Figure Three.

void rotate(const Shape& r)

{

if (typeid(r) == typeid(Circle)) {

 // do nothing

}

else if (typeid(r) == typeid(Triangle)) {

 // rotate triangle

}

else if (typeid(r) == typeid(Square)) {

 // rotate square

}

// ...

Forth Dimensions XXI.1,2

Stroustrup was actually referring to the TYPE I D function in C++ which provides a code for each class but which, unlike our IS ‑ A function, does not indicate if an object's class is derived from some other class. The C++ TYPE I D function corresponds to our . C LASS field All objects have this field and it contains a unique identifying number for the class of that object. our is ‑ A is a lot more useful than C++'S TYPE I D and can often obviate the code modifications which Stroustrup is warning against. Nevertheless, Stroustrup is right. There are some valid uses of SWITCH statements (sometimes called CASE statements), but they are the most dangerous language feature to be found within the Structured Programming paradigm. Using them is like letting the camel stick his nose inside of your tent; pretty soon you have the whole camel. Your program is no longer structured even though you may insist that you have only used Structured Programming language features. And it is not just object‑oriented programming that can get fouled up, either. Those giant SWITCH statements used to implement state machines in pseudo‑multitasking are a horrible thing as well. Chuck Moore has spoken out against the use Of SWITCH statements. His proverb [71 is, "Let the dictionary do the decision making." He is saying that people should not pass a parameter into a function and then have that function test the parameter at run‑time and branch to various code based upon the value of the parameter. It is better to have separate functions compiled to contain those various pieces of code. Each function is referenced by its name at compile‑time. Both language designers seem to be seeing eye‑to‑eye on the subject of SWITCH statements. An observer would never guess this by examining typical Forth and C++ programs and counting the number of times that SWITCH statements are used in them (a lot for C++). For all of the adulation that is heaped upon Stroustrup by the C++ community, nobody seems to be paying attention to what he is actually saying.

Run‑time type checking is most valuable when copying objects. The word ocopy takes two parameters, a source object address and a destination object address. The source object is copied on top of the destination object if the source object's class is of the destination object's class. ocopy uses IS A internally. If the source object's class is a derived class of ihe destination object's class, then the data is truncated when it is copied. It is illegal to go the other way, from an

object of a base class to an object of a derived class. The derived class has more fields than the base class and there would be no way to know what data to put in these fields. Niklaus Wirth has this to say [3]:

The essence of a language featuring strong typing is that the type of the expression on the right‑hand side of ":=" must be assignment‑ compatible with the type of the designator on the left‑hand side. ... [when assigning an object of a base

class to an object of a derived class] there is not enough

information to unambiguously specify [the result]. Such an assignment is illegal in Oberon. An attempt at an artificial

definition, such as '[the extra fields] remain unchanged' cannot be reconciled with the axiom of assignment.

Beyond allowing assignments between objects of exactly

the same class, it is best to only allow assignments from a

derived class to a base class and to truncate the extra fields in

the data during the copy, This is known as restrained type

casting. This is all thatocopy allows. If ocopy is used to copy

an object to an object of a derived class, it will abort with an

error message. It will also abort if the source and destination

objects aren't in the same inheritance chain at all (neither is

a base class of the other). The programmer can give his source

and destination object address to COULD_OCOPY rather than

OCOPY.COULD ‑ OCOPY will return a flag indicating if it is a

legal operation that Ocopy will accept. Use Of COULD ‑ OCOPY

will allow the programmer to make a more graceful exit than

to just abort the program with an error message as ocopy

would do. Niklaus Wirth says this [3j:

Only tbosefields that comprise ftbe destination class] participate in the assignment. Therefore it is assured that there always exists a one‑to‑one correspondence [between the left and right sides of the :=1. This definition has an analogy in mathematics: the projection of a higher‑dimensional vector onto a lower‑dimensional space. Using this analogy, we say that the assignment is a projection of Itbe source type] onto Itbe destination type].

Bertrand Meyer, the inventor of the Eiffel language, also speaks out against unrestrained type casting [4]:

Typing, if taken seriously, also means that there is no way to bypass the type system. Many languages which claim to be statically (sometimes even "strongly") typed also allow developers to cheat the type system, enticing them into sordid back‑alley deals sometimes known as casts.

Strong words these are. Clearly he is referring to C++; the hallmark of C++ programming is unrestrained type casting. Surprisingly, however, the inventor of C++, Bjarne Stroustrup, largely agrees [21:

The DYNAMIC ‑ CAST operator [essentially the same as our OCOPY) serves the majority of needs I have encountered. I consider DYNAMIC ‑ CAST to be the most important pan of the RTT1 [run‑time type information) mechanism and the construct users should focus on.

Is unrestrained type casting really so bad? In some cases, no. A good example is numerics. When copying data from a

67

