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I posted a 'fig -- FORTH INTEREST GROUP' logo on the door of my
office. About two years ago, a fellow knocked the door and
introduced himself, saying that he saw the poster and was glad
to find another Forth enthusiast. He told me that he had
programmed in STOIC, which is a early variant of Forth, and was
working on a parallel processor project. He also asked me if I
would be interested in this project. He spoke in an Eastern
European accent, with every vowel and consonant meticulously
pronounced. It was not surprising to find out in a short while
that he was a Polish mathematician. His name was Wlodzimierz
Holsztynski, which I still cannot spell without looking at my
notebook.

So, I started working on this parallel processor project. The
processor was produced by NCR, with a strange name-- Geometric
Arithmetic Parallel Processor-- or GAPP for short. The central
processing unit in it was a strange one bit ALU. It was very
difficult to think in bits, after cutting the teeth on 8 bit
processors, and gradually migrating to 16 bit processors and 32
bit processors. However, Dr. Holsztynski was able to show how
complicated problems could be broken down and solved very
elegantly using bit-serial algorithms. When you have a very
large array of these simple processors working coherently
together, suddenly you have a extremely powerful computing
structure with the throughput of CRAY supercomputers at a very
small fraction of the costs.

After working with him for several months, a colleague told me
that he was no less than the inventor of the GAPP chip. No
wonder that he was so much at ease in thinking at the bit and
gate level. In many ways, Dr. Holsztynski and Chuck Moore are
very similar. In their programs, they would not allow a single
instruction, even a single bit in an instruction, or a single
machine cycle to be wasted by not serving useful function. They
are computer poetry in the purest form. These are the people
who push the state of the art.

Parallelism seems to be the only way to achieve the computation
throughput needed for large and complicated applications. GAPP
chip is a very unique way to link a large amount of processing
units together with the least amount of silicon and
interconnections. In this section I am presenting the limited
experience in learning to use it. Lots of material are still
under development and are proprietary information. However,
what's published here can give us a glimpse of the potential of
this technology.

Once we build the processor array and some form of a controller
to operate the array, Forth can be of great help in the use and
the programming of the processor array. Two papers were
presented at the 1987 Rochester Forth Conference, and they are
reprinted here showing the status of this parallel processor
project. A GAPP array simulator was developed before the array
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was built, using an image processor to simulator a 512 by 512
GAPP array. Code for this simulator is alsc included here.
GAPP machine code is very similar to bit slice microcontroller
code. Forth is a natural language to implement an assembler for
GAPP array. The fourth paper in this section shows how to
assemble GAPP code.

The last paper is of a different nature. It was a paper I
presented at the FPS Array Processor Users Conference in May,
1984 at Denver, Co. It shows how one can put a large floating
point math processor under interactive control for program
development. It turns a floating point processor into a huge
vector stack machine to process large arrays of floating point
vectors. This proves two assertions: +hat Forth can handle
floating point numbers in a grand style, and that floating
point number is an I/0 problem.

s
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IX. HIGH DENSITY PARALLEL PROCESSING

I. The Processor Array and Macro Controller

A GAPP processor array of 11520 processors and its associated controller
were built and tested. It allows the processor array to be programmed
conveniently using high level languages without sacrificing speed or code
efficiency. The system is fully functional. The hardware structure and
special features of this system are presented in this report.

1. The Parallel Processor System.

As part of the process of evaluating parallel processor algorithms with emphasis on image
processing we have developed a complete parallel array processor systemn. This is a necessary tool
because large programs require unacceptable long time to executé on a software simulator, and
because algorithm optimization ultimately requires testing with real time data. Included in the
system are a 96 by 120 array of GAPP processors(Geometric Arithmetic Parallel Processor, NCR

45CG72) and an MIMD (Multiple Instruction Multiple Datapaths) controller optimized for program
compression and fast program flow control.

Rather than inventing a new operating environment, the system was designed to operate as an
external coprocessor to an IBM AT personal computer as a host. Paths are provided from the host
to the parallel processor system for program and data loading, run-time operation, and status
monitoring. In addition, high speed 12 bit parallel input and output ports are provided which are
capable of 10 megawords per second syncrhronous data transfers, and slower asynchronous

transfers.

Processing within the parallel processor system is completely self-contained so that once started by
the host, program execution can proceed independently. Our present system loads data via a DMA
channel in the host computer and the results can be unloaded similarly to host or to a real time video
display unit. A software console program was developed for use in the host computer to control

the parallel processor system interactively.

2. Processor Array

The SIMD (Single Instruction Multiple Datapaths) data processing section consists of an array of
GAPP devices and is constructed from four circuit board assemblies, each of which has a 60 by 48
array of single bit GAPP processors. The boards, which were specially designed for this
application, contain extensive signal buffering to allow array expansion in all four directions by
using multiple boards. This versatility allows altering the array aspect ratio for experimentation
with various classes of problems. Array expansion with these components is feasible up to
approximately 256 by 256 cells at which point it is worthwhile to design a unique board package
for each case so as to optimize density and area efficiency.

The processors are organized as two arrays as show in Figure 1: one of 12 by 96 processors for
input/output corner-turning, and a main array of 108 by 96 processors. The two arrays may
optionally execute from independent instruction and address streams. However, in the present
system only one streamn is used. In the main array, the EW and NS register planes are connected in
a cylindrical surface topology in both the east-west and north-south directions, although spiral and
other interconnections are jumper selectable. The corner-turning array is cylindrical in the
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north-south direction for the NS register plane, and uses the east edges for input and the west edge
for output. The two arrays are connected, also in a cylindrical manner, by the CM register plane in

the GAPP devices.
3. The Distributed Macro Conmolier (DMC)

The controller, dubbed IDMC, addresses the critical issue in parallel processing computers like the
GAPP with high processor density and limited memory and instruction sets. The controller allows
ready implementation of adaptive programming decisions made by the host; that is, without loss of
machine cycles. The top level architectural innovation is that the controller is a MIMD machine that
processes three different instructions streams simultaneously as show in Figure 2. A Flow Control
Unit feeds several (here two) Macro Generator Units. The instruction streams from the Macro
Generator Units are combined to feed the control lines »f the GAPP array. Each of these units will
be a single chip in VLSIL. All Macro Generator Units are identical.

Both the Flow Control and Macro Generator Units use externally writable control stores to store
instruction streams. The Flow Control Unit supervises program flow within DMC while the Macro
Generator Units produce output instructions for the GAPP array. The MIMD architecture is
hierarchical; i.e., the Flow Control Unit directs the production of the programs from the Macro
Generator Units. The final output stream consists of two 15 bit words, combined to form a single
20 bit instruction and address stream for the GAPP. The controller offers a very high degree of
program compression. Existing sequencers have wide microcode words but little program

optimization or compression.

The Flow Control Unit allows eight levels of nested subroutines and eight levels of nested loops.
While loops increment, the loop counts of interior loops can be changed. Subroutine calls and
returns are performed in 3 clock cycles. With the provision that subroutines are at least three
instructions long, this allows penalty-free macroprogramming. External inputs may be tested for
conditional operatings (branching, looping, calling, and returning). The Flow Control Unit uses a
32 bit wide instruction format. It is designed to be a single chip unlike existing sequencers,
although its primary function in the present controller is to direct the internal flow (within the DMC)

of the program.

The Macro Generator Units, which are physically identical and each designed to be a single chip,
have several novel features:

(1) Callable macro and address routines

(2) Automatic memory management

(3) Statc and dynamic reinterpretation logic
(4) A rich set of stack operation.

Feature (1) is for program compression. Pre-loaded instruction streams can be called by specifying
a pointer and length. Typically, these are not GAPP instructions but instructions which cause the

Macro Generator Units to produce GAPP code indirectly.

Memory management calculates physical addresses given logical ones. Thus all of the memory
addressing is indirect and penalty free. A linked list of memory segments with "occupied” and
"free" areas is maintained. This handles allocation of memory and makes the task of the GAPP
programmer much easier. Also, if these functions were to be performed in software, the

processing system would not be able to operate at full speed.

Reinterpretation is a method of program compression useful from both an op-code and memory
point of view. There are both dynamic and static reinterpretations available. Reinterpretation
involves performing an exclusive-OR operation on the output with a mask pattern. A number of
patterns may be stored. Dynamic reinterpretation allows an external constant to be loaded in where
the bits of the constant can be used to modify the output with one of several masks. Static
reinterpretation is only selectable at the macro-instruction level. Thus, the if-then-else construction

becomes available to parallel processors without penalty.
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The usefulness of reinterpretation is that applications natural to geometric SIMD machines tend to
be highly patterned. Addition, subtraction and template matching to either a zero or one differ only
in the selection of CARRY and BORROW, loops proceed by alternately selecting one stack or
another, etc. A study of the class of ransformations natural to GAPP-like machines reveals the
frequent occurrence of such patterns allowing switching between instructions with the use of
reinterpretation bits. Reinterpretation of address bits allows symmetrical operations within address

space.

The controller also provides a rich set of stack operators, operating simultaneously on two stacks
holding address pointers to the GAPP memory. Stacks offer a way of changing the instruction
sequence to the GAPP in nonconsecutive or nonlinear ways. Two stacks with two top elements
cached in the address Macro Generator Unit give the programmer convenient access to four
different memory areas to implement complex arithmetic and logic operations.

4, Conclusions

This parallel processor system is currently fully functional with the GAPP processor array. The
system was designed to run at the maximum clock rate of 10 Mhz. Currently it is running at 2.5
Mhz. The computational throughput is thus 28.8 Giga instructions per second. We are developing
software tools and programs to evaluate its performance for many different classes of problems,
such as image processing and understanding, real time signal processing and analysis, translation
invariant and non-invariant problems, and the general studies on the using and programming of
parallel processing systems. Some of the results will be show in a video tape, demostrating the real
time image processing capability of this system.

The controller is rich in ways that optimize the programming of GAPP-like arrays. The detailed
architecture will be presented in a patent application. We believe that the study of its concepts will
allow better understanding of the maximum efficiency obtainable from geometric SIMD arrays and
lead to distinct developments in this branch of computer science.

5. Acknowledgements

Dr. Wlodzimierz Holsztynski, the inventor of the GAPP device, provided the architectural desi gn
of the Distributed Macro Controller. Integrated Test Systemns of Santa Barbara, CA constructed
both the GAPP processor boards and the Distributed Macro Controller system.
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X. HIGH DENSITY PARALLEL PROCESSING

II. Software and Programming

Tools, utilities, assemblers, and compilers are needed to develop programs
which can be run on our parallel processor system, making use of the full
power of the GAPP processor array and the Distributed Macro Controller.
Some of the software tools are described here and a few examples are also
given to illustrated the process of software development on this system.

In order to make the parallel processor system generally useful for experimentation by those not
familiar with the hardware, a set of software tools is being developed. A host-resident console
program was produced that allows program loading, program execution at arbitrary starting
addresses, program halting, and examination of status and error flags.

An assembler program has been developed to assemble GAPP instructions and address macros for
the Macro Generator Units. This program has a unique structure as it must deal with three
concurrent instruction streams and keep track of relative timing or program lengths among them.
This assembler has also to take features of a high level compiler so as to generate appropriate
instruction streams for the Flow Control Unit, which is the focal point of the entire parallel
processor system, coordinating the GAPP processor arrary with the two Macro Generator Units.

1. The Console Monitor

The Console Monitor is a program which runs on the IBM AT host computer. It allows a user to
perform some primitive operations on the Distributed Macro Controller (DMC) system, such as
initiation, loading code into the Flow Control Unit and the Macro Generator Units, running a flow
program, and monitoring the status of the DMC-GAPP system while it is running.

The DMC is designed so that all its writable control store memory areas can be accessed by the host
computer. In fact, all the writable control store memory and many of the important internal
registers in both the Flow Control Unit and the Macro Generator Units are mapped to a contiguous
128 Kbytes of memory. The mapped memory locations can be interrogated by the host, and new
code or data can be loaded into these registers and memory areas through the Console Monitor.
Effective use of this feature allows a user to assemble GAPP programs and flow programs directly.
It is extremely valuable during testing and debugging phases of program development.

The Console Monitor also has many built in high level functions. One is loading programs in either
binary form or hexadecimal form. The binary form of a program is simply the image of the 128
Kbyte mapped memory, which can be saved as a binary file on the disk of the host computer. The
saved binary file can be loaded back into DMC to restore DMC to the state when the saved file was
generated. A hexadecimal file format was defined so that code written in hexadecimal numbers can
be translated and downloaded into various selected parts of DMC. This file format also specifies
the output file produced by GAPP assemblers and DMC compilers which can be run on other host
computers for off line program development.

The other important feature of the Console Monitor is that it can load data into the GAPP

corner-turn or input/output processor array and unload results from the corner-turn array, through a
DMA board inside the IBM AT. This is necessary to test GAPP and DMC programs and to verify
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that the hardware and software are in working condition. It is also useful in testing various
algorithms and evaluating their performance. The Console Monitor thus serves as the major user
interface to the parallel processor system.

2. GAPP and Address Macro Assembler

GAPP is a Single-Instruction-Multiple-Datapath (SIMD) machine. Its ALU is a one bit
full-adder-subtractor, and there are many data paths around the ALU and the internal registers and
memory. A GAPP instruction is used to specify precisely the data paths to and from the registers
and the memory. A GAPP instruction is 20 bit wide, 13 bits for data multiplexers and 7 bits for
memory selection, as shown in Figure 1. A GAPP program is thus a sequence of these 20 bit
instructions commanding the GAPP array how to route data and results inside the processor array.
It is fully programmable in the sense that any function that does not exceed the memory capacity of
the machine can be executed. However, all processing units execute identical instruction so that a
general MIMD (Muldple Instruction Multiple Datapath) command is executed at lower efficiency.

To facilitate programming efforts, a set of GAPP mnemonics is defined to specify the source and
destination of data in each clock cycle. The Assembler translates these mnemonics into GAPP code
and memory address specifications, and constructs macro routines which are callable by flow
programs. Since there are many data paths independently controllable by a single GAPP
instruction, the assembler allows the user to specify multiple data paths in a single instruction, as
well as the detailed function which has to be carried out by the address macro generator, such as
pushing, popping or incrementing the memory pointers on the stacks.

The Macro Assembler generates two concurrent macro's from a set of mnemonic code sequence,
terminated by the special operator '_$_". The address macro takes the most significant 16 bits and
the GAPP macro takes the least significant 16 bits of an assembler 32 bit code. The two parts will
be separated and downloaded to their respective writable control store memory in the Macro
Generator Units.

A library of macro routines is assembled and kept in the Macro Generator Units for the flow control
program to call. For specific applications, special macro routines can be define by the user and
downloaded to be used together with the library macros. Figure 2 shows a sample of the macro
routines required by the Game of Life flow program.

3. Flow Control Assembler

The Flow Control Unit stores its instructions in 32 bit words, each flow instructions requires 3 to
18 flow words. The first word in a flow instruction is called Flow Control Word which specifies
the program flow, such as JUMP, LOOP, CALL, and RETURN. The second flow word specifies
the macros to be executed from the Macro Generator Units and the clock cycles and number of
macro instructions to be executed in this macro. It is called Macro Call Word. The third and
following flow words are Memory Management Words, which controls the memory management
mechanism in the Address Macro Generator Unit. The formats and the functional fields in these

flow words are show in Figure 1.

The Flow Control Assembler compiles the flow control mnemonic code, similar to those commonly
used in high level programming languages, and generate sequences of flow words. The flow
words will then be downloaded into the Flow Control Unit. Any of the flow instruction, starting
with a Flow Control Word, can be executed and the DDP will perform algorithm specified by this
and subsequent flow instructions until completion.
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Since the Flow Control Unit supports all the fundamental programmin g structures, such as
conditional and unconditional branching, looping, subroutine calling and returning, flow programs
can be modularized and written in highly structured form. This practice greatly enhances program
readability and eases debugging and maintainence. The Flow Control Assembler produces efficient
code within this structured framework.

An example of flow program is show in Figure 3, implementing the Game of Life. It uses the
macros assembled by the macro assembler. The core or the Game of Life program is a 25 machine
cycle sequence of GAPP instructions, assembled into 4 macros which are called by the main
program. The most time consuming part of the program is to dump the map of lifes out to the
display device, which is isolated as a subroutine called from the main program loop.

4. Conclusion

We have built enough tools and utilities to program and use the high density SIMD processor
arrays efficiently. Complicated algorithms can be broken into address macros, op-code macros,
and flow control sequences, which can be assembled from high level source program into machine
code loaded into the parallel processor system and executed. Effective use of macros thus
tremendously simplifies the programming efforts and greatly compresses the program. The limited
experience we have gained in a very short time exceeds our expectation that the DMC controller
allows massively parallel processors to be conveniently programmed using high level language
without compromising the performance. The program compression will allow much more
complicated algorithms to be expressed concisely for the eventual execution on huge processor
arrays.

Several articles of this project, as well as research results on parallel computations and on
applications have been prepared in more detail for publication.
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8005 gadr c=p §

&
&

g: ewlisum 8005 gadr p:ins:ew=c _$_
ews=w _§
ns=evw ew=ns _$_
ew=e _§
8000 gadr ns:ew=plus carry 5
8001 gadr p=c _$_
g: ns2sum  c=0 ns=s _§
8002 gadr plus Carry _S_
8001 gadr ns:ew=p _§
ns=s _§_
8003 gadr plus carry _8_
8004 gadr p=c _$_
g: ns3sum 8000 gadr ns=p c=1 _$
8002 gadr ew=p ns=n _$_ 8002 gadr plus carry _$_
8001 gadr ns=p _§_
8003 gadr ew=p ns=n _3
8003 gadr plus carry” §_
8004 gadr ns=0 ew=p _5_ 8004 gadr ew=plus _%_
g: final 8003 gadr ns=p c=0 _§$
8002 gadr ns=p borrow _§_
8002 gadr p=c c=1 _&
8005 gadr ew=p _§
8002 gadr borrow ew=p ns=0 5
carry _§
: scratch 807f gadr
g: c=to-scratch  scratch  p=c S s s
g: shift-scratch scratch cm=p _$ - south _&
scratch p=cm _§_
g: scratch-to-ew scratch ew=p _§_ = _§ 5
g: ew-to-scratch c=ew _$§  scratch p=c _$_
g: mm-to-scratch  top c=p _$_  scratch p=c _§_ _5_
g: scratch-to-mm  scratch c=p _$5_  top p=c _§_ _8_

of life with GAPP
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flow-block output-life ( from gadr 7f scratch plane)
loop 9 times 4 gre ( frame mark) _$$$_
loop Oc times _$33_
noop ram=-en _3_
noop ct-en _5_
loop 4 times _$
loop 10 times _S8$_
noop _$_ shift-w macro _3%_
end-loop _$$$_
end-loop _8$$%_
end-loop _$33_
end-loop _8$33%_
return _$$$_
end-block

shift-scratch macro _S$8_
shift-scratch macro _$8 ( 2 msb bits)

soratch-to-ew macro _8S_

flow-block game—of~life

noop mm-en _S_ init-life macro _$3$_
flow-block repeat-life
noop mm-en _$_ 6 cycles 6 instructions ewlsum macro _$_ _S$_
noop mm-en _$_ 6 cycles £ instructions ns2sum macro S _S8_
noop mm-en _9%_ 8 cycles O instructions ns3sum macro _$_ _%_
noop mm-en _3§ 6 cycles 6 instructions final macro _S_ _$_
$$

call output-1life adr mm-en _$ c-to-scratch macro
jump repeat-—life adr _$8S_ -
end-block
stops
end-block

Listing 11. Game of life with GAPP (cont'd)
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XI. SIMULATOR OF A GAPP PROCESSOR ARRAY

1. THE GAPP CHIP

GAPP (Geometrical Arithmetic Parallel Processor) is a CMOS chip
with 72 processors on a single chip. It was invented by Dr.
Wlodzimierz Holsztynski, a Polish mathematician, when he was
with Martin-Marietta in Florida. The chip is now manufactured
by NCR as NCR45CG72. The processors are arranged as a 6x12
array. Each processor is connected to its four nearest
neighbors. Processors on the edges of the chip have their
connection brought to I/0 pins, so that many chips can be
connected to form a very large processor array. As the
processors in a large array form a 2D array with nearest
neilghbor connections, it is a very efficient structure to handle
two dimensional problems like image processing.

The internal structure of a processor is very simple., It is
basically a one bit processor with 4 internal registers and 128
bits of memory. There is a simple ALU which takes the contents
of three registers as input and generates a one bit sum, a carry
and a borrow in every clock cycle. There are five multiplexers,
one in front of each internal register and one in front of the
memory. These multiplexers can be programmed to route data
among the registers, the ALU, and the memory. It thus belongs
to the SIMD (Single Instruction Multiple Datapath) architecture,
because the ALU is performing one and the same function every
machine cycle. It is a full, one bit adder/subtractor.

However, by configuring the registers properly, the ALU can
perform all the two bit binary logic functions; therefore, it
serves as the basis of a very powerful computing structure.
Figure 19 shows the contents of a GAPP processor element.

Instructions to the processor array is used to control the
multiplexers to define the datapath in a clock cycle. All
processors in the processor array execute the same instruction
at any given cycle. The instruction is broadcast to all
processors and it is executed synchronously. An instruction
consists of 20 bits, 13 of them are used to control the
multiplexers, and 7 bits are used to select a memory plane to
read or write. To run this processor array, a specialized
controller is required to generate sequences of the 20 bit
instruction patterns at the clock rate of the array.

It is difficult to convince people that this type of simple
computing device is even useful, not to mention the possibility
to compete against the modern powerful processors. Dr.,
Holsztynski made the following interesting observation to
illustrate the power of SIMD device. In a conventional

-141~




processor, the CPU must perform a host of different functions.
Fach function requires resources in both silicon area and in
machine cycles. Only one instruction can be sxecuted at any
time, consequently the other logic devices are idle. A
processor with 100 instructions shows an instruction efficiency
of only 1%. The GAPP processor, on the other hand, has an ALU
which is active always and thus shows the highest silicon
efficiency. The problem is how to program the GAPP array so
that the ALU will perform useful work all the time.

2. GAPP SIMULATOR

As the GAPP array requires a high speed, programmable controller
to supply instruction streams, not much one can do at the
beginning of the GAPP project. To demonstrate realistically the
usefulness of GAPP array to solve practical problems, a good
simulator would be of great help. Here an old image processor
made by DeAnza/Gould was available to us for this simulation.
Because GAPP array consists of a large number of processors
connected as a planar matrix, this structure maps very well to
an image processor which stores and processes two dimensional
images. The DeAnza/Gould IP5500 has one megabytes of memory,
which can be thought of as 32 planes of 512x512 bits stacked
together. Physically these bitplanes are grouped into 4
channels, with 8 bitplanes to a channel. Among the 32
bitplanes, we have to use the top 12 planes to simulator the
GAPP registers and ALU. Only 20 bitplanes are available to
simulate GAPP memory planes. For most of the simulation work,
only the lower 15 bitplanes are simulated using channels 0 and 1
in the image processor.

The GAPP chip has four registers: CM, EW, NS, and C. The CHM
register handles communication in the north-south direction.
The EW and NS registers are used for nearest neighbor data
transfer, and the C register is used to store carry or borrow
from the ALU. The ALU receives inputs from the EW, NS, and C
registers, and generates the sum, carry, and borrow as the
results of the three bit addition/subtraction. The logic
function of this ALU is best described by the following truth
table in Figure 20.

This set of input/output relationship can be best simulated in
the image processor by table look-up technique. This truth
table is used to generate an ITT (Intensity Transformation
Table) in the image processor. When the image memory simulating
the EW, NS, and C registers are read through this ITT, the plus,
carry, and borrow bits are automatically generated and then
stored back to the appropriate memory planes. Thus in a single
TV frame time, we can produce the ALU results of all 512x512
simulated GAPP processors. In the next TV frame, the ALU
results as well as other data can be routed back to the proper
destination registers or memory through another table look-up

cperation.
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Although GAPP is basically a one bit full adder/subtractor, by
fetching and storing data in consecutive memory and use the
carry or borrow stored in the C register, it is very
straightforward to implement multiple bit integer arithmetics.

A few examples will be show later. The more interesting
property of the ALU is that by setting or clearing one or more
registers among EW, NS, and C, all the binary logic function can
be performed by this ALU, making it is truly general purpose
computing device for large arrays of digital information. The
conditions to perform logic operations are shown in Figure 21.

3. GAPP SIMULATOR IN FORTH

The DeAnza/Gould image processor IP5500 is controlled by a
LSI-11 microprocessor which runs a very early version of LSI-11
polyForth from Forth, Inc. The image processing software system
was described in some detail in my 'Forth Notebook,' pp.

78-113. Since the GAPP simulator uses only the image transfer
operation through intensity transformation table, very little
knowledge about the image processor is required to understand
the GAPP simulator.

The source code and shadow comments are shown in Listing 12.
Screens 1 through 10 are the source code of the simulator
proper. Screens 11 to 15 are examples of elementary GAPP
functions, such as multiple bit addition, subtraction, absolute
values, and image dilations and erosions. Screen 21 to 25 show
the game of 1life implemented in this GAPP simulator. As most
source code have fairly detailed comments in the corresponding
shadow screens, we shall only discussed some global features of
this simulator.

The syntax of a GAPP instruction is as follows:
destl: destZ: ... =srecl dest3: ... =8rc? .o 3

One register can serve as the source for many registers. A
destination register can only receive data from one source.
Source registers are prefixed with an equal sign, and
destination registers are appended with a colon. In any one
GAPP instruction, only one memory plane can be referred to for
gither reading or writing, but not both. Memory plane used for
source is coded as n =P, and for destination n P: . The
bitplane number n must be put on the stack before the memory
code.

_$_ terminates a GAPP instruction. 1In a real GAPP machine, all
the code before this terminator up to the last _$_ code are
executed in a single cycle. In this simulator, the destination
code like =EVW zctually performs the date transfer, because the
image processor cannot process input from many different
registers at the same TV frame.
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In real GAPP, the 7 bit field specifying the GAPP memory plane
is an integral part of the GAPP instruction. In the simulator,
we take advantage of the Forth system to pass the address as a

parameter on the data stack. This short-cut greatly simplifies
the structure of the simulator, but is not quite realistic.
Nevertheless, in a real GAPP system, the address generation has
to be handled by rather complicated logic circuits, which cannot
be simulated easily.
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Figure 19. Schematic diagram of a GAPP processor unit
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A ed ) - e O O
- O s O e (O e O
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Figure 21. Logic Operations of GAPP ALU

Logical Description Condition

Operation

INV SM=/NS EW=0, C=1
SM=/EW NS=0, C=1
SM=/C NS=0, EW=1

AND CY=NS*EW C=0
CY=EW*C NS=0
CY=NS*C EW=0
BW=/NS*EW C=0

OR CY=NS+EW C=1
BW=/NS+EW C=1
BW=EW+C( NS=0

XOR SM=NSxC EW=0
SHM=NSxEW C=0
SM=EWxC NS=0

XNOR SM=/(NSxEW) C=1

SM: plus, CY: carry, BW: borrow, /: negate,
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XII. GAPP ASSEMBLER

1. INTRODUCTION
GAPP OPCODES AND MNEMONICS

GAPP is a SIMD (Single Instruction Multiple Datapath) parallel
processing device. Many GAPP devices can be connected to form a
two-dimenional array with east-west and north-south nearest
neighbor connections. All GAPP devices in an array executes the
same instruction in one machine cycle. A GAPP instruction
consists of 13 bits of opcode and 7 bits of RAM address, which can
be represented in the following format:

21110 9 8 7 6 5 4 3 2 1 0

- — - - — . - —

GAPP Opcode { RAM | C-REG | EW | NS i CM |

- - - — — —— i —— - - . — - —

- ——— - - — -~

RAM Address ! address |

- —— - —— - —— -

The assembler will thus generate two 16 bit words for each macro
instruction. They are stored in memory as one 32 bit word. The
most significant 16 bits contain the RAM address, and the least
significant 16 bits contain the GAPP opcode.

THE F83 ENVIRONMENT

F83 is a language and operating system based on the computer
language FORTH according to the most recent FORTH-83% Standard. It
is extremely powerful as a meta-language because it contains all
the necessary tools to build new languages according to specified
syntax and grammar. However, if the syntax requirements are
specified in terms of the reversed Polish or post-fixed style
common to most FORTH system, the new language can be defined very
conveniently while retaining all the utilities resident in the
host FORTH operating system. This GAPP assembler is defined in
this fashion to take advantage of the conciseness and
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FORTH

Wivdiiae

interactiveness of

The GAPP assembler is a collection of FORTH words or instructions
which are then be used to describe or define GAPP macro
instructions in mnemonic form. These descriptions are the cource
code of GAPP macro instructions stored in files. When the
descriptions are processed by the FORTH interpreter, the mnemonics
are translated into macro code which are stored temporarily at the
end of the source file. A large number of data blocks at the end
of the source file are dedicated to the microcode. These
microcode blocks should not be sent to a printer.

A number of FORTH utilities words are also provided to let the
user to examine and modify the macro instructions either in the
file. User can interact closely with both the assembler and the
microcode, making the programming activity high productive and
shorten considerably the time to program and debug the GAPP code.

USING THE GAPP ASSEMBLER

The GAPP assembler and a collection of macro routines are defined
in a file named GAPPASSM.BLK. To execute the assembler and down
load all these macro routines to the macro generators, the user
should type the following commands:

F83 GAPPASSM.BLK (load F83 and open file) -
0K (load assembler and

assemble macro routines)
BYE (exit assembler)

After typing 'OK', the computer will load the GAPP assembler and
assemble all the macro routines defined in this file. While the
assembler is translating the source code, a list of macro names and
their assembler code will be displayed on the console screen. With
appropriate printer commands or output redirection, this listing
can be printed on a line printer or saved in a separate file for
later reference.

2. THE GAPP ASSEMBLER
THE ASSEMBLER COMMANDS

The assembler commands are a collection of FORTH words which

cause GAPP instructions to be translated and stored at the

end of the file. They are used to control the process of assembly
and manage other activities such as outputing assembled code to a

line printer or to the console. These words are listed and their

functions explained as follows:
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INIT Clear the temprary file space. Initiate the
aszsembling process.
3 Terminate the GAPP instruction assembling

process and store the GAPP instruction.
Begin assembling the next GAPP instruction.

G: <name> Mark the address of the current GAPP instruction,
and assign it a label <name>. This label will be
used to call the macro routine by the flow
program compiler.

DOWNLOAD Download all the GAPP instructions so far
assembled to the GAPP array.

GDUMP Dump 2 range of GAPP instructions on the console
s = 5
for inspection.

DUMP-DMC Dump a range of the Program Memory in the GAPP
array to inspect the microcode.

GAPP MNEMONICS AND OPCODES

GAPP mnemonics are of the general format:

dest1[:dest2[:dest?3[:dest4]]]=src

£

where dest represent register or memory as destination of data
and src is a register or memory providing data in a GAPP machine
cycle.

dest CM, NS, EW, C, P (for RAM memory).
src CM, NS, EW, C, P, N, S, E, W, O and 1

Only those combinations which are valid in a GAPP processor array
are defined. 1Invalid combinations will generate an error message
and cause the assembling process to abort.

Besided these explicit GAPP opcode mnemonics, there are a set of
implicit mnemonics which express the functions more clearly:

CARRY Copy carry output to C register.

BORROW Copy borrow output to C register.

PLUS Copy the sum output to a RAM memory plane.

SOUTH Copy CM or south neighbor to CM register.

~dest=0 Copy O to all registers except dest.
Examples: -CM=0, =NS5=0, «EW=0, -C=0
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~dest=P Copy RAM memory to all registers but dest.

Examples: =CM=P, =-NS=P, -EW=P, -C=P
4R=0 Copy O to all registers.
AR=P Copy RAM memory to all registers.

GAPP ADDRESS OPCODE

The GAPP address mnemonics will assemble code into the 16 bit
address field in a GAPP instruction, which is processed in
parallel with the GAPP opcode. Within one GAPP instruction or
between two consecutive $ commands, the order of address opcode
and GAPP mnemonics is not Important. GADR is the general

address opcode command which can be used to put any 16 bit pattern
into the address field:

GADR Assemble the 16 bit number before GADR into the
16 bit GAPP address field in the current GAPP
instruction. Only the lower 7 bits are taken by
the GAPP array as RAM address. Other bits are
ignored. However, unused bits can be used to
carry information to control the GAPP array.

3.  MACRO ROUTINE LIBRARY

An extensive collection of macro routines are coded and available
in the macro routine library, as the result of our experimentation
with the GAPP array. The source of this library is also contained
in the file GAPPMAC.BLK. It is assembled when GAPPMAC.BLK is
loaded with F83 and interpreted. User defined macro routines can
be entered into this file and assembled with the library. 1In
eventual applications, those macro routines not used by the
program can be commented out so that they will not be assembled
into the application program.

The source code of this assembler and some examples of the macro
routine library are shown in Listing 13.

Source code of the assembler and the macro routines are stored in
block files, which are divided into blocks of 1024 bytes. Each
block of text can be entered, edited, and interpreted under the
FORTH operating system. F83 provides a very simple and easy to
use screen editor for these purposes. Blocking the source code
into 1024 byte segments imposed on the programmer a discipline of
modularization, which makes the macro routines easy to enter and
to be debugged.

Excellent references are available on how the F83 functions and
how to use the screen editor in it for programming.
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12
12

14
15

4% Pointere GbmavBicht
{ ¢ CONETANT ORIBIK ¢ starting GAFF instru n pointer
Z 140G CONSTAKT STORAGE

5 139 CONSTANT RACROH

4 VARIABLE MACRO-FOINTER

S OVARIAELE POINTER ¢ current GAFF ynstruction count

& CODE BYTES ¢ n -~ low-bvield Kigh-bvie )

7 AL POF BRI EX I0R 4H EL MOV BH AH EDV

g fE SHL AL GHL &Y PUBH Y PUBH  KEXT END-CODE
¥ i AODRESE | -- buffer-adr . address of virteal sesory |
16 PDINTER @ BYTES  GTORARE +  BLOCE +
1

1z
i3
4
15
3

G % Uility Jhearficht
{1 20RODD -1 ROTOR R ORR:;

2 ZBRD (DD --D0 % ROT AND 3R AND RO

3 ZNOY B --D 7 -1 10R GHAP -1 IOR GHAF

i ZBHIFT (DK ~-D )

S PDUF IF 0 DO D2 LOOP THEW

&

7 ¢ B, POINTER 3 L. ADDRESS 28 LD,

g : GhUMP ( pointer § -~}

% POINTER & R Sﬁé? POINTER ¢ O DO

14 re ?DZR’TE ¢ 8 U.R  ADDRESS Z¢ 20 UD.R
il t FOINTER ! L??? R POINTER ' ¢

12
iz

4

I

Listing 13.

iy
Y BADD Pegniler for PO
BAPP azsesbler and sisple oprode
Cosoound opoode involving oo tiple reqd
BAPF sacros and sasple code

102
\ Pointers 23510 01JdanBicet
ORIGIN Starting BAPF instruction pointer,
STORAGE Starting block to store GAPF code.
MACRO# Block to store GAFP sacro pointers,
RALRO-POINTER  Pointer fo the macro currently being assesbisd,
POINTER Current BAPF instruction oointer.
BYTES  The bvte pointer to the current GAFF instruction in the

7 omE

disk buffer. Returns {n KOD 254)
block, and n/256 the block nusber,
ADDRESS { -~ buffer-adr . address of virtual sesory )

Returns the addressz of the current BAPP instruction

the disk buffer,

163

VUtility

R D -0 OF two 37 bit nusbers,

Z8ND L DD -~} AKD two 12 Bit nusbers,

MOT D -0 Complisent 2 32 hit nusber.

25HIFT (DN -1 )
Shift 2 32 bit nusber n bits to the left. to alion
the LSH to 3 field 1n the 27 bit nusber,

b. Print the current BAPP code.

BDUKF  { pointer § -- )

~

Like DUBPF. but dusp & range of BAPP code in the d)sl

sforage.

GAPP asgsembler on PC
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Ziaprécht & Fields
START BIDTH -- HEXT ! FIELD

§ SEAF JSHIFT
ADORESS DUP »R 29 20R Ry 2

# 3 FIELD WE I FIELD E¥ 3 FIELD CY

RAE DROP oK

gadr DRDP K&
1
Cy
RAK
Bapr

ORIGIK FOINTER z!

URT 7Y SRalES
fi WIN 0 BALRO-POINTER ¢ [~ CONETANT
1

v ansiructions GhjanBicht \ tlesentary instructions
ATE . DOES: ¥ B C;

£, DOEE: & ME HE:

E . DDEE- & KW ¢ Ei:
wTE . DOERD @ LY s
ATE . DOES- & RAH RAK:
Listing 13. GAPP assembler on PC (contt'd)

T

{ START WIDTH -~ KEXT |
{reate 2 field in a2
as the LB position
At run tise, insert
thus defined,

a code into the ©
a code intp the
ode into the
ode into the
code into the i

Pyt the top of stack into the GAPF RaM addrecs f18id.

Put

cling code into CF field, .
d assesbling code into HE fieid,
assesbling rode into £ field.
assegbling code into OV field,
assesbiing code into RAK field,

RO LR
23147 (llanBu

.

2 bit BAFF instruction. with
37
H

and BIDTH as the f1eld width,
the pattern on stack into the fieic

NS suitiplexer, [
EW sultiplever,

{Y sultinless

R&H gultipleser.
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Copv south nes
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=
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P oAlR 1+
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Lodiiation and erosion

=
=%

DILCROSE Dilste onlv to the four nearest neiohbor

GAPP assembler on PC {(cont'd)
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Faoed ° B GAFPASSH, BLK

i 121
0 % dilation and erosion 2 Y diiation and erosion G0; 71 0llankoo -
! HEX
2 6: ERCROY  DUP BADR  NS:tW=F C=0  §  tW=d §_ EROERY  Erode within the J:3 box.
3 CARRY  EWsNS & EWsE  N5=( ¢
4 CARRY % NGE:EW=C (=0 &  NS=N ¢
B CARRY  N5=EW ¢ N5=5 EW=( §
b CARRY ¢ BADR P=L ¢
7 b: EROCROSS DUP BADR  NS:EW=F (=0 ¢ EW=W ¢ EROCROSS Erode onlv to the four nearest neighbors.
g CARRY  NG:EWsF ¢  EW=sE NS=C (=0 §
9 CARRY ¢ N&=F EW=L C=0 ¢  NS=§% ¢
18 CARRY  N5=F 8  NS=N EW=l (=0 %
i1 CARRY ¢ BADR F=l  §
12 DECIMAL
14
13
24 {24
¢ % 1sage mask, invert, merae \ 1sade sask, invert, merce G057 GlianBuch
{ HEY
2 b: BET-MASK BADR  EW=F  § GET-MASE Imitiaiize the mashing operatioe,
3 B: MASK-IMABE  GADR  NS=P (=0 ¢ [ARRY  § MAoK-IMAGE  AND meacry olane with & mask,
4 BROE P=L  §_
S By INVERT-IRRBE BADR  NE=f (=] Ew=0 3§ IRVERT-IMAGE Invert s mesory plane,
& BRiR  PLUT % $
7 b: MERGE-IMAGE BADR  NB=F (=]  § BERGZ-IMAGE ORing twc aeporyv olare, The condition of aerqine
8 baDR  EW=F §  [ARRY  _§ ie in another mesorv piane. The stack 1c
9 GRDR  F=( $ { destination source! scurced -- |
16 DECIMAL
i
12
i3
4
25 125
G\ bit mask, serge and duplicate \ bit mask, meroe and duclicate 00235 0ldan@ig:-
§ HEX
2 6: RIT-MASE  GADR EW=F ¢  BADR KG=F (=0 % BIT-MASK  ANDino two mescrv planes.
3 CARRY & BADR  F=C %
4 6; BIT-MEFBE FBADR EW=F ¢ N§=P [=1 & BIT-MERGE ORino two sesorv pianes,
5 CARRY ¢ GADR  F=L 8
& 6: DUFLICATE DUP &ADR C=F $&  DUP BADFE FP=L ¢ DUPLICATE ODuplicate a sesorv plane intc the next 7 planesz.
7 DUF BADF  P=C &  DUF BABR FP=[
8 DUF GADR  P=C &  DUF BADR P=l %
§ DUF 8aDF  P=C  $§  BADR F=L §_
10 DECIMAL
i
iZ
13
i8
15

Listing 13. GAPP assembler on PC {cont'd)
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NCR45CG72

GEOMETRIC ARITHMETIC PARALLEL PROCESSOR

= APPLICATIONS

e PATTERN RECOGNITION ® IMAGE PROCESSING
= Correlation # Image Enhancement
® Sobel Transform ¢ Edge Detection
# Spoke Filter ¢ 2-Dimensional Convolution
® Template Maiching s Compression
®  Automated Inspection ¢ Spatial Filtering
& Machine Vision ¢ Differential Imaging

e PARALLEL DATA PROCESSING & ASSOCIATIVE PROCESSOR
¢ (Convolution ¢ Content Addressable Memory
e Matrix Operations & [ irmit Search
& Histogram e Hamrming Distance

& Search and Sort

= GENERAL DESCRIPTION

The NCR45CG72 is s twodimensional systolic array processor chip. It is @ mesh-connected six by twelve arrangement of
1 bit processor elements. Each processor element can communicate with four neighbors: NES, and W, Each processor
elernent is composed of a bit serial ALU, 128 X 1 bit RAM and 4 single bit latches: Three latches hold inputs to the ALU
and the fourth laich allows 1/O through the cell without interrupting the ALU, i.e. 1/0 operations are overiapped with
computation,

The cascadeability of the GAPP aliows system designers 10 implement arrays of processors of arbitrary size in multiples of
8 X 12 elernents.

e FEATURES

e CMOS systolic array with 72 processors per chip
& B X 12 array of bit serial processor elernents

® Single instruction multiple data stream architecture — all processor elements operate in parallel

¢ GAPP devices are fully cascadeable

® Systemn throughput increases linearly with number of processor elements in the system

® Broadcast global input and output

e Separate /0 bus = overlapped 1/O and computation
8 128 Bits of static RAM per processor

¢ V0LSidouble layer metal CMOS techinology

e 500 milliwatts power at 10 MHz

Figure 22. NCR GAPP brochure




NCR45CG72
= ABSOLUTE MAXIMUM RATINGS

Supply Voitage, Vpp

Voltage on any pin with respect

10 ground ~0.310 Vpp + 03V

—65°C 10 150°C

Storage temperature

CAUTION

Stresses above “absolute maximum ratings’” may resuit
in damage to the device. Functionail operation of devices
at the "absolute maximum ratings’’ or above the recom.
mended operation conditions stipulated elsewhere in g
specitication i1s not implied.

1. CMOS Devices are damaged by high energy electrostatic discharge. Devices must be stored in conductive foam or with
all pins shunted. Precautions should be taken to avoid application of voltages higher than the maximum rating.

2. Remove power before insertion or removal of this device.

= OPERATING CHARACTERISTICS

PARAMETER SYMBOL MIN TYP MAX UNITS

Supply Voltage Voo 45 5.0 55 \%
Supply Current (10 pF ioads)

45CG72-2 - 80 mA

45CG721 Ipp - 100 mA
Input Low Voltage ViL 0.0 0.8 Y
Input High Voltage Vin 20 Voo A
Output Low Voltage (I = 2 mA) VoL - 0.4 \Y
Output High Voltage (igy = 1 mA) Vonr 24 - \%
Temperature Ta 0 70 °C
input Capacitance Cin - 8 | pF
Output Capacitance Co - 8 pF
Leakage Current on any
Input or 1/0 Pin ling - 10 HA

Figure 22, NCR GAPP brochure (cont'd)
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= TIMING DIAGRAM

NCR45CG72

ey
et e L0 1t et Ty
~ \ 0 /A A Vi = 2.0V
/ / \ : \ / \
CLOCK — F— i / | SS—— = Vi = 0.8v
g} I,
[EEN .
T
o T NI NI NN VI
§ CTRL, ADDR / ;f’ij[/’;s X 1 ” ;’;!/f{ !fj/fff! Y 2 &‘j/;ii/ !/1;/;//&% 3 i/i/!/;ig/jj>; V{;’;};
z /] INULILL T INAIIL N1 e
Ny . [T\ [
NEWS CMS / // ////"l 1 /// / )( 2 ‘;u-—-—»{'! 3 \;...”.
/] /// N/ W
coT ] tsor
o Hi-Z
G.0. 1y 1 2 3
sy
et
e
2 ! } \\/z / ““\\” Vou = 2.4V
E < CMN 1 \} 2 3 /}
o /A / VoL =04V
toe 5
-3 M loRE
NEWS . h /1 \ / 5 \ oAz f?;\p“
— { / /
NOTE: 1,23 refer to the siaging sequence of instruction, data in and data out,
= AC CHARACTERISTICS
PARAMETER SYMBOL NCR45CG72-2 NCRA4SCGE721
’ MIN MAaX MIN MAX UNITS
CYCLE TIME tey 200 100 ns
CLOCK LOW ey 100 5000 50 5000 s
CLOCK HIGH e 100 5000(1} 50 5000(1) s
SETUP TIME 1 20 10 ns
INPUT HOLD TIME Tr 10 10 ns
OUTPUTS ENABLED toe 10 50 10 35 ns
CUTPUT HOLD TIME toer 10 50 10 30 ns
GLOBAL QUTPUT LOW tooL 20 100 10 70 ns
GLOBAL QUTPUT TRISTATE cor 10 50 10 35 ns
CMN QUTPUT tow 20 120 10 85 ns

NOTE: (1) d.c. by design; tested at 5 usec.

Figure 22.
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NCR45CG72

= PROCESSOR ELEMENT AND DATA BUS IDENTIFICATION

TOP VIEW OF PACKAGE

= 4 s I o = g % el
& 38 s 25 35£ £ 325
4 AA 4 4 4 LA A 4
Woo=e~ 00 01 02 03 04 05 <> Eos
Wig=s{ 1p 11 12 13 14 15 pe Egg
. GLOBAL
Wored 20 21 22 23 24 25 E2s CONNECTIONS
TO EVERY
Wio=e- 30 31 32 33 34 35 fe> £ PROCESSOR
ELEMENT
INTHE ARRAY
W= 40 41 42 43 44 45  ferg,.
Control Lines
Wep€34 50 51 52 53 54 55 e oo Co-Ce
W 60 61 62 63 64 65 fe> g
L
Wy 70 71 72 73 74 75 fempo, RAM Address
RAg - RAg
Weo-€> 80 81 82 83 84 85 e,
Woge>! 90 91 92 93 94 95  jemEge
N
Wagen] AD A1 A2 A3 A4 A5 lesE . Ggobaégutw
Wggees{ B0 B1 B2 B3 B4 BS  fe»Egg
73 r 3 3 )
i ¢ f ¥ f ¥ ! ¢ ? T é
=] = - e (S [ @ @
g & 4 & 5 & s & n & n B
= = = 3 b= =
1] 2 (9] L [ 15

MOTE: This numbering scheme may be extended in systerns which contain more than one GAPP device,

PIN LABELS
. Woo — Weo WEST DATA BUS
Eps — Eas EAST DATA BUS
Noo — Nos NORTH DATA BUS
Sgo — Sas SOUTH DATA BUS
CMSgp — CMSgs INPUT BUS
CMNpg — CMNgs OUTPUT BUS

RAM ADDRESS BUS

CONTROL LINES
-~ INSTRUCTION BUS
— GLOBAL DATA INPUT BUS

RAg — RAg
Co - Ce
GO

GLOBAL QUTPUT LINE

Figure 22.

NCR GAPP brochure (cont'd)
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NCR45CG72

= BLOCK DIAGRAM OF CONNECTIONS BETWEEN
FOUR PROCESSOR ELEMENTS

1 H i
C?"EN&OE NGC : ' C?\J‘;Nsa z’\é@ﬁ
! |
i Bidirectiona! } !
’fl Ve ;; Noninverting N\ IAN/
L ~ {/0 Butfer LN M
i
OE OE
£ O A Non RN Mo
NS » NS
e &
# Sy j
W, = En W, — . o
Weog bt = £ AW . £ nw OPEN
- y ;”w 4 - DRAIN
I Ew (NS i Fgg GLOBAL
oF y 3 OUTPUT
CMS N/STY S CMS  N/S S E‘GO}
|
# [
T i 1]
X é
! | 72-nput
orgate
i
o L CMN o A CMN ‘ F
S Y N NS ’
[ca) £
5 4
W, ré-:;, E. W, >y E. o
Wig T Ew , W
~L< /W Py E/W s -
NS | =

i
O CcMS NS Se cMS NS Ts.,
!
]
H
|

OE = Output Enable is an internal connection.

East Outputs enabled whenever EW: =W

West Outputs enabled whenever EW:=E

North Outputs enabled whenever N§:=§

South Outputs edabled whenever NS:=N

GO is pulled low whenever any NS register contains 1

Figure 22. NCR GAPP brochure (cont'd)
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= SCHEMATIC DIAGRAM OF ONE PROCESSOR ELEMENT

okl

M

- ns >

Ew:>

N

U0

GO

99

EwW

¢

CONTROL
LINES
MULTI-
Co PLEXORS
o 2 REGISTERS
—em
— RAM
CMS e CM
—lo
C;
Cs 3
Ca _I~s
-] rRAM
— N
-8 : NS
‘ -~ EW
< ew §— i ALU
© 3
> |« L~
C;
—JE
— R\Q/M FULL
—E ADDER
s TRACT
Cg 0
3
Co L
Ca e
—| RAM
— NS
— Ew > c
~ cv
—~ aw
m
Ca !
Ce ZQ;_‘
WRITE
. -1 cm
- C ——/ A
SM . ,
READ
128 X 1 bit RAM
P T T A
Ag Ay Az AzAs As Ag

SWO

Figure

§

22.
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ADDRESS LINES

NCR GAPP brochure (cont'd)

RAM

NS = NS Register

EW = EW Register

C = Carry Register

CM = Communications Register

CMS = Communications South input
CMN = Communication North Output
SM = Sum

BW = Borrow

CY = Carry

GO = Gioba! Output

Bl




= INSTRUCTION SET

NCR45CG72

Regast.er Mneumonic Control Lines Description
O peration Co Cg Cs Cg Cg Ty Cg Cg Cs C3 €3 €y Cp
CM: = CM X X X X X X X X X X X O O MICRO-NOP
CM CM: = RAM # X X X X * * X X X % 0 1 LOAD CM FROM RAR
CM: = CMS * X X X *x X b4 X s X # i 0 ¢ MOVE FROM CMS
INTO CM
Cat =0 )4 X X X X X H X x X * i 1 LOAD BINTO CM
NE: =N§ X X X b4 X X X 3 O ] (3] # X | MICRO-NOP
NS: = RAM X X X X X X X X 0 4} 1 X X | LOAD NS FROM RAM
NS: =N X X X X X X % X 0 1 ] X X | MOVEFROM N INTO Ng
NS NS: = x * X X X A X b 4 s 1 1 * X | MOVE FROM SINTO NS
NG = EW b4 X X kS X * X b4 1 4] 4] X X | MOVEFROMEWINTO NS
NE: = X X X X X ix ¥ ¥ i O 1 X X | MOVE FROM C INTO NS
NS: = X X IX X X IX X X 11 1 g lxX %|LOADDINTONS ‘
EW: = EW X X % X X 4] o 4] X X X * ¥ | MICRO-NOP
EW: = RAM X % X X X G 0 1 X X ¥ X X LOAD EW FROM RAM
EW: = ® b4 X X b4 ¢ 1 o X X # X X | MOVE FROME INTO EW
EwW EW. = X X X X * o 1 1 X bes k4 X X | MOVEFROM W INTO EW
EW: = NS X X X X X 1 O 0 X X X X X | MOVE FROM NS INTO EW
EW: = X X I X X X 1 0 1 X X X X, X | MOVEFROMCINTO EW
EW. = X X X X X i 1 0 X X X X X | LOADOINTOEW
C: = X X 8] o} 0 §gX X X X X X I X X | MICRO-NOP
C:=RAM X * o O 1 X X k-4 X X * X X | LOAD C FROM RAM
C:=NS§ X X 5] 1 O X X X X X X | X X! MOVEFROMNS INTOC
[ C:.=EW X X 4] 1 1 X X X X X X | X X | MOVEFROMEWINTOC
C:=CY X * 1 ) o} * X X X % b4 H X | LOAD CFROMCARRY
C:= BW X )4 1 0 1 X X Xk X X k4 * X | LOAD C FROM BORROW
Co=0 X X 1 1 o X s X X X X b4 X LOAD@!NTQC
oo=1 X X 1 H 1 X X X X * X * X | LOAD1TINTOC
READ ¢ 0 X b4 X s b4 b X X X )4 X | BEADFROM BAWM
R AM HAM: = CM 0 1 X X X X X X x X b4 X X | LOAD RAM FROM CM
RAM: =C 1 3] X X A * X b4 X K X x X | LOAD RAM FROM C
RAM: = 8M 1 1 X ¥ X * X X X X X b4 X LOAD RAM FROM SUM

& ARITHMETIC OPERATIONS

Addesr/Subtracter Operations

INPUT OUTPUT
MNE EW C M cY BwW
O 0 0 0 | 0
] i 0- H O 1
1 0 0 1 ] 0
1 1 O~ 0 1 0
0 0 1 1 1] 1
] 1 1 0O 1 1
1 O 1 0 1 0
1 1 1 1 1 1
Figure 22.

NCR GAPP brochure

= LOGIC OPERATIONS

LOGICAL -
OPERATION DESCRIPTION CONDITIONS

sM = NS EW=0,C=1

INV SM = EW NS=0,C=1
SmM=C NS =0, EW =1
CY =NSeEW C=0

AND CY=EWse( NS =0
CY=NSe( EW=10
BW=NSsEW C=0
CY = NS + EW C=

OR BW = NS + EW C=
BW=EW+C NS =0
SM=NS®C EW =0

XOR SM=NS @® EW c=0
SM=EW® C NS =0

XNOR SM=NS ® EW C =
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NCR45CG72
= PLASTIC CHIP CARRIER PACKAGE
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Figure 22. NCR GAPP brochure (cont'd)
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NCR45CG72

= TABLE OF SIGNAL NAMES VS. PIN NUMBERS

(CERAMIC AND PLASTIC)

“174~

SIGNAL CER PLA SIGNAL CER PLA SIGNAL CER PLA
NAMES PiN PIN NAMES PIN PIN NAMES PIN PIN
CMSgq B3 14 Noa K7 60 (ol 49 52
CMSg, c4 16 Nos H7 58 Cg A10 30
CMSg, A4 18 Sgo A2 13 Cg Cc7 31
CMSg3 A9 25 Sg A3 15 Ca B9 32
CMSgs A6 27 Sg2 B4 17 Cg c8 33
CNSpgs B8 29 Sga A8 24 Ce B10O 34
CMNgg K1 72 Sga B6 26 RAg C5 19
CMNgj Ja 70 Sgs B7 28 RA, K2 67
CMNg» Js 68 Woo J1 76 RA; B5 20
CMNp;3 H6 61 Wio H2 77 RA; K3 66
CMNgq J7 59 Wog H1 78 RA4 Ab 21
CMNps K8 57 Wag G3 79 RAg: K4 65
Eos G8 51 Wao G1 80 RAg A7 23
Eqs K10 | 50 Weg F3 81 GO J8 54
Eog H9 49 Wgo D1 4 VSS C6 22
Esg G9 48 Wig Ct 5 VSS H5 64
Ess F9 47 Wgg E2 6 vDD E3 82
E55 J10 46 Wgo E1 7 VDD F8 41
Egs E10 40 Wao c2 8 vDD G10 45
Evg ES 39 Wgo Al 9 VDD gup) - 53
Egg D10 38 CLK K6 63 N.C. B1 1
Egg D9 37 Co H3 75 N.C. D2 2
Easg C1i0 36 c, J2 74 N.C D8 3
Epsg Cc9 35 Cy D3 10 N.C. E8 42
Noo H4 73 Cy B2 1 N.C. F1 43
No1 43 71 Ca c3 12 N.C F2 44
Nga K5 69 Cg K9 56 N.C. F10 83
Noa J6 62 Cs H8 55 N.C. G2 84
N.C H10 —
DEVICES TESTED WITH THIS
OUTPUT LOAD CONFIGURATION 1.73V

DUT

All outputs

except GO —J: Cp —10pF

5.0V
Global O
Output (GO) L ¢, - 40pF
Open drain output on GO allows up to —
4 devices to be connected together.
Figure 22. NCR GAPP brochure (cont'd)




XIII. AN INTERACTIVE OPERATING SYSTEM FOR AP120B ARRAY PROCESSOR

Te INTRODUCTION

Developing software for array processors(AP) is always a
laborious and tedious task because one has to deal with a host
of software tools to write and to test a program. Typically one
has to write AP programs using a microcode assembler to assemble
the microcode, which has to be bound with a main line program to
be executed by the host computer. During execution, AP programs
have to be loaded into the AP program memory. Arrays of data
have to be formatted and moved into the data memory in AP.

After AP routines are executed, resulting data have to be moved
back to the host for examination or further processing.

Most AP manufacturers provide FORTRAN callable library packages
with the hardware, assuming that the user will use FORTRAN to do
all their work with the array processor. Since FORTRAN is a
compiler language, it is very difficult to build an interactive
system which allows the user to control the array processor
intimately. One has to go through the
editing-compiling-linking-loading process to get a shot at the
program and repeat the process if anything has to be changed.

Floating Point System supplies a big software toolbox for the
AP120B Array Processor, which has been a work horse for many
scientific and engineering applications. Among the tools,
APDBUG and APSIM do allow the user to try out various things
interactively and observe the reaction of the array processor.
However, the command set is severely limited and does not give
the user full control over the entire range of AP120B's
capability. 1Ideally, one should be able to access all the
facilities in the array processor, direct the array processor to
do elementary operations as defined by programs loaded in the
program memory, and also construct and execute high level
commands built from these elementary commands in an interactive

fashion.

FORTH is a very powerful software tool, allowing the user to
access and utilize all the facilities in a computer system. It
was originally developed for instrumental control and
programming. User can program at the lowest machine code level
to take advantage of the resources provided in the computer
system. Yet, it is also a high level language which enables the
user to express his algorithm by strings of English- like
commands, which can be either executed by an interpreter to
cause immediate action in the computer system or by a compiler
to construct more powerful high level commands to be executed
later when called.
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In our laboratory, an AP120B Array Processor from Floating Point
System was installed on an Harris 80 Computer for experiments in
real time signal processing. A FORTH interpreter-compiler was
written for the Harris 80 Computer to facilitate the testing and
maintenance of the interface between this computer and a number
of peripheral equipments to collect real time data and to
control some experiments actively. Since the AP120B is & very
important link to close the control loop in this type of
experiment, an effort was initiated to put the AP120B under the
control of this FORTH system so that we might be able to test
the entire system interactively.

2. THE FORTH OPERATING SYSTEM

This implementation of FORTH on the Harr_ s 80 Computer was
essentially a transcription of the fig-FORTH for the NOVA
computer(1), released by the FORTH Interest Group in 1981. The
NOVA FORTH model was chosen because the architecture of the
Harris computer is very similar to that of the NOVA computer
produced by Data General Corp. These two CPU's have the same
types of registers and similar addressing modes. A requirement
was to follow the fig-FORTH model as closely as possible so that
the programs developed on the Harris computer can be transported
to other computers with minimal modifications.

The most serious problem in adapting the fig-FORTH model to the
Harris computer is that the Harris computer is a 24-bit machine
while the fig-FORTH model presumes a 16-bit machine with byte
addressing capability. Standard fig-FORTH commands use the same
address to access bytes and 16 bit words. This is not feasible
in Harris 80 because memory is accessed in 24-bit words. The
solution adopted here was to make a clear differentiation
between byte- addressing commands and word addressing commands.
For the byte addressing commands, addresses are manipulated in a
byte memory space. Two special commands were used to convert
addresses from the byte space to the word space and vice versa.
If proper care is exercised in the addressing modes, programs
can be transported from the fig-FORTH system to this Harris
FORTH system.

The dictionary in this FORTH system occupies about 3 Kwords in
the core. With stacks and buffers, the entire FORTH load module
is about 8 Kwords in size. Two disk buffers are allocated to
interface with disk files, each one is 1 Kword in length or 3
Kbytes, equivalent to three standard FORTH blocks. This is a3
convenient size for the Harris operating system to handle the
data transfer between a random access disk file and the FORTH

module.

The FORTH module contains the FORTH nucleus, the text
interpreter, and the colon compiler, with some extra utilities.
A text editor and a Harris machine code assembler were written
in FORTH and saved in a disk file, which can be loaded if
needed. It was anticipated that the assembler will be necessary
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to write the device driver for the FPS Array Processor. It
turned out that we only had to implement a small code routine
APDR in the FORTH nucleus to call the array processor service
routines already installed in the Harris computer. Everything
else needed to interface to the AP120B were written in high
level FORTH language.

This FORTH implementation is described more fully elsewhere in
this book(2).

3. PROGRAMMING MODEL OF AP120B ARRAY PROCESSOR

The array processor AP120B is a very complicated machine, with
many processing elements, a multitude of interconnecting buses,
and a large number of memories and registers. It takes a fair
amount of time to learn this machine well enough to use this
machine successfully. In our design of the AP operating system
using FORTH as the underlying control executive, one major
design goal was to simplify as much as possible the AP software
as viewed from the programmer's direction and hide the internal
complexity of the AP to shorten the learning curve in using the
array processor. The programming model, or the structures in
the AP relevant for its utilization, is shown schematically in
Fig. 23.

In this model of AP120B, there are only four elements in the AP
to be dealt with by the user: the main data memory MD, the
program storage memory PS, the scratchpad registers SPAD, and
the interface registers including the switch register SWR, the
lights register LITES, and the function register FN. The user
only has to manage these few elements in order to command the
array processor to perform desired functions.

Among these elements, the most crucial element is the program
storage memory PS, where AP program or subroutine modules are
stored. To simplify the implementation and the use of this AP
control system, it is assumed that the program storage memory is
preloaded with a collection of AP subroutines selected from the
AP math library. To ease the task in calling these subroutines
from the FORTH operating system, a table of subroutine entry
points is constructed and stored at the beginning of the PS
memory. Each entry in this table contains two AP instructions:
a JSR instruction to call the appropriate subroutine, and a HALT
instruction to stop the AP activity after the subroutine is
successfully executed. This way, the AP math library routines
can be used without any modification. It is possible to
optimize the library subroutines to eliminate the calling
overhead required by APEX and to halt the AP at the end of the
subroutine. These modifications will speed up the execution of
AP functions and reduced the program memory size. However, this
optimization will be left as future projects.

e

In the main data memory MD, the first 100 memory elements are
reserved to store scalar constants and variables, as needed by
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some AP functions. Starting at memory element 100 is the vector
stack, which will be used by most AP functions implicitly. The
vector stack is managed by two variables in FORTH, the variable
vP, vector stack pointer, pointing to the top of the vector
stack, and the variable FRAME, defining the size of the vector
elements. In this FORTH system, all vector elements are of the
same size. This may be a limitation if the applications
requires vector elements of different sizes. However, for
dedicated real time applications in which data are generally of
the same size and format, this uniform vector format may be
quite adequate. The advantage is that the language syntax is
greatly simplified because the user does not have to specify
explicitly the addresses, lengths, and increments of the vectors
involved in an AP function, as in most AP FORTRAN subroutine

calls.

The scratchpad registers SPAD are used by the AP to retrieve
parameters needed in executing an AP function. Up to 16
parameters can be passed to an AP subroutine via SPAD. Before
the FORTH system commands the AP to start executing an AP
subroutine, it has to fill the SPAD with the necessary list of
parameters into a buffer in the Harris computer. The address of
this buffer is then passed to the FORTH command SPLDGO ( SPAD
LoaD & Go) so that this parameter list is read into the SPAD
registers in the AP before the AP function is executed.

The AP120B is attached to the Harris 80 computer as an I/0
peripheral device. From the side of the Harris computer, the
AP120B appears as three registers in an I/0 device: two
read/write registers SWR and FN, and a read-only register LITES.
Commands and parameters are transferred to the AP and AP status
can be examined by the Harris computer through these registers.
The programming task is essentially developing specific commands
which control these three registers.

4. IMPLEMENTATION OF THE AP OPERATING SYSTEM

The entire program to control AP120B from the FORTH operating
system is only three pages of FORTH source codes, which are
shown in its entirety in Listing 14. It is equivalent to about
a hundred pages of FORTRAN codes for the equivalent functions.
For the readers who are not familiar with the FORTH operating
system and its peculiar language syntax, a few guidelines are
offered here to help reading the source code.

1. Source codes are arranged in screens of 1024 bytes. In
each screen, codes are grouped into 16 lines, each of

64 bytes in length. A line number precedes the line of
code, but is not part of the code.

2. Words are separated by one or more spaces. A word can
be a command, a number, or a string which must follow

a string command.
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3. {( is a comment command, causing the FORTH interpreter to
ignore all the text up to and including the delimiter ')'.

4. : is a command causing the FORTH interpreter to construct

a new command and add it to the dictionary in the FORTH
operating system. The syntax of a new definition is:

: <name> <list of valid FORTH words>

; is the command to terminate a new command and make it

available for execution or compilation.

5, The stack effect of a command is documented as a comment
after the name of the new command. Items before the ~--
marks are those on the top of the stack before executing

+the command, and the items after the --- marks are those
numbers left on the stack after executing the command.

6. DECIMAL and OCTAL alternate the number base between the
regular decimal system and the octal system often using
in addressing AP registers and the Harris memory.

7. EXIT terminates the interpretation of a screen of text.
The texts after EXIT are ignored by the interpreter.

5. AP DEVICE DRIVER

Two physical daevices are assigned to the AP120B in the Harris

I1/0 structure. Device 65 is used to handle the 3SWR, LITES and FN
interface registers, and device 66 is used to handle interrupts
from the AP120B. The AP device driver routines are installed in
the Harris I1/0 service package, and the elementary AP functions
can be called directly through the standard Harris I/0 calling

protocol:

TLO IOPAR Transfer address of parameter
list to the K register.
BLU $IOW Call the I1/0 service.
I0PAR DATA VRXXYY Device number xxx and function
code yy in octal.
DATA word count
DAC buffer-address

Two FORTH commands I/0 and APDR were implemented in the FORTH
module. I/0 is to handle general input/output service to all
the Harris peripheral devices, and APDR is a adaption of I/0 to
the AP120B. 1I/0 requires three parameters as input on the FORTH
data stack: the device-function code, the word count and the
parameter list address. APDR also requires three parameters on
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the data stack: the AP driver function code, the pattern to be
copied into SWR register, and the command pattern to be copied
into the FN register. APDR assumes that the device to be
addressed is AP120B, Device 65 in Harris. 1I/0 was used only
once to define the function APOPEN, because it has to address
Device 66 to initialize the interrupt handler for AP120B. All
other elementary AP functions are derived from APDR.

/0 ( buffer-addr word-count funiction-code === )

The most elementary I/0 command passing control to the I/0
service routines in the Harris operating system. The top item
specifies the I/0 channel and the function to be performed. If
the function requires the transferring of additional parameters,
the buffer address and the the size of the parameter buffer must
be specified as the next two items under the function code. If
address and count are not needed, dummy numbers must be
supplied.

APDR ( parameteri parameter2 function --- )

Fill the I/0 parameter buffer with the two parameter values and
the function code on the stack and executed the AP function. It
calls the AP driver routines installed in the Harris computer.

5. ELEMENTARY AP FUNCTIONS

Elementary AP functions are simple derivatives of APDR. For
some functions, two parameters and the function code used by
APDR are sufficient to specify the operations and APDR is
executed immediately. For more complicated functions, more
parameters have to be moved into a buffer called IOPAR and one
of the parameter is used to point to IOPAR. APDR then picks up
these additional parameters in IOPAR for its execution. A few
supporting functions are also included in this category. They
are used to move data among buffers, memory and registers.

APOPEN ( m==)

Open the logic Devices 65 and 66, which must be assigned to the
physical devices associated with AP120B hardware interfaces to
the Harris computer by Harris system commands. This command
must be executed before any other AP commands.

APIN ( register =-- value )

Read the contents of one of the AP interface register whose
number is placed on the stack. Returned value on the stack is

its contents.
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APOUT ( value register —-- )

Store the value into the AP interface register whose number is
given on the top of the stack.

RREG ( function =-- lites )

Examine an AP register or memory by writing the FUNCTION
register and reading the LITES register.

WREG ( function switch --- )

Deposit into an AP register or memory by writing the SWITCH
register and the FUNCTION register.

WTRUN { ww=w error )

Wait for the current AP program to finish and return the
completion code. Error occurred 1if the returned code is not
zero.

WTDMA ( === error )

Wait for the conmpletion of a DMA ftransfer. A completion code is

returned on the stack.

@REG ( register --- value )

Use REEG to fetch the contents of an AP register.
'REG ( register value -=-- )

Store a value into an AP register.

APBUF ( === buffer-addr )

Return the address of an array where the I/0 parameters are
stored to be retrieved by the command I/0.

SPAD ( --- address )

Return the address of an array where parameters are stored and
moved into the SPAD in AP before an array processing function is
executed.

'PAR ( heap addr count --- )
A set of numbers piled as a heap on the stack are dumped to the
memory starting at addr. The number of items moved is given on
the top of the stack as a count.

'DMA ( control word-count ap-addr host-addr ==-- )

The four parameters on the stack are stored in the I1/0 parameter
buffer to specify the DMA actions to be followed.
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DMA transfer. The detailed actions must be specified
D t

ISPAD ( nspads slist start function errloc noload psa --- )

tore seven parameters required of an AP process into the 1/0
arameter buffers. Nspads is the numbers of SPAD items to be
used, slist is the address of the array SPAD from which SPAD
items are to be passed into AP, start is the starting address of
the executable code in AP, function is the functional command,
errloc is the address where an error code will be returned,
noload indicates whether codes are to be loaded from the host,
and psa is the address of the PS memory.

RUNAP (=== )

Execute an AP process. The process must be specified by th
ISPAD command.

APERR ( === error )
Return the error code produced by the last AP operation.
APRSET ( —== )

Reset AP by stopping any DMA activities, halting the AP, resets
the interface, and initializes various flags and data values.

7. VECTOR STACK MANAGEMENT

Most AP math library subroutines require long lists of
parameters to specify the addresses, lengths, and increments of
the vectors involved in their operations. These parameters are
passed to the AP subroutines via SPAD registers. Using the
elementary AP function defined above, we can pass all the
necessary parameters explicitly with !SPAD command. However, to
pass long lists of parameters on the data stack in FORTH is very
messy and often ensures the unreadability of the program.
Assuming that the vectors to be are of the same size and format,
we can construct a vector stack in the MD memory to manipulate
these vectors. AP stack operations will remove their required
vector operands from the top of the vector stack, and leave only
the explicit results on the vector stack for the subsequent
operations to used as operands. Thus all references to the
vector operands are implicit and the user does not have to
supply the parameter lists. This vector stack greatly
simplifies the syntax and the programming of this AP operating
system, similar to the use of a data stack in FORTH.

VP and FRAME are two basic tools for managing the vector stack
in the MD memory. They are defined as variables so that the
structure and the location of the vector stack can be changed
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dynamically. Other commands are defined to support AP functions
to handle the vector stack more efficiently.

VP ( === pointer )

Return the current pointer to the top of the vector stack. It
is initialized to point at MD location 100.

FRAME ( === size )

Return the frame size of the vectors on the vector stack. 1t is

initialized as 10 for demonstration purposes.
?VP ( ===

Check the vector stack pointer. If it points below 100, abort
the current AP process and re-initialize VP to 100.

+VP ( === )
Increase the vector stack pointer VP by one frame.
-VP ( -==)

Decrease the vector stack pointer VP by one frame. The net
effect of this command is popping the top vector off the vector
stack.

ve ( host-address =--- )
Read one frame of data from the buffer starting at host-address

in the Harris computer into AP through DMA transfer and push
this frame of data on the vector stack.

Vi { host-address =--- )

Pop the top frame on the vector stack and write this frame of
data to the host buffer starting at host-address.

Ve (=== )

Remove the top frame on the vector stack and print its contents
on the CRT terminal.

v. (===

Display the contents of the entire vector stack on the CRT

terminal This is a very useful command to inspect the vector
stack without disturbing the size and contents of the vector
stack. It calls a low level command (V.) to do the printing.

SAME ( === )

Fill the SPAD with three parameters: +the address, size, and
increment of the top frame on the vector stack. This command is
used to initialize the SPAD for AP function involving only one
vector.
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BINARY  ( --- )

Fill the SPAD with 7 parameters, specifying that the topmost two
frames are to be the source vectors and the second frame on the
vector stack to be the destination vector for the following AP
function. It is used to set up SPAD for binary vector functions
like add, subtract, multiply, and divide.

INPLACE ( === )

Fill the SPAD with 5 parameters, specifying an inplace AP
function which uses the topmost vector frame as the source and

the destination.

8. VECTOR STACK OPERATIONS

Most of the vector stack operators call their corresponding
library subroutines installed in the PS memory. Taking their
operands off the vector stack and leaving their results on the
vector stack, the parameter lists required by the library
subroutines can be generated automatically by the supporting
commands like SAME, BINARY, and INPLACE. All the vector
operators eventually call SFLDGO command, which passes the SPAD
parameter list and executes the AP operation at the PS addresses
given to 1t on the data stack.

The mnemonic names chosen in this FORTH system for AP operations
mimic the names of their corresponding subroutine defined in the
FPS math library, except those for which FORTH type generic
names are more appropriate, like V+, V-, V# and V/. The AP
operations included in this sample system are very limited in
its scope. The AP functions zare limited only by the
availability of the subroutine library and the size of the PS

memory.
SPLDGO ( address ===~ )

S

Reset AP120B, copy parameters into SPAD. and start AP120B at
the PS address given on the data stack.

VO ( ===)

Clear the top frame on the stack to zero's.
VDUP ( ===

Duplicate the top frame on the vector stack.

VOVER ( ===)

Duplicate the second topmost frame and push it on the top.

VDROP ( === )
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Discard the topmost frame on the vector stack,
V+ (=== )

Add the top two frames on the vector stack, pop the topmost
£ e

frame, and replace the original second frame with the sum.
V- (===

Remove the topmost two frames on the v or stack and push the
difference vector on the stack (second-first).

v (- -)

Remove the topmost two frames on the vector stack and push the
product vector on the stack,

v/ (===

Remove the topmost two frames on the vector stack and push the
quotient vector on the stack {(second/first).

VSIN ( === )

Convert the top frame on the stack to its sines.
VCOS ( === )

Convert the top frame on the stack to its cosines.

VFILL ( source =-- )

Push & new frame on the vector stack and fill this frame with
the value stored in the MD address by the number on the data
stack.

VRAMP { source increment —-=
Push a new frame on the vector stack and fill this frame with a

ramp function whose starting value and increment value are in
the MD memory addresses by the top two numbers on the data

stack.

9. DIAGNOSTIC TOOLS

A few commands for diagnosing the AP system and its operations
are also defined for the user to inspect the registers and some
parts of the memories in the AP120B.

STATUS ( =-==)

Display the contents of all the registers in AP120B addressible
by the Harris computer. It is a power tool to inspect the
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current status of the AP for diagnostics.
APSTEP ( == )
Causes the AP to execute the next instruction in the PS memory.

APCONT ( === )

Continue the AP execution from the point of last interruption.

10. A DEMONSTRATION SESSION

To demonstrate the interactive features of this AP operating
system a short terminal session was recorded and shown in Figure
24. Prior to entering this AP operating system, an AP load
module must be loaded into the PS memory. The load module
listing is shown in Figure 25, which contains only a set of
entry points with subroutine calls to the AP math library. It
was assembled using APAL and the load module was generated by
APLINK. The module with the library routines is then loaded
into PS memory by APDBUG. A list of constants is also loaded
via APDEBUG into the MD memory for testing. This list of
constants is shown in Figure 25. After the AP is thus
configured, the FORTH module is loaded into Harris 80 computer.
The AP control program shown in Figure 2 is then compiled into
the FORTH dictionary. At this point all the AP commands defined
in the control program are available for execution and
compilation, as commanded by the user through the Harris console
terminal.

In the demonstration session shown in Figure 24, we started by
pushing some constant vectors on the vector stack and performed
a vector add. Contents of the stack were displayed using the V.
command. Then a ramp vector was pushed on the stack and
converted to a sine vector. The last part of the demonstration
showed that a new function VTAN were defined and tested. The
ability to compiled new commands from existing command set
interactively is one of the very powerful features of the FORTH
language.

1. CONCLUSION

It is demonstrated that the FPS AP120B array processor can be
used interactively under the control of a FORTH operating
system. Here the AP120B is used as a fixed instruction set
slave processor to process vector arrays of fixed length and
identical format. These restrictions reduces the APEX overhead
to a minimum because the library subroutines are loaded into PS
memory only once and remain static in the PS memory. FORTH
operating system only has to start the AP at known entry points
in order to invoke needed AP functions. Fixed vector format
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allows the manipulating of vector arrays using a LIFO vector
stack structure. The vector stack greatly reduces the overhead
in passing SPAD parameters because vector addresses can be
computed automatically, and the AP commands can be issued, using
very simple syntax, making AP a very friendly computing device.

The limitations on the fixed instruction set and on the fixed
data format are artificial for this demonstration
implementation. It is possible to reload or overlay PS memory
with new subroutines, so that the AP can be reconfigured
dynamically for multi-task applications. Any vector data
structure can be accommodated if the user are willing to specify
all the SPAD parameter explicitly.

A microassembler(3) to develop microcodes for bit-slice
microprocessor was completed in this laboratory, under a FORTH
operating system. It can be adapted to the Harris-AP120B systenm
so that AP microcodes can be writiten and tested interactively.
This facility, once completed, will allow us to bypass all the
vendor software tools and used the array processor under a
single operating system using a single language.

1. C. H. Ting, 'fig~-FORTH for NOVA-Computer', FORTH Interest Group,
San Carlos, C&. . 1981,

2. See 'FORTH for the Harris BO Computer’'’ in this volume.

Ting, 'Microassemblar' in 'Forth Notebook', Offete
prises, 1983, pp. 136-169.
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41 z Z 2
45 2 2 z
4 2 z il
4 1 i i
44 i i 1
47 i 1 Fid
Y rs. 0
V.
zZ z 2
2 2 2
2 Z &z
cord the result. )
the vecior 3
g 14 VEAMP { Push a ramp vecior on the vector stack. )
Inspect it
11F4 43 81 GBIEBS8S 1ggFFA BIFBES 180FFE
1iFC 51EBBL  1PEPFC EBE66HE  3LLOFC  T7AE147 5BPEFC
1204 S51EB8S  1G80FD SCZBFL  GEELFD Z =

VST { Convert it to a sine vector.?

Y Inspect the result.;
11F4 jod 81 BIlEBZB BEOFFA GBlEALIF 2g92gF8
117¢C S5IEBED 4888FC 665B74 ABLFEC TJACEGBR GREPFC
1254 510528 2ZBOBFD SCESIF  ZBLLrD g ol

YDROP { Clean the vector stack,}

g 14 VRAMP { Push a ramp vector on stack for testing.}

Y. { Take a8 lTook.}
11F 4 g 81 BIEB8S5 1p@FFA B1EBBS 1§POFB
1IFC S1EBBS 1@PPFC 6BE666E6 3PPPUFC TFAEL47 BEERFC
1204 51£885 1498FD BCZEBFS  BHZHFD & Z

VTAN { Now test the new tangent operator.)

Y. YDROP { See if the result looks reasonably right.}
1174 )il 81 51EC38 FA S5I1EES! FB
11FC 51F6B6  288BFC 667C44 3@BEFC  7BBTIS  ZBEOFC
1284 52185F BBEHFD EBCEBDE  1488FD 4 Z

Figure 24.
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A demonstration session of AP420B Forth
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AP TEST USIN

A L I R A A R e

iy

APDBU

TIMNG, DEC-14-

s
¥

VOLRE VMOV VSWAP (VNEG,VADD, VSUR  VMUL L VABS

@y

23]

2

B A IO R T TR R TR

L I O NN E N

TESTE

VEILLOVRAMP VDIV, VSIR, VCOS , VRAND

[

6) -

Y

R
\g’

v
VERIAP
VNEG
VADD
VvsuB
VYMLIL
VFILL
VEAMP
VSI K
VCos
VDIV

[

TR R3O OTE o teo8 1 B BB om o83

R ]

Entry points of the AP load module
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7.99388895963E-41
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3.1415882882

EOF ..

“MD
“MD
1D
"R
"MD
"MD
"MD
"MD
D
"HD
R
44D
“MD
"}D
g
"MD

“MD
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sEEEal
ZREEOZ
goened
ZERROA
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2B
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BeBsl
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BEgm:
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Constants in the MD memory
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7]

<y

S S

(%]
<y

Tt e o ok ot oy

[

Tl Qo B o o o

NSPADS SLIST é?RT FN BRKLOC NOLOAD PSA ---

R# 21

T { AP CONTROL, CHT, 28-DEC-83)

I+ APOPEN Z 1 18113 1/0 g1 1#7
Z ¢+ APIN { REGISTER ==~ VALUE

3 PAD SWAP 12 APDR PAD &

4 APOUT { VALUE REGISTER ==~
5 32 APDR :

& : RREG t FU &f*’O& =~~~ LITES 3}

7 PAD SWAP 13 APDR PAD @

g : WREG UNC EDH SWITCH ==~ 3
3 R

& APOP IMAL Ey

I WITRH - A“”EPP } 2 g5
2 ¢ VWTDE “~- APXERP AN
2 FEG i5 1 po CeE I . 1 AP
4 FEGT VALUE --- 1 15 1 DO
Fg 22z

0 JCCESSING AP REGISTEES, CHT.

I OCTAL

2 : BREC { REG ~-- DATA

2 2E6L + RREG :

2 TREE { REG DATA ==~ )

5 SWAP 1ZEZ + SWAP WREG :
€ SR7 CF 2 £ DO 1 1 IREG 5 GRE
7 I 7 = IF CR THEN Loor :
g EXIT

@ 16 & DO I ERE! Loor
o { DATA ~== 6 £ DO 1
1

pg 27

(S O r“H'

i V%TZAELE A? UF 6 ﬁ T

2+ IPAR { t: p AﬁDP N

3 OVER + SWAP DO L
4 BT AFBUF & 18 APDR

5 FURA APBUF £ 28 AP H

& YDMA { CTRL NUM APMA HOST -
7 APEUF 4 IPAR H

g PRUN {

g AFBUF 7 IPAR :
2 ¢ WTRUN & B 5 APDR :

Iy WTDMA 2 % 6 APDR :

2 ¢« APXERR { === ERR APPAR 3
3 ¢ APRSET 7B 23 APDR :

4 EXIT

5

H. Ting

7

213

oor

3

17

I

APPAR
APPAR

LooP

APOUT

IREC

s

P

) G
@y rEy
o

+

s

LOOP DROP RE

LOOP DROP ETES

27
LE SPAD 15 ALLOT

)

Harris 88

Controlling AP120B array processor
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SCRe 24
g { VECTOR 1/0, CHT, 22-DEC-8237
1 VAFIABLE ECTOR STACT POINTER? 175 VP 1
2 VAR IABLE FRAHM { VECTOR SIZE) 19 FRAME !
3 TVP P e 1EE < IF 182 vP 1 29 ERRCOR THEN H
4 VP VP o+l VP :
5 NEGATE WP +1 TVP :
g
g @ 2% +VP VP @ RO WTDOMA [DMA RUNDMA
Ej -}
17 E 2* VP @ K> WTDMA 1DMA RUNDMA -VP ¢
11
1z FRAME @ 2Z* DUMP ¢
1z DVER DO V7 FRAME @ NEGATE +L007 VP oL
i4 IF (v.) ELSE " V=stack empty.” THEN :
SCR
5
z
2
3 r error flags)
4 LUN RUNAT :
5 2 ®
“
B
17 VP 7 ISPAD
il :
12
12
15
SCE# 26
7 0 VECTOR STACK OPERATORS, CHT. 23-DEC-83)
1 VI SAME 2 SPLDGO :
z VoDuUP FRAMEC VPE +VP VPE ZSWAP E ISPAD 4 SPLDGO :
z VOVER FRAME® -YP YPE +VF +VP VFE Z8WAP
4 5 1SPAD 4 SPLDGO :
g VIROP -VP :
& V4 BIRARY 18 SPLDGO :
7 Y- B 12 ! H
8 V* g 1
E VSIN :
18 VEOS H
11 EXIT
13
14
15
C. H. Ting Harris 8¢

Listing 14. Controlling AP120B array processor (cont'd)
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SCrRe 27
Z 0 VFILL AND VRAMP, CHT. 2-JAN-84)
T VFILL { source -=-=- }
Z >R FRAMEG +VP VPg R 4 ISPAD 16 SPLDGO :
z VRAMP i start inc --- }
4 >ROOR FRAME® +VP VP8 R> R> SWAP 5 1SPAD
5 18 SPLDGO :
& EXIT
£
?
1g
12
15

SCrR# 28
2L AP STATUS ., CHT., 5-JAN-84)
1+ HNAMES { ing === )
z CR * BLOCK BYTE =+ CELL 64 TYPE
3 REGIS
4 i 8 ¢ DO I BREG 8 U.R LOoDF
5 z 15 8 DO 1 BREG € U.R LOOP
£ LAPIH
¢ 4
9 : STATU o
17 EXIT
1L
37
3

EXIT

DPA SFISPD) APSTAT DA

DPY  MDIMA: TMUTMA)

APMA HMA We CTRL
MASK  APMAL MAE

7
o

ek

[N
L8 3 B SN N

Harris BO

o]
P
~J
o
~f
-3
i4]

3z

APRSET., CHT, 5~JAN-84)

CTAL

APRSET B g 27 APDR H
APSTEP 18Py 2 32 APDR H
APCONT 2B38E 2 3z APDR H
DECIMAL

EXIT

(53
0
e

&ﬂh(,\)N"-"”Jt\QO}MG‘\(J’C&(\)V‘JMA*G},»W
SRR &

Bk fh o bk ok o

Listing 14. Controlling AP120B array processor {(cont'd)
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