
KITT PEAK NATIONAL OBSERVATORY
MEMORANDUM

TO ___ D_i_s_t_r_l_·b_u_t_l_·o_n __ ~~ October 1979

FROM ___ R_. __ S....::.t_e_v....::.e_n....::.s~ _______________ SUBJECf Forth Primer - Update 3

~ Attached is Update 3 of the Forth Primer. This update is
a complete reprinting of this manual. please discard any old
copies of the Primer that you may have.

The major changes to the Primer are:

- Correspondence with KPNO Forth, Versions 3.0
and later. This level of KPNO Forth conforms
(in general) to the 1978 Forth International
Standard;

- Description of the file system (Section 13.2).
This section corresponds to KPNO Forth, Versions
3.3 and later;

- Description of overlays (Section 13.3);

- Description of vocabularies (Section 11.4).

As usual, any comments or suggestions concerning any aspect
of the primer are welcome.

" KITT PEAK NATIONAL OBSERVATORY.

TUcson, Arizona 85726

A

EU S ARMY PROPERTY OF C~!ORMA;lor: CENTER
REDSTONE SCIENT~S£NAJ.. ALABAMA ..,

, REDSr.ONi

W. Richard Stevens
October 1979
(Update 3)

*Kitt Peak Nationa' Observatory is operated by the AssoCiation of ~iversities ~r ResearCh in Astronomy, Inc., under Contract with the National Science Foundation.

TABLE OF CONTENTS

1. I nt roduct ion • . . . 1-1

2. Obtaining a copy of the current FORTH system ...••.•.•. 2-1

3.

4.

5.

Loading
3. 1
3.2
3.3
3.4

FORTH into the computer.
Running from disc ..
Running from tape .•.••
Restarting from disc ...
Saving your program modifications.

Executing FORTH utility words.
4.1 Terminal Interaction.
4.2 Re-formatting the disc
4.3 Listing FORTH blocks •.

Arithmetic Expressions ••..
5.1 The FORTH Stack •..••
5.2 Infix/Polish Notation •.

.. 3-1
.3-1
.3-2

... 3-3
.3-6

.4-1
. .4-1

.4-3

.4-4

.5-1

.5-1

.5-4

6. The FORTH Dictionary••••.•.•.••.••..• 6-1

7.

8.

Data
7. 1
7.2
7.3
7.4
7.5
7.6
7.7

Structures ...•...•
Integers .•.•..•
Double-word Integers
Floating-point Numbers •.
Conversions between Data Structures •.
Logical Values and Logical Expressions
Additional Numeric Conversions ..
Vectors.

Stack Operations
8.1 Manipulation Words
8.2 Comparison Words.

.7-1

.7-1

.7-6

.7-11

.7-18

.7-20

.7-22

.7-25

• .8-1
.8-1
.8-9

9. The Colon Definition ...•...•..••...•••••.• 9-1

10. Program
10. I
10-2
10-3
10-4

Control
DO LOOPS
BEGIN-END Loops ..
BEGIN-WHILE-REPEAT Loops
IF-THEN-ELSE Statement Selection

10-1
10-1
10-7

. 10-9
10-10

1 I . Bloc k I /0 . • . 1 1 - 1

12.

13.

14.

15.

16.

Text Editor . . . · · · · · ·
12. 1 Special Characters and Terminology
12.2
12.3

Program
13. 1
13.2
13.3
13.4

Terminal
14. 1
14.2
14.3

Advanced
15. I
15.2
15.3
15.4

Command Descriptions
Block Editor · . · · · ·

Structure · . · · · · Block Oriented Programs.
File System. · Overlays. · · Vocabularies

I/O
Character Output
Numeric Input.
Numeric Output.

.

Arithmetic•
Numerical Functions ..•.
Mixed Precision Operators.
Arithmetic Range Errors ..
Combined Words

Real-Time I/O . . .
16. 1 Interrupts
16.2 CAMAC I/O. · 16.3 FORTH CAMAC Words.
16.4 FORTH Interrupt Words.

. . . .

Appendices

A.
B.
C.
D.

ASCI I Character Set.
FORTH Error Codes . .
Answers to Exercises.
FORTH Glossary

12-1
12-1
12-2
12-13

13-1
13-1
13-11
13-18
13-22

14-1
14-1
14-2
14-3

15-1
15-1
15-7
15-9
15-10

16-1
16-1
16-2
16-5
16-10

. A-I
B-1
C-I

. D-I

1. I NTRODUCT ION

FORTH is a programming system whose main function is to simplify the program

ming of minicomputers that are used for on-line data acquisition. This

primer is intended as an introduction to FORTH. The only assumption made

is that the reader has some experience and acquaintance with computers in

general (probably through the FORTRAN language) and is capable of pursuing

a self study course.

The organization of this primer Is to present the features of FORTH in an

orderly and stepwise fashion. This primer should be read in the order presented

as each chapter builds on the points covered in the previous chapter.

Computer Science is a field in which "hands on" experience is a requisite;

that is, one can read a plethora of programming manuals and obtain some

information, however one must write and debug some programs using a given

programming tool in order to really understand and appreciate the tool being

used. FORTH is a classical example of this principle and a perusal of this

primer without trying to work or understand the examples and exercises wi 11

yield very little knowledge of FORTH. This requisite for "hands on l
'

experience is especially true with FORTH since it is an interactive, terminal

oriented, minicomputer system quite different from the batch-oriented FORTRAN

systems you are probably familiar with.

This manual is intended to be used as a self study tool and therefore

exercises to be worked, along with complete solutions are provided. It

must be clearly stated that the provided solutions are not to be considered

the only solution to an exercise. Programming is an art and therefore

there will usually exist more than one solution to a given problem. The

analysis of all possible solutions, in order to determine the "best"

solution, is not a clearly defined task, mainly due to the variable

criteria avai lable to specify which solution is 'Ibest". The reader should

not be disturbed if he arrives at a solution that is not identical with the

provided solution but should try to understand the provided solution (and

possibly compare the two solutions to determine which, if either, is "better").

Feb. 1977 I - I

As with any self study course, referral to the solution for an exercise,

before making an honest attempt to solve the exercise on your own, defeats

the purpose of this primer.

Although an occasional reference is made to the version of FORTH used at

Kitt Peak (for its Varian 620 minicomputers) this primer is largely

independent of any specific FORTH implementation. In fact, until the final

chapter no mention is made of the computer being binary or decimal and

no specification of the number of bits in a computer word is needed.

This manual is a primer and as such does not describe FORTH in its entirety.

All of the nitty gritty details of the implementation of FORTH are ignored,

instead this primer tries to give the reader an appreciation of what FORTH

is and how to use it to solve a large class of problems on a minicomputer.

The most notable exclusion from this primer is a description of machine

language programming in FORTH, this topic being so dependent on the specific

computer being used. This topic along with an advanced description of the

implementation of FORTH is covered in "FORTH - Systems Reference Manual"

which is available from the author at Kitt Peak National Observatory, Tucson,

Ar i zona 85726.

Comments and suggestions concerning any portion of this manual are solicited.

Please try to be as specific as possible (reference the page number and

revision level). Direct all comments to the author.

1-2

"Explain all that," said the Mock Turtle.

"No, no, the adventures first," said the gryphon in an

impatient tone: "Explanations take such a dreadful time."

LEWIS CARROLL

Alice's Adventures in Wonderland

Feb. 1977

NOTE: The version of FORTH used throughout this manual is Kitt Peak FORTH,

Versions 3.0 and later, which runs on a Varian 620 minicomputer. This version

of FORTH corresponds to the basic system defined by the FORTH International

Standards Team along with many Kitt Peak extensions.

Oct. 1979 1-3

2. OBTAINING A COPY OF THE CURRENT FORTH SYSTEM

The first thing one must do is obtain a copy of the current version of the

KPNO Varian FORTH system on a magnetic tape. This tape may then be taken

to any of the KPNO Varian systems, loaded into the system and executed.

The current version of FORTH will always reside on the Kitt Peak CDC 6400 and

the following job will copy the system onto your magnetic tape (a 600 foot

tape is sufficient).

jobname,account#,MT1.

VSN (TAPE 9= tape#)

REQUEST(TAPE9.HI.S.RING)

jobname and account# are parameters required

by the 6400 SCOPE operating system.

tape# is the volume serial number or volume

serial name on the magnetic tape.

causes the mag tape to be mounted on a tape

drive with a write ring and directs the

system to write the tape at 556 bpi.

ATTACH(TAPE5.DOFORTH,CY=5) attaches the current version of FORTH to

tapeS.

ATTACH(DOFORTH.DOFORTH)

DOFORTH.

end-of-record card

end-of-record card

attaches the public file DOFORTH which is the

FORTH utility program used to manipulate

FORTH tapes.

execute DOFORTH.

terminates the SCOPE commands.

termi nates the $ I NTYPE cards.

$OUTTYPE TAPE=.TRUE •• IBLK1=l,

t cOl . 2 of card

IBLK2=199 $

end-of-fi Ie card

Feb. 1977

termi nates the a;OUTTYPE cards and

termi nates the program.

2-1

Upon successful execution of this job the user should remove the write

ring from the magnetic tape. The contents of the tape (which will

automatically be printed by the above job) are blocks 1-199 of the

current FORTH system (blocks 1-7 are not printed).

If the user has a FORTH tape that he wants listed on the CDC 6400 (Section

3.4 describes the procedure for creating a FORTH tape on the minicomputer)

the following job may be used:

jobname,account#,MT1.

VSN(TAPEB= tape#)

REQUEST(TAPEB,HI,S)

ATTACH(DOFORTH,DOFORTH)

DOFORTH.

2-2

jobname and account# are parameters

required by the 6400 SCOPE operating

system.

tape# is the volume serial number or

volume serial name on the magnetic

tape to be listed.

causes the mag tape to be mounted on

a tape drive without a write ring

and directs the system to read the

tape at 556 bpi.

attaches the public file DOFORTH which

is the FORTH utility program used to

manipulate FORTH tapes.

execute DOFORTH.

Feb. 1977

end-of-record card terminates the SCOPE commands.

$INTYPE TAPE=.TRUE. $

~ column 2 of card

end-of-record card terminates the $INTYPE commands.

$OUTTYPE TAPE=.FALSE. $

~ column 2 of card

end-of-file card terminates the $OUTTYPE commands

and terminates the program.

This job will read in blocks 1-511 from the user's FORTH tape and then

produce a line printer listing of these blocks.

Feb. 1977 2-3

3. LOADING FORTH INTO THE COMPUTER

Now that you have a copy of FORTH on tape the steps required to load the

tape into a computer and then execute the FORTH system must be described.

FORTH is somewhat unique in that the system will run from either a disc

or a tape and each process is described separately below.

3.1 RUNNING FROM DISC

I} Power on the computer and all associated peripherals.

2} Mount your FORTH tape on the magnetic tape drive and check that the

switches on the magnetic tape controller (located immediately above the

tape drive) are set as follows:

Density

Mode

Parity

HI/LOW -> LOW

REMOTE/MANUAL -> MANUAL

EVEN/ODD -> ODD

Position the tape to the load point (push the load button twice) then place

the drive on-line. At this point the LOAD and ONLINE buttons should be

lighted.

3} Place the disc STOP/READY switch to the READY position and wait approximately

40 seconds for the READY light to come on.

4} Set the Sense Switches on the CPU as follows:

Sense Swi tch -> DOWN (load from tape)

Sense Swi tch 2 -> UP {see note below}

Sense Swi tch 3 -> UP {run from disc}

5} Press the following swi tches on the CPU:

STEP/RUN -> STEP

RESET -> Press down

STEP/RUN -> RUN

BOOTSTRAP -> Press down

Note: Sense Switch 2 is looked at only if you are loading from tape onto disc.

In this case, if Sense Switch 2 is DOWN, then the region of disc that will be

copiad from the tape is zeroed before the tape is copied onto di.sc, If Sense

Switch 2 is up, the disc region is not zeroed. tf you plan to make modifica p

tions to some program blocks and then save a copy of the new program (Section

3.4), Sense Switch 2 should be DOWN.

Oct. 1979 3-1

At this point the tape will be copied onto the disc and at completion the

tape will automatically rewind. The RUN light and the OVFL light on the

CPU should be lighted.

In order to load the basic FORTH system into core from the disc press

any key on the terminal (such as the RETURN key) and FORTH will respond

by ringing the terminal bell. Basic FORTH will automatically

be loaded into cQre and the following message will be output to

the terminal:

FORTH x.y date
comment

620/F AND DISK

(x.y denotes the version of the FORTH system, date specifies the creation

date of the FORTH system and comment is an operator specified comment that

describes the contents of the tape (refer to Section 3.4)).
3.2 RUNNING FROM TAPE

1) Power on the computer and all associated peripherals.

2) Mount your FORTH tape on the magnetic tape drive and check that the switches

on the magnetic tape controller (located immediately above the tape

drive) are set as follows:

Density

Mode

Par i ty

HI/LOW ->

REMOTE/MANUAL ->

EVEN/ODD ->

LOW

MANUAL

ODD

Position the tape to the load point (push the load button twice) then place

the drive on-line. At this point the LOAD and ONLINE buttons should be

1 ighted.

3) Set the sense switches on the CPU as follows:

3-2

Sense Switch -> DOWN

Sense Swi tch 2 -> UP

Sense Swi tch 3 -> DOWN

(load from tape)

(run f rom tape)

act. 1979

4} Press the following switches on the CPU:

STEP /RUN -> STEP

RESET -> press down

STEP /RUN -> RUN

BOOTSTRAP -> press down

At this point the tape will briefly (2seconds) move and then the RUN light

and the OVFL light on the CPU will be lighted.

In order to load the basic FORTH system into core from the tape press any

key on the terminal (such as the RETURN key) and FORTH will respond by rin~ing

the terminal bell. Basic FORTH will automatically be lo~ded into core

and the fo 11 owi ng message -wrl 1 be output to the term i na 1 •

FORTH x.y date

aomment

620/F AND TAPE

(x.y denotes the version of the FORTH system, date specifies the creation

date of the FORTH system and aomment is an operator specified comment that

describes the contents of the tape (refer to Section 3.4}).
3.3 RESTARTING FROM DISC

The two procedures described above are referred to as "cold-start" procedures

since they make no assumptions concerning the contents of the disc or core,

instead basic FORTH is reloaded from magnetic tape. Obviously this procedure

takes some time (depending on how many programs and/or data are contained on

the tape) therefore if we are certain that the FORTH system contained on

the disc is usable (i.e., the disc has not been erased or overwritten since

FORTH was last loaded from tape onto disc) we may save time by loading FORTH

from the disc and not reading in the magnetic tape version. This procedure

is referred to as a "warm-start" and may be performed whenever the user

has clobbered the FORTH system in core (but not the system on disc):

Oct. 1979 3-3

3-4

1) Set the Sense Switches on the CPU as follows:

Sense Swi tch ~--> UP (load from disc)

Sense Swi tch 2 ---> UP

Sense Swi tch 3 ---> UP (run from disc)

2) Press the following switches on the CPU:

STEP/RUN ---> STEP

RESET ---> press down

STEP/RUN ---> RUN

BOOTSTRAP ---> press down

The RUN light and the OVFL light on the CPU will be lighted. To load the

basic FORTH system into core from the disc press any key on the terminal

(such as the RETURN key) and FORTH will respond by ringing the terminal

bell. Basic FORTH will automatically be loaded into core.

It should be obvious that this "warm-start" procedure is appl icable only

if FORTH was originally loaded from tape onto the disc. If you are

running from tape and wish to reload FORTH you must go through the entire

tape load procedure again (Section 3.2).

One additional "wann-start" procedure is available, namely keying in the

word ZAP terminated by a carriage-return. FORTH will respond by

ringing the terminCll bell and Basic FORTH will automatically be loaded

into core.

This procedure has the advantage that the entire reloading process is

done through the terminal and you do not have to set any switches on the

CPU - an obvious benefit if the CPU is separated from the terminal by

some distance. The disadvantage of this procedure is that FORTH must be

responding to terminal input in order for you to enter and execute the

word ZAP. If you have somehow destroyed the FORTH system in core to

the point that it is not accepting terminal input then you have to resort

to either a disc "warm-start" or a "cold-start".

Oct. 1979

o
()
rt

\.D
-....J
\.D

Vol
I

Vl

Load from Tape
Run from Disc

Power-on all computer
equ i pment.

Mount system tape.

Sense Swi tch 1 - DOWN
Sense Switch 2 - UP
Sense Switch 3 - UP

STEP/RUN -to STEP
RESET -to press down
STEP/RUN -to RUN
BOOTSTRAP -to press down

Entire tape reads in.

Press 9ny terminal key
to load basic FORTH.

Load from Tape
Run from Jape

Power-on all computer
equipment.

Mount system tape.

Sense Switch 1 - DOWN
Sense Switch 2 - UP
Sense Switch 3 - DOWN

STEP/RUN -to STEP
RESET -to press down
STEP/RUN -to RUN
BOOTSTRAP -to press down

First few records on tape
read in.

Press any terminal key to
load ba~ic FORTH.

Table 3.1 Loading FORTH into the Computer

Load from 0 i sc
Run from Disc

Power-on all computer
equipment.

Sense Switch 1 - UP
Sense Switch 2 - UP
Sense Switch 3 - UP

STEP/RUN -to STEP
RESET -to press down
STEP/RUN -to RUN
BOOTSTRAP -to press down

Press any terminal key to
load basic FORTH.

3.4 SAVING YOUR PROGRAM MODIFICATIONS

3-6

If, after loading FORTH onto the disc, you make modifications and

changes to your program(s) you will want to save a copy of these

changes on magnetic tape (since the next person who uses the disc

may erase or overwrite your program blocks). The procedure to do

this is as follows:

1) Mount a scratch tape on the tape drive with a write ring.

2) Execute the word SAVEDISK and the following will be output

to the terminal:

ENTER NEW COMMENT OR RETURN, TO SAVE BLOCKS 1-511

OLD COMMENT l (old comment)

Old corronent is the comment line that was printed after loading

basic FORTH. This comment serves no

purpose except to provide the operator with a message identifying

the FORTH system and program(s) that were loaded. Each time the

disk is saved the operator has the option of changing this comment

and if you so desire you may key in a new comment at this point

(up to 63 characters, terminated by a carriage-return). If you

wish to retain the old comment then simply enter a carriage-return.

3) After you have either keyed in a new comment or entered a carriage

return one of the following messages will be output to the terminal:

TAPE ON LINE. ** NO MAP READ ** 01"

TAPE DOES NOT RESPOND.

(If the second message is printed then the tape drive is not on

1 i nee)

Oct. 1979

4) Blocks 1 through 511 will be copied from disc onto tape and then

the tape will be rewound. The following message will be output

to the terminal:

Feb. 1977

*** BLOCKS 1-511 SAVED ***

This tape may now be taken to any of the mini-computer systems

and loaded into core using the methods described in Sections 3.1

and 3.2. Additionally this tape may be taken to the CDC 6400

and listed on the line printer using the method described in

Chapter 2.

3-7

3-8

EXERCISES - CHAPTER 3

1) Perform a cold-start and run FORTH from disc. How long does the

procedure take? Now that FORTH resides on disc perform a warm-start

from the disc. Perform a ZAP.

2) Perform a cold-start and run FORTH from tape. How long does the

procedure take?

Oct. 1979

4. EXECUTING FORTH UTILITY WORDS

After having learned the procedures required to load FORTH into the

computer, the purpose of this chapter is to have you execute and use

some system defined routines thereby gaining some feeling for the

operator-machine interaction provided by an interactive system such

as FORTH.

4.1 TERMINAL INTERACTIO~

The first concept to understand is the entering and execution of words

through the terminal. You are already familiar with this from executing

the word ZAP from the previous chapter. The general rules are:

FORTH does not interpret a line of operator insert until

the operator terminates the line by entering a carriage-return.

The operator may delete the previous character by entering

a rubout. FORTH responds by backspacing one character.

The operator may delete an entire line by entering a Control-U.

FORTH respohds by printing "\11.

After entering a carriage·return to terminate a line of input, FORTH

will go through the line and execute every word in the input line.

The definition of a FORTH word is very simple:

A FORTH word is a sequence of up to 64 characters, preceded

by a space and terminated by a space. The sequence of

characters may contain any character in the ASCll character-se~

(Appendix A) except carriage-return, rubout, ControZ-U or space.

For example, entering the line

1 HELLO? RESIDENT§ ZAP-ZAP

(terminated by a carriage-return) will cause FORTH to execute the four

words

Oct. 1979 4-1

1

HELLO?

RESIDENTN

ZAP-ZAP

(The actual execution of each word will be discussed later, presently

we are just interested in the entering of words in an input line

through the terminal.) The words are executed in the order in which

they are entered.

If all goes well and FORTH successfully executes each word in the input

string then FORTH responds with a carriage-return,

line-feed (i.e. - moves to the beginning of the next line), outputs

an asterisk and waits for the operator to enter another line of

input. This loop (enter a line of input, execute each word in the

input line, •.•) is the heart of the FORTH system.

If FORTH detects an error of any sort while executing a word in the

input string, FORTH wi I r output the

name of the word it was executing when the error was detected,

followed by a question-mark and a single character identifying the

type of error. (A listing of the single character error codes and

a description of each is found in Appendix B). For example, if the

operator entered the four words as shown above and for some reason

a Q error occurred whi Ie executing the word HELLO? then FORTH

will output

HELLO ?Q

Similarly, if a U error occurred while executing the word ZAP-ZAP

FORTH will respond with

.ZAP,-ZAP ?U

4-2 Oct. 1979

4.2 RE-FORMATTING THE DISC

This exercise is a good example of an interactive program. For reasons

that are not important here, it occasionally becomes necessary to

re-format the disc (this involves the updating of certain timing tracks

used by the hardware to access the data on the disc). The disc consists

of two platters, a removable platter and a fixed platter, either of

which may be re-formatted.

After having loaded basic FORTH into core execute

UTIL FORMATTER

and a list of instructions should be output on the terminal. Execute

R-CHECK

and note any format errors on the removable platters (hopefully there

should not be any). Similarly execute

F-CHECK

to check the fixed platter. Then re-format both platters by executing

R-FMT

and subsequently

F-FMT

Both platters may be zero'ed (i.e. - erased) by executing

R-ZERO F-ZERO

Note that this final step (zero'ing the entire disc) erases the FORTH

system stored on the disc, necessitating a cold-start from tape the

next time you wish to re-load the system.

After completing this little exercise, execute the word

DISCARD

Oct. 1979 4-3

which effectively throws away the last program loaded (the disc

re-formatter) so that you may re-use the core that it took up.

4.3 LISTING FORTH BLOCKS

4-4

As will be discussed later, FORTH requires the user to break up his

programs and data into chunks of storage referred to as "blocks".

Each block is identified by a unique number between 0-4895. One may

list a FORTH block to see what its contents are: to list block 80

on the terminal, execute

80 LIST

This may be done for any block.

If the FORTH system that you are using has a Centronix line printer attached

to it then execute
UTIL PRINTERS CEN

180 LOAD

80 86 BLOCKPRINT

to list blocks 80 through 86 on the line printer.

Oct. 1979

5. ARITHMETIC EXPRESSIONS

5.1 THE FORTH STACK

One of the most unique features of FORTH is its use of a pushdown stack

(referred to simply as the stack) to hOld operands and parameters.

Some examples are the easiest way to describe the use of the stack:

Consider the input line

4 3 + 5

Recall that FORTH will execute each word in the input string, one word

at a time, from left to right (refer to Section 4.1). The following

actions will take place as FORTH executes each of the six words:

WORD FROM
INPUT

4

3

+

5

Feb. 1977

ACTION

FORTH interprets this word as a number

and pushes its value onto the stack

----->

FORTH interprets this word as a

number and pushes its value onto

the stack ----->

This word is the arithmetic "addition"

operator - it expects two numbers to

be in the top two positions on the

stack and these two numbers are added

together. The two operands are then

replaced on the stack by the result

----->

FORTH interprests this word as a number

and pushes its value onto the stack

----->

CONTENTS OF
STACK

3

4

5

7

5-1

5-2

WORD FROM
INPUT ACTION CONTENTS OF

STACK

This word is the arithmetic "subtraction"

operator - it expects two numbers to be

in the top two positions on the stack and

the number on top is subtracted from the

number below. The two operands are then

replaced on the stack by the result

----->

This word simply removes the top number

from the stack and prints the number

on the terminal -----> stack empty

Two terms were introduced in the above example: push and pop. To push

a number onto the stack is to place the number at the top of the stack.

To pop a number from the stack is to remove the top number from the stack.

The general rules of FORTH's stack manipulation are:

1) Any number to be placed on the stack must be pushed onto the top

position on the stack. Any number to be removed from the stack

must reside at the top of the stack.

2) Arithmetic operators expect their operands to be in the top positi0ns

of the stack. After completion of the arithmetic operation the

operands are popped from the stack and the result is pushed onto

the stack.

3) General words that operate on numbers residing on the stack (such as

the word in the above example to print the top number on the

stack) remove from the stack the number operated on. This means,

Feb. 1977

for example, that the number printed is removed from the stack

(as occurred in the above example).

It should be obvious that the size of the stack is dynamic, that is, it

changes continually. One of the easiest ways to understand what operation

a sequence of numbers and operators performs is to keep track of the

contents of the stack. For example, the result of the input line

64* 53*

is seen to be 9, from the following stack diagrams:

*

empty

6 4

15 r-----f
&..-_2_4_LU

Feb. 1977

4 5

6 24

* 5

empty

3

5

24

3

5-3

5.2 INFIX/POLISH NOTATION

5-4

The standard representation of a mathematical expression that one is

accustomed to (from programming languages such as Fortran, Algol, etc.)

is referred to as infix notation. Infix notation requires that an

operator be preceded and followed by the two operands that it is to

process (assume we are dealing only with binary operators such as

+, -, * and I). One limitation of infix notation is that one must

specify a heirarchy of precedence among the operators in order to

unambiguously handle expressions such as:

2 + 3 * 4

Does th i s denote "2 plus the product of 3 and 4" or 114 times the sum of

2 plus 3"7 (Fortran would use the first interpretation). One can

further complicate the translator of these mathematical expressions by

introducing parentheses to explicitly denote the desired ordering of

an expression. One could then write the above example as either

2 + (3 ,~ 4) ---> 14

(2 + 3) * 4 ---> 20

depending on the desired meaning.

A completely unambiguous representation of the above example may be

written in Polish-postfix notation (also referred to as parentheses-free

notation):

Here the operators follow the operand (hence the adjective "postfix")

and the expression may be easily evaluated from left-to-right with the

aid of FORTHls stack as follows:

Feb. 1977

WORD

2

3

+

*

Feb. 1977

ACTION REQUIRED

number, push it onto the stack.

number, push it onto the stack.

operator, take two numbers on
top of stack, add them together,
delete the top two numbers on
stack and replace with the
result.

number, push it onto the stack.

operator, take two numbers on
top of stack, mUltiply them
together, delete the top two
numbers on stack and replace
with result.

CONTENTS OF STAC K

2

3

2

5

5

20

5-5

5-6

For completeness it should be noted in passing that one may find references

to Polish-prefix notation. In this case the operators precede the

operands and the notation is then evaluated from right-to-left. Polish

prefix and Polish-postfix are basically identical and it is usually a

matter of preference if the expression is to be evaluated left-to-right

or right-to-left, however Polish-postfix is the more prevalent. The

above example in Polish-prefix would be

* 5 + 2 3

For the trivia minded it is mentioned that these notations were originally

developed by the Polish mathematician Lukasiewicz.

The main advantage of Polish notation over infix notation is the

unambiguity in the representation of an expression. The conversion of

an expression from infix to Polish (as done, for example, by a Fortran

compiler) requires some additional processing. The Polish-postfix

notation employed by FORTH transfers this conversion process from the

FORTH system to the user. Another reason for the use of Polish notation

in FORTH is that the stack (which is basic to all FORTH operations) is a

natural way to interpret a Polish expression.

Note that the non-commutative operators (subtraction and division) are

evaluated in a manner such that the first number (the one preceding the

operator) is the second number on the stack and the second number (the

one following the operator) is the top number on the stack. This allows

one to write the expression from left-to-right in the natural manner.

For example: 5 2

94/
denotes

denotes

(5-2)
(9/4)

Feb. 1977

EXERCISES - CHAPTER 5

1) Evaluate the following expression at a FORTH terminal and print the

result using the word (this use of a FORTH terminal could be

referred to as the desk-calculator mode):

1 + 2*(3 + 4*(5 + 6*(7»)

Diagram the contents of the stack after each word is executed.

2) Evaluate the following expression at a FORTH terminal and print

the result:

Feb. 1977

(1 + 2) + (3 * 4)
(9 / 3)

(7 ,'t 8)

Diagram the contents of the stack after each word is executed.

5-7

6. THE FORTH DICTIONARY

Whenever you define a word in FORTH, regardless of the purpose of the

word (whether the word is a variable that contains integer values,

whether the word is a sequence of instructions to execute, etc.) the

word is entered into the dictionary. Loading a program into core simply

consists of entering all the words defined in the program (to perform

whatever functions the program is to perform) into the dictionary. The

loading of basic FORTH into core (Chapter 3)

is simply entering the words provided by basic FORTH into the dictionary.

Every word in the dictionary is identified by the first three characters

of the word along with the count of the total number of characters in

the word. Consider

WORD

THt::'''tAl

X

+

§z
THE'TA2

lSUM

2S1MJ1

the following examples:

FIRST THREE CHARACTERS LENGTH

THE 6

X t

+

§ Z 2

T H E 6

1 S U 4

2 S U 4

Note that the words THETAl and THETA2 have the same count and fi rst

three characters - this means these two words are indistinguishable :n

the dictionary. FORTH does not consider this form of redefinition an

error and in fact won't even tell you about it. To avoid redefinItions

of this sort you should make your variable names unique in the first

three character pos i t ions (note that lSU'M and 2SUM wi 11 be

distinguishable in the dictionary since the first three characters of

both words are different).

Oct. 1979 6-1

6-2

There is no fixed size for an entry in the dictionary, however each

entry does require a minimum of 5 words. In order for FORTH to be able

to find its way through the dictionary, a dictionary chain is built

with each entry pointing to the previous entry. Assume that basic FORTH

has been loaded into core and the user then enters each word in the

above example into the dictionary. After entering the word THETAl

the dictionary would appear as:

dictionary pointer
(Ill ink ") po i n tin g
from the entry for

THET A 1 to the
previous entry
in the dictionary.

basic

FORTH

} dictionary entry
for THETA 1

dictionary entries
comprising basic
FORTH

Similarly, if the words are entered in the sequence shown we will

obtain a dictionary structure of the form:

Feb. 1977

Start of dictionary ~

)

\
basic

FORTH

Feb. 1977

dictionary entry for 2SUM

dictionary entry for lSUM

dictionary entry for THETA2

dictionary entry for liZ

dictionary entry for +

dictionary entry for X

dictionary entry for THETAl

dictionary entries comprising
basic FORTH

6-3

6-4

Note that in this discussion of the dictionary we do not care what

function each word' performs or how the word was entered into the

dictionary (whether it is a variable, a sequence of instructions,

etc.) but simply in the structure of the dictionary. It is very

important to note that each word is identified in the dictionary

simply by its first three characters and count. When the dictionary

is being searched for a specific word (say for example that you enter

the word THETA5 on the terminal and FORTH must then search the

dictionary to locate the entry for THETA5 in order for the word

to be executed) the search starts with the last word entered and

proceeds down the dictionary chain. When searching for THETA5,

FORTH starts with the entry for 2SUM. then proceeds to the entry

for lSUM, then proceeds to the entry for THETA2 and this entry

is a match since the first three characters and count are identical

wi th the first three characters and count of THETA5. Hopefu11 y

this is what the user wanted! It should be obvious that after

THETA2 is entered into the dictionary the entry for THETAl is

inaccessible.

Feb. 1977

EXERCISES - CHAPTER 6

1) Assume that the words below are entered into the dictionary in

the following order:

a)

b)

c)

d)

e)

f)

Feb. 1977

Y+X

X+Y

XANG

X+Y2

SINX

YANG

SINY

SlN~

XANT

X+Y/l.

Which entry

Which entry

Which entry

Which entry

Which entry

Which entry

is executE'd

is executed

is executed

is executed

is executed

is executed

if SINX is entered?

if X+Y is entered?

if XANT is entered?

if XANG is entered?

if SINo is entered?

if y+xx is entered?

6-5

7. DATA STRUCTURES

All of the examples in the previous chapters have dealt with numbers

(not variables) and only with integer values. This chapter describes

the facilities provided to define and use variables along with the

different data structures provided by FORTH.

7. 1 INTEGERS

An integer in Varian FORTH must be in the range

-32,768 < integer < 32,767

and occupies a single computer word. Integers are also referred to as

"single-word integers" and any use of the unqualified term "integer"

implies a single-word integer.

There are two declarations that are available to declare either an

integer variable or an integer constant:

<initial-value> VARIABLE <:name>

<initial-value> CON5T~NT <name>

Using either of the above declarations causes a new dictionary entry to

be created and the entry is identified by the first three characters and

count of <name>. The difference in the above two declarations comes

when the word (identified by <name» is executed: when a word defined

as a CON'STl6:NT is executed the vaZue of the constant is pushed ont0 the

stack; when a word defined as a VARIABLE is executed the address of

the vaZue of the integer is pushed onto the stack. Once the address of

the value of an integer Is on the stack the value may be pushed onto the

stack or a new value may be stored by using the load operator (the

at-sign w) or the store operator (the exclamation-point, !). As

confusing as this appears some examples should hopefully make it clear:

Oct. 1975 7-1

7-2

5 CONSTANT X

180 CONSTANT REV

Executing the word X pushes the number 5 onto the stack. Similarly,

executing the word REV pushes the number 180 onto the stack.

o VARIABLE ZERO

-2 VARIABLE DELTAX

Executing the word ZERO pushes the address of the integer's value onto

the stack and if the word @ is then executed the number 0 is pushed

onto the stack (replacing the address). That is

ZERO @

DELTAX @

pushes 0 onto the

pushes -2 onto the

stack,

stack.

In order to change the value of ZERO to -1 the sequence:

-1 ZE~O stores -1 as the va 1 ue of ZERO.

Similarly to change the value of DEL-TAX to +2:

+2 DEL TAX stores +2 as the value of DELTAX.

To store a new value in a word defined as a CONSTANT the sequence

4 REV stores 4 as the value of REN.

Simi larly,

-99 X stores -99 as the value of X.

Subsequent execut i on of the word REV woul d push the number 4 onto the

stack and similarly executing X would push -99 onto the stack.

Oct. 1979

Thus we have two methods to define a word that is to contain an integer

value and for each method the integer value may be pushed onto the stack

or a new value may be stored as its value. This may be summarized as:

to push current to store top of
value onto stack stack as new value

CONSTANT <name> • <name> • •

<name> @ <name> • · VARIABLE

These two fairly similar definitions may seem somewhat superfluous since

each can perform the same function, namely pushing the value of an

integer variable onto the stack and storing the top number on the stack

as the variable's new value. The usefulness of each will become more

apparent when colon definitions are introduced, however you can still

note the fact that if the value of an integer variable will be referenc~d

(i.e. - its value pushed onto the stack) many more times than a new value

is to be stored in the variable, then it requires fewer words to push the

value onto the stack for a CONSTANT than for a VARIABLE. This is so

because to push the value of a CONSTANT onto the stack you simply

execute the word itself. To push the value of a VARIABLE onto the

stack you must execute both the word and then the load operator, @.

It is worthwhile now to consider the interaction of the stack in

executing a sequence of loads and stores. Consider the following four

1 i nes of input:

1 VARIABLE X

8 CONSTANT Y

X @ Y + Y.

Y

Oct. 1979 7-3

WORD FROM
INPUT

1

VARIABLE

8

CONSTANT

ACTION

FORTH interprets this word as a number and pushes

its value onto the stack ----->

50RTH looks this word up in the dictionary and

then executes the word. When this word is

executed it will take the next word of input (X)

and enter it into the dictionary. The to~ number

on the stack (1) is used as the initial value for

the dictionary entry for X. After popping the 1

from the stack, the stack will be empty ----->

FORTH interprets this word as a number and pushes

its value onto the stack ----->

FORTH looks this word up in the dictionary and

then executes the word. When this word is

executed it will take the next word of input

(Y) and enter it tnto the dictionary. The

top number on the stack (8) is used as the

initial value for the dictionary entry for Y.

After popping the 8 from the stack, the stack

will be empty ----->

X FORTH looks this word up in the dictionary and

then executes the word. When this word is

executed, since it was defined as a VARIABLE.

the address of the value of X is pushed onto

the stack ----->

CONTENTS
OF STACK

empty

empty

7-4 Oc t. 1979

WORD FROM
INPUT

y

+

Feb. 1977

ACTION

FORTH looks this word up in the dictionary and then

executes the word. When this word is executed it

takes the the top value on the stack (which must be

the address of a variable's value) and uses this

address to push onto the stack the current value

of the variable ----->

FORTH looks this word up in the dictionary and then

executes the word. When this word is executed,

since it was defined as a CONSTANT, the value

of the variable is pushed onto the stack ----->

CONTENTS
OF STACK

8

FORTH looks this word up in the dictionary and then

executes the word. When this word is executed it

will add together the to~ two numbers on the stack __ >1
and then replace these two numbers with their sum 9

'--------'

FORTH looks this word up in the dictionary and then

executes the word. When this word is executed it

will take the next word of input (Y) and look

this new word up in the dictionary. The address

of the value of this new word is then pushed onto

the stack ----->

FORTH looks this word up in the dictionary and then

executes the word. When this word is executed it

expects an address of a variables value to be on top

of the stack and a number to be below on the stack.

The value of the variable is set to the number and

then both the address and the number are popped

from the stack ----->

address of
value of Y

9

empty

7-5

WORD FROM
INPUT ACTION CONTENTS

OF STACK

y FORTH looks this word up in the dictionary and

then executes the word. When this word is

executed, since it was defined as a CONSTANT,

the value of the variable is pushed onto the

stack ----->

FORTH looks this word up in the dictionary and then

executes the word. When this word is executed it

prints the top number on the stack and then pops

the number from the stack -----> empty

The concepts presented in this section are fundamental to understanding

the remainder of the chapter and the reader is advised to work the

first two exercises at the end of the chapter before preceding on.

7.2 DOUBLE-WORD INTEGERS

7-6

There are occasions when the single-word integer (described in the

previous section) does not contain enough precision for a certain

application. In these cases a double-word integer may be used.

In Varian FORTH the range is

-1,073,741,824 < double-word integer < 1,073,741,823

and each double-word integer occupies two consecutive words of memory

and will occupy two words on the stack.

There are two words that are available to declare either a double-word

integer variable or a double-word integer constant:

<initial-value> 2VARIABLE <name>

<initial-value> 2CONSTANT <name>

Oct. 1979

Using either of the above declarations causes a new dictionary entry to

be created and the entry is identified by the first three characters and

count of <name>. The difference in the above declarations comes when

the word (identified by <name» is executed - when a word defined as a

aCONSTANT is executed the 2-word va'lue of the double-word constant is

pushed onto the top two words of the stack; when a word defined as a

2VAR I ABLE is executed the address _of the val;ue of the

double-word integer is pushed onto the stack. Once the address of the

value of a double-word integer is on the stack the 2-word value may be

pushed onto the top two words of the stack by using the double-word

load operator (D@). Similarly the double-word store operator (0:)

may be used to store a new 2-word value in a double-word integer.

Before giving examples of the above declarations it must be noted that

a number must be appended by a comma with no numbers appearing-

to the right of the comma if the number is to be interpreted by

FORTH as a double-word integer value.

For example, the sequence

o ,
25 ,

100000 ,

correctly enters three double-word integers whose values are 0, 25 and

100,000. The following is an error

DPREC

10,0

Oct. 1979 7-7

7-8

Since the digit zero appears to the right of the comma, the

number is not interpreted as 10 but rather as lOa! This required usage

of the comma probablY seems, unnecessartly complex, however, FORTH.

must have a way of uniquely separating single-word integers from double

word integers and the comma convention is the method used.

Consider the declaration

99. 2VARIABLE XX

which defines a double-word integer variable named XX, with an

initial value of 99. The sequence

XX DOl

pushes the current 2-word value of XX onto the top two words of the

stack. The sequence

500001, XX D!

stores 500001 as the new value of XX. Now consider the declaration

1, 2CONST ANT D 1

which defines a double-word integer constant named D1, with an initial

value of 1. The sequence

D1

pushes the 2-word va I ue of D 1 onto the top two words of the stack.

To store 100 as the new va I ue of D 1 the sequence

100 , D1 D!

is required. Summarizing the results of the previous section and the

results of this sections yields the table:

Oct. 1979

VARIABLE

CONSTANT

2VARIABLE

2 CONSTANT

to push current

value onto stack

<name> @

<name>

<name> D@

<name>

to store top value
on stack as varlable1s
new value

<name> I .
, <name> , .

<name> D:

, <name> D:

va 1 ue OCCUp i es

one word

on stack

va 1 ue OCCup i es

two words

on stack

Now consider the interaction of the stack in executing a sequence of

doub 1 e-word loads and stores, us i ng the va r i ab 1 es xx and D 1 dec 1 a red

above. Assume the line of input is as follows:

XX D@ D 1 D+

D1 D.

D1 D!

(The word D+ is the double-word addition operator, which adds together

two double-word integer values, similar to the single-word addition

operator +. We also have the double-word subtraction operator D-).

Oct. 1979 7-9

WORD FROM
INPUT

xx

O&'l

01

0+

O!

01

o.

7-10

ACTION

Push address of 2-word value

onto stack ---->

Take address on top of stack and

replace it with 2-word value

Push the 2-word value onto

stack

---->

---->

Add together the two ~ouble-word

integer values on top of the

stack and then push the result
----> onto the stack

Take the next word of input (01)

and push the address of its value

onto the stack ---->

Take the address on top of the stack
and store the 2-word integer value
beneath the address at the address,
then pop the address and the 2-word
value off the stack ----->

Push the 2-word value onto the

stack ---->

Print the 2-word integer value on
top of the stack, then pop the
2-word value off the stack ---->

CONTENTS
OF STACK

address of
value of xx

99 -

-

99 -

100 -

address of
value of 01

I- 100 -

empty

~ 100 -

empty

Feb. 1977

The words in FORTH to operate on single-word integers (the words

VARIABLE CONSTANT + * / etc.) are all defined

within basic FORTH and therefore will be in the dictionary after the

user loads bas i c FORTH (Chapter 3). These words are cons i dered essent i a 1

to any FORTH program and are therefore always available. The words used

to operate on doub Ie-word integers (the words 2VAR I ABLE 2CONSTANT

D+ D- D. etc.) are considered optional and are not automatically

entered into the dictionary with basic FORTH. Instead, if you wish to

use double-word integers you must specifically load the appropriate

words into the dictionary by executing the word USER.

This will load into core (i .e. - enter into the dictionary)

the double-word integer routines, the floating-point routines and other

miscellaneous routines to be described later.

7.3 FLOATING-POINT NUMBERS

The data structures presented in the previous sections (single-word

integer and double-word integer) are exact representations of integer

values. This means that arithmetic performed on single-word integers

or double-word integers yields exact answers: 2 * 3 is exactly 6,

not 5.999··· ; 5 + 9 is exactly 14, not 14.000001. As long as the

user stays within the range of the data structure (which for a double

word integer is -1,073,741,824 to +1,073,741,823) this guarantee of

exactness for integer arithmetic holds. The obvious drawback in using

integers is the limited range that is available - in Varian FORTH a

double-word integer corresponds to just over 9 digits of precision.

For some applications (noteably financial programming with the COBOL

language) the exactness of integer arithmetic is a requisite and the

data structures being represented will never exceed approximately

15-20 digits, hence exact arithmetic is used (using a slight variation

of integer representation).

Oct. 1979 7-11

7-12

Scientific programming, on the other hand, requires a data structure

that provides a far greater range of values so that very large numbers

(for example, Avagadrols number N = 6.02250 x 1023) and very small

numbers (for example, Planck1s constant h = 1.0545 x 10-27) can both

be stored. Additionally, scientific programming does not require that

these numbers be represented exactly but only that a specified number

of digits of accuracy be maintained. The data structure provided by

most programming languages (and by FORTH) for scientific computation

is floating-point. A floating-point number is stored in the computer

as a fraction times an exponent, similar to standard scientific

notation. In Varian FORTH a floating-point number is stored in three

consecutive words of memory and each floating-point number requires

three words on the stack. The fraction will be in the range

0.0 < lfractionl < 1.0

and provides approximately 9 digits of accuracy. The exponent will be

in the range

-32,768 < exponent < 32,767

and denotes the power of 2 that the fraction is raised to, that is

fl · . b fract·lon * 2exponent oatlng-polnt num er = .

In using floating-point numbers one is sacrificing exactness for

greater range. (If one were to store both Avagadrols number and

Plank1s constant exactly, a computer word of approximately 100 bits

would be required!)

Feb. 1977

There are two words that are available to declare either a floating

point variable or a floating-point constant:

< in i t i a l-va 1 ue> REAL < name>

<initial-value> FCONSTANT <name>

Using either of the above declarations causes a new dictionary entry to

be created and the entry is identified by the first three characters

and count of <name>. The difference in the above two declarations comes

when the word (identified by <name» is executed - when a word defined

as an FCONSTANT is executed the 3-word value of the floating-point

constant is pushed onto the stack; when a word defined as a REAL is

executed the address of the 3-word value of the floating-point variable

is pushed onto the stack. Once the address of the 3-word value of a

floating-point variable is on the stack the floating-point load operator

(F@) or the floating-point store operator (F!) may be used.

A floating-point number must contain a decimal point and may optionally

contain digits to the right of the decimal point.

O:ct. 1979 7-13

7-14

Consider the following examples:

3.14159 -+ .314159 * 1 0 1

200. 1 -+ .2001 * 10 3
fl oat i ng-po i nt

1.000 ...- . 1 * 10 1
numbers

.27 ...- .27 * 10°

1 , -+

} 1 ,0 -+ 10 double-word

1,50 ...- 150 integers

1.0000 • 1 * 10 1 } float i ng-po i nt
number

Consider the declaration

180.0 REAL THETA

which defines a floating-point variable named THETA, with an initial

value of 180.0. The sequence

THETA Fiil

Oct. 1979

pushes the current 3-word value of

of the stack. The sequence

THETA onto the top three words

90.000 THETA F!

stores 90. as the new value of THETA. Now consider the declaration

3.14 FCONSTANT PI

which defines a floating point constant named

value of 3.14. The sequence

PI with an initial

PI

pushes the 3-word value of PI onto the top three words of the stack.

To store 3.14159265 as the new value of PI (note that this new value

uses the full 9-digits of accuracy provided by FORTH for a floating

point number) the sequence

3.14159265 PI F!

is required. Summarizing the results of the previous two sections and

the results of this section yields the table:

VARIABLE

CONSTANT

2VARIABLE

ZCONSTANT

REAL

FCONSTANT

Oct. 1979

to push current
value onto stack

<name> W

<name>

<name> Ow

<name>

<name> Fw

<name>

to store top value
on stack as variable's
new value

<name> • ·
• <name> • ·

<name> o!

I <name> o!

<name> F!

I <name> F!

7-15

Now consider the input line

PI THETA Flil F* THETA F:

THETA Flil F.

and the interaction of the stack. (The word F* is the floating-point

multipl ication operator, simi lar to the word * We also have the words

F+ F- and FI for floating-point addition, subtraction and

division. The word F.

the stack.)

prints the floating_point number on top of

WORD FROM
INPUT

PI

THETA

ACTION

Push the 3-word value onto the stack

Push the address of the 3-word value

onto the stack

Flil Take the address on top of the stack

and replace it with the 3-word

value

7-16

----->

----->

----->

CONTENTS
OF STACK

- -
3.14

,..- -

address of
va 1 ue of THETA

- -
3. 14 - -

-
180.0

-

- -
3.14

- -

Feb. 1977

WORD FROM
INPUT

F*

THETA

F~

THETA

F@

F.

Feb. 1977

ACTION
CONTENTS
OF STAC K

I- -

Multiply together the top two floatlng

point numbers on the stack and then

push the result onto the stack -----> 565.2

Push the address of the 3-word value

onto the stack ----->

Take the address on top of the stack and

store the 3-word value beneath the

address at the address, then pop the

address and the 3-word value off the stack

the stack

Push the address of the 3-word value

onto the stack

Take the address on top of the stack and

replace it with the 3-word value

Print the floating-point number on top

of the stack, then pop the 3-word value

off the stack

----->

----->

----->

----->

f- -

address of
Iva I ue of THETA

..... -
565.2

f- -

empty

address of
Iva I ue of THETA

-
565.2

-

empty

7-17

Floating-point numbers may optionally be entered as a fraction times a

power of ten (similar to the Fortran E format). The number 0.25 could

be entered as any of the following;

0.25

0.25EO

25.E-2

2500.0E-4

.0000250E4

7.4 CONVERSIONS BETWEEN DATA STRUCTURES

7-18

Frequently the need arises to convert a number that is on the stack to

another data type. For example, you may want to convert a single-word

integer to a floating-point number, a floating-point number to a

double-word integer and so on. The following table summarizes the

words available to perform this conversion:

name of
word

SFLOAT

DFLOAT

SFIX

DFIX

converts

from -----> to

single-word integer floating-point

double-word integer floating-point

floating-point single-word integer

floating-point double-word integer

notes

(truncates)

(truncates)

Oct. 1979

Consider the following examples:

5 SFLOAT F. will print 5.0

765. DFLOAT F. wi 11 print 765.0

3.14159 SFIX will print 3

1.999 DFIX D. will print 1

It is very important to remember that every conversion involves a

change in the number of words of the stack used by the number. SFLOAT

converts a single-word integer to a 3-word floating-point number:

sing Ie-word {I
i n tege r 1.. _____ ---'

-
5

-
5.0

-
3-word floating

point number

Simi larly DFIX converts a 3-word floating-point number to a

double-word integer:

3-word
floating
point
number

I- -

3.14159
i- - - 3 -

}

doub Ie-word

integer

There are no specific words provided to convert a single-word integer to

a double-word integer or vice-versa and since these two conversions are

somewhat tricky (requiring a knowledge of the internal storage represen

tation of the data types) their discussion is deferred until later.

Oct. 1979 7-19

7.5 LOGICAL VALUES AND LOGICAL EXPRESSIONS

7-20

There is no specific data type named logical in FORTH, instead one uses

a single-word integer as a logical value and interprets the value as

follows:

zero valued integer ---> FALSE

non-zero valued integer ---> TRUE

Thus whenever FORTH calls for a <logical-condition> one must provide a

single-word integer value. The use of these logical conditions should

become clear in the ensuing chapters.

Additionally, one may combine more than one <logical-condition> to form

a logical expression using the following words:

AND Forms the logical-AND of the two single-word

integer values (i .e. - logical values) on

top of the stack. The logical-AND is

defined as follows:

true true AND

true false AND

false true AND

false false AND

--->

--->

--->

--->

true

fa 1 se

fal se

false

(the result is true if both of the operands are true).

OR Forms the inclusive-OR of the two single-word integer

values (i .e. - logical values) on top of the stack.

The inclusive-OR is defined as follows:

true true OR ---> true

true false OR ---> true

false true OR ---> true

false false OR ---> false

(the result is true if either of the operands is true) .

Feb. 1977

Oct. 1979

XOR Forms the exclusive-OR of the two single-word integer

values (i.e. - logical values) on top of the stack.

The exclusive-OR is defined as follows:

true true XOR ---> fa1 se

true false XOR ---> true

false true XOR ---> true

false false XOR ---> false

(the result is true if onZy one of the operands is true).

7-21

7.6 ADDITIONAL NUMERIC CONVERSIONS

All of the examples in this primer have presented the numbers in base

ten, decimal. Any base may be used for numeric input and the VARIABLE

BASE specifies the current base to be used for number conversion. Three

W'Ords are predefined, DECIMAL OCTAL and HEX which set base to 10,

8 and 16 respectively. Furthermore, if the current base is less than or

equal to ten (decimal or octal) and the last character of a number is

a B then the number is converted as an octal number. For example,

20B equals 16
10

Since B is a legal hexadecimal digit, if the base is greater than ten

a trailing B will not force octal conversion. If one wishes to force

octal conversion of a double-word integer then the B must follow the

comma:

20,8

is a double-word integer 16
10

.

7-22 Oct. 1979

One of FORTHls truly unique features is its acceptance of sexagesimal

(base sixty) input. This facilitates the input of angles (in degrees,

minutes, seconds - such as 8:58:05) and times (in hours, minutes,

seconds - such as 9:01:09). FORTH accomplishes this by allowing a

colon to appear within any number and then converting the digit

immediately following the colon using base 6.
All digits following this- first-digit

after the colon are converted according to the current base (i.e. -

decimal or octal, as explained above). For example, the

number 000100 is interpreted as 100, while the number

00:01 :00 is interpreted as 60. This latter number could represent,

for example, the time-of-day of one minute past midnight which equals

60 seconds past midnight. Similarly, 00:03:00 is interpreted

as 180. Hence, if the quantity being entered is a time, then the

resulting value will represent the number of seconds past midnight.

If the quantity is an angle, then the resulting value represents the

number of seconds of angle. Additionally, if a floating-point number

is used then a time may be specified as fractions of a second or an

angle may be specified as fractions of a second. For example:

12:00:01.5 could represent the time of one and

a half seconds past noon; also it

could represent the angle 12° 00 1 01.5 11
•

Note that since the digit following the colon is interpreted as base 6,

this digit can only be 0 through 5. The number 6:80 , for example,

is illegal. This also means that the minutes and seconds of either an

angle or a time must be entered as exactly two digits. The time of one

minute past eight must be entered as either

8:01:00 or 08:01;00

and not as

8:001:00 or 8:1:00

Oct. 1979 7-23

The use of sexagesimal rotation in a number forces the number to be interpreted

as a double-word integer unless the number contains a decimal point. For

example

7-24

01:00

01:00.

01: 00 •

double-word integer 60

double-word integer 60

floating-point 60.0

Oct. 1979

7.7 VECTORS

FORTH provides the ability to declare a vector of either integers,

double-word integers or floating-point numbers. This data structure

is similar to a one-dimensional array in Fortran. FORTH does not

provide any multi-dimensional arrays. (However, given the structure

of FORTH one could define new words to declare and access multi

dimensional arrays. Unfortunately, this is beyond the scope of

t his p rime r .)

To declare a vector of single-word integers one would execute

<maximum-subscript> () D1 M <name>

For example, the following defines a four element vector named X

3 ()D1M X

The four elements would be accessed by using the subscripts 0, 1, 2

and 3 and a memory diagram might be

element 3

element 2

element

element 0

Note that the subscript starts at 0, therefore the number of elements

equals <maximum-subscript> + 1.

In order to access a single element one executes

<subscript-value> <name>

and, for example, the sequence

3 X

Oct. 1979 7-2 S

7-26

calculates the address of element 3. This address may be used just

like the address of any integer value, for example

1 X (j)

pushes the value of element 1 onto the stack. The sequence

o X (j) 3 X

takes the value of element 0 and puts it in element 3. Finally the

sequence

o X (j) 1 X (j) + 2 X (j) + 3 X (j) +

forms the sum of all elements in the vector X.

Similarly we may declare a vector of double-word integers

<maximum-subscript> 2()DIM <name>

and a vector of floating-point numbers

<maximum-subscript> 3()DIM <name>

The two sequences

4 2()DIM Y

2 3()DIM Z

would declare a 5 element vector of double-word integers and a

3 element vector of floating-point numbers. Their memory represen

tation could be

O~t. 1979

~ - element 4 I- -
element 2

- -
~ - element 3

- -
element 1

I- - element 2 - -

I- - element 1 ~ -
element 0

i- -
I- - element 0

To obtain the address of a specific element one executes

<subscript-value> <name>

For example

4 Y O@ DFLOAT 2 Z F!

will push element 4 of the vector Y onto the stack, convert it

from a double-word integer to a floating-point number and store this

floating-point value in element 2 of Z. Naturally there is no

requirement that the <subscript-value> be a numeric constant and

the following is perfectly valid:

o VARIABLE INDEX

2 INDEX INDEX @ X @

Oct. 1979 7-27

EXERCISES - CHAPTER 7

1) Define a VARIABLE I (with initial value 5) and a CONSTANT J

(with initial value 100) and calculate the following series of

expressions:

I = I + 1

J = I * 5

PR I NT I, J

I = (J * J) - 10

J = (I / J) + 2

PRINT I, J

2) Define a VARIABLE A. (with initial value 20) and a CONSTANT B

(with initial value 32) then calculate the following expression:

B = A + B

A +_.a.:.B_ + 8.
A - 1 B

Then pr i nt the va I ue that was stored in B.

3) Define a 2'>VARIABLE II (with initial value 10) and

a DCONSTANT JJ (with initial value 30) and calculate the

following expressions:

I I = JJ + 1

JJ = JJ - I I

PRINT I I , JJ

I I = I I + JJ + 101

JJ = JJ + II

PRINT I I , JJ

7-28 Oct. 1979

4) Code the expression

A = B * (C + D)

in two ways, using the fact that addition is a distributive operator

(f.e. - b * (c + d) = b * c + b * d).

Assume that A is a CONSTANT, initial value

B is a VARIABLE, initial value 5
C is a CONSTANT, initial value 8

D is a VARIABLE, initial value 25.

Confirm that both methods generate the same answer.

5) Code the expression

A = B + C + D + E

in two ways, using the fact that addition is a commutative operator

(i • e. -b+c+d + e = e + d + C + b). Assume that

A is a 2CONSTANT, initial value 3
B is a Z VARIABLE in it i a I value 5
C is a 2CONSTANT, initial value 7

D is a 2 VARIABLE in it i a 1 value 11

E is a 2CONSTANT, ini t i al value 17.

Confirm that both methods generate the same result.

6) What expression do the following lines of FORTH code correspond to?

7.0 REAL A

8.0 REAL B

1.0 REAL C

B Fm B Fm F* 4.0 A Fm F* C Fm F* F-

What value is obtained when the expression is evaluated7

Where is this value stored7

Oct. 1979 7-29

7) What is the largest time-of-day (counted in seconds) that may be

stored in a single-word integer? In a double-word integer?

8) Using the definitions

9)

5 VARIABLE I

12 CONSTANT J

280. 2VARIABLE A

257. 2CONSTANT B

1.325 REAL X

5.0 FCONSTANT Y

Calculate and print the value of the expression

Y =

Wi 11 the

a) 1 2

b) 1 0

c) 1 1

d) 0 0

e) 5 8

f) 1 2

(I * X) /(J/Y)
(A - B)

fo 110wi ng FORTH expressions

+ 4 I

AND

AND

OR

I 2 1 - XOR

2 - OR

be interpreted

10) What will the following FORTH expression print?

DECIMAL 10 OCTAL 10 DECIMAL

7-30

as true or false?

Oct. 1979

8. STACK OPERATIONS

All of the stack operations up to this point have involved pushing a

number onto the top of the stack, popping a number off the top of the

stack and performing arithmetic on the top two numbers on the stack.

This chapter describes some additional operations that may be performed

on the stack.

8.1 MANIPULATION WORDS

Frequently one can "optimize" the evaluation of an arithmetic expression

by intelligently using the stack to hold temporary results, rather than

storing every temporary result in a variable. For example consider the

declarations:

4 VARIABLE A

18 VARIABLE B

0 VARIABLE X

0 VARIABLE Y

and the subsequent evaluation of the expressions

X = A + B

Y = X + 1

Using the methods described in this manual up to this point one would

code this in FORTH as

A @ B @ + X

X @ 1 + Y

which is perfectly correct and acceptable. Now assume we have available

to use the word DUP which simply duplicates the single-word quantity

on top of the stack. For example

5 DUP

Oct. 1979 8-1

8-2

performs the following stack operations:

5

5 5

Similarly we have 2DUP and 3DUP which duplicate 2-word stack

entities and 3-word stack entities:

I- 25 -

- 25 - I- 25 -

25, 2DUP

- -
2.718

- -

~

~ - ~ -
2.718 2.718

f- - r- -

2.718 3DUP

Oct. 1979

Note that the terms "single-word quantity", 112-word entity" and

Ill"word entit/ I are used instead of "s ingle-word integer", "double-word

integer" and "floating-point number ll to describe the stack entries

being manipulated. This is because unlike the arithmetic operators,

which expect the top entries on the stack to be a specific type of

number, the stack manipulation words being described in this chapter

do not care what internal form of data they are working on. The word

DUP will gladly duplicate a single-word integer or a 1-word address.

Simi larly the word 2DUP could be used to duplicate either a

double-word integer or two single-word integers, as follows:

5

2

5 5

2 2

2 5 2DUP

The stack is a general purpose IItool ll and as such a variety of different

entities may reside on the stack for totally different purposes. It is

important to always know, when writing a program, what quantities are on

the stack and what format these quantities are in (number, address, etc.).

FORTH will gladly allow you to perform erroneous operations on the wrong

type of data structure (such as taking the square root of a single-~Jord

address, thinking the address was really a single-word integer) although

the results are usually disastrous (and sometimes hard to find).

Getting back to the original example we may alternately code

Feb. 1977

x = A + 8

Y = X + 1

8-3

A

X

as

A @ B @ + DUP X

1 + y

What we have done is duplicate the quantity being stored in X (namely

A + S) and then after storing one copy of this result in X we use

the second copy to compute Y = X + 1. Th is saves hav ing to load X

from core back onto the stack in order to calculate Y = X + 1.

The sequence of stack operations is as follows:

add ress of
18 22 value of B

address of ~ 4 4 ~ 22 value of A

@ B + DUP

address of
value of X

8-4

22 address of

~
value of Y

22 22 23 empty 22

1 + Y

Although this example may seem somewhat trivial (so what if we save a

single load?) on some computers stack manipulations may be many times

faster than core-to-stack or stack-to-core operations so that it can

really be beneficial to retain values on the stack whenever possible.

One must not go overboard and try to keep everything on the stack at

all times or you will soon lose track of just what is on the stack.

Feb. 1977

A summary of the available stack operations is provided in table 8.1

and examples of the important operators are given below. All examples

will be given using numbers as the stack entries although as mentioned

previously, the use of these operators is not restricted to numbers.

I- -
6.0

..:.... -
...... 7 -

"'- - I- -
8 6.0 6.0

~
- 7 - - 7 - ,..... - ,- -

8

DUP 2DUP 3DUP

- - - -
4.0 2.0

- - I- -

I- 5 - ~ -

r- - -
3 2.0 4.0

I- - 5 - - -: I- -
3

SWAP 2SWAP 3SWAP

Feb. 1977 8-5

f- -
12.0

t- -
I- 3 -

f- - I- -
6 9.0 9.0

~
!- - I- 1 - I-- - I- -

5

DROP 2DROP 3DROP

I- -
6.0

r- -

r- 5 - r- - r- -
2.0 2.0

I- - I- -

~ 3 I- 3 -
7

f- - I- -
4 4

f- 5 - f- 5 - 6.0
I- -

6.0
I- -

7 7

OVER 20VER 30VER

8-6 Feb. 1977

3

2

1

2

1
r-- - I- -

3 5.1 5.1
r-- - r- -

2

ROT 2 2

2 5. 1 4 PICK

One error that will be detected by FORTH is stack underflow. This

occurs when the stack is empty and the program attempts to operate on

the stack. (The only valid operation to perform on an empty stack is

to push a number onto the stack.) For example, the sequence

1 +

will generate the response +?u since the single-word addition

operator expects two single-word integers on the stack. (This example

assumes the stack was empty prior to entering the sequence 1 +).

Qct. 1979 8-7

o
(")
rt

I.D

" \.D

00
I

00

l-Word 2-Word 3-Word
Operators Operators Operators Description

DUP 2DUP 3DUP Duplicates the top entry on the stack.

SWAP 2SWAP 3SWAP Interchanges the top two entries on/ the stack.

DROP 2DROP 3DROP Deletes the top entry from the stack.

OVER 20VER 30VER
Takes a copy of the second entry on the stack and
pushes this copy onto the top of the stack.

ROT 2ROT I 3ROT
Rotates the top three words on the stack, moving
the third to the top, the second to the third
and the top to the second. I

I

I I Takes a copy of the nth word on the stack and
PICK 2PICK 3PICK • pushes this copy onto the top of the stack, where

n is the top word on the stack. 1 PICK is
Identical to DUP and 2 PICK i.s identitClI
to OVER.

AND I Replaces the top two words with their logical AND.

OR Replaces the top two words with their inclusive OR

XOR I Replaces the top two words with their exclusive OR
--- - I-- -- - --- -- - -- -- ---- --

TABLE 8.1 - Manipulation Words

8.2 COMPARISON WORDS

8

These words numerically compare the top one or two numbers on the stack

leaving a logical value (true or false, as described in Section 7.5) as

the result. These words operate on either single-word integers or

floating-point numbers as shown in Table 8.2. Examples of these words

are given below.

- -
-8.5

- -

- - ~ -
9 2. 1 2. 1

t:j - ~ -
8

9 MAX 2. 1 -8.5 FMAX

I- -

-8.5

i-- -

- ~ -
-3 2. 1 -8. 5

- - i-- -

9

9 -3 MIN 2.1 -8.5 FMIN

Oct. 1979 8-9

- -
1.1

I- -

t- -
25

Cj
1.0

W t- -
25 (TRUE) (FALSE)

25 25 =

1.0 1.1 F=

t- -

3.5 -

~ -
2 3.0

t=j I- - ~(FALSE) 5 (TRUE)

5 2 >

3.0 3.5 F>

8-10 Oct. 1979

I- -

8.2

i- -

!- -
2 3. 1

~ (FALSE)
- -

Lj(TRUE) 5

5 2 <

3. 1 8.2 F<

I- -

Lj Lj(TRUE) ~(FALSE)
0.05

I- -

o 0=

0.05 FO=

I-- -

-5.2

~ ~(FALSE) - - Lj (TRUE)

28 0<

-5.2 FO<

Oct. 1979 8-11

00
I

N

o
n
rt

~
-...J
~

Single-word Double-word
Integer Integer

MAX DMAX

MIN DMIN

= D=

< D<
> D>
<>
>=
<=

I 0= DO=
0< DO<
0>
0<>
0>=
0<=

I

TABLE 8.2 - Comparison Words

Floating Description Point

FMAX
Replaces the top two numbers with the
number having the greater magnitude.

FMIN Replaces the top two numbers with the
number having the lesser magnitude.

F=
Replaces the top two numbers with the
10g1cdl value TRUE (non-zero) or FALSE

F< (zero) depending on their relationship.

F>
i

FO= Replaces the top number with the logical
FO< va 1 ue TRUE (non-zero) or FALSE (zero)

depending on the relationship between the
number and zero.

~- - -- -

EXERCISES - CHAPTER 8

1) Given the definitions

5. 2VARIABLE X

9. 2CONSTANT Y

O. 2CONSTANT Z

evaluate the expression

Z = 2 * (X - Y)

in two ways. Print the result that is stored in z. Note that

there is not a double-word integer multiply.

2) Using the definitions in question 1, evaluate the expression

3)

Z = (X - Y) + (X + Y)

loading the value of X onto the stack only once. Print the

result that is stored in z.

Using the definitions in question 1, evaluate the expression

Z = (X + Y) + (X - y)

loading the value of X onto the stack only once and loading

value of Y onto the stack only once. Print the result that

stored in Z.

the

is

4) What is the final contents of the stack after each of the folluwing

sequences is executed?

a) 5 DUP 4 +

b) 12 3 OVER SWAP DROP +

c) 1 DUP 2 OVER + ROT 3DUP 2DROP + *

()c t. 1979 8-13

8-14

5) Are the two following sequences identical (i .e. - wi 11 the

contents of the stack be identical upon completion of each

sequence)?

7 4 OVER

7 4 SWAP DUP ROT ROT

6) The word P]CK copies a single-word integer from a location

within the stack onto the top of the stack. Define two words

2PICK and 3PICK which copy a 2-word entity and a 3-word

entity (respectively) from the nth word on the stack onto

the top of the stack, where n is the top word on the stack.

For example:

t- 27 -

5 5

I- 27 - I- 27 -

27, 5 3 2PICK

Oct. 1979

6) Continued

I- -
5.8

I- -

9 9

3 3

r- - f- -
5.8 5.8

~ - I- -

5.8 3 9 5 3PICK

Oct. 1979
8-15

9. THE COLON DEFINITION

All examples and problems up to this point have involved typing in words

and numbers on the terminal keyboard and getting the answer printed out

immediately. What if we have a sequence of words, such as given in

exercise 6 of Chapter 7, to evaluate a given mathematical formula and

we want to execute the words many times, each time changing the value

of the input variable(s)? Up to this point our only option is to key

in the entire sequence of FORTH words comprising the formula each time.

Obviously this is unacceptable and it is the purpose of this chapter to

introduce the technique whereby a given sequence of words can be

"remembered" in the dictionary.

As a simple example say that we want to increment the value of an

integer variable (named J) by one. The following sequence performs

this task:

J lil 1 + J:

Now after keying this in on the terminal a half dozen times we become

tired and decide to enter this sequence into the dictionary. First we

must assign the sequence a name, since all dictionary entries are

identified by the first three characters and count of a user assigned

name. If we decide to name it INCJ then we may write the colon

definition

INCJ J @ 1 + J

t name
the colon starts

the definition

t
the semi-colon terminates

the definition

First note that the colon starts the definttion and the semi-colon

terminates the definition. Following the colon is the name that

identifies the definition in the dictionary (in this case the first

three characters are INC and the count is 4). Everytliing following

Feb. 1977 9-1

9-2

the name, up to the semi-colon, comprises the definition. When

the word INCJ is executed then the six-word sequence

J dl 1 + J:

will be executed. Consider the following lines of code as an example:

8 J

INCJ

J dl

INCJ

INCJ

J dl

[set the current value of

[increment the value of

[will print 9]

[increment the value of

[increment the value of

[will print 11]

J to 8J
J by 1]

J by 1]

J by 1]

Perhaps the analogy to keep in mind is the two step compilation/execution

sequence of a Fortran program - first you compile the program,

subroutine and functions and then you execute the program (which may

execute the subroutines or functions, which may execute other subroutines

or functions, etc.). In FORTH you may consider keying the colon

definition as similar to compilation - the word is entered into the

dictionary. After the word has been entered into the dictionary you

may then execute the word whenever you wish.

Similar to the concept of one subprogram calling another subprogram, one

word in FORTH can execute another word. If we wanted to increment the

va 1 ue of J by three then we could define another word named 3INCJ

to perform this:

I 3INCJ INCJ INCJ INCJ

Note however that the above definition will perform the same function

as the following definition

3INCJ J dl 3 + j

that is, increment the value of J by 3.

Feb. 1977

Going back to the Fortran compilation/execution analogy you know that

there are two types of errors that may be detected in a Fortran

program - compilation errors (missing statement number, invalid syntax,

etc.) and execution errors (exponent overflow/underflow, trying to take

the square root of a negative number, etc.). Similarly in FORTH, some

errors will be detected when the colon definition is entered into the

dictionary and some errors will not be detected until the newly defined

word is executed. As an example of the first type of error, if we

mistakedly would have keyed in

z 3INCJ XNCJ INCJ INCJ

1- error

FORTH will immediately respond with

XNCJ ?Q

Since it will not locate the word XNCJ in the dictionary (assuming

you have not previously defined a word named XNCJ). This brings up

the very important rule:

All words appearing in a colon definition (folZowing the name

of the definition and up to the semi-colon) must be either

previously defined words or numbers.

This rule is dictated by the fact that the FORTH compiler is a one-pass

compiler.

As an example of an execution error assume that we had mistakedly entered

: INCJ 1 + J!

as the original definition of INCJ (we forgot to load the original

value of J onto the stack for the addition). FORTH will gladly enter

this word into the dictionary however the first time the word INCJ

is executed FORTH will respond with

INCJ ?U

Feb. 1977 9-3

9-4

since the addition operator expects two numbers on the stack.

Returning to the one-pass restriction, it means that the sequence

o VARIABLE

INCJ J @

J

1 + J

I 3INCJ INCJ INCJ INCJ

is valid, however the sequence

INCJ J @ 1 + J !

o VARIABLE J

I 3INCJ INCJ INCJ INCJ

is invalid (the definition of J must precede the reference to J in

the definition of INCJ). Also, the sequence

o VARIABLE J

I 3INCJ INCJ

I INCJ J @ 1

INCJ INCJ

+ J

is invalid since the reference to

precedes the definition of INCJ.

INCJ in the defintion of 3INCJ

Although the one-pass feature of

FORTH somewhat restricts the appearance of definitions it greatly

speeds up the compilation.

The stack turns out to be the most natural way to pass parameters to a

word which is to be executed. Consider the definition of a word weill

call FSQ which forms the square of a floating-point number. If we

enter

8.0 FSQ F.

we expect

to FSQ

64.0 to be printed. Here the number 8.0 is the "parameter"

and the "result" is left on the stack. The definition of

FSQ could be

I FSQ 3DUP F*

Oct. 1979

and this performs the desired operation. Given this defintion of

Fsa and the variable declarations

7.0 REAL A

B.O REAL 8

1.0 REAL C

we can code the expression

: OISCR 8 F@ FSQ

(8 2 - 4AC) as

4.0 A F@ F* C F@ F* F-

where we have chosen the name OISCR

Enter i ng

to identify this calculation.

OISCR F.

will print 36.0 as the value of the expression (using the initial

values of A, Band C given above).

Simi larly, if we enter

4.0 A F!

9.0 8 F!

2.0 C F!

OISCR F.

we should have the value 49.0 printed. We can now use the word

OISR that we have defined and write a word to solve the old faithful

quadratic equation

-8 + 18 2
- 4A~

2A

(Assume at this point that we are dealing only with strictly positive

discriminants to avoid worrying about a single root or two imaginary

roots.)

Oct. 1979
9-5

I lROOT B F@ FMINUS DISCR FSQRT F+ A F@ 2.0 F* F/

: 2ROOT B F@ FMINUS DISCR FSQRT F- A F@ 2.0 F* F/

I QUAD lROOT F. 2ROOT F.

9-6

Execut i ng QUAD

print

(with A = 4.0, B = 9.0, C = 2.0 from above) should

-0.25 -2.0

as the roots of the equation. The new words introduced in the above are

FMINUS (which negates a floating-point number) and FSQRT (which

evaluates the square root of a floating-point number).

A useful word that deserves mentioning here is the SET word which

can often times be used instead of a colon definition to set a flag.

Consider the definition

o VARIABLE ?PLOT

which we use as a logical flag (Section 7.5) to indicate whether or

not we want to plot some points. A simple way to set or reset this

flag would be

PLOTON 1 ?PLOT

PLOTOFF 0 ?PLOT

However a faster and more efficient method of setting the integer

?PLOT to a specific value is to enter the definitions

1 ?PLOT

o ?PLOT

SET

SET

PLOTON

PLOTOFF

Executing the word PLOTON wi 11 set the value of

regardless which definition is used.

The gene ra 1 form for the SET def in it ions is

?PLOT

<integer-value> <address> SET <name>

to 1,

and then executing the word <name> will store the <integer-value>

Oct. 1979

at the specified <address>. (Recall from Section 7.1 that executing

the word ?PLOT wi 11 push onto the stack the address of the

variable). If we had a definition

o CONSTANT FLAG

then we could define the words

o I FLAG

1 I FLAG

to turn the flag on and off.

SET

SET

FLAGON

FLAGOFF

If one wanted to turn on two flags at the same time then the word

2SET may be used. Its form is

<valuel> <addressl> <value2> <address2> 2SET <name>

and then executing the word <name> will store <value1> at <address1>

and <value2> at <address2>. For example, using the previous defini

tions of ?PLOT and FLAG we could write the definitions

,BON 1 ?PLOT

BOFF 0 ?PLOT

or equivalently,

1 ?PLOT 1 I FLAG

o ?PLOT 0 I FLAG

EXERCISES - CHAPTER 9

1 I FLAG

o I FLAG

2SET BON

2SET BOFF

1) Define a word named 1**4 that will raise the single-word

integer on top of the stack to its 4th power. There are

two obvious ways to code this word. Verify that

May 1978

24 = 16, 34 = 81, 44 = 256, 54 = 625, etc. Which method

is preferab I e?

9-7

10. PROGRAM CONTROL

In the discussion of the colon definition in the previous chapter the

words comprising the definition were executed sequentially. For

example, in the definition

I QUAD lROOT F. 2ROOT F.

first the word lROOT is executed, then the word F. is executed,

then the word 2ROOT is executed and f ina II y the word F. is

executed.

Often times we want to be able to control the flow of execution through

a colon definition based on certain programmatic decisions. In Fortran

you may use DO loops and IF statements to control the flow of execution

through a program and FORTH contains similar control structures,

described in this chapter.

10. 1 DO LOOPS

The FORTH DO loop may be used within a colon definition to repeatedly

execute a sequence of words. There are two forms provided, depending

whether the loop index is to increment by +1 each time through or

whether the loop index is to change by a programmer specified value:

< Ii mi t-va I ue> <start i ng-va I ue> DO

<limit-value> <starting-value> DO

<words>

<words>

LOOP

< increment-va I ue> +LOOP

<starting-value> is a single-word integer value specifying the value·

of the loop index the first time through the loop.

<limit-value> is a single-word integer value specifying the upper

limit of the loop index. If the loop index is

increasing, the loop will terminate when the loop

Feb. 1977 10-1

10-2

<words>

index reaches this <1 imit-value>. When the loop index

is decreasing, the loop will terminate when the loop

index passes this <limit-value>.

are the words to be executed each time through the

loop.

<increment-value> is a single-word integer value specifying the value

by which the loop index is to be incremented or

decremented each time through the loop. If this

<increment-value> iss peci f i ed then the word +LOOP

must terminate the DO loop.

As in Fortran, a DO loop in FORTH wi 11 always be executed at least

once. Some examples should help clarify the above descriptions.

LOOP SPECIFICATION LOOP I NDEX VALUES

5 1 DO <words> LOOP 1 , 2, 3, :} identical
5 1 DO <words> 1 +LOOP 1 , 2, 3, loops

1 5 DO <words> -1 +LOOP 5, 4, 3, 2,

-8 -6 DO <words> -1 +LOOP -6, -7, -8

1 1 3 DO <words> 2 +LOOP 3, 5, 7, 9

-3 -11 DO <words> +2 +LOOP -11 , -9, -7, -5

50 25 DO <words> 5 +LOOP 25, 30, 35, 40, 45

0 1000 DO <words> LOOP 1000

-99 -99 DO <words> -1 +LOOP -99

Feb. 1977

Before continuing on make certain that you understand these examples and

proceed to the exercises at the end of the chapter and work the first

exercise.

In order to access the loop index while executing a DO loop the word

I must be executed. Executing this word pushes onto the stack the

current single-word integer value of the loop index. In this respect

the word I acts 1 ike a CONSTANT and not a VAR I ABLE. For

example we can define a word named PRNT

z PRNT 5 1 DO I LOOP

and execut i ng the word PRNT wi 11 pr i nt 1 2 3 4 on the

termi na 1. I f we wanted to form the sum of the integers from 50 th rough

100 (inclusive) and then print the result we could define a word named

SUM

: SUM 0 101 50 DO I + LOOP

and executing the word SUM will print 3825. Note

that in this example we initially push 0 onto the stack to initial ize

the sum. We then add each value of the loop index to the top number on

the stack, leaving the result on top of the stack for the next time

through the loop. When the loop terminates, the top number on the

stack is the sum and we may then print this value. This is a good

example of the usefulness of keeping a temporary result on the stack

instead of storing and loading the value in a temporary variable.

Convince yourself that the following word performs the identical

function as SUM

z SUM1 0 50 100 DO I + -1 +LOOP

Oct. 1979 10-3

10-4

The stack operations involved when the word SUM

as follows:

50

101 101

o o

o 101 50 DO I

LOOP I + LOOP I

100

• • • • • •
3725

LOOP I +

empty

LOOP

is executed are

50

o

+

52

101

+

Note that the <starting-value> and <limit-value> are popped off the

stack by the word DO and are then stored internally within FORTH.

Note also that the word LOOP does not manipulate the stack (and

is shown in the above simply for clarity).

Feb. 1977

To show the stack operations involved when using the word +LOOP to

terminate a DO loop consider the word SUM1 defined above

100

50 50 100

o o o

o 50 100 DO I +

-1 99 ';';1

100 100 199

-1 +LOOP I + -1 +LOOP

98 -1 50
•••

199 3775

I + -1 +LOOP I

-1

3825 empty

+ -1 +LOOP

The word +LOOP pops the < increment-va I ue> off the s tack each time

it is executed.

Feb. 1977 10-5

10-6

DD loops in FORTH may be nested and in order to access the loop

index from within a nested loop the words I. J and K

follows:

are used as

I accesses the loop index from the innermost loop,

J accesses the loop index from the loop outside of the

innermost loop,

K accesses the loop index from the loop two levels outside

of the innermost loop.

The words I J K act as CONSTANTS in that one simply

executes the word in order to push the value of the appropriate

loop index onto the stack. However, it is not possible to store

new values in these words by executing, for example, I

In other words, the current value of the loop index may be read

only.

DO loops in FORTH are not limited to a maximum nesting of three, as

might be indicated from the discussion above, however the gory details

of further nesting is beyond the scope of this primer.

I f the word LEAVE is executed wi th in the range of a DO loop this

wi 11 force the loop to termi nate when the next LOOP or +LOOP is

executed. This provides a handy method of terminating a loop before

the specified <limit-value> is reached.

The current value of a loop index i~ qccessible onZy withJn the colon

definition which contains the words DO and LOOP.

: ISa I DUP *
ILOOP 10 Q DO Isa LOOP;

For example

is not allowed since I (the current value of the loop index) is

available only within the word ILOOP

by I LOOP (such as the word I sa) .

and not within words called

Oct. 1979

10.2 BEGIN-END LOOPS

This control structure may be used within a colon definition to

repetitively execute a sequence of words until a specified logical

condition is true. The format of the loop is

BEGIN <words> <logical-condition> END

The most frequent use of this structure is to "wait" for a certain

condition to occur. For example, basic FORTH provides a word named

?TER and when executed it pushes a value of true onto the stack

(a non-zero integer value) only if the operator has entered a character

on the terminal, otherwise a value of false (zero) is pushed onto the

stack. If, at some point of a program, you wish to wait for the

operator to enter a character, you could write

<name> ... BEGIN ?TER END
,~----~ ________ ~I y-

this loop is executed continually

until a character is entered on

the terminal.

As another example assume that we want to terminate a loop only when

the value of a floating-point variable named DELTAX is less

than 0.01:

FLOATING

0.0 REAL DELTAX

<name> ... BEGIN <words> DELTAX F@ 0.01 F< END

This example is typical of many numerical iterations where one is

waiting for a value to converge to some limiting value.

As another example let us code the word

without using the DO loop:

SUM from the previ ous sect i on

Feb. 1977 10-7

o CONSTANT INDEX

: INCINDEX INDEX 1 + • INDEX

I SUM2 50 'INDEX o BEGIN INDEX + INCINDEX

INDEX 100 > END

Execut i ng the word SUM2 results in 3825 being printed, identical

with the execution of the word SUM, however note how much more work

is involved by not using the DO loop. Note that the <logical

condition> is popped from the stack by END.

Finally, consider a word named STKPRNT which proceeds down the

stack, printing each number, until a zero is encountered.

STKPRNT BEGIN DUP 0= END DROP

Executing 0 5 9 STKPRNT would result in 9 5

printed and the following stack operations:

9 9 5 o

5 5 5 5 5

o o o o o

being

5

o

o 5 9 STKPRNT BEGIN DUP 0= END

10-8

o

o

DUP

(The word BEG I N

simply for clarity).

1

o empty

0= END DROP

does not manipulate the stack and is shown above

Feb. 1977

10.3 BEGIN-WHILE-REPEAT LOOPS

Often it is desirable to terminate a loop at some point within the loop

and not at the end (as BEGIN-END does). The control structure

provided for this is

BEGIN <words-l> < 1 og i ca 1-cond it ion> WH I LE

<words-2> REPEAT

First <words-1> are executed and the <logical-condition> is then evaluated.

I f true (non-zero) then <words-2> are executed and REPEAT wi 11 tran3fer

control back to BEGIN and <words-1> are evaluated. If false (zero)

then WHILE transfers control to the words following REPEAT. As

long as the <logical-condition> is true, <words-1> and <words-2> are executed.

However, as soon as the <logical-condition> is false, the loop is executed

immediately «words-2> are not executed after WHILE encounters a false).

Graphically, this structure appears as

unconditional branch back

+ true

• BEGIN--........ JHILE+----I REPEAT

t
,

I faTse .

After reading the next section, one should understand that the BEGIN-WHILE-

REPEAT structure could be implemented as

BEGIN

<words-1> <logical-condition>

IF <words-2>

ELSE 0 THEN

END

where the 1 and 0 left on the stack by the IF-THEN-ELSE are simply

flags for END to either terminate or continue looping.

Oct. 1979 10-9

10.4 IF - THEN - ELSE STATEMENT SELECTION

This control structure allows the program flow to branch in one or two

directions depending on the value of a logical condition. This version

of the IF statement is more powerful than either the arithmetic IF

or the logical IF in Fortran since an ELSE clause is provided.

The format of the I F statement is either

<logical-condition> IF <true-part> THEN

<logical-condition> IF <true-part> ELSE <fa I se-part> THEN

where the words comprising the <true-part> will be executed only if the

<logical-condition> is true (non-zero), otherwise the words comprising

the <false-part> will be executed (if the ELSE <false-part> clause

is specified).

10-10

As an example of a word using the ELSE clause consider a word named

SIGN which prints "POS" or "NEG" on the terminal depending whether

the integer on top of the stack is positive or negative:

: SIGN 0 < IF." NEG" ELSE." POS" THEN

(character output is described in Section 14.1).

As another example consider the following definition of the word

MAX (which was described in Chapter 8):

MAX OVER OVER < IF SWAP THEN DROP

The stack operations involved in executing 2 6 MAX are:

Oct. 1979

6

2 2 1

6 6 6 6 6

2 2 2 2 2

2 6 MAX OVER OVER < IF

2 2

6 6

SWAP THEN DROP

The word > generates the <logical-condition> of 1 (true) and

therefore the <true-part> is executed (the word IF pops the 1

off the stack). The word THEN does not manipulate the stack

and is shown above simply for clarity.

Oct. 1979 10-1 1

If we were to execute 5 3 MAX the stack operations would be:

3

5 5 o

3 3 3 3 3

5 5 5 5 5

5 3 MAX OVER OVER < IF

3

5

THEN DROP

Since the <logical-condition> is 0 (false) and since an ELSE

clause is not specified the word THEN is executed immediately

after the word IF.

It is important to note that the IF statement pops the <logical-

condition> off the stack. If you want to preserve the <logical

condition> for later use then you must DUP it prior to executing

the IF. Another important point to note is that the stack must

be the same (i.e. - contain the same number of words) after executing

either the <true-part> or the <false-part>. Exercise 6 at the end

of this chapter illustrates this point.

10-12 Oct. 1979

EXERCISES - CHAPTER 10

1) What values wi 11 the loop index take on in each of the following

DO loops?

a) 2900 2898 DO <words> LOOP

b) -5 -4 DO <words> -1 +LOOP

c) -6 -2 DO <words> -2 +LOOP

d) -2 -3 DO <words> LOOP

e) -2 -3 DO <words> -1 +LOOP

f) 6 18 DO <words> -6 +LOOP

g) 18 6 DO <words> 6 +LOOP

h) 0 -1 DO <words> LOOP

2) Write a word to form the product of the even numbers from 2 to 10

(inclusive) and print the result. Use a DO

increment.

loop wi th a pos i t i ve

3) Redo exercise 2, this time using a DO

increment.

loop with a negative

4) Recode the words INCINDEX and SUM2 in Section 10.2 using

the definition

o VARIABLE INDEX

5) Use the colon defbiition to define the words I

DMAX DMIN D= D< D> DO= DO<

Oct. 1975' 10-13

6) Extend the word SIGN given in Section 10.3 to print II P ",

II Nil or IIZII depending whether the integer on top of the

stack is positive, negative or zero.

7) Define a word named EX which prints the top n words of the

stack, non-destructively -- that is, the contents of the stack

must not be destroyed (the printing word destroys the number

that it prints). For example

88 23 2 EX

should print 23 88 65

8) Define a word named VINIT

in the vector

that will initialize each element

19 () DIM VEe

to its subscript value. That is, element 0 should be set to 0,

element 1 should be set to 1, ... , element 19 should be set to 19.

9) Defi ne three words named (). 2 () • 3 () • that wi 11 pri nt out

the first n values of a single-word integer vector, a doub1e

word integer vector and a floating-point vector, respectively

(n is the top word on the stack, the starting address of the

vector is the second word on the stack). Test the word ().

on the vector in the previous problem.

10) Define a word named 3VBUBSORT that will sort a vector of

floating-paint numbers into ascending order using the bubble

sort algorithm. This algorithm is one of the simplest (and

least efficient) techniques for sorting a string of numbers

into order and is defined as follows:

10-14 Oct. 1979

Oct. 1979

To sort the N values X(O), X(l), .•• , X(N-1)

For L = 1, 2, •.. , N-1

For M = N-1, N-2, ... , L
If X(M-l) > X(M)

Then Swap X(M) and X(M-l)

Note that this algorithm uses two (nested) DO loops, one

with an increasing loop index and one with a decreasing loop

index.

Assume that the top word on the stack is N. Use the definitions

5 3()DIM VC

29.7 0 VC F:
-8.2 1 VC F:
-1.9 2 VC F:
4.5 3 VC F:
0.52 4 VC F:
-8.3 5 VC F:

and then execute

6 3VBUBSORT

Use the word 3(). from the previous problem to print the

sorted vector.

10-15

11 . BLOCK I/O

Using the methods introduced up to this point, to enter a word into the

dictionary we type in the definition through the terminal and the word

is immediately entered into the dictionary. This method has two obvious

disadvantages: (a) we are restricted to one line of terminal input

(72 characters) per definition; (b) if we do not have a hard copy

printout of our terminal input/output and we forget a previously entered

definition we are out of luck as far as recalling the 1 isting of the

definition. Both of these restrictions are overcome by using "blocks"

as described in this chapter.

FORTH divides the secondary storage (disc or tape) into separate

distinguishable units called blocks. In KPNO Varian FORTH systems (with

a 5 Megabyte disc) each block is identified by its block number, an

integer between 0 and 4895 (inclusive). Each block contains 1024

characters. (Blocks may contain data other than characters however in

this primer we will be interested in blocks of characters only).

Certain blocks are permanently allocated, as shown below:

Block #

o - 7

8 - 199

200

201 - 4895

Additionally, executing

130 LOAD

Usage

Bootstrap & binary loaders

FORTH

Resi~ent Loader Block, to be set by the user.

Available for the user.

will list on the terminal the block allocation within blocks 8-199.

From the block allocation scheme 1 isted above, the user is allowed to do

anything he wants with blocks 200-4895 (but must not modify any of

blocks 0-199).

Oct. 1979 11-1

11-2

Even though a block is nothing more than 1024 consecutive characters,

certain routines (the text editor and the block lister) divide these

1024 characters into 16 lines of 64 characters/line. The purpose of

this arbitrary division Is simply to facilitate the reading and printing

of the characters in a block. This division of a block into lines in

no way affects the format of the data on magnetic tape or disc. The

16 lines in a block are referenced as line 1, line 2, .•• , line 16.

One common error made by newcomers to FORTH is to assume that there is

a blank between the last column of a given line and the first column

of the next line. This is false as the block consists of 1024

consecutive characters - no special characters are inserted before or

after each line, as the breakdown of a block into lines is for reading

and printing only.

Feb. 1977

~-

12. TEXT EDITOR

Knowing that a block of secondary storage can contain 1024 characters

of FORTH code we now need a way to efficiently manipulate a block of

characters. This manipulation is the function of the text editor.

Facility in using the editor is a must in order to proceed onward in

this primer as all examples and exercises from this point on will require

the use of blocks to contain your program code.

12.1 SPECIAL CHARACTERS AND TERMINOLOGY

The following special characters will be referred to in the descriptions

that follow:

spaae

aarTiage-return

line-feed

rubout

tab

break

esaape

aontroZ-N

The following symbols

<block#>

<line#>

text buffer

Feb. 1977

press the space bar on keyboard.

press the "RETURN" key on keyboard.

press the "LINE-FEED" key on keyboard.

press the IIRUBOUT" key or the "DELETE" key

on keyboard.

press the "CNTL" key and the IIIII key simultaneously.

press the IIBREAK" key on keyboard.

press the "ESC" key or the "ALT MODE" key on

the keyboard.

press the "CNTLII key and the "Ni l key simultaneously.

will be used to denote frequently used entities:

refers to a block number, which is a single-word

integer in the range 0 through 4895 (inclusive).

refers to a line number, which is a single-word

integer in the range 0 through 16 (inclusive).

is a 64 character buffer used to hold a single line.

Certain editor commands will move a line into

the text buffer and other editor commands may

move the contents of the text buffer into a

certain line of the block.

12-1

12.2 COMMAND DESCRIPTIONS

Describing the editor is a somewhat boring task since all one can do

is verbally define each command - examples are generally impossible to

provide since the editor is such an interactive, terminal-oriented

program. The only way to appreciate this interactiveness and to under

stand each of the commands below is to try executing each command after

reading its description. This chapter may also be used later as a

reference when using the editor.

<b 1 ock#> EDIT

A

12-2

will load the editor program into the dictionary,

if it is not already in the dictionary. The

specified block is then read into a core buffer

from secondary storage {tape or disc} and is

I isted on the terminal. You may stop this list ing

by pressing any terminal key. NOTE: When using the

file system (Section 13.2) the first invocation of

the editor must not be preceded by a <block#>. This

is because after the ed i tor is loaded but befo re any

block number may be specified, one must first execute

a FILE command to designate which file is to be

edited. A typical invocation of the editor with the

file system would be

EDIT (load the editor)

FILE <f i 1 e-name>

<block#> EDIT

(spec i fy wh i ch :f i I e)

(edit a block wi thin the
f i 1 e)

will edit the Alternate block. FORTH has two block

buffers in memory and if one wants to transfer some 1 ines

between two blocks, execute

<block#l> EDIT (read block#l into memory)

<block#2> EDIT (read block#2 into memory)

HL (hold lines from block#2)

A (swi tch to block#1)

IL (i nsert I ines into block# 1)

A (swi tch to block#2)

Oct. I 979

B

<1 i ne#> BI

Oct. 1979

will !egin entering lines from the keyboard into

the block being edited, starting at the line

specified by <line#>. FORTH will print each 1 ine

number and then wait for you to key in the contents

of the 1 ine, terminating each line with a

carriage-return. This process continues until

either 1 ine 16 (the last line in the block) is

entered or until you key in a break as the first

character of a line. While keying in each line

the following special characters may be used:

rubout - deletes the preceding character

(backspaces).

break -erases the entire 1 ine allowing

you to start the line over again

(this assumes that the break was

keyed in other than as the first

character of ali ne - when a break

is keyed in as the first characte r

the Begin mode is terminated, as

mentioned above).

tab - enters 5 spaces into the 1 ine.

Note that each 1 ine entered by using the Begin

command replaces the previous contents of that line.

Example: 2 B wi 11 start replacing at 1 ine 2

of the block. If 4 lines are

entered by the operator then

lines 2,3,4, & 5 are replaced.

Lines 1 and 6-16 will not be

modified.

will !egin ~serting 1 ines from the keyboard into

the block being edited, starting after the 1 ine

specified by <line#>. This command is similar to

the B command with the following exception:

entering 3 1 ines wi th the command '8 B' wi 11

replace 1 ines 8, 9 & 10 with the new 1 ines entered

by the operator - lines 1-7 and lines 11-16

are not modified and remain intact; entering 3

12-3

lines with the command '8 BI' will replace

lines 9, 10 & 11 with the new lines entered by the

operator - 1 ines 1-8 are not modified, however,

the contents of old 1 i ne 9 are now in 1 i ne 12, the

contents of old 1 i ne 10 are now in 1 i ne 13, the

contents of old 1 ine 11 are now in 1 ine 14, II ... ,

the contents of old 1 i ne 13 are now in 1 i ne 16 and

1 ines 14, 15 & 16 have been discarded. Thus the

B command repZaces lines in a block, overwriting

the previous contents of each line; the BI

command inserts new lines into a block. Since

each block contains exactly 16 lines, when you

insert a new line one of the old lines has to be

removed - the algorithm used by BI is to push

each succeeding line down one line, effectively

pushing line 16 out of the block.

<source-b1ock#> <destination-block#> B-MOVE

<block#> CHANGE

CLEAR

12-4

Moves the block specified by <source-block#> This

action is identical to the MOVEBLOCKS command

(described in the next section) with <#-of-blocks>

Example: 500 509 B-MOVE }

500 509 L MOVEBLOCKS

both commands move block 500

to block 509.

Changes the block number of the block currently

being edited to <block#>.

Example: 292 EDIT)

208 CHANGE

effectively moves block

292 to block 208.

will initialize the block being edited to blanks

(i.e. - the entire block is erased). This command

is used to clear a block prior to entering new

code into the block. A block of all blanks is

considered in use and will be printed on a DOFORTH

1 is t i ng.

Oct. 1979

<1 ine#> D Q.eletes the 1 ine specified by <1 ine#>. The original

contents of the 1 ine are placed in the text buffer

and may therefore be moved to another line wi th

the I or R commands. All lines following <line#>

are moved up one line and line 16 is filled with blanks.

Examples: 9 D

9

4

wi 11 de 1 ete 1 i ne 9, mov i ng

lines 10-16 into lines 9-15

and 1 i ne 16 then is f ill ed

with spaces.

wi 11 delete 1 ine 9 and then

insert the original contents

of line 9 between lines 4 & 5.

The net effect of these two

commands is that 1 i nes 1-4

are unmodified, line 5 contains

the original contents of line

9, lines 6-9 contain the

original lines 5-8 and 1 ines

10-16 are unmodified.

<line#l> <line#2> DL Deletes the !:..ines <line#l> through <line#2>

<1 ine#> E

Oct. 1979

(inclusive) of the current block being edited.

This command is identical to a string of D

commands. At the completion of this command the

first line in the sequence will be in the text buffer.

Examp Ie' : ~ D: D 5 D}

these two command strings perform the

same function, namely deleting 1 ines

5 through 7 of the current block.

Erases the line specified by <line#>, filling the

1 ine with blanks. The original contents of the

line are first placed in the text buffer and may

therefore be moved to another 1 ine with the I

or R commands.

12-5

ERASE-CORE

FLUSH

12-6

Examp le: 5

9

erases line 5 and then inserts

the original contents of line

5 between lines 9 & 10, moving

lines 10-15 down into lines

11-16. The original contents

of line 16 are lost.

Prevents the block currently being edited from

being written onto secondary storage (disc or tape)

by marking both of FORTHs block buffers empty.

This allows you to change your mind after editing

a block, provided you have not specifically

FLUSHed the block onto secondary storage or edited

other blocks since making the changes.

Example: 250 EDIT edits block 250 with the

(changes to

block 250)

ERASE-CORE

specified changes and

then effectively ignores

these changes. After

execut i ng the ERASE

CORE the contents of

block 250 will be the

same as prior to executing

the 250 EDIT.

Forces the writing onto secondary storage (disc or

tape) of both of FORTHs block buffers. Once a

block is written onto secondary storage the

previous contents of the block are lost. Normally

FORTH does not write a block buffer onto secondary

storage until the buffer space is needed for

another purpose, however this command is a way of

guaranteeing that an edited block replaces the

previous contents of the block (in case the system

were to fail between the editing of the block and

FORTHs normal buffer output).

Feb. 1977

<1 i ne#> H

<line#l> <line#2> HL

Feb. 1977

!!olds the line specified by <line#> in the text

buffe r. A copy of -th is 1 i ne may then be moved to

another line with the I or R commands. Unlike

the D command, the H command does not de 1 ete

the 1 ine when it is placed in the text buffer.

Examp les: 2 H} wi 11 hold 1 ine 2 in the text

buffer.

2 :} wi 11 hold 1 i ne 2 in the text

8 buffer and then replace 1 i ne 8

with this copy of line 2.

Effectively we have copi ed

1 ine 2 into 1 ine 8.

Holds Lines <line#l> through <line#2> (inclus ive)

of the current block being edited. These lines

may then be moved to anothe r block with the I L

command. Th i s ho 1 dis not a true ho 1 d as on 1 y the

1 ine numbers are remembered and no text buffers

are used. After executing an HL command the

user must not issue the B, BI or M commands

prior to executing the IL command. Also, the

HL, I L

within a

Examp le:

commands may not be used to move 1 ines

single block.

258 EDI

5 7 HL

261 EDIT

12 D

1 1 D

10 D

9 IL

will move lines 5, F- & 7
of block 258 into 1 i nes

10, 11 & 12 of block 261.

Note that the previ ous

contents of 1 ines 10, 11

& 12 are deleted pri or to

entering the new 1 in es.

Also note that lines 5, 6

& 7 of block 258 have not

been deleted from block 258.

12-7

<1 ine#> I

<1 i ne#> I L

12-8

Inserts the contents of the text buffer after the

line specified by <line#>. The lines following

<line#> are each moved down one line and hence

line 16 is lost. <line#> may be 0 in which case

the new line becomes

Examples: 12

12

12

I}
1 i ne 1.

wi 11 insert the contents of

the text buffer after line

12. The new line becomes

1 ine 13 and the original

lines 13-15 become lines

14-16. Li ne 1 6 i s los t.

effectively swaps lines 12

and 13. This is so because

the delete places the original

line 12 in the text buffer and

moves lines 13-16 into lines

12-15. The insert then places

the original line 12 from the

text buffer into line 13,

moving lines 13-15 into lines

14-16. Hence the original

1 i ne 1 3 is now in 1 i ne 12

{from the delete} and the

original line 12 is now in

line 13 {from the insert}.

Inserts the Lines that were held by the most recent

HL command into the current block being edited,

effectively moving a copy of the lines from the

prior block into the current block. The lines in

the current block, following <line#>, are moved

down as required to make room for the new lines.

Feb. 1977

L

<1 ine#> M

Feb. 1977

As usual, extra lines will be lost when moved down

from line 16. After executing an HL command

the user must not issue the B, B1 or M

commands prior to executing the 1L command.

A 1 so, the HL, I L commands may not be used to

move lines within a single block.

List the block being edited. On a CRT terminal

the screen wi 11 be erased prior to listing the

block. You may stop the listing by pressing

any terminal key.

Modifies the line specified by <line#>. This

command is probably the most frequently used editor

command therefore acquaintance with this command is

a necessl.ty. Since this command only modifies the

specified line no other lines in the block are

affected. The following buffers are used by the

editor to execute this command: (note: this

command is in no way as complicated to use as it is

to describe).

Reference Line A copy of the original contents

of the specified line. It is listed when this

command is executed.

Control Line This line is used to enter the

special input character codes into. On d CRT

terminal this line is directly beneath the

Reference Line, while on a printing terminal

(such as a teletype) this line is coincident

with the Output Line.

Output Line A copy of the final contents

of the modified line being constructed. This

line is built up as you proceed, character by

12-9

12-10

character, through the Reference Line and

after normal termination of the M command

this line replaces the original contents of

the specified line.

The M command functions by proceeding character

by character through the line, adding, deleting

or replacing characters, building a new copy of

the line. The following characters have special

meanings when executing the M command. Any

character not defined below, when keyed in, will

be transferred into the output line.

space Transfers the next character from the

Reference Line into the Output Line (i .e. -

copies one character from the old version of

the line into the new version being constructed)

and then moves to the next character position

in the Reference Line.

tab Transfers the next 5 characters from

the Reference Line into the Output Line

(equivalent to typing in 5 spaces).

carriage-return Transfers the remainder of

the Reference Line into the Output Line. This

terminates the M command and the contents of

the Output Line are then moved into the

specified line of the block.

rubout Skips over the next character in the

Reference Line, effectively "deleting" the

character from the new version of the line.

Contro"t-N Transfers one blank into the Output

Line without advancing in the Reference Line,

effectively "adding" a blank into the new

version of the line.

Feb. 1977

L - (a Control-L followed by a single character).

Transfers characters from the Reference Li ne into

the Output Line up to but not including the

character c. This action is a handy way to leave-

in all characters up to specific character without

having to continually enter spaces or tabs.

Kc - (a Control-K followed by a 5ingle character).

Skips through the Reference Line until the

character c is reached. No characters are

transferred into the Output Line. This action

effectively kills all characters, up to the

character c, from the new version of the line.

Control-S - Skips to the next word, transferring the

characters that are skipped into the output 1 ine.

Cpntrol-D - Deletes to the next word. No characters are

transferred into the Output Line.

break - Aborts the current M command leaving the

original contents of the specified 1 ine intact.

The "?S" abort message is printed (Appendex B).

line-feed Starts transferring characters from the key-

board into the Output Line, effectively "adding"

characters into the new line being formed. Every

character keyed in is moved to the output with the

exception of the following special characters:

rubout - Deletes the previous character in

the Output Line, effectively "backspacing"

one character.

break - Deletes the entire accumulated output

1 i ne. Add it i ona 11 y, if a

Oct. 1979 12-11

12-12

break is entered as the first

character of the output line then

the M command is aborted,

leaving the original contents of

the specified line intact.

tab Transfers 5 spaces into the Output

Line (equivalent to typing in

5 spaces).

carriage-return Terminates the M command

escape

and the contents of the Output Line

are transferred into the specified

I ine of the block. I'bte that all

remaining characters in the

Reference Line, fol lowing where the

line-feed was keyed in, are effec

tively deleted.

Termi nates the "add character"

mode that was initiated by the

line-feed, returning "control"

to the Reference Line.

Whenever characters are added or deleted, within a line, by using the

M command, the characters that follow in the line will be shifted left

or right. If characters are added to a line then the remaining characters

are shifted right and any characters beyond the 64th character position

are lost (they do not get moved into the next line). If characters are

deleted from a line then the remaining characters are shifted left and

spaces are added through the 64th character position. This action is

similar to what happens with line 16 when entire lines are added or

deleted from a block. On CRT terminals (as opposed to printing terminals)

a cursor is displayed to help you visualize where you are in either the

Reference Line or the Output Line as you move through a line.

Feb. 1977

N

<line#l> <1 ine#2> 0

p

<1 ine#> R

<1 ine#> T

ZERO

Oct. 1979

will edit the Next block.

will perform a character by character logica1-

OR of the two lines, printing the result and

leaving it in the text buffer. The logical-OR

of any character with a blank is the character

itself.

will edit the Previous block.

~ep1aces the line specified by <line#> with the

contents of the line buffer.

Example: 2

14 R
T\ wi 11 type 1 i ne 2 and then

V move the copy of 1 i ne 2 into

1 i ne 14. Li nes 2, 15 and 16

are not modified.

Iypes the line specified by <line#> and places the

line in the

Example: 2

14

text

:}
buffer.

will type 1 ine 2

the copy of 1 ine

15. The original

1 i ne 15 are moved

and the original

1 i ne 16 are lost.

and t hen move

2 into 1 ine

con tents of

to 1 i ne 16

contents of

will initialize the block being edited to zeros

(i.e. - the entire block is erased). A block of

all zeroes is considered an unused block and will

not be printed on a DOFORTH listing. This command

is often used to clear a block that was in use but

is no longer needed.

12-13

12.3 BLOCK EDITOR

The text editor described in the preceding section operates on lines of

text and manipulates these lines within a given block or between two

different blocks. This section describes an additional editor, referred

to as the Block Editor, which manipulates entire blocks or groups of

blocks, regardless what is contained within the block, be it characters

or data. Our usage of the block editor will assume that the blocks

contain character data, however, the block editor commands will also

operate on blocks of data.

In order to load the block editor into the dictionary the text editor

must first be loaded into the dictionary. The text editor is loaded by

executing the sequence (refer to Section 12.2)

<block#> EDIT

Following this, one loads the block editor by executing the sequence

199 LOAD

The following commands are then available to manipUlate groups of blocks:

<start i ng-b 1 ock#> <end ing-b 1 ock#> CLEARBLOCKS

will fill each block from <starting-block#> through <ending-block#>

(inclusive) with blanks. This command is similar to the text

ed i tor CLEAR command.

Example: 281 294 CLEARBLOCKS

will fill block 281 through 294 with blanks.

<b 1 ock#l > <b lock#2> <#-of-b locks> EXCHANGE

will exchange (swap) the number of blocks specified by <#-of

blocks> between the blocks specified by <block#l> and <block#2>.

Example: 500 600 3 EXCHANGE

will exchange blocks 500 and 600, blocks 501 and

601 and blocks 502 and 602.

<source-block#> <destination-block#> INSERT

12-14

will insert the block specified by <source-block#> immediately

following the block specified by <destination-block#>. The blocks

starting with <destination-block#> are all moved down one block,

until the first empty block is encountered. (A block is considered

empty if it contains all zeros). If there are no empty blocks

within 50 blocks of <destination-block#> then no block movement

Oct. 1979

takes place and a message is printed. If an empty block is located

then the block number of this empty block i·s printed.

Example: 325 408 INSERT

will move the contents of block 325 into block

408. Assuming that block 412 is the first empty

block following block 408, then the following

block movement wi 11 take place:

411 --> 412

410 --> 411

409 --> 410

408 --> 409

325 --> 408

Additionally, the message

BLK USED: 412

wi 11 be output.

<source-block#> <destination-block#> <#-of-blocks> MOVEBLOCKS

Oct. 1979

will move the number of blocks specified by <#-of-blocks> starting

from the block specified by <source-block#> into the blocks

starting at the block specified by <destination-block#>. The

original contents of the destination blocks are overwritten by

the new contents. The blocks are moved from first to last,

therefore no overlap is allowed. This means that if <destination

block#> minus <source-block#> is less than <#-of-blocks>,

information will be destroyed.

Example: 380 385 3 MOVEBLOCKS

will move block 380 into block 385, block 38 1 into

block 386, and block 382 into block 387. The

original contents of blocks 380, 381 and 382 are

not modified.

12-15

12-16

<startlng-block#> <endlng-block#> ZEROBLOCKS

will fill each block from <starting-block#> through <endlng

block#> (inclusive) with zeros. This command is similar to the

text editor ZERO command. Note that a block containing all

zeros is considered an empty block.

Examp Ie: 220 290 ZEROBLOCKS

will fill blocks 220 through 290 with zeros.

Feb. 1977

A Swi tches to the Alternate blo,ck. - --
<I ine#> 8 Begins entering 1 i nes. - - -_. ~----
<line#> 81 Begins .!..nsertlng lines .

......... ,. -
<source-block#> <destination-block#> 8-MOVE Moves the specified block.

- .. _.
<block#> CHANGE Changes the block#. . . Q r •-.

CLEAR C 1 ea rs the entire block,
'rilling it with blanks. ._--

< 1 ine#> D Deletes the 1 i ne. -- .
<starting-line#> <ending-line#> DL Deletes Li nes. -
<line#> E Erases - the line, fi 11 i ng

it wi th blanks. - ... - . --
<block#> EDIT Edits the specified block.

ERASE-CORE Marks both core buffers
as being empty. --

FLUSH Forces the writing onto secondary
storage of both core buffers.

- -.- --
<1 ine#> H Holds the 1 i ne in the text buffer. -- .----... -.. -.. --'" _._----. ---

<startlng-line#> <endlng-line#> HL Holds Lines (for subsequent I L) . -- .. --- -----
<line#> I I nserts a 1 i ne. - .",,,,- --'--'--' .. -
<line#> IL Inserts Lines held by - -previous HL

-
L Lists the block. -_ ... =1
<line#> M Modifies the 1 i nee

1----

N SWitches to the Next block.
'. .~

<llne#l> <1 i ne#2> 0 Qrs the two 1 i nes. I

P Switches to the Previous block. J ./

<1 i ne#>
.

R ~eplaces the 1 i ne. 1
<line#> T Types the 1 ine.

-;

i Zeroes the entire block,
ZERO fill i ng I t with zeroes. 1

Table 12.1 - Editor Commands

Oct. 1979 12-17

N
I

00

" CD
C'"

\.0
........
........

199 LOAD

<starting-block#> <ending-block#> CLEARBLOCKS

<block#l> <block#2> <#-of-blocks> EXCHANGE

<source-block#> <destination-block#> INSERT

<source-block#> <destination-block#> <#-of-blocks>

<starting-block#> <ending-block#> ZEROBLOCKS

-~- ---- ---- --- -- ------- ------

Table 12.1 Block Editor Commands

Loads the block editor words.

Clears the blocks, filling each
one with blanks.

Exchanges (swaps) the specified
blocks.

Inserts the specified block.

MOVEBLOCKS Moves the specified blocks.

Zeroes the blocks, filling each
one with zeroes.

- ~ - ----_ .. - ---------~-.---

13. PROGRAM STRUCTURE

Knowing that we may store our program code in a block on secondary

storage, we are now ready to write some longer programs, utilizing

this feature.

13.1 BLOCK ORIENTED PROGRAMS

If you have a group of definitions in a disc block you must LOAD the

block in order to enter the definitions into the dictionary. This is

accomplished by executing the sequence

<block#> LOAD

where <block#> is a single-word integer value specifying which block of

secondary storage is to be loaded. The loading sequence starts with the

first character in the specified block and continues through the block

until either of the following words is encountered:

;S

CONTINUED -

-->

terminates loading of the current block and all

characters that follow the ;S in the block

are ignored.

terminates loading of the current block but

continues on to load the block whose block #

is on top of the stack. All characters that

follow the CONTINUED in the block are

ignored.

terminates loadin9 Jf the current block and

continues on to load the next block. All

characters that follow --> in the block are

ignored. Refer to the end of this section for

more detail converning the use of -->

Once again, some examples are the easiest way to see what is happening.

Oct. 1979 13-1

I NPUT SEQUENCE BLOCK CONTENTS BLOCKS LOADED

Block 250

250 LOAD 250

STOP ; S L-,;.. ____ ---'

Block 300

STOP ; S

Block 301

300 LOAD 300,
301 LOAD 301 ,

302 LOAD
STOP ; S

302

Block 302

STOP L;~S~ ______ ~

Block 300

301 CONTI NUED

Block 301

300,

300 LOAD 301 ,

(302 CONTI NUED 302

Block 302

STOP ;S _--_
13-2 Feb. 1977

Notice how the last two examples perform Identical functions, that is

to load blocks 300, 301 and 302. The final example (using CONTINUED)

is preferable since it requires only one LOAD to be keyed in and

executed.

Now assume in the final example you wish to insert some code between

blocks 300 and 301 (that is, the words to be entered into the dictionary

must logically be loaded after block 300 has been loaded but before

block 301 is loaded), One method to accomplish this is as follows:

Block 300

CONTINUED

Block 301

302 CONTINUED

(,........B;..;.I..:::.OC;;.:.k ___ 3~,'0~2...,
;S

new block of code
301 CONTINUED

Feb, 1977 13-3

13-4

This method will work perfectly well, however the problem now is that

the new code in block 303 is logically out of sequence since it should

really appear between blocks 300 and 301. A few additions of this form

and the program quickly becomes a mess!

To avoid this problem lets move the contents of block 302 to block 303

and then move the contents of block 301 to block 302. This then frees

block 301 for the new code. We can use the block editor to move blocks

301 and 302 by executing

302 303 B-MOVE

301 302 -B-MOVE

which will move the two blocks as desired. What we now have is:

Block 300

301 CONTINUED

Block 301

available for new block of code

Block 302

previous contents of block 301

302 CONTINUED

Block 303

previous contents of block 302

;5

Oct. 1979

Note however, that in addition to entering the new code into
block 301, we must also edit the '302 CONTINUED' in block 302

to '301 CONTINUED' since we moved block 301 into block 302.

Finally, as a solution to this problem (the problem of having to edi t

the b I ock# preced i ng CONT I NUED) , we can descr i be a word named

+BLOCK which calculates an absolute block number given a relative

block number:

In block#

300

420

500

300

The sequence

1 + BLOCK CONT I NUED

2 -f' BLOCK CONT I NUED

-3 + BLOCK CONTINUED

-1 +BLOCK CONTINUED

Is identical to

301 CONT I NUED

422 CONTINUED

497 CONTINUED

299 CONTINUED

As the examples show, the single-word integer vaLue preceding the word

+BLOCK is added to the current block number yielding a single-word

integer value absolute block number. (A block number such as 300, 420,

etc. is called absoZute since it refers to a specific block - a block

number is called reZative if it refers to a block in a specific location

relative to the current block). The sequence

301 CONTINUED

is an absolute block reference since it refers to block 301 specifically.

The sequence

1 +BLOCK CONTINUED

is a relative block reference since the block referred to depends on

which block the sequence '1 +BLOCK CONTINUED' appears. The

sequence '1 +BLOCK CONTINUED', if found in block 350, refers

to absolute block 351; however if found in block 407, refers to absolute

block 408.

Oct. 1979 13-5

13-6

Had a relative block reference been used in blocks 300 and 301 of the

example we would not have to edit the '302 CONTINUED' as

mentioned previously. Thus, the original appearance of the example

should have been

Block 300

(r-1---=+:;..:B~LO~C~K.-C O~N~T_I_N_U _ED-..
Block ~Ol

C_1--..;"*;..,;BL..;;,0.;;.,C;.;,.K_C..;:,0.;;.,N;;,.T_1 N_U_E_D ...
r- Block 302

; S

After moving block 302 into 303 and block 301 into 302 we need only edit

in the new code into block 301 and then terminate block 301 with

1 ~BLOCK CONTINUED

and we1re all set. No other blocks need be modified.

The purpose of this lengthy discussion has been to explain the logic and

usefulness behind the provided block structure. It would have been

shorter to simply describe the +BLOCK word at the beginning, however

it is more instructtve to first examine the alternatives and see just

why the final technique is the best. This discovery, examination and

comparison of alternative techniques is the essence of programming.

Oct. 1979

The stack interactions of the word +BLOCK are very simple. Again

consider the sequence

1 +BLOCK CONTINUED

being executed in block 420:

empty

1 + BLOCK CONTINUED

The word +BLOCK simply adds the single-word integer on top of the

stack to the current block number, leaving the result on top of the stack.

Now that we know how to link together a sequence of blocks into a program

what are the contents of the blocks? The format of each program block

is largely (if not entirely) a matter of individual preference. The

following format is used by the author and should be regarded as one

possible format:

1) Line 1 contains the base in which all numeric quantities are

specified (decimal or octal, specified by the FORTH words DECIMAL

or OCTAL). Nevel' assume that the base is set to what you wan t!

2) Following the base specification, the remainder of Line 1 is used to

contain a comment which briefly describes the function of the code

appearing in the block. A comment in FORTH is denoted by a left

paren, followed by one or more spaces, followed by the comment,

terminated by a right paren (this closing paren need not be preceded

by a space). Thus to comment that a block contains hour angle

calculations, the FORTH sequence would be

(HOUR ANGLE CALCULATIONS

3) Lines 2 through 15 contain the code.

Oct. 1979 13-7

13-8

4) Line 16 contains the sequence

1 +8LOCK CONTINUED

if there are more program blocks to follow, otherwise it contains

the word

;S

to terminate the loading.

5) At the right margin of Line 16 one should put the date on which the

block was last modified and the initials of the person making the

modifications. This allows another person to see when the block was

last changed and by whom. Note that since these characters appear

af te r the CONT I NUED or the ; S they are ignored du ring

loading and therefore are effectively comments. For example, if the

block was last modified by the author on February 30, 1976 one

could write

30FEB76 WRS

to specify the date and the person.

Now consider a sample block, say block 503, as listed by the editor:

1. DECI MAL

2.

3.

15.

16. 1 +BLOCK CONTINUED

(HOUR ANGLE CALCULATIONS)

30FEB76 WRS

(Lines 2 through 15 would contain the program code.)

Oct. 1979

Summing up the recommended program structure:

1) Have each block load its successor with a relative CONTINUED,

that is, for example

2)

3)

1 +BLOCK CONTINUED

Terminate the final block only with ;5

The entire program is then loaded by executing

<starting-block#> LOAD

where <starting-block#> is the absolute block number of the first

program block.

As an alternative to specifying the absolute block number of the fi rst

block in a program, one can define a new word to be entered into the

dictionary such that when this word is executed a specified block will

be loaded. The word LOADER is used to define the new word and the

format of this definition is

<block#> LOADER <name>

where <name> is the user assigned name (recognized as usual, by its first

three characters and count). For example, instead of executing

300 LOAD

in the previous example, to load blocks 300, 301, 302 and 303 we can

define the word PROG as follows

300 LOADER PROG

and then simply execute the word PROG to load the four blocks. This

technique has the advantage that one now remembers a user defined name,

instead of a (possibly meaningless) block number.

Oct. 1979 13-9

The word LOAD starts loading with the first character of line 1 of

a block and if one wishes to start loading with the first character of any

line of a block, the word LINELOAD is available:

<line#> <block#> LINELOAD

As wi th the word LOAD,

when ,S CONTINUED

the loading of a block with LINELOAD

or --> is encountered.

terminates

One should understand that the word --> is equivalent to the sequence

+BLOCK CONTINUED

The difference is that --> is a compiler directive which will be executed

during the compilation of a colon definition. This means that one is able to

extend a colon definition from one block to the next by placing the word

--> as the final word in a block. This is not too frequent a requirement

(if you write a colon definition that extends over a block, perhaps the

definition should be broken into two or more words) however the facility is

provided. In general, --> is preferred to '1 +BLOCK CONTINUED'

because it is a single word (the latter is three words, each which must be

executed) plus it requires fewer characters to be keyed in (hence less chance

for typing mistakes). The sequence '<value> +BLOCK CONTINUED'

should be used mainly when <value> is not equal to one.

13-10 Oct. 1979

13.2 FILE SYSTEM

A rudimentary file system is provided by KPNO Varian FORTH which allows

one to allocate disc blocks into files. Use of the file system simpl i

fies the combining of separate programs into a larger program by not

forcing one to think in terms of absolute disc blocks.

A file is a sequential group of one or more disc blocks and every file

has a name which is identified by its first three characters and count.

A directory of all files is maintained on disc and for every file on disc,

the directory contains the file name, absolute starting block number, and

absolute ending block number (actually the ending block number plus one).

As in FORTH, the file directory is searched backwards, therefore, if two

files having the same name are both in the directory, only the newer file

is accessible. A group of commands to manipulate files are provided by

a fi Ie called FILEMAN (the fi Ie manager).

To load a file, one executes:

LOADF I LE <name>

which LOADS the fi rst block of the fi Ie. A fi Ie may LOADFILE other

files and this nesting may go to a level of ten. All blocks within a file

are numbered relative to the first block of a file, starting with zero.

For example, a 4 block file would consist of blocks 0, 1, 2, and 3. In order

to load block 3 from block lone could use

2 +BLOCK LOAD

Absolute block numbers must never be used in a file (unless one is refer

encing basic FORTH which will always reside in absolute blocks 8-199).

The last 1 ine of block 0 of every file should contain a comment descrioing

the file and the first 40 characters of this comment are printed by vari

ous file manager util ities in order to provide more information on the

contents of a file than the file name alone provides.

Oct. 1979 13-11

In order to edit a file, one first executes

EDIT

which loads the editor words into the dictionary, followed by

FILE < name>

to specify which file is to be edited.

Finally

<relative-block#> EDIT

will edit any block within the file. If one then wishes to edit some

other file simply execute

FILE <name>
<relative-block#> EDIT

In order to print a file on the lineprinter, one first executes

LDADFILE FPRINT

which loads the lineprinter words and a modified BLOCKPRINT utility

into the dictionary. -FPR I NT discards these words.

To print all non-zero blocks of a file, one executes

FPR < name>

To specify only certain blocks of a file to be printed, one executes

FILE
m n

< name>
BLOCKPRINT

which will print the relative blocks m through n inclusive of the specified

fi Ie.

To print another file, simply re-execute either the FPR command or the

FILE and BLOCKPRINT commands with the new filename.

The file manager is loaded by executing

LOADFILE FILEMAN

and may be discarded by executing -FILEMAN. The following file handling

words are available after loading FILEMAN

13-12 Oct. 1979

FCHANGE <namel> <name2>

FCOMPARE ~ame>

FCOPY <name>

<#b locks> FCREATE <name>

FDELETE <name>

Oct. 1979

Rename the file <namel> as <name2>.

<name> specifies an existing disc file

and any file on a file storage tape is

compared with the disc file. The oper

ator is asked which file on tape is to

be compared. The relative block numbers

of any non-equal blocks are printed.

Copy a sequence of blocks between the

specified file and a standard FORTH tape.

The operator is asked whether the sou rce

is tape or disc and the absolute starting

block number on tape. The number of

blocks transferred equals the length of

the file. If the destination is disc,

then the disc file is zeroed before the

transfer starts.

Create a new file of the specified

length. There is no check made to see if

a file of the same name (first three

characters and count) already exists. The

disc area assigned to the file is neither

cleared nor zeroed, hence one must assume

the initial contents to be garbage.

Delete the specified file from the direc

tory. The disc space used by the f i I e may

be reused I ater by another f i I e of the same

or smaller size. If the files on either side

of this file are empty (i.e. - were previously

FDELETED) then the areas are comb i ned in

order to give the largest possible empty

region.

13-13

FDUMP < name>

<n> FEXTEND <name>

FFREE

FINITIALIZE

13-14

Dump the specified file from disc onto a

file storage tape. The f i 1 e is appended onto

the end of the file storage tape. Preced i ng

the file on tape is a header block spec i fy i ng

the name and size of the fi Ie. The fi 1 e

may later be loaded onto disc by FLOAD

or LOADALL.

Extend the length of the specified file by

n blocks. A new file is created with the

following characteristics: it retains the

original filename, its length equals the sum

of its original length plus n, all blocks

are zeroed, all blocks from the original

file are then transferred to this new file.

The original file is then designated as

EMPTY. I f there is i nsuff i c i ent space

available for the new extended file, the

message NO SPACE will be printed.

Print the number of free unused blocks

located after the directory.

Initial ize a file directory. All files except

the file manager are deleted.

Oct. 1979

FLIMIT

FLIST

FLOAD < name>

FMOVE < name>

Oct. 1979

Set the upper limit block number for file

storage. The operator is asked for the
upper block number.

List the entire disc directory on the

terminal. For each file in the directory

the file name, starting and ending absolute

block numbers, length (in blocks), and the

first 40 characters of the 1 ast 1 i ne of

block 0 of the fi Ie are 1 isted. Any unused

regions (where one or more fi les have been

FDELETEd) are 1 i sted wi th a name of EMPTY.

In order to stop the 1 isting before the

terminal screen fills up type Control-S

type Control-Q to resume 1 isting.

<name> specifies an existing disc fi le, and

any file on a file storage tape may be loaded

from tape into the disc file. The operator

is asked which file on tape is to be loaded.

If the lengths of the files on disc and tape

are not equal, the number of blocks moved

equals the shorter length.

Move a sequence of blocks from an absolute

location on disc into the specified file.

The start i ng absolute block number of the

source blocks on disc is requested and the

number of blocks transferred equals the

length of the file.

13-]5

FSQUEEZE

FWHERE <name>

FZERO < name>

DUMP ALL

LOADALL

FI LE < name>

<relative block#> LIST

13-16

Eliminate all imbedded empty files within

the directory, if any occur, by squeezing

user-filled files into consecutive block

locations. All free unused blocks now re

side in contiguous locations following the

user-filled files.

Print the absolute starting and ending

block numbers of the specified file.

Zero all blocks contained in the specified

f i 1 e.

Dump all non-empty files from disc onto

a file storage tape, and then compare each

block on tape to its corresponding block on

disc.

Load all files from a file storage tape

onto disc. Each file header on tape is

examined and if a file of the same name

exists on the disc, the file is loaded

from tape onto disc (overwriting the previ

ous contents of the disc file). If a file

of the same name does not exist on disc,

the file is created and loaded from tape.

If there is insufficient room on disc for a

file, the file is skipped on the tape.

Specify a file to be listed and 1 ist the con

tents of the specified block on the terminal.

Oct. 1979

NEWTAPE

SAVEFILES

TLIST

Oct. 1979

Initialize a new magnetic tape which is

to be used for file storage.

Write all blocks,from block 0 to the

last block of the last directory file, to

a tape and compare these blocks with their

correspond i ng blocks on disc. I tallows one

to change the comment in the tape header, and

it prints the final record number and final

block number written to the tape. A tape

generated by th is word is a "boot tape 'l

which may be loaded onto any system and run

(Chapter 3).

Read a file storage tape from beginning to

end, 1 isting in order every file that is on

the tape (simi lar format to FLIST). In

order to stop the 1 isting before the terminal

screen fills u~ type Control-S type Control-Q

to resume 1 isting.

13-17

13.3 OVERLAYS

FORTH applications for which core-memory space is at a premium and run

time reloading exacts prohibitive time overhead will benefit from the

use of disc overlays. An overlay is a section of pre-compiled diction

ary stored on disc, which may be loaded directly into a reserved section

of dictionary (an "overlay-areall) in memory. Any number of overlays may

be prepared for loading into a given overlay-area. Also, any number of

overlay-areas may be defined, subject to memory limitation. Optional

paging is available for overlays containing data to be modified and

retained throughout overlay operations. To establ ish an overlay-area,

use the sequence

<size> O-DEFINE <area-name>

The total length in words of the overlay-area is specified by <size>.

<area-name> becomes the identifier of the overlay-area, and is compiled

as the first wor.d in the overlay-area. As usual, only the first three

characters and count identify <area-name>. At this point the dictionary

pointer is advanced to the end of the overlay-area. Usual dictionary

operations may proceed, however, words defined after this point will not

be accessible from overlays compiled into the preceeding area.

To create a new overlay for any given overlay-area, simply enter the name

of the area. Use of the user defined word

<area-name>

causes dictionary linkages to be switched into the named overlay-area.

Words subsequently defined become part of the new overlay. The only

definitions accessible within an overlay are those made within the overlay

itself and those made prior to definition of the overlay-area. These may

include words within previously defined overlay-areas. To assist one in

adjusting the lengths of overlays to fall within the defined area, the word

? LEFT

will push onto the stack the number of memory cells still available in the

overlay-area.

13-18 Oct. 1979

When the overlay is complete it must be transferred to disc. The sequence

<block#>' O-SAVE < overlay-name>

accompl ishes this, while also resetting linkages into the common dictionary.

The <overlay-name> becomes an entry in the common dictionary which is used

in a special manner to access the overlay. The <block#> is the first block

at which the overlay will be stored. Overlays greater than 512 words in

length will be written into sequential blocks as required, 512 words per

block. Partial blocks are zero-filled. Alternatively, an overlay may be

saved without specifying a particular block number for each overlay. The

VARIABLE O-BLK may be set to the starting block of a general disk area

for overlay storage. The sequence

A-SAVE <overlay-name>

works 1 ike O-SAVE, except that the block number is taken from the

variable O-BLK. After the overlay is transferred to disc, o-BLK

is updated to the next available block number automatically. If the

allotted size of an overlay is exceeded, attempts to save it will result in the

message

nO-FLOW <over 1 ay-name> ?Q

where n is the number of words remaining. The overlay-area itself and all

subsequent dictionary entries are deleted.

The words defined within an overlay are accessible only when that overlay

is in memory. An overlay may be explicitly loaded into core with the

structure:

<overl ay-name> O-LOAD

However, for operations making extensive use of words defined within

overlays, it may be easier to use implicit overlay-loading. The sequence

<overlay-name> INCLUDES <word>

creates an external entry which automatically insures that <word> is available

when required. <word> must be the identifier of a word already defined in the

named overlay. Except for timing considerations and recognition that the

originally defined <word> is no longer directly accessible, subsequent

references to <word> may be made as if it was part of the common dictionary

in core memory. Note that the word O-LOAD is superfluous to this scheme;

it need never be used. The word INCLUDES insures that the proper overlay

is loaded for compilation as well as for execution.

Oct. 1979 13-19

A typical usage of the overlays would be as follows:

- definitions for the common dictionary -

1024 O-DEFINE OVAREA (1024 words = 2 blocks/overlay)

20 +BLOCK O-BLK !

OVAREA

(starting block# on disc)

- definitions to go into overlay #1 -

A-SAVE lOV

OVAREA

- definitions to go into overlay #2 -

A-SAVE 2,OV

OVAREA

- definitions to go into overlay #3 -

A-SAVE 30V

- defiflitions for the common dictionary -

In this example the overlay 10V will be stored in the first two blocks of

the overlay region on disc, 20V in the next two blocks and 30V in the

next two. In order to execute some words defined within 20V one must

first execute

20V O-LOAD

Normally, variables or data defined within an overlay are reset to their

initial states each time the overlay is reloaded into core memory. However,

a simple scheme has been implemented which allows variables to survive the

overlay reloading process. After an overlay has been defined and saved,

setting the precedence bit of its area-name using the sequence

I MP <area-name>

will define it as a variable overlay. The precedence bit for a variable

overlay can be properly set only when the following three conditions are

met:

I. The overlay has already been placed on disc via

O-SAVE or A-SAVE.

2. The designated overlay is currently loaded into its core overlay

area.

3. Subsequent use of the overlay-area causes a different overlay to

be loaded before any any dictionary is compiled into the area.

A brief description of the action of the overlay precedence bit may prove

helpful: This bit is examined before a new overlay is brought into memory;

if set, the current overlay is first re-written on disc. The precedence

13-20 Oct. 1979

bit is not examined before new dictionary is compiled into an overlay~

consequently a variable overlay that happens to be loaded prior to compi

lation is not re-written on disc. The precedence bit of an overlay-area

is cleared by either SAVE operation and so cannot be set during com

pilation. Although the <area-name> not the <overlay-name> is used to de-

fine a variable overlay, only the specifically designated overlay is affected.

Remember, IMP is a toggle function. Once set the precedence bit wi 11

remain set until expl icitly reset by another IMP.

Some helpful hints concerning the use of overlays:

The useful length of an overlay area is 9 words less than the total size

of the area.

Do not attempt to write overlays past absolute block 2447.

Exceedingly long names or numeric strings (greater than 15 characters)

entered at or near the end of the overlay-area could (conceivably, but

unlikely) extend into the common dictionary during compilation and result

in an O-FLOW error.

Do not attempt to FORGET an over 1 ay-area name! The FORGET word

does not handle overlay linkages properly. You may, however, FORGET

any word ahead of an overlay-area and so delete the overlay-area as well.

Names of words which are not executed from outside an overlay may be freely

duplicated in other overlays. However, it is inadvisable to dupl icate names

which are to be externally referenced.

Words defined in one overlay may be referenced from within a subsequently

defined overlay. This could be a powerful tool, but must be used with

care: If an overlay contains any words referenced by subsequent overlays,

any modifications of it must be followed by re-compilation of the referencing

overlays.

Don't forget that a small overlay defined for a large overlay-area requires

the full disc space of the larger area.

Explicit or impl icit loading of an overlay from disc does not actually result

in a disc transfer if the requested overlay is already core-resident.

Oct. 1979 13-21

13.4 VOCABULARIES

A vocabulary is a logical subset of the dictionary. Basic FORTH includes

three vocabularies:

FORTH the set of words compr i sing bas i c FORTH;

ASSEMBLER - the set of words which create machine code;

EDITOR the set of words which create and modify source blocks.

A vocabulary may be used in two distinct ways:

1) A place to look for existing words in the dictionary

- dictionary searches begin in the CONTEXT vocabulary.

2) A place to put new words into the dictionary - new words are

placed in the CURRENT vocabulary.

The end of one vocabulary may point to another vocabulary and this is

referred to a "chaining". Normally, both the ASSEMBLER vocabulary and

the ED I TOR vocabulary are chained to the FORTH vocabulary. The logical

structure is then

end of FORTH)
head of FORTH

/end of the ASSEMBLER

(cc~ head of t~e ASSEMBLER)

S M R vocabu ar JI'

vocabular

j
head of the ED I TOR
of the ED I TOR

direction of dictionary searches

The head of a vocabulary is the Zast word entered into that vocabulary and

the end is the first word entered (recall that all dictionary searches in

FORTH start at the most recent word and proceed backwards). It is important

to note that the structure shown above is the "logical" structure of the

dictionary - the words that comprise any given vocabulary need not reside

in sequential dictionary locations. Every dictionary entry has a 1 ink

that points to the previous word in the vocabulary and this 1 ink field

converts the physical dictionary structure into its logical vocabulary tree.

13-22 Oct. 1979

To specify which vocabulary is to be searched for existing entries

(the CONTEXT vocabulary) simply execute the name of the vocabulary.

Executing FORTH will cause only the FORTH vocabulary to be searched.

Execut I ng ASSEMBLER causes the ASSEMBLER vocabu 1 ary to be searched

first and if the word is not found then the search automatically continues

on to the FORTH vocabulary (since ASSEMBLER is cha.i.ned to FORTH). In

this case the EDITOR vocabulary is not searched. Similarly, if EDITOR

is executed then the EDITOR vocabulary followed by the FORTH vocabulary

will be searched. The ASSEMBLER vocabulary is not searched.

o specify whith vocabulary is to receive new definitions (the CURRENT

~abulary) execute

<name> DEFINITIONS

where <name> is the name of a previously defined vocabulary. A new

vocabulary is defined by executing

VOCABULARY <name>

The dictionary entry for <name> is entered into whatever vocabulary is

currently receiving definitions, not into the new vocabulary being

created. Therefore, to keep newly defined vocabularies generally

accessible, the sequence

FORTH DEFINITIONS

should precede any new vocabulary definition.

To facil itate vocabulary control in basic FORTH, automatic context switching

has been built into some basic words. The EDITOR vocabulary is automatically

selected by the sequence '<block#> EDIT'. The words that begin machine

code definitions (CODE. SUBROUTINE. ;CODE. ORc.x and !CODE)

automatically execute ASS:=:MBLER to start dictionary searching in the

ASSEMBLER vocabulary. The words that begin a colon definition (z :ORX

and !:) automatically force dictionary searching to begin in the same

~bulary that will receive the new definition.

The sequence

<name> VL I ST

may be executed to 1 ist all the entries in a given vocabulary. Note that

if the vocabulary is chained to another vocabulary then the listing will

automatically continue with the chained vocabulary.

Oct. 1979 13-23

Each Vocabulary name is a compiler directive; that is, a word which is

automatically executed when it appears within a colon-definition. This

feature allows access to special ized vocabularies by simply including the

Vocabulary-name within a definition. For example, a colon-definition

being compiled into Vocabulary V3 needs a word that was defined in V2.

Within the definition, the sequence,

z • • • V2 <word> V3 •

performs the requisite switching. then returns to the cur~ent vocabulary.

Only the address of <word> is actually compiled.

A unique variable must be provided to keep track of the last word in each

vocabulary. This special "head" is created as part of each Vocabulary-name

and is updated as new words are added to the Vocabulary. It is accessed

(indirectly) through the VARIABLES CURRENT and CONTEXT:

Dictionary searches begin in the "context" vocabulary: Executing a Vocabu

lary-name makes CONTEXT point to the unique "head" for that Vocabulary.

New words are placed in the "current" vocabulary: Executing the word

DEFINITIONS sets CURRENT, making new words go into the last-named

Vocabu 1 ary.

A vocabulary normally has access only to those words available when it was

defined. By way of example, consider the sequence:

FORTH DEFINITIONS

VOCABULARY VI VI DEFINITIONS

VOCABULARY V2 V2 DEFINITIONS

which results in a logical structure like:

• FORTH o
\ Vl o

' ____ V_2 __ 0

and a physical dictionary structure:

IFORTH~

<words for Vl>

<words for V2>

Definitions subsequently added to Vl are inaccessable to subsequent

additions in V2. A continuation of the above sequence:

VI DEFINITIONS <words for V11>

V2 DEFINITIONS <words for V21>

creates extensions to the original vocabularies that we shall refer to as

lid i alec t s II •

13-24 Oct. 1979

• FORTH ,0

\ VI

\\
VII

0

V2 0411 V2 1

0

I FORTH~ V2 ~ VI' 1'1 V2'

As illustrated in the diagram of the resulting structures, Dialect V2 1

does not have access to Dialect Vl I.

The word CHAIN may be used to couple one vocabulary to future extensions

of another. I n the examp 1 e, the sequence:

V2 DEFINITIONS CHAIN Vl

will modify the 1 inks between vocabularies such that all words subsequently

defined in VI will be available to V2.

Note that since VI is not chained to FORTH, if we subsequently create

more

FORTH DEFINITIONS

the resultant structure:

FORTH FORTH •
~~ ___ V~I ____ O~~~V_l_I __ ~O

\ V2 V2 1
~ ___________ ,o~.~ ________ ~o

FORTH ~ VI V2~ VI' lOll) V2') FORTH

does not allow either dialect of VI or V2 to access the new FORTH I definitions.

Oct. 1979 13-25

A variation on the preceeding vocabulary-creation sequences illustrates the

flexibility of chaining techniques. We create new vocabularies as before,

but with the first one chained to FORTH, thusly:

FORTH DEFINITIONS

VOCABULARY V3 V3 DEFINITIONS CHAIN FORTH <words for V3>
VOCABULARY V4 V4 DEF I NIT IONS <words for v4>

We then define additional dialects:

FORTH DEFINITIONS <words for FORTH ' >

V3 DEFINITIONS <words for V3 1 >

V4 DEFINITIONS <words for v41>

thereby creating a vocabulary structure:

• FORTH FORTH ()l'II .. __;.....;..;.;~-O

"~ ____ V~3 ___ 0~4.-_V~3~1 ___ O

\~ ____ V_4 ____ --(Oi'lll ... ~V;....4;....1_-<O
which allows all V3 and v4 dialects access to all of FORTH while isolating

the words in dialect V3 1 from vocabulary v4.

13-26 Qct. 1979

14. TERMINAL I/O

Terminal I/O involves the input and output of both numbers and

character strings between the program and the operator. The output of

character strings, the input of numbers and the output of numbers are

each described separately. The input of character strings is somewhat

complicated and is not discussed in this primer.

14.1 CHARACTER OUTPUT

The output of a character string is accomplished by preceding the string

with the two character sequence II

wi th a quote mark. The sequence II

must therefore be followed by a space.

and then terminating the string

is a FORTH word (Section 4.1) and

The final quote need not be preceded

by a space. Consider the following examples:

FORTH Character String Wi 11 be Printed as # of Characters

II HELLO II HELLO 5
II HELLO II HELLO 6
II START MOTOR II START MOTOR 11

II Xii II Y II Xy 1 ,

II Xii II yll X y 1 , 2

The important point to note in these examples is that any spaces in

addition to the one required space (that follows the .11) are considered

as part of the character string.

Special characters (i.e. - the non-printing characters such as carriage

return, line-feed, bell, etc.) may also be included in the character

string. A list of all special characters available in the ASCII

character set is given in Appendix A. One frequent use of these special

characters is to include a BELL character (Control-G) in a string that

is to be printed on a CRT terminal to alert the operator that a message

has been printed.

Oct. 1979 14-1

To assist in the formatting of character strings for output three

additional words are defined in FORTH:

SPACE - wi 11
< spaces> SPACES - wi 11
CR will

For example, the sequence

CR II Xy = 2"' CR

wi 11 print XY = 2

Z = 5

print a single space.
print a strlng of spaces.

print a carriage-return.

SPACE II
Z = 5 11

l column 1 of terminal

All character output described in this Section can be executed as shown

or placed within a colon definition. For example, the word PRN,

defined as

: PRN CR . II XY = 2" CR SPACE .11 Z = 5 11

and when executed will produce the same output as shown above.

14.2 NUMERIC INPUT

14-2

Numeric input involves the reading in of numbers and the conversion into

the appropriate data type (single-word integer, double-word integer or

floating-point number). FORTH provides three words to accomplish this

input:

SASK

DASK

FASK

Reads a single-word integer and pushes its value onto

the stack. The number must not contain a decimal point.

Reads a double-word integer and pushes its value onto

the stack. The number must contain a comma.

Reads a float~ng-point number atild pushes its value onto

the stack. The number must contain a decimal point.

Oet. 1979

If there is an error in the number entered (for example a non-digit

detected) the message

? RETRY II

will be output and FORTH will wait for the number to be re-entered. Addi

tionally, if the error is due to either a single-word integer being entered

with a decimal point or a double-word integer or floating-point number being

entered without a decimal point, one of the following messages will be out

put:

NO ALLOWED

II MUST CONTAIN

These three asking words do not inform the operator that they are waiting

for a number to be input - this must be done by the program. For example,

consider the word ?TEMP that inputs a temperature:

o VARIABLE TEMP

?TEMP II ENTER TEMP (DEG. C) II SASK TEMP CR

There must be no digits to the right of the comma in a double-word integer

while a floating-point number will usually contain digits to the right of

the decimal point. Floating-point numbers input by the work FASK may

be entered as a fraction to a given power, for example 0.5E2 i5 the same

as 50.0.

Oct. 1979 14.3

14.3 NUMERIC OUTPUT
i

Numeric output involves the printing of a number on the stack in some

specified format. We have already encountered three words used for this

purpose:

integers) and

(to print single-word integers), D. {to print double-word

F. (to print floating-point numbers). This section will

expand on these words to provide additional output capabil ities.

To summarize the words that we will describe in this section:

sequence

<value>

<value>

<value> <field> <#places> N.

outputs

single-word

single-word

single-word

double-word

single-word

sing 1 e-word

single-word

integer,

integer,

integer,

integer

integer,

integer

integer

free format

free format

16 binary digits

single-word integer, <value> o. 6 octal digits

<value> s. single-word integer

<value> u. single-word integer, unsigned

Note - as with all FORTH words, these words, after printing the number on top

of the stack, will pop the number from the stack.

The word is the simplest - the single-word integer value on top of the

stack is printed using the minimum field width req~ired. The number is first

preceded by a space. For example, the integer 25 requires a field width of two

positions and the integer -25 requires a field width of three positions.

14-4 Oct. 1979

In order to gain more control over the printing of single-word integers, the

word S. must be used. The user must set the VARIABLE FLD to the

minimum field width desired. If the number requires more positions than

specified, then the number will exceed the specified field width. There is

no preceding space printed by this word. If FLD is set to 0 then free

format is used (minimum field width). Additionally, the VARIABLE DPL

controls the number of digits to be printed to the right of the decimal point.

A value of -1 specifies that the decimal point is not to be printed. Executing

the word FREE wi 11 set FLD to 0 and DPL to -1 (minimum field width and

no decimal point). The word FREE is defined as

o FLD -1 DPL 2SET FREE

and the definition of then becomes

FREE SPACE S.

The sequence

3 FLD (SET FIELD WIDTH TO 3) -1 DPL

CR 5 S.

wi 11 output 5

29

-58

2109

CR 29 S. CR

'-- column 1 of terminal

Also, the sequence

2 FLD

5 S.

-1 DPL

1 S. 28 S.

-58 S. CR 2.09 S. CR

wi 11 output

The sequence

5 :1 2 8· since there is no space preced i ng each number.

5 1 28

will output 5 1 28 since each number is preceded by a space.

Note that when outputt i ng a sequence of numbers FLD and DPL need on 1 y be

set once and will remain in effect until modified again.

The words. O. B. and H. are used to pr i nt a sing 1 e-word integer in acta 1,

binary and hexadecimal respectively. The sequence

Oct. 1979 14-5

<value> <field-width> I.

allows one to print a single-word integer and specify the <field-width> on

the stack. If one wishes to print a single-word integer with a decimal point,

the sequence

<value> <field-width> <#places> N.

may be used, where <#places> is the number of digits to be printed to the right

of the decimal point. The words I. and N. are defined in FORTH as

N. DPL FLD S.

1. -1 N.

The word u. is used to print a single-word integer as an unsigned 16-bit

number.

The word D. is similar to S. and is used to output double-word integers.

The user must set the VARIABLE FLD to the minimum field width desired and

if the number requires more positions than specified then it will exceed the

field width. There is no preceding space printed by this word. As with S.

the VARIABLE DPL specifies the number of digits to be printed to the right

of the decimal point (a value of -1 specifies no decimal point). The sequence

7 FLD SET FIELD WIDTH TD 7 o DPL

CR 32768. D. CR -65000. D. CR 1234567, D. CR

wi 11 output 32768.

-65000.

1234567.

Lcolumn 1 of terminal

The decimal point that may be printed must be included in the specified field

width (i.e. - the double-word integer -1, requires a minimum field width of 3).

25, DOUBLE X

4 FLO o DPL

CR X O@ D. 1 OPL CR X O@ D.

wi 11 output 25.

2.5

L col umn 1 of terminal

14-6 Oct. 1979

Floating-point numbers may be printed in one of two ways: with or without

an exponent. The word F. prints a floating-point number without an exponent

and the sequence

<field-width> <#digits-to-right-of-decimal-point> w.o

must be executed to set both the total field width (including decimal point)

and the number of digits to be printed to the right of the decimal point.

For example, the sequence

8 3 w.o
specifies a field width of 8 with three digits to the right of the decimal point

(similar to the Fortran F8.3 format). The sequence

8 3 W.O

CR 25.1 F. CR 3.14159 F.

wi 11 output 25.100

3. 142

tcolumn 1 of terminal

(Note the rounding that is automatically performed.) As with the words F. and

o. the format control (by executing w.o) need only be specified once for a

sequence of numbers.

The word E. is used to print floating-point numbers with an explicit exponent.

The word w.o is used as above to control the printing of the fraction which is

then followed by 'E', followed by a 3-digit exponent. For example,

3.14159 E.

.314159 E.

314L5.9 E.

8 3 W.O

wi 11 output

will output

wi 11 output

3.142EO

3.142E-1

3.142E4

In floating-point output using either E. or F. the user must be careful

not to print more than 9 significant digits -- doing so will cause an asterisk

to be printed preceding the number, indicating overflow on conversion. This

means that very small numbers and very large numbers must be output with E.

and not with F ••

Oct. 1979 14-7

The word G. will print a floating-point number using either E. or

F., depending on the size of the number. If the number is either too large

or too small for F. then E. will be used.

Note that the words? E? F? and G? do not pr i nt the top number on

the stock, rather they require the address of the number to be printed to

be on top of the stack. For example, given the definition

0 VARIABLE A

o. REAL B

then

A iil

B Fiil F.

are equivalent to

A ?

B F?

One is simply combining the two words iil and into the word ? This

combining of two or more words into a single word is discussed more thoroughly

in Section 15.4.

14-8 Oct. 1979

EXERCISES - CHAPTER 14

1) Define a word named IMIN that reads a sequence of non-negative

integers from the operator and prints the minimum value. The end

of the input is signalled by a negative number being entered, at

which point the minimum should be printed.

2) A Fibonacci number is a number in the infinite sequence

0,1,1,2,3,5,8,13,21,34

where the first two terms are ° and 1 and each successive term is

the sum of the two preceding terms. Define a word named FIB

that calculates and prints all Fibonacci numbers < N where N is the

integer on top of the stack. For example

20 FIB should print 0 1 1 2 3 5 8 13

Oct. 1979 14-9

15. ADVANCED ARITHMETIC

This chapter complements Chapters 5 and 7 by completing the description

of the arithmetic words available in FORTH.

15.1 ~MERICAL FUNCTIONS

A table of the standard numerical functions provided by FORTH Is given

in Table 15.1. The operation of all these words is similar in that they

all expect one or more parameters on the stack and then after popping

the parameter(s) from the stack the result(s) are pushed onto the stack.

The naming convention of these arithmetic words is to prefix the name

wi th a liD II if the word operates on a double-word integer

or a floating point number, respectively. The second character of a

trigonometric word wi 11 be liD II if the mode is degrees or IIRII if

the mode is radians.

Feb. 1977 15-1

\on
I

N

o
(')
rt

\.D
-.....J
\.D

I

S I NGL-E-WORD
INTEGER

*/

MOD

/MOD

MINUS

ABS

MAX

MIN

SQRT

DOUBLE-WORD FLOATI NG
INTEGER POINT

D*/

DMINUS FMINUS

DABS FABS

DMAX FMAX

DMIN FMIN

FSQRT

FDSIN
FDCOS
FDTAN

~-- --- -

DESCRIPTION

Multiplies the second number on the stack by the third
number on the stack, forming a double-word integer
temporary result. This temporary result is then
divided by the top number on the stack leaving a
single-word integer result on top of the stack.

Divides the second number on the stack by the top
number on the stack, leaving the remainder on top
of the stack. (See note 1)

Divides the second number on the stack by the top
number on the stack, leaving the quotient on top of
the stack and the remainder below. (See note 1)

Changes the sign of the top number on the stack.

Replaces the top number on the stack with its absolute
value.

Replaces the top two numbers on the stack with the
larger of the two numbers.

Replaces the top two numbers on the stack with the
smaller of the two numbers.

Replaces the top number on the stack with its square
root (SQRT calculates the single-word integer
truncated square root of a double-word integer).

Replaces the top number on the stack (an angle in
degrees) with either is sine, cosine or tangent.

3:
!lJ
-<

1.0
""-J
00

-'
V1

I
W

SINGLE-WORD DOUBLE-WORD FLOATING DESCRIPTION INTEGER INTEGER POINT

FDA TN Divides the second number on the stack by the top
number on the stack and then interprets the result
as an angle (in degrees) and leaves its arctangent
on top of the stack. (See note 2)

F2XP Replaces x by 2x (where x is the top number on
the stack).

FEXP Replaces x by eX.

FEXP10 Replaces x by lOx.

FLN Replaces x by tn(x).

F2LOG Replaces x by 1092(X).

FLOG Replaces x by I ogl 0 (x) .
~-~

Notes: 1. The sign of the remainder will be the sign of the dividend.

2. The result will be in the range [0,360).

Table 5.1 ARITHMETIC FUNCTIONS

The following examples should elucidate some of the descriptions given

in Tab 1 e 5. 1 .

80

20000

2

2 20000 80 */

3

7

7 3 MOD

3 5

16

16 3 /MOD

5 MINUS

15-4

(note that the intermediate product

= 40,000 which requires the

double-word intermediate result)

3

5

5 3 MOD

5 9

45 o

45 5 /MOD

- -28 - - 28 -

-28 , DMINUS

Oct. 1979

- I- -
-90.5 90.5

r- - r-- -

-90.5 FMINUS -100 ABS

I- -

-1.5 1.5
r- 124 - f- 124 - -

124 , DABS -1.5 FABS

- -
-8.9

-

,- - r- -
-4 10.5 10.5

W -- - r- -
-5

-5 -4 MAX 10.5 -8.9 FMAX

Oct. 1979 15-5

3

6

~ 20000 - I- 40000

20000, 6 3 D*/

- -"
1.4

-

f- - ..- -
-4

t=j
1.5 1.4

- - I- -
-5

-5 -4 MIN 1.5 1.4 FMIN

- - - -
2.0 1 .41421

8. - - - I- -

8, " SQRT 2.0 FSQRT

15-6
Oct. 1979

15.2 MIXED PRECISION OPERATORS

Mixed precision arithmetic operators perform arithmetic on numbers of

different modes. In FORTH the mixed precision words usually operate on

a single-word integer and a double-word integer. For example, the word

+ adds together two single-word integers, the word D+ adds together

two double-word integers and finally the mixed precision word M+ adds

a single-word integer to a double-word integer, leaving of course, a

double-word result. Similar to the prefixing of double-word operators

and floating point operators with the mixed precision

operators are prefi xed wi th an 11M II •

M+ Adds a single-word integer on top of the stack to the double-word

integer below, leaving the double-word integer sum on top of the

stack.

2

~ 59 - r- 61 -

59, 2 M+

M* Multiplies the single-word integer on top of the stack by the

single-word integer below, leaving the double-word integer product

on top of the stack. (This word differs from the word * in that

* calculates only a single-word integer product while M*

calculates the full double-word integer product.)

8
I- 80000 -

10000

10000 8 M*

Oct. 1979 15-7

15-8

2M* Multiplies the single-word integer on top of the stack by the

double-word integer below, giving a double-word integer result.

8

r- 10000 - ~ 80000 -

10000, 8 2M*

M/ Divides the double-word integer in the second position on the

stack by the single-word integer on top of the stack, leaving

the single-word integer' quotient on top of the stack.

M/MOD

10

I- 60002 -

60002, 10 M/

Divides the double-word integer in the second position of the

stack by the single-word integer on top of the stack, leaving

the single-word integer quotient on top of the stack and the

single-word integer remainder below.

10

6000
I- 60002 -

2

60002, 10 M/MOD

Oct. 1979

15.3 ARITHMETIC RANGE ERRORS

In the implementation of KPNO Varian FORTH it was decided to ignore all

arithmetic range errors, that is overflow and underflow. Overflow

occurs when the result of an operation requires more precision than is

provided. For example, the largest positive single-word integer that

may be represented is 32,767 (Section 7.1) hence the sequence

20000 20000 +

will generate an erroneous result since the result (40,000) is larger

than 32,767. Similarly, the sequence

40000, SFIX

will also produce an erroneous result. Overflow can also occur in

floating-point operations if the range of the exponent exceeds the

largest possible exponent. Underflow can also occur in floating point

operations if the exponent is smaller than the smallest possible

exponent. Fortunately in Varian FORTH the range of the exponent in a

floating-point number is large enough so that exponent overflow and

exponent underflow are extremely unlikely. However, standard arithmetic

overflow is a likely possibility and it is up to the user to determine

the probable range of his variables when writing a program and use the

appropriate data structures so as to avoid overflow.

O~t. 1979 15-9

15.4 COMBINED WORDS

In the interest of core efficiency and execution speed, there exist

many "combined" words which take two or more commonly used words (which

are executed in sequence) and combine them into a single FORTH word.

For example, in Chapter 14 we saw where the sequence

a

was combined into the word 1. If the original sequence (a in

this example) appears more than 5 times in one's program then the defini

tion of the word 1 and its use will reduce the amount of memory used by

the program. This technique is the essence of FORTH - combining primitive

operators into more general and useful words.

Some additional words which one is bound to encounter are:

'1+ eguivalent to 1 +

I- I

2+ 2 +

2* 2 *

2/ 2 /

02* 2 1 0*/

02/ 1 2 0*/

F2* 2.0 F'*

F2/ 2.0 F/

+! +

F+! F+ F!

FSQ 30UP F*

1+: ,1+

1-: 1-

One could define these words as one would expect, for example

1+ 1 +

and this wi 11 work fine, however, many of the commonly used words 1 isted

above are coded directly in machine language thereby providing a decrease

in execution time in addition to a decrease in memory requirements.

One should always use these combined words, rather than the original

sequence, as the implementation of a particular FORTH system may take

advantage of certain machine features in order to optimize the combined

word. For example, in KPNO Varian FORTH the words 2* 2/ 02* and 02/

15-10 Oct. 1979

are all implemented as arithmetic shifts. The words F2* and

F2/ are implemented as an increment or decrement by one of the

floating-point number's exponent. The word 1+! is implemented

by a single machine instruction.

Oct. 1979 15-11

EXERCISES - CHAPTER 15

1) Define a word named ?ODD/EVEN that will test the integer on top

of the stack and then print either "000" or "EVEN".

2) If the top word on the stack is a double-word integer representing

the number of seconds past midnight, define a word named ?TIME

that takes this value and prints the hour, minute and second.

Sample values are:

1 , ---> 0 (hours) 0 (minutes) 1 (seconds)

60. ---> 0 1 0

3600, ---> 1 0 0

14399, ---> 3 59 59

30332, ---> 8 25 32

3) Define a word named QUAD that solves the quadratic equation

15-12

using the formula

ax2 + bx. + C = 0

-b ± Ib~ - 4ac

2 iii

The parameters a, b & c will be the top three floating-point numbers

on the stack, (c on top, b below c and a below b). The output should

indicate the type of solution (one real root, two real roots or two

complex conjugate roots). For example

1.0 5.5 -10.5 QUAD should print

TWO REAL ROOTS: 1.5 -7.0

4.0 -292.0 5329.0 QUAD should print

ONE REAL ROOTz 36.5

Oct. 1979

Oct.

3.0 1.0 5.0 QUAD should print

TWO COMPLEX ROOTS (REAL &

COMPLEX PARTS):

-.16667 1.28019

4) Define a word named FDASINE that calculates the angle (in

degrees) whose sine is the floating-point number on top of the

stack. Use the equation

arcsin(x)

For example

0.0 FDASINE F.

1.0 FDASINE F.

-0.5 FDASINE F.

=

=

=

arctan [~1
90 0

-90 0

should print

should print

should print

Be sure to handle the case of x = ± 1 .

I x I

x

x

<

=

= -1

0.0

90.0

-30.0

5) Define a word named FDACOS that calculates the angle (in degrees)

whose cosine is the floating-point number on top of the stack.

Use the equation

arccos (x) = 180 - arcsin (A - x2) -1 < x < 0

= arcs in (/1 - x2) o < x <

For example

0.0 FDACOS F. should print 90.0

1.0 FDACOS F. should print 0.0

'-0.5 FDACOS F. should print 120.0

1979 15-13

15-14

6) Define a word named x**y that raises a floating-point number

x (second number on the stack) to the floating-point power y

(top number on the stack). Use the formula

= y(R-n x)
e

(where e = 2.71828182). Print an error message if x < 0
(since ~n x is undefined for negative arguments). For example

5.0 2.0 X**Y F.

2.0 12.0 X**Y F.

should print

should print

25.0

4095.99922

Using the word

named FCUBERT

X**y from the previous exercise, define a word

that calculates the cube root of the floating-

point number on top of the stack. The argument may be negative in

which case the final answer must then be negated (to avoid the error

message from x**y). For example

64.0 FCUBERT F.

-8.0 FCUBERT F.

should print

should print

4.0

-2.0

8) Define a word named FROUND that will round a floating-point

number prior to the floating-point number peing truncated by

either SFIX or DFIX.

4.4 FROUND SFIX

4.5 FROUND SFIX

For example

should print

should print

4

5

Oct. 1979

9) Define a word named I **J that raises a single-word integer,

(second number on the stack) to a single-word integer power,

j (top number on the stack). Use the formula given in exercise 6

above. For example

10 3 I**J

7 5 I**J

should print

should print

1000

16807

10) Defi ne a word named CUBE that cubes the sing 1 e-word i ntege r on

top of the stack •. For example

1 CUBE

-5 CUBE

Use the word I**J

should print

should print

1

-125

from the previous exercise.

11) Instead of using the word I**J in forming the cube of a single

word integer (previous exercise) one could define CUBE as

: CUBE DUP DUP * *

Which definition do you think is preferable and why?

12) An iterative algorithm is one that repeats itself (iterates) until

a certain value is within a specified range. For example, an

Oct. 19.7-9

iterative algorithm to determine the square root (y) of a number (x) is

= .5903 x + .4173

= l(y. + L)
2 I y. = 0,1,2, •..

I

In this example the initial approximation (Yo) is calculated and

then used to calculate y 1· Y1 is then used to calculate Y2' Y2 is

then used to calculate Y3' etc. The algorithm termi nates when the

value y converges to its 1 i mit i ng va 1 ue. This is determined by

15-15

15-16

\Yi+l - Yi \
r yij < E:

where £ is some predefined constant. If you want the square root

to be accurate to five decimal places then E = 0.00001. Define a

word named SQROOT that calculates the floating-point square

root of the floating-point number on top of the stack, using the

iterative technique described above. Be sure to handle negative

arguments! For example

81.0 SQROOT F.

2.0 SQROOT F.

13) Def i ne a word named ECALC

should print

should print

9.0

1.41421

that calculates e (the base of the

natural logarithms, 2.718281828459045) using the infinite series

e = 1 + 1 +
1-2-3 1-2-3-4

There should be no storing of intermediate results in memory

locations (use the stack!). This is another example of an

iterative algorithm.

14) Using the formula

n! = factorial (n) = 1 *2*3";"

define a word named FACT that calculates and prints the single

word integer factorial of the single-word integer value{n) on top

of the stack. If n is not in the range

o < n < 7

output an error message instead of calculating the factorial.

(Note: factorial (0) = 1 by definition).

Oct. 1979

15) Why is 7 used as the upper limit of n in the previous example?

16) As you can see from the previous examples the value of factorial {n}

grows very rapidly as n increases. If we are interested only in an

approximation to factorial {n}, instead of its exact integer value,

we can use Stirling's approximation to n!

n
/inn (!!.)

e
< n! <

n
r.:-- (_n) v'2nn

e
(1 +)

12n-1

(where e = 2.71828182 and n = 3.14159265). Define a word named

N! which calculates the upper and lower bounds of n! where n is

the single-word integer on top of the stack. Use the E format for

printing the values. Note that the word x**y from exercise 6

above must also be used here. For example

3 N! should print 5.8362 E 0 < 3! < 6.0030

4 N: should print 2.3506 E 1 < 4: < 2.4006

5 N: should print 1.1802 E 2 < 5 ! < 1.2002

100 N! should print 9.3248 E 157 < 100!

< 9.3326 E 157

17) Define a word named STAT which inputs a series of numbers and

O~t. 1979

calculates their mean and standard deviation. When the word is

executed it should first ask the operator how many numbers are to

be input (a single-word integer) and then input each (floating

point) number. After the last number has been entered the mean and

standard deviation should be calculated using the formulas below,

and then output.

mean =
n

std. dev. =

nE(X i)2 - (EX i)2

n (n-l)

15-17

E 0

E 1

E 2

15-18

where n is the number of items input and X.
I

is each separate

number that is input. For example

STAT HOW MANY NUMBERS? 4

?4.0

?6.0

?4.0

?6.0

MEAN = 5.0

STD DEV = 1. 1547

18) The greatest common division (GCD) of two integers a & b is the

largest integer that evenly divides both a and b. For example,

GCD(20,25) = 5; GCD(20,40) = 20. A classical algorithm found in

computer science texts is Euclid's algorithm for finding the GCD.

This algorithm may be stated as:

For

r = (a mod b) (i .e. - r equals the remainder

of a divided by b)

If (r=O) then the answer is b, stop.

a = b

b = r

loop around

example, we find

a = 27 21

b = 21 6

r = 6 3

that GCD(27,2l) = 3 as follows

6

@.- answer

0

(Note that this algorithm works regardless whether a>b or b>a

initially.)

Oct. 1979

Write a word in FORTH named GCD that expects two single-word

integers on the stack and then calculates and prints their

greatest common divisor. For example, entering 27 21 GCD

should print 3. Calculate GCD(2166, 6099).

19) Frequently one encounters the problem of calculating the mean of

a large group of single-word integers. These values could, for

example, be a sequence of integer data points read in by the

program from some data collection instrument. Assume that we

have a vector defined as

Oct. 1979

2047 ()DIM DATA

containing 20.48 points. Define a word named M+RMS that

calculates and prints both the mean and the rms (root mean

squared) of the data vector. The rms is defined as the square

root of the average of the squares of each point. One would

like to avoid the use of floating-point arithmetic as on a

mini-computer without floating-point hardware these operations

take considerable time to execute. This additional time is

even more noticeable when a large vector of numbers is being

operated on. However, single-word integer arithmetic is

definitely unacceptable for both the mean and the rms as there

is an almost definite probability that the sum of a couple of

numbers will overflow a single-word value. If we think of usinq

double-word integer arithmetic then consider the square of the

largest data point (32,767)--its value is 1,073,676,289 which

is almost the largest value that may be stored in a double-word

integer (Section 7.2). We then see that forming the sum of

the squares of a vector of integers could possibly overflow a

double-word sum. We could probably form the sum of all the

numbers (for the average) as a double-word sum as it would

take 32,768 numbers, each having the largest possible value

(32,767) to overflow a double-word sum. To do this and perform

15-19

t5-20

only one pass over the data would require that we keep both a

floating-point sum and a double-word integer sum on the stack

together. Manipulating these two sums in an alternate manner

is very clumsy in FORTH so we resign ourselves to using only

floating-point arithmetic.

In order to make this word as general as possible define the word

o CONSTANT NOP

to contain the number of points (1-2048) in the vector DATA.

Set NOP to 5 and calculate both the mean and rms of the data

points

16~ 105
18~291

14,333
17,015

15,280

20) The algorithm used in the previous problem to calculate the

mean of a group of integers (forming the sum of all the

numbers and then dividing by the number of points) is not

always satisfactory. One can conceivably imagine a very large

set of data points (say on the order of one million points) in

which case neither a double-word sum nor a floating-point sum

would suffice. The double-word sum would overflow and the

floating-point sum would get so large that the data points

being added to it would be equivalent to zero (a floating-point

number has only a finite precision). One solution to this

problem is the stable running mean algorithm. If we have a

sequence of data points X. we calculate the new mean of
I

the sequence Xl' X2 , ... as

+
(

X'I - °ildmean) newmean = oldmean

Oet. t979

Initially we must set oldmean = O. For example if we use the

data points given in the previous problem we obtain

newmean = o + (1610~ - 0) = 16105

\ I

newmean = 16105 + 18291 - 16105 = 17198
2

~ ~
newmean = 17198 + 14333 - 17198 = 16243

\
3

I

and so on. If we calculate the average of these three data

points it also equals 16243, as we would expect. This

algorithm is termed a "running mean" since we maintain the

current mean at each interation. Here we do not have to worry

about overflow as long as our data points are single-word

integers. (One problem that may be encountered here is a

sequential loss of precision in the integer divisions. This

effect may be lessened by use of floating-point arithmetic.)

Refine a word named RMEAN that calculates the mean of NQP

number of points in the vector named DATA (see previous

problem). Test this word using the five data points from the

previous problem. Keep the values of newmean and oldmean

on the stack!

21) The following algorithm calculates the date of Easter for any

year after 1582 [Knuth, Donald E., The Art of Computer

Programming, Vol. 1, Addison-Wesley, 1973]. Define a word

named EASTER which prints the date of Easter, given the

integer year on top of the stack. For example

1977 EASTER

1978 EASTER

should print

should print

APRIL 10. 1977

MARCH 26. 1978

(All division in the algorithm is integer division).

Oct. 1979 15-21

15-22'

G = (YEAR mod 19) + 1 (G is the golden number of the year

in the 19- year Metonic cycle)

C = (YEAR / 100) + 1 (C is the century)

X = «(3*C) / 4) - 12 (correct i on for number of years in

which leap year was dropped)

Z = «(8*C) + 5) / 25) - 5 (correction to synchron i ze Easter

wi th the moon IS orbit)

D = «5*YEAR) / 4) - X - 10 (find Sunday)

E = «ll*G) + 20 + Z - X) mod 30

IF (E < 0) E = E + 30

IF «(E = 25) AND (G > 11)) OR (E = 24)) E = E + 1

N = 44 - E

IF (N < 21) N = N + 30

N = N + 7 - «D + N) mod

If (N > 31) then the date

else the date

7)

is

is

(E is the epact which specifies

when a full moon occurs)

(The Nth of March is a full moon)

(Advance to Sunday)

Apri I (N-31)

March N

Define the necessary variables to be used as intermediate results

and also try to use the stack as efficiently as possible.

Oct. t 979

16. REAL-TIME 1/0

This chapter is the essence of what FORTH was originally designed

for - the control of real-time data acquisition devices. The definition

of the word IIreal-time" is itself quite obscure in the development of

computing technology and is a frequently misused adjective. In this

author's opinion a real-time device is one which, when it presents data

to the computer, must be acknowledged by the computer within a certain

limited time frame or else the original data is lost. This loss of

data generally occurs because the device has already accumulated new

data for the program. The speeds of real-time devices vary considerably

and it is the speed of the computer along with the speed of the real

time device(s) that determines the maximum data acquisition rate of a

particular system.

16. 1 INTERRUPTS

An interrupt is the facility whereby a device notifies the computer that

the device requires service of some sort. Typical reasons for a device

generating an interrupt are:

the device has some data for the computer to input,

the device has completed the output of the previous

data and is ready to accept some additional data to output,

the device has detected an error of some sort during

an I/O operation.

Once the computer is notified that a device requires service, the

computer can start a program to handle the device.

From a programming standpoint it is one's job to write a program that

will service a specific device's interrupt. In reality the program

that services a device's interrupt is generally only a small portion

of a larger program and is therefore called an interrupt routine.

Feb. 1977 16-1

The nitty gritty details of exactly how a device generates an interrupt

followed by how the computer determines exactly which device is

requesting the service are vastly different for each computer and

beyond the scope of this primer. Suffice it to say that with KPNO

Varian FORTH one writes a word to process a specific devicels interrupt

and FORTH will then perform the required linkage to insure that this

word will get control every time the specified device generates an

interrupt. The actual definition of this word will be discussed in

greater detail in the next section.

A CAMAC interrupt (CAMAC is described in the next section) is referred

to as a LAM which means that the device is telling the computer

"Look At Me ll .

16.2 CAMAC I/O

16-2

One problem that has plagued the users of mini-computers ever since

their introduction has been the interfacing (i .e. - the electronic

connection) of devices to a specific computer. Typical problems in

this area are

(a) a particular type of device requires a different interface

for every different computer,

(b) when you switch computers you must buy~ill .Qew interfaces for

your devices (a favorite technique of mini-computer manufacturers

to "lock" a customer into their series of computers).

As a way around these problems the CAMAC standards were developed by

the European Standards on Nuclear Electronics Committee (ESONE) in 1969.

These standards have since been updated and recently adopted by the IEEE.

CAMAC is a hardware system designed to provide simple, computer

independent input and output. Standardized electronic components

(modules) are joined together in one or more machine-independent

Feb. 1977

housings (crates) which are then connected to a specific computer via

a single machine-dependent interface (the Branch Driver). The advantage

in using CAMAC is that over 100 different devices may be connected to

the computer through a single interface, thus simplifying the possible

transition to a new computer. Additionally, there are over 70 companies

worldwide producing CAMAC hardware thereby relieving the user from

having to design and build his own specialized devices.

Unfortunately in discussing any type of input/output, one must become

more familiar with the specifics of the computer being utilized. In

the case of this primer it requires that one understand that the

computers in use at KPNO are Varian 620·s with a word size of 16-bits.

Thus the previous references to a single-word integer are references

to a 16-bit integer and the double-word integer is really a 32-bit

integer. All data transfers between the Varian and CAMAC involve 24-bits.

The CAMAC Module is the device that the program wishes to control - it

is the module that we must initialize when an I/O operation is to

commence and it will be the module that will generate the interrupt

when the I/O operation is finished. At a lower level, each module may

be sub-addressed, to facilitate the control of multi-channel modules.

As an example, the KPNO Timer II is a dual channel, high resolution

timer and both channels are completely independent of each other (but

both channels are packaged in a single module). To specify which

channel you wish to control you must specify both the module and the

sub-address; likewise when processing an interrupt from the timer you

must determine which channel (i .e., sub-address) generated the interrupt.

When addressing a CAMAC module a sub-address value between 0-15 (decimal)

will be specified. In the programming of modules which do not require

a sub-address, zero is commonly used. It should be noted that the

sub-address does not always address separate channels in a multi-channel

Feb. 1977 16-3

16-4

module, instead in some modules the sub-address specifies additional

functions for the module to perform (the KPNO Input/Output Register

is a good example).

Modules are housed together in CAMAC Crates with up to 23 modules per

crate. Each module in a specific crate is addressed by specifying the

slot number in the crate of the module. These slot numbers are also

referred to as station numbers and have a value between 1-23 (decimal).

Some modules physically require more than one slot in a crate (due to

the width of the module) and the KPNO Display Panel Controller Module

is an example of a module requiring two slots. These multi-slot modules

are addressed by specifying only the lowest slot number of the module

(for example the Display Panel usually occupies slots 20 and 21 and is

addressed through slot 20).

There may be up to seven crates in a CAMAC system and these crates are

addressed as 1-7.

The addressing required to select a specific module is therefore:

C = Crate (I -])

N = Station Number (1 - 23)

A = Sub-Address (0 - 15)

F = Function Code (0 - 31)

This sequence is generally referred to as CNAF.

The Function Code is the method whereby you tell the selected module

exactly what function it is to perform. There may be up to 32 (decimal)

different Function Codes for a module (specified as 0-31) and although

the codes will differ from one module to another, the general convention

that is followed is:

Feb. 1977

Function 0

8

16

24

16.3 FORTH CAMAC WORDS

7 -+ read

15 -+ control

23

31

-+ wri te

-+ control

The programming of CAMAC input and output is actually much simpler than

would appear from the previous section since FORTH handles most of the

complicated details. The programming of a module from a colon

definition is the subject of this section.

Each specific CAMAC module is identified in FORTH as a word which

identifies that specific module. In order to define a <module-ID>

one wri tes

<s lot-number> $CN; <module-ID>

where <slot-number> is a single-word integer value between 1 and 23

specifying the slot number in the crate. <module-ID> is the name

assigned by the programmer to the module. For example, the following

are from block 54:

13 $CN; $lIO

14 $CN; $210

18 SCN; $TM

19 $CN; $00

I/O REGISTER 1

I/O REGISTER 2

TIMER MARK 11

DIGITAL OSCILLATOR

One should note that the convention used at KPNO is to prefix all CAMAC

words with a dollar sign. Before executing the above definition one

must store in the integer CRATE the crate number of the <module-ID>

being defined. The definition of CRATE is

1 VARIABLE CRATE

and this word is defined in block 50 (and will therefore be entered into

the dictionary when the CAMAC blocks, 50 thru 53, are loaded when the

word USER is executed).

Oct. 1979 16-5

16-6

Consider the example definition

5 CRATE

19 $CN; $5DO

which defines the word $5DO as the device in slot 19 of crate 5.

Now that we know how to identify each module we need a way to have a

specific module execute a specific function. As would be expected, one

defines a word in FORTH which when executed will perform the specified

CAMAC I/O function. The general format of the definition is

<F-code> <sub-address> <module-ID> <operation-type> <name>

<F-code>

<sub-address>

<module-ID>

Is a single-word integer value (between 0 and 31)

that specifies the function code.

Is a single-word integer value (between 0 and 15)

that specifies the sub-address.

Is a previously defined word which specifies both

the crate and the station number of the module

(described above).

<operation-type> Is a system defined word (refer to the 1 ist below)

which specifies what parameters are expected to be

on the stack (prior to an output operation) or what

parameters will be left on the stack (following an

input operation). This word processes all the

previous parameters «F-code>, etc.) and creates

the appropriate dictionary entry for <name>.

<name> Is the user specified identifier which will identify

this specific I/O operation. When the word <name>

is executed the I/O operation will be performed.

Feb. 1977

The following words are defined as <operation-types>:

$COMMAND;

$ACOMMAND;

$READ;

$AREAD;

$2READ;

$2AREAD;

$WRITE;

$AWRITE;

$2WRITE;

$2AWRITE;

Feb. 1977

Transmits a command to the module - no stack

operations performed.

Expects a single-word integer sub-address on top of

the stack, then transmits a command to the module.

Reads the low-order 16-bits of CAMAC data onto the

top word of the stack.

Expects a single-word integer sub-address on top of

the stack, then reads the low-order 16-bits of CAMAC

data onto the top word of the stack.

Reads the full 24-bits of CAMAC data onto the top two

words of the stack (see below for format).

Expects a single-word integer sub-address on top of

the stack, then reads the full 24-bits of CAMAC data

onto the top two words of the stack (see below for

format).

Writes the word on top of the stack as the low-order

16-bits of CAMAC data.

Expects a single-word integer sub-address on top of

the stack, then writes the next word on the stack as

the low-order 16-bits of CAMAC data.

Wr i te the two wo.rdson top of the stack as the fu 1 1

24-bits of CAMAC data (see below for format).

Expects a single-word integer sub-address on top of

the stack, then writes the next two words on the stack

as the full 24-bits of CAMAC data (see below for

format).

16-7

16-8

Note that the A-command format for each <operation-type> allows the

specification of the sub-address when the word is executed, whereas the

other format requires the sub-address to be specified when the word is

defined. When defining a word with the A-command format the <sub

address> in the definition must be specified as zero.

Unfortunately, due to a peculiarity of the Varian hardware in processing

double-word integers, the format of the 24-bit CAMAC data does not

correspond to the format of FORTHls double-word integers. In order to

convert between the two formats, the words PACK and UNPK are

provided:

PACK
>

FORTH double-word integer 24-bit CAMAC data
<----

UNPK

Whenever 16-bits of CAMAC data are transferred a single-word integer

is used.

The following examples of some CAMAC definitions assume that the reader

has available the write-ups on the specific module (which describes the

interpretation of the <F-code> and <sub-address> for the specific

module in question).

8 0 $TM $ACOMMAND; +MOVE

Defines the word +MOVE for the timer module as

F(8) (i .e. - the <F-code> 8). This F-code will set

the sign line to plus. Note that this word, when

executed, expects the top of the stack to specify

the sub-address, hence this word may be used for

either channel of the timer.

Feb. 1977

1 +MOVE

2 +MOVE

3 +MOVE

Sets the sign of the timer Channel to plus.

Sets the sign of the timer Channel 2 to plus.

Sets the sign of both Channel 1 and Channel 2 of

the timer to plus.

16 15 $UD $2WRITE; UDCWRITE

Defi nes the word UDCWR I TE for the up/down cou nter

as F(16). This F-code writes 24-bits of data to the

up/down counter. Note that the sub-address is

specified as 15 (which equals 8 + 4 + 2 + 1) therefore

this command will write to channels 1, 2, 3 and 4.

50000, PACK UDCWRITE

Writes 50,000 to channels 1, 2, 3 and 4 of the

up/down counter. Note that the doub 1 e-word i ntege r

must be PACKed prior to the I/O operation in

order to convert it to the 24-bit CAMAC data format.

2 a $UD $2AREAD; UDCREAD

Defi nes the word UDCREAD for the up/down coun ter

as F(2). This F-code reads 24-bits of data from the

specified channel (s) of the up/down counter onto the

stack.

8 UDCREAD UNPK D.

Reads the contents of the up/down counter's channel 4

counter onto the stack, converts the 24-bit CAMAC

word into a double-word integer and then prints

the result.

16 2 $DO $WRITE; DDOK2

Oct. 1979

Defines the word DDOK2 for the DDO module as F (16).

Th i sF-code wr i tes 16-b its of data to channe 1 2 of

the DDO as the K-factor.

16-9

256 DDOK2

Wr i tes 256 as the K-factor for channe 1 2 of the DDO.

Note that no conversion is required when reading or

writing a single-word integer as 16-bits of CAMAC data.

16.4 FORTH INTERRUPT WORDS

16-10

The method of writing a sequence of FORTH words to process interrupts

from a specific device is to use the words !: and ;!C to begin and

terminate the definition, as follows:

<mod u 1 e - I D> $: ! : <name> <words>

<module-ID> $!

: I

<name>

<words>

; :

; : c

Identifies the device whose interrupts are to be

processed. «module-ID> was described in Section

16.2) .

Starts the interrupt colon definition, similar to

the standard

Is the user specified identifier that identifies the

dictionary entry for this definition.

Are the names of previously defined FORTH words that

will be executed when an interrupt occurs from the

specified device.

Terminates the interrupt colon definition, similar

to the standard

Terminates the interrupt colon definition, identical

with ;! however, ; ! c wi 11 cause a Branch Dr i ver

stack "pOpll to be executed before returning to the

interrupted routine. (This is the normal way to

terminate an interrupt routine as the Branch Driver

stack is automically "pushed" when an interrupt is

acknowledged.)
May 1978

Once this definition is entered into the dictionary, all interrupts

from the specified device will cause the specified sequence of <words>

to be executed.

The following example should elucidate many of the techniques in this

chapter. We want to wr i te a word that keeps the t i me-of-day and will

pri nt out the current t i me-of-day on demand. In order to "count" the

time we will use the KPNO timer module to generate an interrupt every

hundreth of a second (0.01 second). This interrupt routine will

increment a double-word integer once every 0.01 seconds and the word

WHATTIME will print the contents of this counter when executed.

Additionally we need a word SETTIME which initializes the counter

to a specified time.

First the CAMAC function words:

° 1 $TM $READ; TMRECLAM

11 1 $TM $COMMAND; TMGO

16 1 $TM $2WRITE; TMLOADPERIOD

17 1 $TM $2WRITE; TMLOADN

25 1 $TM $COMMAND; TMCLEAR

27 1 $TM $COMMAND; TMENABLELAM

The double-word integer counter:

DPREC

0, 2VARIABLE COUNTER

The interrupt processing routine, named TODINT:

$TM $: :: TODINT TMRECLAM DROP COUNTER D@

:1. M+ COUNTER D: ; : C

Oct. 1979 16-11

16-12

The word to output the current time-of-day:

I WHATTIME 2 F (field width of 2 for numeric output)

COUNTER DOl 1 100 0*/

(convert 0.01 sec. to sec.)

60 M/MOO 60 /MOO (hours~ min.~ sec.)

S. II II S. II II S.

The word to initialize the timer and input the current time-of-day

from the operator:

I SETTIME" I ENTER TIME (HH:MM:SS.) II

OASK 100 1 0*/ (convert sec. to 0.01 sec.)

COUNTER 0: (initialize counter)

10000, PACK TMLOAOPERIOO

(10~000 micro-sec. = 0.01 sec.)

999999, PACK TMLOAON (run for a long time)

TMENABLELAM (one interrupt on every pulse)

TMGO (start the timer)

Before executing these words one must execute

$SETUP

which initializes the CAMAC system.

Oct. 1919

The fol lowing points should be noted in the example:

Channell of the timer is arbitrarily used (channel 2 could

just as easily have been used).

The double-word integer COUNTER is effectively counting the

number of 0.01 seconds past midnight.

The interrupt routine simply clears each LAM and increments

the double-word counter.

Since there are no double-word integer mUltiply and divide words

(corresponding to * and F*, / and F/) the word D*/

is used to mUltiply and divide double-word integers.

The word SETTIME initializes the timer rate to 0.01 seconds

(note the output to the timer must be specified in micro-seconds

= 10- 6 seconds) and sets the number of interrupts to 999,999.
This latter number has no particular meaning in this example

except to insure a sufficient number of interrupts (999,999

interrupts divided by 100 interrupts per seconds = 9999 seconds

a. 3 hours).

The reader should enter these words into a block and then execute them

to confirm that they perform as claimed. Furthermore you should

thoroughly understand the example since many various techniques are used.

Feb. 1977 16-13

"Would you tell me, please, which way I ought to go from here?"

IIThat depends a good deal on where you want to get to," said the Cat.

"I donlt much care where-- II said Alice.

"Then it doesnlt matter which way you go," said the Cat.

"_-so long as I get somewhere, II A lice added as an exp I anat i on.

"Oh, youlre sure to do that," said the Cat, "if you only walk long enough. 11

16-14

LEW I S CARROLL

Alicels Adventures in Wonderland

Feb. 1977

APPENDIX A - ASCI I CHARACTER SET

a-Bit Octal 8-Bit Octal
7-B it with Paritl: 7-Bit with Parit:t

Octal Cha rac te r Even Odd Octal Character Even Odd

000 NUL (null) Cont ro I ISh i ft-P 000 200 100 @ (at sign) 300 100
001 SOH (start of header) Cont ro I-A 201 001 101 A (upper case alphabetlcs) 101 301
002 STX (start of text) Control-B 202 002 102 B 102 302
003 ETX (end of text) Control-C 003 203 103 C 303 103
004 EOT (end of transmission) Control-D 204 004 104 0 104 304
005 ENQ (enquiry) Control-E 005 205 105 E 305 105
006 ACK (acknowledge) Control-F 006 206 106 F 306 106
007 BEL (ring bell) Control-G 207 007 107 G 107 307 ... ---
010 BS (backspace) Cont ro I-H 210 010 110 H 110 310
011 HT (horizontal tab) Control-I 011 211 111 I 311 III
012 LF (line feed) Control-J 012 212 112 J 312 112
013 VT (vertical tab) Control-K 213 013 113 K 113 313
014 FF (form feed, top of page) Contro1-L 014 214 114 L 314 114
015 CR (carriage return) Contro1-M 215 015 115 M 115 315
016 SO (shift out) Cont ro 1 -N 216 016 116 N 116 316
017 SI (shift in) Contro1-0 017 217 117 0 317 117

020 OLE (data 1 ink escape) Contro1-P 220 020 120 P 120 320
021 DCI (device control l) Cont ro 1-Q 021 221 121 Q 321 121
022 DC2 (device control 2) Contro1-R 022 222 122 R 322 122
023 DC3 (device control 3) Cont ro 1-S 223 023 123 S 123 323
024 DC4 (device control 4) ContrOI-T 024 224 124 T 324 124
025 NAK (negative acknowledgment) C~ntro 1-U 225 025 125 U 125 325
026 SYN (synchronize) Control-V 226 026 126 V 126 326
027 ETB (end of transmission b1k) Contro1-W 027 227 127 W 327 127

030 CAN (canc"" I) Contro1-X 030 230 130 X 330 130
031 EM (end of medium) Contro1-Y 231 031 131 Y 131 331
032 SUB (substi tute) Contro1-Z 232 032 132 Z 132 332
033 ESC (escape) Contro1/Shift-K 033 233 133 [(left bracket) 333 133
034 FS (fi Ie separator) Contro1/Shift-L 234 034 134 \ (back slash) 134 334
035 GS (group separator) C~nt ro 1 ISh i ft-M 035 235 135] (right bracket) 335 135
036 RS (record separator) Control/Shift-N 036 236 136 t (up arrow) 336 136
037 US (un i t sepa rator) Contro1/Shift-0 237 037 137 <- (back arrow) 137 337

.--
040 (space) 240 040 140

,
(accent grave) 140 340

041 ! (exclamation point) 041 241 141 a (lower case a1phabetics) 341 141
042 " (quote) 042 242 142 b 342 142
043 # (pound sign) 243 043 143 c 143 343
044 $ (dollar sign) 044 244 144 d 344 144
045 % (percent sign) 245 045 145 e 145 345
046 & (ampersand) 246 046 146 f 146 346
047 I (prime) 047 247 147 g 347 147 ----_._--------_. --.. __ ._--_ .. .-
050 { (left paren) 050 250 150 h 350 150
051) (right paren) 251 051 151 i 151 351
052 * (asterisk) 252 052 152 j 152 352
053 + (plus sign) 053 253 153 k 353 153
054 , (comma) 254 054 154 1 154 354
055 - (minus sign, hyphen) 055 255 155 m 355 155
056 (period) 056 256 156 n 356 156
057 I (slash) 257 057 157 0 157 357 -.. ------
060 0 (numer i cs) 060 260 160 p 360 160
061 1 261 061 161 q 161 361
062 2 262 062 162 r 162 362
063 3 063 263 163 s 363 163
064 4 264 064 164 t 164 364
065 5 065 265 165 u 365 165
066 6 066 266 166 v 366 166
067 7 267 067 167 w 167 367

070 a 270 070 170 x 170 370
071 9 071 271 171 y 371 171
072 : (colon) 072 272 172 z 372 172
073 ; (semi-colon) 273 073 173 { (left brace) 173 373
074 < (less than) 074 274 174 I (vertical bar/logical OR) 374 174
075 = (equals sign) 275 075 175 } (right brace) 175 375
076 > (greater than) 276 076 176 'V (t i Ide) 176 376
077 ? (question mark) 077 277 177 DEL (delete, rub out) 377 177

Feb. 1977 A-l

APPENDIX B - FORTH ERROR CODES

Whenever FORTH detects an error, a message is output to ~e terminal consisting

of a question mark followed by a single character. This appendix describes the

error associated with each single character code.

?Q The word could not be found in the dictionary. Check for a possible

typing error or a spelling error.

?R Line printer off-l ine or disc error. In the case of a disc error, the

sequence N 6 + @ 0 will print the disc status word.

?s Program abort (the word ABORT was executed by someone to ex it some

piece of code).

?T Magnetic tape error detected by the FORTH Block I/O drivers (probably

the tape drive is off-line or there is no write-ring on a write opera

t ion) .

?U Stack underflow. A word or words were expected on the stack but the

stack was empty.

?v Dictionary and stack overflow. The combined size of the dictionary and

the stack exceeds the total al located core area. This error indicates

either too many words have been entered into the dictionary or else

someone is pushing too many words onto the stack.

?W Illegal disc block access. The block number of the requested disc block

or tape block is illegal (i.e., - not in the range 0-4895).

?x Input error following an asking-word request for a number or an unexpected

interrupt from some device.

?Y A magnetic tape error of some sort (tape drive off line, parity error,

missing write ring on write, etc.) has been detected by the direct

magnetic tape drivers.

?Z Indicates a console interrupt (operator pressed Control-X key), a di splay

panel interrupt (operator pushed the rightmost bottom pushbottom) or power

fail recovery.

Oct. 1979 B-1

APPENDIX C

ANSWERS TO EXERCISES

CHAPTER 5

6 7 * 5 + 4 * 3 + 2 * 1 + yields 383

empty ~
7 5 4

6 t;j 42 W 47

6 7 -* 5 + 4

3 2

W 188 W 191 W 382 t;j
* 3 + 2 * +

empty

2) 1 2 + 3 4 * + 9 3 / / 7 8 * yields -51

Feb. 1977 C-l

CHAPTER 5

2) Continued

4

2 3 3 12

empty 3 3 3

2 + 3 4

3 8

9 9 3 7 7

15 15 15 5 5

+ 9 3 / / 7 8

56

5 t;j empty

*

C-2 Feb. 1977

CHAPTER 6

1) a) SINY

b) X+Y

c) XANT

d) XANT

e) SINY

f) none, wi 11 generate Y+XX ?Q

Feb. 1977 C-3

CHAPTER 7

1) 5 VARIABLE I

100 CONSTANT J

I iii 1 + I

I iii 5 * t J

I iii wi 11 pri nt 6

J wi 11 print 30

J J * 10 I
, .

I iii J / 2 +
,

J

I iii wi 11 print 890

J wi 11 print 31

C-4 Oct. 1979

o
C":\
rt

U)
........
\.0

n
I

V1

CHAPTER 7

2) 20 VARIABLE A

32 CONSTANT B

A @ B A @ lB ~ / J +
A-I

v-

B

v
B

A + A-1

A +

A +

A +

A +

B

A-l

v

B A

A-l +
B

B

B A

A-l

B

B

A-l

+

+

B

A

B

will print the value 21

A @

v
A

B

B / + / + B

CHAPTER 7

3)

10 , 2VARIABLE I I

30 , 2 CONSTANT JJ

JJ 1 , D+ II D!

JJ I I D@ D-
,

JJ D!

I I D@ D. wi 11 p r i nt 31-

JJ D. wi 11 print -1.

II D@ JJ D+ 101, D+ I I D!

JJ I I D@ D+ I JJ D!

I I D@ D. wi 11 print 131-

JJ D. wi 11 print 130.

4) 1 CONSTANT A

5 VARIA8L.E B

8 CONSTANT C

25 VARIABLE D

B @ C D @ + * I A

A wi 11 print 165

B @ C * B @ D @ * + , A

A wi 11 print 165

C-6 Oct. 1979

CHAPTER 7

5) 3 , 2CONSTANT A

5 , 2VARIABLE B

7 , 2CONSTANT C

11 2V)!llRl.ABLE D

17 , 2CONSTANT E

B D@ C D+ D D@ D+ E D+
,

A D:

A D. wi 11 pri nt 40 •

B D@ C D D@ E D+ D+ D+ ,
A D:

A D. wi 11 print 40 •

6) (B
2

- 4AC) whose value wi 11 be 36.0. This value is left on the stack

(since it is not specifically stored in a variable).

n For a single-word integer the largest value is 32,767 which corresponds

to 9:06:07. For a double-word integer the largest value is 1,073,741,823

which corresponds to approximately 298,261 hours! Hence if you are

counting the number of seconds past midnight you must use a double-word

integer since a single-word integer does not provide sufficient precision.

Octr .. 1979 C-7

CHAPTER 7

8)

9)

10)

C-8

I @ SFLOAT X F@ F* A D@ B D- DFLOAT F/

J SFLOAT Y FI FI t Y F!

Y F. wi 11 print 0.12002

Note how the maximum accuracy (floating-point) is maintained throughout

the calculation. There is no truncation performed unti 1 required

(when the new value of B is stored).

a) false, since its value is O.

b) false, since (true false AND) ---> false.

c) true, since (true true AND) ---> true.

d) false, since (false false OR) ---> false.

e) true, since (false true XOR) ---> true.

f) true, since (true true OR) ---> true.

2 since = 2.

Feb. 1977

CHAPTER 8

1) Use the formula z = (X - y) + (X - v).

X D@ Y D- X D@ Y D- D+ • Z D!

z D. wi 11 print -8.

X D@ Y D- 2DUP D+ • Z D!

z D. wi 11 print -8.

2) X D@ 2DUP Y D- 2SWAP Y D+ D+ • Z D!

Z D. will print 10.

3) X D@ Y 20VER 20VER D- D+ D+ • Z D!

Z D. will print 10.

4) a) 4

5 5 9

5 5 5

5 DUP 4 +

Feb. 1977 C-9

CHAPTER 8

4) b)

12 3

3 3 12 12

12 12 12 12

12 3 OVER SWAP DROP +

4) c)
1

2 2 3 1

Lj
1 1 1 3

1 1 1 1

1 DUP 2 OVER + ROT

1

3

1

1 2

3 3 3 6

1

3DUP 2DROP + *

C-10 Feb. 1977

CHAPTER 8

5) Yes, they are identical, as shown below:

7

4 4

7 7

7 4 OVER

7

4 7 7

7 4 4

7 4 SWAP DUP

6) 2PICK DUP 1 + PICK SWAP PICK

3PICK DUP DUP 2 + PICK SWAP

1 + PICK ROT PICK

Det. 1979

4 7

7 4

7 7

ROT ROT

C-11

CHAPTER 9

1) I 1**4 DUP DUP DUP * * *

C-12

, 1**4 DUP * DUP *

The second method is preferable since it requires one less

mUltiplication than the first method.

Feb. 1977

CHAPTER 10

1) a) 2898, 2899

b) -4, -5

c) -2, -4, -6

d) -3

e) -3

f) 18, 12, 6

g) 6. 12

h) -1

2) : 1PROD 1 .11 2 DO I * 2 +LOOP

3840 will be printed.

Also the following word will work (why?)

I 2PROD 1 12 2 DO I * 2 +LOOP

3) I 3PROD 1 2 10 DO I * -2 +LOOP

3840 wi 11 be printed.

4) o VARIABLE INDEX

INCINDEX INDEX @ 1 + INDEX!

SUM3 50 INDEX o BEGIN INDEX @ + INCINDEX INDEX

@ 100 > END

5) : DO= OR 0=

D= D- DO=

DO< SWAP DROP 0<

D> 2SWAP D- DO<

I D< D- DO<

I DMAX 20VER 20VER D< IF 2SWAP THEN 2DROP

: DMIN 20VER 20VER D> IF 2SWAP THEN 2DROP

Oct. 1979
C-13

CHAPTER 10

6)

7)

8)

9)

10)

C-14

Note the order in which these words are defined, so that each word may

use a previously defined word. The word DO= uses the fact that a

double-word integer Is zero if and only If both single-word halves of

the double-word are zero. Thus the OR of these two halves of the

double-word will be zero if and only if both halves are zero. The word

DO< uses the fact that the sign of a double-word integer is contained

in the top half of the double~word and therefore the bottom half may be

ignored for this comparison.

I SIGN DUP 0= IF II Zll DROP

ELSE 0 < IF II Nil

ELSE • II p"

THEN

THEN

EX 1 + 1 DO I PICK LOOP

19 ()DIM VEC

· VINIT 20 0 DO 1 I VEC LtJOP ; •

: (). 0 DO CR DU? @ • 1 + LOOP ORO? ;
2(). 0 DO CR DU? D@ D. 2 + LOO? DHOP . • , •
3(). 0 DO CR DU? F8 F. 3 + LOOP DROP ;

5 3 ()DIM VC
0 CONSTANT N

29.7 0 VC F! -8.2 1 VC F! -1.9 2 VC F!
4.5 3 VC F! 0.52 4 VC F! -8.3 5 vC F!

• 3VBUBSORf • N ! N 1 (1 , 2, • • • , N-l) •
DO I N 1 - (N-1, N-2, ••• , I)

DO I 1 - VC F@ I VC F@ 30VER 30VEH F>
IF 3SIIIAP I VC F! I 1 - VC F!
EL.SE 3DRO? 3DRO? fHEN

-1 +L.OOP
L.OOP ;

Oct. 1979

CHAPTER 14

I IMIN SASK PUSH FIRST NUMBER)

BEGIN SASK DUP 0 <
IF . II MIN VALVE =11 SWAP

ELSE MIN 0 THEN

END

DROP 1

Note how both halves of the IF branch leave a number on the

stack - 1 (if the terminating negative number is encountered) or

o (if another number was compared). < This 0 or 1 is then the

<logical-condition> for the END word and only if the terminating

2)

negative number was entered does the BEGIN - END loop stop.

This is a common programming practice in FORTH and the stack is a

convenient place to put the Ilflag il value.

I FIB DUP 3 <
IF II N MUST BE GREATER THAN 3 11 DROP

ELSE 0 1 FIRST TWO FIB NUM) 0

BEGIN DUP (PRINT CURRENT

OVER OVER + ROT DROP

COMPUTE NEXT IN SEQ.

DUP 4 PICK >

END 3DROP

THEN

~1. 1979

)

C-15

CHAPTER 15

1) a ?ODD/EVEN 2 MOD IF. II ODD II ELSE II EVEN" THEN

2) I ?TIME 60 M/MOD 60 IMOD

3) 0.0 REAL A

0.0 REAL B

0.0 REAL C

: DISCR B F@ 3DUP F* 4.0 A F@ F* C FCil F* F-

a QUAD C F: B F: A F: CR DISCR 3DUP FO=

IF 3DROP II ONE REAL ROOT I II .
B F@ FMINUS 2.0 A F@ F* F/ F.

ELSE 3DUP FO<

IF II TWO COMPLEX ROOTS II

II (REAL AND COMPLEX PARTS) all

B F@ FMINUS 2.0 A F@ F* FI F.

FMINUS FSQRT 2.0 A F@ F* FI F.

ELSE II TWO REAL ROOTS a II FSQRT 3DUP .
B F@ FMINUS 3SWAP F+ 2.0 A F@ F*

FI F.

B F@ FMINUS 3SWAP F- 2.0 A F@ F*

FI F.

THEN

THEN

4) a FDASINE 3DUP FABS 1.0 F=

IF 90.0 F*

ELSE 3DUP 3DUP 3DUP F* 1.0 3SWAP F-

FSQRT FDATN

3SWAP FO< IF 360.0 F- THEN

THEN

c-16 Oct. 1979

CHAPTER 15

5) ; FDACOS 3DUP 3DUP F* 1.0 3SWAP F- FSQRT

FDASINE 3SWAP FO<

IF 180.0 3SWAP F- THEN

6) x**y 30VER 0.0 F<

7)

IF." NEGAT I VE NUMBER ERROR" 3DROP 3DROP

ELSE 3SWAP FLN F* FEXP THEN

Note that when using this algorithm 212 = 4095.99922 and not 4096!
This is due to the inexactness of both floating-point numbers and the

exponential/logarithm functions. If one knew that the exponent were

an integer then a combination of mUltiplies would generate the exact

answer.

1.0 3.0 F/ FCONSTANT 1/3

: FCUBERT 3DUP 0.0 F<

IF FMINUS 1/3 X**Y FMINUS

ELSE 1/3 X**Y THEN

Note the technique used to obtain the maximum precision available for

the infinite constant 0.333'" By dividing 1.0 by 3.0 in the definition

you obtain the maximum precision available, regardless which computer

you are running on. If, however, you were to enter

0.33333 FCONSTANT 1/3

you would not be obtaining the maximum precision on any computer with

more than 5 digits of precision. To a computer the numbers 0.3 and 0.33
are not equal!

Oct. 1979 C-17

CHAPTER 15

8) z FROUND 0.5 F+

9) & I**J 2DUP SWAP SFLOAT FLN 4 PICK SFLOAT

10)

F* FEXP 3SWAP 3DROP FROUND SFIX

Note the complications that arise in converting two single-word integers

on the stack to floating-point, without storing either one in a

temporary location. Of course, if this were a frequent operation

one could define a new word to do it.

& CUBE DUP 0< IF MINUS 3 I**J MINUS

ELSE 3 I**J THEN

11) The second definition is almost certainly preferable in all cases since

it requires only two mUltiplications and no conversion back and forth

to floating-point. Note also that one need not worry about the sign

with the second definItion. Finally, the first definition will take

longer to ~xecute and will be less precise since the exponential and

logarithm functions require time to execute and neither of these are

perfectly "exact" (integer mUltiply wi 11 always be exact).

12) 0.00001 FCONSTANT EPSILON

& SQROOT 3DUP FO<

IF II NEGATIVE ARGUMENT II 3DROP

ELSE 3DUP 0.5903 F* 0.4173 F+

BEGIN 30VER 30VER F/ 30VER F+ 0.5 F*

3SWAP 30VER F- FABS EPSILON F<

END 3SWAP 3DROP

THEN

c-18 Oct. 1979

CHAPTER 15

13) 0.000001 FCONSTANT EPSILON

z ECALC 2.0 2.0 32767 3 DO 30VER 1.0 3SWAP F/

30VER F+ 3SWAP 30VER

F- FABS EPSILON F<

IF 3DUP 10 8 W.D. F .

• II IN" I . ," ITERATIONS··

EXIT THEN

3SWAP I SFLOAT F*

LOOP 3DROP 3DROP

3SWAP

The algorithm used is:

Prod = 2.0

Oldsum = 2.0

Do I = 3, 32767

Newsum = Oldsum + (l/Prod)

If (INewsum - Oldsuml .~ Epsilon) EXIT

Oldsum = Newsum

Prod = Prod *
Continue

The upper limit on the DO loop (32,767) is set to the largest integer

value to guarantee that the loop is executed many times. In actual ity,

the loop will terminate when the word EXIT is executed (when the

newsum has satisfactorily converged to the oldsum). This exercise is

a good example of stack manipulation and how it is hard to display in

an algorithm the true efficient use of the stack.

Oct, 1979 C-19

CHAPTER 15

14) & FACT DUP 0< OVER 7 > OR

IF II N IS OUT OF RANGEl! DROP

ELSE DUP 2 < IF 1 SWAP VALUE OF o! AND

ELSE DUP BEGIN 1- DUP ROT *

SWAP DUP 3 <

END

THEN

DROP II FACTORIAL =11

THEN

15) Because 8! = 40,320 which exceeds the range of a single-word integer.

16)

2.71828182 FCONSTANT E

3.14159265 FCONSTANT PI

& N! SFLOAT 3DUP 2.0 F* PI F* FSQRT

30VER 3DUP E F/ 3SWAP X**Y F*

6 4 W.D 3DUP E. \I < \I

30VER SFIX \I • < II .
30VER 12.0 F* 1.0 F- LO 3SWAP F/

1.0 F+ F* E. 3DROP

Compare the definitions of E and PI with the definition of 1/3

in exercise 7 of this chapter. Since there are no rational formulas

for e and ~ we must specify each constant using as many digits of

precision (9 decimal digits for KPNO FORTH, Section 7.3) as provided

by the floating-point data structure. If this definition were used

on a computer with a different number of digits of precision then

the definitions for e and TI should be changed accordingly.

1 !

C-20 Oct. 1979

CHAPTER 15

17) 0.0 REAL lSUM SUM OF X[IJ)

0.0 REAL 2SUM SUM OF X[I]**2

STAT 0.0 lSUM F: 0.0 2SUM F:
II HOW MANY NUMBERS? " SASK

0 DO CR " ?" FASK 3DUP .
lSUM Fa> F+ lSUM F:

3DUP F* 2SUM Fa> F+

LOOP

DUP SFLOAT lSUM Fa> 3SWAP

CR ." MEAN =" F.

SFLOAT 3DUP 2SUM F~ F*

lSUM Fa> 3DUP F* F-

DUP

2SUM F:

F/

3SWAP 3DUP 1.0 F- F* F/ FSQRT

CR ." STD DEV =" F.

18) The shortest and most elegant (and possibly least obvious) solution is to

rearrange the algorithm as follows:

r = a

a = b

b = r

r = (a mod b)

If (r = 0) then the answer is b, stop.

Loop around

This is coded as

Oct. 1979

: GCD BEGIN SWAP OVER MOD DUP 0= END

DROP

C-21

CHAPTER 15

18) Continued

The rearranging of the algori'thm places the test for r = 0 at the end

of the loop which allows the use of the BEGIN - END loop. You

should confirm to yourself that rearranging the algorithm this way

does not affect the algorithm (i .e. - it still produces the right

answer) .

GCD(2166,6099) = 57

19) 2047 ()DIM D~'r~
o CONSr~NT NOP

16105 0 D~rA 18291 1 D~rA 14333 2 D~r~
17015 3 DAT~ 15280 4 DATA 5 • NO~

M+RMS 0.0 (RMS SuM) 0.0 (ME~N SUM) NLJ~ 0
DO I DATA @ SFLO~T F+ (UPDATE ME~N) 3SIl;~P

I DATA @ SFLOAT 3DLJP F* F+ (HMS) 3 Sw~;J
LOOP NOP SF'LOAT F'I FROUND SF'IX II l~E~N =" • .
NOP SF'LOAT FI FSQRT FHOUND SFIX • II ~ HMS ,.. .. •

20) : RMEAN 0 (IN IT IAL ME~N) NO? 0
DO DUP I D~TA @ SWAP

I 1 + I +
LOOP " ME~N =" • ;

C-22 Oct. 1979

;

21) 0 VARIABLE C
0 VARIABLE D
0 VARIABLE E
0 VARIABLE G

0 VARI:t\BLE N
0 VARIABLE X

0 VARIABLE Z!

0 VARIABLE YEAR

• NEASTEH DU? DU? YEAR ! .
19 MOD 1 + G !
100 / 1 + DU? DU? C !
3 * 4 / 12 X !
8 * 5 + 25 / 5 C
YEAR @ 5 * 4 / X @ 10
G @ 1 1 * 20 + e @ + X @

0< IF 30 + THEN DU? DU? E
25 = G @ 1 > AND SWAP 24
IF E @ 1 + E THEN
44 E @ DUP N ! 21 <
IF N @ 30 + N ! THEN
N @ DU? 7 + SWAP D @ + 1

DU? DUP N ! ; (RETURN

EASTER NEASTER 31 >
IF .. APRIL"
ELSE .. MARCH"
"," YEAR @ •

31 •
• THEN

Oct. J 979

D !
30 MOD DU?

= OR

MUD
2 COPIES OF N ON SCACr{)

C-23

APPENDIX D - FORTH GLOSSARY

This glossary is an alphabetically ordered list of all standard KPNO

FORTH words along with a brief description of the word. The alphabetical

ordering corresponds to the ordering of the ASC11 character set (Appendix A).

Additionally, a listing of the ASC11 ordering is given at the top of each

page for quick reference (since FORTH uses so many non-alphabetic characters).

Immediately following the name of a word, certain descriptor characters

may appear within parentheses. These denote some special action or charac

teristics:

A The word belongs to the assembler vocabulary. A thorough des

cription of the machine instructions is not given, instead the

reader should refer to the Varian 620/f Computer Handbook.

C The word may be used only within a colon-definition. A following

digit (CO or C2) indicates the number of memory cells used when

the word is compiled if other than one. A following + or - sign

indicates that the word either pushes a value onto the stack or

removes one from the stack during compilation. (This action is

not related to its action during execution and may be implementa

tion dependent.)

E The word may not normally be compiled within a colon-definition.

P The word has its precedence bit set; it is executed directly,

even when encountered during compile mode.

OLD The word exists in KPNO FORTH versions 2.3 and earlier.

Following the optional descriptor characters, a symbol ic execution of

the word is given, showing the parameters expected on the stack by the word

and the result left on the stack (if any). The following notation is used:

<ADDRESS> denotes a 15-bit machine address;

<BLOCK#> denotes a FORTH block number;

Feb. 1979 0-1

<BYTE-ADDRESS>

<CHAR-CODE>

<OW-VALUE>

<FP-VALUE>

<LINE#>

<LOGICAL-VALUE>

<NAME>

<VALUE>

denotes a 16-bit byte address;

denotes a 7-bit integer value for a ASC11 character

(see Appendix A) j

denotes a double-word integer value;

denotes a floating-point value;

denotes a I ine number of a FORTH block;

denotes a logical flag whereby a non-zero value

specifies true and a zero value specifies false;

denotes a FORTH name, that is, a sequence of ASC11

characters whose first three characters and length

will be used to identify an entry in the dictionary;

denotes a single-word integer value.

Any symbol that does not appear in the above I ist is a single-word integer

value, unless the first two characters are OW (denoting a double-word integer

value) or FP (denoting a floating-point value).

This I ist is purposely not broken down into vocabularies (basic FORTH,

Utility words, etc.) in order that one be able to locate a word quickly,

without having to search many different 1 ists. It is expected that the

greatest use of this list will be to aid someone who is going through a FORTH

I isting, in being able to quickly locate a description of a word they are not

familiar with. Numerous lists are provided at the end of the glossary to

provide a logical grouping of words with similar functions.

Since this list is not broken down by vocabularies, one should not ex

pect to find all of these words defined in basic FORTH! In fact, only a

small percentage of the words are defined in the basic FORTH system. In

order to find just where on a FORTH tape a particular word is defined, simply

obtain a cross reference of the tape (as with the XFORTH program, described

in Append ix B of the "FORTH Systems Reference Manua 1") and from the cross

reference find the block in which the word is defined. One is then able to

0-2 Feb. 1979

exp1 icit1y load the word into the dictionary. Naturally, this procedure

may have to be gone through more than once if the desired word requires other

words to be in the dictionary.

Feb. 1979 D-3

mbstrick
Typewritten Text
NOTE: D-4 blank in original.

mbstrick
Typewritten Text

mbstrick
Sticky Note
Accepted set by mbstrick

mbstrick
Typewritten Text

FORTH GLOSSARY !"#$£'().+,-.10123456789:;<=>?@AZ[\]A_

, . . .

!BLOCK

!I/O

#D

<VALUE> <ADDRESS>
STORE <VALUE> AT MEMORY LOCATION <ADDRESS>.

<ADDRESS> 1: <NAME> ••• ;!C
<ADDRESS> !: <NAME> ••• ;!

START AN INTERRUPT PROCESSING COLON DEFINITION (SIMILA~ TO I).

<ADDRESS> SPECIFIES THE LOW-CORE INTERRUPT VECTOR AODRESS,
DESIGNATING WHICH DEVICE'S INTERRUPTS ARE TO BE PROCESSED BY
THIS WORD. THE DEFINITION IS TERMINATED BY EITHER ;!C OR ;!
(SIMILAR TO ;). ;!C WILL POP THE CAMAC BRANCH DRIVER BEFORE
RETURNING FROM THE INTERRUPT. SEE $! AND CHAPTER 16.

(OLD)
RENAMED BUFFER.

SAVES ALL THE SYSTEM FLAGS AND PARAMETERS THAT MUST BE SAVED
PRIOR TO PERFORMING 110 FROM AN INTERRUPT WORD. THIS WORD
INCLUDES THE EXECUTION OF FSAVE. AFTER PERFORMING THE 110 THE
INTERRUPT WORD MUST EXECUTE @I/O TO RESTORE THESE FLAGS AND
PARAMETERS.

(A)
SETS THE VARIABLE MODE TO 1, SPECIFYING AN IMMEDIATE OPERAND
FOR THE NEXT MEMORY REFERENCE INSTRUCTION.

A VARIABLE INDICATING THE NUMBER OF DIGITS APPEARING AFTER THE
COMMA OR PERIOD, FOLLOWING AN INPUT NUMBER CONVERSION.

#DEV (OLD)

#MDEV

#TER

Feb. 1979

RENAMED #MDEV.

A CONSTANT WHOSE VALUE INDICATES THE PRIMARY MASS STORAGE
DEVICE THAT FORTH IS RUNNING FROM:

o = DISC
1 = TAPE

A CONSTANT WHOSE VALUE INDICATES WHAT TYPE OF TERMINAL IS BEING
USED:

1 a TELETYPE
2 a TEKTRONIX 4010
4 = TEe
6 = LEAR-SIEGLER ADM-3A
7 = TEXAS INSTRUMENTS TI-700

D-5

FORTH GLOSSARY !"#$&,()*+,-./0123456789:;<.>?@AZ[\]~_

$! <MODULE-ID> $! <ADDRESS>

$2AREAD;

$2AWRITE;

$2READ;

$2WRITE;

CONVERTS THE CAMAC <MODULE-IO> INTO THE lOW-CORE INTERRUPT
VECTOR <ADDRESS> FOR THAT MODULE (REFER TO BLOCK 54 FOR A
LISTING OF THE STANDARD KPNO MODULE IDENTIFIERS). SEE!: AND
CHAPTER 16.

DE FI NE A CAMAC 110 WORD. SEE CHAPTER 16.

DE FINE A CAMAC 1/0 WORD. SEE CHAPTER 16.

DE FINE A C AMAC 110 WORD. SEE CHAP TER 16.

DEFINE A CAMAC 110 WORD. SEE CHAPTER 16.

$ACOMMANDj

$AREAD;

$AWRITEj

$C

$CNi

$C OMMAND;

$DBD

$OIR

$EBD

$EIR

D-6

DEFINE A CAMAC 110 WORD. SEE CHAPTER 16.

DEFINE A CAMAC 110 WORD. SEE CHAPTER 16.

DEfINE A CAMAC 110 WORD. SEE CHAPTER 16.

A CAMAC WORD TO SEND A CLEAR COMMAND TO THE MODULES IN CRATE 1.

<VALUE> $CNj <NAME>
DE FI NE <NA.ME> AS A CAMAC <MODULE-tO>. SEE CHAPTER 16.

DE FINE A CAMAC 1/0 WORD. SEE CHAPTER 16.

A CAMAC WORD TO DISABLE BRANCH DEMANDS AT THE CRATE CONTROLLER
LEVEL. SEE $EBD.

A CAMAC WORD TO DISABLE INTERRUPTS AT THE BRANCH DRIVER LEVEL.
SEE $EIR.

A CAMAC WORD TO ENABLE BRANCH DEMANDS AT THE CRATE CONTROLLER
LEVEL. SEE $DBD.

A CAMAC WORD TO ENABLE CAMAC INTERRUPTS AT THE BRANCH DRIVER
LEVEL. SEE $DIR.

Feb. 1979

FORTH GLOSSARY ! U#$£' ()*+,-.10123456789: ;<=>?@AZ[\J"_

$FX <VALUE> $FX <RESULT>
<VALUE> MUST BE A CAMAC F CODF IN THE RANGE 0 THROUGH 31 AND
THIS VALUE IS THEN CONVERTED TO THE APPROPIATE EXC INSTRUCTION
(FOR USE IN A SEQUENCE OF MACHINE INSTRUCTIONS). THE WORD $FX
IS USUALLY FOLLOWED BY THE WORD, WHICH WILL PLACE THF- EXC
INSTRUCTION INTO THE NEXT AVAILABLE DICTIONARY LOCATION.

$INITIALIZE

$NOI

$READ;

A CAMAC WORD TO INITIALIZE THE BRANCH DRIVER.

A CAMAC WORD TO CLEAR THE INHIBIT FLIP-FLOP IN THE CRATE
CONTROLLER.

DEfINE A CAMAC 110 WORD. SEE CHAPTER 16.

$REPLACE $REPLACE <WORD1> <CHAR-STRING>$

$SETUP

$\!iRITE;

$Z

Feb. 1979

REPLACE ALL OCCURENCES OF <WORDl> BY THE SPECIFIED
<CHAR-STRING> WHEN THE WORD FIX IS EXECUTED. <WORD1> MAY NOT
CONTAIN ANY SPACES. <CHAR-STRING> STARTS WITH THE SECOND
CHARACTER FOLLOWING <WORD1> (THE FIRST CHARACTER FOLLOWING
<WORD1> MUST BE THE SPACE THAT TERMINATES <WORDl» AND INCLUDES
ALL CHARACTERS, INCLUDING SPACES, UP TO BUT NOT INCLUDING THE
DOLLAR SIGN. SEE REPLACE, WINIT AND FIX.

A CAMAC WORD TO INITIALIZE AND RESET THE (AMAC SYSTEM.

DEFINE A CAMAC 1/0 WORD. SEE CHAPTER 16.

A CAMAC WORD TO SEND AN INITIALIZE COMMAND TO CRATE 1.

~<CHARACTER> <CHAR-COof.>
THE AMPERSAND CONVERTS THE <CHARACTER> IMMEDIATELY FOLLOWING IT
TO ITS 7-BIT, ASCII CODE (AN INTEGER VALUE IN THE RANGE 0 THRU
127). FOR EXAMPLE, THE SEQUENCE "£A" Will LEAVE THE OCTAl VALUE
101 ON THE STACK. REFER TO A~PENDIX A FOR A COMPLETE LISTING OF
ALL ASCII CODES.

(P) <NAME> <ADDRESS>
PUSH THE ADDRESS OF THE PARAMETER FIELD OF <NAME> ONTO THE
STACK. A COMPILER DIRECTIVE, , IS EXECUTED WHEN ENCOUNTERED IN
A COLON DEFINITION: THE ADDRESS OF THE PARAMETER FIELD OF
<NAME> IS FOUND IMMEDIATELY (AT COMPILATION) AND STORED IN THE
DICTIONARY (AFTER THE ADDRESS OF IlIT/) AS A LITERAL TO BE
PLACED ON THE STACK AT EXECUTION TIME. WITHIN A COLON
DEFINITION, THE SEQUENCE It, <NAME>" IS IDENTICAL TO THE
SEQUENCE "/LITI [• <NAME> , llf.

D-7

()DIM

*

**

*1

*10**

*BLOCK

D-8

FORTH GLOSSARY

(P) «STRING»
THE LEFT PA~EN DESIGNATES THE START OF A COMMENT AND ALL
CHARACTERS UP TO THE RIGHT PAREN ARE IGNORED. SINCE (IS A
FQRTH WORD IT MUST BE TERMINATED BY A SPACE, HOWEVER, THE
CLOSING PAREN NEED NOT BE PRECEDED BY A SPACE. UP TO 1023
CHARACTERS MAY COMPRISE THE COMMENT.

<VALUE> ()DIM <NAME>
DEFINES A VECTOR OF SINGLE-WORD INTEGER VALUES. <VALUE> + 1
CELLS OF MEMORY ARE ALLOCATED TO THE NAMED VECTOR AND THEN
LEGITIMATE INDICES WILL BE IN THE RANGE a THROUGH <VALUE>,
INCLUSIVE. EXECUTING THE SEQUENCE "<INDEX> <NAME>" WILL PUSH
ONTO THE STACK THE ADDRESS OF THE SPECIFIED ENTRY IN THE
VECTOR.

<VALUE1> <VALUE2> * <RESULT>
16-BIT, SIGNED, INTEGER MULTIPLY, LEAVING THE SINGLE-WORD
RESULT ON THE STACK.

<VALUE> <POWER> ** <RESULT>
INTEGER EXPONENTIATION. RAISE <VALUE> TO THE SPECIFIED <POWER>
AND LEAVE THE SINGLE-WORD INTEGER RESULT ON THE STACK.

<VALUEl> <VALUE2> *, <RESULT>
MULTIPLY 14-BIT FRACTIONS. IF <VALUE1> AND <VALUE2> ARE 14-BIT
FRACTIONS IN THE RANGE -2.000 TO 1.9999 THEN THE RESULT WILL
ALSO BE A 14-8IT FRACTION IN THIS RANGE.

<VALUE1> <VALUE2> <VALUE3> *1 <RESULT>
CALCULATE <VALUE1> * <VALUE2> I <VALUE3> AND LEAVE THE RESULT
ON THE STACK. THE INTERMEDIATE RESULT FROM THE MULTIPLICATION
IS 31-B1TS AND THIS WORD THEREFORE PROVIDES GREATER ACCURACY
THAN THE SEQUENCE "<VALUE1> <VALUE2> * <VALUE3> I". NOTE THAT
THE DIVISION IS AN INTEGER DIVISION WITH TRUNCATION AND ANY
REMAINDER IS LOST.

<FP-VALUE> <POWER> *10** <FP-RESULT>
MULTIPLY THE <FP-VALUE> BY THE SPECIFIFED INTEGER POWER OF 10,
LEAVING THE FLOATING-POINT RESULT ON THE STACK.

(OLD)
RENAMED +BLOCK.

Feb. 1979

FORTH GLOSSARY ! "If $ (. I () * +, -. 10123456789: ; < = > ?@A Z [\] " _

+ <VALUEl> <VALUE2> + <RESULT>
16-B1T SIG~ED INTEGER ADDITION, LEAVING THE RESULT ON THE
STACK.

+! <VALUE> <ADDRESS> +!
ADD <VALUE> TO THE CURRENT CONTENTS OF THE MEMORY LOCATION
POINTED TO BY <ADDRESS>. <VALUE> MAY BE A POSITIVE OR NEGATIVE
NUMBER. IDENTICAL TO THE SEQUENCE: "<ADDRESS> @ <VALUE> +
<ADDRESS> I".

+BLOCK <VALUE> +BLOCK <BLOCK#>
ADD <VALUE> TO THE NUMBER OF THE CURRENT BLOCK BEING
INTERPRETED AND LEAVE THE RESULT ON THE STACK. FOR EXAMPLE, IN
BLOCK 350 THE SEQUENCE "2 +BLOCK" WILL LEAVE THE NUMBER 352 ON
THE STACK.

+CONVERT <VALUE> <OW-VALUE> +CONVERT <COUNT>
CONVERTS THE <OW-VALUE> INTO ITS SEQUENCE OF ASCII CHARACTERS
FOR OUTPUT BY THE WORDS WRITE OR TYPE. THE CURRENT NUMBER
CONVERSION BASE IS USED. <OW-VALUE> MUST BE A POSITIVE NUMBER
AND <VALUE> IS THEN USED TO SPECIFY THE SIGN: IF <VALUE> IS
NEGATIVE A MINUS SIGN WILL PRECEDE THE NUMBER. ON RETURN THE
BYTE ADDRESS OF THE CHARACTER STRING IS CONTAINED IN IP AND THE
CHARACTER COUNT IS ON TOP OF THE STACK. THE VARIABLES FLO AND
DPL ARE USED TO SPECIFY THE TOTAL FIELD WIDTH AND NUMBER OF
DIGITS TO THE RIGHT OF THE RADIX POINT.

+LOOP (C) <VALUE> +LOOP

,

Feb. 1979

ADD <VALUE> TO THE CURRENT LOOP INDEX (REFER TO THE WORDS DO
AND LOOP). EXIT FROM THE LOOP IS MADE WHEN THE RESULTANT INDEX
REACHES QR PASSES THE LIMIT IF <VALUE> IS POSITIVE, OR WHEN THE
INDEX IS LESS THAN THE LIMIT IF <VALUE> IS NEGATIVE.

<VALUE> ,
STORE <VALUE> INTO THE NEXT AVAILABlE DICTIONARY CELL,
ADVANCING THE DICTIONARY POINTER.

0-9

FORTH GLOSSARY !It#$E;.1 ()*+,-./0123456789: ;<=>?@AZ[\]"'_

<VALUEl> <VALUE2> <RESULT>
16-BIT SIGNED INTEGER SUBTRACTION LEAVING THE RESULT, <VALUEl>
- <VALUE2>, ON THE STACK.

--> (P) -->
CONTINUE INTERPRETATION WITH THE NEXT BLOCK. THIS WOkD IS
SIMILAR TO THE SEQUENCE "1 +BLOCK CONTINUED", HOWEVER --> IS A
COMPILER DIRECTIVE AND IS THEREFORE ESPECIALLY USEFUL WHEN
EXTENDING A COLON DEFINITION FROM ONE BLOCK TO THE NEXT.

-CONVERT (OLD)

-INR,

•

.ft

.FIX

.FLoAT

.STRING

D-10

CLEANS UP THE STACK AFTER EXECUTING THE OLD VERSIONS OF
+CoNVE~T AND WRITE.

CA) <ADDRESS> -INR,
AN ASSEMBLER MACRO WHICH GENERATES
INSTRUCTIONS TO DECREMENT THE CONTENTS
ADDRESS. THE SEQUENCE OF INSTRUCTIONS
AND STA.

A SEQUENCE OF MACHINE
OF THE SPECIFIED MEMORY
GENERATED IS AN LOA, DAR

<VALUE> •
PRINT <VALUE> ON THE CURRENT OUTPUT DEVICE (USUALLY THE
OPERATOR'S TERMINAL), FREE FORMAT, CONVERTED ACCORDING TO THE
CURRENT NUMBER BASE •

• " <STRING>"
OUTPUT THE CHARACTER STRING TO THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). <STRING> STARTS WITH THE
SECOND CHARACTER FOLLOWING .It (THE FIRST CHARACTER FOLLOWING .It

MUST BE A SPACE). THE MAXIMUM NUMBER OF CHARACTERS THAT MAY
COMPRISE <STRING> IS 127.

<FP-VALUE> .FIX <DW-FRACTION-RESULT>
CONVERT THE <FP-VALUE> TO A DOUBLE-WORD FRACTION. TRUNCATION
WILL OCCUR IF THE ABSOLUTE VALUE OF <FP-VALUE> IS GREATER THAN
OR EOUAL TO 1.0 AND A RESULT OF ZERO WILL BE RETURNED IF THE
ABSOLUTE VALUE OF <FP-VALUE> IS TOO SMALL « 2**-31).

<OW-FRACTION> .FLOAT <FP-RESULT>
<OW-FRACTION> is CONVERTED TO A FLOATING-POINT VALUE.

<ADDRESS> .STRING
EQUIVALENT TO THE SEQUENCE "COUNT WRITE",
BE EXECUTED FROM THE TERMINAL TO OUTPUT A
SEQUENCE "COUNT WRITE" MAY NOT (SINCE
COUNT, MUST REMAIN INTACT FOR WRITE, AND
TIME A WORD IN A LINE OF TERMINAL INPUT IS

HOWEVER, .STRING MAY
STRING WHEREAS THE
IP, WHICH IS SET BY
IP IS CHANGED EACH
PROCESSED).

Feb. 1979

FORTH GLOSSARY ! "# $ f.. • () *+ ,- • 10123456789 : ; <. > ?@A Z [\]" _

I <VALUE1> <VALUE2> I <RESULT>
16-BIT SIGNED INTEGER DIVIDE. THE RESULT, <VALUEl> I <VALUE?>
IS LEFT ON THE STACK. NOTE THAT THE QUOTIENT IS TRUNCATED AND
A~Y REMAINDER IS lOST. SEE IMOD.

I, <VALUEl> <VAlUE2> I, <RESULT>

14010

ICURSE

ILITI

DIVIDE <VAlUE1> BY <VALUE2> LEAVING THE RESULT ON THE STACK. IF
BOTH DIVIDEND AND DIVISOR ARE 14-BIT FRACTIONS IN THE RANGE
-2.000 TO 1.9999 THEN THE QUOTIENT WILL ALSO BE A 14-BIT
FRACTION IN THE SAME RANGE. SEE *,.

A 2VARIABLE WHOSE VALUE INDICATES THE CURRENT PHYSICAL POSITION
OF THE 4010.

A 2VARIABLE WHOSE VALUE INDICATES THE CURRENT PHYSICAL POSITION
OF THE 4010 CROSS HAIR CURSORS.

(C) ILITI
A REFERENCE TO ILITI IS AUTOMATICALLY COMPILED BEFORE EACH
LITERAL ENCOUNTERED IN A COLON DEFINITION. EXECUTION OF ILITI
CAUSES THE CONTENTS OF THE NEXT DICTIONARY CELL TO BE PUSHED
ONTO THE S T A C K •

IMOD <VALUEl> <VALUE2> IMOD <REMAINDER> <OUOTIENT>
16-BIT SIGNED INTEGER DIVIDE. THE QUOTIENT FROM THE DIVISION,
<VALUE1> I <VALUE2>, IS lEFT ON TOP OF THE STACK AND THE
REMAINDER IS lEFT BELOW. THE REMAINDER HAS THE SIGN OF THE
DIVIDEND.

Feb. 1979 0-11

o)

FORTH GLOSSARY

(A) <ADDRESS> 0) <RESULT>
THE MOST SIGNIFICANT BIT OF <ADDRESS>
ADDRESS TO AN INDIRECT ADDRESS. NOTE
AN ADDRESS AS INDIRECT WHILE THE
INSTRUCTION AS INDIRECT.

IS SET TO 1, CHANGING THE
THAT THIS WORD DESIGNATES

WORD I) DESIGNATES AN

0)$ O)S <ADDRESS>
O)S IS THE STARTING ADDRESS OF A VECTOR OF ADDRESSES A~D
INTERNAL VALUES USED BY FORTH. THE SEQUENCE "0)$ <VALUE> +"
FORMS THE ADDRESS OF A SPECIFIC ELEMENT IN THE VECTOR WITH
<VALUE> CORRESPONDING TO:

o THE ADDRESS OF THE CHARACTER OUTPUT SUBROUTINE. THIS
SUBROUTINE MUST BE CALLED USING AN IJMP INSTRUCTIO~.

1 THE ADDRESS OF THE CHARACTER INPUT SUBROUTINE. THIS
SUBROUTINE MUST BE CALLED USING AN IJMP INSTRUCTION.

2 THE ADDRESS OF THE TERMINAL INTERROGATION
SUBROUTINE. THIS SUBROUTINE MUST BE CALLED USING AN
IJMP INSTRUCTION.

3 THE ADDRESS OF THE ROUTINE FETCH. THIS SUBROUTINE
MUST BE CALLED USING AN IJMP INSTRUCTION AND ON
RETURN THE A REGISTER CONTAINS THE CHARACTER WHICH
WAS POINTED TO BY THE BYTE-ADDRESS IN IP. IP IS
INCREMENTED.

4 THE ADDRESS OF THE SUBROUTINE DEPOSIT. THIS
SUBROUTINE MUST BE CALLED USING AN IJMP INSTRUCTION.
ON ENTRY THE A REGISTER MUST CUNTAIN THE CHARACTER
TO BE STORED IN THE LOCATION POINTED TO BY THE BYTt
ADDRESS IN OPe OP IS INCREMENTED.

5 THE CURRENT CORE-SIZE USED BY FORTH. THE INITIAL
VALUE OF 8192 (20000B) SPECIFIES 8K WORDS OF CORE
(ADDRESSES 0 THRU 8191).

6 A BLOCK NUMBER OFFSET THAT IS ADDED TO EVERY BLOCK
NUMBER WHEN REFERENCING A DISC BLOCK. NORMALLY ZERO.

7 A POINTER TO THE PSEUDO-WORD USED FOR FLOATING-POINT
NUMBER CONVERSIONS. IT MUST BE ZERO IF THE
FLOATING-POINT CODE IS NOT IN THE DICTIONARY.

8 THE WORD COUNT USED FOR DATA TRANSFERS TO THE DISC,
NORMALLY 512.

0< <VALUE> 0< <LOGICAL-VALUE>
0<- <VALUE> 0<= <LOGICAL-VALUE>
0<> <VALUE> 0<> <LOGICAL-VALUE>
0- <VALUE> Os <LOGICAL-VALUE>
0> <VALUE> 0> <LOGICAL-VALUE>
0>- <VALUE> 0>· <LOGICAL-VALUE>

COMPARE <VALUE> AGAINST ZERO AND LEAVE A <LOGICAL-VALUE> OF
TRUE QN THE STACK IF THE INDICATED RELATION IS TRUE, OTHEQWISE
A <LOGICAL-VALUE> OF FALSE IS LEFT ON THE STACK. THE WORD 0<>
TESTS FOR NOT EQUAL TO ZERO.

D-12 Feb. 1979

FORTH GLOSSARY ! ""It $ € ' () *+, -. /01234,6789: ; < = > ?@AZ [\] A _

1+ <VALUE> 1+ <RESULT>
EQUIVALENT TO THE SEQUENCE "1 +".

1+1 <ADDRESS> l+!
ADD 1 TO THE CONTENTS OF THE MEMORY LOCATION <ADOR6SS>.
EQUIVAL~NT TO THE SEQUENCE "<ADDRESS> @ 1+ <ADDRESS> ~II.

1- <VALUE> 1- <RESULT>

l-!

EQUIVALENT TO THE SEQUENCE "1 -".

<ADDRESS> l-!
SUBTRACT 1 FROM THE CONTENTS OF MEMORY LOCATION
EQUIVALENT TO THE SEQUENCE "<ADDRESS> @ 1- <ADDRESS>

<ADDRESS>.
I " • •

lLRL (OLD)
RENAMED BYTE.

2()DIM <VALUE> 2()DIM <NAME>
DEFINES A VECTOR OF DOUBLE-WORD VALUES. <VALUE> + 1 DOUBLE-WORD
CELLS OF MEMORY ARE ALLOCATED TO THE NAMED VECTOR AND THEN
LEGITIMATE INDICES WILL BE IN THE RANGE 0 THROLGH <VALUE>,
INCLUSIVE. EXECUTING THE SEQUENCE "<INDEX> <NAME>" WILL PUSH
ONTO THE STACK THE ADDRESS OF THE SPECIFIED ENTRY IN THE
VECTOR.

2* <VALUE> 2* <RESULT>
EQUIVALENT TO THE SEQUENCE "2 *".

2/ <VALUE> 2/ <RESULT>
EQUIVALENT TO THE SEQUENCE "2 I".

2CONSTANT <OW-VALUE> 2CONSTANT <NAME>
DEFINE THE WORD <NAME> WHICH WHEN EXECUTED WILL PUSH ONTO THE
STACK. ITS DOUBLE-WORD VALUE. THE VALUE OF <NAME> IS INITIALIZED
TO <OW-VALUE>. THE VALUE OF <NAME> MAY BE CHANGED BY EXECUTING
THE SEOUENCE "<OW-VALUE> , <NAME> D!".

20ROP <OW-VALUE> 2DROP
DROP THE TOP TWO VALUES FROM THE STACK. THE TOP TWO VAL'JES MAY
BE TWO SINGLE-WORD VALUES OR (USUALLY) A DOUBLE-WORD VALUE.

2DUP <OW-VALUE> 2DUP <OW-VALUE> <OW-VALUE>
DUPLICATE THE TOP TWO VALUES ON THE STACK. THE TOP TWO VALUES
MAY BE TWO SINGLE-WORD VALUES OR (USUALLY) A DOUBLE-WORD VALUE.

2LS <OW-VALUE> <SHIFT-COUNT> 2LS <OW-RESULT>
ROTATE THE <OW-VALUE> LEFT OR RIGHT. IF THE <SHIFT-COUNT> IS
POSIVIVE THE SHIFT IS A LOGICAL ROTATE LEFT WHILE IF THE
<SHIFT-CDUNT> IS NEGATIVE THEN THE SHIFT IS A LOGICAL ROTATE
RIGHT.

Feb. 1979 D-13

FORTH GLOSSARY

2M* <DW-VALUE> <VALUE> 2M* <OW-RESULT>

cOVER

2PICK

2ROLL

2ROT

MULTIPLY THE SINGLE-WORD VALUE ON TOP OF THE STACK BY THE
DOUBLE-WORD VALUE BELOW, LEAVING THE DOUBLE-WORD RESULT ON TOP
OF THE STACK. SEE M*.

<DW-VALUEl> <DW-VALUE2> 20VER
<DW-VALUEl> <DW-VALUE2> <OW-VALUEl>

PUSH A COpy OF <DW-VALUEl> ONTO THE TOP OF THE STACK, WITHOUT
REMOVING ANY WORDS FROM THE STACK.

<INDEX> 2PICK <DW-VALUE>
<INDEX> SPECIFIES A LOCATION ON THE STACK (1 SPECIFIES TH~ TOP
OF THE STACK, 2 IS THE NEXT CELL ON THE STACK, ETC) AND A COpy
OF THE DOUBLE-WORD VALUE STARTING AT THIS LOCATION IS PUSHED
ONTO THE TOP OF THE STACK. THE SEQUENCE "3 2PICK" IS EQUIVALENT
TO 20VER.

<INDEX> 2ROLL
<INDEX> SPECIFIES A DOUBLE-WORD POSITION ON THE STACK (1
SPECIFIES THE DOUBLE-WORD INTEGER ON TOP OF THE STACK, 2 THE
DOUBLE-WORD INTEGER BELOW, ETC) AND THIS DOUBLE-WORD VALUE IS
MOVED TO THE TOP OF THE STACK WITH ALL DOUBLE-WORD VALUES IN
BETWEEN BEING MOVED DOWN ONE POSITION.

<DW-VALUEl> <DW-VALUE2> <DW-VAlUE3> 2ROT
<OW-VALUE2> <DW-VALUE3> <OW-VALUE1>

ROTATE THE TOP THREE DOUBLE-WORD VALUES ON THE STACK.
<DW-VALUE1> IS MOVED TO THE TOP OF THE STACK, <DW-VALUE3> MOVES
FROM THE TOP TO THE SECOND POSITION AND <Dw-VALUE2> MOVES FROM
THE SECOND POSITION TO THE THIRD.

2SET <VALUE1> <ADDRESS1> <VALUE2> <ADORESS2> 2SET <NAME>

2SWAP

DEFINES THE WORD <NAME> WHICH, WHEN EXECUTED, WILL STORE
<VALUEl> AT <AODRE~Sl> AND <VALUE2> AT <ADORESS2>.

<DW-VALUE1> <DW-VALUE2> 2SWAP
<DW-VALUE2> <OW-VAlUE1>

SWAP THE TWO DOUBLE-WORD VALUES ON TOP OF THE STACK.

2VARIABLE <OW-VALUE> 2VARIABLE <NAME>

D-14

DEFINE THE ~ORD <NAME> WHICH, WHEN EXECUTED, WILL PUSH ONTO THE
STACK THE ADDRESS OF <NAME>'S VALUE. THE VALUE OF THE VARIABLE
IS INITIALIZED TO <OW-VALUE>. THE SEQUENCE "<NAME> D~" WILL
PUSH THE VALUE OF THE VARIABLE ONTO THE STACK AND THE SEQUENCE
"<OW-VALUE> <NAME> 01" WILL STORE <OW-VALUE> AS THE VARIABLE'S
NEW VALUE.

Feb. 1979

FORTH GLOSSARY

3()DIM <VALUE> 3()DIM <NAME>
DEFINES A VECTOR OF FLOATING-POINT VALUES. <VALUE> + 1
FLOATING-POINT CELLS OF MEMORY ARE ALLOCATED TO THE NAMED
VECTOR AND THEN LEGITIMATE INDICES WILL BE IN THE RANGE 0
THROUGH <VALUE>, INCLUSIVE. EXECUTING THE SEQUENCE "<INDEX>
<NAME>" WILL PUSH ONTO THE STACK THE ADDRESS OF THE S~ECIFIED
ENTRY IN THE VECTOR.

3DROP <FP-VALUE> 3DROP
DELETE THE TOP THREE VALUES FROM THE STACK. THE TOP THREE
VALUES USUALLY COMPRISE A SINGLE FLOATING-POINT NUMBER BUT MAY
ALSO CONSIST OF THREE SINGLE-WORD VALUES OR A DOUBLE-WORD VALUE
AND A SINGLE-WORD VALUE.

3DUP <FP-VAlUE> 30UP <FP-VAlUE> <FP-VAlUE>
DUPLICATE THE TOP THREE VALUES ON THE STACK. THE TOP THREE
VALUES USU~lLY COMPRISE A SINGLE FLOATING-POINT NUMBER BUT MAY
ALSO CONSIST OF THREE SINGLE-WORD VALUES OR A DOUBLE-WORD VALUE
AND A SINGLE-WORD VALUE.

30VER <FP-VALUE1> <FP-VALUE2> 30VER
<FP-VALUE1> <FP-VALUE2> <FP-VALUE1>

PUSH A COpy OF <FP-VALUE1> ONTO THE TOP OF THE STACK, WITHOUT
REMOVING ANY WORDS FROM THE STACK.

3PICK <INDEX> 3PICK <FP-VALUE>
<INDEX> SPECIFIES A LOCATION ON THE SlACK (1 SPECIFIES THE TOP
OF THE STACK, 2 IS THE NEXT CELL ON THE STACK, ETC) AND A COpy
OF THE FLOATING-POINT VALUE STARTING AT THIS LOCATIQN IS PUSHED
ONTO THE TOP OF THE STACK. THE SEQUENCE "4 3PICK" IS ECUIVALENT
TO 30VER.

3ROLL <INDEX> 3ROLL
<INDEX> SPECIFIES A FLOATING-POINT POSITION ON THE STACK (1
SPECIFIES THE FLOATING-POINT VALUE ON TOP OF THE STACK, 2 THE
FLOATING-POINT VALUE BELOW, ETC) AND THIS FLOATING-POINT VALUE
IS MOVED TO THE TOP OF THE STACK WITH ALL FLOATING-POINT VALUES
IN BETWEEN BEING MOVED DOWN ONE POSITION.

3ROT <FP-VALUEl> <FP-VALUE2> <FP-VALUE3> 3ROT
<FP-VALUE2> <FP-VALUE3> <FP-VALUEl>

ROTATE THE TOP THREE FLOATING-POINT VALUES ON THE STACK.
<FP-VALUEl> IS MOVED TO THE TOP OF THE STACK, <FP-VALUE3> MOVES
FROM THE TOP TO THE SECOND POSITION AND <FP-VALUE2> MOVES FROM
THE SECOND POSITION TO THE THIRD.

3SWAP <FP-VALUE1> <FP-VAlUE2> 3SWAP
<FP-VAlUE2> <FP-VALUEl>

SWAP THE TWO FLOATING-POINT VALUES ON TOP OF THE STACK.

Feb. 1979 D-15

FORTH GLOSSARY ! n# $ & I () * +, -./0123456789: ; <. >? cil A Z [\]"_

<NAME> ••• ;
START A COLON DEFINITION, THAT IS CREATE A DICTIONARY ENTRY
THAT WILL DEFINE <NAME> AS EQUIVALENT TO THE SEQUENCE OF WORDS
BETWEEN <NAME> AND THE SEMICOLON. THE COMPILATION MODE FLAG IS
SET AND THE CONTEXT VOCABULARY IS SET TO THE CURRENT
VOCABULARY. THE COLON DEFINITION IS TERMINATED BY THE
SEMICOLON.

:ORX :ORX ••• ;

. ,

. . , .

; ; S

;CODE

; S

D-16

INITIATES AN ANONYMOUS (ORPHAN) COLON DEFINITION, PLACING ITS
ADDRESS IN PSEUDO-VECTOR ENTRY X, FOR SUBSE~UENT ADOPTION dY
THE WORD ADOX. AN ANONYMOUS COLON DEFINITION IS SIMILAR TO A
STANDARD COLON DEFINITION, HOWEVER, IT MAY BE EXECUTED ONLY
FROM A COLON DEFINITION (USING ADOX) NOT FROM THE TERMINAL AND
THREE MEMORY CELLS ARE SAVED SINCE THE ANONYMOUS DEFINITION HAS
NO NAME. SEE ADOX AND P-VX.

(C ,P)
TERMINATE A COLON DEFINITION AND RESET THE COMPILATION MODE
FLAG.

(C,P) <NAME1> ••• ;: •••
TERMINATE A DEFINING WORD <NAME!>. THE DEFINING WORD <NAMEl>
CAN SUBSEQUENTLY BE EXECUTED TO DEFINE A NEW wORD, <NAME2>.
WHEN <~AME2> IS EXECUTED IT WILL CAUSE THE WORDS BETWEEN ;: A~D
; TO BE EXECUTED WITH THE CONTENTS OF THE FIRST PARAMETER OF
<NAME2> ON THE STACK.

ec) ;;S
THIS WORD MAY BE USED TO TERMINATE A COLON DEFINITION IN PLACE
OF ;. WHEN THE COLON DEFINITION TERMINATED BY ;;5 COMPLETES
EXECUTION (I.E. - THE WORD ;;S IS EXECUTED) THE LOADING OF THE
CURRENT BLOCK WILL TERMINATE AS IF THE WORD;S WERe EXECUTED.
THIS WORD IS NOT, IN GENERAL, EQUIVALENT TO THE SEQUENCE "i
is".

(e,?) <NAMEl> ••• ;CODE •••
STOP COMPILATION AND TERMINATE A DEFH!ING WORD, <NAME1>. THE
CONTEXT VOCABULARY IS SET TO THE ASSEMBLER VOCABULARY. WHEN
<NAMEl> IS EXECUTED TO DEFINE A NEW WORD <NAME2>, THE EXECUTION
ADDRESS OF <NAME2> WILL POINT TO THE ASSEMBLER CODE SEQUENCE
FOLLOWING THE ;CODE OF <NAME!>. SUBSEQUENT EXECUTION OF <NAME~>

WILL CAUSE THIS MACHINE CODE SEQUENCE TO BE EXECUTED.

(E)
STOP INTERPRETATION OF A SYMBOLIC BLOCK.

Feb. 1979

FORTH GLOSSARY

< <VALUE1> <VALUE2> < <LOGICAL-VALUE>
<- <VALUEl> <VALUE2> <. <LOGICAL-VALUE>
<> <VAlUEl> <VAlUE2> <> <LOGICAL-VALUE>
• <VAlUEl> <VALUE2> - <LOGICAL-VALUE>
> <VALUEl> <VALUE2> > <LOGICAL-VALUE>
>. <VAlUEl> <VALUE2> >- <LOGICAL-VALUE>

COMPARE <VALUE1> AND <VALUE2> ANQ LEAVE A <lOGICAL-VALUE> OF
TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE, OTHERWISE
LEAVE A <LOGICAL-VALUE> OF FALSE ON THE STACK. THE WORD <>
TESTS FOR NOT EQUAL.

«LX (A) <ADDRESS> «LX
FIX A MEMORY REFERENCE INSTRUCTION'S RELATIVE ADDRESS. SEE
»l X.

<T> (A)
A CONSTANT WHOSE VALUE IS THE ADDRESS OF A CORE LOCATION
AVAILABLE FOR TEMPORARY STORAGE. THE CONTENTS OF THIS CORE
LOCATION WILL BE SAVED DURING INTERRUPT PROCESSING.

-2 (A) =2 <ADDRESS>
PUSHES QNTO THE STACK THE STARTING ADDRESS OF A VECTOR OF
BINARY CONSTANTS USED INTERNAllY BY FORTH. DO NOT CHANGE THESE
VALUES. THESE VALUES ARE ALL IN LOW CORE AND ARE THEREFORE
USEFUL IN MACHINE LANGUAGE WORDS WHEN THE GIVEN CONSTANT NEEDS
TO BE REFERENCED BY A SINGLE WORD INSTRUCTION. THE CONSTANTS
AND HOW TO ACCESS THEM IS AS FOLLOWS:

-2 2 @ LEAVES 100000B ON THE STACK
-2 1- @ LEAVES 077777B ON THE STACK
=2 ~ LEAVES 2 ON THE STACK
-2 1+ ~ LEAVES 3 ON THE STACK
=2 2 + @ LEAVES 4 ON THE STACK
=2 3 + @ LEAVES 5 ON THE STACK
=2 4 + @ lEAVES 6 ON THE STACK
-2 5 + @ LEAVES 7 ON THE STACK

Feb. 1979 D-17

FORTH GLOSSARY !"#$&' ()*+,-./0123456789: ;<:O>?Q)AZC\]"_

»LX (A)

>BC(J

A WORD USED IN GENERATING MACHINE LANGUAGE FORWARD REFERENCES.
THE CURRENT VALUE OF THE DICTIONARY POINTER IS STORED IN THE
CORRESPONDING PSEUDO-VECTOR TABLE ENTRY (SEE P-VX) AND A VALUE
OF ZERO IS PUSHED ONTO THE STACK. THE ADDRESS THAT IS SAVED IN
THE PSEUDO-VECTOR TABLE IS ASSUMED TO POINT TO A VARIAN ~EMORY
REFERENCE INSTRUCTION. THE VALUE OF ZERO THAT IS PUSHED ONTO
THE STACK WILL THEN BE USED AS THE MEMORY ADDRESS OF THE MEMORY
REFERENCE INSTRUCTION, GUARANTEEING THAT THf SINGLE-WORD
VERSION OF THE INSTRUCTION WILL BE GENERATED. THE WORD «LX
MUST THEN BE EXECUTED LATER IN THE COMPILATION TO CHANGE THE
MEMORY REFERENCE INSTRUCTION TO AN ADDRESSING MODE OF 4
(RELATIVE TO THE P REGISTER) AND TO SET THE RELATIVE ADDRESS OF
THE INSTRUCTION TO THE DIFFERENCE OF THE SPECIFIED ADDRESS (THE
<ADDRESS> PUSHED ONTO THE STACK BEFORE «lX IS EXECUTED) AND
THE MEMORY ADDRESS THAT »LX STORED IN THE PSEUDO VECTOR TABLE.
THIS lENGTHY PROCEDURE IS REQUIRED TO GENERATE FORWARD
REFERENCES USING FORTH'S SINGLE PASS STRUCTURE AND THE VARIAN
MACHINE INSTRUCTIONS.

A VARIABLE WHOSE VALUE SPECIFIES WHETHER THE 7-TRACK MAG TAPE
INPUT AND OUTPUT IS TO BE BINARY OR BCD. A VALUE OF ZERO
SPECIFIES BINARY (3 TAPE FRAMES PER WORD, ALL 16-BITS OF EVERY
WORD WITH TWO HIGH ORDER BITS OF ZERO) WHILE A NON-ZERO VALUE
SPECIFIES BCD (2 TAPE FRAMES PER WORD, LEAST SIGNIFICANT
12-BITS OF EVERY WORD). THE DEFAULT VALUE OF >BCO IS ZERO AND
AFTER EVERY INPUT OR OUTPUT THE VALUE IS RESET TO ZERO. SEE
MTR, MTREAD, MTW AND MTWRITE.

>R eC) <VALUE> >R

?

PUSH <VALUE> ONTO THE RETURN STACK. SEE I AND R>.

<ADDRESS> ?
PRINT THE VALUE CONTAINED AT <ADDRESS> ON THE
DEVICE (USUALLY THE OPERATOR'S TERMINAL),
CONVERTED ACCORDING TO THE CURRENT NUMBER BASE.
THE SEQUENCE n<ADDRESS> @ .".

CURRENT OUTPUT
FREE FORMAT,

EQUIVALENT TO

?DEF (OLD) ?DEF <NAME> <LOGICAL-VALUE>
RENAMED FIND.

?DUP <VALUE> ?DUP IF ••• THEN
IF <VALUE> IS NON-ZERO (wHICH WILL BE INTERPRETED AS A LOGICAL
VALUE OF TRUE) THEN <VALUE> IS DUPLICATED ON THE STACK,
OTHERWISE <VALUE> IS NOT DUPLICATED. USE OF THIS WORD ALLOWS
ONE TO OMIT THE "ELSE DROP" CLAUSE FORM THE IF STATEMENT, WHEN
IT IS DESIRED TO EXECUTE THE IF STATEMENT ONLY IF <VALUE> IS
NON- ZE RO.

D-18 Feb. 1979

FORTH GLOSSARY

?EOF ?EOF <LOGICAL-VALUE>

?LEFT

TESTS THE MAG TAPE AND RETURNS A <LOGICAL-VALUE> OF TRUE IF THE
TAPE IS CURRENTLY POSITIONED AT AN END-OF-FILE MARK.

?LEFT <CELLS>
CALCULATES THE NUMBER OF MEMORY CELLS LEFT IN THE MEMORY
OVERLAY REGION.

?MTREADY ?MTREADY <LOGICAL-VALUE>
TESTS THE MAG TAPE FOR READY AND ONLINE ,hND IF THE TAPE DRIVE
IS NOT READY THE MESSAGE "TAPE NOT READY" WILL BE OUTPUT TO THE
TERMINAL AND THE WORD wAITS FOR THE TAPE DRIVE TO BE PLACED
ONLINE.

?ON ?ON <LOGICAL-RESULT>
PUSH A <LOGICAL-RESUL T> OF TRUE ONTO THE STACK IF THE LAST
TOGGLE OF ANY CAMAC DISPLAY PANEL PUSHBUTTON'S STATUS BIT
TURNED THE STATUS BIT ON, OTHERWISE A <LOGICAL-RESULT> OF FALSE
IS PUSHED ONTO THE STACK. SEE PBARRAY, PLARRAY, PL TOGGLE,
PSTOGGLE, PTOGGLE, ON! AND OFF!.

?PB <PUSHBUTTON#> ?PB <LOGICAL-RESULT>
PUSH A <LOGICAL-RESULT> OF TRUE ONTO THE STACK IF THE SPECIFIED
CAMAC DISPLAY PANEL PUSHBUTTON'S STATUS BIT IS SET, OTHERWISE A
<LOGICAL-RESULT> OF FALSE IS PUSHED ONTO THE STACK.
<PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0 THROUGH 31. SEE
PBARRAY, ON!, OfF!, PSTOGGLE AND PTOGGLE.

1Q 1Q <LOGICAL-VALUE>
A CAMAC WORD TO TEST THE Q-RESPONSE. THE <LOGICAL-VALUE> PUT ON
THE STACK CO~RESPONDS TO WHETHER THE Q-RESPONSE IS TRUE OR
FALSE.

?TER ?TER <CHAR-CODE>
PUSHES ONTO THE STACK THE 7-8IT ASCII CHARACTER CODE OF THE
LAST CHARACTER ENTERED AT THE TERMINAL, OR ZERO IF NO CHARACTER
HAS BEEN ENTERED. SEE APPENDIX A FOR A LISTING OF THE ASCII
CODES.

@ <ADDRESS> @ <VALUE>

@I10

FETCH THE CONTENTS OF THE MEMORY LOCATION <ADDRESS> AND PUSH IT
ONTO THE STACK.

RESTORES THE SYSTEM FLAGS AND PARAMETERS THAT WERE SAVED BY
!I/O, PRIOR TO PERFORMING 110 FROM AN INTERRUPT HANDLING WORD.
@I/O INCLUDES THE EXECUTION OF FRESTORE. SEE !I/O.

@STATE ~STATE <LOGICAL-VALUE>
PUSHES ONTO THE STACK A LOGICAL-VALUE WHICH IS TRUE ONLY IF
FORTH IS IN COMPILATION MODE. THIS WORD IS USEFUL O~LY IN
COMPILER DIRECTIVE WORDS.

Feb. 1979 D-19

A+

A-

A-SAVE

AO

ABORT

FORTH GL(]SSARY !"It$&' ()*+,-./0123456789: j<->?@AZ(\)"_

(A)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP CONDITION FOR THE "A
REGISTER >. 0" TEST. USUALLY FOLLOWED BY IF, END, JIF, JIFM, OR
XIF,. REFER TO PAGE 20-18 OF THE VARIAN HANDBOOI<. SEE NOT.

(A)
A CONSTANT WHOSE VALUE SPECIFIES THE JUMP-CONDITION FOR THE "A
REGISTER < 0" TEST. USUALLY FOLLOWED BY IF, END, JIF, JIFM, OR
XIF,. REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK. SEE NOT.

A-SAVE <NAME>
WRITES THE CURRENT OVERLAY TO DISC, STARTING AT THE BLOCK
NUMBER CONTAINED IN THE VARIABLE O-BLK. O-BLK IS THEN UPDATED
ACCORDINGLY. <NAME> IS ENTERED INTO THE DICTIONARY SUCH THAT
SUBSEQUENT EXECUTION OF <NAME> WILL PUSH THE STARTING BLOCK
NUMBER OF THE OVERLAY ONTO THE STACK (SEE O-LOAD). SEE O-SAVE.

(A)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP-CONDITION FOR THE "A
REGISTER" Oft TEST. USUALLY FOLLOWED BY IF, END, JIF, JIFM, OR
X IF,. REF E R TOP AGE 20-18 0 F THE V A R I AN HAN DBa OK. SEE NO T •

ENTF.R THE ABORT SEQUENCE WHICH WILL CLEAR BOTH THE STACK AND
THE RETURN STACK, PRINT THE ABORT MESSAGE "?S" AND RETURN
CONTROL TO THE OPERATOR'S TERMINAL. SEE OUIT.

ABORT (A)
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE TO PRODUCE A "?O" ABORT MESSAGE. THE NORMAL SEQUENCE IS
"ABORT JMP,", HOWEVER, THE FOLLOWING SEOUENCES WILL PRODUCE THE
SPECIFIED ABORT:

ABORT 1- JMP, WILL PRODUCE ?R ABORT
ABORT 2 - JMP, WILL PRODUCE 1S ABORT
ABORT 3 - JMP, WILL PRODUCE ?T ABORT
ABORT 4 - JMP, WILL PRODUCE ?U ABORT
ABORT 5 - JMP, WILL PRODUCE ?V ABORT
ABORT 6 - JMP, WILL PRODUCE ?W ABORT
ABORT 7 - JMP, WILL PRODUCE ?X ABORT
ABORT 10 - JMP, WILL PRODUCE ?Y ABORT
ABORT 11 - JMP, WILL PRODUCE ?Z ABORT

ABS <VALUE> ASS <RESULT>
FORM THE ABSOLUTE VALUE OF <VALUE> AND LEAVE IT ON THE STACK.

ACURSOR ACURSOR <STATUS> <Y-POSN> <X-POSN>
TURNS ON THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
TO ENTER ANY CHARACTER. THREE SINGLE-WORD INTEGERS ARE
RETURNED, THE X AND Y POSITIONS OF THE CURSORS AND THE 4010
STATUS WORD.

ADD, (A) <ADDRESS> ADO,

D-20

THE ASSEMBLER MNEMONIC FOR THE VARIAN ADO lNSTRUCTION (ADD
MEMORY TO THE A REGISTER).

Feb. 1979

FORTH GLOSSARY

ADOPT

ADOX

(A) <ADDRESS> ADM,
AN ASSEMBLE? MACRO WHICH GENERATES A SEQUENCE OF MACHINE
INSTRUCTIOt\lS TO ADD THE CONTENTS OF THE A REGISTER TO THE
CONTENTS OF THE SPECIFIED MEMORY LOCATION. THE SEQUENCE OF
INSTRUCTIONS GENERATE IS ADD AND STA.

(OLD) ADOPT
SAME AS , EXECPT THAT ADOPT IS A COMPILER DIRECTIVE.

(C) ADoX
ADOPT AN ANONYMOUS COLON DEFINITION OR CODE DEFINITION OY
PLACING THE ADDRESS CONTAINED IN PSEUDO-VECTOR ENTRY X INTO THE
DICTIONARY. SEE P-VX, :ORX AND ORCX.

ANA, (A) <ADDRESS> ANA,

AND

ASH 1FT

ASLB,

ASR,

ASRB,

THE ASSEMBLER MNEMONIC FOR THE VARIAN ANA INSTRUCTION (LOGICAL
AND MEMORY WITH THE A REGISTER).

<VALUE1> <VAlUE2> AND <RESULT>
CALCULATE THE BITWISE LOGICAL-AND OF <VAlUE1> AND <VAlUE2>,
LEAVING THE RESULT ON THE STACK.

<OW-VALUE> <SHIFT-COUNT> ASHIFT <DW-RESULT>
ARITHMETIC SHIFT THE <Ow-VALUE>, LEFT FOR A POSITIVE
<SHIFT-COUNT> AND RIGHT FOR A NEGATIVE <SHIfT-COUNT>. THIS WORD
MAY BE USED TO MUL TIPL Y AND DIVIDE A DOUBLE-WORD VALUE BY A
POWER OF 2.

(A) <SHIFT-COUNT> ASL,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASLA INSTRUCTION
(ARITHMETIC SHIFT LEFT THE A REGISTER).

(A) <SHIFT-COUNT> ASLB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASLB INSTRUCTION
(ARITHMETIC SHIFT LEFT THE B REGISTER).

(A) <SHIFT-COUNT> ASR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASRA INSTRUCTION
(ARITHMETIC SHIFT RIGHT THE A REGISTER).

(A) <SHIFT-COUNT> ASRB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASRB INSTRUCTION
(ARITHMETIC SHIFT RIGHT THE B REGISTER).

ASK (OLD) ASK <VALUE>
REQUEST THE INPUT OF A NUMBER FROM THE TERMINAL.

ASSEMBLER (P)
SWITCH THE CONTEXT POINTER SO THAT DICTIONARY SEARCHES WILL
BEGIN IN THE ASSEMBLER VOCABULARY. THE ASSEMBLER VOCABULARY IS
ALWAYS CHAINED TO THE CURRENT VOCABULARY.

Feb. 1979 D-21

FORTH GLOSSARY : "# $ 6. I () *+, -.10123456789: ; < .. >? @AZ [\]" _

B! <VALUE> <BYTE-ADDRESS> B!
STORE THE LEAST SIGNIFICANT 8-BITS OF <VALUE> AT THE BYTE OF
MEMORY POINTED TO BY <BYTE-ADDRESS>.

B) (A)
SETS THE VARIABLE MODE TO 6, SPECIFYING INDEXING OFF lHE B
REGISTER FOR THE NEXT MEMORY REFERENCf. INSTRUCTION.

B. <VALUE> B.
BINARY OUTPUT. OUTPUT <VALUE> AS A BINARY (BASE 2) NUMBER,
UNSIGNED AND PRECEDED BY A BLANK ON THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). THE FORMAT SPECIFICATIONS
GIVEN BY THE VARIA3LES FLD AND DPL ARE OBSERVED. BASE IS NOT
CHANGED.

8@ <BYTE-ADDRESS> B~ <RESULT>
FETCH THE 8-BIT BYTE FROM THE BYTE OF MEMORY POINTED TO BY
<BYTE-ADDRESS> AND LEAVE THIS BYTE ON THE STACK. THE HIGH ORDER
8 BITS OF <RESULT> WILL ALWAYS BE ZERO.

BO (A)

BASE

BEGIN

BEGIN,

BELL

D-22

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP-CONDITION FOR THE "B
REGISTER .. 0" TEST. USUALLY FOLLOWED BY IF, END, JIF, JIFM, OR
XIF,. REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK. SEE NOT.

A VARIABLE CONTAINING THE CURRENT NUMBER CONVERSION BASE. THE
WORD DECIMAL SETS BASE TO 10, OCTAL SETS BASE TO 8, HEX SETS
BASE TO 16, ETC.

(CQ+,P) BEGIN ••• <LOGICAL-VALUE> END
BEGIN ••• <LOGICAL-VALUE> WHILE ••• REPEAT

BEGIN MARKS THE START OF A SEQUENCE OF WORDS THAT ARE TO BE
EXECUTED REPEATEDLY UNTIL A SPECIFIED CONDITION IS TRUE. IF THE
BEGIN-END FORM IS USED, All THE WORDS BETWEEN THE BEGIN AND THE
END ARE EXECUTED REPEATEDLY UNTIL THE <LOGICAL-VALUE> IS TRUE,
AT WHICH POINT THE WORDS FOLLOWING THE END ARE EXECUTED. IF THE
BEGIN-WHILE-REPEAT FORM IS USED THE WORDS BETWEEN THE BEGIN A~D
THE REPEAT ARE EXECUTED REPEATEDLY AS LONG A~ THE
<LOGICAL-VALUE> ENCOUNTERED BY WHILE IS TRUE. WHEN WHILE
ENCOUNTERS A FALSE <LOGICAL-VALUE> THE LOOP IS EXITED
IMMEDIATELY. THESE LOOPS MAY BE NESTED.

(A) BEGIN, ••• <JUMP-CONDITION> END,
BEGIN, MARKS THE START OF A SEQUENCE OF MACHINE INSTRUCTIONS
THAT ARE TO BE EXECUTED REPEATEDLY UNTIL THE SPECIFIED
<JUMP-CoNOITIoN> IS TRUE. <JUMP-CONDITION> IS USUALLY SPECIFIED
BY ONE OF THE WORDS A+, A-, AQ, BO OR OV. BEGIN,-END, lOOPS MAY
Bt: NESTED.

ACTIVATE THE TERMINAL BELL OR NOISEMAKER, AS APPROPIATE FOR THE
TERMINAL DEVICE.

Feb. 1979

FORTH GLOSSARY

BINARY

BINEX

BK

BKS P

BL

BLANK

BLK

BLOCK

BLOCt<-A5K

(A)
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO POP TwO WORDS OFF THE STACK AND THEN PUSH
THE CONTENTS OF THe A REGISTER ONTO THE STACK. THE SEQUENCE
"BINARY 1-" LEAVES THE ADDRESS OF THE INTERPRETER ROUTINE TO
POP THREE WORDS OFF THE STACK AND THEN PUSH THE CONTENTS OF THE
A REGISTER ONTO THE STACK. THE NORMAL SEQUENCE IS EITHER
"BINARY JMP," OR "BINARY 1- JMP,".

A VARIABLE USED TO HOLD THE BINARY EXPONENT OF A FLOATING-POINT
NUMBER BY THE FLOATING-POINT ROUTINES.

INITIATE THE BACKSPACING OF A SINGLE MAG TAPE RECORD AND RETURN
IMMEDIATELY. SEE BKSP.

INITIATE THE BACKSPACING OF A SINGLE MAG TAPE RECORD AND WAIT
FOR THE OPERATION TO COMPLETE. SEE BK.

A CONSTANT WHOSE VALUE IS 32 (409)' NM1ElY AN ASCII SPACE.

(OLD)
RENAMED SPACE.

A VARIABLE CONTAINING THE NUMBER OF THE GLOCK BEING LISTED OR
EDITED.

<8LOCK#> BLOCK
FETCH THE SPECIFIED BLOCK
OF FO~THIS 9LOCK BUFFERS.
BLOCK IS THEN RETURNED ON
ALREADY IN MEMORY THEN
STORAGE. SEE HBLOCK.

<ADDRESS>
FROM DISC OR TAPE AND LEAVE IT IN ONE

THE STARTING MEMORY ADDRESS OF THE
THE STACK. IF THE SPECIFIED BLOCK IS
IT NEED NOT BE READ IN FROM SECONDARY

SETS A FLAG 50 THAT THE NEXT USE OF ANY ASKING WORD (SASK, DASK
OR FASK) WILL FETCH CHARACTERS FROM THE BLOCK OUFFER RATHt:R
THAN THE TERMINAL. SEE TERMINAL-ASK.

BLOCK-WORD (OLD)
RENAMED BLOCK-ASK.

BLoCKPRINT <START-BLOCK#> <END-BLOCK#> BLoCKPRINT

Feb. 1979

OUTPUT THE SPECIFIED SEQUENCE OF BLOCKS TO THE LINE PRINTER.
THE AP?ROPIATE LINE PRINTER CODE MUST HAVE PREVIOUSLY BEEN
LOADED (SEE UTIL AND PRINTERS).

0-23

FORTH GLOSSARV

ONOT (OLD)

BOLDFACE

RENAMFD COM.

INCREASE THE SIZE OF THE CHARACTERS PRINTED BV THE LINE
PRINTER. THIS WORD IS DEVICE DEPENDENT.

BOXGRID <X-PHYSICAL-ORIGIN> <X-LOGICAL-ORIGIN> <X-LOGICAL-MAX>
<X-PHYSICAL-SIZE> <V-PHVSICAL-ORIGIN> <Y-LOGICAL-ORIGIN>
<Y-LOGICAL-MAX> <V-PHYSICAL-SIZE> BOXGRID

BRACKET

DEFINES A LOGICAL COORDINATE SVSTEM FOR THE 4010 BASED ON THE
EIGHT FLOATING-POINT PARAMETERS. IN ADDITION, A BOX IS DRAWN TO
SURROUND THE PLOT AND THE AXES ARE LABELLED. THE
PHVSICAL-ORIGIN AND THE PHYSICAL-SIZE ARE GIVEN IN PHYSICAL
COORDINATES (0.0 THROUGH 1023.0 FOR X; 0.0 THROUGH 780.0 FOR
V). THE LOGICAL-ORIGIN AND THE LOGICAL-MAX ALLOWS THE USER TO
IMPLICITLY DEFINE A LOGICAL COORDINATE SYSTEM WHICH THEN MAPS
INTO THE SPECIFIED PHYSICAL COORDINATE SYSTEM. SEE LPLOT AND
PPLOT.

ORACKET <NAME>
SEARCHES THE DICTIONARY FOR <NAME> AND OUTPUTS THE
ADDRESS AND THE THREE CHARACTER/COUNT IDENTIFIERS OF
WORDS THAT PRECEDE <NAME> IN THE DICTIONARY AND THE
THAT ~OLLOW <NAME> IN THE DICTIONARY.

DICTIONARY
THE FOUR

FOUR WORDS

BT, (A) <ADDRESS> <VALUE> BT,

BUFFER

BYTE

D-24

THE ASSEMBLER MNEMONIC FOR THE VARIAN BT INSTRUCTION (BIT
TEST).

<BLOCK#> BUFFER <ADDRESS>
OBTAIN A CORE BUFFER FOR THE SPECIFIED BLOCK AND LEAVE THE
STARTING ADDRESS OF THE BUFFER ON THE STACK. THE BLOCK IS ~OT
READ FROM DISC AND IS AUTOMATICALLY MARKED AS UPDATED (I.E.
THE CO~TE~TS OF THE CORE BUFFER WILL BE WRITTEN ONTO DISC OR
TAPE WHEN THE BUFFER SPACE IS NEEDED FOP ANOTHER BLOCK). USE
THIS WORD RATHER THAN BLOCK WHEN AN ENTIRE BLOCK IS GOING TO 3E
RE-WRITTEN, TO REDUCE DISC ACCESSES.

<ADDRESS> BYTE <BYTE-ADDRESS>
CONVERT THE MEMORY <ADDRESS> TO A BYTE-ADDRESS AND LEAVE THE
BYTE-ADDRESS ON THE STACK. THIS CONVERSION IS A LOGICAL ROTATE
OF THE MEMORY ADDRESS ONE BIT LEFT. NOTE THAT THIS WORD IS
EQUIVALENT TO A MULTIPLICATION BY 2 ONLY IF THE MULTIPLICAND IS
POSITIVE. IF THE MULTIPLICAND IS NEGATIVE THEN A LOGICAL ROTATE
LEFT IS NOT EQUIVALENT TO A MULTIPLICATION BY 2.

Feb. 1979

FORTH GLOSSARY !"#$f.' ()*+,-.10123456789: j< .. >?@AZC\]"'_

C.ORG
A VARIABLE WHOSE VALUE SPECIFIES THE STARTING ADDRESS OF A
BUFFER CONTAINING THE DOUBLE-WORD DATA POINTS FOR AN FFT. SEE
DFoURTRAN, DINVTRAN AND LENGTH.

CASE (C2+,P) <VALUEl> <VALUE2> CASE ••• THEN
<VALUE1> <VALUE2> CASE ••• ELSE ••• THEN

IF <VALUEl> EQUALS <VALUE2>, DROP BOTH <VALUEl> AND <VALUE2>
AND EXECUTE THE WORDS DIRECTLY FOLLOWING CASE, UP TO THE NEXT
ELSE OR THEN. IF <VALUE1> DOES NOT EQUAL <VALUE2> THEN <VALUE2>
IS DROPPED BUT <VALUE1> IS LEFT ON THE STACK AND THE WORDS
FOLLOWING THE ELSE (OR THE THEN, IF NO ELSE IS PRESENT) A~E

EXECUTED. NOTE THAT EVERY CASE MUST HAVE A TERMINATING THEN.
CASE IS EQUIVALENT TO THE SEQUENCE "OVER:: IF DROP". CASE IS
USED TO COMPARE <VALUE1> AGAINST A LIST OF POSSIBLE VALUES, FOR
EXAMPLE:
<VALUE1> <VALUE2> CASE (ACTION FOR <VAlUE2» ELSE

<VALUE3> CASE (ACTION FOR <VALUE3» ELSE
<VALUE4> CASE (ACTION FOR <VALUE4» ELSE

ELSE (NOT EQUAL TO ANY OF THE ABOVE)
THEN THEN THEN THEN

CELL <BYTE-ADDRESS> CELL <ADDRESS>
CONVERT THE <BYTE-ADDRESS> TO ITS MEMORY ADDRESS, LEAVING THE
MEMORY ADDRESS ON THE STACK. THIS CONVERSION IS A LOGICAL SHIFT
OF THE BYTE-ADDRESS ONE BIT RIGHT. NOTE THAT THIS WORD IS
EQUIVALENT TO A DIVISION ~Y 2 ONLY IF THE DIVIDEND IS POSITIV~.
IF THE DIVIDEND IS NEGATIVE THEN A LOGICAL SHIFT RIGHT IS NOT
EQUIVALENT TO A DIVISION BY 2.

CHAIN CHAIN <NAME>
CONNECT THE CUPRENT VOCABULARY TO ALL DEFINITIONS THAT MIGHT BE
ENTERED INTO VOCABULARY <NAME> IN THE FUTURE. THE CURRENT
VOCABULt\~Y MAY NOT BE FORTH OR ASSEMBLER. ANY GIVEN VOCAI3ULARY
MAY ONLY BE CHAINED ONCE BUT MAY BE THE OBJECT OF ANY NUMBER OF
CHAININGS. FOR EXAMPLE, EVERY USER-DEFINED VOCABULARY MAY
INCLUDE THE SEQUENCE "CHAIN FORTH".

CHAR <MAX#CHARACTERS> CHAR <NAME>
DEFINE A CHARACTER STRING. ENOUGH ROOM IS ALLOCATED FOR
<MAX#CHARACTERS> AND THE DICTIONARY ENTRY IS IDENTIFIED BY
<NAME>. <MAX#CHARACTERS> IS SAVED IN THE DICTIONARY ENTRY FOR
<NAME> SO THAT ONE CAN ALWAYS DETERMINE THE MAXIMUM NUMBER OF
CHARACTERS THE STRING MAY HOLD, REGARDLESS OF THE NUMBER OF
CHA~ACTERS CU~RENTLY CONTAINED IN THE STRING. SUBSEQUENT
EXECUTION OF <NAME> WILL PUSH ONTO THE STACK THE ADDRESS OF THE
FIRST TWO BYTES OF THE CHARACTER STRING (THE COUNT BYTE AND THE
FIRST CHARACTER), AS REQUIRED, FOR EXAMPLE, BY COUNT. SEE
CMoVE.

Feb. 1979 D-25

FORTH GLOSSARY !"#$f:' ()*+,-.10123456789: ;<:a>?@Al[\)"_

CHCURSOR CHCURSOR <Y-POSN> <X-POSN>
TURNS ON THE 4010 CROSS HAIR CURSORS AND ~AITS FOR THE OPERATOR
TO ENTER ANY CHARACTER. TWO SINGLE-WORD INTEGERS ARE RETURNED,
THE X AND Y POSITIONS OF THE CURSORS.

CHFETCH CHFETCH <CHAR-CODE>
RETURNS THE CHARACTER WHICH IS STORED IN THE BYTE POINTED TO BY
THE BYTE-ADDRESS IN IP. IP IS ALSO INCREMENTED.

CIA, CA) <DEVICE-CODE> CIA,

CIB,

CMOVE

CODE

COM

COMP,

THE ASSEMBLER MNEMONIC FOR THE VARIAN CIA INSTRUCTION (CLtAR
AND INPUT TO THE A REGISTER).

(A) <DEVICE-CODE> CIB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN CIS INSTRUCTION (CLEAR
AND INPUT TO THE B REGISTER).

<SOURCE-ADDRESS> <DESTINATION-ADDRESS> CMOVE
MOVE A CHARACTER STRING FROM THE SPECIFIED SOURCE ADDRESS TO
THE SPECIFIED DESTINATION ADDRESS •. THE DESTINATION ADDRESS IS
ASSUMED TO POINT TO THE DICTIONARY ENTR Y FOR A WORD DEFINED AS
A FORTH CHARACTER STRING (SEE CHAR). THE DICTIONARY ENTRY FOR
THE DESTINATION FIELD WIll THEN SPECIFY THE MAXIMUM NUMBER OF
CHARACTERS THAT THE STRING MAY HOLD AND ANY EXCESS CHARACTERS
IN THE SOURCE FIELD WILL NOT BE MOVED. BOTH <SOURCE-ADDRESS>
AND <DESTINATIO~-ADDRESS> MUST POINT TO THE FIRST TWO BYTES OF
THEIR RESPECTIVE CHARACTER STRINGS (THE COUNT BYTE AND THE
FIRST CHARACTER).

CODE <NAME>
CREATE A DICTIO~ARY ENTRY DEFINING <NA~E> AS EQUIVALENT TO THE
SEQUF.NCE OF ASSEMBLER CODE THAT FOLLOWS <NAME>. THE CONTEXT
VOCABULARY IS SET TO ASSEMBLER. IT IS VERY IMPORTANT TO
REMEMBER THAT FORTH'S COMPILATION FLAG IS NOT SET WHILE
ASSEMBLI~G MACHINE CODE INSTRUCTIONS, THAT IS, FORTH REMAINS IN
E X E CUT ION MODE.

<VALUE> COM <RESULT>
FORM THE ONES-COMPLEMENT OF <VALUE> AND LEAVE IT ON THE ST~CK.

(A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN COMP INSTRUCTION
(COMPLEMENT AND COMBINE REGISTERS).

CONSTANT <VALUE> CONSTANT <NAME>

CONTEXT

D-26

DEFINE A WORD <NAME> WHICH WHEN EXECUTED WILL PUSH ITS
SINGLE-WORD VALUE ONTO THE STACK. THE VALUE OF <NAME> IS
I NIT I A LIZ EDT 0 < V A L U E > • THE < V A L U E > OF THE CON S TAN T MAY B E
CHANGED BY THE SEQUENCE "<NEW-VALUE> • <NAME> !".

A VARIABLE CONTAINING A POINTER TO THE VOCABULARY IN WHICH
DICTIONARY SEARCHES ARE TO BEGIN. SEE CURRENT.

Feb. 1979

FORTH GLOSSARY ! U#$E:' () *+, -./0123456789: ; <. > ?Q)AZ[\ JA_

CONTINUED (E) <BLOCK#> CONTINUED

COUNT

CONTINUE INTERPRETATION WITH THE SPECIFIED BLOCK. THE SEQUENCE
"1 +BLOCK CONTINUED" CONTINUES INTERPRETATION WITH THE NEXT
BLOCK.

<ADDRESS> COUNT <COUNT>
<ADDRESS> POINTS TO THE FIRST TWO BYTES OF A FORTH CHARACTER
STRING AND COUNT WILL RETURN THE NUMBER OF CHARACTERS IN THE
STRING ON TOP OF THE STACK AND THE BYTE-ADDRESS OF THE STRING
WILL f3E STORED IN IP. IT IS ASSUMED THAT THE FIRST BYTE OF THE
STRING IS THE CHARACTER COUNT AND THE ACTUAL STRING STARTS WITH
THE SECOND BYTE. THIS WORD IS USUALLY FOLLOWED BY EITHER WRITE
OR T YP E •

(A)
THE ASSEMBLER MNEMONIC FOR THE
(COMPLE~ENT THE A REGISTER).

VARIAN CPA INSTRUCTION

CPU (A) <VALUE> CPU <NAME>

CR

CRATE

DEFINE <NAME> AS A SINGLE-WORD MACHINE INSTRUCTION WHOSE
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
IT WILL REQUIRE NO PARAMETERS ON THE STACK AND <VALUE> WILL BE
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION. SEE Dl, 10
AND MIC PU.

OUTPUTS A CARRIAGE-RETURN, LINE-FEED TO THE CURRENT OUTPUT
DEVICE (USUALLY THE OPERATOR'S TERMINAL).

A VARIABLE USED BY THE CAMAC WORDS TO CONTAIN THE CRATE NUMBER
FOR CAMAC DEFINITIONS WHICH ARE BEING COMPILED INTO THE
DICTIONARY. THE DEFAULT VALUE OF THIS VARIABLE IS 1.

CUR (T)

CURRENT

A VARIABLE CONTAINING THE PHYSICAL RECORD NUMBER BEFORE WHICH
THE MAG TAPE IS CURRENTLY POSITIONED. REWIND SETS CUR TO ZERO.

A VARIABLE CONTAINING A POINTER TO THE VOCABULARY INTO WHICH
NEW WORDS ARE TO BE ENTERED. THE SEQUENCE "CURRENT @ @" lEAVES
THE LINK ADDRESS OF THE NEXT ENTRY TO BE DEFINED.

CURSE CURSE <CHAR-CODE> <Y-POSN> <X-POSN>
TURNS O~ THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
TO ENTER ANY CHARACTER. THE CURSOR POSITION IS SAVED IN ICURSE.
<X-POSN> AND <Y-POSN> ARE FLOATING-POINT VALUES SPECIFYING THE
PHYSICAL POSITION OF THE CURSOR CROSS HAIR AND <CHAR-CODE> IS
THE ASCII CHARACTER CODE FOR THE CHARACTER THAT THE OPERATOR
E~TERED. THE TERMINAL IS PUT BACK INTO ALPHA MODE WITH THE
CURSOR AT THE SAVED POSITION.

Feb. 1979 D-27

FORTH GLOSSARY ! U#$&' () *+,-.10123456769:; <=>?ilAZ(\]"_

D (OLD)
A VARIABLE SPECIFYING EITHER THE NUMBER OF DIGITS TO THE RIGHT
OF THE RADIX POINT IN THE LAST NUMBER INPUT (A NEGATIVE VALUE
IF THERE WAS NO RADIX POINT ENTERED) OR THE NUMBER OF DIGITS TO
FOLLOW THE RADIX POINT IN THE NEXT NUMBER TO BE OUTPUT.
REPLACED ~Y #0 FOR INPUT AND DPL FOR OUTPUT.

01 <OW-VALUE> <ADDRESS> 01
STORE <OW-VALUE> STARTING AT THE SPECIFIED MEMORY ADDRESS.

0* <OW-FRACTIoN1> <OW-FRACTION2> D* <OW-FRACTION-RESULT>
MULTIPLY TH~ TWO DOUBLE-WORD FRACTIONS LEAVING THE RESULT, A
DOUBLE-WORD FRACTION ON THE STACK. NOTE THAT THE MULTIPLICATION
OF TWO FRACTIONS WILL ALWAYS GENERATE A FRACTIONAL RESUL T. NOTE
THAT THIS WORD DOES NOT MULTIPLY DOUBLE-WORD INTEGERS BUT
MULTIPLIES DOUBLE-WORD FRACTIONS.

0*1 <OW-VALUE> <VALUEl> <VALUE2> 0*1 <OW-RESULT>
MULTIPLY <OW-VALUE> BY <VALUE!> AND THEN DIVIDE THE RESULT BY
<VAlUE2>, LEAVING THE RESULT, A DOUBLE-WORD INTEGER, ON THE
STACK.

D+ <DW-VALUEl> <DW-VAlUE2> 0+ <DW-RESUlT>
DOUBLE-WORD INTEGER ADDITION, LEAVING THE RESULT ON THE STACK.

0- <OW-VALUEl> <DW-VALUE2> D- <OW-RESULT>
DOUBLE-WORD INTEGER SUBTRACTION, LEAVING THE RESULT,
<DW-VALUEl> - <DW-VALUE2>, ON THE STACK.

D-H (T)

LOADS THE DISC HANDLERS. SEE UTIL.

D. <OW-VALUE> D.

01

D-28

DOUBLE-WORD INTEGER OUTPUT. OUTPUT <OW-VALUE> TO THE CURRENT
OUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAU. THE FIELD
WIDTH IS SPECIFIED BY FlD AND THE NUMBER OF PLACES TO THE RIGHT
OF THE RADIX POINT ARE SPECIFIED BY DPL.

<DW-FRACTIONl> <DW-FRACTION2>
DOUBLE-WORD FRACTIONAL DIVIDE,
<DW-FRACTION!> 1 <DW-FRACTION2>, ON
WJRD DOES NOT OIVIDE DOUBLE-WORD
DOUBLE-WORD FRACTIONS.

01 <OW-FRACTION-RESlILT>
LEAVING THE RESULT,

THE STACK. NOTE THAT THIS
INTEGERS BUT DIVIDES

Feb. 1979

FORTH GLOSSARY 1"#$£.'()*+,-.10123456789: ;< .. >?@AZ(\]A_

00 (OLD)

00,

DO<
DO-

RENAMED DO,.

A 2CONSTANT WHOSE VALUE IS THE DOUBLE-WORD INTEGER O.

COMPARE
TRUE ON
LEAVE A

<OW-VALUE> 00< <LOGICAL-VALUE>
<DW-VALUE> DO= <LOGICAL-VALUE>

<OW-VALUE> AGAINST ZERO AND LEAVE A <LOGICAL-VALUE> OF
THE STACK IF THE INDICATED RELATION IS TRUE, OTHERWISE
<LOGICAL-VALUE> OF FALSE ON THE STACK.

01 (OLD)
RENAMED 01,.

A 2CONSTANT WHOSE VALUE IS THE DOUBLE-WORD FRACTION 1. THIS
VALUE IS NOT THE DOUBLE-WORD INTEGER 1.

o2T <BLOCK#> D2T
TRANSFER THE SPECIFIED BLOCK FROM DISK TO TAPE. SEE O-H AND
T-H.

D< <OW-VAlUE1> <DW-VALUE2> 0< <LOGICAL-VALUE>
D= <DW-VAlUEl> <DW-VAlUE2> D- <LOGICAL-VALUE>
D> <OW-VALUEl> <DW-VAlUE2> D> <LOGICAL-VALUE>

COMPARE <Dw-VAlUEl> AND <DW-VAlUE2> AND LEAVE A <LOGICAL-VALUE>
OF TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE,
OTHERWISE LEAVE A <LOGICAL-VALUE> OF FALSE ON THE STACK.

D@ <ADDRESS> D@ <OW-VALUE>
FETCH THE DOUBLE-WORD VALUE STARTING AT MEMORY LOCATION
<ADDRESS> AND PUSH IT ONTO THE STACK.

DABS <OW-VALUE> DABS <DW-RESULT>
FORM THE ABSOLUTE VALUE OF <OW-VALUE> AND lEAVE IT ON THE
STACI<.

DAR, (A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN DAR INSTRUCTION
(DECREMENT THE A REGISTER).

OASK DASK <OW-VALUE>
REOUEST THE INPUT OF A DOUBLE-WORD VALUE FROM THE TERMINAL.

Feb. 1979 0-29

FORTH GLOSSARY

(A)

THE ASSEMBLER MNEMONIC FOR THE
(DECREMENT THE B REGISTER).

VARIAN Df3R INSTRUCTION

DCONSTANT (OLD)

DECIMAL

DECR,

RENAMED 2CONSTANT.

seTS THE NUMERIC CONVERSION BASE TO DECIMAL MODE, THAT IS, SET
THE VARIABLE BASE TO 10. SEE OCTAL AND HEX.

(A) <VALUE> DECR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN DECR INSTRUCTION
(DECRE~ENT AND COMBINE REGISTERS).

DEFINITIONS <NAME> DEFINITIONS
SET THE CURRENT VOCABULARY (INTO WHICH NF.W DEFINITIONS ARE
BEING ENTERED) TO THE VOCABULARY <NAME>. <NAME> NEED NOT BE
SPECIFIED EXPLICITLY, IN WHICH CASE <NAME> IS ASSUMED TO BE THE
CONTEXT VOCABULARY.

DELIMITER (OLD)

OF I X

DFLOAT

DFOU R TR AN

0-30

A VARIABLF. SPECIFYING THE CHARACTER THAT TERMINATES A WORD.

<FP-VALUE> DFIX <OW-RESULT>
TRUNCATE THE FLOATING-POINT VALUE TO A DOUBLE-WORD
VALUE. IF ONE wANTS TO ROUND THE FLOATING-POINT VALUE
TRUNCATION, THE FLOATING-POINT VALUE 0.5 SHOULD BE
<FP-VALUE> PRIOR TO EXECUTING DFIX. SEE SFIX.

<OW-VALUE> DFLOAT <FP-RESUL T>

INTcG'.:R
PRIOR TO
ADDEO TO

CONVERT THE DOUBLE-WORD INTEGER TO A FLOATING-POINT VALUE.

PERFORM A RADIX 2 FAST FOURIER TRANSFORM USING THE COOLEY-TUKEY
ALGORITHM. THE STARTING BUFFER ADDRESS OF THE INPUT DATA MUST
BE STOPED IN THE VARIABLE C.ORG ANO THE NUMBER OF DATA POINTS
(A POWER OF 2) MUST HAVE BEEN SPECIFIED BY EXECUTING THE WORD
LENGTH. THE INPUT DATA IS A VECTOR OF REAL, DOUBLE-WORD
INTEGERS AND THE RESULT (WHICH OVERWRITES THE INPUT DATA) IS A
VECTOR OF COMPLEX, DOUBLE-WORD INTEGERS. SINCE THE FOURIER
TRANSFORM OF N REAL POINTS IS HERMITIAN (REAL PART EVEN AND
IMAGINARY PART ODD) ONLY (N/2)+1 COMPLEX POINTS ARE RETURNED.
THE IMAGINARY PART OF THE FIRST AND LAST DATA POINT WILL ALWAYS
BE ZERO SINCE THE IMAGINARY PART IS AN ODD FUNCTION. THE BUFFER
FOR AN N-POINT FFT MUST BE OF LENGTH (N*2)+4 WORDS (THE
ADDITIONAL 4 WORDS ARE REQUIRED FOR THE LAST OF THE (N/2)+1
COMPLEX POINTS RETURNED). SEE D!NVTRAN.

Feb. 1979

FORTH GLOSSARY !"#$~·()*+,-.I0123456789:;<·>?@AZ(\]A_

DHALF

DHSIN

A ZCONSTANT WHOSE VALUE IS 0.5 WHEN CONSIDERED AS A DOUBLE-WORD
FRACTION.

<OW-FRACTION> DHSIN <DW-FRACTION-RESULT>
REP LAC E THE < D W - f R ACT ION>, G I V E N I N HAL F C I R C L E S , WIT H I -:- S SIN E
(IN RADIANS) ALSO A DOUBLE-WORD FRACTION. THIS WORD IS THt
BUILDING BLOCK FOR THE FLOATING-POINT TRIGONOMETRIC FUNCTIONS.

DIGILIGHTS <VALUE> <START#> <END#> DIGILIGHTS
WRITE <VALUE> TO THE SPECIFIED DIGILIGHTS ON THE CAMAC DISPLAY
PA NE L.

DIGISWITCHES <START#> <END#> DIGISWITCHES <RESULT>

DINVTRAN

DISCARD

READS IN A GROUP OF DIGISWITCHES FROM THE CAMAC DISPLAY PANEL.
<START#> AND <END#> SPECIFY THE STARTING AND ENDING DIGISwITCH
NUMBERS AND IF 4 OR FEWER DIGISWITCHES ARE SPECIFIED THE
<RESULT> WILL BE A SINGLE-WORD INTEGER WHILE IF 5 OR MORE
DIGISWITCHES ARE SPECIFIED, <RESULT> WILL BE A DOUBLE-WORD
IN TE GE p.

PERFORM A RADIX 2 INVERSE
COOlEY-TUKEY ALGORITHM. THIS
FFT PERFORMED BY DFOURTRAN,
(N/2'+1 COMPLEX, DOU8LE-WORD
DOUBLE-WORD INTEGERS.

FAST FOURIER TRANSFO~M USING THE
OPERATION IS THE INVERSE OF THE

THAT IS, THE INPUT VECTOR CONTAINS
INTEGERS AND THE RESULT IS N REAL,

A NULL DEFINITION INTENDED FOR USE AS A STANDARD REMEMBER WORD.
THIS NULL DEFINITION GUARANTEES THAT THE WORD DISCARD WILL
ALWAYS BE FOUND. SEE FORGET AND REMEMBER.

DISK (1)

SETS THE DISC AS THE PRIMARY MASS STORAGE DEVICE. SEE D-H.

DISK-TO-TAPE <START-BLOCK#> <END-BLOCK#> DISK-TO-TAPE

DISKO

TRANSFERS ALL NON-ZERO BLOCKS IN THE SPECIFIED RANGE FROM DISK
TO TAPE. SEE D-H.

ZERO BLOCKS 1 THROUGH 511 ON THE DISC. EQUIVALENT TO THE
SEQUENCE "1 511 ZERODISK". SEE UTIL.

Feb. 1979 0-31

FORTH GLOSSARY !"#$&' ()*+,-./0123456789: ;<->?@AZ(\]""_

OIV, (A) <ADDRESS> DIV,

OL

DLIST

DMINUS

DO

D OU BL E

DP

o p*

THE ASSEMBLER MNEMONIC FOR THE VARIAN DIV INSTRUCTION (DIVIDE
THE A AND B REGISTERS BY MEMORY).

(Al <VALUE> DL <NAME>
DtFINE <NAME> AS A DOUBLE-WORD MACHINE INSTRUCTION WHOSE BASIC
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
THE TOP NUMBER ON THE STACK IS INCLUSIVELY OR-ED WITH BOTH
<VALUE> AND THE CURRENT VALUE OF MODE. THIS 16-BIT VALUE IS
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION AS THE FIRST
WORD OF THE INSTRUCTION. THE SECOND NUMBER ON THE STACK IS THEN
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION AS THE SECOND
WORD OF THE INSTRUCTION. SEE CPU, 1/0 AND M/CPU.

eEl <ADDRESS> DLIST
LIST ALL WORDS IN THE DICTIONARY, STARTING WITH THE DICTIONARY
ENTRY POINTED TO BY <ADDRESS>. WHEN ONE WISHES TO LIST ALL
ENTRIES BEFORE A SPECIFIC ENTRY, THE USUAL SEQUENCE IS "'
<NAME> DLIST".

<OW-VALUE> DMINUS <OW-RESULT>
NEGATE <OW-VALUE> BY FORMING ITS TWOS-COMPLEMENT.

CC) <ENDING-INCREMENT> <STARTING-INCREMENT> DO •••
BEGIN A DO lOOP WHICH MUST THEN BE TERMINATED BY EITHER LOOP OR
+LOOP. THE LOOP INDEX BEGINS AT <STARTING-INCREMENT> AND IS
THEN EITHER INCREMENTED OR DECREMENTED EACH TIME THROUGH THE
LOOP BY THE WORDS LOOP OR +LOOP.

COLD)
RtNAMED 2VARIABLE.

A VARIA8LE WHOSE VALUE IS THE ADDRESS OF THE NEXT AVAILABLE
WORD IN THE DICTIONARY. SEE HERE AND DP+!.

THE ADDRESS OF A SUBROUTINE TO PERFORM DOUBLE-WORD FRACTIONAL
MULTIPLICATION. THIS SUBROUTINE IS CALLED BY THE SEQUENCE "DP*
6 JSR,".

DP+ DP+
THE ADDRESS OF A SUBROUTINE TO PERFORM DOUBLE-WORD INTEGER
ADDITION. THIS SUBROUTINE IS CALLED BY THE SEQUENCE "DP+ 6
JSR,".

DP+! <VALUE> DP+!

D-32

ADD THE SIGNED <VALUE> TO THE DICTIONARY POINTER, DP. SINCE THE
DICTIONARY POINTER MAY BE AN INTERNAL REGISTER RATHER THAN A
VARIABLE, IT SHOULD ONLY BE ACCESSED THROUGH THE WORDS HERE AND
D P+! •

Feb. 1979

FORTH GLOSSARY

DPL
A VARIABLE WHICH ONE SETS TO THE NUMBER OF DIGITS THAT THEY
WISH TO FOLLOW THE RADIX POINT IN A NUMBER TO BE OUTPUT. IF DPL
IS SET TO A NEGATIVE VALUE, THE RADIX POINT WILL NOT BE
PRINTED. SEE FLO AND W.D.

DPLT <X-POSN> <Y-POSN> DPLT
DRAWS A VECTOR ON THE 4010 FROM THE CURRENT POSITION TO THE
SPECIFIED OFFSET FROM THE CURRENT POSITION AS GIVEN BY <X-POSN>
AND <Y-POSN>. THE PARAMETERS TO THIS WORD ARE OFFSETS FROM THE
CURRENT POSITION AND NOT PHYSICAL COORDINATES. <X-POSN> AND
<Y-POSN> ARE SINGLE-WORD INTEGERS IN THE RANGE 0-1023 AND
0-780.

DPOLYVAL <#TERMS> DPOLYVAL <NAME>
DEFINE <NAME> AS A WORD WHICH WHEN EXECUTED, WILL EVALUATE A
POLYNOMIAL EXPRESSION. THE .POLYNOMIAL MUST BE OF THE FORM Y •
AO + X(A1 + X(A2 + ••• » AND IS EVALUATED ACCORDING TO HORNER'S
RULE (FROM THE INNERMOST LEVEL OUTWARDS). FOLLOWING <NAME> THE
COEFFICIENTS AO, A1, A2, ••• MUST APPEAR AS DOUBLE-WORD
FRACTIONS (THE WORD FD, IS HANDY FOR THIS) IN REVERSE ORDER
(THAT IS, THE LAST TERM FIRST AND AO LAST). SINCE THE HIGHER
COEFFICIENTS ARE ALMOST ALWAYS THE SMALLEST IN VALUE, THE
SMALLER TERMS ARE ADDED FIRST IN ORDER TO MINIMIZE TRUNCATION
ERRORS.

DPREC (OLD)
SETS AN INTERNAL FLAG TO INDICATE THAT NUMBERS CONTAINING A
PERIOD ARE TO BE INTERPRETED AS DOUBLE-WORD INTEGERS, NOT AS
FLOATING-POINT NUMBERS. SEE FLOATING.

DROP <VALUE> DROP

DUMP

DROP THE TOP <VALUE> FROM THE STACK.

<STARTING-ADDRESS> <#CELLS> DUMP
DUMP THE CONTENTS OF <#CELLS> OF MEMORY, STARTING
<STARTING-ADDRESS> ONTO THE CURRENT OUTPUT DEVICE (USUALLY
OPERATOR'S TERMINAL). BOTH THE ADDRESS AND THE CONTENTS OF
WORD ARE PRINTED USING THE CURRENT NUMBER BASE.

WITH
THE

EACH

DUMP (OLD) <STARTING-ADDRESS> DUMP
DUMP THE CONTENTS OF MEMORY, STARTING WITH <STARTING-ADDRESS>,
ONTO THE CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S
TERMINAU. THE OUTPUT IS TERMINATED BY PRESSING ANY TERMINAL
KEY.

DUP <VALUE> DUP <VALUE> <VALUE>

Feb. 1979

DUPLICATE THE TOP <VALUE> ON THE STACK.

(A ,

THE ASSEMBLER MNEMONIC FOR THE VARIAN DXR INSTRUCTION
(DECREMENT THE X REGISTER). NOTE THAT THE X REGISTER IS THE
STACK POINTER IN VARIAN FORTH, THEREFORE THIS INSTRUCTION
ALLOCATES ONE MORE WORD OF THE STACK.

D-33

FORTH GLOSSARY

E (OLD) <FP-NUMBER> E <VALUE> <FP-RESULT>
THE GIVEN <FP-NUMBER> IS SCALED BY 10 ** <VALUE>.

E) (A)
SETS THE VARIABLE MODE TO 6, SPECIFYING INDEXING OFF THE 8
REGISTER FOR THE NEXT MEMORY REFERENCE INSTRUCTION. SINCE THE
ADDRESS OF THE DICTIONARY ENTRY BEING EXECUTED IS CONTAINED IN
THE B REGISTER THIS MNEMONIC IS MEANT TO INDICATE INDEXING OFF
THE CURRENT DICTIONARY ENTRY.

E. <FP-VALUE> E.
OUTPUT THE FLOATING-POINT VALUE IN E-FORMAT, THAT IS, AS A
FRACTION RAISEO TO A POWER OF 10, TO THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). THE OUTPUT FORMAT IS
SPECIFIED BY THE WORD W.O. THE FIELD WIDTH MUST INCLUDE THE 5
SPACES REQUIRED BY THE EXPONENT.

E1 <ADDRESS> E1

EDIT

EDITOR

EJECT

ELSE

ELSE,

D-34

EQUIVALENT TO THE SEQUENCE "F@ E.".

<BLOCK#> EDIT
EDIT THE SPECIfIED BLOCK. IF THE EDITOR IS NOT ALREADY LOADED
INTO THE DICTIONARY IT WILL BE LOADED. THE BLOCK BEING EDITED
IS FIRST LISTED.

(P)
EDITOR IS THE NAME OF THE EDITOR VOCABULARY SO THAT IF THE
EDITOR VOCABULARY HAS BEEN LOADED INTO THE DICTIONARY ONE MAY
USE THE WORD EDITOR TO RE-INVOKE THE EDITOR VOCABULARY
(FOLLOWING THE SWITCH TO SOME OTHER VOCABULARY).

HAVE THE LINE PRINTER PAGE EJECT TO THE TOP OF THE NEXT PAGE.

(C2,P)
THE WORD ELSE IS USED IN AN IF-THEN CLAUSE TO SPECIFY WHERE THE
IF BRANCH IS TO GO ON A FALSE <LOGICAL-VALUE>. THE ELSE CLAUSE
IS OPTIONAL AND MAY BE OMITTED.

(A)
THIS WORD IS USED IN AN IF,-THEN, CLAUSE TO SPECIFY WHERE TO GO
ON A FALSE <JUMP-CONDITION>. THE ELSE, CLAUSE IS OPTIONAL AND
MAY BE OMITTED.

Feb. 1979

FORTH GLOSSARY

END (C2-,P) <LOGICAL-VALUE> END
THIS WORD MARKS THE END OF A BEGIN-END LOOP. IF THE
<LOGICAL-VALUE> IS TRUE THE LOOP IS TERMINATED, OTHERWISE
CONTROL RETURNS TO THE FIRST WORD FOLLOWING THE CORRESPONDING
BEGIN.

END, (A) <JUMP-CONDITION> END,

ENDFILE

THIS WORD MARKS THE END OF A BEGIN,-END, LOOP. IF THE SPECIFIED
<JUMP-CONDITION> IS TRUE THE LOOP IS TERMINATED, OTHERWISE A
JUMP IS MADE BACK TO THE FIRST INSTRuCTION FOLLOWING THE
BEGIN,.

WRITE AN E~D-OF-FILE ON THE MAG TAPE AND WAIT FOR THE OPERATION
TO COMPLETE. SEE WF.

ERA, (A) <ADDRESS> ERA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ERA INSTRUCTION
(EXCLUSIVE-OR MEMORY WITH THE A REGISTER).

ERASE-CORE
MARK ALL BLOCK BUFFERS AS EMPTY. UPDATED BLOCKS ARE NOT
FLUSHED. THE CONTENTS OF THE BUFFERS ARE SUBSfQUENTLY
UNDEFINED.

EXC, (A) <FUNCTION-DEVICE> EXC,
THE ASSEMBLER MNEMONIC FOR THE VARIAN EXC INSTRUCTION (EXTERNAL
CONTROL TO A DEVICE).

EXECUTE <ADDRESS> EXECUTE
EXECUTE THE WORD SPECIFIED BY <ADDRESS>. <ADDRESS> MUST RE THE
COMPILATION ADDRESS OF A DICTIONARY ENTRY, AS RETURNED BY THE
WORD FIND. THE NORMAL SEQUENCE IS THEN "FIND <NAME> EXECUTE".

EXIT (C)
SKIP ONE LEVEL BACK, TO WHOEVER EXECUTED THE WORO IN WHICH EXIT
EXISTS. THIS WORD PROVIDES A METHOD OF EXITING A WORD WITHOUT
GOING ALL THE WAY THROUGH THE WORD TO THE SEMI-COLON.

EXIT (OLD)
RENAMED LEAVE.

Feb. 1979 0-35

FORTH GLOSSARY

F (OLD)
RENAMED FLO.

F! <FP-VAlUE> <ADDRESS> F!
STORE <FP-VAlUE> STARTING AT MEMORY lOCATIQN <ADDRESS>.

F* <FP-VALUEl> <FP-VAlUE2> F* <FP-RESUL T>
FLOATING-POINT MULTIPLICATION, LEAVING THE RESULT ON THE STACK.

F+ <FP-VAlUEl> <FP-VAlUE2>· F+ <FP-RESUlT>
FLOATING-POINT ADDITION, LEAVING THE RESULT ON THE STACK.

F+! <FP-VALUE> <ADDRESS> F+!
ADO <FP-VALUE> TO THE FLOATING-POINT VALUE STARTING AT MEMORY
LOCATION <ADDRESS>. <FP-VAlUE> MAY BE A POSITIVE OR A NEGATIVE
VALUE. EQUIVALENT TO THE SEQUENCE "<ADDRESS> F@ <FP-VALUE> F+
<ADDRESS> F!".

F- <FP-VALUE1> <FP-VALUE2> f- <FP-RESUlT>
FLOATING-POINT SUBTRACTION, LEAVING THE RESULT, <FP-VAlUE1>
<FP-VALUE2>, ON THE STACK.

F. <FP-VALUE> F.
FLOATING-POINT OUTPUT. OUTPUT THE FLOATING-POINT VALUE TO THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAL). THE
OUTPUT FQRMAT MAY BE SPECIFIED BY THE WORD W.O.

FI <FP-VALUE1> <FP-VALUE2> FI <FP-RESULT>

F/620

FLOATING-POINT DIVIDE, LEAVING THE RESULT, <FP-VAlUEl I
<FP-VALUE2>, ON THE STACK.

A CONSTANT
-1
o
1
2

DENOTING EITHER THE CPU TYPE OR THE INSTALLATION:
= SOLAR 620/F WITH TELETYPE AND TEKTRONIX 611
= 620/L
= 620/F
= V74

FO (OLD)
RENAMED FO ••

FO.
AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 0.0.

FO< <FP-VALUE> FO< <LOGICAL-VALUE>
FO- <FP-VALUE> FO: <LOGICAL-VALUE>

D-36

COMPARE <FP-VALUE> AGAINST 0.0 AND LEAVE A <LOGICAL-VALUE> OF
TRUE IF THE INDICATED RELATION IS TRUE, OTHERWISE LEAVE A
<LOGICAL-VALUE> OF FALSE ON THE STACK.

Feb. 1979

FURTH GLOSSARy

FlO (JLD)
RENAMED FlO ••

FlO.
AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 10.0.

F180.
AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 180.0.

F2LOG <FP-VALUE> F2LUG <FP-RESULT>
COMPUTE THE LOGARITHM, BASE 2 OF <FP-VALUE> AND LEAVE THE
RESULT ON THE STACK.

F2XP <FP-VALUE> F2XP <FP-RESULT>
COMPUTE 2.0 ** <FP-VALUE> AND LEAVE THE RESULT ON THE STACK.

F90.
AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 90.0.

F< <FP-VALUE1> <FP-VALUE2> F< <LOGICAL-VALUE>
F= <FP-VALUEl> <FP-VALUE2> F2 <LOGICAL-VALUE>
F> <FP-VALUE1> <FP-VALUE2> F> <LOGICAL-VALUE>

COMPARE <FP-VALUE1> AND <FP-VALUE2> AND LEAVE A <LOGICAL-VALUE>
OF TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE,
OTHERWISE LEAVE A <LOGICAL-VALUE> OF FALSE ON THE STACK.

F? <ADDRESS> F?
EQUIVALENT TO THE SEQUENCE "F@ F.".

FABS <FP-VALUE> FABS <FP-RESULT>
REPLACE <FP-VALUE> BY ITS ABSOLUTE VALUE.

FASK FASK <FP-VALUE>
REQUEST THE INPUT OF A FLOATING-POINT NUMBER FROM THE TERMINAL.

FCONSTANT <FP-VALUE> FCONSTANT <NAME>
DEFINE THE WORD <NAME> WHICH WHEN EXECUTED WlLL PUSH ITS
FLOATING-POINT VALUE ONTO THE STACK. THE VALUE OF <NAME> IS
INITIALIZED TO <FP-VALUE>. THE VALUE OF THIS CONSTANT MAY BE
CHANGED BY EXECUTING THE SEQUENCE "<FP-VALUE> , <NAME> F!".

FD, <FP-VALUE> FD,

Feb. 1979

CONVERTS <FP-VALUE> TO A DOUBLE-WORD FRACTION AND PLACES THE
FRACTION IN THE NEXT TWO DICTIONARY LOCATIONS.

D-37

FDATN

FDCOS

FDSIN

FOTAN

FEXP ,

FEXP10

FHALF

FORTH GLOSSARY

<FP-VALUE1> <FP-VALUE2> FDATN <FP-RESULT>
COMPUTE THE ARCTANGENT (IN DEGREES) OF <FP-VALUEl> I
<FP-VALUE2>, LEAVING THE RESULT ON THE STACK. THE RESULT WILL
BE IN THE RANGE 0.0 THROUGH 359.999.

<FP-VALUE> FDCOS <FP-RESULT>
COMPUTE THE COSINE OF <FP-VALUE> (IN DEGREES) AND LEAVE THE
RESULT ON THE STACK.

<FP-VALUE> FDSIN <FP-RESULT>
COMPUTE THE SINE OF <FP-VALUE> (IN DEGREES) AND LEAVE THE
RESULT ON THE STACK.

<FP-VALUE> FDTAN <FP-RESULT>
COMPUTE THE TANGENT OF <FP-VALUE> (IN DEGREES) AND LEAVE THE
RESULT ON THE STACK.

<FP-VALUE> FEXP <FP-RESULT>
COMPUTE E ** <FP-VALUE> (WHERE E IS THE BASE OF TH~ NATUKAL
LOGARITHMS, 2.71828 •••) AND LEAVE THE RESULT ON THE STACK.

<FP-VALUE> FEXPIO <FP-RESULT>
COMPUTE 10.0 ** <FP-VALUE> AND LEAVE THE RESULT ON THE STACK.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 0.5.

FIND FIND <NAME> <RESULT>
IF A DICTIONARY ENTRY FOR <NAME> IS FOUND THEN FINO RETURNS THE
COMPILATION ADDRESS OF <NAME> (THE ADDRESS THAT WOULD NORMALLY
BE COMPILED WHEN <NAME> IS ENCOUNTERED IN A COLON-DEFINITION).
IF THE DICTIONARY ENTRY IS NOT FOUND THEN FIND RETURNS A VALUE
OF ZERO ON THE STACK.

FIX <STARTING-BLOCK#> <ENDING-8LOCK#> FIX

FL2

FL2E

D-38

WORD REPLACEMENT. THE WORDS TO BE REPLACED MUST HAVE PREVIOUSLY
BEEN SPECIFIED USING THE WORDS REPLACE AND $REPLACE. THE WORD
FIX THEN GOES THROUGH THE DESIGNATED BLOCKS AND REPLACES ALL
OCCURENCES OF THE WORDS THAT WERE SPECIFIED BY REPLA~E AND
$REPLACE WITH THEIR NEW REPRESENTATIONS. A LISTING OF ALL
CHANGES IS OUTPUT TO THE CURRENT OUTPUT DEVICE. BEWARE THAT
THIS WORD REPLACES ALL OCCURENCES OF THE SPECIFIED WORDS, EVEN
WITHIN COMMENTS OP CHARACTER STRINGS!

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NATURAL
LOGARITHM OF 2.0, THAT IS, 0.693147181.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT LOGARITHM, BASE
2 OF E (THE BASE OF THE NATURAL LOGARITHMS, 2.71828 •••), THAT
IS, 1.44269504.

Feb. 1979

FORTH GLOSSARY

FLD

FLIT

A VARIABLE THAT ONE SETS TO THE TOTAL FIELD LENGT~I DESIRED FOR
NUMERIC OUTPUT. SEE OPL AND W.O.

STORE IN THE NEXT AVAILA8LE DICTIONARY LOCATION THE ADDR~SS OF
THE ROUTINE WHICH PLACES FLOATING-POINT LITERALS ON THE STACK
AT EXECUTION TIME.

FLN <FP-VALUE> FLN <FP-RESUlT>
COMPUTE THE NATURAL LOGARITHM OF <FP-VALUE> AND LEAVE THE
RESULT ON THE STACK.

FLOATING (OLD)
SETS AN INTERNAL FLAG TO INDICATE THAT NUMBERS CONTAINING A
PERIOD ARE TO BE INTERPRETED AS FLOATING-POINT NUMBERS, NOT AS
DOUBLE-WORD INTEGERS. SEE DPREC.

FLOG <FP-VAlUE> FLOG <FP-RESULT>

FLUSH

FMAX

FMIN

FMINUS

FORGET

FORMATTER

Feb. 1979

COMPUTE THE LOGARITHM, BASE 10 OF <FP-VAlUE> AND LEAVE THE
RESULT ON THE STACK.

wRITE ALL BLOCKS THAT HAVE BEEN FLAGGED AS UPDATED TO DISC OR
TAPE. SEE UPDATE.

<FP-VALUEl> <FP-VALUE2> FMAX <FP-RESULT>
LEAVE THE GREATER OF <FP-VAlUE1> AND <FP-VALUE2> ON THE STACK.

<FP-VALUE1> <FP-VALUE2> FMIN <FP-RESULT>
LEAVE THE LESSER OF <FP-VALUEl> AND <FP-VAlUE2> ON THE STACK.

<FP-VALUE> FMINUS <FP-RESULT>
NEGATE <FP-VALUE> AND LEAVE THE RESULT ON THE STACK.

FORGET <NAME>
DELETE THE DICTIONARY ENTRY FOR <NAME> AND ALL DICTIONARY
ENTRIES FOLLOWING IT (I.E., EVERYTHING THAT HAS BEEN ENTERED
INTO THE DICTIONARY AFTER THE DEFINITION OF <NAME». THOUGH
<NAME> MUST BE IN THE CONTEXT VOCABULARY, THE WORDS THAT FOLLJW
IT IN THE DICTIONARY ARE DELETED, REGARDLESS WHICH VOCABULARY
THEY BELONG TO. NORMALLY, FORGET SHOULD NOT BE USED WITHIN A
COLON DEFINITION AS IT IS NOT A COMPILER DIRECTIVE. FOR SUCH
APPLICATIONS THE WORD REMEMBER SHOULD BE USED.

LOADS THE DISC FORMATTING WORDS, WHICH ARE SELF EXPLANATORY.
SEE UTIL.

0-39

FORTH

FPREAD

FRAT f\J

FREE

FRESTORE

FSAVE

FSQRT

FW

FWSP

D-40

FORTH GLOSSARY !"#$f.' ()*+,-.10123456789: ;<">?@AZ[\l"'_

(P)
THE NAME OF THE PRIMAPY VOCABULARY. EXECUTION OF THE WORD FORTH
CAUSES FORTH TO BECOME THE CONTEXT VOCA8ULARY. SINCE FORTH
CANNOT 8E CHAINED TO ANY OTHER VOCABULARY, IT BECOMES THE ONLY
VOCABULARY THAT WILL BE SEARCHED FOR DICTIONARY ENTRIES. UNLESS
ADDITIONAL USER VOCABULARIES ARE DEFINED, NEW USER WORDS
NORMALLY BECOME PART OF THE FORTH VOCABULARY.

FPREAD <VALUE>
READ THE FRONT PANEL SWITCH SETTING ON THE CPU AND LEAVE THE
RESULTING 16-BIT VALUE ON THE STACK.

<FP-VALUE1> <FP-VALUE2> FRATN <FP-RESULT>
COMPUTE THE ARCTANGENT (IN REVOLUTIONS) OF <FP-VALUE1> 1
<FP-VALUE2>, LEAVING THE RESULT ON THE STACK. NOTE THAT THIS
WORD DOES NOT COMPUTE THE ARCTANGENT IN RADIANS BUT IN
REVOLUTIONS.

SETS THE VARIABLE FLD TO 0 AND THE VARIABLE DPL TO -1 WHICH
SPECIFY THAT NUMBRIC OUTPUT IS TO BE FREE FORMAT, THAT IS
MINIMUM FIELD WIDTH AND NO RADIX POINT.

THIS WORD MUST BE EXECUTED BY AN INTER~UPT PROCESSING WORD
WHICH HAS PREVIOUSLY EXECUTED FSAVE. FRESTORE WILL RESTORE ALL
THE VARIABLES SAVED BY FSAVE.

THIS WORD MUST BE EXECUTED BY AN INTERRUPT PROCESSING WORD
PRIOR TO THE USE OF ANY FLOATING-POINT OPERATIONS. THIS WORD
WILL SAVE ALL OF THE NON-REENTRANT VARIABLES USED BY THE
FLOATING POINT wORDS. SEE FRESTORE.

<FP-VALUE> FSORT <FP-RESULT>
COMPUTE THE SQUARE ROOT OF <FP-VALUE> AND LEAVE THE RESULT ON
THE STACK.

INITIATE THE FORWARD SPACING OF A SINGLE MAG TAPE RECORD AND
RETURN IMMEDIATELY. SEE FWSP.

INITIATE THE FORWARD SPACING OF A SINGLE MAG TAPE RECORD AND
WAIT FOR THE OPERATION TO COMPLETE. SEE FW.

Feb. 1979

FORTH GLOSSARY

G.

G?

GCH

GO

GO-TO

GOOD

GS

Feb. 1979

<FP-VALUE> G.
GENERALIZED FLOATING-POINT OUTPUT. OUTPUT THE <FP-VALUE> TO THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAL). IF THE
VALUE IS EITHER TOO LARGE OR TOO SMALL TO BE OUTPUT BY F. THEN
E. WILL BE USED.

<ADDRESS> G?
EQUIVALENT TO THE SEQUENCE "F@ G.".

GCH <CHAR-CODE>
WAIT FOR A CHARACTER TO BE ENTERED ON THE TERMINAL AND PUSH ITS
7-BIT ASCII CODE ONTO THE STACK. SEE WCH. SEE APPENDIX A FOR A
LISTING OF THE ASCII CODES.

(OLD)
LOAD BASIC FORTH (BLOCK 8) INTO THE DICTIONARY.

<LINE#> GO-TO
INTERRUPT INTERPRETATION OF THE CURRENT BLOCK AND RESUME
INTERPRETATION STARTING WITH THE FIRST CHARACTER OF THE
SPECIFIED LINE IN THE CURRENT BLOCK. THIS WORD MAY ONLY Bt USED
DURING THE LOADING OF A BLOCK. SEE IN.

(C) GOOD woRDO WORD1 ••• WORDN THEN
COMPUTED GO TO. WHEN THE WORD GOOD IS EXECUTeD THE VALUE ON TOP
OF THE STACK SPECIFIES WHICH WORD IN THE SEQUENCE IS TO BE
EXECUTED. IF THE VALUE <& 0 THEN WORDO IS EXECUTED; IF VALUE z

1 THEN WORD1 IS EXECUTED; IF VALUE • 2 THEN·WORD2 IS EXECUTED;
••• IF VALUE >. N THEN WORDN IS EXECUTED.

PUTS THE 4010 IN GRAPHICS MODE AND PRODUCES A DARK VECTeR ON
THE NEXT COMMAND. SEE US.

D-41

H.

HBLOCK

HEAD

HERE

HEX

D-42

FORTH GLOSSARY

<VALUE> H.
HEXADECIMAL OUTPUT. OUTPUT <VALUE> AS A HEXADECIMAL NUMBER,
UNSIGNED AND PRECEDED BY A BLANK ON THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). THE FORMAT SPECIFICATIONS
GIVEN BY THE VARIABLES FLO AND OPL ARE OBSERVED. BASE IS NOT
CHANGED.

<BLOCK#> HBLOCK
READ A FORTH BLOCK FROM DISC. THIS WORD SHOULD BE USED IN PLACE
OF THE WORD BLOCK IF THERE ARE HARDWARE ERRORS ON THE DISC. THE
BLOCK IS READ BY SECTORS (TWO SECTORS COMPRISE EACH BLOCK) WITH
UP TO FIVE RETRIES PER SECTOR, IN AN ATTEMPT TO RECOVER AS MUCH
OF THE BLOCK AS POSSIBLE. THE DISC STATUS WORD IS OUTPUT IF
ERRORS ARE ENCOUNTERED. NOTE THAT UNLIKE THE WORD BLOCK, HBLOCK
DOES NOT RETURN AN ADDRESS ON THE STACK. INSTEAD, THE WORD PREV
MAY BE USED TO OBTAIN THE MEMORY ADDRESS OF THE BLOCK.

HEAD <ADDRESS>
RETURNS A POINTER TO THE FIRST LOCATION OF THE LAST WORD
DEFINED IN THE CURRENT VOCABULARY. HEAD IS EQUIVALENT TO THE
SEQUENCE "CURRENT a".

HERE <ADDRESS>
PUSH ONTO THE STACK THE ADDRESS OF THE
DICTIONARY LOCATION. SINCE THE DICTIONARY
INTERNAL REGISTER RATHER THAN A VARIABLE, IT
ACCESSED THROUGH THE WORDS HERE AND DP+!.

NEXT AVAILABLE
POINTER MAY BE AN

SHOULD ONLY BE

SET THE NUMERIC CONVERSION BASE TO HEXADECIMAL, THAT IS, SET
THE VARIABLE BASE TO 16. SEE DECIMAL AND eCTAL.

Feb. 1979

FORTH GLOSSARY

I (C) I <VALUE>
PUSHES a~TO THE STACK THE CURRENT VALUE OF THE LOOP INDEX OF
THE INNERMOST DO-LOOP CURRENTLY BEING EXECUTED. I MAY ONLY BE
EXECUTED WITHIN THE WORD WHICH ACTUALLY EXECUTED THE DO-LOOP
AND NOT FROM WITHIN SOME OTHER WORD WHICH HAS ITSELF BEEN
EXECUTED FROM WITHIN THE DO-LOOP. SEE 1', THE FOLLOWING :XAMPLE
WILL NOT WORK CORRECTLY:

: A • • • I •••
: B ••• DC) ••• A ••• LOOP •••

THIS WORD MAY ALSO BE USED TO PUSH ONTO THE STACK A VALUE WHICH
wAS PUSHED ONTO THE RETURN STACK USING >R. SEE >R AND R>.

I' (C) l' <VALUE>
PUSHES ONTO THE STACK THE CURRENT VALUE OF THE LOOP INDEX OF
THE IN~ERMOST DO-lOOP CURRENTLY BEING EXECUTED IN THE WORD
WHICH HAS CALLED THE WORn IN WHICH I' RESIDES. SINCE THE WORD I
MAY NOT BE EX~CUTED AT ANY LEVEL OTHER THAN WITHIN THE WORD
WHICH EXECUTES THE DO-LOOP, I' GIVES ONE ACCESS TO THE lOOP
PARAMETER AT ONE ADDITIONAL lEVEL. THE FOLLO~ING EXAMPLE IS
VALID:

A • • •
: B • • •

I) (A)

I '
00

• • •
•••

. ,
A • •• LOOP ;

SETS THE VARIABLE MODE TO 7, SPECIFYING INDIRECT ADDRESSING FOR
THE NEXT MEMORY REFERENCE INSTRUCTION. NOTE THAT THIS WORD
DESIGNATES THE INSTRUCTION AS INDIRECT WHILE THE WORD 0)
DESIGNATES AN ADDRESS AS INDIRECT.

I. <VALUE> <FIELD-WIDTH> I.
SINGLE-WORD INTEGER OUTPUT. CONVERT <VALUE> ACCORDING TO THE
CURRE~T NUMBER BASE AND OUTPUT IT TO THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL) USING THE SPECIfIED FIELD
WIDTH. NO RADIX POINT IS PRINTED.

110 (A) <VALUE> 110 <NAME>
DEFINE <NAME> AS A SINGLE-WORD MACHINE INSTRUCTION WHOSE BASIC
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
THE TOP NUMBER ON THE STACK (USUALLY A DEVICE CODE, SHIFT COUNT
OR REGISTER SPECIFICATION) IS INCLUSIVELY OR-ED WITH <VALUE>
AND THE RESULT IS STORED IN THE NEXT AVAILABLE DICTIONARY
LOCATION. SEE CPU, DL AND M/CPU.

Feb. 1979 D-43

IAR,

IBR,

IC

FORTH GLOSSARY !"#$&' ()*+,-.10123456789: ;<:>?OlAz(\ 1"'_

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN IAR INSTRUCTION
(INCREMENT THE A REGISTER).

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN IBR INSTRUCTION
(INC REM E N T THE B REGISTER).

THE INTERPRETER INSTRUCTION COUNTER. A VARIABLE CONTAINING THE
ADDRESS OF THE NEXT WORD TO EXECUTE.

10. <ADDRESS> 10.
PRINT THE 3-CHARACTER/LENGTH IDENTIFIER OF THE WORD WHOSE
DICTION~RY ENTRY STARTS AT THE SPECIFIED ADDRESS. USEFUL IN
ANALYZING DUMPS.

IF (C2+,P) <LOGICAL-VALUE> IF (TRUE-PART) ELSE (FALSE-PART) THEN
<LOGICAL-VALUE> IF (TRUE-PART) THEN

IF IS THE FIRST WORD OF A CONDITIONAL BRANCH. IF THE
<LOGICAL-VALUE> IS TRUE (NON-ZERO) THE TRUE-PART WILL BE
EXECUTED. IF THE <LOGICAL-VALUE> IS FALSE (ZERO) THE
FALSE-PART, IF PRESENT, WILL BE EXECUTED. IF THE
<LOGICAL-VALUE> IS FALSE AND THERE IS NO FALSE-PART SPECIFIED
THE ENTIRE IF-THEN IS SKIPPED OVER AND EXECUTION RESUMES WITH
THE WORDS FOLLOWING THE THEN. IF-ELSE-THEN CONDITIONALS MAY BE
NESTED.

IF, (A) <JUMP-CONDITION> IF, (TRUE-PART) ELSE, (FALSE-PART) THEN,
<JUMP-CONDITION> IF, (TRUE-PART) THEN,

IF, IS THE FIRST WORD OF A CONDITIONAL BRANCH. IF THE
<JUMP-CONDITION> IS TRUE THEN THE SEQUENCE OF MACHINE
INSTRUCTIONS COMPRISING THE TRUE-PART WILL BE EXECUTED. IF THE
<JUMP-CONDITION> IS FALSE THE SEQUENCE OF MACHINE INSTRUCTIONS
COMPRISING THE FALSE-PART WILL BE EXECUTED. IF THE
<JUMP-CONDITION> IS FALSE AND THERE IS NO FALSE-PART SPECIFIED,
THE ENTIRE IF,-THEN, IS SKIPPED OVER AND EXECUTION RESUMES WITH
THE FIRST INSTRUCTION FOLLOWING THE THEN,. THE <JUMP-CONDITION>
IS USUALLY SPECIFIED BY ONE OF THE WORDS A+, A-, AO, BO OR av.
IF,-ELSE,-THEN, CONDITIONALS MAY BE NESTED.

0-44 Feb. 1979

FORTH GLOSSARY ! "1/ $ & ' () *+, -. 10123456789: ; <= > ? @A Z (\] A_

!FEND

IF TR UE

IJMP,

IME,

(E)

TERMINATE A CONDITIONAL INTERPRETATION SEQUENCE BEGUN BY AN
IFTRUE.

(E) <LOGICAL-VALUE> IFTRUE ••• OTHERWISE ••• IFEND
< l OG I C A L- V A L U E > 1FT RUE • • • I FEN D

THESE WORDS ARE SIMILAR TO THE IF-ELSE-THEN CONDITIONAL,
HOWEVER THE IFTRUE-OTHERWISE-IFEND CONDITIONALS ARE TO BE USED
DURING COMPILATION. ADDITIONALLY, UNLIKE THE IF-ELSE-THEN
CONDITIONAL, THE IFTRUE-OTHERWISE-IFEND CONDITIONALS MAY NOT BE
NESTED.

(A) <ADDRESS> <VALUE> IJMP,
THE ASSEMBLER MNEMONIC FOR THE VARIAN IJMP INSTRUCTION (INDEXED
JUMP).

(A) <ADDRESS> <DEVICE-CODE> IME,
THE ASSEMBLER MNEMONIC FOR THE VARIAN IME INSTRUCTION (INPUT TO
ME MO RY) •

IMMEDIATE (OLD)

IMOVE

IMP

IMP

IN

Feb. 1979

MARK THE MOST RECENTLY CREATED DICTIONARY ENTRY SUCH THAT WHEN
IT IS ENCOUNTERED AT COMPILE TIME IT WILL BE EXECUTED RATHER
THAN COMPILED.

<SOURCE-ADDR> <DESTINATIoN-ADDR> IMOVE
MOVE A GROUP OF SEQUENTIAL MEMORY CELLS, IN INVE~SE ORDER, FROM
THE <SOURCE-ADDR> TO THE <DESTINATION-ADDR>. THE LENGTH IS
SPECIFIED BY <#CELLS>. INVERSE ORDER MEANS THAT THE LAST CELL
IN THE SOURCE FIELD IS MOVED TO THE FIRST CELL OF THE
DESTINATION FIELD, THE NEXT TO LAST CELL IN THE SOURCE FIELD IS
MOVED TO THE SECOND CELL OF THE DESTINATION FIELD, ETC. SEE
MOVE.

IMP <NAME>
IF <NAME> IS THE NAME OF AN OVERLAY WHICH HAS PREVIOUSLY BEEN
DEFINED AND SAVED THEN THIS WILL SET THE PRECEDENCE BIT OF THE
OVERLAY, IDENTIFYING IT AS A VARIABLE OVERLAY. WHEN A VARIABLE
OVERLAY IS IN THE MEMORY OVERLAY REGION AND ANOTHER OVE~LAY IS
TO BE READ IN, THE VARIABLE OVERLAY IS FIRST RE-WRITTEN TO
DISC.

(OLD) IMP <NAME>
TOGGLES THE PRECEDENT BIT OF THE SPECIFIED DICTIONARY ENTRY.

A VARIABLE CONTAINING THE INDEX OF THE CHARACTER BEING
INTERPRETED. ALTHOUGH THIS INDEX IS INITIALIZED A~D INCREMENTED
AUTOMATICALLY DURING INTERPRETATION, IT MAY BE MODI~IED TO
AFFECT THE SEQUENCE OF INTERPRETATION. SEE GO-TO.

D-45

FORTH GLOSSARY !"#$f: 1 ()*+,-./0123456789: j<s>?@Al[\]"_

INCLUDES <NAMEl> INCLUDES <NAME2>

INCR,

INR,

<NAMEl> MUST BE THE NAME OF AN OVERLAY WHICH HAS PREVIOUSLY
BEEN DEFINED AND SAVED; <NAME2> MUST BE THE NAME OF A WORD
WHICH WAS DEFINED IN THAT OVERLAY. <NAME2> THEN BECOMES A
DICTIONARY ENTRY IN MEMORY SO THAT EXECUTION OF <NAME2> WILL
FIRST READ THE NEEDED OVERLAY INTO MEMORY AND THEN EXECUT~ THE
COpy OF <NAME2> IN THAT OVERLAY. REFERENCES MAY THEN BE MADE TO
<NAME2> AS IF IT WERE PART OF THE DICTIONARY IN MEMORY. COMPARE
THIS IMPLICIT LOADING OF AN OVERLAY WITH THE EXPLICIT LOADING
PROVIDED BY O-LOAD. IF ANOTHER OVERLAY IS PRESENTLY IN ME~ORY
AND IF ITS PRECEOENCE BIT IS SET (SEE IMP) THEN IT WILL BE
WRITTEN TO DISC BEFORE <NAME1> IS READ INTO MEMORY.

(A) <VALUE> INCR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN INCR INSTRUCTION
(INCREMENT AND COMBINE REGISTERS).

(A) <ADDRESS> INR,
THE ASSEMBLER MNEMONIC FOR THE
(INCREMENT A WORD OF MEMORY).

VARIAN I NR INSTRUCTION

INTEGER (OLD)
RENAMED VARIABLE.

INTX <VALUE> INTX
DEFINE A PSEUDO-VECTOR INTEGER VARIABLE, INITIALIZED TO
<VALUE>. THE VALUE OF THIS VARIABLE MAY BE ACCESSED BY RCLX OR
STORED BY STRX, AND IS ACCESSIBLE ONLY wITHIN A COLON
DEFINITION. THESE WORDS ARE DESIGNED FOR CORE AND SPEED
EFFICIENCY AND EACH INTX DECLARATION REQUIRES 3 DICTIONARY
CEllS. SEE P-VX.

I P (C)

ISR2

D-46

A VARIABLE CONTAINING THE BYTE ADDRESS OF THE NEXT CHARACTER TO
BE RETURNED BY CHFETCH. SEE COUNT, TYPE AND WRITE.

A 2CONSTANT WHOSE VALUE IS THE DOUBLE-WORD FRACTION 2 ** -0.5.

(A)
THE ASSEMBLER MNEMONIC
(INCREMENT THE X REGISTER).
STACK POINTER IN VARIAN
DEALLOCATES ONE WORD OF THE

FOR THE VARIAN IXR INSTRUCTION
NOTE THAT THE X REGISTER IS THE

FORTH, THEREFORE THIS INSTRUCTION
STACK.

Feb. 1979

FORTH GLOSSARY ! II # $ f, • () *+ , -. /0123456789: ; <. > 1@A Z (\] A _

J (C) J <VALUE>
WITHIN A NESTED DO-LOOP, THIS WORD PUSHES ONTO THE STACK THE
CURRENT VALUE OF THE LOOP INDEX OF THE NEXT OUTER LOOP. J MAY
ONLY BE EXECUTED WITHIN THE WORD WHICH ACTUALLY EXECUTED THE
DO-LOOP AND NOT FROM WITHIN SOME OTHER WORD WHICH HAS ITSELF
BEEN EXECUTEO FROM WITHIN THE DO-LOOP. SEE I.

JIF, (A) <ADDRESS> <JUMP-CONDITION> JIF,

JIFM,

JMP,

JMPM,

THE ASSEMBLER MNEMONIC FO~ THE VARIAN JIF INSTRUCTION
(CONDITIONAL JUMP). THE <JUMP-CONDITION> IS USUAllY SPECIFIED
BY ONE OF THE WORDS A+, A-, AO, BO OR OV.

(A) <A~DRESS> <JUMP-CONDITION> JIFM,
THE ASSEMBLER MNEMONIC FOR THE VARIAN JIFM INSTRUCTION
(CONDITIONAL JUMP AND MARK). THE <JUMP-CONDITION> IS USUALLY
SPECIFIFED BY ONE OF THE WORDS A+, A-, AO, SO OR OV.

(A) <ADDRESS> JMP,
THE ASSEMBLER MNEMONIC FOR THE
(UNCONDITIONAL JUMP).

(A) <ADDRESS> JMPM,

VARIAN JMP INSTRUCTION

THE ASSEMBLER MNEMONIC FOR THE VARIAN JMPM INSTRUCTION
(UNCONDITIONAL JUMP AND MARK).

JSR, (A) <AD9RESS> <VALUE> JSR,

K

THE ASSEMBLER MNEMONIC FOR THE VARIAN JSR INSTRUCTION (JUMP AND
SET THE RETURN ADDRESS IN ONE OF THE REGISTERS).

(e) K <VALUE>
WITHIN A NESTED DO-LOOP, THIS WORD PUSHES ONTO THE
CURRENT VALUE OF THE LOOP INDEX OF THE SECOND OUTER
ONLY BE EXECUTED WITHIN THE WORD WHICH ACTUALLY
DO-lOOP AND NOT FROM wITHIN SOME OTHER WORD WHICH
BEEN EXECUTED FROM WITHIN THE DO-lOOP. SEE I.

STACK THE
LOOP. K MAY

EXECUTED THE
HAS ITSELF

KCURSOR KCURSOR <Y-POSN> <X-POSN>
TURNS ON THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
TO ENTER ANY CHARACTER. THREE SINGLE-WORD INTEGEPS ARE
RETURNED, THE X AND Y POSITIONS OF THE CURSORS A~D THE ASCII
CHARACTER CODE FOR THE CHARACTER THAT THE OPERATOR ENTERED.

Feb. 1979 D-47

L2B 1 0

FORTH GLOSSARY

AN FCQNSTA~T WHOSE VALUE IS THE FLOATING-PCINT LOGARITHM, BASE
10 OF 2.0, THAT IS, 0.301029996.

LAL, (A) <SHIFT-COUNT> LAl,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LASL INSTRUCTION (LONG
AQ.ITHMETIC SHIFT LEFT).

LA R , (A) < S HI F T -C 0 UN T > LA R ,

LAST

THE ASSEMBLER MNEMONIC FOR THE VARIAN LASR INSTRUCTION (LONG
ARITHMETIC SHIFT RIGHT).

A VARIABLE CONTAINING THE COMPILATION ADDRESS OF THE MOST
RECENTLY MADE DICTIONARY ENTRY, WHICH MAY NOT YET BE A COMPLETE
OR VALID ENTRY. IN ORDER TO EXECUTE A WORD RECURSIVELY, THE
SEQUENCE n[p] MYSELF LAST @, ;11 DEFI'lES THE WORD MYSELF
WHICH MAY THEN BE USED WITHIN A COLON DEFINITION TO RECURSIVELY
EXECUTE THE WORD BEING DEFINED.

LOA, (A) <ADDRESS> LOA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LOA INSTRUCTION (LOAD THE
A REGISTER FROM MEMORY'.

LOB, (A) <ADDRESS> LOB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LOB INSTRUCTION (LOAD THE
B REGISTER FqOM MEMORY'.

LOX, (A) <ADDRESS> LOX,

LEAVE

LENGTH

D-48

THE ASSEMBLER MNEMONIC FOR THE VARIAN LOX INSTRUCTION (LOAD THE
X REGISTER FROM MEMORY). NOTE THAT THE X REGISTER IS THE STACK
POINTER IN VARIAN FORTH.

(C)

FORCE TERMINATION OF A DO-LOOP AT THE NEXT OPPORTUNITY BY
SETTING THE LOOP LIMIT EQUAL TO THE CURRENT VALUE OF THE LOOP
INDEX. THE VALUE OF THE INDEX REMAINS UNCHANGED AND EXECUTIQN
CONTINUES THROUGH THE LOOP WITH THE TERMINATION OCCURING AT THE
NEXT EX~CUTION OF EITHER lOOP OR +LOOP.

<#POINTS> LENGTH
SPECIFY THE NUMBER OF POINTS FOR AN FFT. <#POINTS> IS THE
NUMBER OF REAL, DOUBLE-WORD INTEGER DATA POINTS FOR DFOURTRAN
AND MUST BE A POWER OF 2. FOR DINVTRAN, «npOINTS> I 2) + 1
COMPLEX, DOUBLE-WORD INTEGER DATA POINTS WILL YIELD <#POINTS>
REAL, DOUBLE-WORD INTEGER POINTS.

Feb. 1979

FORTH GLOSSARY ! II # $ (. I () *+, -. 10123456789: ; <: >?@ A Z(\] '" _

LINE

LINEIN

<LINE#> LINE <ADDRESS>
PUSHES ONTO THE STACK THE ADDRESS IN MEMORY OF THE FIRST
CHARACTER OF THE SPECIFIED LINE IN THE BLOCK WHOSE BLOCK NUMBER
IS CONTAINED IN THE VARIABLE BLK.

LINEIN <ADDRESS>
PEQUEST A LINE OF INPUT FROM THE TERMINAL. THE LINE IS
TERMINATED BY A CARRIAGE RETURN AND THE MEMORY ADDRESS OF THE
CHARACTER STRING (WHICH IS STORED IN THE AVAILABLE DICTIO~ARY
SPACE) IS R~TURNED ON THE STACK.

LINELOAD <LINE#> <BLOCK#> LINELOAD
BEGIN INTERPRETING AT THE SPECIFIED LINE OF THE SPECIFIED
BLOCK. THE SEQUENCE II<BLOCK#> LOAD" IS EQUIVALENT TO THE
SEQUENCE "1 <BLOCK#> LINELOAD".

LINEWRITE <LINE#> LINEWRITE
OUTPUT TO THE CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S
T E R MIN AUT HE S PEe I FIE D LIN E (64 C H A R AC T E R S) 0 F THE B L 0 C KWH 0 S E
BLOCK NUMBER IS CONTAINED IN THE VARIABLE BLK.

LIST <BLOCK#> LIST
LIST THE ASCII SYMBOLLIC CONTENTS OF THE SPECIFIED BLOCK ON THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATCR'S TERMINAL).

LIT (OLD,e)
RENAMED ILIT/.

LIT, (OLD)

LITERAL

LLRL,

llSR,

Feb. 1979

RENAMED ILIT/.

THE WORD IN BASIC FORTH WHICH EITHER PUSHES A NUMBER ONTO THE
STACK OR COMPILES IT INTO THE DICTIONARY, DEPENDING ON THE
CURRE~T STATE (COMPILING OR EXECUTING).

(A) <SHIFT-COUNT> LLRL,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LLRL INSTRUCTION (LONG
LOGICAL ROTATE LEFT).

(A) <SHIFT-COUNT> LLSR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN lLSR INSTRUCTION (LONG
LOGICAL SHIFT RIGHT).

D-49

LUAD

LeADER

LOG2(10)

LOOP

LPLOT

LRL,

LRLB,

LS

LSR,

LSRB,

FORTH GLOSSARY !"#$&' (,*+,-./0123456789: ;<z>?QJAZ[\]"'_

<BLOCK#> LOAD
P.EGIN INTERPRETATION OF THE SPECIFIED
FIRST LINE IN THE BLOCK. THE BLOCK
INTERPRETATION WITH EITHER is, --> OR

<BLOCK#> LOADER <NAME>

BLOCK, STARTING WITH THE
MUST TERMINATE ITS OWN
CONTINUED.

DEFINE THE WORD <NAME> WHICH, WHEN EXECUTED, WILL CAUSE THE
SPECIFIED BLOCK TO BE LOADED.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT LOGARITHM, BASE
2 OF 10.0, THAT IS, 3.32192809.

(C)
INCREMENT THE DO-LOOP INDEX BY +1, TERMINATING THE LOOP IF THE
NEW VALUE OF THE INDEX IS EQUAL TO OR GREATER THAN THE LIMIT.

<X-POSN> <Y-POSN> LPLOT
DRAWS A VECTOR ON THE 4010 TO THE LOGICAL POSITION SPECIFIED BY
<X-POSN> AND <Y-POSN>. THIS NEW POSITION IS THEN SAVED IN
14010. <X-POSN> AND <Y-POSN> ARE FLOATING-POINT NUMBERS IN THE
RANGE 0.0 - 1023.3 AND 0.0 - 780.0.

(A) <SHIFT-COUNT> LRL,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LRLA INSTRUCTION (LOGICAL
ROTATE LEFT THE A REGISTER).

(A) <SHIFT-COUNT> LRLB,
THE ASSEMBLER MNEMONIC fOR THE VARIAN LRLB INSTRUCTION (LOGICAL
ROTATE LEFT THE B REGISTER).

<VALUE> <SHIFT-COUNT> LS <RESULT>
ROTATE <VALUE> LOGICALLY LEFT OR RIGHT. IF THE <SHIFT-COUNT> IS
POSITIVE THE SHIFT IS A LOGICAL ROTATE LEFT WHILE IF
<SHIFT-COUNT> IS NEGATIVE THE SHIFT IS A LOGICAL ROTATE RIGHT.
SEE 2L S •

(A) <SHIFT-COUNT> LSR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LSRA INSTRUCTION (LOGICAL
SHIFT RIGHT THE A REGISTER).

(A) <SHIFT-COUNT> LSRB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LSRB INSTRUCTION (LOGICAL
SHIFT RIGHT THE B REGISTER).

LWA? LWA? <ADDRESS>
READ IN THE LAST-WORD-ADDRESS COUNTER OF THE MAG TAPE
CONTROLLER AND PUSH THIS ADDRESS ONTO THE STACK.

D-50 Feb. 1979

FORTH GLOSSARY !"#$£'()*+,-./0123456789:;<:>?@AZ[\]"_

M* <VALUEl' <VALUE2> M* <DW-RESULT>

M+

MI

M/CPU

MIMOD

MIXED PRECISION MULTIPLY, FORMING A DOURLE-WORD PRODUCT FROM
TWU SINGLE-WaRD MULTIPLICANDS. SEE 2M*.

<OW-VALUE> <VALUE> M+ <Ow-RESULT>
MIXED PRECISION ADDITION, ADDING THE SINGLE-WORD <VA~UE> TO
<OW-VALUE> FORMING A DOUBLE-WORD RESULT.

<OW-VALUE' <VALUE> MI <QUOTIENT'
MIXED PRECISION DIVIDE, DIVIDING THE <OW-VALUE> BY THE
SINGLE-WORD <VALUE' FORMING A SINGLE-WORD <RESULT>. NOTE THAT
THE QUOTIENT IS TRUNCATED AND ANY REMAINDER IS lOST. SEE M/MOD.

(A) <VALUE> M/CPU <NAME>
DEFINE <NAME> AS A MEMORY REFERENCE INSTRUCTION WHOSE BASIC
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
THE TOP NUMBER ON THE STACK IS EITHER A MEMORY ADDRESS OR AN
IMMEDIATE OPERAND AND THE CURRENT VALUE OF MODE D~TERMINES THE
ADDRESSING MODE OF THE INSTRUCTION. THE VALUE OF <MODE>, THE
TOP NUMBER ON THE STACK AND THE LIMITATIONS OF THE VARIAN
HARDWARE WIll DETERMINE WHETHER THF. SINGLE-WORD OR DOUBLE-WORD
VERSION OF THE INSTRUCTION IS GENERATED. THE INSTRUCTION WILL
BE STORED IN THE NEXT AVAILABLE WOROCS) OF THE DICTIONARY. SEE
CPU, Dl AND !lO.

<OW-VALUE> <VALUE> MIMOD <REMAINDER> <QUOTIENT>
MIXED PRECISION DIVIDE, DIVIDING THE <OW-VALUE> BY THE
SINGLE-WO~D <VALUE> YIELDING A SINGLE-WORD <QUOTIENT> ON TOP OF
THE STACK AND A SINGLE-WORD <REMAINDER> BELOW. THE REMAINDER
WILL HAVE THE SIGN OF THE DIVIDEND.

MAPa (T) MAPO <ADDRESS>
THIS WORD PUSHES ONTO THE STACK THE ADDRESS OF THE FIRST
LOCATION IN THE TAPE MAP.

MARK <SYMBOL> <SIZE> MARK
DRAWS A SYMBOL ON THE 4010 AT THE CURRENT POSITION. <SYMOOl> IS
A SINGLE-WORD INTEGER VALUE WHICH IS INTERPRETED AS FOLLOWS:

1 PLUS SIGN
2 CROSS
3 BOX
4 DIAMOND

<SIZE> IS A SINGLE-WORD INTEGER THAT SPECIFIES THE SYMBOL SIZE
IN POI NT S CAS TAN 0 A R 0 ALP HAC HA R A C TE R I S 14 POI NT S HI G H) •

~AX <VALUE1> <VALUE2> MAX <RESULT>
LEAVE THE GREATER OF <VALUEl> AND <VAlUE2> ON THE STACK.

Feb. 1979 0-51

FORTH GLOSSARY !"#$€;.' ()*+,-.10123456189: ;<:>?@AZ[\]"_

MERG, (Al <VALUE> MERG,
THE ASSEMBLER MNEMONIC FOR THE VARIAN MERG INSTRUCTION (COMBINE
REGISTERS).

MFSSAGE <Ow-VALUE> MESSAGE
A SINGLE LINE (64 CHARACTERS) OF A BLOCK IS OUTPUT nJ THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAL).
<OW-VALUE> SPECIFIES BOTH THE BLOCK# AND THE LINE#, WITH
<OW-VALUE> = (BLOCK# * 100) + LINE#. IF <DW-VALUE> IS POSITIVE
THEN A CARRIAGE RETURN WILL PRECEDE THE MESSAGE. A NEGATIVE
<DW-VALUE> MAY BE USED TO SPECIFY NO CARRIAGE RETURN.

MIN <VALUEl> <VALUE2> MIN <RESULT>
LEAVE THE LESSER OF <VALUEl> AND <VALUE2> ON THE STACK.

MINUS <VALUE> MINUS <RESULT>
NEGATE <VALUE> BY TAKING ITS TWOS-COMPLEMENT.

D-52 Feb. 1979

FORTH GLOSSARY !"#$f.f()*+,-./Ol23456789:;<=>,/@AZ[\]"'_

MOD <VALUEl> <VALUE2> MOD <REMAINDER>
CALCULATE <VALUEl> / <VALUE2> AND LEAVE ONLY THE REMAINDER ON
THE STACK. THE REMAINDER WILL HAVE THE SIGN OF THE DIVIDEND.

MODE (A)
A VARIABLE WHICH SPECIFIES THE TYPE OF ADDRESSING TO B~ IJSED
FOR THE NEXT MEMORY REFERENCE INSTRUCTION. THE VALUES OF MODE
ARE:

o DIRECT ADDRESSING (DEFAULT).
1 IMMEDIATE ADDRESSING. SEE #.
4 RELATIVE ADDRESSING (P REGISTER). SEE Pl.
5 INDEXING OFF THE X REGISTER. SEE X) AND S).
6 INDEXING OFF THE B REGISTER. SEE B) AND E).
7 INDIRECT ADDRESSING. SEE I).

THE VALUE OF MODE IS RESET TO ZERO AFTER EVERY MEMORY REFERENCE
INSTRUCTION IS COMPILED INTO THE DICTIONARY.

MOVE <SOURCE-AQDR> <DESTINATION-ADDR> <#CELLS> MOVE
MOVE A GROUP OF SEQUENTIAL MEMORY CELLS FROM THE
<SOURCE-ADDRESS> TO THE <DESTINATION-AODRESS>. THE LENGTH IS
SPECIFIED BY <#CELLS>. AN OVERLAPPING OF DATA CAN OCCUR AND THE
MOVE IS PERFORMED BY MOVING THE CONTENTS OF <SOURCE-ADDRESS>
FIRST (SIMILAR TO THE IBM MVC INSTRUCTION). THIS ALLOWS ONE TO
ZERO AN ENTIRE REGION OF N CELLS BY SETTING THE FIRST CELL TO
ZERO AND THEN MOVING N-l CELLS FROM THE FIRST CELL TO THE
SECOND CELL. SEE IMOVE.

MPY, (A) <ADDRESS> MPY,

MS

AN ASSEMBLER MACRO WHICH GENERATES A SEQUENCE OF MACHINE
INSTRUCTIONS TO MULTIPLY THE CONTENTS OF THE B REGISTER wITH
THE CONTENTS OF THE SPECIFIED MEMORY LOCATION. THE SEQUENCE OF
INSTRUCTIONS GENERATED IS TZA AND MUL.

DELAY
WITHIN
ON ANY
OR DMA

<VALUE> MS
FOR APPROXIMATELY <VALUE>
? PERCENT). THIS WAIT IS AN
EXTERNAL CLOCK AND THEREFORE
ARE OCCURING SIMULTANEOUSLY.

MILLISECONDS (ACCURATE TO
INSTRUCTION LOOP, NOT BASED
ASSUMES THAT NO INTERRUPTS

MSEC (OLD)
RENAMED MS.

MSGO (OLD)
A VARIABLE CONTAINING THE BYTE-ADDRESS OF THE BEGINNING OF THE
INPUT BUFFER.

Feb. 1979 D-53

MTPERR

MTR

MTREAD

MTREJ

MTW

MTWAIT

FORTH GLOSSARY !"#$&'().+,-./01234567B9:;<.>?@AZ(\]~_

MTPFRR <LOGICAL-VALUE>
TEST THE MAG TAPE fOR A PARITY ERROR (AFTER A READ OR A WRITE)
AND PUSH A <LOGICAL-VALUE> ONTO THE STACK C~RRESPONDING TO THE
PARITY ERROR FLAG.

<ADDRESS> <#WORDS> MTR <ADDRESS> <#WORDS>
INITIATE THE READING OF A MAG TAPE RECORD INTO THE BUFFER
SPECIFIED BY <ADDRESS>. A MAXIMUM OF <#WORDS> WILL BE READ I~.
RETURN IS MADE AS SOON AS THE OPERATION IS INITIATED. THE
VARIABLF >8CO DETERMINES THE READING MODE OF THE 7-TRACK TAPE
(~INARY OR BCD). NOTE THAT THIS WORD DOES NOT POP ITS TWO
PARAMETERS OFF THE STACK. SEE MTREAD.

<ADDRESS> <#WORDS> MTREAD
EXECUTE THE WORD MTR AND WAIT FOR THE OPERATION TO COMPLETE.
ERROR CHECKING IS PERFORMED AND IF A PARITY ERROR IS DETECTED
THE READ WILL BE RETRIED UP TO 5 TIMES, AT WHICH TIME THE
MESSAGE "PARITY" WILL BE OUTPUT AND THE OPERATION ABORTED.

MTREJ <LOGICAL-VALUE>
PUSH A <LOGICAL-VALUE> ONTO THE STACK DEPENDING ON WHETHER OR
NOT THE LAST COMMAND TO THE MAG TAPE WAS REJECTED.

<ADDRESS> <#WORDS> MTW <ADDRESS> <#WORDS>
INITIATE THE WRITING OF A MAG TAPE RECORD FROM THE MEMORY
ADDRESS SPECIFIED. <#WORDS> SPECIFIES THE NUMBER QF wORDS TO
WRITE. RETURN IS MADE AS SOON AS THE OPERATION IS INITIATED.
THE VARIABLE >BCO DETERMINES THE WRITING MODE OF THE 7-TRACK
TAPE (BINARY OR BCD). NOTE THAT THIS WORD DOES NOT POP ITS
PARAMETERS OFF THE STACK. SEE MTWRITE.

WAIT UNTIL THE MAG TAPE UNIT IS READY AND THEN RETURN.

MTWRITE <ADDRESS> <#WORDS> MTWRITE
EXECUTE THE WORD MTW AND WAIT FOR THE OPERATION TO COMPLETE.
ERROR CHECKING IS PERFORMED AND IF A PARITY ERROR IS DETECTED
THE WRITE WILL BE RETRIED UP TO 5 TIMES, AT WHICH POINT A THREE
INCH SECTION OF TAPE WILL BE ERASED, THE OPERATION STARTED
AGAIN AND THE MESSAGE "WRITE ERROR" OUTPUT.

MUL, (A) <ADDRESS> MUL,
THE ASSEMBLER MACRO FOR THE VARIAN MUL INSTRuCTION (MULTIPLY
THE B REGISTER AND MEMORY THEN ADD IN THE A REGISTER).

D-54 Feb. 1979

FORTH GLOSSARY ! "# $ S • () * +, - • 10123456789: ; <= > ? @A Z[\ J'" _

N
A CO~STANT WHOSE VALUE IS THE MEMORY ADDRESS OF A ~EGION USED
BY FORTH FOR TEMPURARY STORAGE. FOR EXAMPLE, THE SEQUf:NCE "N 6
+ @" WILL PUSH ONTO THE STACK THE STATUS BITS FROM THE LAST
DISC OPERATION, IF AN ERRQR OCCURED.

N. <VALUE> <FIELD-WIDTH> <#PLACES> N.

NDROP

CONVERT <VALUE> ACCORDING TO THE CURRENT NUMBER BASE AND OUTPUT
IT TO THE CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S
TERMINAL). FLO IS SET TO THE SPECIFIEC FIELD WIDTH AND OPL IS
SET TO THE SPECIFIED NUMBER OF DIGITS TO APPEAR TO THE RIGHT OF
THE RADIX POINT.

VALUE
OF THE
NORDP"
3DROP.

<VALUE> NDROP
SPECIFIES HOW MANY WORDS ARE TO BE DROPPED FROM THE TOP
STACK. THE SEQUENCE "1 NOROP" IS EQUIVALENT TO DROP, "2
IS EQUIVALENT TO 20ROP AND "3 NDROP" IS EQUIVALENT TO

NEXT (A)

NEWTAPF.

NOP,

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH THAT DOES NOTHING TO THE STACK. THE NORMAL
SEQUENCE WOULD BE "NEXT JMP,".

CREATES AN EMPTY TAPE WITHOUT LOADING THE BLOCK HANDLERS. THE
TAPE IS REWOUND AND AN END-OF-FILE IS WRITTEN. SEE UTIL.

(A)

THE ASSEMBLER
(NO-OPERATION) •

MNEMONIC FOR THE VARIAN NOP INSTRUCTION

NOT (A) <JUMP-CONDITION> NOT <RESULT>
NEGATE <JUMP-CONDITION> WHICH IS ASSUMED TO BE A MACHINE JUMP
CONDITION. SEE A+, A-, AO, 80 AND OV. FOR EXAMPLE, THE SEQUENCE
"<ADDRESS> AO NOT JIF," WILL JUMP TO <ADDRESS> ONLY IF THE A
REGISTER 15 NOT ZERO.

NUMBER NUMBER <OW-RESULT>
CONVERT THE CHARACTER STRING WHICH WAS LEFT IN THE DICTIONARY
BUFFER BY WORD AS A NUMBER, RETURNING THE DOUBLE-WORD RESULT ON
THE STACK. IF THE CHARACTER STRING CONTAINS CHARACTERS WHICH
ARE NOT VALID IN A NUMBER, A "?Q" ERROR WILL OCCUR. AFTER
CONVERSION THE VARIABLE #0 CONTAINS THE NUMBER OF DIGITS TO THE
RIGHT OF THE RADIX POINT OR COMMA. IF THE CURRENT NUMBER BASE
IS LESS THAN OR EQUAL TO 10 (DECIMAL) THEN A NUMBER TERMINATED
BY THE CHARACTER B IS CONVERTED AS AN OCTAL NUMBER.

Feb. 1979 0-55

O-BLK

FORTH GLOSSARY

A VARIABLE CONTAINING THE BLOCK NUMBER ON DISC OF WHERE THE
NEXT OVERLAY REGION IS TO BE STORED. THE USER SHOULD STO~E THE
STARTING BLOCK NUMBER Of THEIR OVERLAY REGION ON DISC IN O-BLK
PRIOR TO EXECUTING A-SAVE.

O-DEFINE <#CELLS> O-DEFINE <NAME>
DEFINES AN OVERLAY AREA IN THE DICTIONARY WHOSE LENGTH IS
<#CELLS> ANn WHOSE IDENTIFIER IS <NAME>. THE DICTIONARY POINTER
IS ADVANCED BY <#CELLS>. THE NUMBER OF BLOCKS ON DISC THAT WILL
BE REOUIRED BY EACH OVERLAY USING <NAME> WILL BE <#CELLS> I 512
(ROUNDED UP TO THE NEAREST INTEGER). EXECUTING <NAME> WILL MOVE
THE DICTIONARY POINTER BACK TO THE BEGINNING OF THE OVERLAY
REGION SO THAT SUBSEQUENTLY DEFINED WORDS, UP TO THE ~EXT

A-SAVE OR O-SAVE, WILL COMPRISE AN OVERLAY. AFTER AN OVERLAY
HAS BEEN DEFINED AND SAVED, THE DICTIONARY POINTER IS RESTORED
TO ITS VALUE PRECEDING THE EXECUTION OF <NAME>.

O-LOAD <NAME> O-LOAD

O.

<NAME> MUST BE A PREVIOUSLY SAVED OVERLAY (SEE A-SAVE AND
O-SAVE) WHICH IS THEN EXPLICITLY LOADED INTO MEMORY. COMPARE
THIS EXPLICIT LOADING OF AN OVERLAY WITH THE IMPLICIT LOADING
PROVIDED BY INCLUDES. IF ANOTHER OVERLAY IS PRESENTLY IN MEMORY
AND IF ITS PRECEDENCE BIT IS SET (SEE IMP) THEN IT WILL BE
WRITTEN TO DISC BEFORE <NAME> IS READ INTO MEMORY.

<VALUE> O.
OCTAL OUTPUT. OUTPUT
PRECEDED BY A BLANK
OPERATOR'S TERMINAL).
VARIABLES FLD AND OPL

<VALUE> AS AN OCTAL NUMBER, UNSIGNED A~D

ON THE CURRENT OUTPUT 1EVICE (USUALLY THE
THE FORMAT SPECIFICATIONS GIVEN BY THE

ARE OBSERVED. BASE IS NOT CHANGED.

OAR, (A) <DEVICE-CODE> OAR,
THt ASSE~BLER MNEMONIC FOR THE VARIAN OAR INSTRUCTION (OUTPUT
THE A REGISTER).

08R, (A) <DEVICE-CODE> OBR,

OCTAL

THE ASSEMBLER MNEMONIC FOR THE VARIAN OBR INSTRUCTION (OUTPUT
THE B REGISTER).

SETS THE NUMERIC CONVERSION BASE TO OCTAL, THAT IS, SET THE
VARIABLE BASE TO 8. SEE DECIMAL AND HEX.

OFF! <PUSHBUTTON#> OFF!

OFFLINE

D-56

TURN OFF THE STATUS BIT OF THE SPECIFIED CAMAC DISPLAY PANEL
PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0
THROUGH 31. SEE PBARRAY, ON!, PSTOGGLE AND PTOGGLE.

FORCES THE MAG TAPE DRIVE OFF-LINE.

Peb. 1979

FORTH GLOSSARY

OHE, (A) <ADDRESS> <DEVICE-CODE> OME,
THE ASSEMBLER MNEMONIC FOR THE VARIAN OME INSTRUCTION (OUTPUT
FROM MEMORY).

ON! <PUSHBUTTON.> ON!
TURN ON THE STATUS BIT OF THE SPECIFIED CAMAC OISPLA (PANeL
PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0
THROUGH 31. SEE PBARRAY, OFF!, PSTOGGLE AND PToGGLE.

OP (C)
A VARIABLE CONTAINING THE BYTE-ADDRESS OF THE NEXT CHARACTER TO
BE PLACED IN CORE BY THE SUBROUTINE DEPOSIT. SEE O)S.

OR <VALUEl> <VALUE2> OR <RESULT>

CRA,

ORCX

COMPUTE THE BITWISE INCLUSIVE-OR OF <VALUEl> AND <VALUE2>,
LEAVING THE RESULT ON THE STACK.

CA) <ADDRESS> ORA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ORA INSTRUCTION
(INCLUSIVELY-OR MEMORY WITH THE A REGISTER).

INITIATES AN ANONYMOUS CODE DEFINITION, PLACING ITS AODRESS IN
THE PSEUDO-VECTOR ENTRY X, FOR SUBSEQUENT ADOPTION BY THE WORD
AOOX. SIMILAR TO THE ANONYMOUS COLON DEFINITIONS INITIATEn BY
:ORX. IT IS VERY IMPORTANT TO REMEMBER THAT FORTH'S COMPILATION
FLAG IS NOT SET WHILE ASSEMBLING MACHINE CODE INSTRUCTIONS,
THAT IS, FORTH REMAINS IN EXECUTION MODE. SEE P-VX.

OTHERWISE CE)
THIS WORD PRECEDES THE FALSE-PART OF AN INTERPRETER LEVEL
CONDITIONAL. SEE IFTRUE.

OV (A)

OV!

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP CONDITION FOR THE
"OVERFLOW SET" TEST. USUALLY FOLLOWED BY IF, END, JIF, JIFM, OR
XIF,. REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK. SEE NOT.

(A)

MODIFY THE PREVIOUS WORD IN THE
REGISTER CHANGE INSTRUCTION) TO
OVERFLOW BIT IS ON (I.E. - BIT 8
DICTIONARY IS TURNED ON). REFER TO
HANDBOOK.

DICTIONARY (ASSUMED TO BE A
BE EXECUTED ONLY IF THE
OF THE PREVIOUS WORD IN THE
PAGE 20-33 OF THE VARIAN

OVER <VALUEl> <VALUE2> OVER <VALUE 1> <VALUE2> <VALUEl>
PUSH A COpy OF <VALUE1> ONTO THE TOP OF THE STACK, WITHOUT
REMOVING ANY WORDS FROM THE STACK.

Feb. 1979 0-57

FORTH GLOSSARY !"#$£.'()*+,-.10123456789:;<s>?@AZ(\] _

P) (A)
SETS THE VARIABLE MODE TO 4, SPECIFYING RELATIVE ADDRESSING OFF
THE P REGISTER FOR THE NEXT MEMORY REFERENCE INSTRUCTION.

P-vx P-VX <ADDRESS>
PUSHES ONTO THE STACK THE ADDRESS OF ONE ELEMENT IN A 16-WORD
TEMPORARY STORAGE AREA KNOWN AS THE PSEUDO-VECTOR TABLE. THE
cOURTH CHARACTER OF THE WORD P-VX SPECIFIES WHICH OF THE
SIXTEEN ELEMENTS IS BEING REFERENCED: THE LOWER 4-8ITS OF THIS
CHARACTER, A VALUE BETWEEN 0 AND 15, IS USED, IMPLYING THAT FOR
SXAMPLE, P-Vl AND P-VA BOTH REFERENCE THE SECOND ELEMENT. THESE
SIXTEEN TEMPORARY LOCATIONS ARE USED DURING COMPILATION EITHER
DIRECTLY FOR TEMPORARY STORAGE BY THE PROGRAMMER OR INDIRECTLY
BY THE WORDS :ORX, <<LX, »LX, ADOX, INTX, ORCX, RCLX AND STRX.
THE EOUIVALENCE BETWEEN THE LOWER 4-BITS OF THE CHARACTER X ARE
AS FOLLOWS:

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

,.
• ,.
• ..
,.
.. ..
= ,.
..
,.
•
,.
::

o
1
2
3
4
5
6
7
8
9

,
<

>
?

@

A
B
C
o
E
F
G
H
I
J
K
l
M
N
o

P
Q

R
S
T
U
V
W
X
Y
Z
[

\
]

"
Ii
$

PERCENT
£.

* + ,

•
I

PACK <OW-VALUE> PACK <DW-RESULT>

PAGE

D-58

CONVERT <OW-VALUE> FROM A VARIAN DOUBLE-wORD INTEGER TO A
PACKED, CAMAC 24-8IT VALUE, IN PREPARATION FOR CAMAC OUTPUT.
SE E UN PK.

ERASES THE OPERATOR'S TERMINAL SCREEN OR SOME SIMILAR ACTION
APPROPIATE FOR THE PARTICULAR DEVICE.

Feb. 1979

FORTH GLOSSARY !"#$&'()*+,-./0123456789:;<=>?Q)AZ(\]"'_

PB#
A CONSTANT WHOSE VALUE SPECIFIES THE PUSHBUTTON NUMBER OF THE
CAMAC DISPLAY PANEL PUSHBUTTON THAT WAS PRESSED TO GENERATE AN
INTERRUPT. THE VALUE OF PB# WILL BE IN THE RANGE 1 THROUGH 31
AND SHOULD BE EXAMINED ONL Y WHEN THE VARIABLE PB@ IS NON-ZERO
(TRUE). SEE PBENABLE AND PBDISABLE.

PB@ PB@ <LOGICAL-RESULT>

PBARRAY

PBDISABlE

PBENABLE

PUSH A <LOGICAL-RESULT> ONTO THE STACK DEPENDING ON WHETHER A
CAMAC DISPLAY PANEL PUSHBUTTON INTERRUPT HAS OCCURED. IF AN
INTERRUPT HAS OCCURED, THE CONSTANT PB# WILL CONTAIN THE NUMBER
OF THE PUSHBUTTON THAT WAS PRESSED. SEE PBENABLE AND PBDISABLE.

A 32-WORD VECTOR WHICH MUST BE SET BY THE USER TO CONTAIN THE
STATUS 13IT, INITI~L LIGHT STATUS AND TOGGLING BITS FOR THE
CAMAC DISPLAY PANEL PUSHBUTTON LIGHTS. THE MOST SIGNIFICANT BIT
OF EACH WORD IN PBARRAY IS THE PUSHBUTTON'S STATUS BIT~ THE
NEXT 7 BITS ARE UNUSED, THE NEXT 4 BITS SPECIFY THE INITIAL
LIGHT STATUS FOR EACH OF THE PUSHBUTTON'S FOUR LIGHTS AND THE
LOWER 4 BITS SPECIFY THE TOGGLING BITS FOR EACH OF THE
PUSHBUTTON'S FOUR LIGHTS. WHEN THE LIGHTS ARE TOGGLED THE NEW
LIGHT STATUS EQUALS THE CURRENT LIGHT STATUS EXCLUSIVELY OR-EO
WITH THE TOGGLE BITS. SEE PLARRAY, PBLIGHTS, PLTOGGLE,
PSTOGGLE, PTOGGLE, ON! AND OFF!.

DISABLE INTERRUPTS FROM THE CAMAC DISPLAY PANEL PUSHBUTTONS.
SEE PBENABlE.

ENABLF INTERRUPTS FROM THE CAMAC DISPLAY PANEL PUSHBUTTONS.
WHEN AN INTERRUPT OCCURS THE VARIABLE PB@ WILL BE SET NON-ZERO
(TRUE) AND THE CONSTANT PB# WILL BE SET TO THE PUSHBUTTON
NUMBER THAT WAS PRESSED (AN INTEGER VALUE IN THE RANGE 1
THROUGH 31>. IT IS UP TO THE PROGRAM TO CONTINUALLY TEST PB@.
NDTE THAT PUSHBUTTON NUMBER 0 IS HANDLED SPECIALLY BY FORTH AS
A "?Z" ABORT. SEE PBDISABLE.

PBLIGHTS <LIGHT-BITS> <PUSHBUTTON#> PBLIGHTS
TURN ON THE SPECIFIED LIGHTS IN THE DESIGNATED CAMAC DISPLAY
PANEL PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE
o THROUGH 31. <LIGHT-BITS> IS AN INTEGER VALUE WHOSE LOWER 4
BITS SPECIFY WHICH LIGHTS IN THE PUSHBUFFON ARE TO BE TURNED
ON. SEE PLARRAY.

PICK <INDEX> PICK <RESULT>
<INDEX> SPECIFIES A LOCATION ON THE STACK (1 SPECIFIES THe TOP
OF THE STACK, 2 IS THE NEXT WORD ON THE STACK, ETC) AND A COpy
OF THIS WORD IS PUSHED ONTO THE TOP OF THE STACK. THE SEQU~NCE
"2 PICK" IS EOUIVALENT TO THE WORD OVER.

Feb. 1979 D-59

PLARRAY

PLT

FORTH GLOSSARy ! "# $ £. ' () * + , - • 1 0123456789 : ; < ,. > ? Q) A Z (\] " _

A VECT1R MAINTAINED BY THE CAMAC DISPLAY PANEL ROUTINES TO
REFLECT THE CURRENT STATUS OF EACH LIGHT OF tVERY PUSHBUTTON. A
4-BIT ENTRY IS RECUIRED FOR EACH PISHBUTTON, WITH THE 4-8IT5
SPECIFYING (IN DECREASING ORDER OF SIGNIFICANCE): UPPER LEFT
LIGHT, UPPER RIGHT LIGHT, LOWER LEFT LIGHT AND LOWER ~IGHT
LIGHT. FOUR OF THESE 4-BIT ENTRIES ARE PACKED TO EACH WORD OF
PLARRAY WITH WORD 0 CONTAINING THE LIGHT STATUS FOR PUSHBUTTONS
0, 1, ? AND 3, WORD 1 CONTAINING THE LIGHT STATUS FOR
PUSHBUTTONS 4, 5, 6 AND 7, ETC. SEE PBARRAY, PBLIGHTS, PLTOGGlE
AND PTOGGLE.

<X-POSN> <Y-POSN>
DRAWS A VECTOR ON THE 4010
BY <X-PO$N> AND <Y-POSN> AND
<X-POSN> AND <Y-POSN> ARE
0-1023 AND 0-780.

PLT
TO THE PHYSICAL POSITION SPECIFIED
SAVES THIS NEW POSITION IN 14010.

SINGLE-WORD INTEGERS IN ThE RANGE

PlTOGGLE <PUSHBUTTON#> PLTOGGLE
TOGGLE THE LIGHT BITS OF THE SPECIFIED CAMAC DISPLAY PANEL
PUSHBUTTON. THE NEW VALUE OF THE LIGHT BITS ARE STORED IN
PLARRAY. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0
THROUGH 31. SEE PLARRAY AND PTOGGLE.

POP (A)

PPLOT

P REV

D-60

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO POP ONE WORD OFF THE STACK. THE SEQUENCE
"POP 1-" LEAVES THE ADDRESS OF THE INTERPRETER ROUTINE TO POP
TWO WORDS OFF THE STACK. THE NORMAL SEQUENCE IS EITHER "POP
JMP," OR "POP 1- JMP,".

<X-POSN> <Y-POSN> PPLOT
DRAWS A VECTUR ON THE 4010 TO THE PHYSICAL POSITION SPECIFIED
BY <X-POSN> AND <Y-POSN>. THIS NEW POSITIGN IS THEN SAVED IN
14010. <X-POSN> AND <Y-POSN> ARE FLOATING-POINT NUM8E~S IN THE
RANGE 0.0 - 1023.3 AND 0.0 - 780.0.

A VARIBALE CONTAINING THE ADDRESS OF THE LAST-wORD
CURRENT BLOCK BUFFER BEING USED. THE SEQUENCE "PREV @ @"
ONTO THE STACK THE BLOCK NUMBER AND UPDATE BIT
SIGNIFICANT RIT) OF THIS BLOCK. THE SEQUENCE "PREV 1+
PUSHES ONTO THE STACK THE BLOCK NUMBER AND UPDATE BIT
AL TERNATE BLOCK.

OF THE
PUSHES

(MOST
@ @"

OF THE

Feb. 1979

FORTH GLOSSARY ! It # $ £. • (, * +, -. 10123456789: ; <. >?@A Z C\ J A_

PRINTER

PRINTERS

SETS A FLAG DENOTING THAT OUTPUT IS TO BE DIRECTED TO THE LINE
PRINTER RATHER THAN THE TERMINAL. SEE TERMINAL.

DEFINES THE FOLLOWING WORDS WHICH, WHEN EXECUTED, LI~AD THE
WORDS FOR THE CORRESPONDING LINE PRINTER (SEE UTIL):

CEN CENTRONICS
GOULD GOUL D
TI TEXAS INSTRUMENTS SILENT 700
T40 TELETYPE MODEL 40
PTC PRINTEC

PSTOGGLE <PUSHBUTTON#> PSTOGGLE

PTOGGLE

TOGGLE THE STATUS BIT OF THE SPECIFIED CAMAC DISPLAY PANEL
PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0
THROUGH 31. SEE PBARRAY, ON!, OFF! AND PTOGGLE.

<PUSHBUTTON#> PTOGGLE
TOGGLE THE STATUS BIT AND THE LIGHT -
CAMAC DISPLAY PANEL PUSHBUTTON.
VALUE IN THE RANGE 0 THROUGH 31.
PLTOGGLE, PSTOGGLE, ON! AND OFF!.

STATUS OF THE SPECIFIED
<PUSH8UTTON> IS AN INTEGER

SEE PLARRAY, PBARRAY,

PUSH (ld

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO PUSH THE CONTENTS OF THE A REGISTER ONTO
THE STACK. THE NORMAL SEQUENCE IS "PUSH J~P,".

PUT (A'
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO POP ONE WORD FROM THE STACK AND THEN PUSH
THE CONTENTS OF THE A REGISTER ONTO THE STACK. THE NORMAL
SEQUENCE IS "PUT JMP,".

OBF (A)

QUIT

A VARIABLE WHOSE VALUE IS THE BYTE ADDRESS OF THE BUFFER TO BE
USED FOR OPERATOR INPUT.

CLEAR THE RETURN STACK (IN CASE THIS WORD IS EXECUTED FROM A
WORD WHICH HAS BEEN CALLED BY OTHER wORDS) AND RETURN CONTROL
TO THE TERMINAL.

OUIT (OLD)
RENAMED ABORT.

Feb. 1979 0-61

FORTH GLOSSARY

R# R# <VALUE>

R#VALUE

RANDOM NUMBER GENERATOR, RETURNING <VALUE> AS THE NEXT RANDOM
NUMBER IN THE PSEUDO-RANDOM SEQUENCE. THE ALGORITH USED IS A
LINEAR CONGRUENTIAL SEQUENCE WITH A PERIOD OF 65536. <VALUE>
WILL BE IN THE RANGE -32768 THROUGH 32767. IF A NUMBER SMALLER
THAN <VALUE> IS REQUIRED THEN THE HIGH ORDER BITS OF <VALUE>
SHOULD BE USED AS THE LOW ORDER BITS WILL BE MUCH LESS RANDOM
THAN THE HIGH ORDER BITS.

A VARIABLE WHOSE VALUE IS THE PREVIOUS PSEUDO-RANDOM NUMBER
GENERATED BY R#. IF A REPEATABLE SEQUENCE OF NUMBERS IS
DESIRED, THEN ONE MAY SET R#VALUE TO ANY DESIRED VALUE, PRIOR
TO EXECUTING R# FOR THE FIRST TIME.

Rl-2 <VALUE> Rl-2 <RESULT>
<VALUE> MUST BE A 14-BIT FRACTION AND THE SQUARE ROOT OF (1
<VALUE>**2) IS COMPUTED AND LEFT AS THE RESULT.

R> (C)
POP THE TOP VALUE FROM THE RETURN STACK AND PUSH IT ONTO THE
REGULAR STACK. SEe >R.

D-62 Feb. 1979

FORTH GLOSSARY !"#$E.'(}*+,-./0123456789:;<=>?@AZ(\]"_

RCLX ec} RCLX <VALUE>
PUSH ONTO THE STACK THE VALUE AT THE LOCATION ESTABLISHED BY
INTX. SEE INTX, STRX AND P-VX.

READ-MAP (T)
READ FROM THE CURRENT POSITION ON TAPE TO THE NEXT FILt--MARK,
CONSTRUCTING IN MEMORY THE ~AP RELATING THE PHYSICAL BLOCK
POSITIONS ON TAPE WITH THE LOGICAL BLOCK NUMBER. THE TAPE
SHOULD NORMALLY BE REWOUND PRIOR TO EXECUTING READ-MAP (SEE
REWIND) •

REAL <FP-VALUE> REAL <NAME>

RECOVER

REDEF

DEFINE A FLOATING-POINT VARIABLE. THE VALUE OF THE VARIABLE IS
INITIALIZED TO <FP-VALUE> AND WHEN THE WCRD <NAME> IS EXECUTED
THE ADDRESS Of THE FLOATING-POINT VALUE OF THE VARIABLE WILL BE
PUSHED ONTO THE STACK. SEE VARIABLE AND 2VARIABLE.

READS A 32K CORE IMAGE FROM DISC TO MEMORY, EFFECTIVELY
REPLACING THE ENTIRE MEMORY WITH WHATEVER THE MEMORY CONTAINED
WHEN THE CORE IMAGE WAS WRITTEN. SEE SNAPSHOT.

SEARCHES EACH VOCABULARY IN THE DICTIONARY FOR REDEFINITIONS.
SEE UTIL.

REMEMBER REMEMBER <NAME>

REPEAT

DEFINE A WORD <NA~E> WHICH WHEN EXECUTED WILL CAUSE ALL
SUBSEQUENTLY DEFINED WORDS TO BE DELETED FROM THE DICTIONARY.
THE WORD <NAME> MAY BE COMPILED INTO AND EXECUTED FROM A COLON
DEFINITION. THE SEQUENCE "DISCARD REMEMBER DISCARD" PROVIDES A
STANDARDIZED PREFACE TO ANY GROUP OF TRANSIENT WORDS. SEE
FORGET.

(C 2-, P)
EFFECT AN UNCONDITIONAL JUMP BACK TO THE BEGINNING OF A
BEGIN-WHILE-REPEAT LOOP. SEE BEGIN.

PEPLACE REPLACE <WORDl> <WORD2>

RESIDENT

Feb. 1979

REPLACE ALL OCCURENCES OF <WORDl> BY <WORD2> WHEN THE WORD FIX
IS EXECUTED. NEITHER <WORDl> NOR <WORD2> MAY CONTAIN ANY
SPACES. SEE FIX, $REPLACE AND WINIT.

LOADS BLOCK ZOO. THE ACTIONS PERFORMED BY BLOCK 200 ARE TOTALLY
USER DEPENDENT.

D-63

RETURN

REW

REWIND

FORTH GLOSSARY

(A) <ADDRESS> RETURN
AN ASSEMBLER MACRO TO GENERATE A JUMP INDIRECT INSTRUCTION TO
THE SPECIFIED MEMORY <ADDRESS>. THIS WORD IS TYPICALLY USED TO
RETURN FROM A MACHINE LANGUAGE SUBROUTINE, IN WHICH CASE
<ADDRESS> IS PUSHED ONTO THE STACK BY EXECUTING THE NAME OF THE
SUBROUTINE. SINCE THE RETURN ADDRESS OF A VARIAN SUBROUTI~E IS
STORED IN THE FIRST WORD OF THE SUBROUTINE, A JUMP INDIRECT TO
THE FIRST WORD WILL RETURN CONTROL TO THE CALLER. SEE
SUBROUTINE.

INITIATES A REWIND OF THE MAG TAPE AND WAITS FOR THE OPERATION
TO COMPLETE. SEE RW.

(T)
REwIND THE TAPE TO ITS LOAD POINT AND SET THE VARIABLE CUR TO
1 •

ROF, (A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN ROF INSTRUCTION (RESET
THE OVERFLOw BIT).

ROLL <INDEX> ROLL
<INDEX> SPECIFIES A LOCATION ON THE STACK (1 SPECIFIES THE TOP
OF THE STACK, 2 IS THE NEXT WORD ON THE STACK, ETC) AND THIS
wORD ON THE STACK IS MOVED TO THE TOP OF THE STACK WITH ALL
WORDS ON THE STACK BETWEEN BEING MOVED DOWN ONE POSITION. THE
SEQUENCE "1 ROLL" IS A NULL OPERATION, THE SEQUENC E "3 ROLL" IS'
EQUIVALENT TO ROT AND THE SEQUENCE "0 ROLL" IS UNDEFINED.

ROT <VAlUE1> <VALUE2> <VALUE3> ROT
<VALUE2> <VAlUE3> <VALUE1>

ROTATE THE TOP THREE POSITIONS ON THE STACK. <VALUE1> IS MOVED
TO THE TOP OF THE STACK, <VALUE3> MOVES FROM THE TOP TO THE
SECOND POSITION AND <VALUE2> MOVES FROM THE SECOND POSITION TO
THE TH I RD.

RP RP <ADDRESS>
PUSHES ONTO THE STACK THE ADDRESS OF THE NEXT AVAILABLE
LOCATION ON THE RETURN STACK.

RS.C <VALUE> RS.C <RESULTl> <RESULT2>

RW

D-64

<VALUE> MUST BE A 14-8IT FRACTION (REVOLUTIONS) AND IT IS
REPLACED BY ITS SINE· AND COSINE (IN RADIANS), BOTH 14-BIT
FRACTIONS, WITH THE COSINE ON TOP OF THE STACK AND THE SINE
BELOW.

INITIATES A REWIND OF THE MAG TAPE AND RETURNS IMMEDIATELY. SEE
REW.

Feb. 1979

FORTH GLOSSAR Y

s) (A)

S.

SETS THE VARIA8LE MODE TO 5 AND PUSHES A VALUE OF ZERO ONTO THE
STACK (FOR THE NEXT MEMORY REFERENCE INSTRUCTION). THE VALUE OF
ZERO SPECIFIES THE DISPLACEMENT AND THE WORD S) THEREFOKE
SPECIFIES THAT THE NEXT MEMORY REFERENCE INSTRUCTION IS TO
ADDRESS THE TOP WORD ON THE STACK (SINCE FORTH KEE?S THE
ADDRESS OF THE TOP ELEMENT ON THE STACK IN THE X REGISTER).

<VALUE> S.
CONVERT <VALUE> ACCORDING TO THE CURRENT NUMBER BASE
IT TO THE CURRENT OUTPUT DEVICE (USUALLY THE
TERMINAL). FORMATTING OF THE NUMBER IS SPECIFIED BY
OF THE VARIABLES FLO AND DPL.

AND OUTPUT
OPERATOR'S
THE VALUES

S@ (OLD)
RENAMED PICK.

SASK SASK <VALUE>

SAVEDISK

REQUEST THE INPUT OF A SINGLE-WORD VAluE FROM THE TERMINAL.

<BLOCK#>
TRANSFERS BLOCKS
EFFECTIVELY SAVING
IF NOT SPECIFIED A

SAVEDISK
1 THROUGH <BLOCK#> FROM DISC TO TAPE,
THE BLOCKS ON TAPE. <BlOCK4> IS OPTIONAL AND
VALUE OF 511 IS USED.

SAVER (A)
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF A SUBROUTINE
THAT WILL SAVE THE SYSTEM'S STATUS ON THf STACK AND THEN START
INTERPRETATION OF A SEQUENCE OF HIGH LFVEL WORDS. THE WORDS
SAVER AND UNSAVER, ARE USED TO EXECUTE SOME HIGH LEVEL FORTH
WORDS FROM WITHIN A MACHINE CODE INTERRUPT PROCESSING WORD.
THIS SUBROUTINE MUST BE CALLED WITH A JSR INSTRUCTION USING THE
B REGISTER TO HOLD THE RETURN ADDRESS. THE STANDA~O CALLING
SEQUENCE WOULD BE "SAVER 6 JSR,". THIS SUBROUTINE WILL SAVE THE
A REGISTER, OVERFLOW BIT, INTERPRETER INSTRUCTION COUNTER,
FOREGROUND ADDRESS AND THE VARIABLE <T> (THE B REGISTER MUST BE
SAVED BY THE CALLER BEFORE EXECUTING THE JSR). THE DICTIONARY
LOCATIONS FQLLOWING THE JSR INSTRUCTION MUST CONTAIN THE
COMPILATION ADDRESSES OF A SEQUENCE OF FORTH WORDS WHICY WILL
THEN BE EXECUTED, AFTER THE SYSTEM STATUS HAS BEEN SAVED. THE
FINAL WORD IN THE SEQUENCE MUST BE UNSAVER, WHICH WILL RESTURE
THE SYSTEM STATUS THAT WAS SAVED BY SAVER AND THEN START
EXECUTION OF THE MACHINE CODE FOLLOWING UNSAVER, IN THE
DICTIONARY (USUALLY SOME CODE TO RESTORE THE B REGISTER AND
RETURN FROM THE INTERRUPT).

Feb. 1979 0-65

FORTH GLOSSARY

SEN, CA) <FUNCTION-DEVICE> SEN,

SENSE

SET

S FIX

THE ASSEMBLER MNEMONIC FOR THE VARIAN SEN INSTRUCTION (SENSE A
DEVICE).

(A) <CQNDITION-DEVICE> SENSE
AN ASSEMBLER MACRO WHICH GENERATES A MACHINE INSTRUCTION. THE
INSTRUCTION GENERATED IS AN SEN, (USING THE SPECIFIED
<CONDITION-DEVICE» WITH AN ADDRESS OF HERE+4. IT IS THEREFORE
ASSUMED THAT A JUMP INSTRUCTION FOLLOWS THE SENSE INSTRUCTION
AND IF THE SPECIFIED <CONDITION-DEVICE> IS TRUE THE JUMP
INSTRUCTION IS BYPASSED, AND IF FALSE, THE JUMP INSTRUCTION IS
EXECUTED.

<VALUE> <ADDRESS> SET <NAME>
DEFINE THE WORD <NAME> SUCH THAT WHEN IT IS EXECUTED, <VALUE>
WILL BE STORED IN THE MEMORY LOCATION POINTED TO BY <ADDRESS>.

<FP-VALUE> SFIX <RESULT>
TRUNCATE <FP-VALUE> TO A SINGLE-WORD
WANTS TO ROUND THE FLOATING-POINT
THE FLOATING-POINT VALUE 0.5 SHOULD
PRIOR TO EXECUTING SFIX. SEE DFIX.

INTEGER VALUE. IF ONE
VALUE P~IOR TO TRUNCATION,

BE ADDED TO <FP-VALUE>

SFLOAT <VALUE> SFLOAT <FP-RESULT>
CONVERT THE SINGLE-WORD <VALUE> TO ITS FLOATING-POINT
REPRESENTATION AND LEAVE THE RESULT ON THE STACK.

SIN.COS <VALUE> SIN.COS <RESULT1> <RESULT2>

SKIPF

SNAPSHOT

<VALUE> IS A SINGLE-WORD INTEGER (MINUTES OF ARC) AND ITS SINE
AND COSINE (BOTH 14-BIT FRACTIONS) ARE CALCULATED AND LEFT ON
THE STACK WITH THE COSINE ON TOP OF THE STACK AND THE SINE
BELOW.

INITIATE THE FORWARD SPACING OF THE MAG TAPE ONE FILE AND WAIT
FOR THE OPERATION TO COMPLETE.

WRITES AN ENTIRE CORE IMAGE (32K WORDS) ONTO THE DISC IN BLOCKS
2383 THROUGH 2447 (THE INNERMOST CYLINDERS OF THE REMOVABLE
PLATTER). THIS CORE IMAGE MAY THEN BE RElOAOEC AT A LATER TIME
USING THE WORD RECOVER.

SOF, (A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN SOF INSTRUCTION (SET THE
o VE R FL 0 W BIT).

D-66 Feb. 1979

FORTH GLOSSARY ! "# $ & ' () *+ ,- • 10123456789: ; <2 > ? @A Z [\] A _

SP SP <ADDRESS>

SP AC E

SPACES

PUSHES 'JNTo THE STACK THE ADDRESS OF THE TOPMOST STACK VALUE.

OUT?lJT A SINGLE SPACE TO THE CURRENT OUTPUT DEVICE (USUALLY THE
OPERATOR'S TERMINAL>.

<VALUE> SPACES
OUTPUT A STRING OF SPACES (BLANKS) TO THE CURRENT OUTPUT
DEVICE. THF NUMBER OF SPACES IS SPECIFIED BY <VALUE>.

SORT <OW-VALUE> SORT <RESULT>
COMPUTt THE SQUARE ROOT OF <DW-VALUE> AND LEAVE THE SINGLE-WORD
RESUL T ON THE STACK.

SRb (A) <ADDRESS> <VALUE> SRE,
THE ASSEMBLER MNEMONIC FOR THE VARIAN SRE INSTRUCTION (SKIP IF
REGISTER EQUAL).

STA, (A) <ADDRESS> STA,
THE ASS'=MBLER MNEMONIC FOR THE VARIAN STA INSTRUCnON (STORE
THE A REGISTER IN MEMORY).

STB, (A) <ADDRESS> STB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN STB INSTRuCTION (STORE
THE B REGISTER IN MEMORY).

STRX <VALUE> STRX
STORE <VALUE> AT THE LOCATION ESTABLISHED BY THE PREVIOUS INTX
DEFINITION. SEE INTX, RCLX AND P-VX.

STX, (A) <ADDRESS> STX,
THE ASSEMBLER MNEMONIC FOR THE VARIAN STX INSTRUCTION (STORE
THE X REGISTER IN MEMORY).

SUB, (A) <ADDRESS> SUB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN SUB INSTRUCTION (SUBTRACT
MEMORY FROM THE A REGISTER).

SUBROUTINE SUBROUTINE <NAME>
CREATES A DICTIONARY ENTRY FOR THE NAMED MACHINE LANGUAGE
SUBROUTINE. ASSEMBLER BECOMES THE CONTEXT VOCABULARY. <NAME>
BECOMES A VARIABLE WHICH CONTAINS THE SUBROUTINE ENTKY ADDRESS
FOR USE WITH THE JMPM INSTRUCTION. THE RETURN ADDRESS WORD FJR
THE JMPM INSTRUCTION IS INITIALIZED TO ZERO. THE SEQUENCE
"SUBROUTINE <NAME> -1 DP+!" IS USED WHEN THE SUBROUTINE IS TO
BE CALLED WITH THE JSR INSTRUCTION. IT IS VERY IMPORTANT TO
REMEMBER THAT FORTH'S COMPILATION FLAG IS NOT SFT WHIL~
ASSEMBLING MACHINE CODE INSTRUCTIONS, THAT IS, FORTH REMAINS IrJ
EXECUTION MODE. SEE RETURN.

SWAP <VALUEl> <VALUE2> SWAP <VALUE2> <VALUE1>
EXCHANGE THE TOP TWO VALUES ON THE STACK SO THAT <VALUE1> WIL~
BE THE TOP VALUE ON THE STACK AND <VALUE2> THE SECOND.

Feb. 1979 D-67"

FORTH GLOSSARY

T-H
LQAD THE TAPt HANDLERS. SEE UTIL.

T2D <BLOCK#> T20
READ THE SPECIFIED BLOCK FROM TAPE TO DISK. THE TAPE MAP MUST
BE CQ~STRUCTED BEFORE EXECUTING THIS WORD (SEE READ-MAP). SEE
T-H.

TAB, (A)

TAPE

THE ASSEMBLER MNEMONIC FOR THE VARIAN TAB INSTRUCTION (TRANSFER
THE A REGISTER TO THE B REGISTER).

SETS THE TAPE AS THE PRIMARY DEVICE. SEE T-H.

TAPE-TO-DISK <START-BLOCK#> <END-BLOCK#> TAPE-TO-DISK
FIRST ZERO ALL DISC BLOCKS IN THE SPECIFIED RANGE AND THEN COpy
ALL BLOCKS IN THE RANGE FROM TAPE TO DISK. SEE T-H.

TAX, (A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN TAX INSTRUCTION (TRANSFER
THE A REGISTER TO THE X REGISTER).

T8A, <A'
THE ASSEMBLER MNEMONIC FOR THE VARIAN TBA INSTRUCTION (TRANSFER
THE B REGISTER TO THE A REGISTER).

TCH <CHAR-CODE> TCH

TEMP

TERMINAL

TRANSMIT THE SPECIFIED ASCII CHARACTER CODE TO THE TERMINAL,
REGARDLESS WHAT THE CURRENT OUTPUT DEVICE IS. SEE APPENDIX A
FOR A LISTING OF THE ASCII CODES. SEE WCH.

A VARIABLE USED FOR TEMPORARY STORAGE IN THE FLOATING-POINT
ROUTINES.

SELECT THE TERMINAL AS THE OUTPUT DEVICE, CANCELLING ANY
PREVIOUS SELECTION OF THE PRINTER. THE TERMINAL IS
AUTOMATICALLY SELECTED WHEN CONTROL IS RETURNED TO IT AFTER
EXECUTING A LINE OF WORDS. SEE PRINTER.

TERMINAL-ASK
SETS AN
<SASK,
BUFFER.

INTERNAL FLAG SO THAT THE NEXT USE OF THE ASKING WORDS
DASK, FASK} WILL EXTRACT CHARACTERS FROM THE TERMINAL

SEE BLOCK-ASK.

TERMINAL-WORD (OLD)
RENAMED TERMINAL-ASK.

D-68 Feb. 1979

FURTH GLOSS AR Y ! "# $£, • () * +, -. 10123456789: ; < .. > ?@ A Z [\) A _

TEX

THEN

THEN,

TPABT

TPlT

TS A,

n~ORD

TYPE

LOADS THE TE~MINAL EXCHANGE WORDS WHICH ALLOW Ot\lE TO SWITCH
BETWEEN DIFFERENT TERMINAL DEVICES. SEE UTIL.

(C 0- ~ P)
TERMINATE AN IF-ELSE-THEN CONOITIONAL. SEE IF.

(A)

TERMINATE AN IF,-ELSE,-THEN, CONDITIONAL. SEE IF,.

FORC ES A n?y" ABORT.

<X-POSN> <Y-POXN> TPL T
DRAWS A VECTOR ON THE 4010 FROM THE CURRENT POSITION TO THE
SPECIFIED OFFSET FROM THE CURRENT POSITION AS GIVEN BY <X-POSN>
AND <"(-POSN>. A DARK VECTOR IS THEN DRAWN BACK TO THE ORIGINAL
POSITION. THE PARAMETERS TO THIS WORD ARE OFFSETS FROM THE
CURR ENT POSITION AND NOT PHYSICAL COORDINATES. <X-POSN> AND
<Y-PoSN> ARE SINGLE-WORD INTEGERS IN THE RANGE 0-1023 AND
0-780.

(A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN TSA INSTRUCTION (TRANSFER
THE FRONT PANEL SWITCH SETTING TO THE A REGISTER).

(OLD)
REQUEST A LINE OF INPUT FROM THE TERMINAL. THE LINE IS
TERMINATED BY A CARRIAGE RETURN AND THE FIRST WORD OF THE LINE
IS THEN EXTRACTED AND PLACED IN MEMORY AT THE NEXT AVAILABLE
DIe T ION A R Y L OC A T ION.

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TXA INSTRUCTION (TRANSFER
THE X REGISTER TO THE A REGISTER).

<COUNT> TYPE
OUTPUT A STRING OF CHARACTERS TO THE
MUST CONTAIN THE BYTE-ADDRESS OF
STRING AND <COUNT> SPECIFIES THE
OUTPUT. SEE wRITE AND COUNT.

OPERATOR'S TERMINAL. IP
THE fIRST CHARACTER QF THE
NUMBER OF CHARACTERS TO

TZA, CA)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TZA INSTRUCTION (TRANSFER
ZERO TO THE A REGISTER).

TZB, CA)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TZB INSTRUCTIO~ (TRANSFER
ZERO TO THE B REGISTER).

Feb. 1979 0-69

FORTH GLOSSARY

U. <VALUE> U.
UNSIGNED OUTPUT. CONVERT <VALUE> ACCORDING TO THE CURRENT
NUMBER BASE AND OUTPUT IT TO THE CURRENT OUTPUT DEVICE (USUALLY
THE OPERATOR'S TERMINAL) AS A POSITIVE, UNSIGNED, 16-8IT
NUMBER. THE VARIABLE FLO SPECIFIES THE FIELD WIDTH.

UNPK <OW-VALUE> UNPK <OW-RESULT>
<OW-VALUE> IS ASSUMED TO BE A PACKED CAMAC 24-BIT VALUE WHICH
IS UNPACKED TO YIELD A VARIAN DOUBLE-WORD INTEGER. SEE PACK.

UNSAVER, (A)

UPDATE

US

USER

UTIL

A WORD WHICH WILL RESTORE THE SYSTEM STATUS THAT WAS SAVED BY
THE SUBROUTINE SAVER. THIS WORD MUST BE FOLLOWED BY THE MACHI~E
CODE REQUIRED TO RESTORE THE B REGISTER AND RETURN FROM AN
INTERRUPT.

FLAG THE MOST RECENTLY REFERENCED BLOCK AS UPDATED. THE BLOCK
WILL SUBSEQUENTLY BE TRANSFERRED AUTOMATICAllY TO DISC OR TAPE
SHOULD ITS BUFFER BE REQUIRED FOR THE STORAGE OF A DIFFERENT
BLOCK. SEE FLUSH.

PUTS THE 4010 IN ALPHA MODE. SEE GS.

LOAD ADDITIONAL WORDS INTO THE DICTIONARY, NOTABLY THE
DOUBLE-WORD INTEGER WORDS, THE FLOATING-POINT WORDS AND THE
CAMAC WORDS.

DEFINES THE FOLLOWING LOADER WORDS (REFER TO THE DESCRIPTION OF
EACH WORD FOR FURTHER INFORMATION):

BRACKET, D-H, DISKO, FORMATTER, NEWTAPE, PRINTERS,
REDEF, T-H, TEX, ZERODISK.

UTILITIES (OLD)
RENAMED UTIle

D-70 Feb. 1979

FORTH GLOSSARY

VARIABLE <VALUE> VARIABLE <NAME>

VCHECK

VLIST

DEFINE A WORD <NAME> WHICH, WHEN EXECUTED, wILL PUSH TrlE
ADDRESS OF THE VARIABLE'S VALUE ONTO THE STACK. THE VALUE OF
THE VARIABLE IS INITIALIZED TO <VALUE>. THE SEQUENCE "<NAME> ~"
PUSHES THE VARIABLE'S CURRENT VALUE ONTO THE STACK AND THE
SEQUENCE "<VALUE> <NAME> !" STORES A NEW VALUE IN THE VA~IABLE.

PRINTS SOME RELEVANT INFORMATION CONCERNING ALL VOCABULARIES
(WHAT WORD IS THE HEAD OF THE VOCABULARY, WHICH VOCABULARIES
ARE CHAINED TO OTHERS, ETC.).

START LISTING THE DICTIONARY, BEGINNING AT THE HEAD OF THE
CONTEXT VOCABULARY. THE LISTING MAY BE STOPPED BY PRESSING ANY
TERMINAL KEY.

VOCABULARY (E) VnCABLUARY <NAME>
DEFINE A VOCABULARY WITH THE SPECIFIED NAME.
EXECUTION OF <NAME> WILL MAKE <NAME> THE CONTEXT
THE $~QUENCE "<NAME> DEFINITIONS" WILL MAKE <NAME>
VOCABULARY, INTO WHICH DEFINITIONS WILL BE PLACED.

SUBSEQUENT
VOCABULARY.
THE CURRENT

w.D <FIELD-WIDTH> <#DIGITS> W.D
SPECIFY BOTH THE TOTAL FIELD WIDTH AND NUMBER OF DIGITS TO THE
RIGHT OF THE DECIMAL POINT FOR PRINTING FLOATING-POINT NUMBERS
USING THE WORDS E. AND F.. THESE VALUES ARE STnRED
INDEPENDENTLY OF THE VARIABLES FLO AND OPL, HOWEVER, EACH TIME
EITHER E. OR F. IS EXECUTED THE VALUES OF FLO AND DPl wILL
CHANGE. STORING NEW VALUES IN FLO AND DPL DOES NOT AFFECT THE
FLOATING-POINT FIELD SPECIFICATIONS. THE DEFAULT VALUES ARE A
FIELD WIDTH OF 14 AND 4 DIGITS TO THE RIGHT OF THE DECIMAL
POINT.

WAIT (A)
THE ADDRESS OF A SUBROUTINE WHICH SHOULD BE USED WHENEVER A
PROGRAM MUST WAIT FOR ANY FORM OF 1/0. USER SWAPPING IS DONE IN
WAIT. THIS SUBROUTINE MUST BE CALLED BY A JMPM INSTRUCTION.

WCH <CHAR-CODE> WCH

Feb. 1979

OUTPUT THE SPECIFIED ASCII CHARACTER CODE TC THE CURRENT OUTPUT
DEVICE (USUALLY THE OPERATOR'S TERMINAL). SEE APPENDIX A FOR A
LISTING OF THE ASCII CODES. SEE TCH.

D-71

wF

WG

WGAP

WHERE

WHILE

WINIT

WORD

WORDIN

WR ITE

D-72

FORTH GLOSSARY

INITIATES THE WRITING OF AN END-OF-FILE ON THE MAG TAPE AND
RETURNS IMMEDIATELY. SEe ENDFILE.

INITIATES THE WRITING OF A THREE INCH GAP ON THE MAG TAPE
(REFER~ED TO AS ERASING THE TAPE) AND RETURNS IMMEDIATELY. SEE
WG AP.

INITIATE THE WRITING OF A THREE INCH GAP ON THE MAG TAPE
(REFERRED TO AS ERASING) AND WAIT FOR THE OPERATION TO
COMPLETE. SEE WG.

OUTPUT INFORMATION ABOUT THE STATUS OF FORTH. THIS WORD IS
USUALLY EXECUTED AFTER AN ERROR ABORT TO DETERMINE WHERE THE
SYSTEM WAS (LAST WORD COMPILED AND LAST BLOCK ACCESSEO) WHEN
THE ERROR OCCURED.

(C2+,P) <LOGICAL-VALUE> WHILE
TEST THE <LOGICAL-VALUE> AND IF FALSE, EXIT OUT OF A
BEGIN-WHILE-REPEAT LOOP IMMEDIATELY. SEE BEGIN.

INITIALIZE THE wORD REPLACEMENT ARRAY. THIS WORD MUST BE
EXECUTED PRIOR TO A SERIES OF REPLACE AND/OR $REPLACE. SEE FIX,
REPLACE AND $REPLACE.

<CHAR-CODE> WORD
READ THE NEXT WORD FROM THE INPUT STRING BEING INTERPRETED. THE
WORD IS TERMINATED BY THE SPECIFIED <CHAR-CODE> AS THE
DELIMITER (FORTH USUALLY SPECIFIES A BLANK AS A DELIMITER,
ALTHOUGH ANY ASCII CHARACTER MAY BE SPECIFIED). THE PACKED
CHARACTER STRING IS STORED IN THE DICTIONARY, BEGINNING AT THE
NEXT AVAILABLE LOCATION (SEE THE WORD HERE) WITH THE CHARACTER
COUNT IN THE FIRST BYTE.

WORDIN <ADDRESS>
REQUEST A WORD FROM THE TERMINAL. A STRING OF CHARACTERS
TERMINATED BY A CARRIAGE RETURN IS READ IN FROM THE TERMINAL
AND THE FIRST WORD (ALL CHARACTERS UP TO THE FIRST BLANK) IS
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION AND ITS
ADDRESS IS RETURNED ON THE STACK.

<COUNT> WRITE
OUTPUT A STRING OF CHARACTERS TO THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). IP MUST CONTAIN THE
BYTE-ADDRESS OF THE FIRST CHARACTER OF THE STRING AND <COUNT>
SPECIFIES THE NUMBER OF CHARACTERS TO OUTPUT. THIS WORD DIFFERS
FROM TYPE IN THAT WRITE WILL OUTPUT TO THE CURRENT OUTPUT
DEVICE (WHICH MAY OR MAY NOT BE THE OPERATOR'S TERMINAL) WHILE
TYPE WILL OUTPUT ONLY TO THE OPERATOR'S TERMINAL. SEE COUNT.

Feb. 1979

FORTH GLOSSARY

x)

XOR

XY4010

ZAP

(A)
SETS THE VARIABLE MODE TO 5,
REGISTER FOR THE NEXT MEMORY
FORTH KEEPS THE CURRENT STACK

SPECIFYING INDEXING OFF THE X
REFERENCE INSTRUCTION. NOTE THAT
POINTER IN THE X REGISTER.

(A) <ADDRESS> <JUMP-CONDITION> XIF,
THE ASSEMBLER MNEMONIC FOR THE VARIAN XIF INSTRUCTION (EXECUTE
THE INSTRUCTION AT <ADDRESS> IF THE CONDITION IS TRUE).

<VALUEl> <VALUE2> XOR <RESULT>
FORM THE BITWISE LOGICAL EXCLUSIVE-OR OF <VALUEl> AND <VALUE2>,
LEAVING THE RESULT ON THE STACK.

<X-POSN> <Y-POSN> XY4010
DRAWS A VECTOR ON THE 4010 TO THE PHYSICAL LOCATION SPECIFIED
BY <X-POSN> AND <Y-POSN>. <X-POSN> AND <Y-POSN> ARE SINGLE-W~RD

INTEGERS IN THE RANGE 0-1023 AND 0-780.

DELETE THE ENTIRE DICTIONARY, RESET ALL INTERNAL POINTERS AND
FLAGS, RELOAD BASIC FORTH (BLOCK 8) INTO THE DICTIONARY.

ZERODISK <START-BLOCK#> <END-BLOCK#> ZERODISK
ZEROES THE SPECIFIED RANGE OF BLOCKS ON THE DISK. SEE UTIL. SEE
DISKO.

[(P)

[P J

J

STOP COMPILATION. THE wORDS FOLLOWING THE LEFT BRACKET IN A
COLON DEFINITION ARE EXECUTED, NOT COMPILED. SEE 1.

SET TH~ PRECEDENT BIT OF THE NEXT WORD DEFINED SO THAT THE WORD
IS A COMPILER DIRECTIVE.

RESUME COMPILATION. THE FOLLOWING WORDS IN A COLON DEFINITION
ARE COMPILED, NOT EXECUTED. SEE (.

Feb. 1979 0-73

FORTH GLOSSARY

SINGLE-WORD INTEGER ARITHMETIC WORDS
----------- ------- ---------- -----

* **
*1
+

I
IMOD
ABS
MAX
MIN
t"11 NUS
MOD

DOUBLE-WORD INTEGER ARITHMETIC WORDS
----------- ------- ---------- -----
ASHIFT
0*1
D+
0-
DABS
DMINUS
SORT

MIXED-PRECISION INTEGER ARITHMETIC WORDS

2M*
M*
M+
MI
M/MOD

D-74 Feb. 1979

FORTH GLOSSARY

FLOATING-POINT ARITHMETIC WORDS

*10**
F*
F+
F-
FI
F2LOG
F2 X P
FABS
FDATN
FOCO S
FOSIN
FD TAN
FEXP
FEXPIO
FLN
FLOG
FMAX
FMIN
FMINUS
FRATN
FSQRT

14-BIT FRACTION ARITHMETIC WORDS

*,
I,
Rl-2
RS.C
SIN.COS

DOUBLE-WORD FRACTION ARITHMETIC WORDS

0*
01

NUMERIC

.FIX
.FLOAT
OFIX
DFLOAT
SFIX
SFLOAT

Feb. 1979

CONVERSION

FLOATING-POINT ->

DW-FRACTION ->
FLOATING-POINT ->

OW-INTEGER ->
FL OAT I NG-POI NT ->
SW-INTEGER ->

OW-F RAC TI ON
FLOATING-POINT
OW-INTEGER
FLOATING-POINT
SW-INTEGE R
F LOATING- POIN T

0-75

FORTH GLOSSARY

SINGLE-WORD LOGICAL OPERATORS

AND
COM
MINUS
OR
XOR

ONES COMPLEMENT
TWOS COMPLEMENT
INCLUSIVE-OR
EXCLUSIVE-OR

SINGLE-WORD STAC~ OPEARTORS

DROP
OUP
LS
NOROP
OVER
PICK
ROLL
ROT
SWAP

2-WORO

2DROP
20UP
2LS
20VER
2PICK
?ROLL
2ROT
2SWAP

3-WOPO

30ROP
3DUP
3 OVE R
3PICK
3ROLL
3ROT
3SWAP

D-76

ST AC K OPEARTORS
----- ---------

ST ACK OPERATORS
----- ---------

!"#$&' ()*+,-./0123456789: ;<->?@AZ(\]"_

Feb. 1979

FORTH GLOSSARY !"#$&'()*+,-./0123456789:;<.>?@AZ(\)~_

NUMERIC OUTPUT WORDS

SINGLE-WORD INTEGER, FREE FORMAT
? SINGLI:-WORD INTEGER, FREE FO RM AT
B. SINGLE-WORD INTEGER, BINARY
D. DOUBLE-WORD INTEGER
E. FLOATING-POINT WITH EXPONENT
E? FLOATING-POINT WITH EXPONENT
F. FLOATING-POINT WITHOUT EXPONENT
F? FLOATING-POINT WITHOUT EXPONENT
G. GENERALIZED FLOATING-POINT
G? GENERALIZED FLOATING-POINT
H. SINGLE-WORD INTEGER, HEXADECIMAL
I • SING LE-WORD INTEGER
N. SINGLE-WORD INTEGER
o. SINGLE-WORD INTEGER, OCTAL
S .• SINGLE-WORD INTEGER
U. SINGLE-WORD INTEGER, UNSIGNED

COLON DEFINITION CONTROL

+LOOP
BEGIN
CASE
DO
ELSE
END
IF
I
I '
J
K
LEAVE
LOOP
REPEAT
THEN
WHIL E

MACHINE CODE CONTROL

BEGIN,
EL S E ,
END,
IF,
THEN,

Feb. 1979 D-77

FORTH GLOSSARY

DIRECT MAG-TAPE WORDS (7-TRACK)

>BCD
?EOF
?MTREADY
BK
BK SP
ENDFILE
FW
FWSP
LWA?
MTPERR
MTR
MTREAD
MTREJ
MTW
MTWAIT
MTWRITE
OFFLINE
PEW
RW
SKIPF
TPABT
WF
wG
WGAP

D-78

FLAG FOR BCD OR BINARY MODE
TEST FOR END-OF-FILE
TEST FOR READY
INITIATE BACK SPACE RECORD
BACK SPACE RECORD AND WAIT
WRITE AN EOF AND WAIT
INITIATE A FORWARD SPACE RECORD
FORWARD SPACE RECORD AND WAIT
READ IN FINAL DHA ADDRESS
TEST FOR PARITY ERROR
INITIATE A READ
READ AND WAIT
TEST FOR REJECT
INITIATE A WRITE
WAIT fOR READY
101 RITE A NO lolA IT
TURN THE DRIVE OFFLINE
REWIND AND WAIT
INITIATE A REWIND
SKIP ONE FILE AND WAIT
FORCE A "1Y" ABORT
INITIATE THE WRITING OF AN EOF
INITIATE THE WRITING OF A GAP
WRITE A GAP AND WAIT

Feb. 1979

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

