PART FOUR.

MISCELLANEOUS WORK

-195-

1. SPATIAL SEPARATION OF VOICES IN POLYPHONIC MUSIC

In polyphonic music of the Baroque period, many seemingly independent
voices are interwoven together. These voices would carry

the thematical phrases alternatively or in succession. This
type of music played on keyboard instruments like organ or
harpsichord is very difficult for the listener to identify and
to follow the individual voices. This is particularly true

in Bach's organ compositions. Many of Bach's organ Work were
transcribed to be played by an entire orchestra. Different
voices can thus be separately played by different instruments
and we can observed the effect of tonal separation of voices.
The listener can thus follow a voice by following an instrument.

My experiment here is trying to separate the voices spatially

by playing a polyphonic piece through many speakers placed

around a large room. It is interesting to see how the listener
can differentiate the voices by the spatial origins of the

voices. This technique was demonstrated in many European churches
which have several organs which can be played simultaneocusly

from a single console. This electronic organ is designed

to play up to 12 independently programmable voices through 12
speakers. It is thus very convenient to test the effects of
spatially separated voices.

2. THE ELECTRONIC ORGAN

The electronic organ is controlled and programmed by an IBM
compatible personal computer. A Parallel Interface Card is
inserted into an I/0 slot on PC-Bus to generate the voices.
There are 4 Intel 82534 Counter-Timer chips on this card.

Each 8253 has three counter-timer channels, which are programmed
to operate in Mode 2 to generate square waves. The frequency

of each counter-timer channel can be programmed by writing

a 16 bit count word into the control register. The counters

are driven by the 4.77 MHz system clock, divided by a pair

of flip-flops to a base frequency of 1.19 MHz.

Fig. 27 shows the interface circuitry to the PC bus, including

the divide by 4 clock, the I/0 address decoder, and the data

line buffer. Fig. 28 shows the circuit around one of the four
8253A's, and the power transistor with the speaker. The circuitry
is very simple and can be wire-wraped on a proto~-card, For all
thumb hands, this Parallel Interface Card is available from

=197 -

X R
S k»w,.va..
LT B 1 1 i
a7 U L‘W r
5 ::::}f/»’ —, F 1

= * ey
| S——— s

2 e

Gl S e

[%
EIRNS

U e o
[N0 SO VR N N
e s .
1L OO — U o : 151 5 SO . 0
141 I e BT
Iz 4 IR 1§ §
fre et e i G S < Bl i A S
ET=4 Ty
AT R - B - ORI & £ XS
740045 e
ER 4 P 4 ,
e I
1T O S
N .
5 T U 1
. . .
Do L s -
Y0
LU ni

10
LHD

Figure 27. PC interface of the electronic organ

=108~

=185

L

8253 counter-timer for tone generation

Figure 28.

Offete Enterprises, Inc.

The output of 8253A can only drive a small 8 ohm speaker
directly. To boost the power level of the loudspeakers to

be used in a large room, the outputs of 8253A's are sent to

a bank of power transisters (2N3055) in the emitter follower
configuration. Using 5 V DC power supply on the collector

side of the power transistors, one can obtain about 2 W audio
output from each 8 ohm speaker. As the power transistors

are turned fully on or fully off, the power to sound conversion
is very efficient. The voices can fill a medium sized church
without any problem.

I did not try to control the volume of the speakers, nor the
wave shape. The speakers provide some flltering at either
ends of the frequency spectrum. In the current configuration
I have only used 6 speakers, which limits the number of voices
to be played out.

An interesting behavior of this setup is that the 82534

can drive the speakers even with the 5 V power supply

to the collectors of 2N3055 turned off. This way I can still
play the organ while programming and debugging without generating
too much noise to other family members. Apparently, 82534

puts out enough current through the base-emitter diode in

2N3055 to drive the speaker at the emitter end.

The Parallel Interface Card alsoc has 4 8255 parallel I/0 chips.
I didn't use them so far. Since they give me 96 programmable
digital I/0 lines, I could use them to monitor a large piano
keyboard as an alternate input device. I did not realize the
advantage of this input route until I spent a long time key

in all the music notes in the Toccata. It would be much more
efficient if I had a regular piano keyboard and had a good
pianist to key in the notes as he played on the keyboard.

The ASCII terminal keyboard is not optimized to enter music
notes, especially those in Bach's pieces.

3. THE CONTROL SOFTWARE

Programming is easy once the syntax is decided. The problem
to encode polyphonic music can be eased greatly if we could
design a good syntax to express the music. Here we will have
to be able to include the following information in the code

of a cord:

- The pitch and the channel number of every voice.
. The duration of every note in every voice.

A channel in 8253A can output a voice continuously after

its frequency is set, until the frequency is changed or the
channel is turned off explicitly. Therefore, when we want

to play a new cord, we only have to specify the notes in voices
which must be changed. Other unchanged voices do not have

-200-

to be manipulated explicitly. The cord will be sustained until
the shortest note in the cord group ends, and a new cord must
be specified to be played out next.

The syntax to specify a cord or a note group is as follows:
note1 note2 ... note'n mask duration

Up to 12 notes can be given before the mask. The mask

word consists of up to 12 set bits which specify the active
voices to be updated with the note values preceeding the mask.
Bits and the corresponding channel numbers are shown in Fig.
29. A bit set in the mask must have a note value on the stack
so that the note value can be deposit into the counter register
of the specified channel.

Fig. 29. Bits in the Mask and the Active Channels

Mask Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- — - ——— - ———— o " — - —— - —————— ———— ——— ——— e —— - —— — —— ——

! O lchCichBichA! O {ch9!ch8|ch7! O |ch6blch5ich4! O |ch3ich2|chl!

H 8253 #4 : 8253 #3 : 8253 #2 : 8253 #1 |

Control Channels

Bits 3, 7, 11, and 15 should always be zero. The bit sequence
actually corresponds to the 16 counter and control registers
in the 8253's. Once these chips are initialized, the control
registers should never be written into again. Hence bits 3,
7, 11, and 15 should always be zero to prevent writing into
the control registers.

An example to change 6 channels of voices is as follows:

HEX Cz2 G2 C3 E3 G3 C5 707 1/8

which assigns C2 to channel 9, G2 to channel 8, C3 to channel

7, E3 to channel 3, G3 to channel 2, and C5 to channel 1.

The duration of this cord group is an 1/8 note. The note words,
c2, ..., are defined as constants, leaving the counter valued
on the stack. 707 is the mask, specifying 6 channels to be
updated with 6 note values on the stack. 1/8 is the real actor
which takes the mask and used the bit pattern in the mask to
store note values into individual counter registers.

~-201-

Using the above syntax, we can code any cord group, up to 12
voices. With a succession of cord groups, we can code measures,
phrases, and complete pieces of polyphonic music.

The command set to realize this syntax structure is very simple
and straightforward in Forth. There are basically only two
screens of code as shown in Listing 15. The command PLAY
refreshs a set of counter registers according to the mask n

on the stack and sustain this cord group for a number of 20
milli-second waiting loops. This is the fundamental building
block of the entire program. It allows us to play any combination
of notes, up to 12 voices, through the speakers. All other

commands are derived from PLAY.

The length of the 20 ms waiting loop can be adjusted by changing
the contents in the variable FUDGE. For normal playing, a

FUDGE factor of 25 is adequate. Allegro or fast pace requires

a FUDGE factor of 10. For very slow movements, a FUDGE factor
of 40 may be used. It has to be selected by trying to suit
different music piece.

INITIATE writes to the control ports to configure all counter-timer

channels operating in mode 2 to generate square wave. HUSH
gsilences all 12 channels. HUSH is really cheating, because

it is rather inconvenient to actually stop a channel from playing
notes. What HUSH does is commanding all 12 channels to play

at a frequency of 150 KHz which nobody can hear and no speaker
can reproduce. It also tends to burn regular audio amplifiers
which are sensitive to the high frequency voice.

BEAT defines all the cord playing commands, given names from
1/1, 1/2, 1/4, to 1/128. The names are chosen to indicate
the duration of the cord group to be played. These names can
be redefined to make code more readable.

8 octaves of notes are defined. The notes are simply constants
of the counts to be deposit into the counter registers to produce
the square waves of desired freguency. The notes are defined

in Screens 4 to 8.

The note playing commands defined by BEAT in Screen 3 and the
notes are all we need to encode polyphonic music pieces. The
rest of the file ORGAN.BLK contains the code to play a few
organ pieces by J. S. Bach. The pieces are coded by measures.
Each measure is defined as a word. Many measures are combined
to make up a phrase and phrases are combined to music piece.
Coding each measure individually greatly eases the chores in
debugging the piece. Each measure can be play as many times

as needed and played at very slow speed to spot any discrepancy
in notes and in timing.

Specialized tools are built whenever situation calls for them.
Tools greatly simplifies coding, especially when the music
pieces contain regular structures and patterns, as shown in
Prelude in C major. When passages are repeated, the program
can simply repeat measures already coded. However, since the
syntax can only define cord groups in the vertical fashion,

=202~

e

it is not possible to transpose the repetitive themes occurring
in different voices.

4. EXAMPLES

The code to perform Bach's Air On The G-String is shown in
Screens 9 to 16. In Screen 9 there are some tools tailored

to this piece. Let's first take a look at the first two measures
of this music, as shown in Fig. 4 here. The most visible structure
in this piece is the short, pulsing base with 1/16 notes separated
by 1/16 rests. The melody is accompanied by 3 voice harmony.

The tool word // thus takes four note values on the stack and
play them out as a 1/16 cord through channel 7, 3, 2, and 1.

The tool word //. is the same as //, except that after the

cord is played for 1/16 note period, the base voice in channel

7 is silenced for 1/16 period of rest. //. is thus useful

to code cords with 1/8 notes in the top three voices and the base
is voiced only for 1/16 note period.

The word $§ adds one 1/16 note to the base with a 1/16 rest.
It is used to code passages where the top three voices are

sustained while the base pulses.

The Air, as in most music pieces, contains many phrases which
repeat. For example, the first two phrases P1 and P2 share

the same 5 measures. As all the measures are defined as words
they can be reused to save coding efforts. The phrase P3 is

also repeated twice with some difference only in the last measure.
The overall structure of this piece is very clear in the last
definition of AIR, which plays this piece at a very slow pace
with the FUDGE factor set to 60.

The C-Major Prelude in the Well Tempered Clavier is coded twice.
The first effort is shown in Screens 17 to 21. The recurring
structure of this piece is that each measure is composed of

two repeating stretched cords. Each cord starts with the leading
base and the tenor voice joins after 1/16 note period. Finally
the soprano plays out a triple 1/16 note group. This structure
is used to explore all the possible cord groups exhaustively

and is closed by two 14 note cadenza.

In my first effort coding this Prelude, I defined two tool
words to represent this cord structure. LEAD in Screen 18
plays the base and tenor leading voices, and CORD is Screen
17 plays the following soprano triple cord. The cord words
Knn define the triple cords which can then be repeated in the
half measure Mnn. 1In phrases Px, Mnn are all repeated twice
to build full measures. This way, most of the repetition are

taking care of.

Later, I felt that a much better job could be done, with the
added feature that the repeating half measures are to be played
by another group of three speakers, as I do have 6 speakers

in my organ. This later effort is shown in Screens 22 to 26.

-203-

Since the leading base-tenor voices and the following soprano %
cord can be considered as one big 5 voice cord played out in L
sequence, only one tool word is needed to do a full measure.

Thie tool word is defined as CORD in Screen 22. CORD first

plays the 5 note cord group through channels %, 2, and 1, and

then repeats it through channels 9, 8, and 7. If we place

the two groups of speakers at the opposing ends of a large

hall, the echoing effect of these cords should be very interesting
and impressive.

Using the new CORD, the entire piece can now be coded much
more efficiently. The sub-definitions Knn and the repetitive
half measured are all eliminated.

These are only two examples picked from a sizable library of
Bach's music. My ambition is to build a complete machine readable
music library of Bach's organ works. With the help of

other Bach lovers, probably this can be achieved in a relatively
short period of time.

5. CONCLUSION

I thoroughly enjoyed this project. I never could play any
instrument because I couldn't imagine myself spending years
learning to play one. Now I can proudly display my title as
Organist/Programmer without being untruthful. The organ
sounds very mechanical still. However, as far as Bach's music
is concerned, a computer does very well because the tempo and
the volume are generally kept constant. The interweaving of
voices and the harmonic progressions are logical and almost
mathematical. As the great master claimed: "It is very easy
to play. You Jjust have to hit the right keys at the right
time, and the music will play itself!" This organ surely

can hit right keys at the right time, and I trust that

Bach will take care of the music by himself. By separating
the voice spatially, polyphonic music is very attractive when
played in very large room, providing feeling of depth more
real than quadraphonic systems.

The method I developed here to encode complicated music pileces
is a working solution to the problem of recording music in
machine readable form. Forth allow us to build some super-
structures on top of this system to simplify the coding effort
somewhat, but I don't see much improvement further than that.
There are many computer music systems available on various
personal computers. Many have quite sophisticated coding methods
for music encoding into machine readable form. However, when
we used graphic methods to encode music, the resulting form

are generally not transportable to other machines. This method
I proposed is quite general because 1t uses only ASCII text.

It may help professional musicians in exploring and exchange
computerized music.

~204-

6. PARTS AND MUSIC AVAILABLE FROM OFFETE ENTERPRISES

MPIO-4 Parallel Interface Card for IBM PC $159.00
4 8253A-5's and 4 8255A-5's. 12 timer-counter channels
and 96 programmable I/0 lines. Suitable for stepper motor
control and robotic applications, besides electronic organ.

Offete Organ Series, Vol. I. $15.00
IBM 5.25" disk. Source and object code of selected Two
Part Invention, Preludes and Fugues, and Toccata in G Major.

Offete Organ Series, Vol. II. $15.00
IBM 5.25" disk. Source and object code of 24 selected pieces

from Anna Magdalena' Notebook.

Offete Organ Series, Vol. III. $15.00
IBM 5.25" disk. Source and object code of Jesu, Joy of
Man's Desiring, Sheep May Safely Graze, Christ Lay in Death's
Prison, and In Deep Grief I Called Ye.

Offete Organ Series, Vol. IV. $15.00
IBM 5.25" disk. Source and object code of Fugue in G Minor
and the Great Toccata and Fugue in D Minor.

Offete Organ Series, Vol. V. $15.00

IBM 5.25" disk. Source and object code of Prelude and
Fugue in E Flat Major, the St. Anne's.

~205~

O BB d o BB e Sl gng b gny

10

12
13
14

%

Paged | B:ORGAH. BLK

it
Besonstration of Electronic Organ with PC

Copyright L. H. Ting, 1986

(¢tete Enterpriszes, Inc.
1306 South B Street

San Kateo, CA 94402
{415} 574-82%0

i
v AIR
2 8 THRU ¢ Notes and cords)
9 16 THRU { Air on the 6-String)
18 19 THRU (Doxology)
24 77 THRU (Prelude in [Hajor, Version |)
30 34 THRU { Prelude in C sajor, Version 2)

02{ebBbcht

2
\ Buliple notes 04 1anBbcht
25 FUDBE ' { | sili-second)
HEY 310 CONSTAMT CHANNEL DECIRAL
¢+ (PLAY) (period channel -)
CHANNEL +)R DUP Re PC' FLIF Ry PLY

: PLAY { .. n as -, send notes to channels specified by sask n)

DR { tisel 16 G DO DUP 1 AND
IF SMAP [{PLAY) THEW 2/ LOOP DROP
R> 0 D0 20 W5 LOOP KEY? ABORT® lilled®

Listing 15.
-206=

=

@

G2tebBhcht \ Initiate 8257 and hush thes

HEX
; CONTROL-PORTS (n)

326 31330 Bup 1 PC!
t IMITIATE (set up all ports to be sode)
76 CORTROL-PORTS
t 1 {silence all channels with 300 KHz sutput)
§44

36 CONTROL-PORTS

L hh 44
s HUSH 1 g
INITIATE HUSH
s BEAT CONSTANT
128 BEAT 1/1

8 BEAT 1/16
96 BEAT 3/4
192 BEAT 3/2

4
Y Notes
: KOTE (n)
3270 10600 NOTE 1
3671 10000 KOTE D
4170 10000 NOTE EI
44625 10000 NOTE Fid
S191 10060 NOTE 614
S827 10000 NOTE ALS
6541 100060 WOTE L2
7347 10000 WDTE D2
8241 10000 KOTE E2
9250 10000 NOTE F24
10383 10000 WOTE 628
11654 10000 MDTE A28

3

 Hotes

13081 10000 WOTE L3

14683 10000 NOTE B3

16481 10000 NOTE E3

18500 10000 WOTE F34
20765 10000 NOTE 638
23308 10000 NOTE A4

2616 1000 NOTE C4
2937 1000 WOTE D4
3296 1000 NOTE E4
3700 1000 NOTE F43
4133 1000 NOTE G4#
4662 1000 NOTE A4

Demonstration of electronic organ

§ «L00P DROP ¢

44

BECTMAL
BOES» @ PLAY 4
64 BEAT 1/2
§ BEAT 1/32
4B BEAT 3/B

5950 ROT 8/ CONSTANT

04janBecht |

Bo COMTROL-PORTS

7777 1 PLAY

32 BEAT 174 16 BEAT 18
2 BEAT 1/68 | BEAT 1/128
24 BEAT 3/16 17 BEAT 3/32

02¢ebBbcht €
{ DOES> @ PERIOD) ¢
3463 1000C NOTE L1
3889 10000 NOTE D14
4365 10000 NBIE FI
4900 10000 NDTE 6!
350C 10000 NOTE &1
6174 10000 NOTE BI
£936 10000 NOTE C2%
7778 10006 NOTE D24
8731 10000 WOTE F2
G800 10006 WOTE 62
{1000 10000 MOTE A2
12347 16000 WOTE B2

SldecBeht
13839 10000 HOTE C3#
19556 10000 MOTE 038
17461 10000 WOTE F3
19600 10000 NOTE 83
22000 10000 NOTE A3
24694 10000 WOTE B3

2772 1000 ROTE C48
31T 1000 NOTE D4g
3492 1000 NOTE F4
3920 1000 NOTE 64
4400 1000 NOTE A4
4939 1060 NOTE B4

Paged 7

s

0 \ Notes

1 5237 1000 NGTE C5
2 5B73 1000 NOTE B85
3 6393 1000 NOTE ES
4 7400 1000 NDTE F58
3 B304 1000 NOTE 654
6 9323 1000 NOTE ASE
7

B 10445 1000 NOTE Cé
9 11747 1006 NOTE D¢
10 13185 1000 NOTE Eb
11 14800 100G NOTE Fo

12 16612 1000 NOTE 644
13 18647 106G ROTE AS

14
15

by

0 \ Notes

1 2093 100 NOTE C7
2 2349 100 NOTE D7
3 2637 100 ROTE E7
4 2960 160 NOTE F7¢
5 3322 100 NOTE 678
4 3729 100 NOTE A7
7

B 4186 100 NOTE (8
§ 4699 100 NOTE D8
10 5274 100 NOTE EB
11 5920 100 NOTE F88
12 6645 100 NOTE 664
13 7459 100 NOTE ASE
14
15

8

¢ \ Flat notes

§ C1& CONSTANT D1t
2 C28 CONSTANT D2b
3 C34 CONSTANT DIb
4 CAS CONSTANT D4b
3 C5% CONSTANT DSb
6 C68 CONSTANT Déb
7 C7# CONSTANT D7b
8 CB8 CONSTANT DBb
9 614 CONSTANT Alb
10 628 CONSTANT A2b
11 638 CONSTANT Alb
12 648 CONSTANT Adb
I 658 CONSTANT ASH
14 G&¥F CONSTANT Ash
15 678 CONSTANT A7b

B: ORGAN. BLK

3544 1000 NOTE LS4
6223 1000 NOTE DS8
8985 1000 NOTE F5
7840 1000 NOTE 65
BBOO 1000 NOTE A5
9878 1060 NOTE BS

11087 1000 NOTE Cé8

12445 1000 NOTE Dés

13969 1000 NDTE F¢
L] 15680 1060 NOTE Bb

17600 1000 NOTE Ab
19755 100G NOTE B4

9
31decB3cht \ Air for the B-String (1febBocnt
HEX
s /0 Unl a2 ndnd) 701 1/16
s /o tnl a2 ndnd) i/ 4 K00 1716
s % in) 400 1/16 4 400 1/16
10
Jldec85cht \ Rir for the 6-String 01febBocht

2218 100 NOTE C74
2489 100 NOTE D74
2794 1GCG NOTE F7
3136 160 NOTE 67
3320 100 NOTE A7
3951 160 KOTE B7

4435 100 NOTE (B
4978 1060 NOTE DB
5588 100 NOTE F8
6272 100 NOTE 68
704G 100 NOTE A8
7902 100 NOTE B8

DI¥ CONSTANT Elb
D2% CONSTANT E2b
D3I% CONSTANT E3b
DA# CONSTANT E4b
D54 CONSTART ESb
Dod CONSTANT Esb
D78 CONSTANT E7b
DB# CONSTANT EBb
A14% CONSTANT BIb
A28 CONSTANT B2
A3E CONSTANT B3b
A4§ CONSTANT Bdb
ASE CONSTANT BSh
A4E CONSTANT Béb
A74 CONSTANT B7b

S1decB3cht \ Air for the 6-String

F18 CONSTANT 61b
F28 CONSTANT 625
F34 CONSTANT 63b
FA% CONSTANT G4b
FS§ CONSTANT 65b
F68 CONSTANT G6b
F74 CONSTANT 67
FBo CONSTANT 68b

Listing 15.

: Mf C3 64 C5 E4 //.
A3 $ 638629 ;
N2 F2 A4 CSEA //. F3 AQ 401 1716 4 F4 401 1/16
F3% D4 A4 DA 701 1/16 4 CA 401 1/16 F29 B 401 1/16
4 C4 801 1/16 B2 DA GA BRI /7, B $ 4 400 1/32 831 1/32
F3I B3 401 1716 4 400 (/16 F2 8} ;
N3 E2 EA 64 G4 //. EX CAd BAb G4 // 4 A4 500 1716
DI B4b 350G 1/16 4 400 1/16 C28 E4 A4 64 // & E4 461 1/16
C38 4 4 B3b // 4 A2 401 1/16 A2 D4 401 1/16 4 CAR 401 1/16
A3 64 401 1716 4 F4 401 1/16 4
: M4 D2 DA A4 FA //, DI AA DS 700 1/16 4 TS 500 1/14
C3 D5 500 1/16 4 ES 500 1/16 C2 F5 500 1/16 4 DS 50¢ 1/14
BI DA 64 F4 // K DA K01 1/16 B2 4 4 A3 // B3 1 1/16
62 C4 401 1/16 4 B3 401 1/16 B3 F4 401 1/16 E4 1 1716 | ;

CAs BIs B2Y A2 AMCSE4 /.

.

11
021 sbBbcht
¢ NS CICAGAEA//. CASBIS B2DAGAFAR // & 6A 40) 1/1%
A2 E4 B4 CA //. A3 CA FAR CA 701 1/32 D41 1/32
4 64 E4 501 1/16 F38 A3 MM EA 7/ 4 D& 401 1/16
D3 D4 F4% D4 7/ 4 C4 401 1/16 ¢ ;
: N6 63 D4 64 BY /7 4 A3 401 1/16 ¢ C3 E4 64 A3 701 1/32
B3 1 1/32 4 CA 401 1/16) D3 A3 64 C4 //,
D2 DA FA$ B3 // 4 A3 401 1/16
: N6 Nb
62 63 64 63 // A2 400 1/16 B2 400 1/16 C3 460 1/16
D3 400 1/16 F3 400 1/16 EI 400 1/16 DI 400 1/16 | ;
t W7 N6 62 B3 64 63 701 /B 5 41 1/8
: P1 KL M2 MI M4 NS M6
2 P2 Kl M2 M3 KA NS M7

Demonstration of electronic organ (cont'd)

-207-

Paged 3 BsORGAK, BLY

i2 13 s
0% Air for the B-Btring Ol4ebBacht | Bir for the B-String (liebBacht
P e B8 B2 D4 BABI//. B3 6FI4001/164C4 401 1/32 ¢ BI7 G3CA G404 //, A2DAF4CA //, BZELGBECA 4/
2 B3 L I/3ZF2 AT R01 1/32 B3 1 1/32 4 B3 401 /1% 4 E4 401 1/16 B3 64 401 /16 4 Béb 401 1/16 !
3 EZ DA BS G4 // & A4 500 1716 EX C4 B4b B4 // & DA 400 116 F3IC4 Fad Rab //, F2 A4 401 1/16 4 400 1714 EZ 8
4 D3 E& 500 1/16 4 A4 500 (/16 D2 B4 BIb 501 1/14 EI L4 401 1/16 4 400 1/16 1
S F4 100 {7161 s BIB D3 D4 F4 B3 // 4 AI D4 601 1/16 B2 D4 AR F4 J/
&2 B9 U2 E4 E4 A // FAFA 300 1/16 (38 64 64 a4 7/ §F4 500 1/16 C2 A4 DS F4 // & B4 600 1/16
7 4 BA B4 700 1/1h EI CAE C48 04 // 4 B4 401 1/16 C3F4 A3 601 1/56 4 C5 500 1/16 B2 64 B4 D4 701 1/32
8 A2 A CSEFE /7 & B4 400 1/16 0 E§ 1 1/32 4 R FE 501 1716 CI B4 BAF4 /7 4 B4 401 1/14
Y DIADSFE// D4 S CAAIDAFETOL /I EE Y 1UR2 FIF4 A4 700 1/16 D4 1 1716 1 4
4 D4 401 173204 1 1737 CI BRI 401 1/16 4 A3 401 L/1s | : B1§ B3 E4 64 C4 701 1732 B3 1 1/32 4 &3 401 1716
¢ W10 BZ B3 D4 B3# // 4 04 500 1716 BI D4 4 81 // F3 400 1/16 4 BI 401 1/16 | B3 D4 F4 BY // 4 E4 500 1/1¢
4 B4 4B // RTFADSBI // 4 E4 DS CA // A2 FA D5 D4 // 62 63 FA B3 /7 4 C4 401 1/16 7 CI B3I B4 L4 //,
& D4 600 1716 628 E4 D5 D4 /7 4 L5 E4 S0 1716 B28E28C2¢ 1

B2 D4 BAFE /7 408 A4 700 1/16 B2 BI BG4S F4 //
4 A4 500 1/16 B2 E4 BE E4 /i. 1y

i3 i6
\ Rir for the B-String (itebBocht | Air for the §-5tring G24ebBocht
s MID A2 E4 AL D4 /7 4 LA 401 /16 FI D4 A4 B3 // 4 04 A3 s BZ0 62 63 E4 64 C4 703 1/32 B3 1 1/32 4 & A4 601 1/14
801 1/16 DI FA A4 BRI // & C4 401 1/32 D4 1 1/32 F2 FI 600 1/16 4 4 RY 601 1/16 B2 63 B4 F4 BI 703 1/14
E3 E4 GAB C4 /7 § D4 BY 001 1/16) A2 C4 B4 43 /4, 4 4 500 1/32 A3 L 1/327 BLB2ZBIRI//CAL 1/18
AT $ GBI 8628) C2CI63E4 700 1/1 1
: M1Z P28 A3 DA 04 //. FIH A4 600 1716 4 400 1/1% ¢ P3ORE MY RIG BI1 K12 WD HM14 RIS Hle H17 BIB :
EIEA G4 C4 /7 & F48 E4 501 1/16 E2 E4 B4 D4 // BECIRAL
C4 1 1/16 1 D2 AIFAR A4 //. D3 D4 600 1716 : RIR A0 FUDBE ' IRITIATE PI PZ P KIS PJ HI0 ;

§ B4 B4 700 1716 C3 D4 F&8 A4 // & B4 500 1/14
£2 D& A4 64 /7 & F&8 401 1/16 1
s RIZ OBI D4 A4 E4 701 1732 D4 f 1732 4 B4 401 1/1s
BZ D4 B4 62 //. (I E4 B4 A3 /).
D3 D4 F4§ A // 4 B2 401 1/32 04 1 1432
B2 D4 B4 B3 /7. B3 400 1/16 4 C4 600 1/32 88 1 1/32
F3 B3 B4 BI 7/ 4[4 800 1/56 F2 D4 600 1/16 4 BY 600 1/14

.
L]

i4 i8
G\ Bir for the 6-String OifebBbcht | Dorology G3janBbeht
1 s RI4 EZ2 G4 BACA //, EXI L4 A8 C4 // 4 Bab 500 1/16 : Bl B3I BRI D4 64 263 1/4 1 B3I B3 D4 B4 263 1/4 |
2 F3I A& 500 1/16 4 B4 500 1716 FZ A4 CS5E4 // 4 D4 401 1/16 B3 A3 D4 F48 263 174 E3 63 BI EA 243 1/4 -
3 ‘P2 A4 S DA /7, P38 DA B4 D& /7 4 B4 500 1714 B2 F3% BI D4 261 1/4 1 E3 B3 BY B4 283 1/4
& B3I BA SO0 1/16 4 C58 500 1/16 G2 BADSFE //E4A T 1/L6 D3 F3§ D4 a4 263 1/4 BZ B3 D4 BE 263 1/2 1
5: KIS B28 B4 DS E4 //. B34 E4 CSE 700 1/16 4 B4 500 1716 : B2 B3I BI DA B4 263 1/4 0 BI B3I D3I B4 263 1/4
6 AICSE 500 1/16 4 D5 500 1/16 B2 COB ES B4 // 4 FL 401 17146 ¢ 63 63 D4 B4 263 1/4 DI F34 DA A4 263 174
7 DI AESFA// ACSE 500 1/16 DA 4 DS 700 1/16 4 A4 500 1/16 EZ B3 B3 64 263 174 § L3 B3 E4 L5 267 1/4
8 L4 DA 500 1716 4 A4 500 1716 C3 F4 300 1716 4 D4 500 1/16 B2 63 D4 BA 263 1/4 DI F38 D4 A4 263 1/2 1
9 : M6 BZ D4 B4 B3 // & BI KOG 1/16 BI DA F4 700 1/16 : B3 BI BI D4 64 263 178 F38 AT D4 A4 267 1/4
10 4 B4 400 1/16 GBI E4 B4 BT // 4 B3 401 1/16 B3 DA B4 D4 J/ 63 B3 D4 B4 263 1/4 DI F38 D4 A4 263 178 L3 2% /8
i 4 F4 801 1/16 CACE&BAFE // 4 D4 401 1716 CICABAES // B2 63 D4 B4 263 1/4 1 [T BI C4 B4 263 174
12 405500 /16 B2b 04 64 E4 //. B3b E4 401 1716 A2 A3 C4 F48 267 /4 B2 DI B3I 64 287 172 1
I3 B F4 401 1/3284 1 1732 0
14
15
Listing 15. Demonstration of electronic organ (cont'd)

-208-

Pages 4 B:ORGAN. BLK

19
Boxology
M4 B3 BI 64 DS 263 1/4 |

E3 B3 E4 64 243 1/4

-

.

D3 DA FA% A4 263 1/8 C4 4 1/8
: ANEN 3 C4 E4 64 263 1/2
DOX0LOBY M1 N2 M3 M4 4 1 1/4

..

O o N o Ry

4

Prelude 1, C Major
CORD ¢ nal n2 nd)

: Kt B4 €5 E5 CORD
s M O CA 4 47 1786
K2 A4 DS FS5 CORD ;
K2 C44471/16
K3 64 D5 F5 CORD ;
M3 BI4 47 1/1s
K4 A4 ES AS CORD ;
B CA A 47T 1/1b
KS F43 A4 D5 CORD ;
BS CA 447 1/16
K6 64 DS 65 CORD ;
K6 BIA4T /1%
Pl ML ML mM2M2

-

.

E4 2 1716

D4 2 1/16

.. % oy wm

D4 2 1/18

E4 2 1/16

e op we

D4 2 1/16

D4 2 1/16

- L. we ..

2%
Prelude 1, Major
LEAD ¢ nl n2) SWAP 4 4 7 1/16
K7 E4 64 C5 CORD ;
N7 B3 C4 LEAD K7 K7 ¢
N8 A3 CA LEARD K7 K7 ¢
K? D4 F4s C5 CORD ;

M9 D3 A3 LEAD K9 K9 .
K10 D4 64 B4 CORD ;

KIG 63 B3I LEAD KIO K10
Kil E4 64 C58 CORD ;

Mit B3 A3# LEAD K11 KIf ¥
K12 D4 A4 D5 CORD ;
: B12 F3 A3 LEAD KIZ K12 13
13 : K13 DA F4 B4 CORD ;

14 : RIS FI 634 LEAD KIZ K13 1
15 ; P2

- me

P ke 8% s W eu we Wy N 4, W .

——
T Do No N R

—

Listing 15.

SWAP ROT 3

03janBbcht

63 63 D4 B4 263 1/4
D3 D4 FAR A4 263 1/4
A2 CA E4 C5 263 1/B F44 2 1/8 B2 D4 64 B4 263 1/8 C3 256 1/8

62 BY 64 64 263 1/2 !

AMEN ;

000
Ki Kl
K2 K2
K3 K3
K& KA

K5 KS 4

§2 B3 DA G4 263 1/2 ! ;

023anBécht

/16 LOOP 3

Ké K& | 3

2 1/16

3
AI NI MEML BAME NS MG Mo Mo

02janBécht

]
s

M7 M7 NB MB M3 M9 NMIG MIQ NI MIT M12 W12 WIS W13

2

\ Prelude 1, C Major 023
: Ki4 C4 64 C5 CORD : M4 EX BY LEAD K14 K14
: KIS A3 C4 F4 CORD ; s BIS EJ F3 LEAD KI5 KIS
; M6 D3 FILEAD KIS KIS 1
+ K17 63 B3 F4 CORD ; : M17 62 D3 LEAD K17 K17
: KIB 63 CA E4 CORD ; : W18 C3 E3 LEAD K18 KIB ;
: K19 A3# C4 E4 CORD ; s M9 C3 63 LEAD K19 K19

K20 A3 C4 £4 CORD ; : K20 F2 F3 LEAD K20 K20
¢ K21 A3 C4 D44 CORD ; : M2t F28 C3 LEAD K21 K21
: K22 B C4 D4 CORD ; s K22 628 F3 LEAD K22 K22
: K23 B3 B3 D4 CORD ; : K23 62 F3 LEAD K23 23
: K24 KIB ¢+ N24 B2 E3 LEAD K18 K18
+ K25 63 C4 F4 CORD ; : M25 62 D3 LEAD K25 K25
: K26 B3 BY F4 CORD ; : W26 B2 D3 LEAD K26 K26
+ PT K14 MI4 KIS KIS M6 W16 MI7 MJ7 MIB WIB W19 W19

anBscht

v

¢
i

. my W .

¥
1
s
]
+

t .
L]
1

Vi
L
by
4

'ty
[
LI}
G

K20 M20 W21 W21 M22 W22 W23 W23 W24 N24 N25 W25 M26 M26

27
\ Prelude {, C Major

: K27 A3 C3 F34 CORD ; s B27
: K28 63 C4 64 CORD ; : W28
: K29 63 C4 F4 CORD : N29
+ K30 61 BI F4 CORD ; : K30
: K31 B3 A3S E4 CORD : W31
: IANDTES 14 0 DO ! 1/16 LOOP ;

s K32

s W32 L2 €3 LEAD K32

: K33

: W33 C2 B2 LEAD K33 3

-

: PA
FINALE HUSH ;

2janBbcht

62 D3# LEAD K27 K2
62 E3 LEAD K28 K28
62 D2 LEAD K25 K29
62 D2 LEAD K30 K3¢
C2 €3 LEAD K31 K31

D3 F3 D3 F3 AT F3 A3 C4 A3 C4 F4 C4 AS F3 L4NDTES
D4 E4 FA D4 B4 G4 BA D5 BA D3 FS D5 B4 64 I4NGTES |

FINALE C2 512 1/16 C3 256 1/16 E& 4 1/16 64 2 1/16 05 |
N27 M27 M28 N2B M29 M29 M3C W30 W31 N3f N32 N33

70

]
1
'
+

]
1]

e 4% my we

¢
'
[
te

.
L]

171

anBacht

: PRELUDE-1 PI P2 PI P4 ;
32 FUDGE !
30
\ Prejude 1, C Major 105
HEX
: CORD (nl..nS)
4PICK 4 1/16 JPICK21/16 20D0 2PIK1 1/16
OVER 1 1/16 DUP | 1/156 LOOP |
4 PICK 400 1/16 3 PICK 200 1/16 20 DO 2 PICK 100 1/1¢
OVER 100 1/16 DUP 100 1/16 LOOP 5 DROPS | ;

DECINAL

Demonstration of electronic organ (cont'd)

-209-

Yr*ﬂ,\“si

AH.BLK

=i
Iy

Paged & B: 0

V Prelude §, £ Hajor

{4 E4 B4 05 £5 CORD
£4 D4 A4 D5 F5 CORD
B3 D4 B4 D5 FS CORD ;

C4 £4 A4 ES 45 CORD

C4 D4 Fas A4 DS CORD
B D4 54 DS BS CORD

Kl B2 M3 MI B4 HS Rb

[

elude 1, { Hajor 10janBacht

BI C4 E4 64 C5 CORD :

A3 U4 £4 B4 L5 CORD

D3 A3 D4 F44 L5 CORD ;5 ¢
B3 BI D4 54 B4 CORD ;
B3 A3% £4 B4 C54 CORD ;
F3 A3 D4 44 D5 CORD
F3 638 D4 £4 B4 LORD .

A7 BB K9 HIO HIf K12 MIZ

ne me .
4
BEXY

-

33
0\ Prelude 1, T Hajor
{: Ri4 EI B3 04 64 C5 CORD
2 BI5 EIFIAIC4 F4 CORD ;
$: Mi6 DI FI A3 C4 F4 CORD ;
45 BI7 B2 D3 B3 BI F4 CORD ;
¥

1GianBbcht

3 K18 CIEX B3 L4 E4 CORD

+ H19 L3 B3 AJ% C4 E4 CORD ;

: M20 F2 F3 A3 CA4 E4 CORD 4

: W21 F28 UI AT C4 D4# CORD ;

3 M22 B2% FI B3 C4 D4 CORD

: K23 B2 FI 83 B3 D4 CORD ;

+ H24 B2 E3 B3 C4 E4 CORD ;

: B23 B2 DI B3 C4 F4 CORD

5 3 W26 BZ BT B3 BI F4 LORD ;

: P3O RI4 WIS Kie H17 KIB MI9 K20 W21 M22 W23 M24 W25 K26 ;

W R e S gy OIF g €

[
LAy A g,

Listing 15.

=210~

10janBacht \ Prelede 1, L Hajor

14

: #27
; RIB
s BIY
: B30

B2 D38 A3 C3 F38 CORD ;

B2 E3 83 4 64 CORD

B2 DZ B3 C4 F4 CORD

52 D2 63 B3 F4 CORD ;

: B30 C2 03 B3 AZE E4 CORD

;O J4ROTES 14 0 DO 1 1716 LOOP ;

: K32 D3 FI DI FI AT F3 AJ C4 A3 04 F4 C4 A3 F3 L4NDTES |
s 32 024 1716032 $/16 K32 5

: K33 D4 E4 F4 D4 B4 64 B4 DS BA DS F5 DS BA B4 5 HEY

: B33 L2 400 1/16 B2 200 1/16 K33 OF 0 DO 100 1/16 LOOP | :
¢ FINALE C2 400 1/16 C3 100 1/16 E4 & 1/16 64 2 1716 £5 1 1/1 ;
: P4 H27 M2B N29 M30 M31 H3Z 33 FINALE ! ;

: PRELUDE-1” P1 P2 P3 P4

b

ECINAL 32 FUDBE °

G %
Deaonstration of Electronic Organ with PC G24ebBbch
Copyright C. H. Ting, 1986

(¢fete Enterprises, Inc.
1306 South B Street

San Mateo, [4 94402
(415) 574-8250

¢

beaonstration of Electronic Organ with PC (24ebBécht

Copyright L. H, Ting, 1986

(ftete Enterprises, Inc.
1306 South B Street

San Mateg, CA 94402
{415) 574-8250

Demonstration of electronic organ (cont'd)

10janBéckt |

XV. PROGRAMME OF AN ORGAN RECITAL

BACH ORGAN RECITAL

On 3 Six Channel Computer organ
Dr.C.H. Ting
Sunday, April 12, 1987, 7:00 pm.
St, Andrew's Lutheran Church, San Mateo, CA

Prelude and Fugue in C Major, BWV 846
Preiude and Fugue in C Minor, BWV 847
In Deep Grief I Cry 1o Thee, BWV 686

Chorale Preludes Adapted to Organ by E. Power Bigg
Christ Lay in Death’s Boundage, Cantata No. 4
Jesu, Joy of Man's Desiring, Cantata No. 147

Sheep May Safely Graze, Cantata No. 208
Intermission

Toccata, Adagio and Allegro in G Major, BWV 916
Fugue in G Minor, BWV 578
Toccata and Fugue in D Minor, BWV 565

Prelude and Fugue in E Flat Major, BWV 552

Sponsored by the Christ Church of the Bay Area, San Mateo

-21% =

The Computer Organ

This computer organ was conceived, built and programmed by Dr. C. H.
Ting 10 experiment music making using 3 personal comnputer. His goal was a
simple, low cost, and self contained system which can be used to enter
music score and play back his favorite organ music by 1. §. Bach. inspite of
the simplicity of this computer organ, the tonal quality is remarkably similar
1o an early pipe organ. With six channels of output, the organ is capable of
reproducing all the organ pieces written by Bac.' and the Baroque masters.

The most interesting feature of this computer organ is that different voices in
a contrapuntal composition can be assigned to different speakers which can
be separated by long distance in a large hall. It is thus possible to ‘spatially
separate’ the voices in a contrapuntal music and fili the hall with voices
coming to the listeners from many different directions, creating a truely three
dimensions effect of the music. This is another method 1o help clarify
Bach's organ music and 1o aid its perception by the listeners.

To make a computer imelligen: enough to play music of Bach's
sophistication, special programming tools must be built so that the music
score can be converted 1o a form which is both human readable and machine
readable. The computer must be able to read it so that it can execute or play
the music. Human must also be able to read it so that he can edit and control
the music for proper presentation. Dr. Ting developed a music description
language by which he coded 2 large collection of Bach's organ works,
including the ones presented in this recital. This language consists of rules 1o
construct sequences of chords and to string them together to form a playable
piece. Each chord is specified by the notes in it, the assignments of notes o
channels, and the duration of the chord. Measures are thus defined in terms
of chord progressions, phrases in terms of measures, and whole pieces in
terms of phrases,

This music description language is based upon the very powerful
programming language 'FORTH' which has been widely used for machine
control and automated instrumentation. Many atributes of FORTH. such as
fast execution speed, efficient memory utlization, ease in high level
construction, and interactve interface between user and computer, make it
possible to encode large and complicated music for the COMPULET 10 process
and to play back.

The Music

The Preludes and Fugues in C Major and C Minor from the Well-Tempered
Clavier, Book 1, are the standard practice pieces for serious swmdents of
Bach. These were also the firs: ones coded after the computer organ was put
together. They are paricularly interesting here because the chord
progressings in the preludes are always repeated. The most plausible
assumption is that the repeating chords are moeant to be echoes of the Jeading
chords. This echoing effect is best demonstrated by this computer organ.
The six speakers are programmed so that two groups of three speakers are
engaging in a dialog, projecting chords at each other across the hall,

-212=-

The fugal prefude In Deep Grief 1 Cry 1o Thee' is 2 six part fugue using
double padele. This is one piece in which all the six channels in the
computer organ are gainfully occupied. The double padele effectively
conveys the notion of deep grief in Mardn Luther's original chorale.
However, the joyous rhythum towards the end reassures the grace and
salvation from above.

The chorale preludes were adapted from Bach's cantatas by E. Power Bigg
w organ. Three movements, Sinfonia, Chorale and Variations, are presented
in ‘Christ Lay in Death's Boundage', from the Easter Cantata. The Sinfonia
sets the mode with its slow and grave motive in the padele, sinking ever
deeper into death’s strong hold. After the declaraton of Hallelujah at the end
of the Chorale, the high voice in the Variations rises higher and higher, as if
following the resurrected Christ owards his throne.

Jesu, Joy of Man's Desiring” from Camtata No. 147 is probably Bach's
most often played chorale prelude. The lively high voice in triplets hugs
warmnly around Schop's chorale melody of 1642, in the hvmn of Marnn
Jahn's: "Jesus remains ali my joy, my heart's solace and strength.”

‘Sheep May Safely Graze' is a chorale prelude from Cantata No. 208 for the
birthday of Duke Christian of Sachzen-Weissenfels in 1716, The fresh,
pastoral character of this music is a remarkable instance of Bach's power of
tone painting. The pattern set in the first measures dipicts lambkins playfully
jumping around their mothers who are engaged in the more serious bussiness

of grazing.

The second half of this recital covers Bach from his youth to the last vears in
Leipzig. Toccata in G Major is a kevboard composition in his early Weimar
period when he was liberating himself from the German masters through
Iralian influences. This piece was chosen here mainly because of the very
powerfull decending chords in the Toccata. These chords require all six
speakers sounding together, buildinga high contrast against the solo voices in
the concert style.

The Little” Fogue in G Minor and the 'Great’ Toccata and Fugue were
examples of Bach's maturity in his late Weimar years. The theme in the
Fugue in -G Minor was laid out so vigorously and with such rapid and
weighty developments that it is impossible 1o find its parallel in Bach's
contemporaries. As for the Toccata and Fugue in D Minor, we have the
words from Albert Schweitzer: "The strong and ardent spirit has finally
realized the laws of form. A single dramatic ground-thought unites the
daring passage work of the wccata, that seems to pile up like wave on wave,
and in the fugue the inwercalated passage in broken chords only serve w make
the climax all the more powerful”.

The Prelude and Fugue in E Flat Major belonged 1o Bach's late Leipzig
period when be tried to summerize his life's work. The theme in the fugue is
from the ever popular hymn: "0 God, our belp in ages past, our hopes for
years to come”. The same theme recurs in three connected fugues,
symbolizing the Trinity. The first fugue is calm and majestc, with an
absolutely uniform movement throughout. In the second fugue, the theme
seems to be disguised, and is only occasionally recognizable in its true
shape, as if to suggest the devine assumption of an earthly form. In the third
fugue, it is ransformed into rushing semiquavers, as if the Pentecostal wind
were coming roaring from heaven.

-213-

The Organist/Programmer

Dr. C. H. Ting is a chemist by training
and a computer specialist by inclination.
He graduated from the Nauonal Taiwan
University in 1961 and obtained his Ph.
D. in physical chemistry in 1965 at the
University of Chicago. After two years
of post doctorate research in US and
Germany, he returned to Taiwan to
teach chemistry and to carry on research
in molecular specooscopy, quantum
chemistry, and chemical
instrumentation. He returned to US in
1975 to pursue his new interests in
clectronics and computers, and joint the
Lockheed Palo Alto Research
Laboratories in 1976. Currently he is a
staff scientist working on a number of
projects concerning fast signal
processing, image processing,
instrumental control, and most recently
large parallel processing systems.

He ‘discovered’ FORTH and used it as a software tool to develop image
processing systems and was attracted to the power and effectiveness of this
programming language. He joint the Forth Interest Group in 1979 and has been
an active member in the Forth community, published many paper and books on
FORTH. Forth Interest Group nominated him to the ‘Figgy' award in 1986 for
his contribution to this programming language. Besides using FORTH at work to
solve serious problems, he brings it back home for recreational computing. The
computer organ is on¢ of his home projects which yielded audible results.

His musical experience was limited to the four years in Chicago, where he was
housed with a music major, Mr. David Claypool, who later completed a Ph. D.
degree in musicology at Northwestern University. Mr. Claypool was a feverish
Bach partisan and left the same fever on Dr. Ting. The other music exposure was
his occcassional duty 10 supervise the piano practice seesions of his three children.
However, lacking serious musical training did not divert him from the
determination that he can wrain his computer to play Bach faster than his children.

~214-

R

BACH ORGAN RECITAL
on a six channel computer organ

Dr. C. H. Ting

Sunday, April 12, 7 p.m.

St. Andrew's Lutheran Church

1501 South El Camino Real
Sa

Preludes
Fugues

Toccatas
Cantata Themes

o
Lo, v
TE

t

S RS oy & Lo |

= =
e afie>s A d
Bach's organ pieces were translated by Dr. Ting into a form readable by an IBM
Personal Computer. The organ-like sound is generated by the computer through a
six channel tone generator and six speakers. Dr. Ting uses this system to
experiment on the spatial separation of voices in Bach's music.

$10 Donation ($5 seniors and students)
towards the Building Fund for the Christ Church of the Bay Area.
For information call (415) 871-7770 or (415) 692-7842

-215-

e e e o o e L

OLD BACH PLAYS IBM-PC

A Computer Organ Recital
Dr. C. H. Ting

Sunday, April 12, 7 p.m.

St. Andrew's Lutheran Church

Bach's organ pieces were translated by Dr. Ting into a form readable by an IBM
Personal Computer. The organ-like sound is generated by the computer through a
six channel tone generator and six speakers. Dr. Ting uses this system to
experiment on the spatial separation of voices in Bach's music.

$10 Donation ($5 seniors and students)
towards the Building Fund for theChrist Church of the Bay Area.
For information call (415) 871-7770 or (415) 692-7842

-216-

Xv. A DEVIL'S DICTIONARY

1. INTRODUCTION

'The Devil's DP Dictionary' by Stan Kelly-Bootle(1) lists common
terms used by programmers and interprets them in a humorous

way. I thought that if I could put these terms in my computer
and set up a convenient method to recall them, I would have

an interesting toy with which to entertain my friends and guests.
It is appropriate to implement this dictionary using Forth
because Forth has all the necessary tools to build a dictionary.
As a matter of fact, all the commands in Forth are contained

in a dictionary, and the text interpreter in Forth is programmed
to search this dictionary to identify commands typed by the
user. With these important tolls already in place, I thought
that it would be a simple matter to build the Devil's Dictionary
on top of the Forth dictionary. The only other thing necessary
is to be sure to secure permission from the publisher of the
book.,

The technique used to implement this dictionary should be of
interest to many pecple because dictionary is a fundamental
vehicle of information and intelligence. Consigning dictionaries
to electronic storage devices will certainly make large amount

of information readily available to users, who can then retriesve
and use the information from such sources efficiently. 1In
educational settings, an electronic dictionary can be useful

to students, who can interact with the computer as they learn
about subjects without having to go through rigidly scheduled
classes. It is my hope that readers will take the implementation
as a model and build dictionary systems that represent their

own interests and applications.

2. THE ALMIGHTY \ COMMAND

To start this discussion, we can use the regular high level
defining word : to define dictionary entries. A good example

of this use is:

: ABACUS ." A reliable solid state device recently superceded
by Cray I."

After we define ABACUS as above, if we type ABACUS on the terminal,
following it with a carriage return, the message between "
and " will be typed out on the CRT screen. This sequence
of actions represents the idea in building a dictionary. An

=217~

entry has a name and an associated string in the dictionary.
When we invoke the name, our system responds with the string.

A problem with this approach, however, is that the string will

be compiled into RAM along with the entry name. Using a personal
computer with a limited amount of RAM memory, we will not be
able to build a dictionary of a useful size. We will do better
if we only compile the names of entries with the minimum amount
of information that will enable the computer to retrieve the
string from disk when we invoke the name. Another consideration
is how to store the dictionary entries on disk in the most
convenient and efficient way.

These requirements call for the creation of a special defining
command that can compile the dictionary entries from disk and
also retrieve the associated string when we execute the names
of entries. This defining command has the name \ in Screen 22,
Listing 16. A defining command is a specialized Forth
compiler-interpreter(2). The portion between CREATE and DOES>
is the compiler which will be used to compile new commands

into the Forth dictiocnary. The portion between DOES> and

: is the interpreter, which specifies how the new commands

built by the defining command are executed when they are invoked.

An interesting property of this command is that it serves to
purposes: it acts as a defining command and also as a delimiter
to the string of the previous string. To understand why \

has to behave this way, let us first look at a block of text

in which a few dictionary entries are defined, as shown in
Screen 50 of the listing.

In Screen 60, the command \ is used syntactically as a separator
between dictionary entries. Each entry comprises a name and

a few sentences of explanation. The name and the string are
separated by a space. However, the string is of variable length
and must be allowed to have many spaces within it; the string

is terminated by the \ command. It is, of course, possilbe

to designate a special character other than \ as the string
terminator, but that substitution would prove messy and inelegant.

What \ does, as shown in Screen 22, is first compile the
entry name into the Forth dictionary as the name of a new Forth
command, with three numbers in the parameter field: the block
number where the associated string is stored, the character
offset of the string from the beginning of the block, and the
length of the string. Using these three parameter values,

the defined dictionary entry will be able to locate its string
on disk, retrieve it, and print it out on the CRT terminal.
These activities are defined in execution time between DOES>

and 3 .

When a new entry is compiled, the actual content of the string

is immaterial. All we need are the starting and ending locations
of the string. The compiler scans the string until it detects

the \ character. The scanning character pointer >IN then must be
backed up by one character so that the \ character can be executed
again to compile the next dictionary entry.

~218=

The creation of \ command allows us to use a simple syntax

to store the texts of dictionary entries on disk in compact

form. We can then use those texts to build the Devil's Dictionary,
with entry names compiled into RAM while the text strings remain
on disk, only to be retrieved in run time. This way, the RAM

can be used efficiently. The system can search and identify
dictionary entries quickly because those entries are in the

RAM; the associated string will be printed out from the disk.

This seems to be the best compromise among RAM usage, execution
speed, and a large volume of text stored on disk.

3. OUTPUT OF DICTIONARY ENTRIES

Strings to be printed on the CRT terminal are of variable length,
usually longer than one line. It is necessary to wrap words

at the end of line to the next line without breaking them in

the middle. Every word processor knows how to do this. The
command DISPLAY (defined in Screen 21) does this word wrapping.

It behaves similar to TYPE; however, a carriage return i1s inserted
before a word that crosses the 64-character line boundary.

The command -CHAR is similar to -TRAILING, except that it eliminates
the trailing nonblank characters. ADJUST extracts a substring

of fewer than 64 characters to be typed out by TYPE, with the
location and length of the remaining string still on the stack.

In the execution part of the command \ s DISPLAY is used to

type out the string associated with = dictionary entry so

that the printout looks professional. The QUIT command after
DISPLAY is used to suppress the "ok" message after successful
execution of an entry. If the dictionary is to be used by people
unfamiliar with Forth or any other computer language, it is
better to leave these language prompts out of the CRT display.

4. THE FUZZY SEARCH

Computers are generally unfriendly because they expect the
user to type in commands in the exact forms specified by the
language in which the computer is programmed. Misspelling

a single character in a command causes the computer to spit
out some message that is incomprehensible to mortal belings.
To help the user, we want the computer to search through its
dictionary for entries similar to the command entered by the
user when the command does not match exactly any one of the
dictionary entry. The computer should then display the names
of these entries and politely ask the user to try one of them.

The method we use to locate similar names in the dictionary

is based on the Soundex Code scheme(3), which converts similarly
pronounced words into one code. The Soundex code of a word
starts with the first letter of the word, ignores all vowels,
and groups the consonants into six groups. Only the first

~219-

three nonrepeating consonant codes are retained. If less than
3 codes are generated, it is zero filled to three codes. A
vord is thus converted to a code which contains one lettfer

and three numbers. This system uses the Soundex code to search
the dictionary. The names of entries with the same Soundex
code will be printed on the CRT as suggestions for the user

to try.

Screen 23 shows the Soundex code table and the command CHAR,
which converts an alphabetic character to its corresponding
Soundex code by looking up the code in the table with 26 letters.
SDX is a buffer that stores the Soundex code generated from

the word entered by the user; that code is later compared with
codes derived from dictionary entries.

The command $CONVERT shown in Screen 24 converts a string into

its Soundex code. Given the address of a string on the stack,
$CONVERT will generate the corresponding Soundex code in the

PAD buffer. $MOVE converts one letter into its Soundex equivalent
and adds this digit to the Soundex code string in PAD buffer.
However, $MOVE will not move a digit if it is O or if it repeats
the previous digit--according to the Soundex conversion rule.

ST is the variable storing the lastly converted digit; it allows
us the keep track of the repeating digits.

In Screen 25, the command $GET converts one string into its
Soundex code and copies the code from PAD buffer to SDX buffer.
.ID prints the name of a dictionary entry. given its name field
address on the stack. HASH is a special F83 command to select

a vocabulary thread among four threads to search for a dictionary
entry(4). 1In F83, every vocabulary in the Forth dictionary

is hashed into four threads to accelerate the compiler and

the text interpreter--only a quarter of the vocabulary is searched

for any command.

.NAME in Screen 26 prints the name of a dictionary entry if

its Soundex code agrees with the code stored in the SDX buffer.
.NAMES will search through the dictionary and print out all

the names in the dictionary having the same Soundex code, given
the link field address of the entry used to start the search.
Finally, the command SEARCH converts the user-entered word

into a Soundex code, searches through the dictionary, and prints
all entries of the same Soundex code.

With a figForth or 79-Standard Forth system, which do not hash
the dictionary, one should eliminate the word HASH in the phrase
CONTEXT @ HASH @ in the definition of SEARCH. The purpose of
this phrase is to find the beginning of a thread to start the

dictionary search.

5. THE INTERPRETER LOOP

We can write a new text interpreter(5) which will ask the user
to enter a word, search the dictionary for this word, and print

~220-

the associated string if the word is in the dictionary. If

the entered word is not an entry in the dictionary, SEARCH

will be invoked to do the fuzzy search and print out all the
names of dictionary entries with the same Soundex code. This
is precisely what the Forth text interpreter does, with only
one exception: when a word is not in the dictionary, SEARCH

is called instead of NUMBER. In this system, after the new
dictionary is compiled, there is not need for the regular Forth
interpreter. We can replace the execution address of NUMBER

in the text interpreter loop by the execution address of SEARCH.
This is the cheapest way to implement our special purpose
interpreter.

In F83, NUMBER is a deferred word, which executes the command
whose execution address is placed in its parameter field.

To change the behavior of NUMBER to SEARCH, we only have to
deposit the execution address of SEARCH into the parameter
field of NUMBER. In a system like fig-Forth, one will have

to 'hot-patch' the address of NUMBER in INTERPRET loop and
replace it with the address of SEARCH. This is a surgery not
recommended in textbooks, but it is fun. However, do it carefully.
The Forth system may 'bleed to death' if you cut into it at
the wrong place. The formal way to do this is to rewrite
INTERPRET with SEARCH and put the new INTERPRET in an infinite
loop such as QUIT.

6. A SEAL VOCABULARY

One more problem we face is the partition of the Devil's Dictionary
from the regular Forth dictionary. (The user should not be
permitted to execute any regular Forth command that would mess

up the system.) The best way to handle this task is to create

a separate vocabulary to hold all the dictionary entries and

seal off the other Forth vocabularies so that the user can

only access the Devil's Dictionary. Different Forth systems
provide different ways of building a seal vocabulary. In F83,

a seal vocabulary can be constructed following the command

sequence shown in Screen 20.

First, all the tools are compiled into the regular FORTH
vocabulary, including the definition of a new vocabulary DEVIL
in Screen 22.

Next, all the Devil's Dictionary entries are compiled
into the DEVIL vocabulary. At this point the NUMBER command
in INTERPRET is changed to SEARCH by the phrase

* SEARCH IS NUMBER

s0 as to activate the fuzzy search if an entered word failed
to match a dictionary entry.

Lastly, the phrase SEAL DEVIL at the end of Screen 20
makes DEVIL the only vocabulary to be searched

~221=-

by the text interpreter, thus sealing off other vocabularies.
¥y

7 THE LAST IMPROVEMENT

This Devil's Dictionary, once activated, loops on forever,
searching the dictionary for every command the user types on

the terminal. It prints Kelly-Bootle's interpretation of the

word if that word is in the dictionary, or it prints a list

of closely related words to help the user to continue the dialogue.
Even though several hundreds words are defined in this dictionary,
the fuzzy search very often fails to find any word of the same
Soundex code as the entered word, and an empty list is returned.

An empty list is not a satisfactory answer, and is annoying

to the user.

The computer should always give the user some valid suggestions
to carry on the conversation. In case the fuzzy search returns
an empty list, the system will print all the entry names in

a screen, as suggestions for the user to try. The screen number
is stored in the variable SCR, which is incremented every time

a screen 1is accessed.

A convenient way to print the names of dictionary entries in

a screen is to redefine the command \ , as shown in Screen

27. It must be done after all the dictionary entries are compiled
and before the DEVIL vocabulary is sealed. The new \ command
will print one entry name and skip over the the explanation
string. If the block containing many entries is loaded by

the command n LOAD, all the entry names in screen n will be
printed. SEARCH is this redefined to detect the condition

of empty list and executes a SCR @ LOAD command to print names
in a screen. The detailed command sequence to effect this
improvement is shown in Screens 27 and 28.

Words in the Devil's Dictionary is shown in Figure 30.
A sample dialogue with this Devil's Dictionary is shown in
Figure 31. The computer tries to be helpful whether a word

can be found or not.

8. CONCLUSION

I hope that I have made the technique of building an on-line
electronic dictionary clear enough so that those readers with
a working Forth system (F83 preferred) can implement it for
fields involving their interests and expertise. This is a
rather advanced Forth application, because the use of CREATE
to compile dictionary entries. It also tinker with the text
interpreter in the F83 system. Nevertheless, it is not too
complicated to be incomprehensible, while still vividly
demonstrates the power contained in Forth to implement special
language syntax.

=222

REFERENCES

1. Kelly=Bootle, Stan, 'The Devil's DP Dictionary', McGraw=-Hill,
Inc., 1981,

2. Harris, Kim R., 'Forth Extensibility', Byte, August 1380,
pp. 164-184.

3. Jacobs, J. R., 'Finding Words That Sound Alike', Byte,
March 1982, pp 473-474.

4. Perry, Michael, 'Vocabulary Mechanisms in Forth', FORML
Conference Proceedings, 1980, pp. 39-41.

5. Ting, C. H., Systems Guide to figForth, Offete Enterprises,
1980, pp. 39-48.

WORDS

\ YOUR-PROGRAH YODALS XDS WORST~CASE WORD-PROCESSING WOH
WILD-CARD WHEEL WATERGATE VULNERABILITY VUE VTS50
VOLTAIRE-CANDIDE VHOS VIRTUAL LATEST~-VERSION VERSION
VERIFICATION ubv UTH USER URN UPTIHME UPGRADE up
UNDETECTED UNDECIDABILITY UNBUNDLING UN - TWO S-COHMPLEMERT
TURNKEY TURNAROURD TURING-MACHINE TURING TTY TRUNCATE
TRIVIAL TRAVELING-SALESPERSON-PROBLEM TRANSPARENT TRAILER TPD
TOP-DOWN TH TIME-SLICE TIMESHARING TIME-MANAGEMENT TIME
THROWAWAY-CHARACTER THRASHING TH.RK TEXT-EDITOR
TERMINAL-DESEASES TEMPLATE TACKY-HMAT SYSTEMS SYSTEHM

SYMPOSIUHM SWEETSHOP SUSPECT SUPERSTITION SUPERCOMPUTER
SUMMATION-CONVENTION SUBROUTINE STRUCTURED STRUCTURE STRINGERT
STEPWISE-REFINEMENT STATE-OF-THE-ART STANDBY STANDARD-DEVIATIOR
STACK STABILITY SSR SPOOL SPECTRUHM SOURCE-CODE sS0S
SOFTWARE-ROT SOFTWARE SNA SIZING SINGLE-CASE SIMPLEX
SIDEGRADE SHILOP SHIFT SEVEN-CATASTROPHES SERIAL
SEQUENTIAL-FILE SENIOR-SYSTEM-ANALYST SEMICONDUCTOR SCROLLING
SAWTEETH ST.~-PRESPER REVERSED-CLASS-ACTION RESTROOH
RESPONSE-TIME REPORTAGE RELOAD RELEASE REFERENCE-ACCOUNT
REENTRANT REDUNDANCY RECURSIVE REAL-WORLD REALITY RDCM
RANDOM-FILE RANDOH QUEUE QUERY-PROGRAM QLP FUNCH PTF
PROSPECT PROPIETARY-CAVEAT PROPOSAL-EVALUATION PROPOSAL
PROCTOLOGIST PRIME-RATE PRICE/PERFORMANCE PRESTIDIGIT
PREFIX-NOTATION PRECEDENCE PRAYER POM POLISH-NOTATION
POACHING PLOTTER PLATEN PIGEONHOLE PHASE

PESSIMIZING-COMPILER PERSON-HOUR PERSONAL-COMPUTING PEER-GROUP
PAYROLL PAUSE PATCH PASSWORD PASCAL-MANUAL PARITY
PARENTHESIS PARENTHESES PARALLEL PAPER-LOW PAGING
PACKAGE-SWITCHING OXYHORON OVERHEAD OVERFLOW OSOPHOBIA 05
OR OR OPERATOR OPERATING-SYSTEH OPER ONE-LINE-PATCH OGHAM
OGAM OFFICE-USE-ONLY OEM-COGS OEM OEDIPOS-COMPLEX OCR-B
OCR-4 OCR OBSOLESCENCE OBJECT NRUMEROLOGY NUMEROLATRY
NUMBER-CRUNCHER NULL NOT- NROR~ NON- NOISE
NOBEL-PRICE-WINKNERS NIH NETWORK NETWOK NEST NATURALLER
NATURAL-LANGUAGE-COMPILER NATURAL-LANGUAGE NAND NACEK

HY-PROGRAHM MUSE HURPHY "S-LAW HUH MULTITASKIRNG
MULTIPROCESSING HMULTIPLEX MULTIJOBBING MULTI HTTR MTBF MSER
MOZ-DONG HOUNT MONTE-CARLO-METHOD MONOLITHIC HODULE MODULAER
HNEMORIC MIPS MINI-STRING MIDDLEWARE HMIDDLE-OUT
HICROPROCESSOR MICRO MICR METHODOLOGY METAPROGRAMMER
MENDACITY-SEQUENCE MBT MAP HANUFACTURER MANIAC MAN-HOUR
MAJOR-NEW-LEVEL-RELEASE MAINTAINENCE MAFIA MACHINE-INDEPENDENT
LUDDITE LP LOW-LEVEL-LANGUAGE LORD-HIGH-FIXER LOOPHOLE
LOOP-ENDLESS LOOP LOGOMACHY LOGICAL-DIAGRAH LOCAL
LINEAR-PROGRAMMING LIFO LIBERATION LEXICON < LAHMMA-THREE
LEADING-EDGE LEADER LAW LATEST-VERSION LABOR-HOUR LABEL
KSAM-FILE KLUDGE KING K JOHN-BIRCH-HACHINE JOB-TRICKLE JCL
JARGON-FILE JANUS IS0 ISAH-FILE IRS 10U 10 INTROSPECT
INTERFACE INSINNUERDO IN-HOUSE INCOMPLETENESS~THEOREM

INCH-WORH IMPLEMENTATION IMPERSONAL-COMPUTING IMP
IDEAL-BUSINESS-MACHINES ICARUS IBH HOWEVER HOLE HIRSUTE
HIGH-LEVEL-LANGUAGE HEXADECIHAL HEURISTICS HARTREE-CONSTANT
HARDWARE HARD-SECTOR HALTING-PROBLEM HAIRY HAIR GRUNGE

Figure 30. Words in the Devil's dictionary

=224~

GROSCH "S-LAW . COROLLARY-TO GROSCH "5-LAW GRITCH GRAPHICS
GRANDFATHER GOTO-ORDER GOTO GOSUB GOLFBALL GODOT GOD
GLOBAL GLITCH GLASS-TTY GLIDING-THE-LILY GIGOD GERSHWIN S-LAW
GENERAL-PURPOSE~GRAPHS GEE-WHIZ GATE GANGPUNCH FUNCTIOH FS
FREELANCE FORTRAN FOOT-WORHM FOCOLPROOF FLOWCHART FLOPPY-DRUH
FLOPPETTE FLIP-FLOP FLEEP FI¥ FIRST-TIHE FIRMWARE
FINITE-STATE FIFO FASTRARD EXTENDED-BASIC EXPER EXIT
EXCEPTION-REPORTIRG EWOH ETHELRED-0S EPSS ENVIRONMENT
ENGLISH END-USER ENDLESS-LOOP EMULATION ELSE-DANGLING
ELECTRON EDITOR EBCDIC E138 DYXLESIA DYSLEXIA DYNAMIC-HALT
DYNAMIC DUHMP DP-VOGUE DHP DP-LITIGATION DP-FRAUD
DP-DICTIONARY DP-ATTORNEY DOWNTIHE DOWN DOUBLE-SIDED-DRUHM
DOCUMENTATION DISHAL DEPILATICH DENIER DELAY DEGRADE
DEFAULT DECOHMPILER DECISION-TABLE DECADE-COUNTER DERUGGING
DEBUGGER DEADLINE DBHMS DATABASE-MANAGEMENT-SYSTEM DATA-BANEK
DATA DANGLIRG-ELSE DAISY-CHAIN CURTATION CURSOR-ADDRESS
CURSOR CRT CREED CRASH CPU CPH CORRECTRICE CONVERSIOHN
CONVENTION CONSULTANT CONSOLE CONJECTURE CONGRESS COMPUTIRBLE
COMPUTER-SCIERCE COMPUTER-MUSIC COMPUTER-JOURNALIST COMPUTARLE
COMPLEX COMPATIRBLE COMPATARLE COMHON-LANGUAGE COME-FROHM
COMBINATORIAL-EXPLOSION CODING CODE COBOL CLOSED CLOSE
CHINESE CHINESE-TOTAL CHINESE-REMAINDER-THEOREH CHAIR
CHADLESS-TAPE CHAD CEU CATASTROPHE CARD CAMPUS CALL CAL
CAI CaD BUS BUNDLES BUG RUFFER BUBBLE-SORT RUBBLE-MEMORY
BROKET BREAKPCGIRT BOTTOM-UP BOTTOM~LINE BOTTOM-DOWN
BOOTSTRAP BORUS BLOCEKHEAD BRLOCK BLANK-CARD BIT-BUCEKET 1T
BINARY-SEARCH BINARY BIDIRECTIONAL BESACK BENDS BENCHHARK
BASIC BASE-ADDRESSS BALLPARK BACEUP BACETRACKING BAROL
AUTOEROTICISH AUGRATIN ASL ASCII ARTIFICAL-INTELLIGENCE ARF &
ARGUMERNT APPLE AFPL AGS ANSI ARND ANCILLARY ALU ALLC
ALGORITHH ALGORIGSH ALGORASH ALGOL-84 ALBOHPHOBIA ACRONYH
ACK ABORT ABH ABEND ABACUS ok

ok

ok

ok

Figure 30. Words in the Devil's dictionary (cont'd)

-225-

FORTRAN

One of the earliest languages of any real height, level-wise,
developed out of Speedcoding by Backus and Ziller for IBM/704
to boost sales of 80-column cards to engineers.

COBOL

COmmon Business Oriented Language. A procedurally disoriented
language pioneered by Commander Grace Murray Hopper of the U.S.
Navy. In keeping with the naval tradition, & lot of rum 1is
still forced down the throats of reluctant middy COBOL
programmers before the swab their daily deck of cards.

ALGOL

Please try the following words:

ALGOL-84 ok

ALGOL-84

An extension of ALGOL being formulated by 84 dissidents from
various ALGOL user groups.

APL

A Personal Language, A Packed Language. or A Programming
Language. A language, devised by K. Iverson, so compacted that
the source code can be freely disseminated without revealing
the programmer s intentions or jeopardizing proprietary rights.

PASCAL
Please try the following words:

ASCII
ASL
AUGRATIN
AUTOEROTICISH ok
ok
ok
ok
XEROX
Please try the following words:

BABOL
BACKTRACKING
BACKUP
BALLPARK
BASE-ADDRESSS ok
ok
ok

BACEKUP
Any file, device, or person which results from backing up: the

total deviation from the original is directly proportional to
the number and scale of the catastrophes resulting from each
copying or matching error. To compound errors while merely
trying to perpetuate them.

Figure 31. Sample dialog

-226-

I SN

ok

ok
ABACUS
A reliable solid state biguinary computing device now partly
superseded by the Crayv series,

IBH
Irish Business Machines Corporation. also called Itty Bitty

Machines, Snow White, The VS Pioneer. The Lawyver's friend. The
dominant force in computer marketing. having, worldwide,
supplied some 75 percent of all known hardware and 10 percent
of all known software. To protect itself from the litigious
envy of less successful organizastions, such as the U.S.
government, IBM emplovs B8 percent of sll krnown ex-attornevys

general.

ok
ANST
One of supranational bodies devoted to establish standards.
i.e., to change rules which have been universally adopted.

CPU
Central Processing Unit. The calculating mill that Babbage
dreamed on.

I
st

Arthritic Logic Unit or Arithmetic Logic Unit. A random number
generator supplied as standard with all computer systems.

HEHBRY

Please try the following words:

MAN-HOUR ok

MAN-HOBR

A sexist. obsolete measure of macho effort, egual to BO
kiplings. Most areas of DP activity now include s synergistic
mix of male and female operatives, and the man-hour unit is
being replaced by the PERSON-HOUR, using a conversion factor of

1.50.

BASIC

Beginner s All Purpose Symbolic Instruction Code. Originally,
a simple mid-level lenaguage used to test the students sbility
to incremnt line numbers, but now available only in complex.

extended versions.

Figure 31. Sample dialog (cont'd)
~227-

CE A st B 63t bew T

Fee e e ks A
Lo]

[A R A

bos

O el PO R D

O T Ty
s S ¢ BRI

-
I R S R S S SN

[A R =)

e

4

Pan JNEN ¢ NS 5]

TR

¢ DEVIL T DITTIONARY, TRT, IS-lAk-B4.

Tio24 THEG 0 Loap dittionary utiiities.)

DEVIL DEFIKITIONS ¢ Put gictionary erntriss an DEVILLY
gt 208 THEY

: WORDS WGRDE

FORTH [EFINITIONS

27 28 TrRU fe‘ines nake output

© CERRCH 1€ MUMBER { Fux the te;t. interpreter,|

5

Please type & word and it the return ey,
L bEVIL
eal other vocabuiar:ies. leave anly DEVIL oper.:
’H
REATE DITTICKARY, [HT, 14-J4N-B4
CHAF 4 addr no--- addr 110
{ Reeove non-tlars trailing characters from a siring.!
RESIN ZDUP I- 4 [® 37 -
wiilt 1~ REFEAT
TIESY 4 ager n ==~ addrionl addr onl)
{ Eetract cne lire from : z*rzn; to be prictes
YRR SDHRE --- zdgr Rl
PBLE
JVER R iond
Z5kEE
EE‘:'_;-\V‘
[Brint 3 long string wilh WarZ WP3EDING.
Begix LR DUF o4
WHILE BLJYET -TREILING TiPE
REPEAT -TRATLING T+90

REATE DICTIONARY, CHT, 14-JAN-B4:

{ Pictiorary entry coapiles-interprete-,

CRERTE ¢ Coepile 8 new entry to the FORT® dictiocnary.)
BLY &, { Biock 41 1M EDUF { {44cet of string’
92 WDED DRGP { Scan i the next
-1 ¥IN 47 { Backyup pointsn) G IN B SkdP - ! length)
[RES: i Runiise :nterpreter ‘for gictionary entryi
pur & LUF BTR © BLOCK
QUER Z+ @+ CwaR 4+ & DISPLAY * Print string!
CROCR BUIT

REU_AEY DEYIL

Listing 16.

-228=-

Devil's dictionary

S¢
{ DEVIL'S LICTIONARY. CHT‘ 25-J6K-241
03d dictionary constructor, and sounde
ALl D + ynte this DEVIL vorabuiary ., which csn o=

U te
tect the uynderlving Fortr sysvea,

Thic set of words allows the syster ‘o dissiay at few soroc
wher ever the scundex search failed.

Replacing NUMBER by the fuzzv SEARCH aliows the systes
converse with the user more naturaily. A word
dictionary will tragger the furzy search and Q1ve the
useful suggestions.

Geal the DEVIL vocabulary,

Point of no returr,

o
{ CREATE DICTIONARY, CHT, 14-JAN-B4} It
-CH&K addr n --- agdr nly
Regsve non-hiant trailing characters from & string.
Tric word deletes characters of ar iecc#piete woms at *re :7°0
of & lire. For wore wrag-arounc.
IET 0 addr r o--- afdri ni ager ni)
‘rap 2 ttrirg to pe printec,
one

o
o

Exrrazt ore jlne

i

2607 8l 1% the =iring ¢ DE printEc in iing,

{ adgr count ---

TIOKARY, DrT, 14-JRN-B4: 29spct s

lowing as an entry In the [evii ¢
dictionary. To save space :n the eeaory. the exc?ana'lnﬂ
is nct coepiled. bet resains in the ‘ile. Only
of the explanation ztring 13 stored in the bpdy of ths Sl
defintiion, including the Slock nuaber and tre
ntfset,

gt run tiee, the erplanation string is
an printed on the ronsnle,

v Compile the word fol

tharacter

puileg out of

The veoabuiary zontarning all the

vie

d:ctinnary.

i

7

W

et

g

M

ter

&
&

=== gofe . convet one chara

[

har -~ spundey-rofe |

DROP § THER

Lad

5

wd

IFas -t

&1

[e

=

2
€.

%]
_MWL
faeo)

e

wy

disturbes.

2

(e

3%

~E
Ay

$ 07

leie

ere

KRR
L)

character.)

ong

ey

wr

and gov

e
il

Rl
£

ont'd)

o~
St

7
{

ionary

oy

[
(]

10

eref
ES

s

-229~

[

oo

fa

b g
L)

o

[N

[V

[T -

SR B Ged PR ben KD

~

Lo TS S I+ 4 3

Lued [LR S B S

ced BRI e Cad LYt

L L T S B v x T 5

o

g e

[ea)

A A Y bl e

G e d Bl e

LAY
ey
bl
o]
L]
&

[B

O R

L e ¥ W

I SEARCH,
TENTRY
{ Redetfingd to
TENTRY Jb
[Rerogpile (WAME, HAME

Listing 16.

fuzvy 4y

Spunder codes,

REPERT

Devil's dictionary (cont'd)

-230~

ail n
cticnary threa

ey cpde as that
gzzy dictionary
sir;ag is stored
hasr the siring,
he thread and pront

€y :r €3
n e
e -
y
oo g
[
: P
oo -
v
b
ki3 e
oy
n 3
e
u:. ®
"ﬁ ‘3
=

4

9?

-—J Q t&‘r»é %

d;:txs&efa tpxt,

Then, extra he Ez BBS5a08 aus‘ be generate.
{ Rede‘ined to incresen? TERTRY.:

Incresgent ENTRY 1f olg 1D is called.
reflects the state of spundey searchin
LOAD | Hecompile (NAME, .NAMES, and
SEARCH sust alsp reflect the TERTRY stazus,
SEARCH [New search.!

#hen tns Forin int
dirtionary,
te perfors a fuzz
the soundes

‘ros the ‘ile

b84)
fRi

Gk
2y

CFF A G T e

L A R S P - R R,

L T S e MO

fed B3 pen O

kO BR e

~EE

LSl

DEL ST O

AR~

d LEY

SEARCH "RUBBER

{ Fix the text interpreter.)
Phot
{ Flease type 2 worg and hit the refurn kev.!

£ : j

THE PEVILCS DF LID7IOKER
by Stan kelly-Bootie

Barr Dogpan
g wUBe

THE DEVIL'S DP DICTIONARY

by Star kellv-Bootle
Brbraw-Hil! Book Cospany
Hew Yore, HY

BN
o

Listing 16.

Leave only DEVIL cpen.)

-231-

For the zausesent of sveeld and sy frientds,

not to be soid or distributed,

29sepEiont
THE DEVIL'S BF DICTIDNAFY
Ily-Bontie
Booraw-¥i1] Book Loapeny

by Star ke

Jegeph ont
THE DEVIL'E DF BILTION&R:
by Etan Keily-Footle
Mrorawm-Hill Book Cospanv

Hew York, HY

Gdapted to IBM-PC by Dr. . . Ting
Baged on FEI Forth ereion 7

For the asuseesnt

o f
not to be sold or distriputern.

Devil's dictionary (cont'd)

[S 7 S Ny WP -,

CR A Ga B e

J O S T S SN

e e 08 e Caed BT b G0

o KO T S T & +]

L3 EYX

el

ok Pd fe

EE I

sl

Veed B3 Bk

R SV S

Sk X A B sef P s

[
&
v
[=]
e
v
'
oy
Py
Ly
s
e
e
fwe
Joos
£y
x
=
-
&
s
€
-
-
e
Ly
]
o

5 T‘f, a1 #
Page# | B:DICT.BLY
40
L ARACUS A reliable solid state biguinary COBputing device now o
artly superseded by the [ray series, © ABEND A systes ABDET de
likerately induced to sliow the third shift staff to leave early
. % AR brab Boziness Marhines, & cshadowy consortive rusored f
o b po [BE taveover pid in the a1d-1940'c,
I3

The rather heave interruption of 2 j0b or systes, usual
by self-induced, but sosetises invoked by the user. To terainal
g in such a2 sanner that future hopes and discussions of revivifs
ation stéra:t srsfif i

raty ates 1n the peighorhond of wishiul,

VACY & sagral andiceting that the error-detection circulis have
failed. ACRONYR & sesorabis wo-d fros ehich 3 non-sesorabie

ghraze is acrostically generated. & circcslocutory abbrevistion
gtter rorfuses with 1ts atoryp, MHEEOMID, | ALEOPPHOBIA The fe

ar of palindroes:, RLETL-B4 é" gxtension of ALEOL being foreu
tated by € ALE0L user groups.

ived sosent of piessure enjoved
LUDBE rings the ael .\ ALBOR
F f:r Bohases

P
TR

[

¥

L)

a s
o

-3

3

i
O
st

e

@

s

-

e

t -
T W i W
atterpt o shorien hhis nage. « ALBIRITHM A rare
sred hy the industry’s cavalier pursm?t and gauch

BLLE Besspriastion for Literaty an

PR RN I - - o
terrgtior:l azsarigtion found

Vals Tooancr
5

ae the geount of speething, as:’They aoss
ure but sossed aay pay.® b APL A Persorel Language, A P
nguage, 07 B Program&ing Language. 4 language, devise
erson, 5o coapacted that the sgurce ode Zan bE ‘fsei
¢

put reveaiing the prograsser s intentions or zeaparé‘
n ietary rights, 3 AFPLE £ popular personsl computer wit h
refreching nonnuseric, nonacronyelr apple-ation. o ARBUMERT AR
constantly pouncing on inngcent FUNCTIONS,
rch Projects Agency. An agency of the UG
stacbi*sheg in EQQE to test its defens
in the large-cscaie distributes proc
g;v;*’h Ea‘EcEﬁ The aisguides seart
ti1@e wher the gajoriiy

-
H

ted with

g o
"
LAl
L=
il
Ut
4
-~
=4
¥

Binch motor lars,

Range 1n A:DICT.BLY

Lo b4
ypon the free worid b

11 code f;fzei o
shels, led by the U, §, Governeent. who hels ard
TDID hostages et gunpoint 1 @ Mashington cCoseltfee compount *07
two vears. \ ASL Bserican Sign Language A forsal systes of nof
s for use in nonverbal, interpersonal cosaun:

ihe ;Qtﬁuis' generation

Listing 16. Devil's dictionary (cont'd)

5
Be! AUBRATIH faslgasated Union of benergl
TS, nﬁersrs; and INterpolators, Ses PAYROLL.

in

of best-selling novels

XVII. NEURAL NETWORKS AND EXPERT SYSTEMS

1. KNOWLEDGE REPRESENTED AS MATRICES

Matrices are shorthand notations best suited to represent
multivariable algebraic equations and linear transformations.
They allow complicated physical and engineering problems to
be described concisely and solved conveniently. Here I shall
discuss the use of matrices to represent knowledge as needed
for many different fields in the artificial intelligence.

At a very high and concepture level, a computer or a large
class of computing devices can be viewed as a black box which
accepts a set of inputs and produces a set of outputs:

o B oW R Wk A ON e WSS B S

_— |-
——=> R
—==> o=
—— R
Inputs —-——> Black Box | - Outputs
——=> fom——D
—ee> | N
--=> | Po=—=>
-——> b e

oo S S WS e S S S5 G

The class of problems best solved by this black box 1is the

*time independent' problems, where a set of inputs always produces
a definite set of outputs, independent of the past history

of the system. This is similar to a group of logic gates without
memory.

This black box can be represented by a matrix. The operation

to transform the inputs into appropriate outputs is a matrix
multiplication. Let the inputs be a vector {x1, x2, ..., xm},
the black box be a matrix {a11, a12, ..., alm, a21, a22, ...,
a?m, ..., ant, an2, ..., anm}, and the outputs be another vector
{b1, b2, ..., bn}, the multiplication is then:

Ax = b

This is the Hopfield model of a neural network, if we assumes
that an input value has two states, either on or off, and that
the an ocutput value is further evaluated through a threshold
circuit to produce an on or off state, corresponding to the
firing or inactive state of a neuron.

-233-

In this neural network, the knowledge of the system is contained
in the matrix A, which completely determines the behavior of

the network. The matrix may be determined by training or by
prior information about the problem. No matter how the matrix
is ?erived, the network will behave the same once the matrix

is fTixed.

The black box approach is also applicable to many problems
which use expert systems to soclve. Most expert systems are

based on rules, which are the basic units of knowledge. A rule
generally is presented in the form of an IF-ELSE-THEN structure.
However, a subject matter usually contains many such rules.

If the rules are time independent, a collection of related
rules can be reformatted to become a gigantic multiple

input case structure. Some examples are:

IF (feature, beak, can-fly, lay-eggs) THEN bird.
IF (carriage, can-fly, engine) THEN airplane.

The inputs can be represented by a column vector with logic
values as elements, and the output will be one element in another
column vector which indicates the outcome of the logic selection
by the input vector. The selection rules can be condensed

into a matrix and the selection process becomes a multiplication
of this matrix by the input vector. The largest element in

the resulting vector product gives the outcome.

It is probably very wasteful of memory to represent a large

expert system with a single matrix. If the expert system can

be divided into subsystems and submodules, it can be more efficiently
represented by a number of small matrices organized in a tree
structure. The outcome of a high level matrix selects one

sub-matrix at a lower level. The selection proceeds until

the lowest level matrix yields a useful conclusion.

2. NEURAL NETWORK SIMULATOR

A neural network simulator is shown in Listing 17. Screen

6 shows the words defining the memory arrays. This network

can accommodate 256 inputs and 256 outputs. There are thus

up to 64K synapes in the network. The inputs are stored in 2
byte array INPUT, which is 256 bytes long, and the outputs are
stored in a number array SUMS, which has 512 bytes. The synapses
are stored in a 64 Kbyte data segment, 20000H to 2FFFFH in

the IBM-PC. The weight factor of a synapse is represented

by a byte, with a range of -128 to 127. The input data are
either binary, with two values of 1 and 0, or bipolar, with

two values 1 and -1. The output of a neuron is the sum of the products
between inputs and the corresponding weights in the synapses.,
This sum can be represented by a 16 bit two's complement number,
without possibility of overflow.

Within this huge network, a practical application is defined
by the number of inputs and the number of neurons. ROWS is

-234~

the variable containing the number of neurons and COLUMNS is
the variables containing the number of inputs. The number

of inputs includes feedbacks from neurons. INPUT# is the number
of inputs from the environment. Generally, COLUMNS equals

to the sum of INPUT# and ROWS.

In cases where a threshold value should be subtracted from
the sum to determine whether a neuron will fire or not, a 256
number array THRESHOLD is also defined to store a 16 bit
threshold value for each neuron. The word DISPLAY prints the
weights in the network on the CRT screen.

The neural network can thus be shown schematically as in
Figure 32. :

PRODUCT in Screen 7 evaluates the products at the synapses of
& neuron and sums them to SUMS. The input is assumed to be
binary. If the input term is not O, the weight at the synapse
is summed; otherwise, the welght is ignored.

FEEDBACK takes the values in SUMS and deposite 0 or -1 into
the feedback part of the array IMPUT. These values will be
used in the next round of neuron processing.

The words in Screen 8 are services to set up and to display
the network. .SUMS and .INPUT print the corresponding arrays.
ROW! takes a row of weights and stores them into a row in the
network. COLUMN! does similar thing for a column.

Screen 9 shows the neural network of a 4 bit A/D converter,
as described by Hopfield and Tank(1). Here column O is the
threshold, column 1 is the input voltage, and columns 2 to
5 are the weights in the neural network. To exercise this
network, one first gives it an input voltage by the commands

RESET 5 VOLT

which set appropriate values in column 1 and initialize the
input array. Then, XX will take the input and evaluate the
outputs, which is then feedback to the input array. XX can
be executed repeatedly to get the network to converge.

Using integer arithmetics, most time the ocutput swings between
0 and 15, instead of settling at the proper binary pattern
corresponding to the input voltage. However, if the correct
pattern is set up in the input array, the network locks *o
that pattern correctly.

Another example is shown in Figure 17. It is taken from a study
of bacteria identification(2). 16 standard tests are performed
on a culture of bacterium. The color after reaction in each
test can be recorded as positive or negative to this test.

The results of the 16 tests as a 16 bit pattern can then be

used to match against the entries in a table of 54 different
bacteria. The closest matches will then be reported to the
ocperator as possible identifications.

-235-

For some bacteria, the result of a test may be positive, negative,
or not significant. These three cases are represented by 1,

-1, or O as the weight in the table. The test input can also
take these three value, meaning that the test is positive,
negative, or ambiguous. Thus the product rule has to be modified
as shown in Screen 12. The weight table is filled by loading
Screens 13 to 16.

A test pattern is loaded into the input array by 'INPUT, and

the matching results can be computed and displayed by the word

XX. The largest sum displayed corresponds to the closest bacteria
identification.

The same technique can be used for many other applications.
One interesting example is identifying characters printed by
dot matrix printer. Most dot matrix printer prints characters
in a 8 by 8 dot matrix, which can be mapped into an array of

8 bytes, or 64 bits. To differentiate 128 characters encoded
in the 8 by 8 bit matrix, we can use a neural network of 64
inputs and 128 outputs. If an input pattern matches perfectly
with a character known to this network, we will get 64 matched
bits. Most characters differ by more than 10 dots; therefore,
there are adequate margins to recongize characters in noisy
environment in which quite a number of dots can be missing

or misplaced.

There are much more efficient ways to compare 64 bit patterns.
The program in Screen 41 of Listing 17 is my version. The word
MATCHING takes two 8 byte arrays at addrl and addr2 and counts
the number of matching bits in these two arrays. The matched
bit count is stored in the variable BITS. Data in these arrays
are fetched in 16 bit chunks and are XOR'ed. The bits set

by XOR operation is then used by COUNT-BITS to increment the
bit count in BITS. The dot matrix patterns of the 128 characters
are stored in Block 98, and the 8 byte pattern to be matched

is stored in PAD buffer. The number of un-matched bits against
one of the 128 stored patterns is stored back in the 128 bytes
RANK array. The smallest entry in RANK corresponds to the
character best matched to the pattern in PAD. SELECT scans
through the RANK array and returns the position of the smallest

entry.

3. AN EXAMPLE OF EXPERT SYSTEM

A rule based expert system is composed of an inference engine
and a knowledge base. The knowledge of the expert is generally
encoded as a set of rules, which are a collection of

some IF-ELSE-THEN structures. The inference engine tries to
traverse this knowledge base, with user input to guide the
traversal. At the end, the expert system will either reach

a point where a definite consequence can be concluded or no
advice can be offered because the particular knowledge was

not encoded into the knowledge base.

-236~

Traversing through the knowledge base generally is very time
consuming, especially when the knowledge base is stored in

text form. Compiling the knowledge base into some standard
record structure would let the inference engine run much faster.

From a macroscopic point of view, an the knowledge base is

a gigantic case structure, with multiple inputs and multiple
outcomes. A specific set of inputs will produce 2 specific
cutcome.

In a time independent system, where the outcome depends only
on the instentaneous state of the inputs, the case structure
can be very conveniently expressed in the form of a matrix.
This matrix has as many columns as there are inputs, and as
many rows as the outcomes. The inference engine thus takes

a set of inputs and matches this input pattern with the patterns
in the matrix, stored in rows. The best match determines the
outcome as the proper answer. The matching process could be
summing the matching bits in a row, or a multiplication of
the input as a column vector with the matrix. The largest
element in the product column selects the outcome,

A rather trivial example is show in Figure 33 below. From a
list of features, the expert system can determine whether the
object under consideration is a dog, cat, bird or an airplane.

Figure 33. A Trivial Expert System

Feature Wing Carr- Fea- Beak Eng~ HairScaleCraw Swin Fly

iage ther ine
Airplane 1 1 -1 -1 1 -1 -1 -1 - 1
Glider 1 1 -1 -1 -1 -1 -1 -1 -1 1
Bird 1 -1 1 1 =1 -1 -1 -1 -1 1
Fish -1 -1 -1 -1 -1 -1 1 -1 1 -1
Cat -1 -1 -1 - -1 1 -1 1 -1 -1
Dog -1 -1 -1 -1 -1 1 - 1 1 -1

If we use the row of Airplane as input vector, and multiply

it with the matrix in Figure 4, the resulting vector is

{10, 8, 2, -2, -2, -4, showing that the best match is the
airplane as expected. It also shows that Glider matches quite
well with airplane while other animals are very different from
an airplane. Examining the product values in the results vector
allows one to evaluate a range of alternative selections and
thus more useful than a straight selection of a single outcome.

This approach also allows that the matrix element be expressed
in fractions between -1 and +1 to accomodate fuzzy logic
operations. This provision is important in cases where features
cannot be determined with certainty but have to be expressed

in terms of probability and statistics.

=-237-

bprinting off 6PRINTING

Paged 1 R:NEURAL.BLK

& §
4\ matriy sus G7sayficht | a’d converter O7gave ™ot
1 create input 256 allot inpul 256 erase 4 rows
7 create suns S17 allot suss 512 erase b columnc !
3 create threshold 512 allot threshoid 512 erase 2 inputt !
4 variable inputdé 3 inputd ! -E-4-20G10 {(ros’
S variable rows 3 rows ! -16 -6 0-22-2 ! row’
& variable colusns 10 colusns ! -326-8-44-8 2row
7 hex 2000 constant dseg decimal 0 -3 -1 -B B -3 3 row!
§ : display exit
3 cr 4 spaces colusns & O do 1 & .r loop “1t =B -4 G2 -1 { row’
16 rows ¢ (do cr i 4.r YR VGRS I B i row!
11 coluans ¢ 0 do 1) flip or -4 ¢ -6 -8 B -1t 7 ros’
12 dseg (x8) dup 126 and if -12B or then 4 .r G -4 -37 <16 16 -64 I row!
13 loop loop
14
15

7 10

0 \ produtt, feedback ObmayB7cht \s OBoathh:'
1 1 product

2 rowse0do O colusns § 0 do

3 j flip i + dseg (x& dup 128 and if -128 or then |
4 1 input + c@ 0> if + else drop then

3 loop i 28 dup »r threshold + & - r) suss +!

6 loop ; l
7
8

s feedback

rows ¢ 0 do
g i 28 suss + ¢ 0> i input + inputd 3 + ¢!
10 loop ;
i1
12
13
14
15
B 12
0 \ show results 0BmayB7cht \ bacteria identification 0BmayB7cht
{:.5uss rows @ 0 do i 28 sums ¢+ §3.r loop; : product
2: .input colusas @ 0 do i input +cd 3 .r loop ; rows ¢ 0 do 0 colusns @ 0 do
Jsrow (... row--) ‘ j flip 1 + dseg (xd) dup 128 and 1f -128 or then
& flip coluans 9 0 do i input + ¢d
3 swap over i + dseg (x') dup if 1- if - else + then else drop then
& loop drop ; loop i 28 dup dr threshold + @ - r) suss ¢
7 :colusn! { ... colusn --) loop ;
8 rows 9 0 do ¢ xx product .suss ;
9 swap over i flip + dseg (x') : 'input columns 9 0 do input 1 ¢+’ loop ;
10 loop drop ; \trow!' cr 3 .r 2 spaces ‘input xx
it s volt (n--) S4 rows ' 1B colusns !

12 o reBeradtrd 2t r> 1columt
13 : reset 257 input ! input 2¢ 4 erise ;

14 5 xx product .suss feedback ;

15

Listing 17. Neural network
-240-~

BrHEURAL. BLY

Paget 2

14
V Extend & Chain

b4

0Bsay87ch

(BgayB7cht

O\ bacteria dats.

OB g
[W
[V S Y
[I SN]
g e g
g e
4 vy
R B SRRV
i 1] +
R gy
LA
Y g sy
] 1 ¥
s D e AT
P I —
L
Rt e
3 ¥ § ¥
T g oy
Sy ey
L] 4] §
-y o
[
-y e
L
ey oy

ot g
3 ¥ ¥ 3
e gy
8 [
P R
[[
[N -~ -
[}
Y g
] # 3 §
B I, SRR
] i § il
® By ®
oo &S
[VW
KT g B

0 -1 -1~ -
I R
-1 -1 -1 -

Prl=b=f=f =1 =1 =f =1 -1 -]
g

-
T

o P
[

B
[P
By

i 1 i

R R —

3 § ¥

L R—

i fl 4
.
[
e gy ey
LR
R S
3 ¥
B R B
[A
.y o
iy 4
Rt]
] oy ¢
gy g
§ LI |
ey U oy g

= B W m
o O om O
L
Fy S g
e W g
-y s
y by
Ty Wy ey
PR R
W Gy oy
] 1 [} E
e gy ol
[IR
K g e
O gy
LI
ety EE gy)
4 i] L]
Wy W ey W
T
[9
Dy ot
P R
TRy ey
PR
Sy g oy
g o
[|
KD T ey e
LI
g By ey

#
ey e
s 1 4
L o N
P
® %X m B
Qo
[
wy M gy P
ey Ry e
P
ey g ey
[R
ey Ty
PR R
oy Ty W
ER T |
— g, e
4
Y g e
i
R]
LI .
W Ny iy
»
ey ey
¢ 1
- g e
[R R |
Vg e
[
R R)
3

ey S g ey
L
R]
]
oSS g g
P
ey
i
T gy vy
§ [
R A]
1 L | 1]
Wy D e, 2K

I=1 -1 -1
I-1-1-1
Pt~

§ -1 1 -

§ -1 ~f

HO R e B I

P=l-01-1-1 10 ron

-1

-f-1-f
L -1 -f-1

i

1 -1

if row!
12 row!

R R

i
bl =1 -1 -1 -

I=00 0 1~

i-1-1

12 -1 =1

{-1
i1
i1

i

3-1 0 1-1-1-

Pol=l =t =t -1 13 row
14 row!

el -]

1-1-1

14 -1 -1 =1 -1 - -

15-1-1 4 1

f-1-1-1-

i

i~

{0

i4
0% bacteria data

(88ayB7cht

15 row!
16 row!

e A e

¢ -1

i1

= -1 -1
P=i-p -1

T-1-1 01 (-1
-1

Z -1

el =l -1 -}

i

i

01

1-1

17 row!

-1 -1 -1 -

pen—

S B A e

1

i

I

® 2 & =
o o 24
B S g B
G T e, e
L A I o]
WDy
[
R A I
[
g Sy e
[R
R T
[

T e

[
e TRy SOy
[1
Ty
[
G T g e
) 1
e WDy e
L |
gt
P P
B AR S
[
IRy et
PR PR
g XD
¥
R s I
[|
ey IR g ey
L
P gy ey
LI
W gy e
[D |
g WY gy e

Y gy

{
i
i

i
o
¥
Y g,
4 4 4 1
- g ey
LA A
Rl e
PR
gy vy
i ¢ § §
R A A
Ty b
[
R R
oy
W g g
H []
R B end ey P
L
R SR
§ oy 4
oy Sy wem
il 3] H
o gy e
ey W

s
i
oy
1
oy
3
g
g
i
)
§
L
vy

15 -1 -1 -1 =

i35
G\ Extend a Lhain

GBeayBicht

= =
& &
[V
o
HE
Vg
§ 4
ey
3 §
oy P
PR
ey
§ i
g g
1
g ol
] ¥
oy oG
1 ¥
v
3]
g oy
¥ 8
ey o
1 3
- -
[i
e
g
g i
ey S
§ L
O
[i
R Bl
3 §
oy Py
] i
sy
] 4
w7

37 row!

Pol=l =l -f =1 =1 =1 =1 =1 =1 -4

31 -1 -1 -1 -1 -1

3T row

-1 -1

H
4

[

L S S A B |

HES

4-1-1-1-4

KL]

36 row

]

40 row!

Tl -1-1-]

il row!
42 ros!

L=1-1-1-
¢ -1 -1 -1 -1

i

-1

-t -t

g

R s SN

43 row!

0 0 -1 -1 -1 -
P=l =l =111~

-]

g

I

44 ron!

[I]
I~y -

1 -1 -

i

£5 -1 -3

e
e
i
[
o)
o
e
A
e
O
&
4
[}
o
i
i
£
=3
W
=

Listing 17.

i
-
<t
o
f

s

pot
1

[y
st

el

[
Y

$31

18]

B

[

oy

b

s

"o

o

i

s

[t]

Ll

I8

s

.

ot

i

Ry

3

4LE

o

ot

+

o
e

[N

[T

Teoag

IS
¥l
L3
]

‘-

[

1t

.

=

IS

i

[,

Ay

iy

.
v

Yy

I

i

5

j

b
o
wn

3 e

as

o
Y1
5
[N
i

[

B

s
11
+
1l

[£5}

Vi

me o —
[RRENEE

r..,

-

wn

4

e

o
w
¥
i
(23]

e

TS

iR R

L

T

4

i T

-
[

LD

[T

iy o

iy N
&

b

L)

%

1t

2

v

.

)

ARt

50

i

Ly s
LA

1)

I

o

[
o

e 1

[SCE)

[]

[TYEERY

b M

L B

wg b

0

i

i

o
I
b
i
2%}
[}

R

i

bt
e
1

e

[
cad
I

(O]
w g

f o]

=
T
151
[

P
e

[
[}

5w

i

Neural network (cont'd)

Listing 17.

-242-

vy

i

[
Lo}

4 VL

i

Hg o o

W

BT g
i
§
i
=
[P
&y
v i
K o
Ea
we
g e BT pene oy B pn v ey a g 04 L¥38 e AT ey g ey
oW o e T P I S

Neural network (cont'd)

®

17

b
£
vy
4
w0
A
-

FORGET

R

/ :

Micrary Lot d

- ”_‘,{)l

St T
Heip o el
Y sks e
Lracces 1Y

rresi ok 1

-244-

After reading Nathanial Grossman's paper '7776 Limericks' which
appeared in Forth Dimensions Volume 8, No. 6, p. 28,
March/April 1987, my immediate reaction was that Chinese is the
best language for computerized limericks. The reasons are:

1. Chinese words are single characters, which can be arranged
neatly to form sentences of fixed length to construct poems.

2. All words are single syllable in pronunciation. Metric and
rhyme can be easily arranged.

3. A vast literature base is available. The 5 character and 7
character poems of Tang Dynasty are especially suited for
computerization.

Although I was fully convinced that much more serious and
interesting limericks can be derived from Tang poetry, I was not
able to do anything then, because I did not have enough tools to
implement them. I had a Chinese character generator board which
turned an Apple II computer to a elementary Chinese typewriter.
I use it to compose and print bulletins and announcement for our
church. The program has to be written using Applesoft BASIC,
and words and sentences could not be manipulated easily.

Another problem is that each Chinese character is encoded to one
to five ASCII characters and terminated by a blank character.
This is the Chang-je Chinese character coding method, which was
one of the best system in encoding and constructing Chinese
characters, very popular in Taiwan and Southeast Asia. The
variable length representation of Chinese characters make it
very difficult to store and manage large amount of text.

The possibility of implementing Chinese limericks was a very
important factor motivating me to upgrade my IBM clone system.
My clone was one of the first systems built by my pirate friends
in Taiwan. It has 256K of memory, 2 floppy drives, and a color
card. It has served me well for more than 3 years. Using Forth
almost exclusively, I have never encounter a situation in which
I need more memory or hard disk.

This summer, I found a very good Chinese word processing system
for IBM PC/XT/AT, by Kuo Chiao Business Company in Taipei. It
contains about 6000 most commonly used Chinese characters in two
fonts, 16 by 16 dots and 24 by 24 dots. The 24 by 24 font has
near typeset quality. However, it requires 640K of memory and =
hard disk to store and use the fonts. After much soul searching
and consultation with members in our church, we reached the
conclusion that it is time to catch up with the technology and
upgrade the PC so that we can use the Chinese system, code name

=245=

KC500.

KC500 works very smoothly. It comes with a WordStar-like word
processor so that we do not have to write programs to compose
and print bulletins. It also allows the user four options of
input methods to select Chinese characters: the Chang-Jje method
which is based on radicals and strokes, the Standard
Pronunciation method based on the phonetic spelling, the Inner
Code method based on the 2 byte coding system developed in

Taiwan, and the Simpl ified Chang-je method, which uses the first
and the last two codes in Chang-je method and a menu to select a
Chinese character.

The best feature of KC500 is the way it stores Chinese text
files. The Chinese characters are stored in Inner Code, two
bytes per character. This feature makes programming limericks
very easy, because fixed length verses can be stored and
retrieved very conveniently to/from the text files generated by
the word processor.

From all the different styles of Chinese poems, I chose the so
called 'five character old poem' style of early Tang Dynasty.

In this style, each verse consists of 5 characters and each poen
contains 4 to 2n verses, where n can be over one hundred. Rules
on tonal inflection, rhyme, and symmetry of words in verse pairs
are not held as strictly as in the 'ruled poems' in the middle
and late Tang period. I also restrict myself to the work of Li
Po, the most famous poet in Tang Dynasty, because I happened to
own a copy of his selected poesms.

I keyed in 1082 verses of the 5 character poems in this boock by
Li Po, forming the data base of the limericks. L few samples
are shown in Figure 34. Here poems are separated by two
carriage return and line feed pairs. In the data base, only one
carriage return/line feed pair is retained, as in between
verses. FEach record in the data base is 12 bytes long, ten
bytes for the five characters and a carriage return and a line
feed. The CR/LF pair is convenient in listing the verses and
printing the data base.

The limerick program is the Forth word POEM defined in Screen 2
of Listing 18. It picks four verses randomly and prints them on
the CRT screen. Given a verse number, the word .VERSE locates
that verse in the data base and prints that verse, followed by a
carriage return and line feed. KC500 captures the ASCII
character sequence before they are emitted to the screen. If a
pair of ASCII characters are a valid inner code of a Chinese
character, this character is printed using the font stored in
memory; otherwise, the individual ASCII characters are emitted.

The word CHAR takes a byte offset as input, fetches that byte
from the data base file, and then emits it. Each byte must be
fetched individually from the file and emitted. It might be
more convenient to TYPE 12 bytes at once, but one gets into
trouble when a verse crosses the block boundary.

-246-

A few samples of limerick are shown in Figure 35, produced by
POEM.

LIMERICKS in Screen % is a flashy demonstration of the
limericks. It first clears the CRT display, opens a rectangular
window randomly on the Screen, prints a poem in the window, and
then continues. A long delay is thrown in so that people have
time to read the poem (if he ecan read Chinese.) The results
after a number of poems are displayed are shown in Figure 36.

WINDOW.VERSE prints one verse in the window with two leading
blanks and two trailing blanks. CLEAR displays 9 white squares
forming one row of background in the winiow. BOX displays a 9x5
window of white Square, ready for the poem to be revealed at the
center of the window. WINDOW picks a random location on the CRT
screen, opens a window there and displays a poemn.

EVERYTHING dumps the entire data base to the screen, with four
verses to a line. This is used to print the data base on the
printer.

This limerick program at this stage is really dumb. It only
knows how to display a poem. I am in the progress to classify
the verses according to the rhyme of the last character. If
verses are chosen from the same class, they will rhyme properly.
If the verses are further classified according to their
contents, limericks can then convey some meaningful thoughts.

As we divide the data base into finer partitions, we will need
more verses in each partition. More poems from other poets can
then be added to the data base.

A more ambitious undertaking will be generating limericks in the
'ruled poem' style. There are eight verses in a ruled poem.
Verses 3 and 4, and verses 5 and 6 are two pairs of symmetric or
mirrowed verses. Words in a symmetric pair must have the same
grammatical structure. The meaning of words or phrases in the
contrasting verses must be similar or opposite. Using these
rules, verses can be reconstructed with classified words and
phrases. This will greatly increased the possible combinations
to construct limericks.

Chinese is the last language to be computerized, because of the
sheer mass of characters. Once it is conquered, there are lots
of interesting thing we can do with it. Poetry is one area
where computered can help in organizing the data and making the
information readily available. This limerick program only
scratches the surface of the possibilities.

-247-

WL LTE
ERERE KT
KR HE
sE IR AR

=140
bl am €2
{58 — Rl
Ky REE

HERHH
EREHE
TOEHESR
SUEAAL

X Z AL
F o GiAhE
eSS
KK ¥
EHHERR L
LifsRed ol
WR=TH
BEEER

Lo v
(LIRS S 2
R AR BH &5
Bimig Rl
N REFE G
KEERE
MadtiE b
B SR A

fHAKH
ETIT B
e 2 PG ¥0
WAR Y
FEan i
1A [3
RRBK S P
ZEME ST B8R

Figure 34.

(i 1
ot Ziski
HER=8%
R -8
B INREBAK
P AL
IR R
B A
(MRS 49 L
At &&E T
He VX A B
I AREZ
ZE L A
EGcmEE
FREK M ER
WEHAED
¥R LU
B8P
fH S B I
HISGEERR
HiETErreF
A i A H]

BE H & & AR
SEHSE £
BIcEAS
WL E RS

Examples of Chinese poems

~248-

G B AR SRR E
Y 3T o (B A [
5% il LU R D E
AskgELF

ZFIERK A T
FBHED
INBEETR SR JEL

HEIRIRE S A

B £ 5] S IsETE
HBKBACK
AEBREA MR

P Ll — T E K E BT

PO wEEM
FHIE—-HS
IR O
e EMEL

AR BRETERX
ILRE KRR
IEER SRS
WY AT

> ok

R

poen poem

CEEL: % M

MR EEERY s R atL

ER=aX M RETK

BRI REK i} /32 58
ok ok

poem poem

FRER A I A

iiif TN - SR+

A BNEEL EEREHL

TRERE ReEgbdi
ok ok

poem poem

& _t 28 FRK IR BE 8%

EEEOE B AR

ikl L a3 RRT|UIE

EREaS HEHIMEFE
ok ok

poem poenm

2mEFE i\ TEEE

HEEEY BEFR5%L

AR R B

ARARE EWBLE A BY
ok ok

poen poen

ANHIEIERR gRTEE

{38 —&#/h REFERH

W SEBE H E S A YA

SEEH ETH BEILFFRAK
ok ok

poem

ESERE

=®\~+H

iEE B {5 25T

EmEFS
ok

Figure 35, Chinese limericks generated by POEM

~249~

. 1
Tg——

. (-

- [T
waw

oy
ﬁ .
H

mmm-;,
T oy

S b *

w
A
O
o
o
O
=
e
~
4
e}
>
o
~
o,
12}
-«
e
o
]
O
£
[8)
0

Figure 36.

-250~-

Paged | CiLIMERICE BLY
i g

b gz ligerichs TbaugBicht \ print svervthing DlauslT
i 7 toevervihing
2 poetry.blk to Sring all the verses into play, verses & § do crocr
IV Execute LIBERICKS tp display all the verses constructed 1dup 4 .r & 0 dp dup windos.verse i+ laop gro-
4 ' by this progras, § +lpop
5
5
7
B
g
Fs]

[T G SR
LS P I N R

2 9
0% records 1haugBTcht
1 variable seed here seed
g% 2z randoe zeed B T1420 % 4927 4 dup seed ¢ .
%% It choose randos usdonip
& var:iable versee 0BT verzgs
= 5 ¢ orhar 0 oaddr -
é% £ 1026 Jpod Blook 4 c# ease
= toLverse {on ==)
2 v 12 T dgs dup char it lsor o drop o
9 : poes | print oz randomiv pick 4 verse poes)
i€ £rocr
1! § 0 gy verses € chopse .verse logp
12 ¢ window,verse | n == ;
12 12 % 2+ T spaces 10 0 do dup char 1+ loop drop
14 Z spaceg :
18
3 i
Y window dispaly lbaugBicht

hex
telear [oy -)
at 90 do el esat bd emit { sgaure f1l1) loop @
decigal
:box 50 do Zdup clear I+ loop 2drop
: wingow &2 choose 17 choose 2dup bos
swap 2+ sWap
4 % do i+ 2dup at verses B chonse window.verse loop
2drop
: lisericis
dart begin window 1000 s kev? until

[T,

-~ N R 7 I T SO S,

o

[
Food

[,
£

(¥

[

Listing 18. Chinese limericks

~251-

-252-

XIX. THE SIMPLEST LINE DRAWING ROUTINE

Phil Koopman(1) published a very nice article on the Bresenham's
line-drawing algorithm(2). This algorithm is the basis of
most computer graphics packages due to its efficiency. It
requires only 16 bit integer addition, sabtraction, and
multiplication by 2. The thing which troubled me was that
it takes about 8 screens of source code to implement it.

I did it a couple of years ago, using about the same amount
of code as Phil's. The reason is that the program must
include 4 slightly different routines to handle lines with
slope in four different regions: 0 to 1, 1 to infinity, 0 to
-1, and -1 to minus infinity. It is not possible to write

a single routine to handle all four cases.

It troubles me because I feel intuitively that such a simple
task--drawing a straight line--does not warrant 8 screens of
code, especially in Forth. Any two year old kid knows how

to do it on a newly painted wall. As we've seen editors in

3 screens, assemblers in 3 screens, data base management in

3 screens, and floating point package in one screen, 8 screens
are really too much Tto draw straight lines.

In the summer of 1985, while I was studying recursive techniques,

I found a very simple method to do line drawing. The code

is very short, less than half of a screen. It was published

in the FigAI Notes(3). Probably because of its brevity, this
routine escaped attenticn. I thus feel a longer paper is necessary
to give it some more credit which it deserves.

The code published in the FigAl Notes was written in F83X for
Apple II. It is rewritten for IBM PC in F83, with a few more
words to plot dots in graphic mode. The code is improved so
that the testing of end of recursion is more accurate and
truncation is replaced by rounding in the 2/ operation.

The algorithm is extremely simple. To draw a stralight line
between two points, you first find the middle point and plot
it. This line is then broken into two equal segments. You
then find the middle points of the two segments and plot them.
And so forth till all points on the line are plotted.
Recursion is really handy.

If the middle point is plotted before the line is segmented,
the line is drawn by filling the points along the line. 1If

we draw the end point at the end of a recursion tree, as shown
in the code, the line is drawn backwards; i. e., from the end
(x2,y2) to the starting point (x1,y1). To draw the line from
(x1,y1) to (x2,y2), we must plot the starting point of a
segment at the end of a recursion tree. This routine is thus

253~

also suitable for plotters, not only for raster scanning
devices.

The code as shown in Listing 19 is not as fast as Bresenham's
algorithm, but there are lots of room for improvements,
especially in the tests to determine the end of recursion.

It could be implemented in machine code if speed is needed.

You have to excuse me for boasting a little bit, but this is

my proudest discovery. I am pretty sure that some mathematician
had already published it in some obscure journal long time

ago. I sure like to put my name before this algorithm if
nobody else claimed 1it.

Most recently, I did a little bit of research to see if this
method was ever mentioned in the literature. I dug out an
interesting treatise "Fundamental Algorithm for Computer
Graphics"(4), in which the first section is devoted to

line and area drawing algorithms. Bresenham is prominently
present in this book. However, there is nothing about
drawing straight lines using this recursive method. 1If the
scholarship of this book can be relied upon, I felt that

my chance of claiming the discovery is fairly good.

REFERENCES

1. Koopman, Phil. Jr.,The Bresenham Line-Drawing Algorithm,
Forth Dimensions, Vol. 8, No. 9, pp. 12, 1987.

2. Bresenham, J. E., Algorithm for Computer Control fo a
Digital Plotter, IBM Systems Journal, Vol. 4, No. 1,
P.25-30, January 1955.

3. Ting, C. H., Studies of Recursion, in "FigAl Notes",
Offete Enterprises, p. 58, 13985.

4. Earnshaw, R. A., Editor, Fundamental Algorithms for

Computer Graphics, NATO ASI Series, Vol. 17, Springer-
Verlag, Berlin, 1986,

-254-

bor

et

TS |
ALy Taf

WERT

i
5.

iing pet

&

segeen

=

B

%

eturn to text gode,

[
w“w
L
B
et
@
£
o
P
fnd
3
[=%
R %]
i
@
e
IS
a
o
IS

@
£
s

k3

il

.
=

¥

and

€

7

E
s
b
b

.

i

~255-

T

recyrse

Recursive Line Drawing Routine

sting 19.

i

&ax

L

= ahs r

BY CHARLES M. SCHULZ
DID HOU KNOW THAT IF YOU EVER SEE A
BRACKET B (TSELE
HOU CAN BE SURE (TS
UP TO KO GOOD!

M PRACTICING MY
cycicel BRACKETS...

£3 ¢3¢l

~-256-

XX, DIRTY WORDS IN FORTH

1. HISTORICAL BACKGROUND

In late 60's and early 70's, Forth matured when Chuck Moore

put Forth on every computer within his reach. At that time,
small computers used in observatories were minicomputers, most
of them were 16 bit machines, imprinting Forth with the strong
16 bit flavor as reflected in Forth-77 standard. The width

of numbers on the data and return stacks were 16 bits. However,
addresses were generally what were natural for the specific
minicomputer, mostly pointing to words of 16 bit gquantities.

For machines which used bytes as the basic storage unit, he
would used byte addresses.

When figForth was implemented, the model provided by Bill Ragsdale
assumed a host computer which used byte addresses exclusively,
because the 8 bit microprocessors had become the dominant species
in personal computers. FigForth addressed the needs of the

users of these small computers. The side effect was that it
legitimized byte addressing as the only way to address memory.
This side effect was fossilized into the Forth-78 Standard

and the subsequent Forth-79 and Forth-83 Standards, in the

form of a set of standard words which explicitly assume byte
addresses as their parameters.

Using 16 bit addresses for memory in the units of bytes, the
maximum amount of addressable memory is 64 Kbytes. This memory
barrier was broken several years ago, as microprocessors using
32 bit registers became available. If Forth were to become

a significant player on advanced microcomputers, it would

have to be able to use 32 bit numbers and addresses in a more
natural fashion.

2. MEMORY SPACE AND ADDRESSES

The Forth standards assumes that addresses are pointers
pointing to memory in increments of bytes. They are thus not
compatible with machines which address memory in units other
than bytes. There are indeed many minicomputers which address
memory in 16 bit, 24 bit, 32 bit, and other odd units. Programs
written according to any of the Forth standards cannot be ported
to these machines without significant modifications. This
inconsistency became very irritating with the Novix NC4000 chip,
which is truely a Forth machine but imcompatible with the
existing standards due to its 16 bit cell size.

=257~

The concept of memory Space is important in understanding this
problem. The same physical memory can be addresses by many
different methods. We are conditioned to think that memory
are always organized in bytes and addresses are pointers to
bytes in memory. The byte memory space is only one among many
methods to access memory. The bit memory space is important
in graphics applications. Since Forth words are genersally
represented by 16 bit pointers, the 16 bit cell memory space
is useful in organizing Forth dictionary and data arrays.

For double integers and single precision floating point numbers,
32 bit memory space is appropriate. In one machine, there
are simple operations 1o map one memory space to another.
However, in machines which use different memory pointers to
organize their memory, the mapping is not necessary
straightforward.

We must acknowledge the existence of machines which do not
use byte memory space and find ways to relax the standard so

that these machines can be accommodated.

3. DEFICIENCY IN figFORTH, FORTH-79 AND FORTH-83

The most serious defic iency in these standards is the assumptions
that memory is organized in bytes, and numbers and addresses

are 16 bit in width. These assumptions must be relaxed

in future standard for 32 bit machines. One has to realize

+hat an advanced CPU can access memory for many different types
of quantities, bytes or characters are only one type of gquantities.
Other quantities include 16 bit words, 32 bit long words, etc.,
and sometimes even individual bits. The standard should not
demand that an address must always be a byte address. The
address should be the one which points to memory in units most
convenient for the machine, which may be bytes, 16 bit words,

%2 bit long words, or vhatever.

The width of the addre ss and number should also be the most
natural one for the machine, 16 bits at the least, but can
be 24 bits, 32 bits or whatever.

I+ seems that a new standard with such relaxed requirements
will be difficult to formulate and to be agreed upon. However,
if we look carefully at the Forth Standards, it will be obvious
that only a small portion of the word set needs to be clarified.
These words are characterized by that they require addresses
explicitly refer to by tes in memory. If they are excluded

from the standard or re-worded so that they do not require byte
addresses, a more enconpassing standard can be arrived at which
can serve the needs of the Forth community for a long time.

-258=-

4. THE DIRTY WORDS IN FORTH

Most words in the standards are 'pure' words, which are not
sensitive to the size of the memory cell in a computer.

They assume that the widths of the affected parameters are that
of the items on the stacks. They include stack words, arithmetic

and logical operations, and many others. In a 16 bit machine,
they use numbers or addresses of 16 bit width. In a 32 bit

machine, they use numbers or addresses of 32 bit width.

The *'dirty' words are those which use bvte addresses explicitly
to access memory and those which assume: that the parameters
involved are 16 bit numbers. The dirty words cannot be ported
from a byte addressing machine to a cel’ addressing machine
without changing the program. Problems will also surface in
porting these words from a 16 bit machine to a 32 bit machine.

The 'pure' words and the 'dirty' words in the Forth-83 Standard
are grouped and listed in Figure 37 for comparison. It is very
encouraging that only a very small portion of the standard
words are actually dirty. Hence it should not be too much
trouble in cleansing the standard to become a pure one.

All the dirty words uses byte addresses to get information
from memory or store data in bytes to memory. The addresses
are strictly in the byte memory space and hence cannot be used
in a machine operated in the cell memory space. The byte space
must be mapped or translated into cell memory space for the
desired function.

5. SUGGESTIONS FOR A MORE POWERFUL FORTH STANDARD

To design a more powerful and more encompassing Forth standard,
the following suggestions seen appropriate:

a. The language in the standard must be relaxed and does
not requiring that numbers and address are 16 bits in
width.

b. The widths of numbers and addresses should be the
'natrual width' of the computer, though not less than
16 bits.

c. The 'dirty' byte addressing words must be
isolated into an extension. layer, but still
available to be used on a byte addressible computer.

d. Many 'dirty'! words like CMOVE, FILL, etec, should have
equivalent words in the cell Space to perform equivalent
function more efficiently.

Figure 37.

Pure and Dirty words in Forth-83 Standard

PURE WORDS IN FORTH-83 (118 out of 134 words)

Logic:
Stack:

Comparison:
Arithmetic:

Memory:
Numeric:
Control:

Terminal:
Storage:
Program:
Dictionary:
Conmpiler:

Vocabulary:
Defining:

DIRTY WORDS

Memory:

Numeric:
Terminal:
Compiler:
Vocabulary:

NOT AND OR XOR
DUP DROP SWAP OVER ROT PICK ROLL
?DUP >R R> R@ DEPTH
<0 > = 0¢ 0> 0= U<
+ = 1+ 1= 2+ 2- * UMx UM/MOD
2/ / MOD /MOD */MOD */
MAX MIN ABS NEGATE
D¢ D+ DHNEGATE
@ ' 4!
BASE DECIMAL <# # #5 HOLD SIGN
DO LOOP +LOOP LEAVE I J IF ELSE
THEN BEGIN UNTIL WHILE REPEAT
EXIT EXECUTE
. U. .'v ,(CR EMIT SPACE SPACES
KEY
BLOCK BUFFER UPDATE SAVE-BUFFERS FLUSH
BLX
FORTH=-83% QUIT ABORT ABORT"
HERE PAD TIB >BODY
LOAD (, DOES> [COMPILE] IMMEDIATE
COMPILE STATE LITERAL [] #TIB
FORTH DEFINITIONS *+ ['] FORGET
: CREATE VARIABLE CONSTANT VOCABULARY

IN FORTH-83 (16 out of 134 words)

ce C! CMOVE CMOVE> FILL COUNT
-TRAILING

CONVERT #>

TYPE EXPECT SPAN

ALLOT WORD >IN

FIND

~260-

XXI. STATISTICS OF WORD USAGE IN F83

1. INTRODUCTION

How often are various Forth words used is a question interesting
to most Forth programmer because this type of information can
lead to better design and the optimization of Forth systems.

Most often used words should be coded in machine language for
execution speed. They should also be at the top of the dictionary
to minimize the time for interpretation and compilation. A
number of year ago, before Don Colburn made his first million,

he mentioned in a FORML meeting at Hayward, California that

he used an extra cell in the word header to accumulate statistics
of word usage, either during compilation or during execution.

He also mentioned that the most often used Forth word was (

for comments, which was rather unexpected at that time. Since

I did not have the luxury to metacompile my own system with

that type of flexibility at the time, this concept had remained
to be a distant curiosity for me.

T D S o D S SR G N S e N A W ow S G o
s e S G e W S e e Gm N e s e B e S s e o s

S an G S ON o e W Gl S e e W G N S s e

i H

i i

| |

! name field : Figure 328, Forth
i §

f H

§ H

H {

word layout in F83,

S e e R W U NS M G W S WS S W G R S e e

s G o S G A W S S G W SR M S o i Sl o e

H H
i §
H H
H i
H H
£ H
| parameter field !
H H
i i
H £
i H
§ §
§ H
i H
H i

After plunging myself into the F83 system produced by Mike
Perry and Henry Laxen, I found a ready solution to analyze
the Forth word usage without much hard work. The secrat is

-261-

in the extra cell used in F83 to store the view file information.
As shown in Figure 38, the Forth words in F83 are laid out in
the dictionary composed of 5 fields: the view field, the link
field, the name field, the code field, and the parameter field.

The view field stores a file number in it upper 4 bit subfield
and a block number in the lower 12 bit subfield, allowing the
source screen containing the word definitions to be retrieved
from the disk and viewed by the user. If I am not going to
used the view field for viewing purposes, I am free to use

it for whatever purpose I choose to do with it. Why not use
it to accumulate the statistics of Forth word usage?

To use the view field to to statistical analysis, I must do
it in the following sequence:

a. Clear the view fields of all words in the dictionary.

b. Build a 'word' processor which will scan screens of
code and increment the view field when the corresponding
word is encountered in a screen.

c. Run it through as many source files as available.

d. Tabulate the statistics.

2. THE IMPLEMENTATION

The program shown in Listing 20 performs the above functions. The
program looks extremely simple because it utilizes many powerful
and interesting features in the F83 systenm, which requires

some explanation.

The most important feature I used is the vectored execution
procedure, which allows me to assign a number of different tasks to
a single word. For example, I want to scan the dictionary

and clear all the view fields before analyzing word usage.

After the statistics is collected, I want to scan the dictionary
and print the contents of the view fields. The scanning operations
in both cases are identical. The difference is the actions

I have to take after I find a view field. Anticipating that
different actions are to be taken, I defined a vectored word

WORK as a DEFERred word and use it in the definition of the
scanning word WORKS, which follows the dictionary link to locate
every word in the dictionary and perform WORK on each of then.

WORKS is complicated by the fact that F83 hashes the dictionary
linkage into four threads, and all four threads have to be
scanned when traversing the dictionary. The definition is

very similar to the word DEFINED, which does the dictionary
search for the text interpreter in F83. It scans all four
threads and processes the one with the highest link field address.
The process continues until all four link addresses are reduced

to zero, indicating the end of the threads. The scanning is
performed only on the FORTH vocabulary, in which all the primitive
Forth words reside. Usage of words in other vocabulary are

much less frequent and the statistics is less significant than

-262-

those word in the FORTH vocabulary.

After INIT-VIEW is defined to clear the view field, given a

link field address, we can zero the view field of all the words

in the FORTH vocabulary by vectoring WORK to INIT-VIEW and execute
WORKS. After the statistics is accumulated in all the view
fields, we will vector WORK to PRINT=VIEW and execute WORKS.

This time around, WORKS will print the contents of the view
fields with the corresponding word names.

ACCUMULATE in screen 19 is the 'word' processor which processes
source screens very much like what INTERPRET would do. If

a word is found in the dictionary by DEFINED, the view field

of this word is incremented. If a word is not found in the
dictionary, actually the FORTH vocabulary, it is simply skipped
over. I couldn't care less if it is a number, which will be
ignored also, except 0, 1, 2 and 3, which are Forth words.

In F83, LOAD is also a vectored word. I define [LOAD] to use
ACCUMULATE to analyze the contents of a screen. After LOAD

is vectored to [LOAD], LOADing a screen will accumulate counts
to words which appear in this screen. THRU can be used to
analyze a range of screens in a file. Running a large number
of screens through, we can get fairly representative statistics
for all the commonly used Forth words.

F83% is a very large system consists of many system and utility
programs. 1t serves very well as z data base for the purpose

of statistical analysis. Using the above technique, I ran

all the source screens through this word processor, including

7 F83 source files with 230 screens of code. There are 555
words in its FORTH vocabulary and total occurrence of these
words is 10603. The result is tabulated in Figure 39. The most
often occurred words, those counted 30 times or more, are listed

in Figure 40,

The most obvious application derivable from the above analysis
is that 1f we can arrange the dictionary so that those most
often used words are on the very top of the dictionary, the
speed of interpretation and compililation will be significantly
improved because the dictionary searching time can be reduced.
Another interesting observation is that comments were heavily
used in the F83 system using (S , \ , and (. This is of course
dictated by good programming style and in-line documentation.

-263=

HAMOS
E |
JEINND
<40

LE)]
HINwNa
MM
14007
SO e
(R elen]
(00
“annoa
B 18
A3
c SRR
08
<OON
EiSg iR

1

¢

= Tatelc i b
RPN
e

Legu}

1d
ANOWD
o BADWI
A48

¢ 45

&gy
oM
03
At
Ao
HING
ML
I
104
104~
4174
1

¥ S NT eI LI QD
o= n o e

1
N

0%

e

b
10g
et

L=

>

07

<Y

<

=2+
I d
T
Ny

o0

HOX
1N
el
EihiE
L3387
LASAND
ADN0LD
NO

EE]

+
ALv9EN

¥4

-1

-z

B4

gan
QOM/ N
%)

20

w4y

L0

w

<
ALYDING
>y

o

»

o

NIW
Ao
NI 34
NTHLT#
ez

i
A0uaz
4Naz
dUMGT
HIADZ

&5
g
1 £
8
N
0%
15
iy

i
%

0L
ay
3
¥
H
L

134

Oovi

]
0L
9
[

(524
Loy

-

T4 8 08 8 o= v B3 33 04 B
s e

Ay
dNay
10ME
+(]
ALvH3ING
a<s
Sawa
s
/a4

-{
FLYDINGL
=00

w={]

>Na

>a

<
NTWG
oW
s

OO /W
AOW/ T
L

s

4

Q0w
QAOW/
/&

Biiy
AMLINT
HAMETY
QudS
Ocdtd

ElY
ERgiel
£
136440
A%va
07
ERE]
I I-NI

BNTINT Y
LIM3

HIS

MO Mo
g

M MM
40

LE

1847

480
ANIYMND
S30/H
LX3in0o
CREIN
HLATHM
HNET-008
A7

ades(

N1

MY S
dras
ONG
¥

549
RRE:
Bty
T4
3G
AN I
ANADD
HiON3Y
ANt
Al
UAA
Bk
Gy
ONITwa g~
et 0]

NV)N—‘—*NV;Q¢0N§Q~’*F’)NW§3—‘?’)Q

E - ATy le]
s0aa
{LARH)
AT
(F0SNOD)
[

A4

HI
AVLS~ud
CANTHS
(B8 E}
470

¥ FdAL
AN IS
S35

1 3IVLSHIYS
[4339
T NY-Sa
I (NI=T3m
& A0

e [

W18 o

NN Ie G @ -

BE NI-53y
vy NI
v NI-M2
o (UUHD)
9 HYHD
9 NI-"130
5 a7
0y HINO4-30
< 1331
Tt ary
& AHIND
92 BUIA4Na
13 Andsa
a8 23M/8
2| AW 03N
i 3479

dWOI~GdvD

4

MmO eeoe Itne gm
- P [e

ISRL Rl S N)

2]

gl el el
-

@

TE RIS

ISR

i

P ow 0409 04O P 0 Do YIge ¥ p v

e

L R R TR N N

PJOM HILUOA JO

HOUNI- IS 14
LIWIT
3TIG
184714

G- LI
ELEERE 2
N3
#u34404a
FLdAnd
30 - vy
A30718-31 1um
ENIe N
LA A
HILIMS

S043
ALTVAYD
w1839
«ANISHY
Aiwaan
0510
BNISSIW
(Y34 40d)
HiA 4409
(A0
13079
A0 M -NT
SHAAINT-A LAY
SHI44Na~INYSG
HEM1 Y
wWMILA

1w 330
(G990
v
i191a
<37anNonag
1HIANGD
(CHTFWNND
< UGN
(S=EL IS EI]
HIWNN
anaH

%>

<

NOLS

v De o o
o

]

-

IVt e NN E N R SN e
[l

S

KRR R N R WV

€]

Wm0 Y i N ey
et

&

g,

]
=
by
v
£

L1

Ml A o

SOT38TRYY
o an 1 [T
(" by w®
“a 1 L
[Rg¢] i "
G145 & ENLER]
NS ¥ WIrg
ONIMLISY o (1389404
EL AR & LA8M0 4
(33HN0Y) & A M
IDMNAS 4 HOMM e
AH0M-A540d & {HOuM3)
ASHYS 9 e AH0AY)
A0 9 w L MOy
auoM 1 LMy
EETN R4 9 MNOTLIAMODL
¥y & M
H DAt E sl o N Y
ISR i1 TR >
ISYINDM L b 3INTI0S 3N
o NG bS R 2= L2 R
LB-HiM0A i AINIG I L
NT TN o S e
B} G IATNGAM L
TAQG £ ANG T
< 3N 8 El ok
THNTTY hd NT 3
A 0% NEML
N 21 ogq
MM Y P O
. MIATAC by 007
TM3TA 1 4007+
HSUH f T3 ANG
ami < Nivay
SUUAMHLe ¥l PRk
any 4 b 41
Elst e EER N ¥ 3573
d3INT 430 8 ERIEH
G LS L &« MIAINAT
SHYLS ¢ EILER RN
L3MAMIINT g EIRCER
0w 8z 4570
* pATRY | A5
"3 L5 BAIH
MNET W 2] WA I
[RERE 4 (535018
AN 00 <8 MIMWHIGSEY
ENRChReg: RIN] Hi R
TUNALTY O {30003y
THILT & AQ00¢
1138y o% THANN
THRANOD o 3
HE5YHD & i
OMISE T & §
B 11 [
€.1 L2 AATSHNIIY
LA 4W0] & ANYLENDD
[P ¥ ERGLAE R

&5

74

GHMRNET NEHPRNe ~ 8 e

e

M oO@mte De T
-

*6¢ edndTg

EEEE

A INGY0A
SNOTLINT 330
LMD LENODT
FNEY YN
200

3000

HAGNW

HIGA

1<

' {51
51

N

Ling

1004

(R} iedy]

anoo

WL INT

0

BR: DR

IAra

#1430

e

ar-

dWNa

]

]
ASYNIY
/3
HOS/

A

S)

é
HEONDN L
N L
ML+
P
L0000
ELIE
ERMERSTUE L
¥ig

WALBAG-IAWE
3 4-mITA
BMITA

AT FEIENG N
M PaONILIRE
AT " RBOANJdD
AW CALITHAN
13ay
d401~-9304
3118-8530a

-
ot

ot

i

-

]

4 =
P v

-

. PR » .,
P40 WEINIMN QUITE DY) omom ot os e am (4 PV LTR P LN ONOrraeNmie oIt aD 0Ly
4 ¥ "
&~

<H300
a9
Srann
{ASNYS)
LHY 153y
WiNT
W30
NI
MNETY
EEE N
EXL
SOLS
INaMEs
11w
e3d

&d

(=]

b
DN 4
St

=50

ESE 1]

s

=

=3

@ 3
NIAATH
NN
NI SN
AN
HIL
HI5"°
1817
oy
OANTT
XAANT
T
AS30Uv
SA40M
ST 1
S3u1L
AN

LR

L]

]

b
HSIMYL183
{AODN
AdO3
MITAL
MATA
OHAd0H
as/n
A~ AIANDD
40H

(23
{ABANOD)

MNP N NI D m v 305 flo MM N @M VIR U85 F Tl o0 25 03 0 O 4 % o we 03 M) mr M DM [0 e) 07
3

P

]

AZANDD
041
annn 4
18 T~-NUDS
HOMY IS
313730
LY3GNIT
ESLARER]
L0
NI~
iy

RE Ve
HOL1U3
anaa

a3

1iga
Xid
(AHFHM)
MOAUHS
)

o w
G

&0
“LIWE
N

ML
CARS
Qud
WG

LY

a

0o

diil
83590
13ATLY I D0SSY
{339
335
MOSEE
Hd~4 INT
ONTLO0d
I8/
09a™
A
Elr
[(EEER P
{38594
(L INES)

ABY L~ 135
ALuniioy
FONNDYS (v
(SR RE]

UL

ALdWd

=

oo

-

14
s
1 4
&
4
a
S
<
Q
14
[e]
&
a
¥
4
5
3
by
]
9
Z
by
&
&
&
z
I
S
i
&
@
b
Y
£
%
“
1 4
S
¥
&
o
L
S
&
<
<
&
T
=
¥
&

[SRSESE

Figure 40. Most often occurred Forth words in F83.

(s 726 CR 86 OR 51
; 712 FORTH 80 ASSEMBLER 50
: 711 VARIABLE 79 >R 50
\ 475 HERE 7% I 50
e 301 - 70 IMMEDIATE 48
(250 CONSTANT 69 = 47
DUP 243 # 68 DO 46
0 241 LOOP 67 2+ 45
NOOP 241 L 67 ROT 41
IF 225 [66 0= 40
THEN 223] 65 BEGIN 40
SWAP 15% IS 65 3 39
! 145 2DUP 62 NOT 38
+ 140 1+ 67 2DROP 38
CODE 116 " 61 o* 37
?MISSING 113 ND 60 DEFER 35
DROP 109 R> 59 ASCII 35
1 103 ce 58 SPACE 33
s 103 2 58 DOS 32
OVER 100 c, 57 CHAR 31
ELSE 100 OFF 54 >BODY 30
DEFINITIONS CREATE 53 +! 30

91 TRUE 30

-265-

%
§

Scr
[o]

ok
18 LIST 19 LIST
4 168 BiMETABG. BLK
\ Statistical analysis of words 25JANBSCHT
DEFER WORK (S link --=- , to do aisc. works on vocabualry words)
* NOOF 18 WORH
3 WORKS (5§ == , scan vocabulary and WORK on sach word)
CONTEXT @ HERE #THREADS 2% CHMOVE
BEG IN HERE WTHREADS LARGEST pup
WHILE DUP WORK @ SWAP ! REPEAT 2DROP]
s INIT-VIEW (S link ==~ , clear a word counter.)
2~ OFF
s PRINT-VIEW (S link --- , print ontents of a word counter.)

CR pupP 2- @ 6 .R 3 SPACES LONAME ,ID 3
EXIT

fOINIT-VIEW IS WORK WORKS (Initialize all word counters)
* PRINT-VIEW XS' WORK WORKS (Print all word counters)
.19 BiMETABG. BLK
v New load for statistics 23JANBSCHT
1 ACCUMILATE (S --- , text interpreter to increment counters)
BEG IN DEF INED IF >VIEW 1 SWAP +! ELSE DROP THEN
FAL SE DONE? UNTIL §
y (LOAD) (§ n -~ , interpret block n, like LOAD)
FILE ? >R BLK @ R MIN @ DR
&4 >IN ' (Skip Oth line to avoid wrap-around.)
BLK | IN-FILE & FILE ! ACCUMULATE R> >IN ! R> BLK !
R> FILES
EXIT
* [LOAD] IS LOAD Use [LOAD] to do the WORKS)
CAFS OFF Do case sensitive compare and counting.)

1 10 THRU Accumul ate word statistics.)
PR Repeat for all source files.)
*PRINT-VIEW I8 WORK WORKS (Print results.)

(
{
OPEN <« file> { Select a source file to analyze.)
{
{

Listing 20. Statistical analysis of words

-266-

XXII. ZAPPING THE F83 DICTIONARY

F83 is a very large system and there are about 1000 words defined
in it. ©Some efforts were exercised to organize this huge amount
of words by grouping them into 9 different vocabularies. However,
the vocabularies are not well balanced because the FORTH vocabulary

is considerably larger than all the other vocabularies. Many
vocabularies contain fewer than 10 words. The distribution
of words in the F83/8086/PCDOS is shown in Figure 41:

Figure 41. Word distribution in F83/8086

Vocabulary Number of words
FORTH 555
ASSEMBLER 219
EDITOR 80
DOS 36
HIDDEN 35
BUG 14
ROOT 9
SHADOW 9
USER 4

The FORTH vocabulary is really too big to be useful. This

is especially evident when one uses the command WORDS to list
this vocabulary. It is very difficult to make some sense of
the huge 1list of words scrolling over the CRT screen. 1t is
downright frightening to a new user as he struggles through
the F83 system. To be more friendly and useful, the FORTH
vocabulary should be less than a screenful so that it can be
listed and inspected conveniently. Reducing the size of the
FORTH wvocabulary may also improve the dictionary searching
during compilation and interpretation.

The FORTH vocabulary can be reduced by carefully specifying

the proper current vocabulary during the metacompilation.

It requires lots of changes in the KERNEL and the UTILITY
gsource files. A much easier way is to relink words into the
appropriate vocabularies. Here I propose the new word ZAP

as defined in Screen 90 of Listing 21. ZAP removes a word
from the context vocabulary and relinks it to the top of the
current vocabulary. Using ZAP, we can move any word from any
vocabulary to any other vocabulary, or change the linking order

of words within one vocabulary.

-267-

ZAP is defined using SEARCH and RELINK. SEARCH searches through
+he context vocabulary for the next word and returns two link
field addresses (1fa): the 1fa on the top of stack is that

of the word searched, and the next 1fa is that of the word
prior to the searched word in the same linked thread. RELINK
copies the contents of the second 1fa into the cell pointed
to by the first 1fa, and thus removes the searched word from
the context vocabulary. RELINK then links the sgearched word
to the end of the current vocabulary by changing the contents
of the variable CURRENT and the link field of the searched
word.

This simple operation logically excises one word from the context
vocabulary and adds it to the current vocabulary. Physically,
the word stays at the same memory location. Only its link

field is modified. After a few of these operations, the linkage
in the context and current vocabularies will become randomized.
It will be very difficult to forget words without crashing

the system. Nevertheless, this zapping process is designed

to rearrange the vocabularies below the FENCE, where words
cannot be forgotten.

ZAPPING puts ZAP in a loop so that we can zap a large number
of words by loading one or more screens as shown in Screens
91 to 93. This way the user can customize a F83 system very
easily by collecting all the words he wants to remove from
one vocabulary to another in a small number of screens and
load them when needed.

The results of ZAPPING is shown in Figure 42, in which a much
leaner and cleaner FORTH vocabulary is listed. This list fits
snugly inside one CRT screen. It contains all the Forth-83
standard words and the utility words which I use very often
during normal programming over the years. I think this is

a minimum collection of Forth words needed by a FB3 user doing
typical program development work., It is also a better list

of words to be presented to new users for them to learn the
F83 system and to polish their Forth skill.

4 smaller FORTH vocabulary will certainly reduce the compilation
time because FIND does not have to traverse through the long
FORTH vocabulary. However, I have not done accurate timing

to determine the saving in compilation time. Another application
of ZAP is to rearrange the search order in a single vocabulary.
Linking the most often used words to the top of the FORTH
vocabulary would also reduce the compilation time. The process
to change the searching order is to ZAP all the words in s
vocabulary and then ZAP them back in the reversed order as
desired. The desired order of words in the FORTH vocabulary

is probably that according to the statistics of word usages
discussed in the previous paper.

-268-

IAPPING DOCUM.BLK DEBUS SHON SEF oL by

FIX. EDIT ED DONE EDITOR 1 CONVEY ViEw

N WORDS INDEX TRIAD LIST HWIDDEK Fe PL
LABEL OFEN B: A: DIR CREATE-FILE

7 15 B o DU .5 DEPTH BYE QuIT
DEFINITIONS ~ VOCABULARY VARJABLE CONSTANT
jCODE ASSEMBLER CREATE WHILE ELSE If REPEAT
UNTIL LOOP DD THEN BEGIN LEAVE ABORT
FORBET oyt LCOMRILEY 3t gsCIl
CONPILE s ALLOT INTERPRET FIND)BODY
WORD D.R B UD. R . WR U OCTAL

¥ SIBN &) (0 HOLD NUMBER CONVERT LOAD
SAVE-BUFFERS EMPTY-BUFFERS BLOCK BUFFER UPDATE
TIR EXPECT SPACES SPALE TYPE (R KEY KEY?
PAD HERE NOVE LENBTH COUNT BLANK ERASE

BLK WIDTH CONTEXT CURRENT WARNING ENIT

Y/ 4/MOD NOD / /KOD 0 MU/NOD AM/MOD)]
Do=" D- D2/ D24 DABS S)D DNEGATE b+ 20VER
200p 2820 NITHIN BETMEEN MAY WIN
e = 0C 0= UM/MOD UBD UM 2- -

2 2 1 0 4+ ABS - KEBATE ¢
AKD ROLL PICK Ra DR R 7DUP -ROT ROT
DUP DROP CMOVE) CMOVE (' o ! ¢ J

FORTH

Figure 42.

Zapped FORTH vocabulary

-269-

PRINTING

§0
0 \ lapping unused words (3sepBbcht
{ 3 SEARCH (-- Ifal 14a2)
2 32 WORD DUP CONTEXT 4 WASH DLFF @ (string lfal 1fa2)
3 BEeIN DUP
4 BHILE
5 pup 3 + { nta) 3 PICK COUNT 2P + 1- 128 SWAP CSET
b CONPARE IF NIP DUP &
7 ELSE ROT DROP EXIT THEN
8 REPEAT 2DROP 7MISSING 3§
9 s RELINK (1fal 1fa2 ==
10 DUP @ ROT ! (delete fros contex € wocabulary)
11 HERE CURRENT HASK 2DUP @ SWAP ! (new link)
12t (current vocabulary thread) i
13 : 1A { --) SEARCH RELINK ;
14 ; 16PPING O DO IAP LOOP ;
1§
91
0 \ lapping 025EPBOLHT

{ HIDDEN DEFINITIONS FORTRH

2 118 1APPING
3 ENPTY MARK HELLO BACKBROUND: ACTIVATE SET-TASK TASK: (SEMIT)

A (PAGE) FORM-FEED #PAGE LDBO L/PABE (SEE) ASSOCIATIVE: CASE:

S NAP DUT JHEAD 7.A 7.K DLK EMIT. D.2 .0 (WHERE) REPLACE INSERT
& DELETE SEARCH SEARCH SCAN-15T FOUND (CONVEY) .TO CONVEY-COPY
7 U/b SVIEW (COPY) ESTABLISH :: MANY TINES TIMES LARBEST LLINEQ
§ .SCR 2CR 2LINE RMARSIN LMARBIN MULT I SINBLE STOP WAKE SLEEP

g ILINK aLINK LOCAL INT# RESTART (PALISE) UNBUG DOES? DOES-SIIE
10 DOES-0P VIEWS VIEW-FILES DEFINE DR IVE? 7ENOUBH L/SCR C/L 1D
11 START INITIAL RUN 1S (IS) »15 SUSER AVOC (;CODE) ;USES (;USES)
12 REVEAL WIDE 7CSP 'CSP *CREATE ,VIEW ARESOLVE 7<NARK ?»RESOLVE
13 7)RARF (RESOLVE (WARK DRESOLVE JMARK CONDITION (ABORT®)

{4 (7ERROR) 7ERROR (FORGET) TRIM FENCE (.°) {*) 7MISSING CRASH
15 EVEN ALIGN STATUS 7STACK DEFINED ?WLIPPERCASE $THREADS (F IND!

92
0 \ More zapping
§ 117 1APFINB
2 HASH VIEW) OVIEW LINK ONAME LINKD> KAMED BODY> LONBNE MOLIRK
3 DONE? TRAVERSE)TYPE *WORD PARSE P ARSE-KORD SOURCE (SOURCE)
4 PLACE /STRING SCAN SKIP (D.) (UD.} () (U] {NUXBER?) DOURLE?
S DIGIT (LOAD) DEFAULT VIEWS IN-BLOCK (BLOCK) (BUFFER) KISSING
& DISCARD ABSENT? LATEST? FILE? JFILE WRITE-BLOCK READ-BLOCK
7 SUPDATE BUFFER® END)BUFFERS INIT—RO FIRST YSIIE LIMIT
8 DISK-ERROR B/FCB REC/BLK B/REC B/BUF #BUFFERS LL-FORTH CC
9 DEL-IN CHAR (CHAR) CR-IN P-IK RES— IN BACK-UP {DEL-IN) BS-IN
10 CRLF (EMIT) (PRINT) PR-STAT (CONSDLE) (KEY) {KEY?) BDOS
11 COMPARE CAPS-COMP COMP UPPER UPC CAPS BELL BS BL END? #71B
12 'TIB BYOCS CSP LAST DPL PRIOR IN-F XLE 4LINE $OUT T0S RP! RP3
13 SP! §P3 (7LEAVE) (LEAVE) PAUSE NOOP 5O PERFORM YREXT (7B0)
{4 (DD} (+LODP) (LOOP) 7BRANCH BRANCH (LIT) UP UNNEST
15

03sepBacht

Listing 21.

-270~-

Zapping unused words

93
\ lap acre words
BB IAPPING
IAP RELINK RESUNE LISTING FOOTING DARE AT -LINE BLDT
HOP HOFPED IND 0C= Qy=)= (= U= U= FUDBE =-> +THRU
RECURSE COLD WARK BODT RECURSIVE 700 TLEAVE CONTROL
(NUKBER) NUMBER? SW1TCH BEEP BACKSPALES VOC-LINK Ri
DMAX DMIN DUC 2DNEBATE 2ROT 4DUP 3DUP INEGATE BY OFF ON
CTOG6LE CRESET CSET FALSE TRUE FLIP BOUNDS
PAGE INIT-PR EPSON HS
UTILITY.BLE CPUBOBA.BLK KERRELBG.BLK EXTENDBS.BLK SAVE-SYSTEA
0K USER 2VARIAELE 2CONSTANT DEFER WHERE DLITERAL LITERAL
FORTH-B3 UD.R CAPACITY STATE SCR FILE HLD OFFSET DP RPO 5FC
LINK ENTRY <) 0C) NIP TUCk
ONLY FORTH ALS0 HIDDEN ALSD FORTH DEFINITIONS

2bsepBich

