it executes the program pointed
to by the switch field. The switch field is found from
the pointer after the E/F bit. If the destination is full
already, the packet is returned to the end of the queue.

once a process has executed, the output data are
transmitted to the end of the queue and the executive is
invoked again. In the case of multitasking Forths, only
two parameters, the return and the users stack pointers,
need ever pass through the queue. Any other parameters to
be passed between the Forths may either be passed in the
same way, (safe method), or via a known memory address
(hazardous method). If other variables such as BASE,
CONTEXT, CURRENT are varied for different tasks, they
must also be included amongst the parameters to be
passed. Only one copy of the Forth kernel is used.

A problem arises, with this arrangement, if data are
being input to the program faster than they are being
absorbed, in which case the queue will expand and
eventually overflow. The reason for this is that only the
first of the two firing rules mentioned earlier is
invoked. The second firing rule prevents conjestion of
packets between processes.

First Australian Forth Symposium

To implement the second firing rule, output data can be
stored in the I-structure instead of in a gqueue, and any
process is inhibited from firing if there is processed
output awaiting transmission. The executive then merely
keeps a list of I structure output registers where it can
find the packets. Each full output register must be
visited in turn, without favour, to see if the packet can
be transmitted to the destination structure.

Using such an arrangement it is possible to have one or
more Forths with, possibly, varying degrees of autononmy,
interacting in an orderly way with other processes,
running on the same or other processors. One way of
organising such a scheme is shown in Figure 2.

INTERACTION WITH TRANSPUTERS.

The Transputer is a British made processor specifically
ﬁegzgﬁeﬁ to execute parallel programs very efficiently.
It is a 32 bit Reduced-Instruction-Set processor and the

integer version - the T414 - runs at 10 MIPs (million
instructions per second). The floating point version -
the T800 - executes floating point instructions faster

than integer instructions. The Transputer is normally
programmed in OCCAM (May & Shepherd, 1985), a special
parallel language, but compilers for ¢, Fortran and
Pascal are obtainable.

Transputers communicate directly with one another through
LINKS which are bi-directional 10 MHz serial connections,
which transmit 8 bits at a time. By constructlng a
printed circuit card with link chips on it, it is an easy
matter to communicate between a Forth mach;ne and a
Transputer programmed in OCCAM.

In a series of experiments, Forths running on an MC 6809
based computer have been accepting data from computations
executing on Transputers, and driving hardware interface
circuits. This arrangement is part of a simulation
computer, which solves differential equations at high
speed and provides output data to analogue recording
instruments. The Forth computer has also been used for
commissioning and troubleshooting the Transputers, as the
Forth interpreter allows a simple method of writing test
programs. In addition the Forth has been used for
‘capturing' data passed between two Transputers, by
interposing the Forth machine between the Transputersa
Any byte arriving over a link is passed on, but is also
copied out through an RS 232 port to a personal computer
which stores the data on a disk file. This was necessary
to examine the information being passed through the
links. Figure 3 shows the connection diagram of this
arrangement.

First Australian Forth Symposium

77

78

A PARALLEL FORTH COMPUTER.

By implementing a concurrent version of Forth in the
manner described earlier on a number of machines, and by
connecting those machines together with the 1link
interface cards, it is possible to construct a highly
parallel Forth machine. This has not been done for good
reason. The task switcher is executed in software and
consumes a considerable amount of processing time,
although no benchmark timings have been carried out. The
processor chips for which the Forth has been written are
very slow in comparison with the Transputer. The main
reason for turning to parallel computing is to obtain
more speed. The Transputer is exceptiocnally fast, and the
task switching is cast in silicon, so it does not consume
any software overhead.

Nevertheless, Forth is a useful assistant, as it provides
a simple means of accessing various parts of a complex
parallel computer. The computer engineer may look into
the workings of a parallel network from a terminal, or
may use Forth to supply input or output data in various
forms.

First Australian Forth Symposium

REFERENCES
\ckerman, W.B. (1982). Data Flow Languages, I1EEE Computer
11

%@ 5, Number 2, pp. 15-24, February 198z2.
Arvind, Gostelow, K.P. (1982). The U-Interpreter, IEEE
Computer, Vol 15, Number 2, pp. 42-49, Februarvy 1982.

Dennis, J.B., (1980). Data Flow Supercomputers. IEEE
Computer, Vol 13, Number 11, Novembear 1980.

Gajski, D.D., Pier, J.K. (1985). Essential Issues in
Multiprocessor Systems. IEEE Computer, Vol 18, Number 6,
June 1985.

Gottlieb, A., Grishnan, R., Kruskal, C., McAuliffe, K.,
Rudolph, L., Snir, M. (1983). The NYU Ultracomputer -
Designing a MIMD Shared Memory Parallel Computer. IEEE
Trans. Computers, Vol C=-32, Number 2, February 1983.

Gurd, J.R., Kirkham, C.C., Watson, I. (1985) The
Manchester Prototype Data Flow Computer. Communications
of the A.C.M. Vol 28, Number 1, January 1985.

Kruatrachue, B. and Lewis, T. (1988) Grain-Size
Determination for Parallel Processing. IEEE Software, Vol
5, Number 1, January 1988.

Lerner, E.J. (1984). Data-Flow Architecture, IEEE
Spectrum, pp. 57-62, April 1984.

May, D. & Shepherd, R. (1985) Occam and the Transputer.
Concurrent Languages in Distributed Systems. Reijns, G.L.
& Dalgleish, E.L. (Editors). Elsevier Science Publishers

B.V., North-Holland.

Trelevan, P.C., Brownbridge, D.R., Hopkins, R.P., Data-
Driven and Demand-Driven Computer Architecture, ACM
Computing Surveys, Vol 14, Number 1 January 1982.

Watson, I. and Gurd, J., (1982). A Practical Data Flow
Computer. IEEE Computer, Vol 15, Number 2, February 1982.

First Australian Forth Symposium

79

80

FIGURE 1.

Data Flow Graph for
= x+y&-y

First Australian Forth Symposium

QUEUE

7
§
=

§
|

I~-STRUCTURES

| OTHER
PROCESS

PRIMITIVES

FORTH

FIGURE 2. Method of Multitasking Forth

First Australian Forth Symposium

81

82

TRANSPUTER NETWORK

FORTH LIEK INPUT/
C.P.U. CARD OUTPUT
BACKPLANE BUS
TERMINAL
OR
?.C.

FIGURE 3. Forth in a Parallel Computer

First Australian Forth Symposium

BEYST Bpplications
#Michael ¢. Smart
Science and Computing Applications Pty. Ltd.

Bhgstract

ASYST is a FORTH-based language especially suited to engineering
and scientific applications. In this paper I will discuss the
primary productivity-related features of ASYST (many of them
arising from its relationship to FORTH architecture). To
illustrate the various features, I will refer to a recently
completed Test Management and Data Acquisition System implemented
in ASYST for the Traffic Authority of New South Wales.

Introduction

Relationship of ASYST to FORTH

ASYST is a commercially available software development
environment for PC-compatible machines which is tailored to
scientific and engineering applications. Like FORTH, it uses
threaded code, offers both interactive and compiled modes of
operation, relies heavily on LIFO stack structures, and allows
the programmer to be very productive. In this paper I will
outline the particular features of ASYST (most of them common to
FORTH) which account for this high productivity.

The similarity to FORTH, which extends to the colon definition
syntax for coding subroutines, to stack manipulation commands, to
the postfix notation, and many other features, arises because
ASYST is itself implemented in FORTH. It may be helpful to think
of ASYST as a library of FORTH extensions and enhancements. In
particular, these extensions include:

Data acquisition hardware drivers for a wide variety
of 3rd-party add-on PC boards.

A library of data acqguisition utilities.

A powerful and flexible set of graphics words.

An extensive library of mathematical analysis routines.
A concise set of array manipulation commands.
Floating-point arithmetic.

Drivers for many other 1/0 devices, especially GPIB.
Tools for building menus and turnkey systems.

Facility to execute assembler programs.

|
R

C w3 O O e Q0 BN
g Nt ot S g O

e
L

First Australian Forth Symposium 83

84

Nature of the Application

The Crash Engineering Unit of the New Scuth Wales Traffic
authority tests seatbelts, motorcycle helmets, child restraints,
and other automobile safety equipment. The test apparati simulate
high-speed collisions and other vigorous dynamic conditions. The
data acquisition problem consists of collecting data from
accelerometers and other transducers while the collision is in
progress. The principal difficulties arise from acquiring data at
a sufficiently high rate and beginning the high-speed acquisition
when the collision begins.

Apart from the data acquisition problem, there were two other
major requirements of the software: stage-managing a complex
sequence of events involving safety procedures, lights, cameras,
and a bevy of auxiliary equipment, and making the entire system
flexible enough that the operator could conveniently modify test
procedures. Let us call these the stage-management problem and
the flexibility problem.

The test management and data acquisition system delivered to the
Traffic Authority was built arcund the 80286-based computing
platform and ASYST. The data acquisition needs were met with a
Data Translation 2821-G high-speed A/D conversion board, a 2
Megabyte extended memory board, and a specialized piece of
assembler code which was called from ASYST. The stage-management
needs were met by a system (Opto-22) of intelligent, optically
isolated digital inputs and outputs interfaced to the computer
over a serial line. The flexibility needs were met by a database
management front end, implemented in dBASE III+, and by custom-
built software-controllable anti-aliasing filters.

First Australian Forth Symposium

Productivity benefits in using ASYST

Planning and Coding

In undertaking a large development proiect it is necessary to
begin coding from the top down. Often this top-down approach
begins with a description, in pseudo code, of what the program
must do. As the pseudo code is refined and takes on a more
detailed character, it more closely resembles the final code.

ASYST (like FORTH) is particularly well suited to this approach
because its handling of subroutine calls makes high-level
software design as simple as outlining the program's functions. A
WORD {(the name for ASYST subroutines) is specified in a colon
definition. The syntax is typified by the code for the Traffic

Authority main program:

: MAIN.PROGHAM
INITIALIZE .HARDWARE
READ.SETUPS
ACQUIRE
ANALYZE

»
7

To invoke a WORD, either interactively or within another colon
definition, it is only necessary to give its name. If arguments
to the WORDS are desired, the values may be left on the number
stack just prior to invoking the WORD. However, if arguments are
not required, the subroutine call can be accomplished with great
convenience as well as brevity.

A large software system is created in top-down fashion by
detailing a fundamental WORD. In the colon definition for this
fundamental WORD, a set of new, as-vet undefined, WORDS are
invoked. In the colon definitions for these WORDS, new WORDS are
invoked at the next lower level of the hierarchy. This process of
refinement continues until the WORDS invoked by the colon
definitions at one level are all either wvalid ASYST WORDS or
composites of them. Once this point has been reached, the system
can be compiled because all WORDS are defined. Not only is the
code complete (up to pre-compilation stage), you have created a
software structure diagram in ocutliine form.

Having written the above colon definition for MAIN.PROGRAM, one
would proceed with top-down coding by writing definitions for the
WORDS named:

: INITIALIZE.HARDWARE
INIT.DTZ2821-G
INIT.OPTO-22
INIT.FILTERS

First Australian Forth Symposium 85

86

(XY

READ.SETUPS
READ.MECHANICAL.SETUPS
READ . PHOTOGRAPHIC . SETUPS
READ.ELECTRICAL.SETUPS

ACQUIRE
CALIBRATE.FILTERS
CHECK . SWITCHES
BRING.SLED.TO.FIRING.POSITION
FIRE.AND.COLLECT.DATA

aa

o

: ANALYZE
DRAW.TIME.SERIES.ON.CRT
PLOT.TIME.SERIES
COMPILE.STATISTICS

%
&

In the actual code, these four colon definitions would have to
precede the definition of MAIN.PROGRAM. Any type declarations

guch as:
INTEGER DIM[2000] ARRAY TIME.SERIES

would have to go first so that each WORD is defined before it is
first used in a colon definition.

The advantages of this approach to system design are many.
Perhaps the most salient ones are that the process is fast
because it is not burdened by awkward syntax in the subroutine
calls, you create an outline as you go, and it is not necessary
to translate your pseudo code into valid statements. The pseudo
code becomes the actual ASYST code. Generating executable code is
a natural extension of planning the software.

Debugging code

Although it is advisable to begin a software project with a top-
down approach, good software is usually the result of several
iterations of top-down, then bottom-up, then top-down again, etc.
The reason for the bottom-up stages is that you must test program
components before you can test the wheole. Here we come to the
second great strength of the ASYST (and FORTH) programming
environments.

In stark contrast to languages such as FORTRAN, Pascal, and C, it
is possible in ASYST {and in FORTH) to execute subroutines
individually in interactive mode. The convenience this offers the
programmer can hardly be emphasized strongly enough. To exercise
a subroutine individually in FORTRAN, it might be necessary to
write an entire new main program simply for diagnostic purposes.

First Australian Forth Symposium

First Australian Forth Symposium

The marvellous simplicity of swzescuting a WORD interactively by
typing its name makes a new style of debugging programs possible.
Components can be tested one at a time. If one WORD gives an
unexpected result, then it can be dissembled into its component
WORDS. Each of these can be tested then dissembled until the
culprit ig ultimately found.

Surprisingly, another sgserious hindrance to convenient debugging
is the excessive usge of variables to communicate data between the
parts of a program. In the usual case (typified by Pascal, C, and
FORTRAN) a calling routine passes data to a subroutine eithexr
implicitly, through common blocks or global variables, or
explicitly, through arguments to the subroutine call., Such
transactions reguire variables, which must previously have been
declared and subsequently initialized, and which may be modified
many times by the program.

The debugging problem is that to test a subroutine you must have
a clear idea what data goes into it. If the data is supplied by
variables, you must be able to examine them in run-time. Without
a symbolic debugger one must insert print statements into the
code and suffer the attendant inconveniences. Even with a
debugger it is not always practical to monitor the flow of data
through a variable--especially if the variable is. an array.

ASYST employs an alternative method of passing data to
subroutines, which solves these debugging difficulties. The
values to be passed are placed atop the stack immediately prior
to execution of the WORD {(the subroutine call). Thus ASYST
achieves the same effect as Pascal subroutine calls with VAL (as
opposed to VAR) arguments, with two important differences: 1) the
programmer can see precisely what values are passed by examining
the stack prior to the WORD'S execution, and 2) no variables need

be declared.

The combination of stack-oriented operations and interactive WORD
execution make for highly efficient debugging. The Traffic
Authority system, for example, comprised more than 140 Kbytes of
ASYST source code which had to interface two computers to each
other, drive nine peripheral controller boards, support three
externally supplied software units, and control three hardware
unite reguiring custom software. Debugging this system to the
acceptance tegt stage took three man-weeks.

87

88

Interfacing devices

So far, I have discussed features shared by both FORTH and ASYST
which account for productive programming. We come now to some
device~-specific features of the ASYST environment. These features
are not shared by FORTH because FORTH, like C, is a compact,
portable language incorporating a high degree of machine-
independence.

In the Traffic Authority system, the computer communicates with
its human masters and with laboratory equipment through a number
of 1/0 modules. These include the following PC add-on boards and
agssociated peripherals:

GPIiB digital multimeter
RS422 Opto-22 systenm
R8232 plotter
Data acguisition/control cards:
DT2821-G filters, high-gpeed input
DT2801 digital control, low-speed input

The ASYST package has inbuilt hardware drivers for these boards
{and many others). The programmer uses a template to initialize
the driver for each board. The data he must supply, is kept to
the bare minimum, and further simplified by extensive use of
default valueg. With the template approach, the programmer can
drive a device simply by supplying the basic parameters. He
needs to know almost nothing about the inner workings.

The following source code, which performs high-speed acguisition
on the DTP2821-G, illustrates the simplicity of the template
approach. This code sets the DTZ28Z21-G for DMA transfer at 200
kHz, which is close to the maximum possible for an AT. Samples
will be taken alternately from channel 0 and channel 1, winding
up in the array TIME.SERIES. Acquisition will stop automatically
when the arrayvy is full.

% DECLARE ACQUISITION DEVICE TYPE, ESTABLISH SAMPLING RATE (Hz)
DT2820
200000. SAMPLE.RATE :=

Y SET UP THE TEMPLATE
0 1 A/D.TEMPLATE CHANS 0&1
1000, SAMPLE.RATE / CONVERSION.DELAY
TIME.SERIES DMA.TEMPLATE BUFFER
A/D.INIT

\ ACQUIRE THE DATA
CHANS 0&1 A/D.IN>ARRAY(DMA)
BEGIN
7DMA.ACTIVE NOT
UNTIL

First Australian Forth Symposium

To initialize the template, it is only necessary to specify the
physical device (DT2821), what channel numbers to sample (0 and
1), what sampling rate to use (200kHz), and what array to use as
the input data buffer (TIME.SERIES). The template is
subsequently referred to by name (CHANS_0&l1). The single
command, ‘A/D.IN>ARRAY(DMA)', starts the acguisition
asynchronously to program execution. The while loop, 'BEGIN ...
UNTIL', is necessary to make the program wait for the acguisition
to terminate.

Diagnosing data problems

Inevitably it is necessary to solve data problems when creating a
data acquisition system. The ultimate system product, datsa, must
be examined at each stage during capture, refinement, and
presentation. Peripheral devices generate data which holds many
clues to where malfunctions have occurred. Fortunately, ASYST has
some powerful inbuilt data diagnostic aids. As with the device
drivers above, these features form part of the application
software which distinguishes ASYST from FORTH.

Arrays are the most prevalent scientific and engineering data
structures. Vectors, time series, power spectra, and
distributions of all kinds are naturally expressed as arrays. In
textbook formulae, arrays are treated as single entities. The
textbook says "A+B=C" and, as long as A, B, and C are arrays of
comparable type and like dimension, the meaning is clear. The
corresponding FORTRAN code is not so simple. Loops are necessary
to perform array operations. Worse still, it is necessary to
specify the array bounds in the FORTRAN code. The same code will
not work on arrays with different dimensionality.

The ASYST treatment of arrays permits most array operations
without the burdensome requirement of using the loop structure.
Code for adding or multiplying arrays has the same simplicity as
code for adding or multiplying scalars. An array is a single
entry on the stack. Even more sophisticated array operations
such as laminating vectors, taking cross-sections, or locating
maximum elements can be accomplished with single commands, rather

than loops.

Examining the contents of an array graphically is accomplished
with the WORD 'Y.AUTO.PLOT'. This ASYST WORD will autoscale and
plot any one-dimensional real or integer array using default
settings for all the troublesome details which plotting
subroutines generally require the programmer to specify. These
defaults can be overridden, but ninety per cent of the time one
wants to get a quick look at the data with minimum fuss and
bother. The plotting takes seconds. This powerful feature opens
a new world of possibility for the programmer and the user.

First Australian Forth Symposium 89

Summary

ASYST (like FORTH) is a programming environment which greatly
enhances the programmer's productivity. This productivity boost
is due in part to features derived from FORTH and partly to
features unigue to ASYST. In the former category, 1) threaded
code brings the process of outlining a program's functions in
pseudo code very close to the process of writing valid code, 2)
the ability to execute subroutines interactively greatly speeds
the debugging process, and 3) the stack-oriented operations
encourage the use of fewer variables, with consequent reductions
in program complexity. In the latter category, 4) a rich set of
device drivers and a parametrized device interface simplify
interfacing instruments, and 5) data handling is quick and
convenient because of the array-oriented mathematical and graphic
commands.

First Australian Forth Symposium

S zmg? W. Hogg
University of Technology, Sydney

Abstract
&
&
) v
§ & &
o 3 & 5
s & oS +°
& S & @3‘@
S &
. {’? o é:? & 4‘§%
A § S o
o) ¥ ;Q,‘% & %G%’
I~ L 4 X =~
F & & e $
s L @“3 & B
X Q% § & @X Q@{’ X %x%s
§’ gf’ . @%) A ?§
§F & & & &%
& % o o 6‘2"% : {3?’%“
ég é& {y’g @ ; \S}fﬁ @Q\“i
& £ & & e o
g & & & W S B
F & & & g 908 o 5%
é“? a? \;§; 43@ Q}C?@ *SS"G Gﬁ;&gg
‘ng A%}' @? "Qj» @’6 &f %S {X“% o o
G A A SR o qast®
&K ¥ N @Q@” s W00
“ A E ant
Q$§ A\fb «,Qfﬁ ’S}?"% ?@%X‘E
IS O g
Q‘:} %%%% . eg;;% s @%‘&% @ﬁ‘ ;
%{X‘ 6?*%;& é&%si& W0 S@ié“?
e o e - d
S g @ (showld find
1 5 50 g‘{;
ﬁf 9%
add® e ast to (he *Cookbook level.

the Postscript Janguage at le

The ability to design one’s own fonts is like the "icing" on the cake.

First Australian Forth Symposium 91

The PostScript language is a Forth-like programming language ¢ ;«%’% 564:
fatretinne diraetiy t ; 3 widh N o T il
which conveys instructions directly to a printer. It has a wide ! £ i%;g’ggg
range of graphic operators and text is handled as though it is / .
a special type of graphic block, thus enabling effects such as }gé‘ifgﬁ?ﬁ?ﬁg?
printing fextin a circular layout 1o be accomplished with com-

parative ease.
The user may choose to include PostScript at a varying depth of control

{IMully programmed blocks of data downloaded straight fo the printer

{ii} deskiop publishing documenis with some more detailed text/graphic
manipulations programmed in PostScript.

{ilyword processing documents with special fealures {logos, diagrams,....) added in,
using special fonis which are recognized as direct PostSeript instructions.

{ijgraphics/deskiop publishing programs which themselves convert the

“on-the-screen” imagination of the user into PostScript instructions.

Even if not directly programming in PostScript some knowledge of how the instructions are
conveyed to the printer enables the user to more fully appreciate the potential of the software
applications using it.

This paper has been produced using a different amount of PosiScript involvement on each page.

The opening page is fully programmed and this page(2) has been produced using the blocks/graphics features of a
Deskiop publishing package, wilh the fooler, header and Title added in by assigning certain blocks o be PostScript.
Page 3 is wrillen using a normal word processor, with the fooler, header and Title added in by including the PostScript
code in a very small fontsize in the font called "PosiScript Escape Font”, which code does not appear on the printed page
but communicates drawing instructions {o the printer. Page 4 has exactly the same layout as pages {2) and {3) with
another software package doing the entire set of instructions 1o the printer. Special eifects have been imporied into
page (4} using graphics sollware packages which translate their piclures inlo "encapsulated PosiScripl” for interpretation
by the application as prinier instructions.

PAGE SIZE and COORDINATES

The A4 letter size is normally printed 8.27 x 11.69 inches. A one-point in the postscript coordinate
system is equal to 1/72 of an inch. The coordinates of the "normal” printed A4 page are therefore
841.68 points long and 595.44 points wide.

For simplicity one may choose to design the page as 850 x 600 points - or more conservatively on
paper width as 800 x 550.

Some of the (mostly self-explanatory) operators using positioning or simple graphics involving coor-
dinate positions are:

X y translate so that new origin is x,y.

Sy Sy scale (scale user space by s, and sy}

g rotate (rotate user space by q degrees from current origin.
currentpoint (returns current point coords to x,y)
X Vi moveto(shift to the point x,y defined relative to the current origin)

dx dy rmoveto (shift dx points along x-axis,dy points along y-axis)
newpath initalize path
closepath connect subpath back to its starting path

92 First Australian Forth Symposium

TEXT MANIPULATION

PostScript is able to perform great creations with text as objects. It
must start, however, with accurate definition of the font ;;‘%}fg%?a;fe
group} to be used.

wmesdide qmg

Because PosiScript internally stores its fonts as shape descriplions means that,
even when scaled {o large, small or unusual amounts, the fonls retain thelr
appearance very accurately. ’

wnisodwAs yuo4

Three descriptions are required by PostScript

i. what font to find
ii. what size {(scaling) is needed
iif. what font is o be regarded as the current font.

naoourmz Lado

Hence we may set three different fonts in which to view the words "Forth Symposium”
printed in Postscript at the right of this page.The coding for this display is as follows:-

gsave
ié isplayForthS
{ moveto (Forth Symgcséum} show} def
530 800 translate
-90 rotate
/Times-Roman findfont 6 scalefont setfont
0 0 displayForthS
/Helvetica-BoldOblique findfont 12 scalefont setfont
0 -20 displayForthS
/Symbol findfont 24 scalefont setfont
0 -40 displayForthS
grestore
showpage
The text of this programming is actually occupying the small “blank space” st the bottom of this printed page, being printed in
PostScript Escape font at the smallest available size (9 point).

REPEATED TEXT

One of the exciting features of PostScript comes from graphic creations with text, such as
making a flower out of a simple word. To enable repeated transformations of
coordinates, shading, sizing eic. it is possible to describe a matrix transformation to be
applied to the word or string of words.

FONT CHREATION

When preparing a special document one searches for “just the right font for the occasion”
- and rarely finds it. As shown already, the font variety is greatly expanded by simple
commands specifying scaling in 2 direction, the choice of oblique/bold/italic and the
“colour” or grayness of the print. Itis
however also possible to create entirely new fonts in three possible ways:-
(i) adjusting a current font
(i) describing an "analytical font” - defined geometrically, or
(i) fully describing a new bitmap font.

First Australian Forth Symposium

93

94

GETTING HELP
is not easy. The reference books are easy to find - there are not many of them .
Some are listed below. The examples are good.

BUT
the slightest mistake may mean you get NOTHING as the output. If doing
reasonably complex Postscript Programming/Design it is essential to use the
PostScript soffware/hardware to enable you to run in an interactive mode. |f, for
example you use the AppleTalk network, which is very easy o connect and run - if
the programming is not perfect, you get NOTHING. One longs sometimes for a
cheerful error message. Some software does exist to enable ‘semi-interactive’
access to the LaserWriter, Even if subsequently adding postscript code to a higher
level workd processing or desktop publishing package it is a good ideato test it out
first on an interactive or semi-interactive communication system first.

COOKBOOK TECHNIQUE.

For those who do not want to go to great lengths to develop expertise in
programming Postscript, but who would like to use some of the techniques - e.g.
putting text vertically or in circular displays for special effects to ‘liven up’
presentations, the Cookbook technique is recommended - and extremely easy to
follow for Forth programmers. Indeed, one of the first and principal texts on
Postscript is designed in exactly this way - and disks of Postscript programs are
available, enabling the user to make changes to the coordinates, the text to be
printed, the radius of curvature, the font..... with little likelihood of upsetting the
validity of the Programming itself. A number of Postscript courses are run using this
technique and, even for the serious Postscript programmer it seems quite a good
way to start.

(1) "PostScript Language. Reference Manual" - Adobe Systems Incorporated (Addison-
Wesley)(1985)

(2) "PostScript Language. Tutorial and Cookbook"- Adobe Systems Incorporated (Addison-
Wesley),1985

(3) "White Spaces” Vol 1 Nos 1,2,3 ,(Graphic Ink, SA),1987-88

(4) "Understanding PostScript Programming" - David A. Holzgang (Sybex)

First Australian Forth Symposium

